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Abstract—The multiple hypothesis tracker (MHT) has histor-
ically been considered a gold standard for multi-target tracking.
In this paper we show that the key formula for hypothesis
probabilities in Reid’s MHT can be derived from the modern
theory of finite set statistics (FISST) insofar as appropriate
assumptions (Poisson models for clutter and undetected targets,
no target-death, linear-Gaussian Markov target kinematics) are
adhered to.

I. INTRODUCTION

In target tracking the aim is to establish tracks on all targets
in a surveillance region, and maintain these tracks for as
long as the corresponding targets exist or remain inside the
surveillance region. The standard multitarget tracking problem
can be decomposed into the two subproblems of filtering and
data association. Filtering concerns the estimation of a target’s
kinematic state from a time series of measurements. Data
association concerns how one determines which measurements
originate from which targets, and which measurements are to
be considered useless clutter. Many of the tasks carried out in
a surveillance system are most appropriately understood in the
context of data association. For example, establishing tracks
on new targets is fundamentally a data association problem,
since a decision to establish a new track amounts to a decision
regarding the origin of a sequence of measurements.

In early developments, data association was viewed as a
problem of determining an optimal association hypothesis
[1]. Reid’s multiple hypothesis tracker (MHT) took this one
step further by recognizing that every possible association
hypothesis could be assigned a posterior probability [2], which
could be propagated recursively in time according to (16) in
[2]. Reid’s MHT has historically been regarded as the optimal
approach to data association, although the exact nature of this
presumed optimality was never stated clearly.

Finite set statistics (FISST) was introduced as a more
systematic alternative to multi-target tracking than the MHT
paradigm [3]. In FISST, both targets and measurements are
generally treated as random finite sets, i.e., as set-valued
random variables. This allows one to express a Bayes-optimal
solution to the full multi-target tracking problem, including
data association, using a single prediction equation and a
single update equation. This is known as the multi-target Bayes
filter. FISST came with several approximations of the multi-
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target Bayes filter, such as the probablity hypothesis density
(PHD) filter [4] and the cardinalized PHD (CPHD) filter [5].

The brute force multi-target Bayes filter itself received little
attention to begin with, as it clearly was intractable. In 2015,
however, Jason Williams [6] showed that its output can be
factorized into a Poisson component and a multi-Bernoulli
mixture, which can be viewed as a sum over association
hypotheses which are somewhat similar to those used in Reid’s
MHT. The focus in [6] was on deriving approximations of the
multi-target Bayes filter similar to the joint integrated proba-
bilistic data association (JIPDA) [7], while the relationship to
MHT methods only was treated in cursorial terms.

The main contribution of this paper is to show that key
ingredients in Reid’s MHT can be derived from the represen-
tation of the multi-target Bayes filter that was proposed in
[6]. In particular, we show that Reid’s recursive probability
formula follows from the expressions in [6].

This analysis has important ramifications. It is often be-
lieved that the two paradigms of MHT and FISST are mutually
irreconcilable. If so, one could suspect that fundamental flaws
should hide in at least one of the two paradigms, and such
a suspicion may cause reluctance towards exchange of ideas
between the two schools. On the other hand, if Reid’s MHT
can be shown to fit nicely within the theoretical framework
of FISST, then such concerns are much less warranted. The
relationship between FISST and MHT has been discussed
in many papers, including [8], [9] and [10]. However, the
relationship between FISST and Reid’s formula has not yet
been fully elucidated.

This paper is inspired by the authors’ previous work on
MHT-techniques for simultaneous localization and mapping
(SLAM) [11, 12]. It borrows much notation from [12], which
again was heavily influenced by preprints of [6] and the PhD
thesis [13].

The paper is organized as follows. We introduce important
notations in Section II. The two kinds of association hypothe-
ses that we use are discussed in Section III. A brief introduc-
tion to FISST is given in Section IV. Modeling assumptions
are stated in Section V. The main developments of the paper
find place in Section VI, while the special case of Gaussian-
linear kinematics follows in Section VII, before the conclusion
in Section VIII.



II. NOTATION

In this section we provide an overview of notation used,
before we properly introduce association hypotheses, FISST
and assumptions employed in the subsequent sections.

