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Abstract 22 

In an era of rapid climate change there is a pressing need to understand how organisms will cope 23 

with faster and less predictable variation in environmental conditions. Here we develop a 24 

unifying model that predicts evolutionary responses to environmentally driven fluctuating 25 

selection, and use this theoretical framework to explore the potential consequences of altered 26 

environmental cycles. We first show that the parameter space determined by different 27 

combinations of predictability and timescale of environmental variation is partitioned into 28 

distinct regions where a single mode of response (reversible phenotypic plasticity, irreversible 29 

phenotypic plasticity, bet-hedging, or adaptive tracking) has a clear selective advantage over all 30 

others. We then demonstrate that although significant environmental changes within these 31 

regions can be accommodated by evolution, most changes that involve transitions between 32 

regions result in rapid population collapse and often extinction. Thus, the boundaries between 33 

response mode regions in our model correspond to ‘evolutionary tipping points’ where even 34 

minor changes in environmental parameters can have dramatic and disproportionate 35 

consequences on population viability. Finally, we discuss how different life histories and genetic 36 

architectures may influence the location of tipping points in parameter space and the likelihood 37 

of extinction during such transitions. These insights can help identify and address some of the 38 

cryptic threats to natural populations that are likely to result from any natural or human-induced 39 

change in environmental conditions. They also demonstrate the potential value of evolutionary 40 

thinking in the study of global climate change. 41 

 42 
43 



Significance statement: Environmental variation is becoming more frequent and unpredictable 44 

as a consequence of climate change, yet we currently lack the tools to evaluate the extent to 45 

which organisms may adapt to this phenomenon. Here we develop a model that explores these 46 

issues and use it to study how changes in the timescale and predictability of environmental 47 

variation may ultimately affect population viability. Our model indicates that although 48 

populations can often cope with fairly large changes in these environmental parameters, on 49 

occasion they will collapse abruptly and go extinct. We characterize the conditions under which 50 

these ‘evolutionary tipping points’ occur and discuss how vulnerability to such cryptic threats 51 

may depend on the genetic architecture and life history of the organisms involved. 52 

 53 

/body 54 

Introduction  55 

Understanding how organisms cope with and adapt to changes in their environments is a central 56 

theme in evolutionary ecology (1). However, we currently lack the tools to predict the most 57 

likely evolutionary responses to changes in environmental conditions (see (2)), including those 58 

currently experienced through global change (3, 4). Evolutionary responses to within- and 59 

among-year fluctuation in ecological parameters like ambient temperature or precipitation can be 60 

highly informative about the process of adaptation to environmental change, as well as about the 61 

potential consequences of the recently accelerated rates of environmental change and the 62 

associated increase in climatic variability and unpredictability (5-8). Earlier work indicates that 63 

some organisms face environmental uncertainty by hedging their bets with a strategy that 64 

minimizes fitness variance across all possible environmental conditions (conservative bet-65 



hedging (9)), while others have evolved a mix of strategies to take advantage of alternative 66 

environmental scenarios in a probabilistic fashion (diversification bet-hedging (9)). In still other 67 

cases, organisms cope with environmental variation through phenotypic plasticity, which is the 68 

ability to respond to environmental cues through the adjustment of genotypic expression either 69 

during early development (irreversible or developmental plasticity (10)) or throughout life 70 

(reversible plasticity (11)). Finally, environmental variation is also known to result in correlated 71 

variation in mean population traits, as natural selection favors different phenotypes over 72 

evolutionary time (adaptive tracking (12)). Although an increasing amount of attention has been 73 

recently devoted to the conditions that promote these different forms of evolutionary response to 74 

environmental variation (hereafter ‘response modes’) (2, 9, 13-18), most studies have considered 75 

only one or a small subset of response modes (16, 17), and few have explored the general 76 

conditions under which one (or more) may be selected above the others (2, 18). Addressing these 77 

issues will be critical for improving our ability to predict whether and how populations will adapt 78 

to both natural and human-induced environmental change. 79 

 Here we develop a theoretical model that considers the joint evolution of a 80 

comprehensive range of evolutionary responses to environmental variation. Although we 81 

illustrate our model by exploring the effects of temperature, the principles we describe apply to 82 

other naturally fluctuating environmental variables (e.g., precipitation). We use the term 83 

‘insulation’, I, as a broad descriptor of morphological (e.g., coat thickness (19)), behavioral (e.g., 84 

huddling), or physiological (e.g., sweating) characteristics that help counter thermal stress. To 85 

investigate the dynamics of adaptation to environmental variation, we use individual-based 86 

evolutionary simulations in which the pattern of variation in genotypic expression across a range 87 

of environmental conditions (i.e., the reaction norm of the genotype (14)) is assumed to be 88 



heritable and subject to mutation and natural selection. We begin by testing the consistency of 89 

evolutionary response to different types of environmental change and then use this general 90 

framework to explore how systems react to disruption in the nature of environmental oscillations. 91 

A non-technical description of how our model can inform issues related to global change is 92 

included in the SI text. 93 

 94 

Results 95 

Environmental variation includes both deterministic (i.e., climate) and stochastic (i.e., weather) 96 

components. For example, temperatures oscillate deterministically from cold winters to hot 97 

summers, but the actual values experienced in a given day vary stochastically from the 98 

seasonally expected average. We modeled these components as  99 

( )sin 2 /tE A t LR B= ⋅ π + ⋅ε , 100 

where t is time, L is the number of time steps per generation (i.e., lifespan), R is the relative 101 

timescale of environmental variation (i.e., number of generations per environmental cycle), ε is a 102 

stochastic error term, and A and B are scaling constants reflecting the relative importance of 103 

deterministic and stochastic factors. This equation describes a simple sinusoidal oscillation in 104 

environmental conditions when R is intermediate or small, and approximates a slow directional 105 

change when R is very large. Because R is a relative metric, the findings presented below are 106 

easily applicable to organisms with different lifespans. 107 

In nature, changes in environmental conditions are often preceded by correlated changes 108 

in photoperiod, barometric pressure, or other environmental cues. For example, day length 109 

variation tends to be well correlated with seasonal temperature variation in temperate regions. 110 

Thus, we model the predictability of environmental conditions, P, by altering the degree to 111 



which an environmental cue, C, is correlated with future temperature values (see SI text and Fig. 112 

S1). When temperatures and cues are perfectly correlated, the environment is completely 113 

predictable, P = 1, and when they are not correlated at all, it is completely unpredictable, P = 0. 114 

In the simulations presented here, cues are provided to individuals prior to experiencing any 115 

changes in their environment (see Methods). 116 

Simulation runs in our model proceed in discrete time steps with non-overlapping 117 

generations and individual lifespans of L = 5 time steps. Individuals possess seven genetic traits 118 

