
Numerical studies of Supernova 
Remnants

Haakon Andresen

Physics

Supervisor: Michael Kachelriess, IFY

Department of Physics

Submission date: May 2013

Norwegian University of Science and Technology





Abstract

Supernovae are very luminous events, on the scale of entire galaxies, and deposit mass and
large amounts of energy in to the surrounding interstellar medium. In this work the effect
of a supernova on the surrounding medium is studied. The evolution of the remnant is as-
sumed to be spherical symmetric. The hydrodynamic evolution of the system is simulated
for different density distributions of the ambient medium and compared to analytically
solutions where they exists.

Some background theory about stellar evolution and supernovae is given. Since strong
shocks from supernovae is interesting in the context of cosmic ray acceleration some the-
ory about cosmic is included.

The framework for simulating the hydrodynamic equations governing the system is based
on the work done by W.Benz [2].

Sammendrag

Supernovaeksplosjoner er lyssterke hendelser der en enkelt stjerne, over en relativt liten
tidsperiode, kan bli like lyssterk som en hel galakse. Slike eksplosjoner sender store
mengder masse og energi ut i det interstellare medium. I denne oppgaven blir det studert
hvordan en supernova påvirker omgivelsene, oppgaven begrenser seg til kule-symmetriske
supernova levninger. Det blir utført simuleringer for forskjellige strukturer av mediet rundt
supernovaen og det sammenlignes med analytiske løsninger, der de eksisterer. Metoden
for å simulere utviklingen av systemet baserer seg på rammeverket som W.Benz presen-
terer i [2]. Denne metoden blir gjennomgått i detalj.

Noe bakgrunnsteori om stjerners utvikling og supernovaeksplosjoner blir gitt og siden
sjokkbølger fra supernova eksplosjoner er interessant i henhold til kosmisk stråling blir
det også gitt teori om kosmisk stråling.
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Introduction

A supernova is an event where a star undergo drastic changes and over a short period of
time the luminosity of the star can become comparable to an entire galaxy. The supernova
progenitors are thought to be either white dwarfs or massive stars at the end of their life,
this separates supernovae events into two classes.

A white dwarf is supported by degenerated electron pressure, however there is a upper limit
on how much mass can be supported this way and if this limit is surpassed the dwarf will
start to collapse. The collapse enables carbon fusion and the released energy is enough
to overcome the gravitational binding energy, destroying the star. This produces a very
characteristic light curve and as such type Ia supernovae, as they are called, are good
standard candles. When massive stars exhaust the hydrogen in their core nuclear process
will slow down and the core will collapse under its own gravitational pull. During this
collapse a large amount of gravitational energy is released, this type of supernova is a
core collapse supernova. Common for both types is the fact that they eject matter into
the interstellar medium and create a shock wave. How a supernova effect its soundings
is important for the evolution of galaxies and star formation. The prorogation of strong
shock is also interesting with respect to acceleration of cosmic rays.

We start this thesis with some background theory and move on to the numerical simulation
of the hydrodynamic equations governing the evolution of a supernova remnant. The nu-
merical simulation of fluids is in itself an interesting topic and has applications to several
fields in physics.
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Chapter 1
Stellar evolution

The evolution of stars can be divided into three parts: Formation, main sequence phase
and post main stage. Particularly interesting with respect to supernovae are the death of
high mass stars, white dwarfs and the role supernova feedback plays on star formation.

1.1 Main sequence

The term main sequence comes from observations: It is possible to infer the luminosity
and the temperature of the star from the light we observe. The first is found by realizing
that the light emitted from a star at a given distance from earth will be spread out over the
surface of a sphere with radius r, if r is the distance to the star. As such the incoming flux
should be related to the luminosity as follows:

L = 4πr2F , (1.1)

here F denotes the observed flux and L is the luminosity of the star.

The temperature is found by the fact that a star is very close to a black body, an object that
absorbs all radiation it receives. Therefore we can approximate its spectrum as the one of
a black body at a given temperature and get a good estimate of the surface temperature
of the star. In 1900 Max Planck developed an empirical formula to describe black body
spectra:

I(λ, T ) =
2hc2

λ5
(
ehc/λkBT − 1

) , (1.2)

where λ is the wave length of the emitted light, h is Planck’s constant, T is the temperature
of the object and c is the speed of light. For a given wavelength λm, equation (1.2) has a
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maximum. This wavelength fulfills the following equation:

λmT = constant, (1.3)

this is known as Wien’s displacements law. By looking at the spectrum of a star and finding
the wavelength at which it emits most light we can estimate the temperature.

A diagram plotting the luminosity as a function of temperature is known as Hertzsprung-
Russell-diagram or HR-diagram for short, named after the two astronomers that first pro-
posed it, see figure 1.1.
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Figure 1.1: HR diagram for 41704 stars, from the Hipparcos Catalogue [7]

The stripe in figure 1.1 is called the main sequence and this is where the term main se-
quence star comes from. When a star is on the main sequence its energy source is hydro-
gen burning in the core and it will stay on the main sequence as long as it has hydrogen
to burn. To find out how long a star will stay on the main sequence we need to know how
much fuel is available and the rate that fuel is being burned. Based on observations it is
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possible to infer a relation between the luminosity and the mass of a star,

L/L� =

(
M

M�

)α
, (1.4)

where L� and M� denotes the luminosity and mass of the sun. The parameter α is found
to have different values:

α =


1.8, if M < 0.3M�

4.0, if 0.3M� < M < 3M�

2.8, if M > 3M�,

(1.5)

see [11]. In other words, the more massive stars radiate away more energy and burn the
hydrogen in the core faster than less massive stars. Even though more massive stars have
more hydrogen available to burn, the results is that less massive stars have a longer lifes-
pans than more massive stars. A conclusion supported by investigating stellar populations
in young and old galaxies.

1.2 Star formation

Consider a uniform and spherical gas cloud, let M denote the mass of the cloud. We are
interested in determining the stability of such a cloud, if the cloud is unstable it can col-
lapse and cause star formation. If electromagnetic forces can be neglected, the validity of
this assumption is questionable and will be discussed below, then the only effect resisting
gravitational collapse is the random thermal motion within the cloud.

Gravitational binding energy is equal to the energy required to bring the mass in from
infinity to the final configuration. In spherical coordinates the mass of a spherical volume
containing a uniform gas is given by:

M =
4π

3
r3ρ⇒ dM = 4πr2ρdr,

where ρ is the density of the gas.

Remembering that the gravitational energy between two point masses,m1 andm2, is given
by:

U = −Gm1m2

r
, (1.6)

where G is the gravitational constant. Now we take m1 to be the mass already assembled
and m2 to be the mass being the mass of a shell being brought in. Since the end result
should not depend on how the final state was assembled we can imagine that we assemble
the inner part first, then adding on spherical shells of thickness dr. As such

dU = −G4π
4π

3
ρ2r4dr, (1.7)
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and we get the following expression for U :

U = −
∫ R

0

dU = −
∫ R

0

G4π
4π

3
ρ2r4dr = −3

5

GM2

R
,

where R denotes the radius of the sphere.

1.2.1 Jeans length

For the cloud to be gravitational bound the total thermal energy,

Et =
3

2

M

m
kBT, (1.8)

has to be less than the gravitational binding energy.

3

5

GM2

R
>

3

2

M

m
kBT. (1.9)

The limit between stable and unstable is found by equating the left and right hand side of
equation (1.9), then solving forR we find a limit between bound and unbound. This radius
is known as the Jeans radius and is given by:

Rj =

[
15kbT

8πGmρ

] 1
2

. (1.10)

Magnetic energy density is given by

uB =
B2

2µ0
, (1.11)

where B is the magnetic field and µ0 is the magnetic vacuum permeability. We expect the
magnetic effects to become important if the energy from magnetic fields in the cloud are
on the same order as the gravitational binding energy.

The total magnetic energy of a cloud is given by

Ub = ubV =
2πB2R3

3µ0
. (1.12)

Equating equation (1.12) and (1.8) and solving for B yields

B =

[
9

10

GMµ0

πR4

] 1
2

. (1.13)

For a cloud with radius R = 10 pc and consisting of molecular hydrogen, with a density
of around 300 particles per cubic centimeter, we get

B ≈ 6× 10−5G.

This is of the same order as observed magnetic fields, see [11]. As such the effect of
magnetic fields should be taken into consideration.

6



1.2.2 Fragmentation and star formation

Next consider a region, part of a larger cloud, that is subject to a perturbation and as
a result the density in the region increases. An example of a perturbation could be a
shock wave from a nearby supernova explosion. As a result of compression the perturbed
region can exceed its Jeans limit and start to collapse. Some regions within the can cloud
start to collapse while others remain stable, creating regions of high and low densities.
The gravitational pull of the dense areas increases and they attract more mass leading to
fragmentation of the cloud. These fragmentation can continue to accrete mass and grow,
in the process both temperature and density increases, until the core temperature reaches
the threshold for hydrogen ignition and a main sequence star is born.

