
Time-varying Risk Factor Models for
Renewable Stocks

Iris Krigsvoll Auran
Julie Falch Gullaksen

Industrial Economics and Technology Management

Supervisor: Sjur Westgaard, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2017

Norwegian University of Science and Technology



 



Problem Description

Climate concerns, advances in technology, reduced costs, improved efficiency and the
increased demand for energy have contributed to the extensive growth of the renewable
energy sector over the last decade. As this sector will be highly dependent on private
investments in the future, more knowledge about the return characteristics of renewable
energy stocks is crucial in order to increase the attractiveness of investing in renewable
energy.

The purpose of this thesis is to identify and analyze the fundamental factors driving the
return of the WilderHill New Energy Global Innovation Index (NEX) and the Ardour Solar
Energy Index (SOLRX). Furthermore, return dynamics of the NEX and the SOLRX are
compared over the time period 2005 to 2017. A state-space approach is used to estimate
the alpha and the beta coefficients for the potential drivers of return of both the NEX and
the SOLRX.

Our thesis will contribute to a better understanding of the renewable energy sector,
the solar sector, and the relationship between the two. By examining the return dynamics
of the renewable sector and the solar sector, in addition to their drivers of return, market
participants are given insight on how different factors have influenced these sectors since
2005. Furthermore, trends and developments over recent years are highlighted. Thus,
investors and policy makers will be better equipped to make optimal decisions.
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Abstract

Despite the considerable growth in the renewable energy market during recent years,
many investors believe they face a trade-off between financial profitability and sustainabil-
ity when investing in renewable energy. Furthermore, some argue that there is higher risk
related to investing in the solar sector than investing in other alternative energy sectors.
More knowledge about potential drivers of return of renewable energy stocks is therefore
crucial in order to give investors a better understanding of the risks related to investing in
renewables, and ultimately in order to increase the attractiveness of investing in renew-
ables.

With that as a starting point, this study examines potential factors driving the returns
of the WilderHill New Energy Global Innovation Index and the Ardour Solar Energy In-
dex, namely the global stock market, technology stocks, oil prices and the stock market
volatility. The alpha of each index is also investigated. Moreover, this study compares
return dynamics of the renewable energy sector as a whole and the solar sector in the time
period from 2005 to 2017. We analyze the evolution of the estimated alphas and the esti-
mated beta coefficients and compare this evolution for both the renewable sector and the
solar sector. In order to do this, a state-space approach is used. The analysis is based on
a multi-factor asset pricing model with time-varying coefficients for both the renewable
sector as a whole and the solar sector.

The results suggest a strong influence of the global stock market and technology stocks
on both renewable stocks and solar stocks throughout the considered sample period. The
influence of oil prices is significantly lower and has decreased since 2008. Furthermore,
both the renewable sector as a whole and the solar sector have underperformed relative
to the considered drivers of returns in latest years. Finally, the results suggest that the
global stock market and technology stocks affect the solar sector to a greater extent than
the renewable sector as a whole.
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Sammendrag

Til tross for den betydelige veksten i markedet for fornybar energi de siste årene, tror
mange investorer at de må velge mellom økonomisk lønnsomhet og bærekraft når de in-
vesterer i fornybar energi. Videre hevder enkelte at det er høyere risiko knyttet til å in-
vestere i solsektoren sammenlignet med å investere i andre alternative energisektorer. Yt-
terligere kunnskap om potensielle drivere bak avkastningen til fornybar energi er derfor
avgjørende for å gi investorer en bedre forståelse av risikoen knyttet til å investere i forny-
bar energi, og til syvende og sist for å øke attraktiviteten knyttet til å investere i fornybar
energi.

Med dette som utgangspunkt undersøker denne studien potensielle drivere bak avkast-
ningen til WilderHill New Energy Global Innovation Index og Ardor Solar Energy Index,
nærmere bestemt det globale aksjemarkedet, teknologiaksjer, oljepriser og volatiliteten i
aksjemarkedet. Indeksenes tilhørende alfa undersøkes også. Videre sammenlignes avkast-
ningsdynamikken til fornybarsektoren og solsektoren i tidsperioden 2005 til 2017. Vi
analyserer utviklingen til de estimerte alfaene og de estimerte betakoeffisientene, og sam-
menligner denne utviklingen for både fornybarsektoren og solsektoren. For å kunne gjøre
dette benyttes en tilstandsromrepresentasjon. Analysen er basert på en multifaktormodell
med tidsvarierende koeffisienter for både fornybarsektoren og solsektoren.

Resultatene antyder en sterk innflytelse fra det globale aksjemarkedet og teknologiak-
sjer på både fornybar- og solaksjer gjennom hele tidsperioden. Oljeprisens innflytelse er
betydelig lavere og har avtatt siden 2008. Videre har både fornybarsektoren og solsek-
toren underprestert i forhold til de potensielle driverne de siste årene. Resultatene tyder
på at det globale aksjemarkedet og teknologiaksjer påvirker solsektoren i større grad enn
fornybarsektoren.
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Chapter 1

Introduction

The renewable energy market has experienced considerable growth over recent years. The
market expanded at its fastest-ever rate in 2015, increasing the total capacity and produc-
tion of renewable energy by 8.7% (IRENA, 2016b). This is the largest global capacity
extension seen to date. Furthermore, global investment in renewable energy reached a
record level of 286 billion USD in 2015, exceeding the previous record of 278 billion USD
achieved in 2011 by 8 billion USD (REN21, 2016). While the global new investment in
the solar and wind sector increased with 12% and 4%, respectively, all other technologies
experienced a reduction in investments in 2015 compared to 2014 (REN21, 2016). The
solar sector is thus the fastest growing renewable energy sector. In addition to growth in
both the renewable energy market and in renewable energy investments, renewable energy
technologies has continued to advance (REN21, 2016).

As the interest in the renewable energy field has increased over recent years, several
studies have explored the pricing dynamics of renewable energy stocks. Existing literature
argues that there is a relationship between the prices of renewable energy stocks and the
global stock market (Inchauspe et al., 2015, Bohl et al., 2015), technology stocks (Hen-
riques and Sadorsky, 2008, Sadorsky, 2012, Kumar et al., 2012) and the oil price (Hen-
riques and Sadorsky, 2008, Schmitz, 2009, Kumar et al., 2012, Sadorsky, 2012, Managi
and Okimoto, 2013, Reboredo, 2015). However, the results of these studies are rather am-
biguous in terms of the magnitude of the influence of especially the oil price to renewable
energy stock prices.

Following the existing literature, we wish to investigate the impact of fundamental
factors such as the global stock market, technology stocks, the oil price and the stock
market volatility on renewable energy stocks. We believe that the influence of these factors
will vary over time. Moreover, we want to examine whether the impact of energy prices
and stock market indices vary across subsectors, and compare the impact on the renewable
sector as a whole to that of the solar sector.

In order to examine the potential drivers of renewable energy returns and solar returns,
a multi-factor asset pricing model with time-varying factors is developed. We solve the
model by using a state-space approach, which is a widely recognized approach that is
often applied to time series models (Koopman et al., 1999, Tsay, 2005, Commandeur
and Koopman, 2007, Durbin and Koopman, 2012). As opposed to a static approach, the
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state-space approach provides information about the time-varying influence of the factors
included in the model. This approach also offers insights into the dynamic relationship
between the variables.

The applied state-space model is inspired by the work of Inchauspe et al. (2015), and
includes the following factors: the global stock market, technology stocks, oil prices and
stock market volatility. The volatility factor is added to the model to compensate for
potential volatility clusters. Similar to Inchauspe et al. (2015), the applied state-space
model allows for an analysis of the performance of the renewable energy sector and the
solar sector relative to their identified drivers, illustrated by their respective alphas. This
study does, however, differ from the one of Inchauspe et al. (2015) by analyzing both
the renewable energy sector as a whole and the solar sector. In that way, it is possible to
compare the evolution of the factors for both renewable and solar stocks. In addition, this
study extends the time period considered in previous studies by using a data sample from
2005 up to 2017.

The Wilderhill New Energy Global Innovation Index (NEX) is used to represent the
renewable energy sector, while the Ardour Solar Energy Index (SOLRX) is used to repre-
sent the solar sector. The MSCI World Index (MSCI), West Texas Intermediate Oil Price
(WTI), NYSE Arca Tech 100 Index (PSE) and the CBOE Volatility Index (VIX) is used to
represent the stock market, the oil price, technology stocks and the stock market volatility,
respectively. The monthly U.S. Treasury Bill interest rate is used to calculate monthly
excess returns for all indices. Datastream is used to collect the historical data.

The following chapters aim to give the reader a more thorough understanding of the
drivers of renewable energy returns. Some general background information about the
trends and recent developments within the renewable energy sector is presented in chap-
ter 2. Readers with an extensive knowledge of the renewable energy sector may skip this
chapter. Chapter 3 provides an overview of existing literature on the renewable energy
field, including factors that may influence the returns of the renewable energy sector. The
characteristics of the data sample used in the empirical analysis of this study are explored
in chapter 4, while the methodology used is presented in chapter 5. Here, the state-space
model is explained in detail. The results of the study are interpreted and discussed in
chapter 6. In addition to providing our interpretation of the results, the results are com-
pared to the findings of other relevant studies. Lastly, concluding remarks, limitations and
recommendations for further research are presented in chapter 7.
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Chapter 2

Trends and Developments in the
Renewable Energy Sector

Renewables are currently establishing as mainstream sources of energy around the world.
The renewable energy sector has grown markedly over the last decade, and is expected to
continue its growth in the years to come. Several factors have contributed to the increase
in renewable energy production, including climate concerns, advances in technology, im-
proved cost-competitiveness of renewable technologies, dedicated policy initiatives and
the growing demand for energy in developing and emerging economies. Along with the
increased demand for renewable energy, there has been a significant amount of financing
and investing in the renewable energy sector.

Despite the plunge in the oil price, the strength of the U.S. dollar and the contin-
ued weakness of the European economy, global investment in renewable power and fuels
reached a record level of USD 286 billion in 2015 (REN21, 2016). Several developments
in the last years, such as the extreme decline in global fossil fuel prices and the Paris agree-
ment, have contributed to this large-scale investment. As illustrated in Figure 2.1, global
investment in renewable energy in 2015 exceeded the previous record of USD 278 billion
achieved in 2011 by USD 8 billion, amounting to a percentage increase of 3%. Developing
countries1, including China, India and Brazil, invested a total of USD 156 billion in re-
newable energy in 2015, which equals an increase of 19% relative to 2014. The developed
countries, on the other hand, invested USD 130 billion, investing 8% less than in 2014.

