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Abstract

This article addresses the use of the level-set method for capturing the in-
terface between two fluids. One of the advantages of the level-set method
is that the curvature and the normal vector of the interface can be readily
calculated from the level-set function. However, in cases where the level-set
method is used to capture topological changes, the standard discretization
techniques for the curvature and the normal vector do not work properly.
This is because they are affected by the discontinuities of the signed-distance
function half-way between two interfaces. This article addresses the calcula-
tion of normal vectors and curvatures with the level-set method for such cases.
It presents a discretization scheme based on the geometry-aware curvature
discretization by Macklin and Lowengrub [1]. As the present scheme is inde-
pendent of the ghost-fluid method, it becomes more generally applicable, and
it can be implemented into an existing level-set code more easily than Mack-
lin and Lowengrub’s scheme [1]. The present scheme is compared with the
second-order central-difference scheme and with Macklin and Lowengrub’s
scheme [1], first for a case with no flow, then for a case where two drops
collide in a 2D shear flow, and finally for a case where two drops collide
in an axisymmetric flow. In the latter two cases, the Navier-Stokes equa-
tions for incompressible two-phase flow are solved. The article also gives a
comparison of the calculation of normal vectors with the direction difference
scheme presented by Macklin and Lowengrub in [2] and with the present dis-
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cretization scheme. The results show that the present discretization scheme
yields more robust calculations of the curvature than the second-order cen-
tral difference scheme in areas where topological changes are imminent. The
present scheme compares well to Macklin and Lowengrub’s method [1]. The
results also demonstrate that the direction difference scheme [2] is not always
sufficient to accurately calculate the normal vectors.

Keywords: Level-set method, Curvature discretization, Normal-vector
discretization, Curve-fitting discretization scheme, Finite differences,
Ghost-fluid method.

1. Introduction

The level-set method was introduced by Osher and Sethian [3]. It is
designed to implicitly track moving interfaces through an isocontour of a
function defined in the entire domain. In particular, it is designed for prob-
lems in multiple spatial dimensions in which the topology of the evolving
interface changes during the course of events, cf. [4].

This article addresses the calculation of interface geometries with the
level-set method. This method allows us to calculate the normal vector
and the curvature of an interface directly as the first and second derivatives
of the level-set function. These calculations are typically done with stan-
dard finite-difference methods. Since the level-set function is chosen to be
a signed-distance function, in most cases it will have areas where it is not
smooth. Consider for instance two colliding drops where the interfaces are
captured with the level-set method, see Figure 1. The derivative of the level-
set function will not be defined at the points outside the drops that have
an equal distance to both drops. When the drops are in near contact, this
discontinuity in the derivative will lead to significant errors when calculating
the interface geometries with standard finite-difference methods. For conve-
nience the areas where the derivative of the level-set function is not defined
will hereafter be referred to as kinks.

To the authors knowledge, this issue was first described in [2], where
the level-set method was used to model tumour growth. Here Macklin and
Lowengrub presented a direction difference to treat the discretization across
kinks for the normal vector and the curvature. They later presented an
improved method where curve fitting was used to calculate the curvatures
[1]. This was further expanded to include the normal vectors [5].
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An alternative method to avoid the kinks is presented in [6], where a
level-set extraction technique is presented. This technique uses an extraction
algorithm to reconstruct separate level-set functions for each distinct body.

Accurate calculation of the curvature is important in many applications,
in particular in curvature-driven flows. There are several examples in the
literature of methods that improve the accuracy of the curvature calcula-
tions, but that do not consider the problem with the discretization across
the kinks. The authors in [7] use a coupled level-set and volume-of-fluid
method based on a fixed Eulerian grid, and they use a height function to cal-
culate the curvatures. In [8] a refined level-set grid method is used to study
two-phase flows on structured and unstructured grids for the flow solver.
An interface-projected curvature-evaluation method is presented to achieve
converging calculation of the curvature. Marchandise et. al [9] adopt a dis-
continuous Galerkin method and a pressure-stabilized finite-element method
to solve the level-set equation and the Navier-Stokes equations, respectively.
They develop a least-squares approach to calculate the normal vector and the
curvature accurately, as opposed to using a direct derivation of the level-set
function. This method is used by Desjardins et. al in [10], where they show
impressive results for simulations of turbulent atomization.

This article is a continuation of the work presented in [11]. It applies the
level-set method and the ghost-fluid method to incompressible two-phase flow
in two dimensions. A curve-fitting discretization scheme is presented which
is based on the geometry-aware discretization given in [1]. This scheme
is mainly applied to the curvature discretization. The normal vectors are
calculated both with the direction difference described in [2] and with a
combination of the direction difference and the curve-fitting discretization

ϕ(x)

(a) Drops in near contact

ϕ(x)

x

0

(b) A slice of the level-set function

Figure 1: (a) Two drops in near contact. The dotted line marks a region where the
derivative of the level-set function is not defined. (b) A one-dimensional slice of the level-
set function ϕ(x). The dots mark points where the derivative of ϕ(x) is not defined.
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scheme.
The main advantage of the present scheme compared to the geometry-

aware discretization [1] is that it is independent of the ghost-fluid method.
That is, in [1] Macklin and Lowengrub calculate the curvature values directly
on the interface when it is needed by the ghost-fluid method, whereas we
compute the curvature values at the global grid points, indendent of the
ghost-fluid method. Because of this, the scheme can be implemented more
easily into existing Navier-Stokes codes employing the level-set method, since
only small parts of the existing codes need modification. It is also more
generally applicable, for instance it can be used with the continuum surface-
force method [15]. Further, it allows for more accurate curvature values in
models that require curvature values on the grid instead of on the interface,
e.g. surfactant models [12–14].