A. Probability density functions and Poisson intensities

Various pdf’s that we encounter include the target Markov
pdf fo(xg|rr—1), the single- target likelihood f,(zk | z), the
single-track predicted pdf f;‘i’“ .
posterior pdf f,i’“}“ (k). Poisson-processes are given in terms
of their intensities, such as A(z), v(z) or u(zx).

B. Probability-generating functionals

(zx) and the single-track

While random finite sets (RFS’s) can be described in term of
multiobject densities, we will mainly use the transform-domain
representation in terms of probability generating functionals
(p-g-fl.’s) [3] in this paper. The general notation for p.g.fl.’s
are using capital G or H and square brackets, e.g., Gx_1[h].
We make extensive use of linear functionals which correspond
to pdf’s or Poisson intensities. These are always written using
lowercase Latin or Greek letters. Test functions of functionals
are always denoted h. Variables bound within the scope of a
functional are marked by a tilde. Such variables, e.g., Zj, are
always integrated out as part of the functional. For example,

2 = [ b £ @) da
o[fs (2| 2)] :/fz(z|x)v(a:)dx, etc.

C. Time-, track- and measurement-indices

Time is accounted for by the time index k. The list of
time steps (I,/ + 1,...,k — 1,k) is in shorthand notation
written as [ : k. Association hypotheses are denoted a and
b. The sets of such hypotheses at time step k£ are denoted
Ay, and By, respectively. Measurement indices are denoted j,
while track indices are denoted <. The notation a?C indicates
the measurement claimed by track number 1 at time step k
according to a. A notation such as a1 k ! indicates the matrix
of track-to-measurement associations for tracks 1 to ng_ for
time steps 1 to k — 1 according to a. Notation for association
hypotheses is further elaborated in the next section.

ITII. ASSOCIATION HYPOTHESES

Any attempt at expressing the full multi-object density for
conventional MTT problems must necessarily invoke asso-
ciation hypotheses in one way or another. However, there
is limited consensus on how the fundamental concepts of
association hypotheses and tracks should be understood and
defined. In this paper, a track is defined as a temporal se-
quence of measurement indices,' possibly including the zeroth
measurement, which represents misdetection or non-existing
target, depending on context.

IThis is called a single-target hypothesis in [6].

A. Williams’ hypotheses

The hypothesis representation proposed in [6], hereafter re-
ferred to as W-hypotheses, was described as similar to Kurien’s
track-oriented MHT [14], since it utilizes similar track trees.
It differs from conventional MHT representations, including
Kurien’s, since it in some cases allows the possibilities of both
existence and non-existence of the target to be maintained
within a single node in this track tree. In particular, when
a new track tree is established, the possibilities that the root
measurement is a measurement of the hypothesized target, and
that the root measurement is just clutter, are both accounted
for by the same root node.

For notational convenience, and in order to explore similar-
ities with Reid’s MHT, we use a matrix-based notation for this
representation, originally proposed in [12]. The matrices are
of dimension k x ny, where k is the last time step and ny, is the
number of measurements so far processed. The bookkeeping
is done by means of the linear index function L(j;k:) =
J+ 257 my with inverse L1 (s k) = i — Y5, my. What
L does is to give us the index of the track with origin in
the measurement z;, while its inverse gives the identity of
the original measurement in track number ¢. The number of
tracks at time k is ny = L(myg; k). We can then define the
set Ay of W-hypotheses at time & as the set of mappings?
a:{1,...,n5} —{0,...,mi} x...x{0,...,my} such that
R1: For any measurement index j € {1,...,my} there exists
one track index i € {1,...,n;} such that a}, = j.

For any measurement index j € {1, ..., my} there exists

at most one track index i € {1,...,n,} such that a} = j.

R3: There exists a W- hypothe51s a in the previous hypothesis

set Ag_1 such that a, Z’“ 1 =a.

For any track index i € {1,...,ny}, if there exists no

| < k such that af >0, and ¢+ < ng_1, then a}; =0.

R5: For any track index ¢ € {1,...,ny}, if there exists no ! <
k such that a} > 0, and i > ny_1, then a}, = L~1(i; k).