1Developing countries are distinguished from industrialized and already developed countries by a less devel-
oped industrial base and a low Human Development Index
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Figure 2.1: Global new investment in renewable power and fuels for developed and developing
countries in the period 2005-2015

Source: Global status report 2016, REN21

The biggest decrease in renewable energy investments was seen in Europe, which in-
vested USD 48.8 billion in 2015, representing a 21% decrease compared to 2014. Invest-
ments in Europe declined to the lowest figure since 2006 in 2015 (Frankfurt School-UNEP
Collaborating Centre for Climate & Sustainable Energy Finance, 2016). Investments in re-
newable energy power and fuels were in 2015 dominated by five countries, namely China,
United States, Japan, United Kingdom and India. The next five countries were Germany,
Brazil, South Africa, Mexico and Chile. In general, investments increased in China, India,
Africa and the Middle East, and the United States, while it decreased in Canada and Eu-
rope. Asset financing of utility-scale projects accounted for the majority of the investments
in the top ten investing countries. The investments in the United States were, however,
characterized by small-scale distributed capacity and public markets as well, while invest-
ments from Japan came mainly from small-scale distributed capacity. (REN21, 2016)

According to Norges Bank Investment Management (2015), private investors have re-
placed governments as the most important source of capital for renewable energy projects
over the past decade. Norges Bank Investment Management identifies two factors caus-
ing this development, namely technological improvements and renewable energy policies.
Technological improvements have led to increased reliability and declining costs, while
renewable energy policies have created new market opportunities that have encouraged
private sector investments. Several countries have adopted a variety of mechanisms to
produce the policy mix best tailored to their economical situation. Historically, govern-
ment support for renewable energy has been split between tariff based instruments like
feed-in tariffs (FITs) and quantity-based instruments like tendering schemes. As costs are
expected to decline further, Norges Bank Investment Management argues that supportive
policies are likely to be replaced by competitive market-based tenders going forward.

The majority of renewable energy technologies continue to grow, in terms of both ca-
pacity and output. According to IRENA (2017), the total amount of electricity generated
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from renewables amounted to 5660 TWh in 2015, which is 23.5% of all electricity gen-
erated. Hydropower accounted for 58% of the total capacity, while solar PV 2 and wind
power accounted for 23% and 12% respectively. The contribution of all renewables to the
global energy mix grew significantly in 2015, particularly in the electricity sector. Re-
newable power generation capacity grew by 154 GW over 2014, representing an increase
of 9.3%. The greatest additions were in wind, solar PV and hydropower (IRENA, 2017).
Traditionally, hydropower has accounted for the greatest additions in capacity. In 2015,
for the first time ever, additions of both wind and solar PV exceeded those of hydropower.
Norges Bank Investment Management (2015) argues that onshore wind and solar PV are
the technologies closest to being competitive with other sources of energy without subsi-
dies.

During the last couple of years, the solar sector has become predominant in the re-
newable energy sector. Several factors have contributed to this development, includ-
ing improvements in energy storage systems, increased efficiency and improved cost-
competitiveness. The solar sector was the leading sector in terms of money devoted during
2015, and accounted for more than 56% of total new investment in renewable power and
fuels. Solar power is the fastest growing renewable energy technology, with a 12% increase
in the global new investment in 2015 compared to 2014. The wind sector experienced a
modest growth of 4%, while all other renewable technologies experienced a reduction in
investments in 2015 compared to 2014. The most significant reduction was seen in the
biomass and waste-to-energy sector and the wave and tidal sector, which both declined by
42% (REN21, 2016).

China, Japan and the United States accounted for the majority of the capacity added in
the solar PV market in 2015, with emerging markets on all continents contributing signif-
icantly to global growth. According to IRENA (2017), the global PV capacity escalated
from 40 GW in 2010 to 219 GW in 2015. IRENA (2016a) estimates that the capacity of
solar PV power generation can grow from 230 GW at the end of 2015 to between 1600
GW and 2000 GW by 2030, representing a sevenfold increase. Solar PV will account
for as much as 7% of global power generation by 2030, which is six times as much as
today (IRENA, 2017). The increased production capacity is driven mainly by improved
economics. Solar PV is now competitive with conventional sources of electricity, as costs
have reduced significantly over the last years. The solar PV costs is now half of what
they were in 2010. Moreover, the cost of solar PV modules has fallen by 80% since
2009. IRENA (2017) estimates that solar PV costs could fall by another 60% over the
next decade. According to (IRENA, 2017), ongoing technological innovations, continuing
economies of scale, additional automation in production and economic pressures will push
costs down even further. The solar CSP market experienced a shift from traditional CSP
markets such as Spain and the United States to developing regions (REN21, 2016). In
2015, Morocco, South Africa and the United States were the biggest contributors.

Norges Bank Investment Management (2015) states that renewables will play a grow-
ing role in the global power mix in the years to come. By 2027, wind and solar will get
cheaper than running existing coal and gas generators. According to Bloomberg New En-
ergy Finance (2016), this tipping point will result in rapid and widespread developments

2The two most widely recognized ways of converting solar energy into electricity are photovoltaics (PV) and
concentrated solar power (CSP), hereby referred to as solar PV and solar CSP
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within the renewable energy sector. Bloomberg New Energy Finance (2016) estimates
that zero-emission energy sources will make up 60% of the installed capacity by 2040.
The Asia-Pacific region will experience the largest growth in new power generation ca-
pacity, with renewables accounting for nearly two-thirds of the additions. The Middle
East and Africa will experience an eightfold increase in renewables over the next 25 years.
Solar and wind will account for around 60% of total additions, the majority of which be-
ing utility-scale solar PV. Renewables will rise to 70% of generation in Europe in 2040,
with solar making up almost half of all new capacity. Overall, non-OECD countries will
see the majority of new capacity, with China and India leading the way. Although coal
will continue to be important, renewables will make up 61% of deployment in the non-
OECD economies. The growing electricity demand in the OECD does, on the other hand,
continue to look weak. Even though these projections provide valuable insight into the
renewable energy trends going forward, it is important to stress that projections of this
time horizon are associated with considerable uncertainty.
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Chapter 3

Literature Review

In line with the increased growth of the renewable energy sector over the last decade,
there has been a significant increase in the number of studies investigating the perfor-
mance and price behavior of renewable energy stocks, indices and companies (Henriques
and Sadorsky, 2008, Schmitz, 2009, Inchauspe, 2011, Sadorsky, 2012, Kumar et al., 2012,
Managi and Okimoto, 2013, Ortas and Moneva, 2013, Reboredo, 2015, Inchauspe et al.,
2015, Bohl et al., 2015). Although the interest has increased, the number of studies in-
vestigating renewable energy investments is relatively small. In particular, there are few
studies conducted before 2000. This makes it hard to investigate the time evolution of
renewable energy stocks. Additionally, almost no studies compare the performance of
different sectors within renewables. The literature presented in this chapter is therefore
mainly revolved around recent studies of the renewable sector as a whole.

Henriques and Sadorsky (2008) use a four-variable vector autoregression model to in-
vestigate the empirical relationship between alternative energy stock prices, technology
stock prices, oil prices and interest rates. The paper states that the overall impact of rising
oil prices on the stock prices of alternative energy companies should be positive, as rising
oil prices encourage substitution towards other energy sources. The authors do, never-
theless, find that shocks to oil prices have little significant impact on the stock prices of
alternative energy companies. In fact, Henriques and Sadorsky find that a shock to tech-
nology stock prices has a larger impact on alternative energy stock prices than a shock to
oil prices.

Schmitz (2009) uses a CAPM-GARCH multi-factor market model to investigate the
relationship between returns on oil and alternative energy stocks. The results indicate that
an increase in oil prices and the market in general have a significant positive impact on al-
ternative energy stocks. Furthermore, estimation of the alternative energy index indicated
presence of abnormal returns, which were generated from a different sectoral component
than the solar sector. This result differs from that of Henriques and Sadorsky (2008), which
concluded that virtually no abnormal returns were generated from alternative energy com-
panies.

Inchauspe (2011) uses a state-space methodology for modelling excess returns for the
Wilderhill New Energy index. The first part of the paper uses a Kalman-filter multi-factor
model that allows for time-varying beta factors, while the second part uses a Markov-
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switching autoregressive distributed lag model. None of the models provides evidence of
excess returns on oil prices being a significant contributor to the NEX excess returns. The
latter suggests that both Amex Oil and NASDAQ returns contribute significantly to the
NEX returns.

Sadorsky (2012) uses four different multivariate GARCH models to examine volatility
spillovers between oil prices and stock prices of clean energy and technology companies.
The study finds evidence that the stock prices of clean energy companies correlate more
highly with technology stock prices than with oil prices, supporting the findings of Hen-
riques and Sadorsky (2008).

Kumar et al. (2012) extend the work of Henriques and Sadorsky (2008) by also con-
sidering carbon market data before and after oil price peaks. The results show that past
movements in oil prices, stock prices of high technology firms and interest rates explain
the variation in the indices of clean energy stocks. Carbon price returns, on the other hand,
are not significant for the stock price movements of clean energy firms. The study also
finds that investors view the stocks of clean energy companies as they view the stocks
of high technology firms, supporting the results of Henriques and Sadorsky (2008) and
Sadorsky (2012).

Managi and Okimoto (2013) investigate the relationship between oil prices, clean en-
ergy stocks and technology stock prices. The authors extend previous work by lengthening
the data period up to 2010. In addition, Markov-switching vector autoregressive (MSVAR)
models are applied to the economic system consisting of oil prices, clean energy and tech-
nology stock prices, and interest rates. Managi and Okimoto find that oil prices have
positively affected clean energy stock prices after the structural break in late 2007, sug-
gesting a movement from conventional to clean energy. This result is in contrast to the
results of Henriques and Sadorsky (2008).

Ortas and Moneva (2013) use a modified state-space market model to recursively esti-
mate the risk and return performance of 21 primary Clean Techs (CT) equity indices. The
main findings of the study indicate that Clean Techs indices outperform the benchmarks in
terms of returns during periods of market stability. Moreover, CT indices are more volatile
during the financial crisis than in periods of market stability.

Reboredo (2015) uses copulas and the conditional value at risk measure to study sys-
tematic risk and dependence between oil and renewable energy markets. The results indi-
cate that oil price dynamics significantly contribute around 30% to upside and downside
risk of renewable energy companies. Furthermore, Reboredo finds significant time-varying
average and symmetric tail dependence between oil returns and several global and sectoral
renewable energy indices.