– loci h, s, a, I0 , !I0 , b and !b – that determine the amount of insulation to be produced under 119 

different environmental cues. Every genotype specifies two different reaction norms: one 120 

encoded by I0  and b , and another one encoded by !I0  and !b . Loci I0 and !I0  determine baseline 121 

degrees of insulation whereas loci b and !b  determine the degree to which insulation is made 122 

dependent on environmental cues.  Each individual in our model expresses only one of these 123 

reaction norms through life: the one based on I0 and b is chosen at birth with probability h, 124 

whereas the one based on !I0  and !b  is chosen with probability 1-h. In practice, this implies that 125 

locus h enables individuals with the same genotype to respond to environmental variation in two 126 

completely different ways (as in diversifying bet-hedging). Locus s is a genetic switch that 127 

determines whether the organism makes its insulation dependent on environmental cues (i.e., 128 

whether it allows for phenotypic plasticity; s > 0.5) or not (s ≤ 0.5). Non-plastic individuals 129 

ignore environmental cues and exhibit a fixed insulation phenotype encoded by the baseline loci 130 

I0  or !I0 . Plastic individuals adjust their insulation phenotypes, I, to the environmental cues they 131 

perceive using linear norms of reaction such that, I = I0 + b ⋅C  or I = !I0 + !b ⋅C . Locus a 132 

determines whether this cue-dependence is only happening during ontogeny (irreversible or 133 

developmental plasticity) or also throughout the individual’s lifetime (reversible phenotypic 134 



plasticity). In practice, this means that individuals with a = 0 respond to environmental cues only 135 

during development—and therefore exhibit a single phenotype throughout life — whereas those 136 

with a > 0, alter their phenotypes with probability a at each time step after development. As in 137 

earlier studies (14), we assume that phenotypic plasticity is costly both during and after 138 

development. Thus, plastic individuals pay a one-time developmental cost, kd, and each 139 

phenotypic adjustment after development is assumed to incur in an additional cost of ka. 140 

To establish a baseline for comparison, we began by evaluating the effects of 141 

environments with a constant temperature. As expected, this simple scenario led to the evolution 142 

of non-plastic insulation strategies with a mean population value that approximately matched the 143 

temperature experienced. We then considered completely stochastic environments (A = 0 and B 144 

= 1), where individuals had no information about the potential state of the environment (P = 0). 145 

Under these conditions, populations evolved to ignore uninformative cues, producing instead a 146 

fixed phenotype at the average environmental condition (I = 0, Fig. 1A). In contrast, when we 147 

allowed these same stochastic environments to be completely predictable (P = 1), the resulting 148 

reaction norms led to insulation levels that varied with the intensity of environmental cues (Fig. 149 

1B). In completely deterministic environments (A = 1 and B = 0) with rapid environmental 150 

variation (log R = 0), we observed that phenotypic plasticity also evolved only when individuals 151 

were able to anticipate environmental changes (Figs. 1C and 1D). This result highlights a key 152 

aspect of adaptation to environmental change: the way in which environments vary (i.e., whether 153 

the pattern of environmental oscillations appears to be stochastic or deterministic) is less 154 

important to evolution than the degree to which individuals can anticipate the future state of the 155 

environment (21). Thus, the remaining simulations focus on the effects of predictability of 156 

environmental variation and assume, for simplicity, that A = 1 and B = 0 (see SI text). 157 



We proceeded to explore evolutionary outcomes at different predictability levels and 158 

across a comprehensive range of timescales of variation (Fig. 2). For each set of conditions, we 159 

performed 100 replicated simulations. Each subplot in Fig. 2A depicts the 100 evolved mean 160 

reaction norms at generation 50,000 (e.g., I = b ⋅C + I0 , where b  and I0  correspond to the mean 161 

population values for b and I0). Overall, we find that evolution results in remarkably consistent 162 

outcomes for the majority of parameter combinations (Fig. 2A, SI text and Fig. S2) and that 163 

different response modes occur largely in non-overlapping regions of parameter space (Fig. 2B, 164 

Table S1, SI Text and Fig. S3). These findings are robust to the implementation of density- and 165 

frequency-dependent selection, as well as to alternative coding schemes for genotype-to-166 

phenotype mapping (SI text and Fig. S4). In cases where environmental variation within a 167 

generation is both predictable and fast (P is large, R is small; upper left corner of Fig. 2B), each 168 

subplot in Fig. 2A shows a single cluster of reaction norms. This indicates that (i) similar 169 

reaction norms evolved in all 100 replicate simulations at that parameter combination, (ii) the 170 

evolved populations exhibit a high degree of plasticity (i.e., s > 0.5and b  ≈ 1), and (iii) 171 

individuals in these populations often adjust their phenotypes after development (a ≈1 , see 172 

‘reversible plasticity’ in Table S1). As R becomes larger, locus a quickly evolves to 173 

a ≈ 0 (depicted in blue in Fig. 2A) because the diminishing benefits of avoiding thermal 174 

mismatches no longer surpass the costs of phenotypic adjustment (13, 22, 23). We label this 175 

strategy ‘irreversible plasticity’ because individuals in these populations exhibit plasticity 176 

exclusively during development. The transition from reversible to irreversible plasticity occurs at 177 

progressively shorter timescales in less predictable environments because the expected benefits 178 

of phenotypic adjustment decrease with higher potential for errors in anticipating environmental 179 

change. 180 



When environmental conditions are fairly unpredictable, the rate at which environments 181 

change determines the resulting evolutionary outcome (Figs. 2 and 3). If R is large (lower right 182 

corner of Fig. 2B), the slow rate of environmental change allows for beneficial mutations in I0 to 183 

appear and approach fixation. The resulting pattern is a gradual change of the mean phenotype 184 

that tends to lag behind the change in environmental conditions (‘adaptive tracking’ in Fig. 3A). 185 

However, at faster timescales (lower center and lower left in Fig. 2B), environmental change is 186 

too fast to be tracked by mutation and too unpredictable to be addressed through plasticity. 187 

Consistent with previous studies (9, 16), this extreme form of uncertainty forces individuals to 188 

hedge their bets. When individuals experience all possible conditions with similar probability 189 

(e.g., very low R), we observe the evolution of fixed phenotypes at I ≈ 0. Although this insulation 190 

value rarely matches the actual conditions experienced, it matches the average environment and 191 

therefore minimizes overall thermal mismatch across the entire range of potential environmental 192 

conditions (Table S1). Thus, this strategy resembles conservative bet-hedging (9) in that it 193 

minimizes the variance in fitness among selection events and across individuals that share the 194 

same genotype. In contrast, when individuals of a given genotype experience only a fraction of 195 

the environmental cycle (e.g., log R = 0.5), we observe the evolution of mixed-strategies that 196 

produce alternative phenotypes with either heavy or light insulation in a probabilistic fashion 197 

(green in Fig. 2A). This strategy resembles the phenotypic polymorphism of diversification bet-198 

hedging (9) (Table S1), because the different phenotypes produced by a single genotype 199 

minimize thermal mismatch in different scenarios (i.e., the larger I phenotype does best when 200 

experiencing disproportionally more of the upper than the lower half of the environmental cycle, 201 

and the smaller I phenotype does best in the opposite situation). 202 



Having determined the most likely evolutionary outcomes under a comprehensive range 203 

of parameter combinations, we proceeded to explore how populations are affected by changes in 204 

the predictability or timescale of environmental variation (i.e., in the ‘signature’ of their 205 

environment). The well-defined response mode regions observed in Fig. 2 allowed us to make a 206 

simple but important a priori prediction: changes in environmental signatures that require the 207 

evolution of an entirely different mode of response may be harder to cope with than those that do 208 

not. To test this hypothesis we abandoned the assumption of a constant population size in our 209 

model and linked reproductive output to absolute rather than relative fitness (see Methods). By 210 

relaxing this assumption, we were able to assess the demographic consequences (e.g., changes in 211 

population size and risk of extinction) of different environmental challenges. In this eco-212 

evolutionary version of our model, maximal fecundity, q, was defined as the average number of 213 

offspring that an individual produces when it pays no plasticity costs and is able to exactly match 214 

its environment at every time step of its life. Thus, the mean fecundity of individual i, Fi , is 215 

determined by the fraction of the maximum payoff that it is able to achieve, such that 216 