M. R. Bate et al. has preformed simulations of such fragmentation, modeling the frag-
mentation of a 50M� mass cloud with diameter 0.375 pc. See [1]. Numerical results are
shown in figure 1.2.

1.3 Stellar death

When a star depletes the available hydrogen in its core, nuclear processes slow down and
the core starts to contract. For low mass stars the contraction is gradual and slow, but for
more massive stars the process is faster and this gives rise to an important distinction be-
tween high and low mass stars: In low mass stars the core has time to reach a degenerated
state before helium burning starts. For high mass stars this is not the case, helium burning
temperatures are reached before the core become degenerated.

Degeneracy is a quantum mechanical effect that occurs at high density. Pauli’s exclusion
principle states that two fermions can not be in the same state, electrons are fermions. This
effect causes the average energy of the electrons to be much greater than what one would
expect from the temperature. Higher energy means higher momentum and therefor higher
pressure. The degenerated electron pressure is given by:

P =
h2

20me

[
9ρ5

π2m5
Hµ

5
e

] 1
3

, (1.14)

where mH is the atomic mass, me the electron mass, ρ the density, and µ−1
e is the average

number of free electrons per nucleon, see [13].

High mass stars contract rapidly, pressure and temperature increase to the point where
helium burning starts. The burning of helium heats the layers around the core to a tem-
perature where hydrogen burning can take place. The pressure from burning of helium
stabilizes the core, however the core will quickly deplete its helium fuel. The core con-
tracts further and the temperature rise to the point where carbon and oxygen burning can
start. The layer burning hydrogen is heated further and helium burning starts. This process
of burning and depleting heavier and heavier elements in the core continues, developing a
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(a) (b)

(c) (d)

Figure 1.2: Cloud collapse simulation, taken from [1] with permission. (a) Initial cloud. (b) Col-
lapse has stared. (c) Bright regions indicate star formation. (d) Increasing amount of star formations.

shell structure with a degenerated iron core surrounded by shells burning lighter elements.
Nuclear burning in the outer shells keeps the core growing until degeneracy pressure can
no longer balance out the gravitational pull. At this point the iron core has a typical diam-
eter of 3000 km and a density of the order 109g/cm3.

The shell burning can release more energy than the core did during the main sequence
phase and as a result the outlaying layers of the star heat up. This causes the star to
expand, which in turn cools the gas. The star increases in size and becomes a red giant.
The outer layers are loosely bound to the rest of the star and the momentum transfer from
photons, from the interior of the star, can cause the outer layers to be ejected. The fate
of the star is determined by its mass, the core will eventually start to collapse. For very
massive stars gravitational collapse can not be halted and the end result is a black hole.
For a less massive star the gravitational collapse can eventually be stopped and we are left

8



with a neutron star.

Low mass stars contracts slower, therefore the core is in a degenerated state when helium
burning start. Since the pressure in a degenerated gas is not depended on the temperature
the pressure do not increase and there is nothing slowing the reaction rate. The result is
that the helium-carbon process takes place over a very small time period, this is known as
a helium flash. After the burst the core is no longer degenerated, the remaining helium is
steadily converted into oxygen and carbon. Eventually the helium full is depleted, at this
point the temperature is not high enough for further fusion and the core starts to collapse
once more.

The collapse is eventually halted by degenerate the electron pressure and we are left with
a compact object, known as a white dwarf. Subrahmanyan Chandrasekhar derived a limit
on how much mass can be supported by degenerate electron pressure, found to be around
1.44M�.
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Chapter 2
Supernovae

A supernova is an very luminous event, during which the luminosity of a star can become
comparable to luminosity levels of an entier galaxy. The event takes place over a short time
and it is clear that during supernova explosion the progenitor star undergo drastic changes.
The study of supernovae events are important in several branches of astrophysics. The
abundance of the elements in the universe is one example, elements heavier than iron can
not be produced in normal stars. In astronomy type Ia are useful as standard candles and
were important for discovering that the expansion of the universe is accelerating.

Classification of such events are based on the observed properties, such as light curves and
spectral lines, with two main classes: type I and II. Historically supernovae were labeled
type I if there were no hydrogen lines and type II if hydrogen lines were observed. Further
observations showed different types of spectra within these two main classes, figure 2.1
shows spectra for type Ia, Ib and II supernovae.

A detailed classification of supernovae, based on observational properties, is given by [5].

2.1 Detonation mechanism

Another way to classify supernovae is by the detonation mechanism, resulting in two
classes: Core collapse and thermonuclear detonation. The reason for the large amount
of observational classes, relative to detonation mechanisms, is that a dying star might be
subject to effects like stellar wind. The surrounding medium can therefore be different
from case to case. Strong stellar wind can blow away the hydrogen rich outer layer of,
explaining the lack of hydrogen lines in type II.

11



Ia

+10 months
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II
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Figure 2.1: Supernovae spectra for type Ia, Ib and II. Figure by E. Cappellaro and M. Turatto [5].

White dwarfs and thermonuclear detonation. Progenitors to type Ia supernovae are
thought to be white dwarfs accumulating mass, until exceeding the Chandrasekhar limit.
When this happens the electron degeneracy pressure can no longer support the star against
its own gravitational pull and it starts to collapse. The temperature rises and nuclear burn-
ing of carbon starts up. This rises the temperature further, the increased temperature speeds
up the nuclear process. The increase in temperature will not affect the pressure and as
such the process continues unhindered and turns into a runaway situation. The nuclear
processes occurring throughout the star releases a large amount of energy, E ≈ 1044 J
[13]. The released energy is greater than the binding energy of the dwarf and the star is
blown apart.

While it is generally agreed upon that a type Ia supernova is produced by a white dwarf
accumulating mass, it is still not fully understood how the dwarf accumulates the mass.
Early models proposed a binary system including a white dwarf, where the dwarf accretes
mass from the companion. However such models had problems raising the mass of the
white dwarf sufficiently. Several models to solve the problem have been proposed, a review
of various progenitor models can be found in [16].

Core collapse. As a massive star nears the end of its life it will develop an iron core
supported by electron degeneracy pressure. This core will continue to grow until the de-
generate pressure can no longer support the it.

When the core starts to collapse the temperature increases, enabling photo disintegration
of iron nuclei. This process consumes energy and reduces the particle number, as such
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the pressure drops and the collapse speeds up. The density continues to increases, finally
when the density is ρ ∼ 1014g/cm3 the collapse is halted. The core collides with the
outer layers that are still falling in and a shock is created. This shock travels outwards
trough the layers surrounding the core, however it is rapidly losing energy by destroying
iron nuclei. At around 100 km the shock stagnates and creates a boundary where the outer
layers accretes on the inner core.

In order for the core to turn into a supernova some of the gravitational energy released in
the collapse has to be deposited into the shock. To estimate the energy released in such an
event we subtract the energy absorbed by nuclear processes, such as photo disintegration,
from the released gravitational energy. Remembering the gravitational potential energy of
a sphere, with mass M and radius R,

Eg = −3

5

GM2

R
. (2.1)

It is clear that a contracting sphere will release gravitational energy, for a typical iron core
collapsing into a neutron star ∆Eg ≈ 1046J . While the absorbed nuclear energy is of the
order En ≈ 1045 J, see [13]. A portion of this energy is carried away by neutrinos and
deposited behind the shock front. Simulations have shown that this effect can accelerate
the shock and results in a successful detonation. For a more detailed discussion see [8].

The energy released in such an event is more than enough to eject the envelope surrounding
the core. Observations suggest that material is being ejected with velocities up to 10 000
km/s.
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Chapter 3
Cosmic rays
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Figure 3.1: Cosmic ray intensity. From [10]

In 1909 Theodor Wulf famously measured
higher levels of radiation on top of the Eif-
fel tower than at ground level. While the
source and validity of this deviation were
debated at the time, it was the first histor-
ical observation of radiation not coming
from Earth. This radiation later became
know as cosmic rays. Cosmic rays inter-
act strongly with the atmosphere, and ob-
servations have therefore historically taken
place at high altitudes. In 1912 Vic-
tor Hess measured that radiation increased
with altitude, furthermore he noted that the
intensity did not decrease during a solar
eclipse or night time, ruling out the sun
as the source. Modern experiments have
given us a good overview of the compo-
sition of cosmic rays. Around 79 % of
charged cosmic rays consists of free pro-
tons and helium account for about 70 %
of the remaining rays. A small amount of
the charged cosmic rays are electrons and
positrons, see [10]. Figure 3.1 shows the
observed intensity for hydrogen, helium, carbon and iron cosmic rays. We see a signifi-
cant higher intensity of cosmic rays consisting of hydrogen and helium. We also see that
for energies above 10 GeV the spectrum fits a power law, with a deviation at lower ener-
gies. This is due to the sun, solar wind interacts with cosmic rays and decelerates them.
For high energy particles this effect is not as significant as for low energy particles. The
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result is that the sun partly screens the solar system from low energy cosmic rays. Due to
the change in solar activity this effect is time depended and as such the observed spectra
at low energies will be time depended and strongly anti-correlated with solar activity.