The article starts by briefly describing the governing equations for two-
phase flow and the level-set method in Section 2. It continues in Section 3
with a description of the numerical methods that are used for their solution.
Then the discretization schemes for the normal vector and the curvature are
presented in Section 4, followed by a detailed description of the method for
curvature discretization in Section 5. Section 6 gives a convergence test and
a comparison of the present discretization scheme with the second-order cen-
tral difference scheme and Macklin and Lowengrub’s scheme [1], first on static
interfaces in near contact, then on two drops colliding in a 2D shear flow,
and finally on a case where two drops collide in an axisymmetric flow. The
section is concluded with a comparison of the direction difference scheme [2]
with a combination of the direction difference and the curve-fitting discretiza-
tion schemes for calculating normal vectors. Finally in Section 7 concluding
remarks are made.

2. Governing equations

2.1. Navier-Stokes equations for two-phase flow

Consider a two-phase domain Ω = Ω+ ∪ Ω− where Ω+ and Ω− denote
the regions occupied by the respective phases. The domain is divided by an
interface Γ = δΩ+ ∩ δΩ− as illustrated in Figure 2. The governing equations
for incompressible and immiscible two-phase flow in the domain Ω with an
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Figure 2: Illustration of a two-phase domain: The interface Γ separates the two phases,
one in Ω+ and the other in Ω−.

interface force on the interface Γ can be stated as

∇ ·u = 0, (1)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ ∇ ·

(
µ
(
∇u+ (∇u)T

))
+ ρf b +

∫
Γ

σκn δ(x− xI(s)) ds, (2)

where u is the velocity vector, p is the pressure, f b is the specific body force, σ
is the coefficient of surface tension, κ is the curvature, n is the normal vector
which points to Ω+, δ is the Dirac Delta function, xI is a parametrization
of the interface, ρ is the density and µ is the viscosity. These equations are
often called the Navier-Stokes equations for incompressible two-phase flow.

It is assumed that the density and the viscosity are constant in each phase,
but they may be discontinuous across the interface. The interface force and
the discontinuities in the density and the viscosity lead to a set of interface
conditions,

[u] = 0, (3)

[p] = 2[µ]n ·∇u ·n+ σκ, (4)

[µ∇u] = [µ]
(
(n ·∇u ·n)n⊗ n+ (n ·∇u · t)n⊗ t
− (n ·∇u · t)t⊗ n+ (t ·∇u · t)t⊗ t

)
, (5)

[∇p] = 0, (6)

where t is the tangent vector along the interface, ⊗ denotes the dyadic prod-
uct, and [ · ] denotes the jump across an interface, that is

[µ] ≡ µ+ − µ−. (7)
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See [16, 17] for more details and a derivation of the interface conditions.

2.2. Level-set method

The interface is captured with the zero level set of the level-set func-
tion ϕ(x, t), which is prescribed as a signed-distance function. That is, the
interface is given by

Γ = { (x, t) | ϕ(x, t) = 0 }, x ∈ Ω, t ∈ R+, (8)

and for any t ≥ 0,

ϕ(x, t)


< 0 if x ∈ Ω−

= 0 if x ∈ Γ
> 0 if x ∈ Ω+

. (9)

The interface is updated by solving an advection equation for ϕ,

∂ϕ

∂t
+ û ·∇ϕ = 0, (10)

where û is the velocity at the interface extended to the entire domain. The
interface velocity is extended from the interface to the domain by solving

∂û

∂τ
+ S(ϕ)n ·∇û = 0, ûτ=0 = u, (11)

to steady state, cf. [18]. Here τ is pseudo-time and S is a smeared sign
function which is equal to zero at the interface,

S(ϕ) =
ϕ√

ϕ2 + 2∆x2
. (12)

When equation (10) is solved numerically, the level-set function loses its
signed-distance property due to numerical dissipation. The level-set function
is therefore reinitialized regularly by solving

∂ϕ

∂τ
+ S(ϕ0)(|∇ϕ| − 1) = 0,

ϕ(x, 0) = ϕ0(x),
(13)

to steady state as proposed in [19]. Here ϕ0 is the level-set function that
needs to be reinitialized.
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One of the advantages of the level-set method is that normal vectors and
curvatures can be readily calculated from the level-set function, i.e.

n =
∇ϕ

|∇ϕ|
, (14)

κ = ∇ ·
(

∇ϕ

|∇ϕ|

)
. (15)

3. Numerical methods

The Navier-Stokes equations, (1) and (2), are solved by a projection
method on a staggered grid as described in [17, Chapter 5.1.1]. The spatial
terms are discretized by the second-order central difference scheme, except
for the convective terms which are discretized by a fifth-order WENO scheme.
The temporal discretization is done with explicit strong stability-preserving
Runge-Kutta (SSP RK) schemes, see [20]. A three-stage third-order SSP-RK
method is used for the Navier-Stokes equations (1) and (2), and a four-stage
second-order SSP-RK method is used for the level-set equations (10), (11)
and (13).