Fi = q ⋅Wi /Wmax (see Methods). Fig. 4 depicts the potential for extinction at each parameter 217 

combination (inner squares) as well as during transitions between adjacent combinations in 218 

parameter space when q = 2.2 (see Fig. S5 for alternative values of q). Each of the four possible 219 

transitions to an adjacent cell is depicted using trapezoids. For example, the color of the upper 220 

trapezoid within a given subplot indicates the effects of transitioning from that particular 221 

parameter combination to the one above it. As predicted, we found that the potential for 222 

extinction during these transitions is considerably higher when populations are forced into a 223 

different response mode region (a result that holds even if much larger changes in P or R are 224 

attempted).  225 



The non-uniformity of transitional extinction rates in our model is driven by at least two 226 

different mechanisms. First, some transitions imply moving into regions of parameter space that 227 

are particularly challenging for adaptation. For example, when environmental oscillations are 228 

quick and unpredictable (i.e., the bet-hedging region), baseline levels of extinction are high, 229 

particularly at lower q values (see Fig. S5). Thus, any population that is suddenly forced into this 230 

region will also be expected to have a high likelihood of extinction (Fig. 4A). The second 231 

contributor to extinction relates to the complexity of genetic changes required for adaptation 232 

during transition and is more readily observable after accounting for potential differences in 233 

baseline levels of extinction in the new environments. For example, when relative extinction 234 

rates are considered (Fig. 4B), we find that extinction is only more likely than expected when 235 

populations move into a different response mode region (even if this transition involves moving 236 

into regions of parameter space that appear to be easier for adaptation, such as into more 237 

predictable environments). The reason for the increased risk of extinction during these ‘tipping 238 

point transitions’ is that adapting to a completely new strategy for phenotypic development often 239 

requires a radical restructuring of the genome, which can be particularly difficult to achieve as 240 

populations collapse (Fig. 5). For example, in the transition from phenotypic plasticity to bet-241 

hedging, plastic strategies become maladapted (i.e., their expected number of offspring, W, is 242 

less than one) and population decline is swift (Fig. 5A). Thus, given that adaptation to the new 243 

environment requires in this case resetting developmental switches (s and a) and adjusting 244 

almost every other loci in the virtual genome, the stochastic nature of mutation supply and the 245 

reduced standing genetic variation of declining populations are more likely to result in extinction 246 

(Fig. 5A) than in evolutionary rescue (Fig. 5B). Conversely, the relative extinction rates for the 247 

reverse transition are also high because the fitness of fixed strategies is low compared to that of 248 



plastic ones, and because many of the mutations that can potentially transform a fixed strategy 249 

into a plastic one will, in the absence of other necessary genetic changes, result in maladapted 250 

phenotypes. Another case with high relative rates of extinction during tipping point transitions is 251 

the change from conservative to diversifying bet-hedging, which involves similarly extensive 252 

genetic changes, including the resetting of h, I0 , !I0 , b and !b . In contrast, when genomic changes 253 

are relatively simple, as in the case of the transition between reversible and irreversible plasticity, 254 

the likelihood of adaptation during transition is much higher (Fig. 4).  255 

 256 

Discussion 257 

Our model suggests that evolutionary response to environmental variation may be more 258 

predictable than previously anticipated. Through evolutionary simulations we have shown that 259 

fundamentally different adaptive responses consistently evolve under different timescales and 260 

predictabilities of environmental variation. The response mode regions predicted by our model 261 

are largely consistent with a variety of empirical findings in a range of biological systems. For 262 

example, reversibly plastic adaptations like torpor (24) and hibernation (25) have been shown to 263 

occur in response to frequent (i.e., daily or yearly) and predictable changes in environmental 264 

conditions. In some examples of reversible phenotypic changes, such as the seasonal change in 265 

coat coloration in temperate mammals, there is even evidence that the increasing unpredictability 266 

of relevant environmental parameters is currently exerting strong selection on natural 267 

populations (e.g., snow cover for snowshoe hares (26)). Another potential example of reversibly 268 

plasticity is cognitive ability, particularly given its role in enabling behavioral flexibility (27). 269 

Consistent with our predictions, the evolution of cognitive enhancement appears to be driven in 270 

many systems by the exposure to intense, short-term, and only moderately predictable 271 



environmental variation (28-30). In contrast, most well documented examples of developmental 272 

(i.e., irreversible) plasticity occur when environmental features remain constant during a lifetime 273 

but vary among individuals. For example, the short-lived Daphnia cucullata, only develops 274 

costly and life-long protective helmets if coexisting with predatory fish (31). Empirical examples 275 

of conservative (e.g., cooperative breeding behavior (32)), and diversifying bet-hedging (e.g., 276 

maternal adjustment of variance in offspring traits (33) or fimbriae expression in bacteria (34)), 277 

also conform to our predictions as they all involve responses to highly unpredictable 278 

environmental conditions. Over much longer timescales, where our model predicts adaptive 279 

tracking, we see congruence with empirical examples like the slow changes in breeding and 280 

migration dates in birds (35) or even the rise of arid-adapted African mammals—including 281 

hominids — in response to increased aridity in East Africa during the Pliocene and early 282 

Pleistocene (36). 283 

A key insight from our model is that adaptive capacity to environmental change is likely 284 

to be subject to ‘evolutionary tipping points’ (37), where most environmental changes will be 285 

relatively innocuous but some — even very small ones — can have disproportionate and 286 

dramatic effects. Specifically, the potential for adaption to changes in the predictability or 287 

timescale of environmental change appears to depend more on the location of parameter space 288 

that populations are moving into, than on the magnitude of the change itself. For example, our 289 

simulations indicate that evolution can easily accommodate rather large changes in 290 

environmental signatures if the same general strategy for phenotypic expression is appropriate 291 

before and after the change. However, it also shows that populations will decline rapidly and 292 

tend to go extinct whenever they are forced into situations where their current strategy is no 293 

longer appropriate (i.e., when crossing boundaries into different response mode regions, Fig. 5). 294 



These observations have important implications in the context of global climate change because 295 

they suggest that even species that appear to be coping well with current changes in 296 

environmental signatures (3) may become vulnerable to extinction if a tipping point is crossed. 297 