3.1 Acceleration of cosmic rays

In 1949 Fermi calculated the energy gain for particles interacting with magnetic clouds in
the interstellar medium. He showed that the average energy per interactions, for relativistic
particles interacting with a magnetic cloud with velocity V , is given by:

〈
∆E

E

〉
=

8

3

(
V

c

)2

, (3.1)

where c is the speed of light.

Fermi assumed that such collision were the main source of energy gain, however several
problems exists with this idea. The energy gain would be slow, due to the long mean free
path of cosmic rays and low velocity of galactic magnetic clouds. It was also problematic
to explain the energy spectrum of cosmic rays. See [12] for a more detailed discussion.

Shock acceleration of cosmic rays is interesting in the context of supernova remnants.
Consider a strong shock propagating through a diffuse medium at sub-relativistic speeds,
with high energy particles on both sides of the shock wave. High energy particles will not
notice the shock front, because the shock front is very thin. Once they cross the front it is
assumed that scattering effects, like streaming instabilities and turbulent motion, scatters
the particles sufficiently so that their velocity distributions become isotropic in the frame
of the moving fluid behind the shock. If the shock is moving trough the fluid with velocity
V , we know that the fluid behind the shock travels with V2 = 3

4V . See chapter 4.

Let E1 and E2 denote the initial and finally energy in the lab frame, likewise E′1 and E′2
denotes the initial and final energy in the rest frame of the fluid behind the shock front. If
a particle crosses the shock with an angle φ, scatters and exits with an angle β, see figure
3.2, then the Lorentz transformations are given by:

E′1 = γ(E1 + V2E1/c cosφ) (3.2)
E2 = γ(E′2 − V2E

′
2/c cosβ). (3.3)

For non relativistic motion γ ≈ 1 and elastic scattering implies that E′1 = E′2.
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φ

β

Figure 3.2: First order Fermi acceleration on shock front

Now we want to find the energy change,

∆E = E2 − E1 = (E′2 + E′2/cV2 cosφ)− E1

=
E1V1

c
(cosφ− cosβ).

(3.4)

As such we get,
∆E

E1
=
V1

c
(cosφ− cosβ). (3.5)

Taking the average over all possible angles and remembering that the collision rate is
proportional to [1− V/c cosφ] yields〈

∆E

E1

〉
=

4

3

V1

c
. (3.6)

This expression is only first order in V1/c and therefore a strong shock is a more effective
source for particle acceleration. Strong shocks in supernova remnants have for a long time
been good candidates as sources for galactic cosmic rays and recently direct observational
evidence has been found [9].
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Chapter 4
Fluid mechanics

If we have a system of N particles, we can in principle describe it by the motion of all
the individual particles. However, for a large number of particles, it is easier to examine
the macroscopic behavior of the system. By averaging over the motion of particles we
can define quantities like pressure and temperature. Instead of modeling the movement
of individual particles, we look at the flow of fluid elements. Each fluid element should
contain a large number of particles, so that averaging is meaningful. However it should be
small enough, so that relevant quantities do not change significantly within the element.

4.1 Eulerian and Lagrangian formulation of fluid mechan-
ics

There are two common ways to formulate fluid mechanics: Eulerian and Lagrangian. The
Eulerian formulation looks at a volume element fixed in space and describes how different
variables change with time. In other words: One looks at the properties of small volumes
at specific coordinates. The Lagrangian formulation picks a fluid element and follows it,
looking at how variables changes for this element. The coordinate system moves with the
element.

The two formulations are connected by the derivatives: If ∂
∂t denotes the time derivative in

the Eulerian formulation and D
Dt denotes the time derivative in the Lagrangian formulation

we have the following connection

D

Dt
=

∂

∂t
+ v · ∇. (4.1)
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To see this we start with the definition of the derivative action on a a scalar function: D
Dt

f(r, t) where r = r(t). Note that we have chosen to look at a scalar function, but it can be
done in the same way for a vector.

Df(r, t)

Dt
= lim

∆t→0

f(r + ∆r, t+ ∆t)− f(r, t)

∆t
. (4.2)

Now we use the fact that ∆r = v∆t and Taylor expand to first order. We get

Df(r, t)

Dt
= lim

∆t→0

f(r, t) + ∆t ∂∂tf(r, t) + ∆tv · ∇f(r, t)− f(r, t)

∆t

= lim
∆t→0

( ∂∂tf(r, t) + v · ∇f(r, t)) ·∆t
∆t

=
∂

∂t
f(r, t) + v · ∇f(r, t).

Thus we arrive at the connection between the Eulerian and Lagrangian formulations:

Df(r, t)

Dt
=

∂

∂t
f(r, t) + v · ∇f(r, t). (4.3)

4.2 Hydrodynamic Equations

Fluid mechanics is based on the conservation of mass, energy and momentum. Mathemat-
ically we express this as conservation laws.

4.2.1 Conservation of mass

Considering a fixed volume element, let V denote the volume and S the area of the ele-
ment, containing a fluid with density ρ. The mass is given by M = ρV , therefore the rate
of change in mass is

∂M

∂t
=

∂

∂t

∫
V

ρdV. (4.4)

If we have a system without sources and sinks, equation (4.4) must be equal to the outflow
of mass across the surface per unit time. The flow out of a small surface element dS is
ρv · dS. We integrate this expression over the surface of the element, S.

∫
S

ρv · dS =

∫
V

∇ · (ρv)dV, (4.5)
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where we used the divergence theorem. Now we see that equation (4.4) must be equal to
(4.5), with a minus sign to compensate for the fact that we choose outward flow as positive
flow,

∂

∂t

∫
V

ρdV = −
∫
V

∇ · (ρv)dV. (4.6)

The choice of volume is arbitrary and equation (4.6) should hold for any volume, therefore
the two integrands must be equal

∂

∂t
ρ+∇ · (ρv) = 0. (4.7)

This is the continuity equation in the Eulerian formulation.

4.2.2 Conservation of momentum

Consider a fluid element with volume V and density ρ. The element will feel pressure
from the surrounding fluid as well as external forces. The net force acting on the fluid
element in direction n̂ is given by

Fn̂ = −
∫
V

∇ · (P n̂)dV + Fexternal. (4.8)

If there are no other external forces than gravity we can rewrite equation (4.8) as

Fn̂ = −
∫
V

∇ · (P n̂)dV +

∫
V

ρg · n̂dV, (4.9)

where g = −∇Φ represents gravity. The rate of change in momentum must be equal to
the net force acting on the fluid element. Equating the momentum change and the net force
yields (

D

Dt

∫
V

ρvdV

)
· n̂ = −

∫
V

∇ · (P n̂)dV +

∫
V

ρg · n̂dV. (4.10)

Here we have used the Lagrangian derivative since we are following a specific element.
Taking the derivative under the integral on the left hand side gives:∫

V

D

Dt
(ρdV )v · n̂ +

∫
V

Dv

Dt
ρdV · n̂ = −

∫
V

∇ · (P n̂)dV +

∫
V

ρg · n̂dV. (4.11)

The first term on the left hand side is the change of mass in our fluid element. This term is
zero due to mass conservation and equation (4.11) reduces to∫

V

Dv

Dt
ρdV · n̂ = −

∫
V

∇ · (P n̂)dV +

∫
V

ρg · n̂dV. (4.12)

Equation (4.12) should hold for any volume and any direction, this implies that

Dv

Dt
ρ = −∇P + ρg. (4.13)
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This is the momentum equation in the Lagrangian formalism. We can transform it into
its Eulerian form by using the connection between Lagrangian and Eulerian derivatives,
equation (4.3), we get:

ρ
∂v

∂t
+ ρv(∇ · v) = −∇P + ρg. (4.14)

4.2.3 Conservation of energy

Next we look at the energy of the system. We define

E = ρ

(
1

2
v2 + Φ + ε

)
, (4.15)

where ε is specific internal energy and as before Φ represents gravity, as the total energy
per unit volume. For an ideal gas, consisting of identical particles, ε is given by

ε =
3

2

kB
m
T, (4.16)

where T is the temperature of the gas, kB is Boltzmann’s constant and m is the mass of
the gas particles. Taking the Lagrangian derivative of E with respect to time gives

DE

Dt
=
∂E

∂t
+ v · ∇E

=
D

Dt

[
ρ

(
1

2
v2 + Φ + ε

)]
=

[
∂ρ

∂t
+ v · ∇ρ

]
E

ρ
+ ρ

D

Dt

[
1

2
v2 + Φ + ε

]
=

[
∂ρ

∂t
+ v · ∇ρ

]
E

ρ
+ ρ

[
v ·
(
∂v

∂t
+ v(∇ · v)

)
+
∂Φ

∂t
+ v∇Φ +

∂ε

∂t
+ v · ∇ε

]
.