The method presented in [21] is used to improve the computational speed.
The method is often called the narrow-band method, since the level-set func-
tion is only updated in a narrow band across the interface at each time step.

The interface conditions are treated in a sharp fashion with the Ghost-
Fluid Method (GFM), which incorporates the discontinuities into the dis-
cretization stencils by altering the stencils close to the interfaces. For in-
stance, the GFM requires that a term is added to the stencil on the right-hand
side of the Poisson equation for the pressure. Consider a one-dimensional case
where [ρ] = [µ] = 0 and where the interface lies between xi and xi+1. In this
case,

pi+1 − 2pi + pi−1

∆x2
= fk ±

σκΓ

∆x2
, (16)

where fk is the general right-hand side value and κΓ is the curvature at the
interface. The sign of the added term depends on the sign of ϕ(xi). See [16]
for more details on how the GFM is used for the Navier-Stokes equations
and [22] for a description on how to use the GFM for a variable-coefficient
Poisson equation.

The normal vector and the curvature defined by equations (14) and (15)
are typically discretized by the second-order central difference scheme, cf. [4,
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ϕ > 0

ϕ < 0

ϕ = 0 xi
x

Figure 3: A level-set function that has one point where the derivative is discontinuous.

12, 16]. The curvatures are calculated on the grid nodes and then interpolated
with simple linear interpolation to the interface, e.g. for κΓ in equation (16),

κΓ =
|ϕi|κi+1 + |ϕi+1|κi
|ϕi|+ |ϕi+1|

. (17)

If the level-set method is used to capture non-trivial geometries, the
level-set function will in general contain areas where it is not smooth, i.e.
kinks. This is depicted in Figure 3, which shows a level-set function in a
one-dimensional domain that captures two interfaces, one on each side of the
grid point xi. The kink at xi will lead to potentially large errors with the
standard discretization both for the curvature and the normal vector. The
errors in the curvature will lead to erroneous pressure jumps at the interfaces,
and the errors in the normal vector affects both the discretized interface con-
ditions and the advection of the level-set function. If the level-set method
is used to study for example coalescence and breakup of drops, these errors
may severely affect the simulations.

It should be noted that the kinks that appear far from any interfaces are
handled by ensuring that the denominators do not become zero, as explained
in [23, Sections 2.3 to 2.4]. This works fine, since only the values of the
curvature at the grid nodes adjacent to any interface are used. Also, the
normal vector only needs to be accurate close to the interface due to the
narrow-band approach.

4. Improved discretization of geometrical quantities

The previous section explained why it is necessary to develop new dis-
cretization schemes for the normal vector and the curvature that can handle
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kinks in the level-set function. This section will give an overview of the curve-
fitting discretization scheme and how it is applied to calculate the curvature.
It will then give a brief presentation of the direction difference which is used
to calculate the normal vector. A note is finally given on how to use the
curve-fitting discretization scheme to calculate the normal vector.

4.1. The curvature

The curvature is calculated with a discretization that is based on the
improved geometry-aware curvature discretization presented by Macklin and
Lowengrub [1]. This is a method where the curvature is calculated at the
interfaces directly with the use of a least-squares curve parametrization of
the interface. The curve parametrization is used to create a local level-set
function from which the curvature is calculated using standard discretization
techniques. The local level-set function only depends on one interface and is
therefore free of kinks.

The main motivation behind the present method is to improve the cur-
vature calculations specifically at the grid points, as these values may be
important for other models. Examples of such cases are the modelling of
interfacial flows with surfactants [12–14].

The main difference between the present method and that of Macklin and
Lowengrub [1] is that they modify the GFM to calculate the curvature at the
interface directly, whereas the present method only changes the procedure
to calculate the curvature at specific grid points. In other words, Macklin
and Lowengrub calculate κΓ in equation (16) directly with a parametrized
curve, whereas the present method uses parametrized curves to calculate κi
and κi+1. The present method is therefore independent of the GFM, which
makes it easier to adopt it into existing level-set codes.

An important consequence of not calculating the curvature directly on
the interface is that it becomes more important to have an accurate repre-
sentation of the interface. This is due to the fact that the point xi where
the curvature is calculated is not on the interface, so the calculation becomes
less local. Thus the parametrization needs to be more accurate at a larger
distance from xi. The curve-fitting discretization scheme presented here uses
monotone cubic Hermite splines to parametrize the curve. The least-square
parametrization used in [1] is only accurate very close to the point where the
curvature needs to be calculated. The Hermite spline is more accurate along
the entire interface representation.
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The algorithm to calculate the curvature at xi,j can be summarized as
follows. The details are explained in the next section.

1. If Qi+n,j+m ≤ η, where n = −1, 0, 1 and m = −1, 0, 1, then it is safe
to use the central-difference discretization. Otherwise continue to the
next step.