Thus, an empirical characterization of evolutionary tipping point dynamics could be of major 298 

importance for a better understanding of otherwise cryptic threats to natural populations and for a 299 

proper design and implementation of conservation strategies.  300 

Several aspects of the natural history of an organism are likely to influence the location 301 

and intensity of tipping points in parameter space. For example, species that pay higher costs of 302 

plasticity may move across an evolutionary tipping point much sooner than others, because the 303 

boundaries between plastic and non-plastic response mode regions occur at higher predictability 304 

values when ka and kd increase (Fig. 2). Similarly, organisms with slow life histories that do not 305 

reproduce often or that produce low numbers of progeny during each breeding attempt (modeled 306 

here as low values of q), are likely to be more vulnerable to environmental oscillations and 307 

tipping point transitions because of their potentially lower supply of beneficial mutations and 308 

their decreased ability to rebound from population bottlenecks (Fig. S5). In addition, our model 309 

indicates that the potential for extinction during tipping point transitions depends critically on the 310 

genetic architecture of relevant traits (38), and in particular on the number or magnitude of 311 

mutations required to achieve the genotypic optimum for the new selection regime. For example, 312 

we expect that populations will be more likely to go extinct when the strategy that needs to be 313 

evolved requires either de novo evolution (or loss) of complex organs and structures, or a major 314 

re-adjustment of basic physiological/developmental pathways. Conversely, we expect lower 315 

vulnerability to extinction when the desired new strategy after transition is achievable through 316 

the evolution of simple genetic changes that do not interfere with major body plans. 317 



In conclusion, our model provides a unifying theoretical framework for predicting 318 

evolutionary responses to environmental change (8) and leads to a series of testable predictions 319 

regarding organismal capacity to adapt to natural or human induced changes in the environment. 320 

These predictions can be tested through experimental evolution of microorganisms or through 321 

comparative analyses of populations or species distributed along a gradient of environmental 322 

variation. Ultimately, evolutionary models like the one we present here can aide in determining 323 

the specific type of adaptation that organisms may use to cope with specific environmental 324 

changes, thereby improving our understanding of how populations and species may respond to 325 

either global change or other type of environmental challenge. 326 

 327 

Methods 328 

Norms of reaction. The tendency of a genotype to be systematically expressed as different 329 

phenotypes across a range of environmental conditions is known as the genotype’s norm of 330 

reaction. Our model assumes that the effects of heat and cold stress are symmetric and that 331 

selection favors phenotypes that match the environmental condition in which they are expressed 332 

(see ‘Fitness’ below). These simplifying assumptions imply that if individuals have perfect 333 

information about the environment, then they can maximize their returns with I = E. 334 

Accordingly, we have parameterized reaction norms in our model as linear functions. Thus, 335 

I = I0 + b ⋅C  (or I = !I 0 + !b ⋅C  with probability 1-h), where I0  is the insulation level produced at 336 

C = 0 and b is a slope that determines the degree to which insulation levels change as a function 337 

of changes in environmental cues (for alternative genotype-phenotype mapping schemes se SI 338 

text and Fig. S3). 339 



Fitness. Every individual in our model lives for L = 5 time steps. Each time step proceeds 340 

in a defined order. First, environmental conditions are updated and environmental cues are 341 

computed from Et and P as described above. Then, individuals have access to the cue and are 342 

given the opportunity to develop or adjust their phenotype accordingly. Finally, individuals are 343 

exposed to selection by computing their phenotypic mismatch, M, with the condition experienced 344 

such that, 345 

Mi,t = Et − Ii,t , 346 

where Et is the current environmental state and Ii,t is the individual's current phenotype. At the 347 

end of a generation, a non-plastic individual’s lifetime payoff, Wi, is computed as a function of 348 

the sum total of phenotypic mismatches throughout life, such that  349 

Wi = exp −τ ⋅ Mi,tt=0

L
∑( ) , 350 

where τ is a constant that determines the strength of fitness decay as a function of total 351 

phenotypic mismatch. For plastic individuals (i.e., s > 0.5), 352 

Wi = exp −τ ⋅ Mi,tt=0

L
∑( )− kd − n ⋅ ka  353 

where n is the total number of times an individual adjusts its phenotype during its lifetime.  354 

Individual-based simulations. Our evolutionary model is based on populations of 5,000 355 

individuals exposed to mutation and natural selection for 50,000 discrete, non-overlapping 356 

generations (simulation runs were replicated 100 times at each parameter combination). 357 

Reproduction occurs only at the end of each generation and is proportional to the payoffs 358 

accumulated during each individual’s lifetime (Wi). Thus, the number of offspring for individual 359 

i is drawn from a Poisson distribution with mean Wi / W , where W is the mean cumulative 360 



payoff for that generation. As a consequence, the average number of offspring per individual is 361 

equal to one and the size of the offspring population is very similar to that of the parent 362 

population. To compensate for the occasional differences between these two population sizes, we 363 

randomly removed or replicated offspring when needed to maintain a population of 5,000. All 364 

offspring in our model inherit the alleles at each locus from their parents, with a per locus 365 

mutation probability of µ = 0.001 and mutational steps drawn from a normal distribution with a 366 

mean of zero and a standard deviation of 0.05. The loci that encode slopes in the reaction norms 367 

(b and !b ) and reversibility in plasticity (a) are only allowed to mutate if individuals are plastic 368 

(i.e., when s > 0.5). Otherwise, these traits are set to zero and subsequently ignored unless s 369 

evolves a value greater than 0.5.  370 

Simulating transitions to different regions of parameter space. To include the possibility 371 

of varying population sizes into our model, we replaced relative with absolute fitness so that 372 

reproductive output was directly tied to how well individuals were able to match their 373 

environment. To this end, we modified the algorithm of our basic model so that the number of 374 

offspring for individual i was drawn from a Poisson distribution with mean q ⋅Wi /Wmax , where 375 

Wmax is the maximum possible payoff (i.e., the payoff an individual would accrue if it paid no 376 

costs and were able to match the exact temperature of its environment every time step of its life). 377 

To prevent population size from exploding in cases where fecundity was large, we applied an 378 

upper boundary constraint in these simulations at a population carrying capacity of 5,000 379 

individuals; because increasing carrying capacity did not change qualitatively our results, we 380 

maintained the population size used in the constant population size simulations. We then took the 381 

final population of each replicate simulation in Fig. 2 and allowed it to evolve under different 382 

values of P and/or R for 1,000 additional generations. In transition simulations where R remained 383 



the same, we simply extended the environmental cycle from the time it was left off at the end of 384 

the initial simulation. When R changed, we adjusted the phase of the new environmental cycle to 385 

prevent abrupt discontinuities in the direction or magnitude of E. 386 

Parameter settings. All simulations reported above are based on the following parameters 387 

unless otherwise stated: L = 5, kd = 0.02, ka = 0.01, τ = 0.25, and q = 2.2. In every replicate, with 388 

the exception of transition simulations, the starting population was initialized by setting h = 1 389 

(i.e., assuming that genomes only code for one norm of reaction), and by drawing the remaining 390 

traits for each individual at random from uniform distributions on [0, 1] for a and s; [-1, 1] for 391 

I0 and !I0 ; and [-2, 2] for b and !b . Subsequent evolution was completely unbounded and 392 

determined solely by mutation and natural selection.  393 

 394 

References 395 

1. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. 396 
Annual Review of Ecology Evolution and Systematics, Annual Review of Ecology 397 
Evolution and Systematics), Vol 37, pp 637-669. 398 