R2:

R4:

Requirement R1 means that all measurements must be ac-
counted for. Requirement R2 means that tracks cannot share
measurements. Requirement R3 means that any current hy-
pothesis must have a parent hypothesis, i.e., that the collection
of hypotheses is expanded in a recursive manner. Requirement
R4 means that if the track with origin in 2} fails to claim z},
then this track represents a non-existing target for all future.
Requirement R5 means that any new track with index ¢ at time
step k must originate with the corresponding measurement at
time step k.

B. Reid’s hypotheses

Any set of W-hypotheses gives rise to a larger set of
hypotheses b € B, O Aj of the kind that was used by Reid
in [2]. We refer to these hypotheses as R-hypotheses. For
any W-hypotheses a, the corresponding set of R-hypotheses
is obtained by relaxing the requirement R1. In other words,

2Such a mapping between integers is clearly isomorphic to a corresponding
k X mp-matrix.



an R-hypothesis does not necessarily need to account for all
measurements.

REMARK 1. Reid’s seminal paper [2] developed the concept
of association hypotheses through 3 successive refinements of
the outcome space, referred to as Number, Configuration and
Assignment. The Number event concerns how many measure-
ments are associated with existing targets, newborn targets and
with clutter. The Configuration event concerns how the set of
measurements is partitioned into subsets associated with each
of these three sources. The Assignment event concerns “the
specific source of each measurement which has been assigned
to be from some previously known target”. These Assignment
events are identical to the R-hypotheses as defined above.

C. Illustration of the hypothesis formalisms

Let us take a closer look at how W-hypotheses and R-
hypotheses arise in the scenario illustrated in Figure 1. At
k =1 we have a single W-hypothesis:

A={[11}.

At k = 2 we get 3 W-hypotheses:
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It is evident that the larger amount of hypotheses in Reid’s
MHT is due to its method for handling new tracks. In practice,
this complexity can be mitigated by using a track-oriented
MHT [14], which only enumerates all these tracks, and not all
the generated hypotheses, and/or by using a track initialization
method that works outside of the MHT. It is also evident
that for every R-hypothesis there is a unique underlying W-
hypothesis. We prove this later in the paper.

D. Discussion of other representations

Notable alternative approaches to the concept of association
hypotheses include [15] and [16].

In [15], a distinction was made between data-to-data
hypotheses and target-to-data hypotheses. Data-to-data hy-
potheses concern how measurements at one time step are
associated to measurements at other time steps. Target-to-
data hypotheses concern how measurements are generated
by specific targets. Reid’s Assignment events are the same
as data-to-data hypotheses, while target-to-data hypotheses
provide a finer refinement of the outcome space. Target-to-
data hypotheses are frequently encountered in [3], since many
multiobject densities are conveniently described in terms of
such entities. We argued in [11] that association hypotheses
with well-defined posterior probabilities can be defined as
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Fig. 1: Illustratory scenario.

equivalence classes of such entities, under the equivalence
relation of permutation-equivalence.

In [16], the multi-target Bayes filter was generalized and
formulated in terms of labeled random finite sets. The re-
sulting association hypotheses are similar to W-hypotheses,
but include explicit target labels in addition to measurement
histories. The factorization of [6] is not present in [16],
implying that the formalism in [16] involves a larger amount
of association hypotheses than in [6]. For standard tracking
applications, the utility of target labels is not obvious: While
neither [2], [6], nor [15] include explicit labels on targets,
these approaches are nevertheless also able to provide labels
on tracks in an implicit manner. We will come back to this
topic towards the end of Section VI-D.

IV. KEY CONCEPTS IN FISST

FISST is a Bayesian formulation of point process theory.
An RFS is essentially the same as a simple point process [4].
FISST provides rules for how the random properties of RFS’s
can be represented in terms of multiobject densities. This
allows us to extend Bayesian probability calculus from the
conventional domain of random vectors to the more complex
domain of RFS’s.