Using equation (4.14) we can simplify this expression to

∂E

∂t
+ v · ∇E + v · ∇P =

[
∂ρ

∂t
+ v · ∇ρ

]
E

ρ
+ ρ

∂Φ

∂t
+ ρ

[
∂ε

∂t
+ v · ∇ε

]
. (4.17)

Next we use equation (4.7) and the fact that ∇ · (ρv) = ρ∇ · v + v · ∇ρ to simplify the
first term on the right hand side,

∂E

∂t
+ v · ∇E + v · ∇P = −(ρ∇ · v)

E

ρ
+ ρ

∂Φ

∂t
+ ρ

Dε

Dt
. (4.18)

Now we use the first law of thermodynamics dε = dQ − dW , here dQ is the amount
of heat energy deposited into a unit volume. We know that for a system without viscous
effects dW = −PdV . Thus dε = dQ+ PdV implying that

Dε

Dt
=
DQ

Dt
+ P

D(1/ρ)

Dt
, (4.19)
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where we have used that for specific volume V = 1/ρ. Note the mix of notation between
thermodynamics and fluid mechanics. In thermodynamics there are no flows, to account
for this we replace the derivatives with Lagrangian derivatives. Inserting equation (4.19)
into (4.18) and rearranging gives

∂E

∂t
+ v · ∇E + v · ∇P + E∇ · v = ρ

∂Φ

∂t
+ ρ

dQ

dt
− P

ρ

dρ

dt
. (4.20)

Now we just use equation (4.7) once more to rewrite the last term on the right hand side,
after some rearranging we get

∂E

∂t
+∇ · [(E + P )v] = ρ

∂Φ

∂t
+ ρ

DQ

Dt
. (4.21)

Arriving at the last equation in our set, the energy equation.

4.2.4 Conservation laws

We have now arrived at three governing equations, together with an equation of state they
will fully describe our system.

∂

∂t
ρ+∇ · (ρv) = 0,

ρ
∂v

∂t
+ ρv(∇ · v) = −∇P + ρg,

∂E

∂t
+∇ · [(E + P )v] = ρ

∂Φ

∂t
+ ρ

dQ

dt
.

(4.22a)

(4.22b)

(4.22c)

4.2.5 Equation of state

As mentioned, an equation of state is needed to close up our system of equations. We can
see this by looking at a simple case, assume that no heat is lost to the sorroudnings and
that we can neglect gravity. In one spacial dimension we get

∂

∂t
ρ+

∂

∂x
ρv = 0,

ρ
∂v

∂t
+ ρv

∂

∂x
v = − ∂

∂x
P,

∂E

∂t
+

∂

∂x
[(E + P )v] = 0.

We have four unknowns, (P , E, ρ, v), but only three equations. In order to solve the
system we need a fourth equation. This fourth equation is supplied by the equation of
state, which is determined by the properties of the fluid. In astrophysics its common to use
the ideal gas approximation, with the following equation of state:

P = ρkBT. (4.23)
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In the case of an adiabatic process we can rewrite equation (4.23) as:

P = Kργ , (4.24)

here γ is a thermodynamic quantity related to the heat capacity, equal to 5/3 for an ideal
gas and K is a constant. See chapter 4 in [6].

It has been shown, experimentally, that the ideal gas approximation works very well for
dilute gases. Most fluids in the astrophysical context have low density and as such the
approximation will work very well.

4.3 Shocks

An important part of understanding the evolution of a supernova remnant is to describe the
propagation of shocks trough the interstellar medium. Mechanical information propagates
trough a fluid with the speed of sound, this means that a fluid can not adjust it self to pertur-
bations faster than a sound wave can propagate trough it. If a perturbation is propagating
trough the fluid faster than the speed of sound it will produce an discontinuous change at
the point of the perturbation, a shock. In many astrophysical cases the density of the fluid
is very low and thus the speed of sound is low, therefore shocks arise quite frequently.

4.3.1 Sound speed

Consider a uniform fluid in equilibrium and introduce a small perturbation

ρ = ρ0 + ∆ρ, (4.25)
P = P0 + ∆P, (4.26)
v = ∆v. (4.27)

It is important to note that these perturbations are for each individual fluid elements and as
such are Lagrangian perturbations. For a uniform medium in equilibrium the Eulerian and
Lagrangian perturbations are the same. However in more general cases this will not hold
true. See chapter 6.1 and 6.2 in [6] for more details.

Returning to the case of a uniform medium, substituting the perturbation into (4.22a) and
assuming that the perturbations are small yields

ρ0∇ · (∆v) = − ∂

∂t
∆ρ. (4.28)

Likewise substituting into (4.22b) and assuming no external forces gives

ρ0
∂∆v

∂t
= −∇∆P. (4.29)
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Now let∇ operate on equation (4.29) and ∂
∂t on equation (4.28)

ρ0
∂

∂t
∇ · (∆v) = − ∂2

∂t2
∆ρ, (4.30)

ρ0∇
∂∆v

∂t
= −∇2∆P. (4.31)

Combining equation (4.30) and equation (4.31) gives

∂2

∂t2
∆ρ = ∇2∆P, (4.32)

∂2

∂t2
∆ρ =

dP

dρ
∇2∆ρ. (4.33)

We recognize this as the wave equation,

∂2

∂t2
∆ρ = c2s∇2∆ρ,

where, cs =
√

dP
dρ is the speed at which the wave propagates through the fluid. In the

same fashion it is possible to derive the speed at which mechanical waves propagate in
more general cases. The important concept is that the speed of sound is a finite number
and a limit on how fast the medium can adjust to changes.

Note that the step from equation (4.32) to equation (4.33) implies a one to one relationship
between pressure and density.

4.3.2 Rankine-Hugoniot conditions

Consider a one dimensional shock front, let (ρ2, v2, P2) be the density, velocity and
pressure ahead of the shock and (ρ1, v1, P1) be the density, velocity and pressure behind
the shock front. See figure 4.1.

In [6] a set of conditions are derived, called the Rankine-Hugoniot conditions, relating the
post shocked medium to the unperturbed. In the rest frame of the shock they take the form:

v1ρ1 = v2ρ2, (4.34)

v2
1ρ1 + P1 = v2

2ρ2 + P2. (4.35)
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Figure 4.1: Shock front

4.3.3 Adiabatic shocks

Under the assumption that the system is adiabatic an additional condition can be derived.

1

2
v2

1 + ε1 +
P1

ρ1
=

1

2
v2

2 + ε2 +
P2

ρ2
. (4.36)

Furthermore under the this assumption it is possible to show that:

ρ2

ρ1
=

(γ − 1)P1 + (γ + 1)P2

(γ − 1)P2 + (γ + 1)P1
=
v1

v2
. (4.37)

To show this we first need an expression for the internal energy per unit mass. Starting
from the first law of thermodynamics dε = dQ − dW and the adiabatic assumption,
dQ = 0. Furthermore if there are no viscous forces then dW = PdV , this yields

dε = −PdV = P/ρ2dρ = Kργ−2dρ,

ε =
P

ρ

1

γ − 1
. (4.38)

In the second step we have used equation (4.23).

Inserting equation (4.38) into equation (4.36) gives

1

2
v2

1 +
P1

ρ1

1

γ − 1
+
P1

ρ1
=

1

2
v2

2 +
P2

ρ2

1

γ − 1
+
P2

ρ2
. (4.39)

Multiplying with ρ2
1ρ

2
2 equation (4.39) becomes

1

2
v2

1ρ
2
1ρ

2
2 +

P1

ρ1

1

γ − 1
ρ2

2ρ
2
1 +

P1

ρ1
ρ2

2ρ
2
1 =

1

2
v2

2ρ
2
1ρ

2
2 +

P2

ρ2

1

γ − 1
ρ2

2ρ
2
1 +

P2

ρ2
ρ2

2ρ
2
1. (4.40)
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Rewriting equation (4.35) as

v2
1ρ

2
1

ρ1
+ P1 =

v2
2ρ

2
2

ρ2
+ P2 (4.41)

and remembering that v1ρ1 = v2ρ2 gives

v2
1ρ

2
1 = v2

2ρ
2
2 =

P2 − P1

ρ2 − ρ1
ρ1ρ2. (4.42)

Inserting equation (4.42) into equation (4.40) and rearranging gives

1

2

(
ρ2

2 − ρ2
1

)
ρ1ρ2

P2 − P1

ρ2 − ρ1
=

γ

γ − 1
(P2ρ1 − P1ρ2) . (4.43)

Simplifying this expression and collecting terms with ρ1 and ρ2 terms yields

ρ2

(
1

2
P2 −

1

2
P1 +

γ

γ − 1
P1

)
= ρ1

(
1

2
P1 −

1

2
P2 +

γ

γ − 1
P2

)
, (4.44)

implying that:
ρ2

ρ1
=

(γ − 1)P1 + (γ + 1)P2

(γ − 1)P2 + (γ + 1)P1
.