2. Piersma T & van Gils JA (2010) The Flexible Phenotype: A Body-Centred Integration of 399 
Ecology, Physiology, and Behaviour (Oxford University Press, New York, NY) p 248. 400 

3. Moritz C & Agudo R (2013) The future of species under climate change: resilience or 401 
decline? Science 341(6145):504-508. 402 

4. Hoffmann AA & Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 403 
470:479-485. 404 

5. Bradshaw WE & Holzapfel CM (2006) Climate change - Evolutionary response to rapid 405 
climate change. Science 312(5779):1477-1478. 406 

6. Norberg J, Urban MC, Vellend M, Klausmeier CA, & Loeuille N (2012) Eco-407 
evolutionary responses of biodiversity to climate change. Nature Climate Change 408 
2(10):747-751. 409 

7. Skelly DK, Joseph LN, Possingham HP, Freidenburg LK, Farrugia TJ, Kinnison MT, & 410 
Hendry AP (2007) Evolutionary responses to climate change. Conservation Biology 411 
21(5):1353-1355. 412 

8. Diffenbaugh NS & Field CB (2013) Changes in ecologically critical terrestrial climate 413 
conditions. Science 341(6145):486-492. 414 

9. Starrfelt J & Kokko H (2012) Bet-hedging - a triple trade-off between means, variances 415 
and correlations. Biological Reviews 87(3):742-755. 416 



10. West-Eberhard MJ (2003) Developmental Plasticity and Evolution (Oxford University 417 
Press, Oxford, UK). 418 

11. Piersma T & Drent J (2003) Phenotypic flexibility and the evolution of organismal 419 
design. Trends in Ecology & Evolution 18(5):228-233. 420 

12. Cleland EE, Chuine I, Menzel A, Mooney HA, & Schwartz MD (2007) Shifting plant 421 
phenology in response to global change. Trends in Ecology & Evolution 22(7):357-365. 422 

13. Moran NA (1992) The evolutionary maintenance of alternative phenotypes. American 423 
Naturalist 139(5):971-989. 424 

14. Schlichting CD & Pigliucci M (1998) Phenotypic Evolution: A Reaction Norm 425 
Perspective (Sinauer Associates Inc., Sunderland, Massachusetts) p 387. 426 

15. Frank SA (2011) Natural selection. I. Variable environments and uncertain returns on 427 
investment. Journal of Evolutionary Biology 24(11):2299-2309. 428 

16. Simons AM (2011) Modes of response to environmental change and the elusive empirical 429 
evidence for bet hedging. Proc. R. Soc. B-Biol. Sci. 278(1712):1601-1609. 430 

17. Schwander T & Leimar O (2011) Genes as leaders and followers in evolution. Trends in 431 
Ecology & Evolution 26(3):143-151. 432 

18. Roh K, Safaei FRP, Hespanha JP, & Proulx SR (2013) Evolution of transcription 433 
networks in response to temporal fluctuations. Evolution 67(4):1091-1104. 434 

19. McNamara JM, Trimmer PC, Eriksson A, Marshall JAR, & Houston AI (2011) 435 
Environmental variability can select for optimism or pessimism. Ecology Letters 436 
14(1):58-62. 437 

20. Borjigin J, Zhang LS, & Calinescu AA (2012) Circadian regulation of pineal gland 438 
rhythmicity. Mol. Cell. Endocrinol. 349(1):13-19. 439 

21. Boutin S, Wauters LA, McAdam AG, Humphries MM, Tosi G, & Dhondt AA (2006) 440 
Anticipatory reproduction and population growth in seed predators. Science 441 
314(5807):1928-1930. 442 

22. Gabriel W (2006) Selective advantage of irreversible and reversible phenotypic plasticity. 443 
Archiv Fur Hydrobiologie 167(1-4):1-20. 444 

23. Fischer B, Taborsky B, & Kokko H (2011) How to balance the offspring quality-quantity 445 
tradeoff when environmental cues are unreliable. Oikos 120(2):258-270. 446 

24. Hainsworth FR & Wolf LL (1970) Regulation of oxygen consumption and body 447 
temperature during torpor in a hummingbird, Eulampis jugularis. Science 168(3929):368-448 
369. 449 

25. Geiser F (2013) Hibernation. Current Biology 23(5):R188-R193. 450 
26. Mills LS (2013) Camouflage mismatch in seasonal coat color due to decreased snow. 451 

Proceedings of the National Academy of Sciences of the United States Of 110(18):7360-452 
7365. 453 

27. Lefebvre L, Reader SM, & Sol D (2004) Brains, innovations and evolution in birds and 454 
primates. Brain Behavior and Evolution 63(4):233-246. 455 

28. Dunlap AS & Stephens DW (2009) Components of change in the evolution of learning 456 
and unlearned preference. Proc. R. Soc. B-Biol. Sci. 276(1670):3201-3208. 457 

29. Sol D (2009) The cognitive-buffer hypothesis for the evolution of large brains. Cognitive 458 
ecology II, eds Dukas R & Ratcliffe JM (The University of Chicago Press, Chicago, IL), 459 
pp 111-134. 460 

30. Botero CA, Boogert NJ, Vehrencamp SL, & Lovette IJ (2009) Climatic Patterns Predict 461 
the Elaboration of Song Displays in Mockingbirds. Current Biology 19(13):1151-1155. 462 



31. Tollrian R (1990) Predator-induced helmet formation in Daphnia cucullata (SARS). 463 
Archiv Fur Hydrobiologie 119(2):191-196. 464 

32. Rubenstein DR (2011) Spatiotemporal environmental variation, risk aversion, and the 465 
evolution of cooperative breeding as a bet-hedging strategy. Proceedings of the National 466 
Academy of Sciences 108(Supplement 2):10816-10822. 467 

33. Crean AJ & Marshall DJ (2009) Coping with environmental uncertainty: dynamic bet 468 
hedging as a maternal effect. Philosophical Transactions of the Royal Society B 469 
364:1087-1096. 470 

34. van der Woude M (1996) Epigenetic phase variation of the pap operon in Escherichia 471 
coli. Trends in Microbiology 4(1):5-9. 472 

35. Both C & te Marvelde L (2007) Climate change and timing of avian breeding and 473 
migration throughout Europe. Climate Research 35:93-105. 474 

36. deMenocal PB (2011) Climate and human evolution. Science 331:540-542. 475 
37. Scheffer M (2010) Complex systems: foreseeing tipping points. Nature 467(7314):411-476 

412. 477 
38. Diaz Arenas C & Cooper TF (2013) Mechanisms and selection of evolvability: 478 

experimental evidence. FEMS Microbiology Reviews 37(4):572-582. 479 

 480 

Acknowledgments: C.A.B. was supported by USGS Grant/Cooperative Agreement # 481 

G10AC00624. J.W. was supported by the CBD/NTNU. D.R.R. was supported by NSF (IOS-482 

1121435 and IOS-1257530). 483 

484 



Figure legends 485 

 486 

Fig. 1. Effects of environmental stochasticity on the evolution of thermal strategies when 487 

environments are either completely unpredictable (P = 0) or completely predictable (P = 1). 488 