Multiobject densities are functional derivatives (see the next
paragraph) of belief-mass functions, or more generally of
p-gfl.’s. The belief-mass function of a random finite set =
is the probability S=(S) = Pr(E C S). Here S is a subset
of the base space, i.e., if € Z and x € R?, then S C R%
FISST utilizes the so-called set integral [3 p. 361]. Let f(X)
be a set function, i.e., a function of the realization X of the
finite set =. Then the set integral of f(X) over S is defined

as
/f(X)(SX = i i/ fHxt, . 2" )dat .. da”,
s =l Jsx. xs

Here n is the cardinality of X, and f({z?,...,2"}) = f(X)
under the constraint that |X| = n. A multiobject density



f=(X) is a function which produces a non-negative real
number from any realization X of =, and which normalizes to
one under the set integral: [ f=(X)dX = 1. The multiobject
density f=(X) is related to the belief-mass function according
to the requirement that 8=(S) = [ f=(X)dX for all § C R

Belief-mass functions are special cases of p.g.fl.’s. The
p-g-fl. of a random set = is defined as

Gz[h] = /thE(X)5X (1)

where h : R? — [0,00) is a test-function, and the notation
h* signifies the product [T, .y h(z). According to the fun-
damental theorem of multiobject calculus [3 p. 384] we can
recover the multiobject density from the p.g.fl. by

0G=
=(X) = —=|0]. 2
f2() = S22 0] @
Here %%E = 5;;?_(_;@” is the iterated functional derivative of
Gz in the directions of the delta-functions d,1(-),...,d.n (")
under the condition that X = {z!,... 2"}. These derivatives
are found as the limit values
0G G[h + €d;] — G[h
0G 1) = i ClhE 0] = Gl 3)
ox eN0 €

Thus, p.g.fl.’s provide a transform-domain for the manipula-
tion of multiobject densities. Many properties of p.g.fl.’s are
listed in [3], and these properties often make manipulation
of p.gfl’s easier than manipulation of the corresponding
multiobject densities. For example, the p.g.fl. of the union of
two independent random sets is simply the product the respec-
tive p.g.fl.’s of those sets. The corresponding relationship for
multiobject densities is more complicated.

A. Important random sets and their p.g.fl.’s

The Poisson RFS with intensity A(z) has multiobject den-
sity and p.g.fl. given by

F(X) =exp (=A[]) [T M=) )
zeX
G =exp (A[h — 1]). 5)

The p.gfl. of the singleton set is referred to as a linear
functional. If X = {x} with probability one, and = has the
pdf f(z), then the p.g.fl. of X is

ﬂM=/&@M@Mn ®)

A Bernoulli RFS with existence probability r and existence-
conditioned pdf f(x) has multiobject density and p.g.fl.

1—r ifX =90
F(X) :{ rf(z) ifX ={z} @)
G[h] =1 —r + rf[h]. 8)

Notice that the Bernoulli p.g.fl. reduces to a linear p.g.fl. in
the limit case of unity existence probability.

A union of independent Bernoulli random sets is known as
a multi-Bernoulli RFS. Its p.g.fl. is simply the product of its
constituting Bernoulli p.g.fl.’s, while its multiobject density

has a more complicated expression (see (11) in [6] or page
368 in [3]).

An RFS whose p.gfl. is a weighted sum of multi-Bernoulli
p-g.fl.’s is known as a multi-Bernoulli mixture. If the sum goes
over W-hypotheses we refer to this as a W-MBM. If the sum
goes over R-hypotheses we refer to this as an R-MBM.

V. ASSUMPTIONS

During estimation cycle number k we assume that all &
targets that existed at time k with states z%_,,i=1,...,&1
remain from the previous cycle. At time k each of these targets
have densities

m@=/mdwﬂm%Jle ©)

where f,(xi|z}_,) is the kinematic transition pdf and
f(zt_,) is the posterior pdf at time k¥ — 1. In addition to
these targets, new targets may appear at time k according to
a Poisson process with intensity p(z). We will discuss the
relationship between this bona-fide birth model and Reid’s
more vague assumptions on this point in more detail in Section
VII-B. Once a target exists, it cannot die.

At time k£ we receive a set Zj, consisting of m; measure-
ments z;, . .., z, . Given that measurement z;, is generated by
target x%, its kinematic likelihood is given by f.(z7|z%). Any
target generates a single measurement with constant probabil-
ity Pp, otherwise it is unobserved. An unknown number ¢y, of
the m; measurements are clutter measurements generated by
a Poisson process whose intensity A is constant and non-zero
everywhere in the sensor’s field of view.

Furthermore, standard independence assumptions apply
(see. e.g. [2], [3] or [17]).