2. Locate the closest interface, Γ.
3. Find a set of points x1, . . . ,xn ∈ Γ.
4. Create a parametrization γ(s) of the points x1, . . . ,xn.
5. Calculate a local level-set function based on the parametrization γ(s).
6. Use central-difference discretization on the local level-set function to

calculate the curvature.

4.2. The normal vector

This section will describe two methods to calculate the normal vector
close to kinks. The direction difference [2] will be described first. Then a
method based on the curve-fitting scheme will be presented.

4.2.1. Direction difference

The direction-difference scheme uses a quality function to ensure that the
difference stencils never cross kinks. The basic strategy is to use a combina-
tion of central differences and one-sided differences based on the values of a
quality function,

Q(x) = |1− |∇ϕ(x)|| , (18)

which is approximated with central differences. The quality function effec-
tively detects the areas where the level-set function differs from the signed-
distance function. Let Qi,j = Q(xi,j) and η > 0, then Qi,j > η can be used
to detect kinks. The parameter η is tuned such that the quality function will
detect all the kinks. The value η = 0.1 is used in the present work.

The quality function is used to define a direction function,

D(xi,j) = (Dx(xi,j), Dy(xi,j)), (19)

where

Dx(xi,j) =


−1 if Qi−1,j < η and Qi+1,j ≥ η,
1 if Qi−1,j ≥ η and Qi+1,j < η,
0 if Qi−1,j < η and Qi,j < η and Qi+1,j < η,
0 if Qi−1,j ≥ η and Qi,j ≥ η and Qi+1,j ≥ η,
undetermined otherwise.

(20)

10



Dy(xi,j) is defined in a similar manner. If Dx or Dy is undetermined, D(xi,j)
is chosen as the vector normal to ∇ϕ(xi,j). It is normalized, and the sign is
chosen such that it points in the direction of best quality. See [2] for more
details.

The direction difference is now defined as

∂xfi,j =


fi,j−fi−1,j

∆x
if Dx(xi, yj) = −1,

fi+1,j−fi,j
∆x

if Dx(xi, yj) = 1,
fi+1,j−fi−1,j

2∆x
if Dx(xi, yj) = 0,

(21)

where fi,j is a piecewise smooth function. The normal vector is calculated
using the direction difference on ϕ, which is equivalent to using central dif-
ferences in smooth areas and one-sided differences in areas close to the kinks.
This method makes sure that the differences do not cross any kinks, and the
normal vector can be accurately calculated even close to a kink.

4.2.2. Curve-fitting scheme

The direction difference is an elegant scheme which performs well in most
cases. However, it will be shown later that in some rare cases where both
direction functions are undetermined, this discretization scheme may be-
come very inaccurate. An alternative is to use the curve-fitting discretiza-
tion scheme on the normal vectors. But since this method starts by locating
the closest interface with a breadth-first search (see next section), it will be
slow when it is used far from any interfaces. It is therefore proposed to use
a combination of the direction difference and the curve-fitting discretization
scheme.

5. The curve-fitting discretization scheme

5.1. Locating the closest interface

A breadth-first search is used to to identify the closest interface, see Fig-
ure 4. Let x0 denote the starting point and x1 denote the desired point on
the closest interface. The search iterates over all the eight edges from x0 to
its neighbours and tries to locate an interface which is identified by a change
of sign of ϕ(x). If more than one interface is found, x1 is chosen to be the
point that is closest to x0. If no interfaces are located the search continues
at the next depth. The search continues in this manner until an interface is
found. Note that this algorithm does not in general return the point on the
interface which is closest to x0.

11



x0

x1

Figure 4: Sketch of a breadth-first search. The dashed lines depict the edges that are
searched first, the dotted lines depict the edges that are searched next and the solid lines
depict two interfaces. The circular dots mark where the algorithm finds interface points,
and the rectangular dot marks the point which is returned for the depicted case.

The crossing points between the grid edges and the interfaces are found
with linear and bilinear interpolation. E.g. if an interface crosses the edge
between (i, j) and (i, j + 1) at xI , the interface point is found by linear
interpolation,

xI = xi,j + θ(0,∆x), (22)

where

θ =
ϕ(xi,j)

ϕ(xi,j)− ϕ(xi,j+1)
. (23)

In the diagonal cases the interface point is found with bilinear interpolation
along the diagonal. This leads to

xI = xi,j + θ(∆x,∆x), (24)

where θ is the solution of

α1θ
2 + α2θ + α3 = 0. (25)

The α values depend on the grid cell. For instance, when searching along the
diagonal between (i, j) and (i+ 1, j + 1) the α values will be

α1 = ϕi,j − ϕi+1,j − ϕi,j+1 + ϕi+1,j+1, (26)

α2 = ϕi+1,j + ϕi,j+1 − 2ϕi,j, (27)

α3 = ϕi,j. (28)
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5.2. Searching for points on an interface

When an interface and a corresponding point x1 on the interface are
found, the next step is to find a set of points x2, . . . ,xk, . . . ,xn on the same
interface. The points should be ordered such that when traversing the points
from k = 1 to k = n, the phase with ϕ(x) < 0 is on the left-hand side. Note
that the ordering of the points may be done after all the points are found.
Three criteria are used when searching for new points:

1. The points are located on the grid edges.

2. The distance between xk and xk+1 for all k is greater than a given
threshold µ.

3. The n points that are closest to x0 are selected, where x0 = xi,j is the
initial point where the curvature is to be calculated.

