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Abstract— The vast majority of literature on target tracking
assumes that the position and orientation of the tracking sensor
is stationary and/or known. However, for many applications
the sensor is mounted on a moving vehicle, whose motion
only can be estimated with a non-negligible uncertainty. In
this paper, we suggest seven possible architectures for Kalman
filtering in the simplest such scenario that we can construct:
Assuming that both the ownship and a single target moves along
a straight line according to linear kinematics. Some of the
tracking filters are parameterized in the stationary world frame,
while others are parameterized the body frame of the ownship.
Also, some of the tracking filters take correlations between
target state and ownship state into account, while others neglect
such correlations. Simulations demonstrate that the suboptimal
architectures may or may not reach similar performance as
the optimal filter, depending on the process noise of the target
and the performance measure chosen. Simulations of multi-
target scenarios demonstrate that compensation of navigation
uncertainty generally can reduce track-loss rates and OSPA
distance.

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. PREVIOUS WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. CONCEPTUAL FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . 2
4. SEVEN ARCHITECTURES FOR TARGET TRACKING

WITH NAVIGATION UNCERTAINTY . . . . . . . . . . . . . . . . . . 3
5. SIMULATIONS OF PURE FILTERING . . . . . . . . . . . . . . . . . 5
6. IMPACT ON DATA ASSOCIATION . . . . . . . . . . . . . . . . . . . . . 9
7. CONCLUSION AND FUTURE RESEARCH . . . . . . . . . . . 10
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1. INTRODUCTION
In target tracking, the focus has traditionally been on mov-
ing targets (e.g., ships) tracked by means of a sensor (e.g.,
surveillance radar) whose position and orientation is fixed
and known. However, many applications (e.g., collision
avoidance for autonomous surface vehicles or driverless cars)
lead to tracking problems where the sensor is mounted on a
moving vehicle, known as the ownship. The tracking method
must then take the motion of the ownship into account.
Furthermore, errors in the ownship navigation will affect the
errors of the tracking method.

Ownship navigation is typically carried out by means of
an indirect, also known as error-state Kalman filter [1, 2]
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which performs fusion of measurements from sensors such
as inertial measurement unit (IMU), compass and a global
navigation satellite system (e.g., GPS). More accurate navi-
gation can sometimes be achieved by estimating the position
relative to known landmarks or transponders, or by means
of simultaneous localization and mapping (SLAM), which
also involves estimating a map of observed landmarks and
keeping track of correlations between the landmarks and the
ownship. Target tracking is typically carried out by means
of a direct, also known as full-state, Kalman filter, which
estimates position and velocity of a target by means of range
and bearing measurements from an imaging sensor (e.g.,
radar). Target tracking can typically be decomposed in the
two tasks of filtering and data association. In this paper, we
are mainly concerned with the former task.

The optimal solution to the filtering part of target tracking
with navigation uncertainty is found by generalizing SLAM
to deal with moving landmarks. This entails maintaining a
joint state vector of ownship state and target states with a
corresponding joint covariance matrix. This may, however,
be undesirable for several reasons. Allowing target mea-
surements to affect the ownship navigation can be potentially
disastrous if data association or filtering models faulty.

An alternative is to maintain correlations without allowing
the target measurements to affect the ownship state. This is
done in a Schmidt-Kalman filter (SKF). We may also opt for
an even simpler solution: We can let the uncertainty of the
ownship affect the target estimate, without maintaining any
joint correlations. In addition to these issues, one may choose
between representing the target state in the stationary world
frame, in a body frame moving along with the ownship, or in
some kind of hybrid frame.

This leads to several possible approaches to target track-
ing with navigation uncertainty. In [3], we studied three
such filtering architectures for filtering with navigation in
six degrees of freedom. In this paper we provide a more
systematic comparison of several more filtering architectures,
and we also study how the different architectures impact data
association. We address the simplest possible scenario of
relevance: A single target and the ownship are both moving
in one dimension according to Gaussian-linear models.