Note that if the case of a strong shock,M≡ v/cs � 1, equation (4.37) simplifies to

ρ2

ρ1
=
γ + 1

γ − 1
. (4.45)

For an adiabatic shock, γ = 5/3, this ratio is four. Thus there is an upper limit on how
much a shock can compress the medium it passes trough.M is called the Mach number.
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Chapter 5
Blast waves from supernovae

A simple way of looking at a supernova explosion is to say that a large amount of energy
is released quasi instantaneously in to a star, ejecting mass into the interstellar medium.
The mass ejected from the exploding star acts as a piston on the surrounding interstellar
medium. Both the interstellar medium and the ejected material can have a complicated
structure. In addition, the ejected material is often several orders of magnitude denser
than the interstellar medium. As such the evolution of the remnant can be complicated,
but in some very simplified cases it is possible to derive analytic solutions for the shock
trajectory. However in more general cases we have to solve the system numerically.

The evolution of a supernova remnant is often divided into three stages: the ejecta dom-
inated stage, the Sedov-Taylor stage and the radiation dominated stage. In the two first
phases radiation does not play a significant roll in the dynamics, however in the last stage
of the evolution radiation play a key roll. In the ejecta dominated stage the matter ejected
from the exploding star still contain most of its initial energy and is expanding into the
interstellar medium, with a speed much greater then the speed of sound. The ejected ma-
terial is proceeded by a shock wave. This shock accelerates, heats and compresses the
interstellar medium and as a result the shocked medium pushes back on the ejected mate-
rial. A shock wave going backwards into the ejected material is created, often called the
reverse shock.

As the ejected material moves further into the ambient medium it loses more and more of
its energy. Radiation become important when most of the systems energy is contained in
the shocked ambient medium. The transition stage between the radiation dominated stage
and the ejected dominated stage is called the Sedov-Taylor stage. Since radiation is not
the dominating factor in the dynamic during the ejected dominated stage and Sedov-Taylor
stage it is a good approximation to neglect it.
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5.1 Analytic solution

In 1999 Truelove and McKee[14] proposed a one dimensional solution for a supernova
event surrounded by a uniform, cold and stationary medium. They also proposed solutions
for ambient medium with a power law density. The structure of the ejected material is
assumed to be a power law with power-law index n.

Uniform medium: Truelove and McKee proposed initial conditions which introduces
three independence parameters: The ejected mass Mej , total energy of the ejected mass
Eej and the density ρ0 of the ambient medium. These parameters can be combined in a
unique way to form characteristic length, time and mass scales:

Rch ≡
(
Mej

ρ0

)1/3

,

tch ≡
M

5/6
ej

E1/2ρ
1/3
0

, (5.1)

Mch ≡Mej .

Note that these characteristic scales gives the scales for parameters like velocity and den-
sity. Defining a new set of dimensionless variables,

r ≡ Rp/Rch,
t ≡ tp/tch, (5.2)
m ≡Mp/Mch,

here Rp, tp and Mp are the physical quantities.

For an uniformly distributed ejecta, n = 0, the solutions for the forward shock in the
ejected dominated stage are given by

rb = 2.01t(1 + 1.72t3/2)−2/3,

vb = 2.01(1 + 1.72t3/2)−5/3. (5.3)

In the Sedov-Taylor stage we get the following solutions

rb = 2.01t(1.42t− 0.254)2/5,

vb = 0.568(1.42t− 0.254)−3/5. (5.4)

Here rb and vb are the position and velocity of the forward shock created by the supernova.
A detailed discussion can be found in [14]. Solutions for a more general ejecta structure
are also given.
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Power law medium: If the medium has a power law distribution, in other words ρ ∝
r−s, the characteristic scales are:

Rch ≡M1/(3−s)
ej K−1/(3−s),

tch ≡
M

(5−s)/2(3−s)
ej K−1/(3−s)

E1/2
, (5.5)

Mch ≡Mej .

As in the uniform case they define a set of new dimensionless variables. An interesting
case is when s = 2, emulating the distribution created by stellar wind. In this case the
solution for the ejecta dominated stage are given by

t(Rb) = 0.594

(
3

5

)1/2

Rb

[
1− 1.50(3Rb)

1/2
]−2/3

,

vb(Rb) = 1.68

(
3

5

)1/2
1− 1.50(3Rb)

1− (3Rb)1/2
.

(5.6)

See Appendix A in [14] for details and solutions for s 6= 2.
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Chapter 6
Numerical method

Our ability to solve the evolution of a supernova remnant analytically is limited to the
simple cases where strong assumptions have been made on the structure of both the ejected
material and the ambient medium surrounding the star. In particular, one has to assume
spherical symmetry. An other approach is to solve the system numerically. The problem
at hand is discontinuous and we have to solve a set of five coupled differential equations
simultaneously, equations (4.22) and an equation of state.

Finite differentiating schemes work relatively well with smooth flows, but in the case of
a supernova remnant we have a discontinuity at the shock and one at the contact surface
between the ejecta and ambiance material. The discontinuity at the contact surface is an
issue for grid resolution. For example: If we measure the temperature on the north and
south pole it would be a bad approximation to say that the temperature on the equator
is half way between the two. In the same way it is important to make sure that abrupt
changes are resolved on the grid. We have to handle the discontinuity created by shock
more carefully. See chapter 6.1 in [3].

There are several ways to handle shocks on a grid. Riemann solvers are well known and
accurate solutions, however they are notoriously complex and difficult to work with. A
simpler method is to introduce what is known as artificial viscosity.

6.1 Discretization

In the Lagrangian formulation of equations (4.22) all nonlinear terms disappear thus mak-
ing it easier to work with. In one dimension a grid solution can be utilized without wor-
rying about deformation of the grid and resulting accuracy issues, see [2]. Therefore, if
the problem is spherical symmetry, it is advantageous to transform our coordinates into
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spherical coordinates making the problem one dimensional in space.

6.1.1 Lagrangian formulation

The Lagrangian form of (4.22) is

Dρ

Dt
+ ρ∇ · v = 0, (6.1)

Dv

Dt
ρ = −∇P, (6.2)

Dε

Dt
− P

ρ2

Dρ

Dt
= 0, (6.3)

where in the last equation the variable has been recast into specific internal energy, ε. Note
that we have neglected gravity and assumed an adiabatic process.

In the Lagrangian formulation we attach a coordinate system to a given fluid element and
follow it trough the flow, and as such its convenient to choose mass as the free variable
instead of position. In spherical coordinates the two are related by

M =
4π

3
ρr3. (6.4)

Taking the Lagrangian derivative with respect to r on both sides gives

Dm = 4πρr2Dr. (6.5)

As such we can rewrite equations (6.1)-(6.3) as:

4πr2 Dr

Dm
= 1/ρ, (6.6)

Dv

Dt
= −4πr2DP

Dm
, (6.7)

Dε

Dt
= −4πP

D

Dm
(r2v), (6.8)

Dr

Dt
= v, (6.9)

for a spherical symmetric system. Together with the equation of state,

P = (γ − 1)ρε, (6.10)

we have five unknowns and five equations.
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6.1.2 Finite differencing

The discretization of these five equations will follow the approach in [2]: Set up a stag-
gered grid, use finite differencing and employ artificial viscosity to handle the shocks.

j

j+1

j-1

k+1kk-1

Ti
m

e

Mass

f j+1/2
k

f j
k+1/2

∆tj+1/2

∆mk+1/2

Figure 6.1: Staggerd grid

We defined indices as shown in figure 6.1, here f represents a function we are inter-
ested in. We set up the grid so that density, pressure, specific internal energy and mass,
(ρj

k+1/2, P
j

k+1/2, ε
j
k+1/2, m

j
k+1/2) are defined at at the center of vertical cell edges. While the

velocity vj+1/2
k is defined at horizontal cell edges and radius the rj

k at cell corners.