Let xk ∈ Γ ∩ [xi, xi+1) × [yj, yj+1) be given. To find a new point xk+1

on Γ, a variant of the marching-squares algorithm1 is used. Given xk and a
search direction which is either clockwise or counter clockwise, the algorithm
searches for all the points where an interface crosses the edges of the mesh
rectangle [xi, xi+1] × [yj, yj+1]. In most cases there will be two such points
and xk is one of them. xk+1 is then selected based on the search direction.
If xk+1 = xk, the search is continued in the adjacent mesh rectangle. The
search process is depicted in Figure 5(a).

In some rare cases the algorithm must handle the ambiguous case depicted
in Figure 5(b). In these cases there are four interface crossing-points and two
solutions. Either solution is valid, and it is not possible to say which solution
is better. The current implementation selects the first solution that it finds,
which will be in all practical sense a random choice. Note that the ambiguous
cases only occur when two interfaces cross a single grid cell. The ambiguity
comes from the fact that the level-set method is not able to resolve the
interfaces on a sub-cell resolution.

It was found that n = 7 points where necessary in order to ensure that
the closest points on the interface with respect to the different grid points
are captured with the spline parametrization.

1The marching-squares algorithm is an equivalent two-dimensional formulation of the
well known marching-cubes algorithm presented in [24]. The algorithm was mainly devel-
oped for use in computer graphics.
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ϕ > 0 ϕ < 0

ϕ > 0 ϕ < 0xk+1

xk

(a) Marching squares

ϕ < 0 ϕ > 0

ϕ > 0 ϕ < 0

xk

x̂k+1

xk+1

(b) Ambiguous case

Figure 5: (a) The search starts by locating the two points where the interface crosses
the mesh rectangle. xk is the starting point, and if the search is counter clockwise it
will select xk+1 as depicted. If the search is clockwise, it will select xk+1 = xk, and the
search continues in the adjacent mesh rectangle [xi, xi+1]× [yj−1, yj ]. (b) An example of
an ambiguous case. The solid black lines and the dashed black lines are two equally valid
solutions for how the interfaces cross the mesh rectangle. If the search starts at xk and
searches counter clockwise, then both x̂k+1 and xk+1 are valid solutions.
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5.3. Curve fitting

Cubic Hermite splines are used to fit a curve to the set of points

X0,m = {x0,x1, . . . ,xm}. (29)

Let the curve parametrization be denoted γ(s) for 0 < s < 1. A cubic spline
is a parametrization where

γ(s) =


γ1(s) s0 ≤ s < s1,
γ2(s) s1 ≤ s < s2,
...
γm(s) sm−1 ≤ s ≤ sm,

(30)

where 0 = s0 < s1 < · · · < sm = 1

γ(si) = xi, 0 ≤ i ≤ m, (31)

and each interpolant γi(s) = (xi(s), yi(s)) is a third-order polynomial. A
Hermite spline is a spline where each interpolant is in Hermite form, see [25,
Chapter 4.5]. The interpolants are created by solving the equations

γi(s) = h00(s)xi−1 + h01(s)xi + h10(s)mi−1 + h11(s)mi, (32)

for 1 ≤ i ≤ m, where mi is the curve tangents and h00, h01, h10 and h11 are
Hermite basis polynomials,

h00(s) = 2s3 − 3s2 + 1,

h01(s) = s3 − 2s2 + s,

h10(s) = −2s3 + 3s2,

h11(s) = s3 − s2.

(33)

The choice of the tangents is non-unique, and there are several possible op-
tions for a cubic Hermite spline.

It is essential that the spline is properly oriented. This is because we re-
quire to find both the distance and the position of a point on the grid relative
to the spline in order to define a local level-set function. The orientation of
the spline γ(s) is defined such that when s increases, Ω− is to the left.

To ensure that our curve is properly oriented, the tangents are chosen as
described in [26]. This will ensure monotonicity for each component as long
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as the input data is monotone. The tangents are modified as follows. First
the slopes of the secant lines between successive points are computed,

di =
xi − xi−1

si − si−1

(34)

for 1 ≤ i ≤ m. Next the tangents are initialized as the average of the secants
at every point,

mi =
di + di+1

2
(35)

for 1 ≤ i ≤ m− 1. The curve tangents at the endpoints are set to m0 = d1

and mm = dm. Finally let k pass from 1 through m − 1 and set mk =
mk+1 = 0 where dk = 0, and mk = 0 where sign(dk) 6= sign(dk+1).

5.4. Local level-set function

The local level-set function, here denoted as φ(xi,j) ≡ φi,j, is calculated
at the grid points surrounding and including x0 = xi,j. The curvature is then
calculated with the standard discretization stencil where φ is used instead of
the global level-set function, ϕ.