Inchauspe et al. (2015) examine the dynamics of excess return for the Wilderhill New
Energy Global Innovation index by using a multi-factor asset pricing model with time-
varying coefficients. The results suggest a strong influence of the MSCI World index and
technology stocks. Even though oil has become more influential from 2007 onwards, the
influence of changes in the oil price is significantly lower than the influence of the MSCI
World index and technology stocks. Moreover, the authors find evidence for underperfor-
mance of the renewable energy sector after the financial crisis.

Bohl et al. (2015) examine the return behavior of German renewable energy stocks in
the period between 2004 and 2011 by using Carhart four-factor model in the state-space
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form and bubble detection tests. The authors find that German renewable energy stocks
earned considerable risk-adjusted returns between 2004 and 2007, while the performance
completely reversed between 2008 and 2011. Recent risk and return characteristics there-
fore indicate that investors should be cautious when holding German alternative energy
stocks in their portfolio, as these could damage the overall performance.

This study contributes to the stream of existing literature by studying the impact of
the global stock market, oil prices, technology stocks and the stock market volatility on
both renewable energy stocks and solar stocks. As pointed out by Bohl et al. (2015),
risk and return behavior might vary across subsectors, making it interesting to examine
the performance of the biggest subsector within the renewable energy sector. Moreover,
Schmitz (2009) argues that it is more risky to invest in the solar sector than to invest in
other alternative energy sectors. This is yet another motivating factor for this study.
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Chapter 4

Data

This chapter presents the data used in the analysis of this study. First, descriptive statistics
for all sample data are presented, before more accurate descriptions of each index are
presented. In the last section, the results of the Chow test are explored.

4.1 Data description
This study analyzes five equity indices and one commodity, namely the Wilderhill New
Energy Global Innovation Index (NEX), the Ardour Solar Energy Index (SOLRX), the
MSCI World Index (MSCI), the NYSE Aca Tech 100 Index (PSE), the CBOE Volatility
Index (VIX) and the West Texas Intermediate (WTI). All data is gathered from Datastream
for the time period from 01.02.2005 to 01.02.2017.

For all data series, monthly market data is used in order to calculate the continuously
compounded returns over the risk-free asset, given by the following equation:

ri,t = ln(pi,t) − ln(pi,t−1) − rlt (4.1)

where pi,t is the monthly closing price of the stock index or the commodity, i, in month
t, ln is the natural logarithm and rlt is the return of the risk-free asset on day t.

The risk-free rate represents the minimum return an investor would expect for any
investment. For this study, the monthly U.S. Treasury Bill is used to represent the risk-free
asset. As U.S. Treasury Bills are backed by the credit of the U.S. Government, T-bills are
commonly used as risk-free rates as the market considers it to be highly unlikely that the
government will default on its obligations. Additionally, U.S.-based investors often use
U.S. T-bills as the risk-free rate in order to avoid being subject to currency risk. Since all
index prices for this study are denominated in U.S. dollars, it is natural to use the monthly
T-Bill to represent the risk-free rate.

Figure 4.1 and Figure 4.2 exhibit the performance of the sample data, while Table
4.1 gives an overview of the descriptive statistics for the monthly sample data. In order
to compare the price evolution for the data series in Figure 4.1, each series is set equal
to a base value of 100 at the beginning of the sample period. Both the NEX and the
SOLRX exhibit negative monthly average returns of -0.15% and -0.89%, respectively.
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The median, however, is positive for the NEX. The MSCI, the PSE and the WTI provide
positive average monthly returns and positive monthly medians. The SOLRX has the
second highest standard deviation, which is almost twice as high as for the NEX. The
VIX offers the greatest standard deviation for sample period, but this result is somewhat
expected as the index captures market insecurity. The Jarque-Bera test shows that none of
the data series in the sample are normally distributed. The direct beta, which is given as
the beta coefficient for the returns of the sample data against the MSCI index, is 1.5 for
the NEX and 2.3 for the SOLRX. Thus, both the NEX and the SOLRX are subject to high
systematic risk and have greater standard deviations than the market.

As exhibited in Table 4.2, the returns of the NEX have a high correlation with the re-
turns of the MSCI and the PSE, and a significant correlation with the returns of the WTI.
Table 4.3 illustrates that the same correlations are found between the SOLRX and the
MSCI, the PSE and the WTI, although to a lesser extent. The correlation coefficient for
the returns of the VIX is negative for both the returns of the NEX and for the returns of
the SOLRX. Figure 4.2 shows the yearly correlation coefficients between the NEX and the
MSCI, the PSE, the VIX and the WTI, and Figure 4.3b shows the yearly correlation be-
tween the SOLRX and the MSCI, the PSE, the VIX and the WTI. The correlation between
the NEX and the MSCI and between the NEX and the PSE is rather stable during the sam-
ple period. The correlation coefficients between the NEX and the WTI and between the
NEX and the VIX, on the other hand, vary greatly over time. The correlations between
the SOLRX and the MSCI, the PSE, the VIX and the WTI exhibit the same patterns as the
NEX. However, the correlations between the SOLRX and the MSCI and the PSE are more
unstable than those of the NEX, especially after 2009. For both the NEX and the SOLRX,
the correlation coefficients with the WTI were almost zero in 2013.

Figure 4.1: Stock price for the NEX, the PSE, the MSCI, the VIX, the SOLRX and the WTI for the
time period 01.02.2005-01.02.2017
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(a) Returns for the NEX (b) Returns for the SOLRX (c) Returns for the MSCI

(d) Returns for the PSE (e) Returns for the VIX (f) Returns for the WTI

Figure 4.2: Excess stock returns for the NEX, the SOLRX, the MSCI, the PSE, the VIX and the
WTI for the time period 01.02.2005-01.02.2017

Table 4.1: Descriptive statistics for monthly excess returns

NEX SOLRX MSCI PSE VIX WTI
Maximum 18.11 % 37.51 % 13.55 % 14.03 % 91.63 % 25.38 %
Minimum -39.06 % -58.50 % -20.98 % -17.59 % -53.83 % -43.42 %
Range 57.17 % 96.01 % 34.52 % 31.62 % 145.45 % 68.80 %
Mean -0.15 % -0.89 % 0.20 % 0.64 % -0.22 % 0.07 %
Median 0.67 % -0.37 % 0.61 % 0.99 % -1.28 % 0.87 %
St.Dev. 8.55 % 15.31 % 5.01 % 5.23 % 22.13 % 9.96 %
Variance 0.0073 0.0235 0.0025 0.0027 0.0490 0.0099
Skewness -1.1570 -0.6841 -0.9566 -0.6734 0.7304 -0.8542
Kurtosis 6.4625 4.5500 5.8307 4.5246 4.8115 5.0318
Jarque-Bera 0.3674 0.1426 0.2705 0.1391 0.1644 0.2063
Normal dist. No No No No No No
Direct beta 1.5009 2.2529 1.0000 0.9530 -3.1787 1.0761
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Table 4.2: Correlation matrix for monthly excess returns for the NEX

NEX MSCI PSE VIX WTI
NEX 1
MSCI 0.8790 1
PSE 0.8430 0.9121 1
VIX -0.5964 -0.7191 -0.7055 1
WTI 0.5940 0.5411 0.4667 -0.2824 1

Table 4.3: Correlation matrix for monthly excess returns for the SOLRX

SOLRX MSCI PSE VIX WTI
SOLRX 1
MSCI 0.7367 1
PSE 0.6927 0.9121 1
VIX -0.4707 -0.7191 -0.7055 1
WTI 0.4854 0.5411 0.4667 -0.2824 1

(a) Correlation with the NEX (b) Correlation with the SOLRX

Figure 4.3: Yearly correlation coefficients between the NEX and the SOLRX and the MSCI, the
PSE, the VIX and the WTI

4.1.1 The WilderHill New Energy Global Innovation Index (NEX)
The NEX is a major international renewables benchmark with a market capitalization of
USD $252 billion as of September 30th 2016. The index is composed of 99 companies
in 26 different markets. As exhibited in Figure 4.4a, the NEX is mainly comprised of
companies with operations within energy efficiency, solar, wind and biomass & biofuels.
Figure 4.4b illustrates that most of the companies included in the index are located in
North America, Asia and Europe. The index components are chosen based on technologi-
cal, environmental, and relevance-to-the-sector criteria – rather than a risk-averse portfolio
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strategy. Thus, the NEX captures both downward and upward movements of global clean
energy and may therefore appear as more volatile compared to other global renewable in-
dices (WHNEF, 2016). Although some studies have used the WilderHill Clean Energy
Index (ECO) in their analyses (Henriques and Sadorsky, 2008, Sadorsky, 2012, Kumar
et al., 2012, Managi and Okimoto, 2013), more recent studies (Kumar et al., 2012, In-
chauspe et al., 2015) have chosen the NEX over the ECO. The global reach of the NEX
and its direct focus on production of renewable energy, are the main reasons for choosing
the NEX over the ECO.

(a) Sector distribution for the NEX (b) Location distribution for the NEX

Figure 4.4: Sector and location distribution for the NEX as of Q2 2017

4.1.2 The Ardour Solar Energy Index (SOLRX)
The SOLRX is a global index composed of solar companies exclusively, which serves as
one out of two main global solar indices. The index consists of 15 companies, covers seven
markets and covers two technologies of solar energy, namely solar PV and solar CSP. As
exhibited in Figure 4.5, almost two-third of the companies included in the SOLRX are
located in Asia, while the remaining companies are located in North America and Europe.
The index provides exposure to publicly traded companies that derive at least 66% of their
revenues from solar power and related products and services. On a weighted basis, the
index derives 90% of its revenues from the solar industry exclusively. About one third of
the solar companies included in the NEX are represented in the SOLRX, accounting for
8% of the companies included in the NEX on a weighted basis. The SOLRX has been
used in several recent studies that analyze the performance of the solar sector (Ortas and
Moneva, 2013, Chan and Walter, 2014).
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Figure 4.5: Location distribution for the SOLRX as of March 17th 2017

4.1.3 The MSCI World Index (MSCI)
The MSCI is a broad global equity benchmark that represents large and mid-cap equity
performance across 23 developed countries. The index covers approximately 85% of the
free-float adjusted market capitalization in each country. The index is composed of 1.652
stocks and has been calculated since 1969 (INC., 2017). As opposed to the S&P500 Index,
the MSCI is a purely cap-determined index that includes components from all over the
world. The MSCI is therefore considered a better option for this study, as both the NEX
and the SOLRX cover markets in several countries.