Stochastic environmental variation (top panels) was modeled by setting the value of weighting 489 

constants to A = 0 and B = 1. Conversely, comparable deterministic variation (bottom panels) 490 

was modeled through A = 1, B = 0 and R = 1. The norm of reaction plots depict the strategies of 491 

5,000 individuals at generation 50,000 in representative replicate simulation runs. Darker colors 492 

indicate that a higher number of individuals share a given response to a particular environmental 493 

cue. Comparison of the top and bottom panels indicates that the way in which environments vary 494 

– stochastically versus deterministically – is less important to evolution than the degree to which 495 

individuals can anticipate such variation. 496 

 497 

Fig. 2. Evolutionary response to environmental variation under different levels of predictability 498 

(P) and relative timescale of environmental variation (R). At each parameter combination in (A), 499 

the 100 mean population reaction norms that evolved at generation 50,000 in different replicate 500 

simulations are depicted as in Fig. 1 with environmental cues on the x-axis and the resulting 501 

insulation phenotypes on the y-axis (labels omitted for simplicity). If only one reaction norm is 502 

visible, this is an indication that the same response evolved in all replicates. As illustrated in 503 

panel (C), reaction norms are depicted in black when s ≤ 0.5  (see Table S1 for details). In such a 504 

case, phenotypic plasticity does not occur (a is not expressed) and the reaction norm is flat. In 505 

case of a plastic response ( s > 0.5), reaction norms are depicted in a color gradient ranging from 506 

red when a =1  (reversible plasticity) to blue when a = 0  (irreversible plasticity). For simplicity, 507 



secondary reaction norms are depicted in green with intensity proportional to how often they are 508 

used (i.e., they are not visible if h =1 ). (B) The consistency of outcomes across replicates in 509 

panel (A) suggests that different regions in parameter space favor different modes of response. 510 

‘Conservative’ and ‘diversifying’ bet-hedging are identified in panel (B) as CBH and DBH, 511 

respectively.  Dashed grey lines in panel (B) depict changes in the boundaries between different 512 

adaptive regions when adjustment costs, ka, are doubled from 0.01 to 0.02, and solid grey lines 513 

depict changes when the cost of development, kd, is doubled from 0.02 to 0.04. 514 

 515 

Fig. 3. Adaptive tracking versus conservative bet-hedging in highly unpredictable environments 516 

(here P = 0). Environmental cycles are depicted in black and the mean population phenotypic 517 

value of I0 is depicted in red. The evolved norms of reaction at generations 250 (dashed lines) 518 

and 1000 (continuous lines) are shown to the right of each plot. (A) When environments change 519 

very slowly (here log R = 3), norms of reaction evolve accordingly through mutation and natural 520 

selection, leading to phenotypic changes in the population over time. (B) In contrast, when 521 

environments change very rapidly (here log R = 0), adaptive tracking is not possible and a 522 

phenotype that matches the average value of environmental conditions (i.e., I0 ≈ 0) becomes 523 

fixed. 524 

 525 

Fig. 4. Rates of extinction when transitioning into nearby regions of parameter space when q = 526 

2.2. Each subplot within each panel depicts the baseline level of extinction at a given parameter 527 

combination (inner square), and the extinction rates associated with transitioning into the nearest 528 

parameter combination to the top, bottom, left and right of that cell (trapezoids). The boundaries 529 

between response mode regions in Fig. 2B are presented as dashed lines. (A) We use a color 530 



gradient from gray (0%) to red (100%) to depict absolute extinction rates (i.e., the proportion of 531 

simulations that went extinct during 100 replicate transition runs). (B) Relative rates were 532 

computed as (TR - BR) / BR, where TR = transition rate of extinction, and BR = baseline rate of 533 

extinction at the target parameter combination (i.e., where the population is moving into). The 534 

color scale for these rates ranges from blue (≤ -100%) to red (≥ 100%). The absence of blue 535 

trapezoids in (B) indicates that, in practice, transition rates were always similar or greater than 536 

their corresponding baselines.  537 

 538 

Fig. 5. Representative examples of population dynamics during transitions through evolutionary 539 

tipping points in our model. (A) In the simulations depicted here, populations were forced to 540 

move from the region of reversible plasticity into that of bet-hedging by lowering P from 0.3 to 541 

0.2 at log R = 0 (all other model parameters as in the main text). Top panels depict the change in 542 

the correlation between cues and environmental values, middle panels depict the evolution of 543 

traits before and after the transition (black = s, blue = a, green = h, gray = I0, and red = b; the 544 

time of transition is depicted by a dashed vertical line at generation 5000), and bottom panels 545 

depict the associated changes in population size over time. (A) Even though the change in 546 

predictability is barely visible to the naked eye, populations immediately decline after 547 

predictability is reduced. (B) In most situations, populations become extinct because the 548 

mutations required to adapt to the new environment fail to arise. (C) However, in cases where 549 

beneficial mutations arise on time, these traits tend to reach fixation quickly and evolutionary 550 

rescue is complete. 551 
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1. Modeling environmental predictability.  14 

Phenotypic plasticity relies on the ability to anticipate future environmental conditions. In many 15 

situations, this can be done by attending to environmental features that precede (and are 16 

correlated with) changes in relevant environmental parameters. For example, variation in day 17 

length tends to be well correlated with impending changes in temperature within temperate 18 



regions, and changes in barometric pressure often forecast approaching storms, strong winds, and 19 

heavy rain. We refer to these anticipatory events as environmental ‘cues’ and model their 20 

information content by altering the degree to which they are correlated with future changes in the 21 

parameter of interest (i.e., temperature in our model). Thus, when cues are highly correlated with 22 

the parameter of interest we say that the environment is very predictable, and vice versa. We 23 

modeled environmental predictability, P, as a parameter that measures the correlation between 24 

cues, C, and environment, E, ranging from 0 (i.e., environmental cues contain no information on 25 

the potential future state of the environment) to 1 (i.e., environmental cues provide perfect 26 

information on the future state of the environment). Mathematically, environmental cues, C, are 27 

drawn in our model from a Gaussian distribution with mean, 28 

µ = P ⋅E , 29 

and standard deviation, 30 

σ = (1−P) / 3 , 31 

such that C = E when P = 1, but C is uncorrelated with E when P = 0 (Fig. S1). Because 99.7% 32 

of the values in a normal distribution are contained within three standard deviations from the 33 

mean, dividing by three in the equation for sigma ensures that cues are primarily from the natural 34 

range of possible environmental values (i.e., [-1,1]). For example, at the extreme case with most 35 

variability—i.e., when P = 0—note that µ = 0 and 3σ = 1.  36 

 

2. Genotypic variation within populations 37 

In the main text we focus on population-level responses at 50,000 generations. However, we also 38 

investigated the patterns of genotypic variation within populations, because the same kind of 39 



average outcome could be realized by either a genetically monomorphic or a genetically 40 

polymorphic population. Briefly, we observed that evolution consistently resulted in genetically 41 

monomorphic populations in our model (Fig. S2), even at the boundaries between response mode 42 

regions where average outcomes varied among replicates.  43 

 