The paper is organized as follows: In Section 2 we discuss
previous work on the problem of target tracking with navi-
gation uncertainty. In Section 3 we describe the estimation
problem. We propose seven fundamental filtering architec-
tures in Section 4. Simulation results for the filtering methods
are discussed in Section 5. Results for multi-target scenarios
with data association uncertainty are reported in Section 6. A
conclusion follows in Section 7.
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2. PREVIOUS WORK
As argued in Section 1, target tracking under navigation
uncertainty is intimately linked to SLAM, and several re-
searchers working on SLAM have dealt with moving targets
as part of their SLAM methods. In [4], a generalized version
of the PHD filter was used to solve the combined problem of
SLAM and target tracking. A more general, but also more
abstract, solution to the same problem was proposed in [5].
The simpler problem of detecting and tracking a single target
using a moving platform was treated in [6]. All of these
approaches were founded upon finite set statistics (FISST),
and were implemented by means of Rao-Blackwellized par-
ticle filtering. Both [4] and [6] addressed the differences
between SLAM and target tracking. In [4], separate maps
were constructed for static SLAM features and for dynamic
targets. In [6], the target measurements were prevented from
affecting the ownship state in a manner similar to the SKF.

An EKF-based solution to the combination of SLAM and
target tracking was outlined in [7]. The author of [7] recom-
mended that targets should be tracked in the local body frame
of the ownship, and that uncertainty pertaining to the ownship
plant model should be injected into the resulting body frame
process model of the target.

Another body of relevant research comes from sensor bias
estimation using targets of opportunity [8]. Instead of es-
timating the bias, the authors of [9] proposed to treat the
bias as a zero-mean nuisance parameter with known a priori
statistics. The impact of the bias could then be mitigated by
means of an SKF. The SKF was applied to the more general
case of target tracking with navigation uncertainty in [10].
The authors of [10] parameterized the target state in the world
frame, and argued that navigation uncertainty primarily is
of importance when there is a need to transfer the tracking
results to other applications in a global reference frame.

3. CONCEPTUAL FRAMEWORK
The moving platform tracking problem involves the following
four models: Process model for the ownship state, process
model for the target state, measurement model(s) for the
ownship state and measurement model(s) for the target state.

Ownship process model

The ownship has the state vector η = [ρo, vo, bo]T, containing
position ρo, velocity vo and acelerometer bias bo of the
ownship. In continuous time, the ownship state vector obeys
the linear model η̇ = F oη +Bu+Gono where

F o =

[
0 1 0
0 0 1
0 0 −α

]
, B =

[
0
1
0

]
, Go =

[
0 0
1 0
0 1

]
.

The input u is equal to the ownship acceleration. In the
error-state implementation of the ownship navigation filter,
the measured acceleration is used as input u, and the corre-
sponding measurement noise is accounted for by the process
noise no in the filter. We model no as a continuous-time white
noise process distributed according toN (0, Doδ(t−τ)). The
process noise covariance matrix is Do = diag(σ2

a , σ
2
b) where

σ2
a is a continuous-time equivalent of the accelerometer noise

covariance, while σ2
b is the covariance of driving noise of

Gauss-Markov process of the accelerometer bias.

The continuous-time models are discretized exactly using

Van Loan’s method [11], yielding a model of the form

ηk = Ψηk−1 + uk + nok

The discrete-time plant noise nok is a white sequence with
covariance Qo, which also is given by the formulas in [11].

Target process model

Although the target kinematics can be speficied in any known
reference frame, it is most natural to do this in an inertial
frame, i.e., the world frame. We let the world frame state
vector of the target be xw = [ρw, vw]T where ρw is position
and vw is velocity in the world frame. The continuous time
model is ẋw = Fxw +Gn where n ∼ N (0, Qδ(t− τ)) and
where

F =

[
0 1
0 0

]
, Q = σ2

v .

This is discretized to a discrete-time model of the form

xwk = Φxwk−1 + nk (1)

where nk is a zero-mean Gaussian white sequence whose
covariance Q is given by the formulas in [11].

For future reference we also introduce the ingenuous body
frame target vector xb and the factitious body frame target
vector xf which are related to xw according to

xb =

[
ρb

vb

]
= xw − Eη, E =

[
1 0 0
0 1 0

]
xf =

[
ρb

vw

]
= xw − Tη, T =

[
1 0 0
0 0 0

]
.