4.1.4 The NYSE Arca Tech 100 Index (PSE)
The PSE provides a benchmark for measuring the performance of technology-utilizing
companies operating across a broad spectrum of industries. The index has been tracked
since 1982, and is modeled as a multi-industry innovative technologies index (Wikipedia,
2015). The PSE has been used in several studies over the last couple of years, including
Kumar et al. (2012), Sadorsky (2012) and Inchauspe et al. (2015).

4.1.5 The Western Texas Intermediate (WTI)
The WTI is one out of three primary oil benchmarks, and refers to oil extracted from wells
in the U.S. The WTI continues to be the main benchmark for oil consumed in the United
States (Kurt, 2015). The WTI is one of the most commonly used oil benchmarks in the
literature (Henriques and Sadorsky, 2008, Sadorsky, 2012).

4.1.6 The CBOE Volatility Index (VIX)
The VIX is a measure of the implied volatility of the S&P 500 index, calculated by the
Chicago Board Options Exchange. To date, the index is regarded the premier barometer of
investor sentiment and market volatility. The index represents the market’s expectation of
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stock market volatility over the next 30-day period (CBOE, 2017). Although some studies
have assessed the influence of the VIX on stock returns (Giot, 2005, Ang et al., 2006),
the influence on renewable energy stock returns is, to our knowledge, yet to be evaluated.
Hence, including the VIX in the analysis might lead to additional insights into renewable
energy stock returns.

4.2 Testing for time-varying betas
For the proposed multi-factor model, all alphas and betas are allowed to be time-varying.
For such a model to be appropriate, the factors should indeed exhibit substantial variation
through time. In order to prove – or disprove – such a variation, the Chow test is performed.
The Chow test aims to test equality of sets of coefficients in two or more regressions, and
follows the F distribution with k and N1 + N2 + ... + Ni − 2k degrees of freedom. The
null hypothesis of the test claims that there is no break point, meaning that the data set can
be represented with a single regression line. This null hypothesis is rejected if the F Chow
value falls into the rejection region, i.e. below the F critical value.

The following regression model is considered: yt = a+βx1t+cx2t+ε. For one single
breakpoint, the data can be split into the following two groups: (1) yt = a1 + β1x1t +
c1x2t + ε and (2) yt = a2 + β2x1t + c2x2t + ε. The null hypothesis of the Chow test
asserts that a1 = a2, b1 = b2 and c1 = c2. The model errors, ε, are identically distributed
from a normal distribution with unknown variance.

The F Chow value for one single breakpoint is given as:

RSSp − (RSS1 +RSS2)/k

(RSS1 +RSS2)/(N1 +N2 − 2k)
(4.2)

where RSSp is the residual sum of squares for the combined regression line, RSS1 is
the regression line before the break, RSS2 is the regression line after the break, N1 is the
number of observations before the break, N2 is the number of observations after the break
and k is the number of parameters. The formula can easily be extended to more than one
breakpoint.

The Chow test for monthly data is performed with 22 and 121 degrees of freedom and
α = 0.05 on all factors, so that X ∼ F(0.05,22,121). The test is performed with yearly
breakpoints. The results, exhibited in Table 4.4 for regressions against the NEX and in
Table 4.5 for regressions against the SOLRX, show that the null hypothesis is rejected
for all data series. Thus, the regression coefficients are different for the split data sets. In
conclusion, the beta coefficients are considered to be time-varying and a state-space model
with time-varying coefficients is deemed appropriate for this study. This is also supported
by the time-varying correlations illustrated in Figure 4.3.

16



Table 4.4: Chow test results for the NEX with yearly breakpoints

Index Chow value F critical value Time varying
MSCI 2.0682 1.6310 Yes
PSE 2.6661 1.6310 Yes
VIX 3.6687 1.6310 Yes
WTI 2.1223 1.6310 Yes

Table 4.5: Chow test results for the SOLRX with yearly breakpoints

Index Chow value F critical value Time varying
MSCI 1.9044 1.6310 Yes
PSE 2.5638 1.6310 Yes
VIX 2.8924 1.6310 Yes
WTI 1.7575 1.6310 Yes
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Chapter 5

Methodology

The following chapter presents the methodology used in the study. First, the state-space
multi-factor asset pricing model is introduced. Then, the model selection is explored.
Lastly, the test for residual heteroscedasticity is presented.

5.1 State-space model
There exists a number of different techniques by which one can model and estimate time-
varying beta values, with some of the most common being different versions of GARCH
models, Markov switching models and the state-space approach. Several studies argue
in favor of using state-space approaches (Bollerslev et al., 1988, Jagannathan and Wang,
1996, Brooks et al., 1998, Berglund and Knif, 1999, Koopman et al., 1999, Faff et al.,
2000, Tsay, 2005, Mergner and Bulla, 2008, Choudhry and Wu, 2009, van Geloven and
Koopman, 2009), as this method enables one to analyze variables through time as well
as the dynamic relationship between them. For this study, a state-space model is deemed
appropriate, as the approach will allow one to closely investigate the dynamics of the
drivers behind renewable energy returns. Additionally, both the renewable energy sector
and the solar sector are emerging markets. Moonis and Shah (2003) and Holmes and Faff
(2008) point out that emerging markets are particularly volatile, making time variation in
risk levels natural.

In order to estimate the time-varying coefficients, a four-factor state-space model is
formulated and the Kalman filter is applied. Applying the Kalman filter allows one to solve
the linear state-space equation to optimality, and the technique is successfully applied in
previous studies (Koopman et al., 1999, Tsay, 2005, Commandeur and Koopman, 2007,
Durbin and Koopman, 2012, Inchauspe et al., 2015). The Kalman filter assumes that the
market model residual is Gaussian and homoscedastic (Moonis and Shah, 2003). The
time-varying coefficients in the state-space are assumed to follow a pure random walk, as
supported by Faff et al. (2000). The analysis is run in EViews.

The proposed model is formulated as a state-space multi-factor model with five time-
varying coefficients, namely αt, βMSCI,t, βPSE,t, βV IX,t and βWTI,t. The analysis
is run on both the NEX and the SOLRX where rrenewable,t denotes the monthly excess
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returns at time t of either the NEX or the SOLRX, depending on the respective analysis.
The monthly excess returns of the MSCI, the PSE, the VIX and the WTI at time t are
represented as rMSCI,t, rPSE,t, rV IX,t and rWTI,t, respectively.

The model is given as:

rrenewable,t = αt + βMSCI,trMSCI,t + βPSE,trPSE,t + βV IX,trV IX,t + βWTI,trWTI,t+

εt, εt ∼ nid(0, σ2
ε)

(5.1)

αt+1 = αt + τα,t, τα,t ∼ iid(0, σ2
τα) (5.2)

βMSCI,t+1 = βMSCI,t + τMSCI,t, τMSCI,t ∼ iid(0, σ2
τMSCI ) (5.3)

βPSE,t+1 = βPSE,t + τPSE,t, τPSE,t ∼ iid(0, σ2
τPSE ) (5.4)

βV IX,t+1 = βV IX,t + τV IX,t, τV IX,t ∼ iid(0, σ2
τV IX ) (5.5)

βWTI,t+1 = βWTI,t + τWTI,t, τWTI,t ∼ iid(0, σ2
τWTI

) (5.6)

The state-space matrix representation is formulated as:(
Bt+1

rrenewable,t

)
= φtBt + ut (5.7)

where the state equation is given as:

Bt+1 = FBt + vt, vt ∼ N(0, Qt) (5.8)

and the measurement equation is given as:

rrenewable,t = HtBt + εt, εt ∼ nid(0, σε,t) (5.9)

where

Ht = [1 rMSCI,t rPSE,t rV IX,t rWTI,t],

Bt = [αt βMSCI,t βPSE,t βV IX,t βWTI,t]
′,

F = I5,

vt = I5[τa,t τMSCI,t τPSE,t τV IX,t τWTI,t],

Qt = [στα,t στMSCI,t στPSE,t στV IX,t στWTI,t ],

φt = [TtHt]

uT = [Qtεt]

19



The model is inspired by previous applications of state-space models, particularly the
three-factor state-space model proposed by Inchauspe et al. (2015). The model in this
study is, however, extended by taking account for the market’s expectation of stock market
volatility by including the returns over the VIX index. In addition, the model is run for
both the NEX and the SOLRX, not only the NEX, which provides a basis for comparison
between the sector as a whole and the solar sector.

5.2 Model selection
In order to find the best-fitting model, different candidate models are tested and evalu-
ated based on a set of information criteria. The candidate models differ from each other
based on whether each factors is kept constant over time or is able to vary. In order to
choose among the candidate models, the models’ corresponding Akaike information cri-
terion (AIC), Bayesian information criterion (BIC) and Hannan-Quinn criterion (HQ) are
considered. The log likelihood function serves as an input for the AIC, the BIC and the
HQ, and a high log likelihood value leads to lower values for the AIC, the BIC and the HQ.
The log likelihood function is evaluated at the estimated values of the coefficients, assum-
ing normally distributed errors. It is based on the comparison of restricted and unrestricted
versions of an equation.

In EViews, the log likelihood is computed as:

l = −T
2

(1 + log(2π) + log(
ε̂′ε̂

T
)) (5.10)

where T is the number of observations and ε̂ is the residual.
The AIC is a measure of the relative quality of statistical models for a given set of data,

and the preferred model is the one with the lowest AIC value.
The AIC is computed as:

AIC = −2l

T
+

2k

T
(5.11)

where l is the log likelihood and k is the number of estimated parameters in the model.
Bayesian Information Criterion (BIC) is an extension of the AIC that imposes larger

penalty for additional coefficients.
The BIC is given as:

BIC = −2l

T
+
klogT

T
(5.12)

The Hannan-Quinn Criterion (HQ) is an even further extension of the AIC, and em-
ploys yet another penalty function.

The HQ is formulated as:

HQ = −2l

T
+

2klog(log(T ))

T
(5.13)

For each of the candidate models, the AIC, the BIC and the HQ are considered, and a
lower value indicates a better model fit. As the AIC, BIC and HQ values might favor dif-
ferent candidate models, it is important to compare them in order to find the best possible
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fit. With regard to this study, the preferred models for both the NEX and for the SOLRX
have the lowest AIC, BIC and HQ values.

5.3 Testing for residual heteroscedasticity
A widespread belief in the field of economic theory is that volatility clustering is present
only in high-frequency data. The empirical analysis of Jacobsen and Dannenburgb (2003)
does, however, show that the homoscedasticity assumption for monthly stock return series
can be rejected. The same result is obtained when examining shorter time series for low
frequencies. Therefore, in order to avoid volatility clusters in the time series, a stock
market volatility index is added to the state-space model. Contrary to Inchauspe (2011),
who discards the state-space model due to evidence of volatility clustering, we believe
that adding the CBOE Volatility Index (VIX) to the state-space model will allow us to
take advantage of the benefits the state-space approach provides, while at the same time
avoiding the implications of volatility clustering.