3. Evolutionary transitions when changes in environmental parameters lead to correlated 44 

changes in the genotype favored by selection 45 

The highly consistent evolutionary outcomes observed in Fig. 2 indicate that the complex, 46 

multidimensional fitness landscape of our model tends to exhibit a single adaptive peak 47 

throughout most of parameter space. However, the evolution of different outcomes in different 48 

replicate simulations at the boundaries between response mode regions indicates that multiple 49 

adaptive peaks are likely to occur in the fitness landscape as selection shifts from favoring one 50 

outcome to another (Fig. S3). 51 

 

4. Effects of alternative genotype-to-phenotype mapping and algorithms for selection 52 

Our general findings are robust to alternative genotype-to-phenotype mapping schemes and to 53 

the consideration of evolutionary processes that may increase genetic variation within 54 

populations. Briefly, in all of the model variants that we have explored so far, we find that a 55 

single response mode has a clear selective advantage over all others at each parameter 56 

combination, and that, overall, the parameter space is divided into distinct response mode regions 57 

with relatively well-defined boundaries (Fig. S4).  58 



To explore the effects of alternative genotype-to-phenotype mapping, we encoded norms 59 

of reaction as logistic rather than linear functions. In this model variant,  60 

I = 2 / 1+ exp I0 − b ⋅C( )( )−1, 61 

where I0 and b are genetically inherited traits, and C is the current value of the environmental 62 

cue.  63 

We also evaluated the robustness of our findings to processes that may increase genetic 64 

variation within populations by exploring the effects of density- and frequency-dependent 65 

selection. Negative density-dependent selection was implemented via the standard Beverton-Holt 66 

equation for population dynamics (1), where the total number of individuals in the next 67 

generation is a function of current population size. Thus, in the density dependent variant of our 68 

model, the number of offspring for individual i was drawn from a Poisson distribution with 69 

mean, µ =G ⋅Wi /Wmax , where G is the per capita growth factor and Wmax is the payoff an 70 

individual would accrue if it paid no costs and were able to match the exact temperature of its 71 

environment every time step of its life. The per capita growth factor, G, in this equation was 72 

computed as, 73 

G = β / 1+α ⋅N( ) , 74 

where α and β are constants (α = 0.00001 and β = 2 in Fig. S4C), and N is the current 75 

adult population size. To prevent unbounded population growth, excess offspring were selected 76 

at random and removed from the population whenever the new population size exceeded a 77 

carrying capacity of 5000 individuals. 78 



In the model variant with frequency-dependent selection, Wi was weighted by the 79 

uniqueness of an individual’s phenotype. Here, a rare-phenotype advantage was implemented by 80 

computing time step-specific payoffs as,  81 

Wi,t = exp − Et − Ii,t ⋅τ( ) ⋅ 1− exp − I − I ⋅φ( )#
$

%
& , 82 

where I is the mean insulation phenotype for the entire population, Ii,t is the insulation phenotype 83 

of individual i at time step t, and ϕ is a constant that determines how strongly fitness improves 84 

for more unique individual insulation values (τ = 2 and ϕ = 2 in Fig. S4D). The cumulative 85 

payoff, Wi, for individual i in this model variant was then computed as the sum total of payoffs 86 

throughout its lifetime minus any costs of phenotypic adjustment. Thus,  87 

Wi = Wi,tt=0

L
∑ , 88 

for non-plastic individuals, and  89 

Wi = Wi,tt=0

L
∑ − kd − n ⋅ ka , 90 

for plastic individuals.  91 

 

5. Effects of variation in maximal fecundity on extinction rates after environmental change 92 

Fig. S5 depicts the potential for extinction at each parameter combination (inner squares) as well 93 

as during transitions between adjacent combinations in parameter space for different values of q 94 

— i.e., the average number of offspring that an individual produces when it pays no plasticity 95 

costs and is able to exactly match its environment at every time step of its life. When 96 

reproductive output is low (smaller q), a major component of extinction during transition is 97 



related to the high baseline levels of extinction when moving into environments that vary quickly 98 

and are fairly unpredictable. As q increases, baseline levels of extinction are radically reduced. 99 

However, the challenges of restructuring the genome in order to achieve a new optimum remain 100 

whenever crossing into a new response mode region. 101 

 

6. Interpreting model results in the context of global climate change 102 

Our model investigates evolutionary responses to any type of change in the characteristics of the 103 

environment, irrespective of scale and causes. However, in this section we provide a non-104 

technical overview of how our model may apply, in particular, to the highly relevant context of 105 

global environmental change. The recent past has seen an unparalleled and rapid rise in mean 106 

temperatures and sea levels around the globe, as well as a corresponding increase in the 107 

frequency and unpredictability of extreme weather events (2-5). Our model addresses these 108 

potential environmental changes in the following ways: 109 

 

6.1. Rapid change in mean environmental conditions: Earth’s climate exhibits multiple types of 110 

oscillations, each of which operates at different timescales. For example, in addition to the yearly 111 

changes in precipitation and temperature that define our seasons, quasi-periodic phenomena like 112 

the El Niño/Southern Oscillation can influence environmental conditions and change the 113 

intensity of climatic extremes every 2-7 years (6). Similarly, temporal variation in Earth’s orbit 114 

around the sun can lead to gradual changes in mean environmental parameters on much longer 115 

timescales, ultimately resulting in phenomena like the glacial and interglacial periods (7). We 116 

have become increasingly aware in recent years that anthropogenic activity has resulted in the 117 



changes to these underlying environmental cycles (2, 6). Our model allows us to explore the 118 

effects of such disturbances through changes in the parameter that controls the relative timescale 119 

of variation, R. In the main text we define R as the number of environmental oscillations per 120 

lifespan. Thus, to study the potential effects of speeding up the rate at which environmental 121 

conditions vary, we can evaluate how populations respond when transitioning into regions of 122 

parameter space with lower R. When considering the potential effects of a given environmental 123 

change, we emphasize that R is a relative index, and that as such, its value will depend on 124 

lifespan. For example, while environments that change at a rate of 1°C/year can be approximated 125 

by a large R when considering short-lived organisms like bacteria, they are better characterized 126 

as low R when considering long-lived organisms like elephants or Sequoia trees. In other words, 127 

a given change in environmental cycles can potentially have very different consequences on 128 

species with different lifespans. Additionally, given that shorter lifespans increase the value of R, 129 

our model can inform us on the potential consequences of global-change-related reductions in 130 

lifespan (e.g., (8)) by exploring how populations respond to transitions into regions with higher R 131 

values. 132 

 

6.2. Changes in the frequency and predictability of extreme weather events: It may be tempting 133 

to believe that because environmental changes are approximated in our evolutionary simulations 134 

as simple sinusoidal cycles, the ‘world’ is always somewhat predictable to our virtual 135 

individuals. That, however, is not the case and therefore we emphasize again that there is an 136 

important distinction between the way that environments vary and how predictable that variation 137 

is. As demonstrated in the main text, when there is no information regarding the phase of the 138 

cycle that the environment is currently at, the manner in which environments vary is completely 139 



irrelevant to evolution (i.e., adaptive outcomes are identical whether we model environmental 140 

change as a series of stochastic events — A = 0, B = 1, and therefore, Et = ε — or as simple 141 

sinusoidal cycles — A = 1, B = 0, and therefore, Et = sin(2πt/LR)). Thus, to explore the 142 

consequences of the increasing unpredictability of local environments in the context of climate 143 

change, we do not need to model increasingly irregular environmental cycles, but rather to alter 144 

the amount of information provided to individuals about the future states of their environment. In 145 

addition, by decoupling predictability from variability, our model provides important insights 146 

into the different effects of faster environmental change and more unpredictable conditions, both 147 

independently and in combination. Some insightful examples of how researchers have identified 148 

the use of informative environmental cues in natural systems that have evolved because of their 149 

tight correlation with future environmental conditions include work on hares (9), gulls (10), and 150 

jays (11).  151 

 