A precise definition of φ is

φ(xi,j) = min
s

(
d̂(xi,j,γ(s))

)
(36)

where d̂(x,γ(s)) is the signed-distance function, which is negative in phase
one and positive in phase two. This function is calculated by first finding the
minimum distance between x and γ(s) and then deciding the correct sign.
The minimum distance is found by minimizing the norm

d(x,γ(s)) = ‖x− γ(s)‖2. (37)

When γ is composed of cubic polynomials as is the case for cubic Hermite
splines, the computation of the distance requires the solution of several fifth-
order polynomial equations. Sturm’s method (see [27, Section 11.3] or [28,
Chapter XI,§2]) is employed to locate and bracket the solutions and a com-
bined Newton-Raphson and bisection method is used to refine them. The
correct sign is found by solving

sign(φ(xi,j)) = sign ((xi,j − γ(s))× tγ(s))z , (38)

where tγ(s) is the tangent vector of γ(s).
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6. Verification and testing

This section presents results of calculating normal vectors and curvatures
with the present discretization scheme. First a convergence test is considered.
Then in the following three cases simulation results are compared with the
second-order central difference scheme and Macklin and Lowengrub’s scheme
[1]. In the final case, the direction difference [2] is compared with the curve-
fitting scheme outlined in Section 4.2.2.

6.1. Convergence test

The convergence of the present curve-fitting method is measured on a
simple test case depicted in Figure 6. Here a disc of radius r = 0.25 and
curvature κ0 = −4 is placed a distance h = 1.1∆x over a rectangle. The grid
is aligned such that a grid cell fits between the disc and the rectangle, see
Figure 7. The error for a grid of size n × n is defined as the 1-norm of the
difference between κ0 and the curvature values κi at the disc interface,

En =
1

m

m∑
i=1

|κ0 − κi|, (39)

where m is the number of curvature values along the interface. The curvature
values κi are calculated with linear interpolation (17) along the interface of
the disc.

The convergence results for several different grid sizes n are shown in
Table 1. The curvature calculated with central differences does not converge
due to an error O (1/∆x) introduced by the kink region. It is seen that the
present method converges, although the convergence order jumps between
0.6 and 3. Since h depends on the grid size, the case is slightly altered for
each grid refinement. This might be one of the reasons that the convergence
rate is slightly sporadic. Another reason is that the accuracy depends both
on the second-order discretization stencil for the curvature, and on the locally
generated level-set function. It is difficult to make a rigorous analysis of the
accuracy of the latter, since it depends on several steps as described in the
previous section. However, it is easy to see that the accuracy of the latter
depends on the alignment of the interface with respect to the grid, and in
particular the distance of the interface to the initial grid point xi,j. This
could explain the varying convergence rate.
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Figure 6: A disc that rests a distance h over a rectangle. The dotted line depicts the kink
location.

Figure 7: The grid and the rectangle are aligned on the grid such that there is one grid
cell between the bodies.

Table 1: Convergence results for the curvature calculated for a disc that rests a distance
h = 1.1∆x above a rectangle. Results with the central difference on the left, and results
with the present method on the right.

n En order

64 1.035
128 1.213 -0.23
256 1.310 -0.11
512 1.351 -0.04

1024 1.401 -0.05
2048 1.394 0.01

n En order

64 4.172 · 10−2

128 1.123 · 10−2 1.90
256 3.950 · 10−3 1.50
512 2.583 · 10−3 0.61

1024 3.147 · 10−4 3.00
2048 1.164 · 10−4 1.40
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Figure 8: A comparison of the normal vectors as calculated with central differences [in
red] and direction differences [in green]. The thick black lines depict the interfaces.

6.2. Disc and rectangle

Again consider the disc and rectangle, see Figure 6. It is of interest
to compare the curvature and normal vector calculations, especially in the
middle region close to the kink area. Only the level-set function and the
geometrical quantities are considered, that is none of the governing equations
is solved (equations (1), (2), (10), (11) and (13)). When h is small, the
kinks along the dotted line will affect the discretization stencils as has been
explained in Section 3.

The following results are obtained with r = 0.25 m and h = ∆x. The
domain is 1.5 m × 1.5m, and the straight line is positioned at y = 0.75 m.
The grid size is 101× 101.

Figure 8 shows a comparison of the calculated normal vectors. The results
with central differences are depicted with red vectors and the results with
direction differences are depicted with green vectors. The figure shows that
the central-difference scheme yields much less accurate results for the normal
vectors along the kink region than the direction-difference scheme.

Figure 9 shows a comparison of the calculated curvatures between the
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central-difference scheme, Macklin and Lowengrub’s method [1], and the
present method. Note that for Macklin and Lowengrub’s method [1] the
values of the curvature at the grid points are first calculated with the central-
difference scheme. Then for the interface locations that need special treat-
ment the curvature values are copied from the interface to the adjacent grid
points. This is done in order to compare the results. In all three cases, the
curvature is set to zero at grid points that are far from any interface.

The figure shows that the present method yields similar results as Macklin
and Lowengrub’s method [1], which should be expected. Further, the central-
difference scheme leads to large errors in the calculated curvatures in the
areas that are close to two interfaces. In particular note that the sign of
the curvature becomes wrong. The analytic curvature for this case is κ =
−1/r = −4, and the curvature spikes seen with the central differences is in
the order of |κ| ∼ 1

∆x
' 67.3. These spikes will lead to large errors in the

pressure jumps through equation (4). The effect of these errors will become
more clear in the next case.