VI. THE MULTI-TARGET BAYES FILTER WRITTEN IN
TERMS OF REID’S HYPOTHESES

This section contains the main contribution of the paper,
which is to show that we can recover Reid’s recursive hypoth-
esis probability formula [2] from Williams’ formulation of the
multi-target Bayes filter [6]. Before delving into the technical
details, we briefly sketch the main steps of this argument:

A Any W-MBM can be expanded into an R-MBM. Thus
we are free to formulate the multi-hypothesis nature of
the original prior as an R-MBM.

B We can obtain the predicted R-MBM using the same
machinery as for the W-MBM.

C The measurement update transforms the R-MBM into a
W-MBM.

D The only components with non-integer existence proba-
bility in this W-MBM are tracks on new targets. Follow-
ing the premise of Step A we can expand the products
over new targets to get a new R-MBM. We can then find
the probability of each new R-hypothesis as some factor
times the probability of its parent R-hypothesis.

In the remainder of this section we elaborate and justify this
argument.



A. The prior

Following [6], we assume that the multi-object posterior
before estimation cycle k is given by a p.g.fl. of the form

Gy [h] = GI% (WGP 1) (10)
where
GRP [h] =exp (vp—1[h — 1)) (11)
GRoPln =Y W GR (1] (12)
aC€Ag 1€Tk_1

szl[ ]—1_7% 1+7"2a1 ;Z“l[h] (13)

under the constraint that
Swi=Y [ witi =1 (14)

a€Ay a€Ag i€Tk—1

This constraint ensures that each wj;_; can be viewed as the
probability of the W-hypothesis a. This form is quite general,
and we shall see that it conforms well with the output of
the MHT. Also, the output of the PHD filter and the joint
probabilistic data association (JPDA) and its relatives [18] can
be described by this form.

To expand the multi-Bernoulli mixture (12) into a sum over
R-hypotheses, we notice that for any W-hypothesis a there may
exist several R-hypotheses b. An expansion into R-hypothesis
is trlggered by every track ¢ for which the existence probability
rk 1 1s non-integer. It can be seen from the expressions in [6]
that under the no-death assumption, any such track will either
be a newborn track, or a track which never has received a
second measurement after its root measurement.

To define the hypothesis expansion in mathematical terms,
we define the following index sets for a given a € Aj_1:

V(a) = {z € Ti—1 such that 0 < rk 1 < 1} (15)

E(a) = {z € Ty such that 1| = 1} (16)
The expansion then goes over all subsets S C V(a). That is,
any such subset S together with the underlying W-hypothesis
a constitute an R-hypothesis b. While there may be several R-
hypotheses for each W-hypothesis, there is one and only one
W -hypothesis corresponding to each R-hypothesis.

PROPOSITION 1. If an R-hypothesis b is given, then the
corresponding W-hypothesis a follows uniquely.

Proof. Any R-hypothesis b generated by the W-hypothesis a
arises due to the replacement of zero or more root measure-
ments with zeros. To construct the reverse mapping we need
to identify the missing root measurements, so that requirement
R1 is satisfied. This can only be done in one particular way,
because root measurements only occur in designated places,
given by the index function L(j; k). O

Thus, given an R-hypothesis b, we can denote its underlying
W-hypothesis by a[b]. Also, let S[b] denote the subset of V'(a)

that yields b. The multi-Bernoulli mixture can then be written
as a sum over R-hypotheses as follows

Z wh_, H H,;blh

beEBr_1 1€Tk—1

mbm

a7

where

b _ . alb
W1 =W,_7

[1

1€V (a)\S[b]

it = M i e SlU B(alb])
k=1 1 otherwise

(1=m") II 7™ as)

i€S[b]

19)

and where By, denotes the set of all R-hypotheses generated
by expansion of W-hypotheses in Aj_1.

REMARK 2. We see that all the track-components in (19) are
Bernoulli p.g.fl.’s with unity or zero existence probabilities.
Thus, all existence uncertainty has been subsumed by the
different R-hypotheses.

REMARK 3. The quantity w271 will automatically satisfy
> beBi s w?_, = 1 insofar as the normalization (14) holds for
the original multi-Bernoulli mixture, and gives the probability
of b being the correct association. In order to get separate track
weights wlkfl we are free to factorize w?_, into ny_ factors
in any way we may wish.