7. SI Figure legends  152 

Fig. S1. Effect of predictability, P, on the statistical association between cues, C, and 153 

environmental temperatures, E, in our model. Plots depict cues derived from 200 randomly 154 

selected values of E when (A) P = 1, (B) P = 0.5, and (C) P = 0. 155 

 

Fig. S2. Among- and within-replicate variation evolved in our model at generation 50,000. 156 

Norms of reaction are depicted as in Fig. 2 in the main text, with environmental cues on the x- 157 

axis and the resulting insulation phenotype on the y-axis (labels omitted for simplicity). (A) 158 

Variation among replicates is depicted by plotting the average reaction norms for each of 100 159 



independent replicate simulation runs (same as Fig. 2A). (B) Variation within replicates is 160 

depicted by plotting the reaction norms for each of 5,000 individuals from one representative 161 

example at each parameter combination. As in the main text, primary reaction norms are plotted 162 

in black (s ≤ 0.5) or in a color gradient from blue (s > 0.5, a = 0) to red (s > 0.5, a = 1), and 163 

secondary reaction norms are plotted in green with more intense colors indicating that a greater 164 

number of populations or individuals share a particular response. Importantly, the coexistence of 165 

different response modes within a replicate occurs primarily at the boundaries between adjacent 166 

response mode regions. 167 

 

Fig. S3. Fitness landscapes illustrating the emergence of evolutionary tipping points. (A) Plots 168 

depicting the change of an idealized one-dimensional fitness landscape with an environmental 169 

parameter like R or P. Genotypes corresponding to different adaptive response modes are 170 

depicted in different colors. For most values of the environmental parameter, the fitness 171 

landscape exhibits a single adaptive peak, leading to a consistent evolutionary outcome in all 172 

replicate simulations. Changes in the environmental parameter correspond to (relatively small) 173 

shifts in the location of the adaptive peak, which can relatively easily be tracked by adaptive 174 

evolution. However, when the environmental parameter approaches a value corresponding to a 175 

boundary between two response mode regions, the landscape exhibits multiple adaptive peaks 176 

(middle plot in top panel), and evolutionary outcomes can therefore vary among replicate 177 

simulations. A further change in the environmental parameter corresponds to the disappearance 178 

of the earlier fitness peak, necessitating the rapid evolution to the new fitness peak that may be 179 

separated from the earlier peak by a large distance in genotype space. The hysteresis plot in (B) 180 

depicts this situation for R = 100 generations per environmental cycle—i.e., log(R) = 2 in Fig. 2 181 



of the main text—(cbh = conservative bet hedging; dbh = diversifying bet-hedging; ip = 182 

irreversible plasticity; rp = reversible plasticity; at = adaptive tracking). At low predictability 183 

values we observe only the evolution of diversifying bet-hedging, whereas at high values we see 184 

only the evolution of irreversible (or developmental) plasticity. However, close to the boundary 185 

between these regions (depicted here in gray) we see that replicates can result in either one of 186 

these evolutionary outcomes. 187 

 

Fig. S4. Mean evolutionary outcomes at generation 50,000 for different parameter combinations 188 

under different model assumptions. (A) Reaction norms evolved under the baseline model 189 

described in the main text (same as depicted in Fig. 2). (B) Reaction norms evolved under the 190 

model variant with alternative genotype-to-phenotype mapping (i.e., reaction norms encoded as 191 

logistic rather than linear functions). (C) Reaction norms evolved under the model variant with 192 

negative density-dependent selection implemented through Beverton-Holt population dynamics. 193 

(D) Reaction norms evolved under the model variant with negative frequency-dependent 194 

selection implemented through a rare phenotype advantage. Ten replicate simulations are 195 

depicted per subplot in panels (B-C) and 100 replicates per subplot are depicted in (A). Note that 196 

similar response mode regions are observable across the different model variants. 197 

 

Fig. S5. Effects of reproductive potential on relative rates of extinction during transition into a 198 

new set of environmental parameters. Each subplot within each panel depicts the baseline level 199 

of extinction at a given parameter combination (inner square), and the relative extinction rates 200 

(see main text for details) associated with transitioning into the nearest parameter combination to 201 

the top, bottom, left and right of that cell (trapezoids). Colors depict the gradient of extinction 202 



from 0% (gray) to ≥100% (red). For comparison purposes, the boundaries between response 203 

mode regions in Fig. 2B are presented as dashed lines. When reproductive output is low (smaller 204 

q, panels A and B), a major component of extinction during transition is related to the high 205 

baseline levels of extinction when moving into environments that vary quickly and are fairly 206 

unpredictable. As q increases (panels C and D), the baseline levels of extinction decrease 207 

considerably throughout parameter space but the challenges of restructuring the genome in order 208 

to achieve a new optimum remain whenever crossing into new response mode regions. 209 
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Table S1. Phenotypic implications of the main reaction norms evolved in our model.  1 

Reaction Norm Phenotypic Implications 

 

- Individuals produce more insulation at higher 
levels of the environmental cue (s > 0.5 and b  or 
!b ≈1). 

- Individuals adjust their phenotype every time step 
after development ( a ≈1). 

- Adaptive mode: REVERSIBLE PLASTICITY 

 

- Individuals produce more insulation at higher 
levels of the environmental cue (s > 0.5 and b  or 
!b ≈1). 

- Individuals are plastic during development but do 
not adjust their phenotype afterwards ( a ≈ 0 ). 

- Adaptive mode: IRREVERSIBLE PLASTICITY 

 

- Individuals produce a single, non-adjustable 
phenotype at all possible environmental cues (s ≤ 
0.5). 

- Adaptive mode: Single, fixed reaction norms 
occur in two contexts in our model (see Fig. 3 in 
main text for details): 
(i) in ADAPTIVE TRACKING, individual 
insulation levels closely match current 
environmental conditions, and mean population 
phenotypes vary gradually over time following the 
underlying environmental cycle;  

(ii) in CONSERVATIVE BET-HEDGING 
insulation levels are always approximately zero. 
Thus, although these individuals rarely ever match 
their current environmental conditions, they 
exhibit low variance in fitness by minimizing their 
average thermal mismatches over time. 
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Table S1. (Continued) Phenotypic implications of the main reaction norms evolved in our 4 

model.  5 

Reaction Norm Phenotypic Implications 

 

- Individuals produce a single, non-adjustable 
phenotype at all possible environmental cues (s ≤ 
0.5). 

- The phenotype depicted in black is produced with 
probability h and the one depicted in green is 
produced with probability 1− h . 

- Adaptive mode: DIVERSIFICATION BET-
HEDGING 
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