6.3. Drop collision in shear flow

The second case considers drop collision in shear flow. The initial con-
dition is sketched in Figure 10. Both drops have radius R and are initially
placed at a distance d = 5R apart in a shear flow. The initial flow velocity
changes linearly from the bottom-wall velocity us = −U < 0 to the top-wall
velocity un = U . The computational domain is 12R × 8R, and the grid size
is 241× 161.

The density and viscosity differences of the two phases are zero, and the
shear flow is defined by the Reynolds number and the Capillary number,

Re =
ρUr

µ
, Ca =

µU

σ
. (40)

The following results were obtained with Re = 10 and Ca = 0.025 for R =
0.5 m and h = 0.42 m. No-slip boundary conditions are used on all walls.
The evolution of the flow field and the pressure is simulated by solving the
Navier-Stokes equations (1) and (2) as described in Section 3.

Figure 11 shows the evolution of the interfaces and the velocity field for
a simulation where the present method is used. We observe that the drops
are deformed before they collide and that the evolution of the drops affects
the velocity field. Figure 12 shows a comparison of the interface evolution
and the curvature between the central-difference scheme and the present
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(a) Standard (b) Macklin and Lowengrub

(c) Present

Figure 9: A comparison of curvature calculations between the central-difference scheme
(Standard), Macklin and Lowengrub’s method [1], and the present method. The central-
difference scheme leads to large errors in the curvatures in areas that are close to two
interfaces.
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Figure 10: Sketch of the initial condition for the case with two drops in a shear flow.

method. The kinks between the drops again lead to curvature spikes for the
central-difference scheme, whereas the improved discretization calculates the
curvature along the kink in a much more reliable manner.

The curvature spikes in Figure 12 for the central-difference scheme are
seen to prevent coalescence. This is due to the effect they have on the pressure
field, cf. equation (16). Figure 13 shows the pressure field at t = 2.75 s. It can
be seen that the pressure field for the central-difference scheme is distorted
in the thin-film region. This distortion in the pressure leads to a flow in the
film region which suppresses coalescence. The corresponding result for the
present method shows that the pressure is not distorted. It is high in the
centre of the thin-film region and lower at the edges. The pressure change
induces a flow out of the region which is more as expected.

Finally, Figure 14 shows a comparison of Macklin and Lowengrub’s method
[1] and the present method. As can be expected, coalescence is observed also
with Macklin and Lowengrub’s method [1]. However, the time at which coa-
lescence occurs is slightly different, which might be due to small differences
in the flow of the thin film region just before coalescence.
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t = 0.00 s t = 0.65 s

t = 1.25 s t = 1.90 s

t = 2.50 s t = 3.30 s

t = 4.10 s t = 5.00 s

Figure 11: The evolution of the velocity field and the interfaces for drop collision in shear
flow.
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t = 2.30 s t = 2.60 s t = 2.75 s t = 2.85 s

t = 2.95 s t = 3.10 s t = 3.40 s

κ [1/m]

Figure 12: A comparison between the central-difference scheme (top row) and the present
discretization scheme (bottom row) of the interface evolution and the curvature κ of drop
collision in shear flow.
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(a) Standard discretization (b) Improved method

Figure 13: Comparison of the pressure field in the thin film between the drops at t = 2.75 s.
The contour legends indicate the pressure in Pa.

t = 2.30 s t = 2.75 s t = 3.10 s

κ [1/m]

Figure 14: A comparison between Macklin and Lowengrub’s method [1] (top row) and
the present method (bottom row) of the interface evolution and the curvature κ of drop
collision in shear flow.

25



6.4. Drop collision in axisymmetric flow

The third case considers the collision of two drops of radius R in an
axisymmetric flow. The drops are initially placed at a distance d = R apart
in a linear flow field

u(r, z) =
r

R
U0,

v(r, z) = −2
z

R
U0.

(41)

Here r is the radial coordinate, z is the axial coordinate, and U0 is a scaling
factor of the velocity. Figure 15 shows streamlines of the initial velocity field
as well as the initial location of the drops with the centers at z = ±0.75 m.

The density and viscosity differences of the two phases are zero, and the
case is defined by the Reynolds number and the Capillary number,

Re =
ρU0R

µ
, Ca =

µU0

σ
. (42)

The governing equations (1) and (2) are solved as explained in the pre-
vious sections, with some modifications: In axisymmetry the divergence and
Laplacian operators become

∇ ·f =
1

r

∂

∂r
(rf1) +

∂f2

∂z
, (43)

∆g =
1

r

∂

∂r

(
r
∂g

∂r

)
+
∂2g

∂z2
, (44)

where the subscripts indicate vector components, that is f = (f1, f2). In
addition, one must add −u/r2 to the viscous term in the radial component
of the momentum equation, where u is the radial velocity component. Note
that equation (43) applies to the calculation of the curvature through equa-
tion (15).

The following results were obtained with Re = 0.5 and Ca = 0.025 for
R = 0.5 m and U0 = 0.5 m/s. The computational domain was 8R × 12R,
and the grid size was 120×160. The axis of symmetry coincides with the left
boundary. At the other boundaries we specify (u, v) to match equation (41).

