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Abstract

A feasibility study of inverting for CO2 elastic properties using a model based AVO inversion is carried out. We use principal 
component analysis on a set of PP reflection coefficients to calculate an optimal basis function for the AVO response of the CO2

plume. The method is applied to the marine seismic data recorded on the CO2 storage site at Sleipner to map the extent of CO2

plume, and provide an estimate of the seismic contrast parameters. Appropriate elastic properties and their variabilities are 
derived from log data, advanced rock physics models, and error propagation analysis. The sensitivity tests show that it is difficult 
to discriminate between high CO2 saturations. We finally obtain high-resolution images of impedance contrasts we aim to use as   
a priori constraints for high-resolution tomography after background trend convolution.
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1. Introduction

Underground CO2 storage is nowadays considered as a viable technique to mitigate the effect of greenhouse gas 
emissions. At the Sleipner CO2 storage pilot in the North Sea, 1 million tons of CO2 per year have been injected 
since 1996 into the Utsira formation, which is located at an approximate depth of 1000 m. To monitor the behavior 
of the CO2 plume in time, 3D seismic surveys have been shot since 1994 making Sleipner a very interesting pilot test 
to assess safety of such underground storage. In addition to seismic, various other geophysical techniques are
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commonly used for monitoring CO2 migration in underground storage sites. Chadwick and Eiken [10] give an
overview of the different monitoring techniques deployed at Sleipner, with 2D-3D multi-channel marine seismic 
acquisition, Controlled-Source ElectroMagnetic (CSEM), seabed gravity, being the most prominent ones. From the 
aforementioned methods, seismic methods are well known to give the highest resolution to track CO2 plume 
migration.

The CO2 is injected to the Utsira formation, which consists of weakly consolidated sandstone with interlayered 
shale beds. Even if the seismic signature of CO2 bearing sand layers are clearly visible on migrated data [2], these 
thin shales layers make the wave propagation complex and consequently the seismic response difficult to interpret 
quantitatively. They can also be at the origin of complex poroelastic effects due to the supercritical phase of the 
injected CO2 [25, 7]. Time-lapse data analysis shows an increase of reflectivity due to the sharp elastic contrasts
between overburden shale layers and CO2-brine saturated sands. Using time-lapse effects like the 4D time-shift and 
4D amplitude changes in the pre-stack data from Sleipner, Ghaderi and Landrø [15] introduced an inversion scheme 
able to simultaneously give a quantitative estimate of the velocity and thickness changes for single thin CO2-layers.
Other qualitative studies have been carried out: Furre et al. [14] derived thickness estimates based on attributes 
analysis (time shifts and amplitudes) while Williams and Chadwick [31] focus on the thin-layer tuning effect 
quantification using frequency spectral decomposition method. Several authors [22, 24] applied Full Waveform 
Inversion (FWI) to derive highly resolved quantitative estimates of wave velocities but were limited by the lack of 
low frequencies in the data and the limited available offset (maximum offset of 1.8 km).

In this context, Amplitude Versus Offset (AVO) based analysis seems to be a valuable technique for monitoring
the CO2 storage processes [5], even if it is shown that the interpretation is difficult due to tuning effects in thin 
layers. Ravazzoli and Gomez [23] give an overview of AVO attribute sensitivity as a function CO2 saturation, effect 
of thin layer accumulations and the behaviour of the reflectivity as function of saturation, frequency and thickness 
for normal incidence. Li et al. [19] use the frequency dependent AVO attribute on synthetic data to provide an 
inversion scheme giving quantitative measure of the dispersion anomalies caused by CO2. Some preliminary works 
have also been presented by Buddensiek et al. [6, 9] with a focus on the discrimination of layer thickness effects in
the AVO response. Due to the strong tuning effects related to thin interlayers reflections, conventional Zoeppritz-
based methods usually fails in such environment. Buddensiek et al. [6] proposed to use constrained AVO inversion, 
based on the computation of optimal basis functions [8].

This paper will present a systematic study of optimal AVO analysis applied to the Sleipner data. In a first stage, 
we introduce the data and the methodology of constrained AVO.  We then evaluate the sensitivity of optimal AVO 
attributes to CO2 saturation on a simple two-layer case. In a third stage, we present and discuss the results of 
application of the AVO analysis workflow to the selected real data vintage.