In spherical coordinates the mass elements are given by:

∆mk+1/2 =
4π

3

[
(r0

k+1)
3 − (r0

k)
3
]
ρ0

k+1/2. (6.11)

We integrate equation (6.7) over a cell centered around k∫
∆mk

Dv

Dt
dm = −

∫
∆mk

DP

Dm
4πr2dm.

∫ k+1/2

k−1/2

Dv

Dt
dm = −

∫ k+1/2

k−1/2

DP

Dm
4πr2dm. (6.12)

By approximating the acceleration to be constant over the small time interval we get:

vj+1/2
k − vj-1/2

k

∆tj
∆mk = −4π(rjk )2 [P j

k+1/2 − P j
k-1/2] . (6.13)

Solving for vj+1/2
k yields

vj+1/2
k = vj-1/2

k − 4π(rjk )2P
j

k+1/2 − P j
k-1/2

∆mk

∆tj . (6.14)
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Note that:
∆tj =

1

2
(∆tj+1/2 + ∆tj-1/2)

and
∆mk =

1

2
(∆mk +1/2 + ∆mk-1/2).

After calculating the velocity we can use equation (6.9) to update the position rk of cell k:

Dr

Dt
= vj+1/2

k =
rj+1

k − rj
k

∆tj
,

rj+1
k = rj

k + vj+1/2
k ∆tj. (6.15)

By definition the mass of a given element should be constant in the Lagrangian formula-
tion, therefore the change in volume of an element can directly be translated into a change
in density. For a given cell that mass is simply the density times the volume:

∆mk +1/2 = V j+1
k+1/2ρ

j+1
k+1/2, (6.16)

where the volume is given by

V j+1
k+1/2 =

4π

3

[
(rj+1

k+1)
3 − (rj+1

k )3
]
. (6.17)

Combining equation (6.16) and equation (6.17) yields

ρj+1
k+1/2 =

3

4π

∆mk +1/2

[(rj+1
k+1)3 − (rj+1

k )3]
. (6.18)

Next we look at the energy equation. On the grid shown in figure 6.1 equation (6.8) is
given by:

Dε

Dt
=

[
−4πP

D

Dm
(r2v)

]
j+1/2

. (6.19)

Integrating this equation over a mass element centered at k + 1/2 yields

Dε

Dt
∆mk +1/2 = −4πP j+1/2

k-1/2 [(rj+1/2
k+1 )2vj+1/2

k+1 − (rj+1/2
k )2vj+1/2

k ]. (6.20)

As such we get

εj+1
k+1/2 − εj

k+1/2

∆tj+1/2
∆mk +1/2 = −4πP j+1/2

k+1/2[(r
j+1/2
k+1 )2vj+1/2

k+1 − (rj+1/2
k )2vj+1/2

k ], (6.21)

εj+1
k+1/2 = εj

k+1/2 − 4πP j+1/2
k+1/2

[(rj+1/2
k+1 )2vj+1/2

k+1 − (rj+1/2
k )2vj+1/2

k ]

∆mk +1/2

∆tj+1/2. (6.22)

To evaluate the right hand side of equation (6.22) we need an expression for the pressure
at half time steps,

P j+1/2
k+1/2 =

1

2
(P j+1

k+1/2 + P j
k+1/2).
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HoweverP j+1 depends on εj+1 and we are back at the start. We could try to approximateP j+1/2

using only P j, but in doing so the scheme would be reduced to first order and problems
would arise if the energy is sensitive to changes in pressure.

There are several ways to solve this problems, we will use a method that does not depend
on the equation of sate. First approximate P j+1/2 using P j, finding an approximate value for
εj+1 and then approximating P j+1 with the equation of state. Now we can use the approxi-
mated value for P j+1 to find the value of εj+1 and then update the pressure with the equation
of state.

6.1.3 Artificial viscosity

Physically a shock is very thin and this is problematic to model on a grid. We will use
artificial viscosity to handle the shock related problems. The idea is to make the flow more
diffusive and effectively broadening the shock, spreading it out over several grid cells.
This is purely a numerical trick and we only want to apply it near the shock and as such
we have some freedom in selecting the implementation of the dissipative effects. We only
require that it gives the right jump conditions, only affects the flow near the shock and do
not broaden the shock to much.

In 1950 von Neumann and Richtmyer showed that, for a slab symmetric system, adding
an artificial pressure term fulfills the requirements if the pressure term is given by

Q =

{
q2(∆x)2ρ

∣∣ ∂v
∂x

∣∣2 , ∂v
∂x < 0

0, ∂v
∂x > 0

, (6.23)

see [15]. This method was shown to work well in Cartesian coordinates, but it was found
that problems arise in spherical coordinates. See chapter 6.1.4 in [3] for details.

To gain some insight into how we can implement a better artificial viscosity, it is a good
idea to look at the equation governing a real viscous fluid: The Navier-Stokes equation, if
we include shear viscosity and neglect gravity is given by

∂v

∂t
+ v · ∇v = −1

ρ
∇P +

η

ρ

[
∇2v +

1

3
∇(∇ · v)

]
, (6.24)

see chapter 11.2 in [6].

Concentrating on the viscosity term and making a coordinate transformation into spherical
coordinates yields

1

r3

∂

∂r

(
r3η

[
∂v

∂r
− 1

3
∇ · v

])
.

From this expression we can define the viscous pressure:

Pvis ≡ η
[
∂v

∂r
− 1

3
∇ · v

]
. (6.25)
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It is important to note that the above discussion is valid for a fluid where physical viscosity
is important. However it is only interesting in the current case as a guide for construct-
ing an artificial viscosity term. Recalling the idea of von Neumann and Richtmyer, we
introduce an artificial pressure term:

Q ≡ − ξ
[
∂v

∂r
− 1

3
∇ · v

]
= −ξ 2

3
r
∂

∂r

(v
r

)
, (6.26)

where ξ is the artificial viscosity coefficient that we will define later.

Centering: Keeping with the notion of introducing artificial viscosity into the numerical
scheme as a pressure term, it seems natural to define it at the same grid points as the real
pressure,

Q ∝ vk+1 − vk

rk+1 − rk

− vk+1 + vk

rk+1 + rk

. (6.27)

However with this definition we see that Q = 0 at the first grid cell, r1 = v1 = 0. To
avoid this problem W.Benz[2] proposes to consider the volume average of ∇ · v and ∂v

∂r .
They are given by:

∇ · v =
1

∆Vk+1/2

∫
∆Vk+1/2

∇ · vdV 4π

∆Vk+1/2

∫
∆Vk+1/2

∂

∂r
(r2v)dr,

= 4π
(rk+1)

2vk+1 − (rk)
2vk

∆Vk+1/2

(6.28)

and

∂v

∂r
=

1

∆Vk+1/2

∫
∆Vk+1/2

∂v

∂r
dV π(rk+1/2)

2 vk+1 − vk

∆Vk+1/2

. (6.29)

∆Vk+1/2 is found by differentiating the volume element with respect to r:

DV

Dr
=

D

Dr

(
4π

3
r3

)
= 4πr2. (6.30)

Implying that
∆V = 4πr2∆r. (6.31)

Inserting equation (6.28) and (6.29) into equation (6.26) yields:

Qj+1/2
k+1/2 = ξ j+1/2

k+1/2

[
4π(rj+1/2

k+1/2)
2 v

j+1/2
k+1 − vj+1/2

k

∆V j+1/2
k+1/2

− 1

3
4π

(rj+1/2
k+1 )2vj+1/2

k+1 − (rj+1/2
k )2vj+1/2

k

∆V j+1/2
k+1/2

]
=

ξ j+1/2
k+1/2

∆rj+1/2
k+1/2

[
vj+1/2

k+1 − vj+1/2
k − 1

3

(rj+1/2
k+1 )2vj+1/2

k+1 − (rj+1/2
k )2vj+1/2

k

(rj+1/2
k+1/2)2

]
=

ξ j+1/2
k+1/2

∆rj+1/2
k+1/2

[
vj+1/2

k+1

(
1− 1

3

[
rj+1/2

k+1

rj+1/2
k+1/2

]2
)
− vj+1/2

k

(
1− 1

3

[
rj+1/2

k

rj+1/2
k+1/2

]2
)]

. (6.32)
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As mentioned before, there is some freedom to chose the implementation of artificial vis-
cosity. The form of Q, up to the factor ξ, was decided by comparing it to the physical
properties of viscous fluids. Determining ξ is purely a numerical issue and success of
simulations is the only judge. However dimensional analysis can give some restrictions.

[pressure] =
kg

s2m
⇒ [ξ] =

kg

ms
.