The Kalman filter assumes that the market model residuals are Gaussian and ho-
moscedastic, which means that all random variables have the same finite variance and that
no volatility clustering is present. However, there is abundant evidence of unconditional
non-normality and heteroscedasticity in financial time series, as suggested by Bollerslev
et al. (1988), Schwert and Seguin (1990), Ng (1991) and Moonis and Shah (2003), to men-
tion some. If evidence of non-normality or heteroscedasticity is found, one should model
the heteroscedasticity to obtain estimates that are more efficient by using for instance a
modified Kalman filter or a GARCH model. One way to test for residual heteroscedastic-
ity is to conduct the Engle’s ARCH test for univariate residual series. The null hypothesis
of the test is that the series of residuals exhibit no conditional heteroscedasticity (ARCH
effects), against the alternative that the series are described by an ARCH model.

The Engle’s ARCH test is conducted for both renewable stocks and solar stocks in
MATLAB. Five tests, with 1, 2, 3, 4 and 5 lagged terms, are conducted at a 1% and a
5% significance level. As illustrated in Table 7.2 and Table 7.3 in Appendix E, results of
the tests indicate failure to reject the null hypothesis for both the NEX and the SOLRX in
all cases, meaning that there is no evidence of conditional heteroscedasticity in the return
series of the NEX and the SOLRX. A state-space approach using the Kalman filter is
therefore considered appropriate for estimating the drivers of renewable returns and solar
returns.
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Chapter 6

Results

In the following chapter, the results of the study are interpreted and discussed. Model
output for the NEX and the SOLRX is presented, before a detailed comparison of the
estimated alphas and estimated beta coefficients for each factor for both the NEX and the
SOLRX is provided. The model output for both the NEX and the SOLRX exhibits small
variances of the estimated coefficients and large Z-statistics, indicating that the state-space
model is an appropriate estimation technique and that the model is a good fit. Detailed
model output for the analysis for the NEX and for the SOLRX is found in Appendix E.

Note that due to the Kalman filter, it takes a while before the estimated beta coefficients
settle. This period of time is referred to as the burning period of the model. Due to
significant peaks in the first eight estimations, these results are considered invalid and are
ignored in the following analysis.

6.1 Overall model output for the NEX and the SOLRX
According to the information criteria, the best-fitting model for the NEX is the one where
all factors but the VIX are able to vary. The average mean squared error (MSE) using
this model is 8.79E-06, indicating that this model is a very good estimator of the returns
of the NEX. However, there is little variation in the values of the information criteria for
regressions where none or one factor is kept constant. Keeping more than one variable
constant results in very low log likelihood values and very high values for both the AIC,
the BIC and the HQ, and thereby a poor estimation.

Figure 6.1 exhibits the estimated alpha and the estimated beta coefficients from Oc-
tober 2005 to February 2017 where the VIX coefficient is kept constant, while Table 6.1
exhibits the estimation results for the coefficients.
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(a) Estimated alpha (b) Estimated beta coefficient
for the MSCI

(c) Estimated beta coefficient
for the PSE

(d) Estimated beta coefficient
for the VIX

(e) Estimated beta coefficient
for the WTI

Figure 6.1: Alpha and beta coefficients for the MSCI, the PSE, the VIX and the WTI against the
NEX

Table 6.1: Estimation results for the coefficient for the NEX

Coefficient Mean St.Dev.
αt -0.0007 0.0067
βMSCI,t 1.1356 0.3510
βPSE,t 0.3886 0.1873
βV IX 0.0257 -
βWTI,t 0.1761 0.0461

As illustrated in Figure 6.1, the PSE and the MSCI betas influence the NEX returns
to a far greater degree than the VIX and the WTI. Out of the estimated coefficients, the
alpha value exhibits the least variation. The PSE and the MSCI coefficients exhibit an
almost inversely proportional relationship from year 2009, where the MSCI coefficient
increase when the PSE coefficient decrease and vice versa. All coefficients apart from the
alpha seem to stabilize somewhat after December 2009. The development of the respective
coefficients will be discussed in detail later.

According to the information criteria, the best-fitting model for the SOLRX is the one
where both the PSE, the WTI and the VIX is held constant. As opposed to the NEX, there
are substantial differences in the values of the information criteria for the various models.
In general, holding two or more variables constant results in a high log likelihood value
and low criteria values. Thus, keeping several factors constant serves as the best fit for
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the SOLRX. The average MSE using this model is 6.42E-05, suggesting that the quality
of this model is very good. Compared to the average MSE of the best-fitting model for
the NEX, the average MSE of the best-fitting model for the SOLRX is closer to zero. The
model for the SOLRX is thus more accurate than that of the NEX.

(a) Estimated alpha (b) Estimated beta coefficient
for the MSCI

(c) Estimated beta coefficient
for the PSE

(d) Estimated beta coefficient
for the VIX

(e) Estimated beta coefficient
for the WTI

Figure 6.2: Alpha and beta coefficients for the MSCI, the PSE, the VIX and the WTI against the
SOLRX

Figure 6.2 exhibits the estimated alpha and the estimated beta coefficients from Oc-
tober 2005 to February 2017 where the coefficient of the PSE, the VIX and the WTI is
kept constant. Similar to the NEX, the MSCI influences the SOLRX returns significantly.
After December 2009, the value of the MSCI stabilize somewhat. The alpha value, on the
other hand, face a decreasing trend until 2012, before it stabilizes at a negative value of ap-
proximately -0.01. The evolution of the time-varying coefficients will be more thoroughly
examined in the following sections.

Table 6.2: Estimation results for the coefficients for the SOLRX

Coefficient Mean St.Dev.
αt 0.0072 0.0229
βMSCI,t 1.9052 0.2099
βPSE 0.5136 -
βV IX 0.0800 -
βWTI 0.1721 -
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6.2 Dependence structure between the NEX, the SOLRX
and the global stock market (MSCI)

With β̄MSCI,t = 1.14 andCorr(rNEX , rMSCI) = 0.88, the MSCI World Index serves as
the most influential out of the factors that affect the NEX. This is in line with the findings
of Inchauspe et al. (2015), where it is argued that the MSCI coefficient is the most vital
among the beta coefficients. The average impact of the MSCI on the NEX is found by
multiplying the mean beta coefficient by the standard deviation of the MSCI, which is
β̄MSCI ∗ σMSCI = 5.44%. On average, this means that a positive return on the MSCI
index with the magnitude of one standard deviation, or 5.01%, will lead to an expected
5.44% increase on the NEX. The MSCI beta is most influential in the period from early
2006 to mid 2007, where the monthly betas all range over 1.45, with a maximum value of
2.39 in March 2006. The beta has, however, faced an overall decrease for the total sample
period. After the peak in the beginning of 2006, the beta declines to a value of 1.00 in
early 2009. The beta stays around this value until 2017. While Inchauspe et al. (2015)
argue that the beta coefficient increases from late 2006 to 2014, the findings of this study
suggest that the value of beta decreases over the same period. In fact, the estimated beta
coefficient of the MSCI decreases over the entire time period from 2005 to 2017.

As for the NEX, the MSCI has the largest impact on the returns of the SOLRX out of
all the factors in the model. The high correlation between the MSCI and the SOLRX is
illustrated in Table 4.3, with Corr(rSOLRX , rMSCI) = 0.74. The whole-sample mean
of the time-varying beta factor is β̄MSCI,t = 1.91. The beta coefficient of the MSCI
varies between 2.58 and 1.21, implying that it is impacting the SOLRX to a large extent
over the entire sample period. The average impact of a change in the MSCI is given as
β̄MSCI,t ∗σMSCI = 9.99%. A global stock market index such as the MSCI can therefore
be considered a key pricing factor for solar stocks. Aside from a peak in late 2006 and
early 2008, the estimated beta coefficient is relatively stable in the considered sample
period. In late 2006 the beta coefficient reached a peak of 2.58, before it declined to 1.58
during the following year. This observation is in line with the findings of Inchauspe et al.
(2015), which consider the decline as a result of a revision of the pricing strategy of the
renewable energy sector with respect to a major world equity index. The solar sector does,
in this case, seem to follow the general movements of the renewable energy sector. The
estimated beta coefficient experienced a relatively abrupt increase during the first months
of 2008, implying a structural change following the financial crisis. Since mid 2009 the
estimated beta coefficient has been rather stable around 1.80.

The estimated beta coefficient of both the NEX and the SOLRX reached a peak in
2006, with the NEX reaching its maximum value of 2.39 in March 2006 and the SOLRX
reaching its maximum value of 2.58 in August 2006. In the following months, both beta
coefficients decreased, before they both experienced a new high in April 2008. Here,
the beta coefficient for the SOLRX reached a value of 2.53, while the beta coefficient
for the NEX reached a value of 1.36. Both beta coefficients have been relatively stable
since mid 2009. The estimated beta coefficient for the SOLRX stabilizes around 1.80 and
the estimated beta coefficients for the NEX stabilizes around 1.00. Accordingly, both the
NEX and the SOLRX are subject to a significant systematic risk for the sample period.
However, the value of the estimated beta coefficient is generally greater for the SOLRX
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than for the NEX, indicating that the MSCI influence the SOLRX to a larger extent than it
influences the NEX. This observation is supported by the average impact of the MSCI on
the two indices, which is 5.44% for the NEX and 9.99% for the SOLRX. A return on the
MSCI with the magnitude of one standard deviation will thus lead to a twice as big change
in the SOLRX as in the NEX. This finding may be explained by the stock pricing for the
NEX and the SOLRX throughout the sample period. Although the price evolution for both
the NEX and the SOLRX follow the same pattern, the SOLRX has generated returns of a
much greater magnitude than the NEX has during the sample period. This is illustrated by
the squared mean return for both the NEX and the SOLRX throughout the sample period,
which is 0.73% and 2.34%, respectively. As an example, solar stocks were affected by
the global financial crisis in 2007-2008 to a much larger extent than renewable stocks.
The SOLRX experienced a price decrease of 61 percentage points from January 2008 to
December 2008, compared to the NEX which experienced a decrease of 26 percentage
points. During the considered time period, the solar sector has been subject to several
smaller price bubbles, and several solar companies have in turn gone bankrupt (Wesoff,
2013, Ogg, 2013). One possible reason for this relatively high market sensitivity is that
solar companies rely more on government subsidies than the renewable sector as a whole
does. This was illustrated by changes in government energy policy in the UK in 2016,
which led to the loss of more than half of all jobs in the UK solar industry (Macalister,
2016). On the other hand, the NEX includes companies that are less dependent on natural
resources and government subsidies, for instance Tesla (Pressman, 2016).