2. Data and method

2.1. Seismic dataset: 2D line 2008 vintage

For this study, a 2D dataset has been extracted from the 2008 3D pre-stack time migrated cube. A common 
processing workflow was derived to process baseline and repeat dataset in order to prepare data for time-lapse 
studies. The main steps in the processing workflow consist of:

- Low cut filter (6Hz (24dB/oct)
- Deterministic zero-phase conversion using far field signature
- 2 pass swell noise attenuation
- Tidal static and gun and cable static correction
- Gap deconvolution in the Tau-p domain
- Phase, time and amplitude match to baseline survey data
- Data binning to match baseline survey
- Fold normalization using Tau-p interpolation
- Migration velocity analysis
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The provided dataset are cropped in time and offset, with a maximum offset of 1900m. The final full offset stack 
corresponding to the extracted dataset is shown in Fig. 1.

2.2. Rock physics properties in Sleipner Utsira sandstone derived from log data

Utsira reservoir formation is a weakly consolidated 
sandstone located between 800 and 1100 m deep 
around Sleipner. Even if the sand is quite 
homogeneous, it contains thin interlayered shales, 
typically 1 to 2 m thick. The CO2 is injected in a 
supercritical state near the bottom of the sand 
reservoir. Elastic properties of overburden shales, 
brine-saturated Utsira sand and interlayered shales are 
derived from sonic and density well log data (injection 
well, see Fig. 2). The S-wave velocity is calculated 
from sonic P-wave velocity via the empirical Vernik 
relation [29]. Computing mean and standard deviations 
values for each of lithologies (overburden shales, 
Utsira brine sands and interlayered shales) allow to 
describe a set of reference models used in the AVO 
modelling. It is worth mentioning that the potential 
dispersion of seismic waves between sonic and surface 
seismic data is neglected. This assumption can be 

discussed but it is shown that brine saturated sands 
have a low dispersion in normal settings [20].

While the elastic properties of baseline lithologies (shales and brine sands) and their variabilities are described by 
log data (see Fig. 2), the elastic properties of sands partially saturated with brine and supercritical CO2 are calculated 
using an appropriate rock physics model. As a first order realistic approximation, an effective fluid phase theory is 
used to compute effective average fluid properties of the mix of supercritical CO2 and brine. The effective properties 
(bulk modulus Kf f) of the fluid phase are then plugged into the poroelastic Biot theory 
[12]. Using this effective fluid phase theory, the assumption is that the saturation is uniform, at least at the seismic 
scale, i.e. that the fluid gradient equilibrations are the same for both fluid phases (no patches). The bulk density of 

Fig. 1. Inline 1838 crossing the injection point, extracted from (a) the baseline 3D time migrated cubes shot in 1994 and (b) 2008 repeat survey 
(Courtesy of Statoil).

Fig. 2. Logs from the injection well at Utsira. (Courtesy of Statoil). From 
left to right: Lithology from Vshale, gamma ray, density, sonic P-wave

velocity and derived S-wave velocity from [Vernik et al., 2002] relation.
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f can be computed with Voigt average [30] with respect to brine saturation Sw w,
CO2 saturation SCO2 and CO2 CO2:= + . (1)

The effective bulk modulus Kf is derived using the Brie average [4] from brine bulk modulus Kw and CO2 bulk 
modulus KCO2, with exponent e equal to 5 [7]:= ( ) + . (2)

In accordance with Carcione et al. [7] ted with Teja and Rice formula [27]
w and CO2 CO2 as:

=   . (3)

These three effective fluid properties are then combined with rock frame properties using the Biot-Gassmann 
theory extended with Johnson-Koplik-Dashen (JKD) model [18, 21]. The elastic properties (P-wave velocity VP, S-
wave velocity VS

=  /
, (4)

= , (5)

= (1 ) + . (6)

= , = + . (7)

The velocities are finally expressed with four mechanical terms (undrained bulk modulus KU, shear modulus G, 
f and flow 

t derived in the JKD model). These seven terms are dependent on several microscale properties 
[11]: grains properties (bulk modulus Ks, shear modulus Gs s

permeability k0, dry bulk modulus KD, dry shear modulus GD, cementation factor m) and fluids properties (brine 
bulk modulus Kw, CO2 bulk modulus KCO2 w, CO2 CO2 w and CO2 density 

CO2).