B. The prediction

The transition of the prior p.g.fl. G_1[h] into the predicted
p.gfl. Gijr—1[h] is described in [6] and [12] in terms of W-
hypotheses. Under the given assumptions, the transition can
also be expressed in terms of R-hypotheses. In particular,
zero death probability ensures that the MeMBer-component
remains a mixture over the same R-hypotheses. The prediction
equations can be found as a special case of Theorem 1 in [6]
as

= ()
+/fm(fk|xk71)vk71(xk71)dxk71 (20)

Vgl—1(Tx)

fifston) = [ oo (o )dme @D
W1 w;bl 22)
ooy =i € {01} (23)

The predicted p.g.fl. is then
Grp—1[h] = G [MGTRE [R] 24)
where
Ghli- 1{h] =exp (vgjk—1[h — 1]) (25)
(mbm b bt
k|2 1 Z H w;\k 1HI:|k 1 [A] (26)

beBr_11€ET—1

and where the Bernoulli functional H*?

klk 1[h] is given as in
(19) with f 2 replaced by fk“C 1



REMARK 4. The prediction of the Poisson component has
no well-defined counterpart in Reid’s MHT. The remainder of
the prediction is entirely equivalent to the prediction step in
Reid’s MHT under Gaussian-linear kinematics.

C. The posterior in terms of W-hypotheses

Observing a set of measurements Z, = {z},...,2;"}
causes the set of predicted hypotheses to be expanded into a
larger set of posterior hypotheses. Theorem 2 in [6] provides
expressions for the elements of this expansion in terms of W-
hypotheses, and we repeat this formulation below, adapted to
our assumptions and notation.

The posterior p.g.fl. is of the form

Gilh] = GRip [GR™™ 1] 27)
where
GYPP[h] =exp (vg[h — 1]) (28)
Grmin o Y [ wi G ) (29)
a€Ay €Ty
G [h] =1 — i 470 £ [p). (30)

In the formulation of W-hypotheses, a new track is es-
tablished with root in each measurement in Zj. For every
track number ¢, we have four possible cases, governed by
the posterior W-hypothesis a. First, a’ may hypothesize that
the target in track number i does not exist. Second, a’ may
hypothesize that the target in track number ¢ is possibly
detected for the first time. We refer to this as a newborn track.
In this case, the target may or may not exist. If it does not exist,

then zg’“ is a false alarm under a. Third, a’ may hypothesize
that while the target in track number ¢ previously was detected,
it was not detected at the current time step. In this case the
target must exist due to the no-death assumption. Fourth, a’
may hypothesize that the target in track number ¢ was both
detected previously and at the current time step, in which case
it exists.

Using the matrix-based formulation of W-hypotheses pro-
posed in [12] (see Section III), these possibilities can be
accounted for by partitioning the track indices ¢ € {1,...,nx}
into four sets:

N(a) ={i s.t. b}, = Ogx1}
B(a) ={i st al, ; =04 1x; and a} > 0}
M (a) ={i s.t. al, = 0 and a} > 0 for some | < k}
D(a) ={i s.t. ai, > 0 and a] > 0 for some [ < k}. (31)
For the non-existence case i € N(a) we have
wi =1, b =0 (32)

For the new target case ¢ € B(a) we have

wi]al =X+ Povgjp—1[f=(2,"%)] (33)
y P B ap |~
et _ PDURJK 1[f=(z, Lfk)] (34)
A+ Povge—1[fs(2,."Zx)]
il (2 ) o1 (2
1 ) LR )01 (0 5
Unlk—11f=(2," [Z1)]
For the misdetection case ¢ € M (a) we have
wh :wi’&ll(l — Pp) (36)
rie’ =1 (37)
0 (k) =y (). (38)

Notice that the existence probability remains unity in this
case under our assumptions. This is in contrast to the more
general case treated in [6], where the existence probability
may decrease since a misdetection can be taken as evidence
for target death. For the measurement update case ¢ € D(a)
we have

wp® =wih_ Pofifioa (503 (39)
=1 (40)
w G o) £ (2
i (gg) = e ), (41)

i,at al | -
fk|k71[f2(zkk|xk)]
The posterior Poisson component, which accounts for undis-
covered targets, is given by the intensity function

v (k) =(1 = Pp)vgpr—1(zk). (42)