Further more equation (6.32) should reduce to the original expression, given by von Neu-
mann and Richtmyer, for slab symmetry. Both these criteria are fulfilled if

ξ j+1/2
k+1/2 = −q2ρj+1/2

k+1/2 |vj+1/2
k+1 − vj+1/2

k |∆rj+1/2
k+1/2, (6.33)

see chapter 4.4 in [4].

Inserting this expression into equation (6.32) yields:

Q = −q2ρj+1/2
k+1/2 |vj+1/2

k+1 − vj+1/2
k |

×
[
vj+1/2

k+1

(
1− 1

3

[
rj+1/2

k+1

rj+1/2
k+1/2

]2
)
− vj+1/2

k

(
1− 1

3

[
rj+1/2

k

rj+1/2
k+1/2

]2
)]

, (6.34)

where q is a constant that has to be determined by numerical experiments.

The final discrete equations are found by adding the artificial pressure term to our
system, as dictated by the energy and momentum equation for a viscid fluid. The derivation
follows along the lines of the discussion for non viscid fluids, the resulting equations are:

vj+1/2
k = vj-1/2

k −Aj
k

P j
k+1/2 − P j

k-1/2

∆mk

∆tj

− 1

2
[Qj-1/2

k+1/2(3A
j
k+1/2 −Aj

k)−Qj-1/2
k-1/2(3A

j
k+1/2 −Aj

k)]
∆tj

∆mk

(6.35)

εj+1
k+1/2 = εj

k+1/2

− P j+1/2
k+1/2

[Aj+1/2
k+1 v

j+1/2
k+1 −Aj+1/2

k vj+1/2
k ]

∆mk +1/2

∆tj+1/2 (6.36)

− 1

2
Qj+1/2

k+1/2 [vj+1/2
k+1 (3Aj+1/2

k+1/2 −Aj+1/2
k+1 )− vj+1/2

k (3Aj+1/2
k+1/2 −Aj+1/2

k )]
∆tj+1/2

∆mk+1/2

ρj+1
k+1/2 =

3

4π

∆mk +1/2

[(rj+1
k+1)3 − (rj+1

k )3]

rj+1
k = rj

k + vj+1/2
k ∆tj. (6.37)

Here Aj
k has been introduced to reduce clutter. It is defined as follows:

Aj
k = 4π(rj

k)
2.

In the case of an adiabatic process these four equations are supplemented with the discrete
version of the equation of state:

P j+1/2
k+1/2 =

1

2
(γ − 1)ρj+1/2

k+1/2(ε
j+1
k+1/2 + εj

k+1/2). (6.38)
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6.2 Analyzing numerical results

When we solve differential equations numerically it is done by solving dimensionless
equations, often rescaled in some way, and we need to understand what the numbers mean.
If the algorithm tells us that x = 3 we need to understand the physical meaning. One way
to do this is to just plug our numbers into the machine as they are. Consider the example
of a ball failing being dropped from 10 meters with zero initial velocity,

x = 10.0m− 1

2
9.81

m

s2
· t2.

Here we can simply say that x′ = x
m and t′ = t

s . We now have dimensionless equation,
to plug into the computer and if the program returns x′ = 3 we know that to recover
the physics we just multiply by one meter. This method works well when dealing with
numbers that are not to small or not to large, but once we start dealing with more complex
problems it is often convenient to rescale the equations. For the above example x′ = x

10m
and t′ = t

s , would be a good scale. Resulting in

x′ = 1− 1

2
0.981t′2. (6.39)

When rescaling it is important to be careful, to make sure that the scales agree with each
other. We can for example not rescale time by a factor four, length by a factor five and
velocity by a factor eight. Since [velocity] = [length]/[time] it must scale as four divided
by five.

Example: A one-dimensional simple harmonic oscillator is described by

ẍ+ ω2x = 0.

If we do dimensional analysis it is clear that [ω] = 1/s. So by choosing a timescale we
also choose a scale for ω. We can choose our rescaling such that,

t′ =
t

ts
=

t

1/ω
= t · ω

x′ =
x

xs
.

Now we only need to rescale ẍ, but since we already have fixed a scale for length it is
fixed.

ẍ′ =
d2x′

dt′2
=
d2x

dt2
· t

2
s

xs
=
d2x

dt2
1

xsω2
.

This yields the following dimensionless equation for our harmonic oscillator

ẍ′ · (xsω2) + ω2x′ · xs = ẍ′ + x′ = 0.

Now we see why it was smart to choose the time scale to be the inverse of ω.
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As seen in the above discussion it is possible to define scales from initial conditions and
from parameters in the equations. For a supernova event it can be convenient to let the
initial values of the surrounding medium define scales. Let ε0 and ρ0 denote the initial
internal specific energy and density. Furthermore let R0 denote the size of the grid, in
other words the spatial boundary of the simulation. Choosing a scale where,

1 = ε0 = ρ0 = R0

and remembering that,

[ε] = m/s2

[ρ] = kg/m3

[r] = m,

results in the following rescaling:

ε′ =
ε

ε0
, ρ′ =

ρ

ρ0
, r′ = R/R0,

t′ =
R0√
ε0

and m′ = ρ0R
3
0.

One should note that equations (6.35) do not contain any coefficients with dimension, as
such the equations them self will be unchanged by the choice of scale and we only need to
worry about rescaling the initial values.

41



42



Chapter 7
Numerical simulations

The numerical equations found in chapter 6 can be used to model the evolution of a su-
pernova remnant, assuming that the problem is spherical symmetric. Initial values are
chosen to mimic real astrophysical conditions, however the main focus is given to inves-
tigating the general evolution and less attention is paid to tune initial values to exactly fit
observed events. This gives an idea of the evolution, while more accurate results require
more complex models. Note that initial values have to be specified every grid point.

Several density profiles for the ambient medium surrounding the star are investigated, and
when possible numerical results are compared to analytic solutions. The analytic shock
trajectories were used as a test for our numerical results. If the simulations produce results
that agree with analytic solutions, in the relative simple cases where they can be found, we
might expect them to produce good results for more complex cases.

7.1 The model

The supernova explosion is modelled as an injection of thermal energy, Es, into a cold
sphere with mass Ms, radius Rs and constant density ρs, surrounded by a medium with
density ρa = ρ(r) and temperature Ta = T (r). Truelove and McKee investigate ejected
material with a given mass and kinetic energy expanding into an ambient medium. They
assume that the ejected material expands freely for a short time, t0, the radius of the outer
most ejecta is given by

R = vejt0, (7.1)

where vej is connected to the kinetic energy of the ejected material as follows:

E =
3

5

1

2
Mv2

ej , (7.2)
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if the mass and kinetic energy of the ejected material is M and E, and the density of the
ejecta is constant, see [14]. Solving for R yields

R(E,M) = t0 ×
[

10E

3M

]1/2

. (7.3)

The expansion into the ambient medium is assumed to be adiabatic and both the ejected
material and the ambient medium is modelled as ideal gas consisting of hydrogen.

7.2 Results

The results are given as plots showing the time evolution of the system, plotting pressure,
density and velocity in the same graph. Initial conditions are presented as a plot of the
initial density profile of the ambient medium together with a table listing Ms, Rs, Ta and
t0. The density of the ambient medium at ρa(r) is also listed, as well as the total mass of
the ambient medium Ma. Lastly the size of the grid Rmax is also listed, in other words
the outer spatial boundary of the simulations. The values in both SI and CGS unites are
included for the readers conveniences.

The trajectory of the forward shock is also presented, together with analytically solutions
when relevant.
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7.3 Constant density

The first case that was investigated was a supernova surrounded by a medium with constant
density.

Ms Es Rs Ta

5M� 1× 1044 J 0.144 pc 10K

9.95× 1033 g 1× 1052 erg 4.44× 1017 cm 10K

ρa(r) Grid size t0 Ma

1.67× 10−21kg/m3 10 pc 1 yr 103.3M�
1.67× 10−24g/cm3 3.085× 1019 cm 31 556 926 s 2.05× 1035 g

The shock trajectory was compared to the analytically solution and found to agree well.
See figure 7.1. Figure 7.2 and 7.3 shows the pressure, density and radial velocity at dif-
ferent times. (P, ρ, v) The scales are given for velocity, density and pressure are given
by:

vs = 9.39× 105 m/s = 9.39× 107 cm/s

ρs = 1.67× 10−19 kg/m3 = 1.67× 10−22 g/cm3

Ps = 1.84 Pa = 18.4 Ba
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Figure 7.1: Density distribution and Shock trajectory
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Figure 7.2: Pressure, density and velocity at t = 438.38 yr and t = 677.03 yr
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Figure 7.3: Pressure, density and velocity at t = 1027.28 yr and t = 2012.32 yr
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7.4 Gaussian shell

Next we consider a similar distribution, a constant distribution with an addition: A shell
at r = 0.6 pc, the shell has the from of a gauss curve. The shock trajectory was compared
to the analytically solution for the constant density case and found to agree well, until the
shock front hits the shell and the front slows down. The table below lists initial conditions.
Note that r′ is in units of 3.08× 1018 cm and r′′ in units for parsec.