6.3 Dependence structure between the NEX, the SOLRX
and technology stocks (PSE)

The PSE coefficient is the second most influential out of the factors that affect the NEX.
The average beta coefficient of the PSE is β̄PSE,t = 0.39 during the sample period. Thus,
an average shift of the PSE return would cause a β̄PSE,t∗σPSE = 2.29% shift in the NEX
value, about half of the impact a shift in the MSCI return would cause. The PSE coefficient
is negative from October 2005 to July 2006, but face a solid increase starting in the be-
ginning of 2006. The estimated beta coefficient increases until late 2009, where it reaches
a maximum value of 0.65. The beta coefficient faces a downward trend in the following
years, and ultimately stabilizes at a value of approximately 0.50 from 2014. The correla-
tion coefficient between the returns of the NEX and the PSE is CorrrNEX , rPSE = 0.84.
This is in line with the findings of Henriques and Sadorsky (2008), Kumar et al. (2012),
Sadorsky (2012) and Inchauspe et al. (2015), who argue that there exists a strong corre-
lation between the price of renewable energy stocks and technology stocks. Inchauspe
et al. (2015) suggest that this might be caused by competition for the same inputs between
technology and renewable energy companies.

There is a notable correlation between the monthly returns of the SOLRX and the PSE,
as Corr(rSOLRX , rPSE) = 0.69. In the best-fitting model for the SOLRX, the estimated
beta coefficient of the PSE is constant at βPSE = 0.51, indicating a considerable impact
on the SOLRX excess returns. The impact of a 5.23% change in the PSE is a 2.69%
change in the SOLRX. Thus, a change of 5.23% in the PSE leads to a half as big change
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in the SOLRX. In comparison, a change of 5.01% in the MSCI leads to a twice as big
change in the SOLRX. Even though the PSE affects the returns of the SOLRX, it is to
a smaller degree than the MSCI. Overall, the PSE is the second most influential factor
out of all the factors that affect the SOLRX. When running the state-space model for the
SOLRX with all factors being time-varying and following a random walk, the estimated
beta coefficient varies to a certain degree. The estimated beta coefficient was negative until
mid 2008. Technology stocks did, in other words, underperform relative to solar stocks
before the financial crisis. The estimated beta coefficient started increasing in mid 2008,
and has since the end of 2008 been positive and stable between 0.4 and 1. Thus, it has
been appropriate to view the estimated beta coefficient of the PSE as constant since late
2008.

Technology stocks serve as the second most influential driver of both renewable stocks
and solar stocks. The average impact of a change in the PSE is of approximately the same
magnitude for both the NEX and the SOLRX. In the state-space model for the NEX, the
beta coefficient of the PSE is allowed to vary over time and takes an average value of
0.39. In the state-space model for the SOLRX, the beta coefficient is constant at 0.51. In
conclusion, the PSE has a significant influence on the returns of both renewable stocks and
solar stocks. When allowing the beta coefficient of the PSE to vary in the model for the
SOLRX, the beta coefficient of the PSE is negative until mid 2008. The estimated beta
coefficient of the PSE is negative also for the NEX, although only until mid 2006. The
negative beta coefficients in the beginning of the sample period might be explained by a
challenging market after the bursting of the technology stock market bubble in 2001. It
does, however, seem like the renewable energy sector was able to turn the negative trend
faster than the solar sector. The development of the time-varying estimated beta coefficient
of the PSE is quite similar for both the NEX and the SOLRX, despite the fact that the value
of the beta is higher for the SOLRX than for the NEX. Consequently, solar stocks are more
volatile than renewable stocks relative to technology stocks, which might explain why the
renewable energy sector was able to turn the negative trend following the dot-com bubble
burst in 2001 faster than the solar sector. This is not a surprising result, as one may expect
the solar sector to be less stable than the older and more established renewable sector.

6.4 Dependence structure between the NEX, the SOLRX
and the stock market volatility (VIX)

The estimated beta coefficient of the VIX is constant at βV IX = 0.03, indicating a minor
impact on the returns of the NEX, especially compared to that of the MSCI and the PSE.
On average, the result of a 22.13% change in the VIX will lead to a βV IX ∗σV IX = 0.57%
change in the NEX. This, in addition to the low value of beta, suggests that the VIX has
little or no influence on the NEX. There is a negative correlation between the returns of
the NEX and the VIX, where Corr(rNEX , rV IX) = −0.60. Thus, an increase in the
VIX is associated with a decrease in the NEX. When allowing all of the factors to be
time-varying and follow a random walk, the estimated beta coefficient of the VIX varies
considerably. Then, the whole-sample mean is β̄V IX,t = −0.0008. The beta coefficient
was negative until late 2006, following an upward trend from early 2007. The highest value
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of βV IX,t was observed in May 2008, with the maximum value being 0.06. In mid 2008,
the estimated beta coefficient started decreasing, and provided negative beta values for the
period February 2009 to May 2013. From mid 2014, the beta value has been positive and
slightly increasing, at around 0.02.

There is a notable negative correlation between the SOLRX and the VIX, illustrated in
the correlation matrix as Corr(rSOLRX , rV IX) = −0.47. The estimated beta coefficient
of the VIX is constant at βV IX = 0.08, indicating little or no impact on the SOLRX.
The result of a 22.13% change in the VIX is a βV IX ∗ σV IX = 1.77% change in the
SOLRX. When all factors are time-varying and follow a random walk, the estimated beta
coefficient of the VIX varies between -0.15 and 0.20. The beta coefficient was negative
until late 2005. The estimated beta faced an upward trend from mid 2006 until early 2008,
reaching its maximum value of 0.20 in March 2008. The beta coefficient decreased in the
following months until late 2009, before it started increasing. During the period late 2009
to early 2013, the VIX provided some negative beta returns, indicating underperformance
relative to the other factors included in the model. In February 2013, the beta started
increasing, and has faced an increasing trend since then. The whole-sample mean of the
time-varying beta coefficient is β̄V IX,t = 0.05.

Out of all the factors included in the model, the VIX is the least influential. The
NEX and the SOLRX have significant negative correlations with the VIX. The correlation
between the NEX and the VIX is somewhat stronger than between the SOLRX and the
VIX. The beta coefficient of the VIX is constant both for the NEX and for the SOLRX,
suggesting that no volatility clustering is present in the returns of the NEX and of the
SOLRX. This is not a surprising result, as one would expect sufficient flexibility to achieve
well-distributed residuals with no volatility clusters when using time-varying coefficients.
The beta coefficient of the VIX is greater for the SOLRX than for the NEX. Furthermore,
the average impact of the VIX leads to a 0.57% change in the NEX and a 1.77% change in
the SOLRX, demonstrating that the VIX has a larger impact on the SOLRX than the NEX,
although the impact is of little significance for both renewable stocks and solar stocks.
When the VIX is allowed to vary over time, the estimated beta coefficient for the NEX and
the SOLRX follow the same movements. Overall, the beta coefficient of the VIX is higher
during volatile periods, such as the financial crisis in 2008 and the oil price collapse in
2014. Given that the VIX tracks the stock market volatility, this is not a surprising finding.

6.5 Dependence structure between the NEX, the SOLRX
and oil prices (WTI)

The WTI is the third most influential factor with an average beta of β̄WTI,t = 0.18 and a
correlation coefficient with the NEX of Corr(rNEX , rWTI) = 0.59. The average impact
of a shift in the WTI would cause a 1.72% shift in the NEX, which is 68% lower than the
average impact of a shift in the MSCI and 25% lower than the average impact of a shift
in the PSE. As illustrated in Table 4.1, the standard deviation of the WTI is almost twice
as large as the standard deviations of the MSCI and the PSE. Even though the WTI seems
to have a small impact on the NEX returns based on the average beta, a relatively high
standard deviation leads to an average impact of 1.72%. The estimated beta coefficient of
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the WTI was negative until late 2005, before it faced a steep increase until its maximum
value of 0.25 was reached in February and October 2008. After the peak in October 2008,
the WTI coefficient was rather stable between 0.19 and 0.24 until late 2011. The beta
coefficient then experienced a moderate decrease until February 2017, with a final state
value of 0.15. It is worth noticing that the WTI coefficient was more volatile than usual
after the oil price plummeted during the financial crisis in 2008, but seemed relatively
unaffected by the fall in the oil price in 2014. The development of the WTI coefficient
follows the same pattern as described in Inchauspe et al. (2015), but exhibits an overall
higher estimated WTI coefficient. However, while Inchauspe et al. (2015) find that the
WTI oil price becomes more significant from mid 2005 to 2013 than from 2002 to mid
2005, the findings of this study suggests that the WTI is more significant from 2005 to
2008, and then becomes less significant.

The correlation between the excess returns of the SOLRX and the WTI is
Corr(rSOLRX , rWTI) = 0.49, which is lower than the correlation with both the MSCI
and the PSE. This is in line with the findings of Sadorsky (2012), who finds evidence
that renewables correlate more highly with technology stock prices than with oil prices.
Similar to the PSE, the estimated beta coefficient of the WTI is constant. The value of the
beta coefficient is βWTI = 0.17, indicating a certain effect of oil prices on solar stocks.
When all factors are time-varying and follow a random walk, the value of the estimated
beta coefficient of the WTI varies between -0.14 and 0.49. Similar to the estimated beta
coefficient of the WTI for the NEX, the time-varying estimated beta coefficient of the WTI
for the SOLRX is negative until late 2005. In the following years, the value of the beta
coefficient fluctuates before reaching a maximum value of 0.49 in February 2008. The
estimated beta coefficient faced a downward trend until February 2014. In the following
months the estimated beta coefficient increased, before it started decreasing early 2016. It
seems as if the impact of oil prices on solar stocks increased during the oil price collapse
in 2014, and decreased when the oil price recovered in early 2016. In February 2017, the
value of the estimated beta coefficient was 0.09, almost as low as the minimum value over
the entire sample period, which was 0.07. The whole-sample mean of the time-varying
beta coefficient is β̄WTI,t = 0.22.