REMARK 5. We see that if there is no hypothesis-conditional
existence uncertainty in the predicted multi-Bernoulli mixture,
then hypothesis-conditional existence uncertainty in the poste-
rior multi-Bernoulli mixture is only present in tracks with root
measurements in the last measurement scan Z;. These are the
tracks belonging to B(a). To translate the posterior to a form
similar to Reid’s MHT, we therefore need to expand the part
of the product in (29) which goes over newborn tracks.

D. The posterior in terms of R-hypotheses

Let Bj, denote the set of R-hypotheses generated by relaxing
Requirement R1 for the set Ay of posterior W-hypotheses, and
let b € Bi. We define the following quantities

wf =N (L= o) I (43)
i€Tk
1 ifie N(b)JM(b)
q" =9 ve-1lf=(zT0)]if i € B() (44)
i,b° bi |~ P
fk|k_1[fz(zkk|$k)] if i € D(b).
0 = Number of false alarms according to b
0 = Number of detected targets according to b
& = Number of existing targets according to b. (45)



The index sets B(b), N(b), M(b) and D(b) are defined as
in (31), with a replaced by b. Furthermore, since every R-
hypothesis b belongs to a well-defined W-hypothesis a[b], we
also define

5 = { el

PROPOSITION 2. Using the entities defined in (43) - (46),
the multi-Bernoulli mixture component of the posterior p.g.fl.
can be written as a sum over R-hypotheses as follows

apromin oo Y wh I £ 1.

beBy, €Tk

if a'[b] = b°

46
otherwise. (46)

(47)

Proof. Following the observations in Remark 5, we expand
the product of Bernoulli p.g.fl.’s over the newborn tracks i €
B(a). Let us first notice that a simple algebraic manipulation
yields

Povgji—1[f- (2% %]
A+ Povgip—1[f- (2% |x)]
_ A

A+ Povgjp—1[f=(2" |2k)]

This allows some cancellations to be made so that the product
over newborn tracks becomes

e

1—r* =1-

(48)

i€B(a)

=TI (3+ Povurlf-(oia)n(an) )

i€B(a)

= Z /\‘B(“)\S'P]'DS'Hvk\kq[fz(zgz\i‘k)h(ik)})- (49)

SCB(a) i€s

With this, the full expression for the multi-Bernoulli mixture
becomes

GEP (R o Yo Y

a€Ar SCB(a)

w1 1

[

i€M(a)J D(a)

x (AB(‘”\S'PDS' I [h])

i€S

(50)

What remains in order to arrive at (47) is a small exercise in
bookkeeping:

» Counting the numbers of Pp-, (1 — Pp)- and A-factors
in the index subsets D(a), M(a), B(a) and S.

« Recalling that any combination of ¢ and S yields a partic-
ular b, and thus replacing a’s with ’s, in accordance with
(46). Also notice that B(b) = S, while N(a) C N(b).

For brevity these details are omitted. O

REMARK 6. The significance of this result is that we obtain
a closed form expression, namely (43), for the probabilities
of R-hypotheses, derived in the framework of FISST. Even
without further approximations or assumptions, the similarity
with (16) in [2] should be evident.

The p.g.fl.-representation (47) translates into a multiobject
density as follows. Let Y, = {yi,,yi} be the set of
detected targets at time k, let Bi be the set of R-hypotheses
which hypothesize that ¢ targets have been discovered, and let
E(b) = T \N(b). The multiobject posterior of Y} is then

fYi| Z1,... Sl ST £ (2

beBs o €Tk

L) = 619

where o ranges over all one-to-one mappings E(b) —
{1,...,&}. This density contains the available information
about the set of discovered targets at time k, and it can
be constructed from hypothesis probabilities and hypothesis-
conditional pdf’s. The summation over ¢ arises due to the set-
derivative (2), or more precisely due to Mahler’s generalized
product rule [3 p. 389], and ensures that the multiobject density
is permutation-invariant. For a given association hypothesis
b, we can use any of the summands in the sum over ¢ as a
representative of its hypothesis-conditional pdf. In this context,
it is interesting to notice that labels (whether on targets or on
tracks) have no impact on the tracking results in the standard
multitarget Bayes filter [19]. We see that labels on tracks are
implicitly present in (51), and such labels can play a role in
approximation schemes, such as the merging of hypotheses in
the JPDA. Bona-fide target labels play no role in the standard
multitarget Bayes filter, but may yet have a meaningful role
to play in non-standard tracking applications, such as fusion
between radar and transponder signals in air traffic control.