2.3. Constrained AVO analysis

For conventional AVO analysis, the AVO responses are approximated by linear trigonometric functions of offset 
or angle. These are the linearized approximations, for instance Aki and Richards [1], of the exact expressions of 
plane-wave reflection coefficients (Zoeppritz equations [32]) to describe amplitude variation with offset curves. 
These approximations are strictly only valid for small seismic parameter changes across reflectors or small incident 
angles. Causse et al. [8] present a method for deriving linear AVO approximations from modelled AVO curves. For 
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this purpose a priori information, e.g. from well log data, is integrated to define a most accurate AVO 
approximation model for the special geological situation of interest. This is a statistical method and the modelled 
reflection coefficients should contain, and thereby constrain, the natural variability possible in the system. The AVO 
responses are then modelled for a set of defined reflector classes which are based on prior knowledge of lithologies 

. Then 
singular value decomposition of the reference curves is applied to yield:

1 1 2 2 3 3( ) ( ) ( ) ...R c f c f c f (8)

In equation (8), f1, f2,... are basis functions, and C1, C2,... are coefficients parameterizing the equation. The 
modelled reflection coefficients are computed for different sets of contrast triplets taking into account the level 
uncertainties in the parameters used. Attributes of the real data are obtained by fitting the prestack amplitudes by 
least-square fitting to equation (8). The estimated attributes are then calibrated before used for a classification. The 
calibration is performed in an area of the data where one or several specific classes are expected to be found. A 
scaling factor is extracted from this area and applied to the attribute sections so that the estimated attributes can be 
compared with the modelled attributes for classification. In the sensitivity tests of part 3, we compare the results 
with the well-known Ursin-Dahl approximation [28]
attributes (intercept R0, gradient G and curvature A3) as:( ) + sin + sin tan . (9)

This three "conventional" attributes can be approximated [1] from the elastic velocities VP and VS, from the 
P S Pm, VSm m as:= + , (10)

= 2 2 + , (11)

= . (12)

Smith and Gidlow [26] proposed another approximation based on impedances contrasts as = and =
:( ) + tan 4 sin + 2 sin tan , (13)

IPm, ISm m being the arithmetic averages of the values above and below the interface. These two linearized 
approximations will be used to convert the AVO attributes in elastic and impedances contrasts for the Sleipner data 
case.

3. Discrimination of CO2 saturations using optimal AVO attributes

3.1. Test case and rock physics properties

The Utsira sand reservoir properties are described in Tab. 1 and have been extracted from various authors [13, 3,
14, 16, 15]. As the rock grains are not purely quartz, the effective grains properties are computed with Hashin-
Shtrikman formulas [17] taking into account the relative proportions of quartz, calcite, feldspar, albite, aragonite, 
muscovite and biotite. Each property is given with a relative uncertainty which has been calculated considering the 
uncertainties in measurements (well data versus lab measurements for example). Due to uncertainties related to 
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pressure and temperature in the reservoir, the uncertainties related to CO2 properties are greater than uncertainties on 
other parameters [15]. An error propagation method is then used to calculate the related uncertainties on P- and S-
wave velocities. Fig. 3 gives the elastic properties for different values of CO2 saturations. P-wave velocity drops 
down quickly when few percent of CO2 is replacing the brine and stay relatively constant for CO2 saturations greater 
than 50 %. S-wave velocities and bulk density have a linear behavior, VS increases with SCO2

S-wave velocity variations are small as the fluid dependence of VS is only contained in the density term (shear 
modulus independent of fluid properties).

     Table 1. Utsira sand parameters and brine and CO2 properties and their associated uncertainties.

Properties Parameter Value Uncertainty

Grain Ks (GPa) 39.3 3.6
Gs (GPa) 44.8 1.8

s (kg/m3) 2664 0.1

Frame KD (GPa) 2.56 3

GD (GPa) 8.5 3

k0 (m2) 2 10-12 75

m 1 25

0.37 6.75

Brine Kw (GPa) 2.31 3.24

w (kg/m3) 1030 1.94

w (Pa.s) 0.00069 1.5

CO2 KCO2 (GPa) 0.08 53

CO2 (kg/m3) 700 11

CO2 (Pa.s) 0.00006 17

Fig. 3. (a) P-wave velocity VP, (b) S-wave velocity VS 2 saturation. The uncertainty related to 1, 2, 5, 20, 60, 
80 and 95 % of CO2 saturation are given by the black dots. 