Ms Es Rs Ta

5M� 1× 1042 erg 0.144 pc 10K

9.95× 1033 g 1× 1052 erg 4.44× 1017 cm 10K

ρa(r
′) Grid size t0 Ma

1.67× 10−21(1 + 50e
− (r′′−6)2

1031.5 )kg/m3 10pc 1yr 214.5M�

1.67× 10−24(1 + 50e
− (r′−6)2

3.01×10−5 )g/cm3 3.085× 1019cm 31 556 926 s 4.26× 1035g

Figure 7.5 and 7.6 shows the pressure, density and radial velocity at different times.
(P, ρ, v) The scales are given for velocity, density and pressure are given by:

vs = 1.26× 105 m/s = 1.26× 107 cm/s

ρs = 8.35× 10−19 kg/m3 = 8.35× 10−22 g/cm3

Ps = 26.40 Pa = 264.0Ba
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Figure 7.4: Density distribution and Shock trajectory
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Figure 7.5: Pressure, density and velocity at t = 368.01 yr and t = 1473.02 yr
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Figure 7.6: Pressure, density and velocity at t = 2067.37 yr and t = 3030.01 yr
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7.5 Stellar wind

Stellar winds can create density profiles on the form ρ ∝ 1
r2 , see [14]. In this case it is

possible to compare with analytical solutions.

Ms Es Rs Ta

5M� 1× 1044 J 0.144 pc 10K

9.95× 1033 g 1× 1052 erg 4.44× 1017 cm 10K

ρa(r) Grid size t0 Ma

3.34× 10−18r−2kg/m3 10 pc 1 yr 0.13M�
3.34× 10−21r−2g/cm3 3.085× 1019 cm pc 31 556 926 s 2.58× 1032g

Figure 7.8 and 7.9 shows the pressure, density and radial velocity at different times.
(P, ρ, v) The scales are given for velocity, density and pressure are given by:

vs = 8.80× 108 cm/s

ρs = 8.35× 10−21 kg/m3 = 8.35× 10−24 g/cm3

Ps = 0.43 Pa = 4.3Ba
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Figure 7.7: Density distribution and Shock trajectory
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Figure 7.8: Pressure, density and velocity at t = 199.77 yr and t = 469.39 yr
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Figure 7.9: Pressure, density and velocity at t = 735.84 yr and t = 1013.26 yr
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Chapter 8
Conclusions and outlook

In this thesis a supernova remnant is described by a set of hydrodynamic equations and
those equations are solved numerically. The first order finite difference scheme produces
results that agree well with analytic solutions, in the case of a constant ambient medium
and a power law medium. For the cases where no analytic solution exists the code gives
reasonable results, as expected the simulations produce a strong shock propagating for-
ward trough the medium and a reverse shock moving backwards.

In the case of a gaussian shell we see that the shock trajectories follows the analytic so-
lution, for a constant density profile. We see that the shock slows down, when it hits the
shell. This is as expected.

When comparing the analytic shock trajectories with numerical simulations we see some
deviation. The solutions put forward by Truelove and McKee is in the limit where T → 0,
however in the simulations a nonzero temperature has been used.

A natural next step would be to include a mechanism for radiation, this would make it
possible to simulate the late stage evolution of the remnant. It could also be interesting to
compare the simulations to observed events, this however would require some tuning of the
initial conditions. Furthermore it would be interesting to look at cases without spherical
symmetry, this would turn the problem into a multidimensional one and would require
more computing power. As such it would have been beneficial to write parallel code, this
could also be done in the one dimensional case to reduce the run time.

The results exhibit some unwanted behavior, the shock trajectory makes a jump in the start
and the curves describing the pressure, density and velocity are not completely smooth
everywhere. Since the discretization is only first order it would be an idea to implement
an higher order method and see if this improves the result. On the other hand the necessity
of this might be debated, the mentioned problems are small and the large scale behavior
of the results are reasonable.
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Appendix A
Thermodynamics

Below we derive various thermodynamic properties of an ideal gas. Some knowledge
about classical mechanics and quantum mechanics is assumed.

A.1 Microcanonical ensemble

Consider a classical system with Hamiltonian H(p, q, t). For a given energy, E, there is a
number of values for p and q satisfyingH(p, q, t) = E. Each value of p and q corresponds
to a microstate and a system with a given energy is called a macrostate. Note that many
microstates can corresponds to the same macrostate, they defined a hyper surface in phase
space given by:

SE = {{p, q} | H(p, q, t) = E} . (A.1)

The probability for a configuration of q and p whereH(p, q, t) = E is constant and if
H(p, q, t) 6= E the probability is zero. Assuming that each of the microstates, for a given
energy, is equally likely to occur. As such the probability distribution is given by

P (q, p, t) = cδ(E −H(p, q, t)), (A.2)

here c is some normalization constant.

A microcanonical ensemble is the collection of all such microstates of a system with the
same energy.

Entropy of a microcanonical ensemble is found by way of Bolzmanns equation,

S = kb lnW, (A.3)
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whereW is the number of microstates with a given energy. For a microcanonical ensemble
W is given by

W =

∫
θ(E −H(p, q, t))dpdq, (A.4)

here θ(x) denotes the Heaviside function.

From the first law of thermodynamics,

dE = TdS − PdV =

(
∂E

∂S

)
V

dS +

(
∂E

∂V

)
S

dV, (A.5)

we see that

T−1 =

(
∂S

∂E

)
V

. (A.6)

A.2 Ideal gas

Consider a volume, V , containing a gas of N non-interacting and identical particles. The
Hamiltonian is given by:

H =

N∑
i=1

p2
i

2m
, (A.7)

where pi is the momentum of particle i and m is the mass of a single particle. Inserting
equation (A.7) into equation (A.4) gives

W =
1

h3NN !

∫
E≥H

d3p1..d
3pNd

3q1..d
3qN , (A.8)

where we have introduced the factor

1

h3NN !
.

This factor arises from quantum mechanics and can be understood from the uncertain
principle,

∆q∆p ≥ h, (A.9)

and the fact that there is N ! ways to label N identical particles.

Since the Hamiltonian is independence of the spacial coordinates we can integrate them
out and the momentum integral corresponds to a 3N-dimensional sphere with r =

√
2mE.

As such W reduces to

W =
2

3N !NΓ(3N/2)

[(
2mπE

h2

)3/2

V

]N
. (A.10)
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Equation (A.3) together with equation (A.10) gives

S = kB ln

 2

3N !NΓ(3N/2)

[(
2mπE

h2

)3/2

V

]N
= kB

− ln (3N !NΓ(3N/2)) + ln

2

[(
2mπE

h2

)3/2

V

]N
= kB

[
N lnV +

3N

2
ln(

4mπE

h2
)− ln(3N)− ln(Γ(3N/2))− lnN !

]
≈ KB

[
N lnV +

3N

2
ln(

2mπE

h2
) + ln 2− ln(3N)− (A.11)

3N

2
ln(3N/2) +

3N

2
−N lnN +N + lnN

]
. (A.12)

In the last line we have used Stirling’s approximation, lnN ! ≈ N lnN −N for large N .
This error we make is very small as long as N is large.

Gathering terms the last line in equation (A.11) simplifies to:

S ≈ kBN
[

ln

(
V

N

(
4πmE

3Nh2

)3/2
)

+
5

2
+

ln(3/2)

N

]

= kBN

[
ln

(
V

N

(
4πmE

3Nh2

)3/2
)

+
5

2

]
, (A.13)

where in the last line ln(3/2)
N has been neglected, it is small for large N .

Taking the derivative with respect to E yields:

(
∂S

∂E

)
V

= kBN

(
V

N

(
4πmE

3Nh2

)3/2
)−1

×
(
V

N

(
4πm

3Nh2

)3/2
)
× 3E1/2

2

= kBN
3

2E
(A.14)

Since

T−1 =

(
∂S

∂E

)
V

,

we get:

E =
3

2
kBNT. (A.15)
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From this equation we can derive the specific energy: IfM is the total mass of the gas then
M = Nm and energy per mass, ε = E/M , equals

ε =
3

2

kB
m
T. (A.16)

If the energy is constant we know that dE = 0 as such

dE = TdS − PdV = 0⇒ P

T
=

(
∂S

∂V

)
E

. (A.17)

Equation (A.13) gives
P

T
=
NkB
V

. (A.18)

This is the equation of state for an ideal gas.
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