VII. GAUSSIAN-LINEAR KINEMATICS AND REID’S MHT

A. Gaussian-linear kinematic assumptions

For the special case of a Gaussian-linear tracking problem
we make the following standard assumptions

fe(@plrg—1) =N (2x; Frg-1,Q)
fo(zl]al) =N (2] ; Hxy, R) if 2] is gen. by i,

(52)
(53)
in addition to the assumptions already listed in Section V.

Furthermore, we assume that the state vector and observation
matrix are as in Section VII of [2]

T = [Px,mpy,kwx,k,vy,kf (54)
1 0 0 O
H‘[o 10 o] (55)

where p denotes position and v denotes velocity.

B. The birth model

When Gaussian-linear kinematics are used in the general
machinery so far presented, the only difference from Reid’s
MHT is with regard to the treatment of newborn targets.
The construction of the birth process was only sketched
in colloquial terms in [2 p. 848], and summarized by a
single Poisson intensity denoted Sxt. Comparing this with the
standard model used here, it is not clear whether Syt should
be taken as referring to the Poisson intensity of the unknown
target density v(xy) or the bona-fide birth density p(zx). In
this paper, we choose the former option. Consequently, we



do not discuss estimation of v(zy) any further in the sequel.
Instead we assume that it is given in a form that resembles the
description and recommendations in [2] as much as possible:

v(xk) = Bnrxs(Hzg )N (H x5 0, P,). (56)

Here xs(+) is the indicator function of the surveillance region,
P, is a diagonal 2 x 2 matrix representing a priori knowledge
of target velocity, and

. oo 10
H_[O()Ol}

such that H*zy, = [vg g, vy] "

(57)

C. Comparison with Reid’s MHT

Under these assumptions, we get the following expressions

for the functionals involved in the hypothesis score wZ:

Uk\k—l[fz(zzzmk)] :BNT/N(ZIZ? ; Hx, R)
N(H*xk y 07 Pv) dxk

= fANT (58)
i.bt bl bt
Al G = [N How B
N(x; xi’lbk_l,P,iiZ_l) dxy,
b i,bt i,b
=N(z" s Heglh o Siay)  (59)

where S,i’ll;;_l = H PZ’IZ_l
Piif_l are sufﬁciept statistics' for the pdf f;’ll;l_l (). Inserting
these expressions into (43) yields

b1k — B(b
wh =w) A P(1 - Pp)s 0!

b ibt i,b’
X Nz ka|k71’Sk|k71)'
1€D(b)

HT + R, and where a:jc"bk_l and

(60)

This expression is identical to Reid’s recursive hypothesis
probability formula (16) in [2].

VIII. CONCLUSION

We have shown that Reid’s MHT can be established from
the framework of FISST. In particular, we have derived Reid’s
recursive hypothesis probability formula by means of a repre-
sentation in terms of multi-Bernoulli mixtures, with basis in
[6].

The only discrepancies between the classical MHT approach
and the modern RFS approach lie within the treatment of
newborn and unobserved targets. Our derivation of Reid’s
formula requires the distribution of unknown targets to be
Poisson and spatially constant, and known by means of some
procedure outside of the MHT framework.

Concerning future and ongoing research, it is possible to
conduct a similar analysis purely in terms of multiobject den-
sities. Also, the analysis can be done under the interpretation of
Onr as a standard birth model, instead of the unknown target
density. This yields a formulation of the multitarget Bayes
filter which deviates slightly from Reid’s MHT.

It remains debatable whether FISST or MHT gives the most
general formulation. On the one hand we did indeed develop
Reid’s MHT within FISST. On the other hand the association
hypotheses contain more information than what is explicitly
encoded in the output of the multiobject density (51).
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