In order to discriminate between CO2 saturations in different AVO attributes spaces, we define a simple two-
layer model with shales at the top and brine/CO2 sands at the bottom. We compute the theoretical PP reflection 
response with Zoeppritz equations [32] and we invert it using Aki-Richards approximation [1] and optimal AVO 
basis. The AVO models are defined as follow:

- the shales (overburden and intralayer) and brine sands properties are derived from log data (Fig. 2) and the 
"natural" variability of log data allows to compute elastic properties mean and standard deviation values (as 
well as correlation between VP, VS
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- The CO2 sands elastic properties are computed using the rock physics model defined in part 2.2 and taking 
into account the uncertainties to calculate the associated standard deviation. Four different CO2 saturation 
cases are computed: 5, 20, 80 and 95 %.

- For each lithology (shales, brine sands, four CO2 sands), 25 random models are computed using a Gaussian 
distribution (based on mean and standard deviation values for each lithology).

3.2. Sensitivity tests for discriminating CO2 saturations on AVO attributes.

Fig. 5. Crossplots of AVO attributes (optimal AVO coefficients C1, C2 and C3, conventional AVO coefficients R0 (intercept), G (gradient) and A3

(curvature)) for a reflection between shales and CO2 sands with different saturations (5, 20, 80 and 95 %). (a) C1 vs. C2, (b) C1 vs. C3, (c) C2 vs. 
C3, (d) R0 vs. G, (e) R0 vs. A3 and (f) G vs. A3.

Fig. 5 show the crossplots of optimal coefficients C1, C2 and C3 and the crossplots of back-projected conventional 
AVO coefficients R0, G and A3 for a simple two layers model with a shale layer above and a CO2 sand layer below 
with four different CO2 saturations. It is easy to discriminate between 5, 20 and 80/95 % saturations on the Ci

coefficients crossplots, especially on C1-C3 crossplot. 80 and 95 % CO2 saturation are mixed up. R0-G crossplot 
allows also to discriminate between low and high saturations but it is more difficult on R0-A3 crossplot. Globally, 
the optimal AVO coefficients are better for discriminating the CO2 saturations.

4. AVO analysis of Sleipner data

The PSTM 2008 section (Fig. 1) is inverted using an optimal AVO workflow. The log data (Fig. 2) and the rock 
physics model are used to define a set of reflections between overburden shales, intralayer shales, brine sands and 
CO2-brine sands with various saturations. Three basis functions are computed based on the set of AVO models and 
the data are fitted with them to derive optimal AVO coefficients Ci (Fig. 6). As the optimal AVO workflow is based 
on Principal Component Analysis (PCA), the first coefficient C1 gathers most of the contribution. Second and 
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especially third coefficients are noisier, which is logical because C2 and C3 have less and less contribution. The 
optimal coefficients are then back-projected in the conventional AVO space (R0, G, A3) and calibrated [8]. We see 
in Fig. 6 that the intercept and gradient coefficients are less noisy than curvature. It is worth noting the strong 
amplitudes due to CO2 partial saturation accumulating at the top of Utsira layers.

The AVO attributes are then converted to elastic and impedances contrasts via Ursin and Dahl [28] and Smith 
and Gidlow [26] approximations (equations 9 and 13). Fig. 7 shows that the impedance contrasts parametrization is 
better than velocity contrasts parametrization. The P- and S-wave velocity contrasts are of poor quality while P- and 
S-waves impedance contrasts give a high-resolution quantitative estimation of reflected events.

Fig. 6. Optimal AVO attributes derived from Sleipner data. (a) C1, (b) C2, (c) C3, and back-projected conventional AVO attributes (d) R0, (e) G 
and (f) A3.

P/VPm S/VSm m P/IPm, (e) 
S/ISm m.

5. Conclusion 

Based on log data and advanced rock physics models to define appropriate elastic properties of Utsira and 
overburden layers, we have tested constrained AVO approach on Sleipner data. First, the sensitivity tests performed 
on simple two-layer models showed that the discrimination between high CO2 saturations is not possible. Secondly, 
the application of the optimal AVO inversion to a PSTM section of 2008 Sleipner dataset show that we are able to 
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derive high-resolution impedance contrasts through the AVO workflow while elastic contrasts results are of poor 
quality.

The extension of this work will focus on considering more complex saturation distribution (especially patchy 
saturation), on determining the best way to take into account the tuning effect of thin layers using synthetic zero-
offset reflection response tests and on deriving absolute impedance and elastic properties by convolution with 
appropriate low frequency background trends. The final goal consists in using the high-resolution absolute elastic 
properties derived from optimal AVO as a priori to constrain high-resolution imaging.
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