The case is run both with the standard discretization of curvature and
with the present method. Figure 16 shows the interfaces, the curvature
values, and the velocity vectors plotted at various stages of the collision pro-
cess when the case is run with the standard discretization. The discretiza-
tion stencil for the curvature starts to cross the kink at some time between
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Figure 15: The initial drop interfaces and initial streamlines of the axisymmetric flow.

27



t = 0.30 s and t = 0.042 s, after which one can observe a spike in the cal-
culated curvature where both the value and the sign are erroneous. This in
turn affects the pressure calculation and leads to a slower coalescence process.
Figure 17 shows that the spike in the curvature calculation is prevented with
the present method. Note that right after the coalescence at t = 0.43 s, the
value of the curvature in the thin filament area is and should be very high.

6.5. Normal vectors between two near discs

The final case is designed to show that the direction difference is not
always sufficient to calculate the normal vectors. In this case two discs of
radius r are placed at a distance h from each other as shown in Figure 18.
As in the first case, only the level-set function and the geometrical quantities
are considered.

The parameters for this case are r = 0.25 m and h = 1.2∆x. The domain
is 1.5 m× 1.5m and the grid size is 101× 101.

As was noted in Section 4.2.2, the curve-fitting discretization scheme may
be used as an alternative. In this case the curve-fitting discretization scheme
is used at the grid points that are within 1 grid cell from any interface. The
direction difference is used at the other grid points.

Figure 19 shows a comparison of the calculated normal vectors. The
normal vectors calculated with the direction difference are depicted with red
vectors and the normal vectors calculated with a combination of the direction
difference and the curve-fitting scheme are depicted with green vectors. The
green vectors are on top of the red vectors, which shows that the results
are almost identical. But at the centre grid point between the discs, the
direction difference is not able to accurately calculate the normal vector. For
more complex geometries this error may appear at more than one grid point.
The error directly affects both the solutions of the level-set equations, (10),
(11) and (13), and the jump conditions for the pressure and the gradient of
the velocity, (4) and (5).
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Figure 16: Drop collision in axisymmetric flow calculated with the standard method. The
legend for the colour contours of the curvature κ is shown in the last image. The velocity
vectors are displayed to show the evolution of the flow during the collision.
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Figure 17: Drop collision in axisymmetric flow calculated with the present method. The
legend for the colour contours of the curvature κ is shown in the last image. The velocity
vectors are displayed to show the evolution of the flow during the collision.
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Figure 18: A sketch of the initial state for the two-disc test. The dotted line depicts the
kink location.

Figure 19: A comparison of the direction difference and the curve-fitting method for
calculating normal vectors. The direction difference results are plotted in red below the
curve-fitting method results which are depicted in green. The thick black lines depict the
interfaces.

31



7. Conclusions

Improved discretization schemes for the normal vector and the curvature
of the interface between two phases have been devised and tested. The cur-
vature was discretized with a curve-fitting discretization scheme based on the
geometry-aware discretization presented in [1]. The normal vector was dis-
cretized both by the direction difference presented in [2] and a combination
of the direction difference and the curve-fitting discretization scheme. The
main advantage of the present curvature discretization scheme is that it is in-
dependent of the ghost-fluid method. This makes it easier to be adopted into
existing level-set codes, for instance codes that use the continuum surface-
force method. In addition, it enables the use of models that require curvature
values at the grid points, not just on the interface.

The present work has been restricted to two spatial dimensions. An exten-
sion to three dimensions would require bicubic parametrization of surfaces,
and a local reconstruction of the level-set function based on calculating the
minimum distances of parametrized curves to points on the grid. The com-
plexity of this is much higher than for the two-dimensional problem. Note
however, that the curve-fitting discretization scheme is directly applicable to
axisymmetric cases, which is demonstrated in a test case.

The implementation of the curve-fitting discretization scheme has been
described in detail. Our results show that the curvatures calculated with the
present scheme converge when the grid size is reduced in a case where the
standard scheme fails to converge.

The present discretization scheme is compared with the central-difference
scheme in three different cases. The first case is a direct comparison of the
schemes for a case with no flow. The second case compares the evolution
of two drops colliding in shear flow. Both of these cases demonstrate that
the central-difference scheme leads to erroneous behaviour at the kink loca-
tions. The second case shows that this behaviour prevents coalescence from
occurring due to an erroneous pressure field. The curvature spikes at the
kink regions are not observed with the present discretization scheme, and
coalescence is achieved for the second case. The present scheme was also
compared with Macklin and Lowengrub’s method [1], and the results show
that the present method gives similar results, as expected. The third case
considers the collision of two drops in an axisymmetric flow. As in the previ-
ous cases, the central-difference scheme leads to erroneous curvatures at the
kink, which is shown to lead to a slower coalescence.
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Finally, a fourth test case demonstrates that the direction difference [2]
does not always yield accurate results for calculating the normal vector. A
combination of the curve-fitting discretization scheme and the direction dif-
ference is shown to remove the error in the given case. Accurate calculation of
the normal vector is crucial, as it is used both to advect the level-set function
(10), extrapolate the velocity vector (11), and to calculate the jumps across
the interface (4) and (5). More work should therefore be done to investigate
how much this error affects more complex cases.
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