Even though the WTI beta coefficient is time-varying in the state-space model for
the NEX and constant in the model for the SOLRX, the values of the coefficients are
approximately the same. Furthermore, the correlation coefficients with both the NEX and
the SOLRX are of considerable strength. The WTI oil price is the third most influential
driver of the returns of both the NEX and the SOLRX, although the effect of oil prices on
renewable stocks and solar stocks is smaller than that of the MSCI and the PSE. The impact
of oil prices on solar stocks increased during the oil price collapse in 2014, and decreased
when the oil price recovered in 2016. The effect of oil prices on renewable stocks was
unchanged during these events. Thus, oil prices seem to have a stronger influence on solar
stocks during volatile periods and a weaker influence during strong market periods.

Unlike Inchauspe et al. (2015), the findings of this study suggest that oil prices have
a decreasing impact on both renewable and solar stocks. There might be several reasons
for this weakening relationship. Energy market dynamics have changed during the 21st

century so that oil and renewables no longer compete in the same markets. While oil is
predominantly used for transport, renewable energy is used mostly to generate electricity.
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As many renewable energy sources cannot be stored, gas may serve as a back-up source of
energy and hence can complement renewable energy sources (Nyquist, 2015). However,
it has been pointed out that solar prices in emerging markets might be more influenced
by oil and gas prices as diesel plays a bigger role in the power supply (Hering, 2014).
This might explain why there is a slightly greater dependency between solar stocks and
oil prices than between renewable stocks and oil prices. Additionally, the economics of
renewables are improving. While most government support schemes remain in place, the
capital, operating and financing costs for renewables have fallen dramatically in recent
years. The competitiveness of renewables is increasing and the science behind renewable
technologies are improving (Nyquist, 2015). These developments have primarily taken
place in recent years and might be a part of the reason why renewable stocks and solar
stocks seemed rather unaffected by the oil price drop in 2014. In general, the extended
time period of this study captures the shift from traditional to alternative energy sources,
the reduced oil prices and the investment and production cuts in the oil and gas sector over
recent years (Biscardini et al., 2017). These developments have seemingly contributed to
the weakening relationship between oil prices and stock returns of the renewable energy
sector and the solar sector.

6.6 Dependence structure between the NEX, the SOLRX
and the alpha

The alpha is often referred to as the excess or abnormal return on an asset. Equilibrium
models, such as the CAPM and multifactor models, estimate the return of an asset. The
abnormal return is the return on the asset in excess of what would be predicted by such
equilibrium models. As a result, an alpha value of zero would indicate that the asset
performs in line with the benchmark index, meaning that no value is neither lost nor added.

In the state-space model for the NEX, the alpha varies through time and takes values
between -0.009 and 0.02. Alpha is positive from late 2005 until mid 2010, indicating
returns in excess of the expected return of the NEX the first five years. The maximum
values of the alpha are observed in October 2005 and January 2008, with values of 0.02
and 0.01. The estimated alpha is rather stable between 0.006 and 0.01 from early 2008 to
early 2009, before it starts decreasing significantly. Since August 2010 investments in the
NEX has provided negative abnormal returns, indicating that the renewable energy sector
underperformed during this time period. The alpha reached a minimum value of -0.009 in
mid 2012, and has been rather stable around -0.006 since then.

Overall, the NEX provides lower abnormal returns after the financial crisis and un-
derperforms in the time period 2010 to 2017. As pointed out by Inchauspe et al. (2015)
and Bohl et al. (2015), there might be several reasons for the underperformance of the
renewable energy sector during this time period. One of the main reasons for the under-
performance is identified as investors reassessing their evaluation of the renewable sector.
The financial crisis led to cut in renewable energy subsidies and uncertainty about govern-
ment policies, which in turn led to concerns regarding further acceleration of the renew-
able energy sector among investors. As pointed out by Sadorsky (2012), there is a high
correlation between the stock prices of renewable energy companies and technology com-
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panies. Thus, in the aftermath of the financial crisis investors might have choosen to invest
in technology stocks over renewable stocks due to less risk and similar characteristics.
Moreover, the gap between innovation, adoption and diffusion of new energy technolo-
gies, the so-called ”Valley of Death”, has made it even more difficult for renewables to
compete with technology stocks (Weyant, 2011). Additionally, factors that influence re-
newable energy policy making, like technological innovation, falling prices and increased
deployment, have shifted severely in recent years in order to keep pace with changing
market conditions. Feed-in tariffs (FITs) have been identified as the main driver of the
European success story to promote renewables in the electricity sector. Since 2015, sev-
eral European countries have implemented a shift from tariff-based instruments like FITs
to quantity-based instruments like tendering schemes. With 28% of the components of
NEX being located in Europe, this might have contributed to the underperformance of
the NEX. Moreover, several countries have started introducing a combination of different
policy types (REN21, 2016). This is the case for large parts of Asia and North America,
which constitutes 39% and 29% of the components of the NEX, respectively. Thus, the
underperformance of the renewable energy sector might also be explained by a shift from
conventional to new and possibly inefficient policies.

In the state-space model for the SOLRX, the alpha varies through time and takes values
between -0.02 and 0.08. The range for the value of the alpha is thus much larger for the
SOLRX than for the NEX. During the first six years of the sample period, the alpha is
positive. The alpha started decreasing in early 2006, before stabilizing somewhat between
2007 and 2009. Between the beginning of 2009 and mid 2013, the index faced a downward
trend. The presence of abnormal returns in the solar sector contradicts the findings of
Schmitz (2009), who finds no abnormal returns in the solar index model. Investments in
the SOLRX provided negative abnormal returns from mid 2011 through the rest of the
time period in consideration. The negative returns are fairly stable around -0.01.

The financial crisis had an adverse effect on the solar sector, as many solar projects to a
large extent are debt financed (Norges Bank Investment Management, 2015). A dramatic
reduction in general availability of loans, in addition to cut in subsidies in big markets
such as Germany and Italy during the financial crisis, made it hard for the solar sector to
compete with cheap and less risky coal-fired power. As a result, the solar sector experi-
enced a global fall in demand. The weakening in demand caused a shakeout where highly
leveraged firms came under stress (Hook, 2011), which in turn had a negative effect across
the entire sector. Moreover, policies have played an important role in the solar sector over
the last decade. Policy makers in China have made considerable efforts to expand the
renewable energy sector. This have affected the performance of the SOLRX to a large ex-
tent, as China constitutes 27% of the components of the SOLRX. China announced its first
nationwide solar FIT in 2011 (Hook, 2011). This was seen as a confirmation of China’s
intent to support the solar industry, and several Chinese solar developers started projects in
anticipation of a good tariff coming through. It is possible that the markets overreacted to
this policy development, leading to an all-time low alpha in 2012. The United States Solar
Investment Tax Credit, which is one of the most important federal policy mechanisms to
support the deployment of solar energy in the U.S., lapsed at the end of 2013 and were re-
instated for only two weeks in December 2014 (Bloomberg New Energy Finance, 2016).
With the United States making up for 20% of the components of the SOLRX, this might
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have contributed to the underperformance of the SOLRX. During the last years, trouble
at two high-profile solar companies and the U.S. presidential election are pointed out by
Trefis Team (2016) as some of the factors contributing to the weak performance of solar
stocks.

The abnormal returns of the NEX and the SOLRX has experienced the same develop-
ment in the time period 2005 to 2017. While the NEX provides positive abnormal returns
the first five years, the SOLRX provides positive abnormal returns the first six years. This
finding differs from the ones of Henriques and Sadorsky (2008), which concludes that vir-
tually no abnormal returns were generated from alternative energy companies. The alpha
is negative from August 2010 for the NEX and from June 2011 for the SOLRX. Compared
to the NEX, the negative returns of the SOLRX occurs approximately a year later and are
of a greater value. Thus, neither the NEX nor the SOLRX recovered from the losses caused
by the financial crisis to the same level as the considered drivers in the model. Further-
more, high abnormal returns were observed between 2007 and 2009 for both the NEX and
the SOLRX. Subsequently, the solar sector seem to experience the same development as
the renewable energy sector. The abnormal returns of the SOLRX is generally of a greater
value than those of the NEX.
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Chapter 7

Conclusions, Limitations and
Further Research

The following chapter presents concluding remarks based on the key findings, limitations
of the study and recommendations for further research.

7.1 Concluding remarks
This study examines four potential drivers of renewable energy returns for the Wilder-
Hill New Energy Global Innovation Index (NEX) and for the Ardour Solar Energy Index
(SOLRX), namely the global stock market (MSCI), technology stocks (PSE), oil prices
(WTI) and the stock market volatility (VIX). In addition, the alpha of the renewable en-
ergy sector and solar sector is examined. A comparison between return dynamics of the
renewable energy sector as a whole (NEX) and the solar sector (SOLRX) is carried out.
Furthermore, this study analyzes the evolution of the estimated alpha and the estimated
beta coefficients in the time period from 2005 to 2017.

This study finds that the MSCI serves as the most influential driver of returns of both
renewable stocks and solar stocks. The MSCI influences solar stocks to a larger extent than
renewable stocks, as a return on the MSCI with the magnitude of one standard deviation
leads to a twice as big change in the SOLRX as in the NEX. While the estimated beta co-
efficient of the MSCI for the SOLRX remains somewhat stable throughout the considered
time period, the estimated beta coefficient of the MSCI for the NEX is nearly halved. The
evolution of the estimated beta coefficients is similar until early 2008, which is when the
beta coefficients of the MSCI for the NEX started decreasing while the beta coefficients
of the MSCI for the SOLRX started increasing. We believe that the high market sensitiv-
ity for the solar sector might be explained by the fact that the solar sector relies more on
government subsidies than the renewable sector as a whole does.

The PSE serves as the second most influential driver of returns of both renewable
stocks and solar stocks. The average impact of a change in the PSE is of approximately
the same magnitude for the NEX and for the SOLRX, indicating that the influence is of the
same extent. Overall, the estimated beta coefficient of the PSE for the SOLRX is higher
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than the estimated beta coefficients of the NEX. The renewable sector was able to turn
the negative trend following the dot-com bubble burst in 2001 faster than the solar sector,
indicating that a shock to technology stocks might have a larger impact on solar stocks
than renewable stocks.

The WTI is the third most influential driver of the returns of renewable stocks and
solar stocks. Oil prices have a significant impact of equal magnitude on both renewable
and solar stocks, although to a smaller degree than the MSCI and the PSE. Oil prices
seem to have a stronger influence on solar stocks during volatile periods, and a weaker
influence during strong market periods. The estimated beta coefficient of the WTI follows
the same pattern as described in Inchauspe et al. (2015), but exhibits an overall higher
value. Unlike Inchauspe et al. (2015), we find that oil prices have had a decreasing impact
on both renewable stocks and solar stocks. The fact that oil and renewables no longer
compete in the same markets, in addition to increased cost competitiveness of renewables
and the ongoing shift from traditional to alternative energy sources, are identified as the
main reasons for this development.

The VIX is the least influential driver of renewable returns and solar returns out of all
the factors included in the model. The VIX has a larger impact on the SOLRX than on the
NEX, although the impact is of little significance for both renewable and solar stocks. The
estimated beta coefficient of the VIX is constant both for the NEX and for the SOLRX,
suggesting that no volatility clustering is present in the returns of the NEX and of the
SOLRX. Overall, the VIX impacts renewable stocks and solar stocks to a larger extent
during volatile periods such as the financial crisis in 2008 and the oil price collapse in
2014.

The alpha of the SOLRX is of greater value than that of the NEX throughout the con-
sidered time period. Thus, greater value was added by investing in the solar sector from
2005 to 2017 compared to investing in the renewable sector as a whole. The renewable
sector has provided negative abnormal returns since mid 2010, while the solar sector has
provided negative abnormal returns since mid 2011. Thus, both the renewable sector and
the solar sector have underperformed the last years. Cuts in renewable energy subsidies,
uncertainty about government policies, strong competition with less insecure technology
stocks and a shift from conventional to new and possibly inefficient policies are identified
as possible reasons for the underperformance of the renewable energy sector as a whole.
The global fall in demand for solar energy in the aftermath of the financial crisis, in addi-
tion to policy alterations in big markets such as China and the United States, might explain
the underperformance of the solar sector.

In conclusion, systematic risk varies over time in the indices representing the renew-
able sector and solar sector. Similar to previous studies, findings of this study suggest a
strong influence of the global stock market (MSCI) and technology stocks (PSE) on re-
newable stocks throughout the considered sample period. Contrary to previous literature,
we find that the influence of oil prices (WTI) is significantly lower, with its influence on
both the renewable sector as a whole and the solar sector decreasing after 2008. The stock
market volatility (VIX) has no significant influence on neither renewable stocks nor solar
stocks. Furthermore, there is evidence for underperformance of the renewable sector as
a whole and the solar sector relative to the considered drivers of returns. Overall, the so-
lar sector seem to follow the same development as the renewable sector as a whole. The
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solar sector is, however, more strongly affected by the global stock market (MSCI) and
technology stocks (PSE) than the renewable sector as a whole.

7.2 Limitations
To date, there is a limited amount of indices comprised of only solar companies. Even
though the SOLRX is considered one of the most recognized indices tracking the solar
sector, analyzing the SOLRX exposes this study to certain shortcomings. The SOLRX
includes only 15 components and two different solar technologies, in comparison to the
MAC Global Solar Energy Stock Index (SUNIDX), which consists of 23 components and
includes all solar technologies and the entire solar value chain. Both indices are geograph-
ically diversified and include components from seven different countries.

The main reason that the SOLRX is chosen over the SUNIDX is that the SOLRX
tracks the solar sector back to 2005, while the SUNIDX was incepted in 2008. Thus,
we would not have been able to analyze the development in the solar sector both before
and after the financial crisis in 2008 when using the SUNIDX. Moreover, it is easier to
discover trends and developments if a longer sample period is applied. Another reason for
choosing the SOLRX is that the data of the SOLRX is available in Datastream, while the
data of the SUNIDX is not. Datastream is one of the most powerful financial time series
databases available, and is a widely recognized and trustworthy source of data. As all data
is gathered from this database, it is considered appropriate to choose a solar index that is
listed in this database as well.

7.3 Further research
A natural extension of this study would be to include other sectors within the renewable
energy sector in the analysis. The wind sector would be especially interesting, as wind is
the second fastest growing technology within the renewable energy sector (IRENA, 2017).
In addition, the wind and solar sector currently hold a leading market share, as they account
for about 90% of 2015 investments in renewable energy (IRENA, 2017). Finding the
drivers of returns for the wind sector would therefore contribute to a greater understanding
of the renewable sector. There is, however, no wind indices with a substantial tracking
history available to date.

Previous studies have suggested that political factors might affect the return of renew-
able energy investments (de Jager and Rathmann, 2008, Bürer and Wüstenhagen, 2009,
Couture and Gagnon, 2010, Masini and Menichetti, 2012, Menichetti and Wüstenhagen,
2012, Bohl et al., 2015), mainly because government policies and regulatory frameworks
create stable and predictable investment environments. Additionally, several authors argue
that successful policies are vital in encouraging investments in renewable energy. More-
over, Norges Bank Investment Management (2015) reveals that policy and overall market
framework instability is perceived by financial investors as the main risk in the devel-
opment phase of renewable energy projects. It would therefore be highly interesting to
examine the impact political factors has on renewable energy returns by including a politi-
cal factor in a multi-factor model. To the best of our knowledge, a model like this does not
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exist. This might be due to the geographical and sector-wise variations in subsidies, which
makes it hard to measure and quantify the impact subsidies and policies has across all lev-
els. One direction for further research would therefore be to examine specific geographical
markets, and then expand to a global comparative study.
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Appendix
7.4 Appendix A
The following appendix will explain the value and price calculations applied in Datas-
tream.

Equity indices

Datastream calculates its own aggregate sector and market price indices, together with
associated aggregations, such as sector, price/earnings ratio (PE) and dividend yield (DY).
Price Index is the default datatype for equity indices in Datastream and the index value is
calculated as follows:

I0 = index value at base date = 100 (7.1)

It = It−1 ∗

n∑
1

(Pt ∗Nt)

n∑
1

(Pt−1 ∗Nt−1 ∗ f)

(7.2)

where
It = index value at day 1
It−1 = index value on previous working day (of t)
Pt = unadjusted share price on day t
Pt−1 = unadjusted share price on previous working day (of t)
Nt = number of shares in isssue on day t
f = adjustment factor for a capital action occuring on day t
n = number of constituents in index

Commodities

Datastream obtains its commodity price by using the Price (adjusted). This is the price
issued by an exchange or a third party.

Interest rates

The Total Return Index is the chosen method of calculating interest rates. The Total Return
Index is the return on investment, including interest payments, as well as appreciation or
depreciation in the price of the bond and is calculated as follows:

RIt = RIt−1 ∗
Pt +At +NCt + CPt
Pt−1 +At−1 +NCt−1

(7.3)
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where
RIt = return for index on day t
RIt−1 = return for index on day t− 1
Pt = unadjusted share price on day t
Pt−1 = unadjusted share price on previous working day (of t)
At = appreciation on day t
At−1 = appreciation on previous working day (of t)
NCt = depreciation on day t
NCt−1 = depreciation on previous working day (of t)
CPt = coupon price on day t

7.5 Appendix B
The formula used to calculate the annual percentage yield, which in turn is used to calcu-
late monthly excess return, is presented in the following appendix. In addition, the formula
used to calculate the direct beta is given.

Annual percentage yield

The annualized yields for T-bills are converted to monthly yield by using the annual per-
centage yield (APY) formula:

APY = (1 + periodic rate)#periods − 1 (7.4)

Direct beta

The beta value of a stock is given as:

β = Corr(rm, ri) ∗
σi
σm

(7.5)

where
Corr(rm, ri) = the correlation between the market, m, and the investment, i
σi = is the standard deviation of the returns of i
σm = is the standard deviation of the returns of m

This value is referred to as the direct beta in Table 4.1.
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7.6 Appendix C
The results for the Chow tests are presented below. All tests are run with yearly break-
points (11 breakpoints in total).

Table 7.1: Chow F values for monthly data

Chow value, NEX Chow value, SOLRX
MSCI 2.068203 1.904375
PSE 2.666055 2.563796
VIX 3.668723 2.892417
WTI 2.12233 1.757508

7.7 Appendix D
The following appendix presents the results from the Engle’s ARCH test conducted in
MATLAB.

Table 7.2: Results from the Engle’s ARCH test for the NEX

# Lags 1 2 3 4 5
α = 0.01
h 0 0 0 0 0
p-value 0.9287 0.9918 0.9837 0.5509 0.1862
Test statistics 0.008 0.0164 0.1607 3.0414 7.4979
Critical value 6.6349 9.2103 11.3449 13.2767 15.0863
α = 0.05
h 0 0 0 0 0
p-value 0.9287 0.9918 0.9837 0.5509 0.1862
Test statistics 0.008 0.0164 0.1607 3.0414 7.4979
Critical value 3.8415 5.9915 7.8147 9.4877 11.0705

Table 7.3: Results from the Engle’s ARCH test for the SOLRX

# Lags 1 2 3 4 5
α = 0.01
h 0 0 0 0 0
p-value 0.4402 0.3787 0.2989 0.4359 0.3443
Test statistics 0.5958 1.9421 3.6735 3.7849 5.6261
Critical value 6.6349 9.2103 11.3449 13.2767 15.0863
α = 0.05
h 0 0 0 0 0
p-value 0.4402 0.3787 0.2989 0.4359 0.3443
Test statistics 0.5958 1.9421 3.6735 3.7849 5.6261
Critical value 3.8415 5.9915 7.8147 9.4877 11.0705
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7.8 Appendix E
The following appendix presents the model output for the state-space model.

Table 7.4: Estimation results for the time-varying coefficients for the NEX

Variable Final State Z-statistic Probability
αt -0.0066 -2.0342 0.0419
βMSCI,t 0.9731 5.9869 0.0000
βPSE,t 0.4766 3.2223 0.0013
βWTI,t 0.1445 3.8140 0.0001

Table 7.5: Estimation results for the time-varying coefficients for the SOLRX

Variable Final State Z-statistic Probability
αt -0.0158 -1.8762 0.0606
βMSCI,t 1.8324 10.8372 0.0000

Table 7.6: Variances for fixed estimates for the NEX

Variance Value
σ̂2
ε 0.0014

σ̂2
τα 0.0000
σ̂2
τPSE 5.87E-48
σ̂2
τMSCI 4.54E-14
σ̂2
τWTI 3.55E-51

Table 7.7: Variances for fixed estimates for the SOLRX

Variance Value
σ̂2
ε 0.0103

σ̂2
τα 2.72E-35
σ̂2
τMSCI 3.1E-255

Table 7.8: Values for the information criteria and for the log likelihood for the NEX when the VIX
is constant

Criterion Value
Log likelihood 229.2508
Akaike info. criterion -3.079322
Bayesian info. criterion -3.079322
Hannan-Quinn criterion -2.956147
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Table 7.9: Values for the information criteria and for the log likelihood for the SOLRX when the
PSE, the VIX and the WTI are constant

Criterion Value
Log likelihood 106.4604
Akaike info. criterion -1.385661
Bayesian info. criterion -1.262485
Hannan-Quinn criterion -1.33561
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