Ownship measurement model

The navigation filter utilizes measurements of acceleration
and world-frame position of the ownship. The acceleration
measurements are used in the discrete-time inputs uk of the
navigation filter, so only the position measurements require a
bona-fide measurement model. This model is

yk = Hoηk +mo
k = Hξy[xTk , η

T
k ]T +mo

k (2)

where Ho = [1, 0, 0]. We have also introduced the SLAM-
like measurement matrix Hξy = [0, 0, 1, 0, 0] for future
reference. The noise sequence mo

k is zero-mean Gaussian
white with covariance Ro.

Target measurement model

We measure the body-frame position of the target (e.g., with
a radar), and the measurement model can be written in the
following three equivalent forms

zk = H(xwk − Eηk) +mk = H(xwk − Tηk) +mk

= Hxwk −Hoηk +mk (3)

where H = [1, 0] and where mk is a zero-mean Gaussian
white sequence with covariance R. Notice that zk is used for
target measurements while yk is used for ownship measure-
ments.

2



4. SEVEN ARCHITECTURES FOR TARGET
TRACKING WITH NAVIGATION

UNCERTAINTY
In this section we describe seven possible architectures for
target tracking in the presence of navigation uncertainty. All
the filters involve the following steps

1. Propagation (prediction) of ownship and target motion.
2. Ownship update, and possibly reframing of the target.
3. Target update.

By ownship update we mean the processing of a measurement
of the model (2), while a target update means the processing
of a measurement of the model (3).

The basic world-frame filter

The most straightforward way of performing target tracking
on a moving platform is simply to use the state estimates
of the ownship navigation in the measurement equation (3),
while ignoring the corresponding navigation uncertainty. We
call the resulting filter “World basic”.

The SLAM-like approach

The optimal solution to the estimation problem described in
Section 3 involves propagating the joint state vector ξk =
[ηTk , (x

w
k )T]T together with its covariance. Notice that we

have chosen to to parameterize the target state in the world
frame. We could also have developed the SLAM-like filter
in the body frame, and that filter would also be optimal,
and entirely equivalent to the world frame SLAM-like filter,
despite the different implementation.

The propagation model— Let us introduce the SLAM-like
transition matrix and the corresponding process noise covari-
ance matrix given by

Φξ =

[
Φ 0
0 Ψ

]
and Qξ =

[
Q 0
0 Qo

]
.

The propagation step is then given by

p(ξk+1 | zk, yk) =

∫
N (ξk+1 ; Φξξk, Qξ) p(ξk | zk, yk)dξk

which is solved by a standard Kalman filter propagation step
insofar as the prior p(ξk | zk, yk) is Gaussian, which is the
case.

The ownship update—This step is a Kalman filter update for
the likelihood p(yk | ξk) = N (yk ; Hξyξk, R

o) with prior
expectation and covariance from the previous step.

The target update—Similarly, this step is a Kalman filter up-
date for the likelihood p(zk | ξk) = N (zk ; [H,−Ho]ξk, R)
with prior expectation and covariance from the previous step.

The Schmidt-Kalman filter in world frame

The world frame SKF is quite similar to the SLAM-like filter,
but with one important difference. During the target measure-
ment update, the lower block in the joint Kalman gain is set
to zero, thereby eliminating any flow of information into the
ownship state. This ensures that information from the target
measurements zk never can enter the ownship state or its
covariance. All the formulas required for implementation are
straightforward to adapt from [9], with exception of equation

(8) in that paper: Since the navigation state in our paper is
time-varying with transition matrix Ψ, we must postmultiply
with ΨT in the propagation of the cross-covariance.

The Schmidt-Kalman filter in body frame

The body frame SKF maintains a joint state vector which
is different from the state vector of the previous two filters.
Its state vector is ξbk =

[
(xbk)T, ηTk

]T
. The corresponding

covariance matrix is denoted

Sbk =

[
P bk Ck
CT
k P o

k

]
.

where P o
k by the construction of the SKF is always identical

to the covariance of the standalone ownship navigation, and
P bk is the covariance of the body-parameterized target state as
calculated by the body frame SKF.

The propagation step—Due to the parameterization in body
frame, the propagation of the target state now depends on the
propagation of the ownship state, leading to slightly different
equations than those in [9]. The prediction is identical to what
one would obtain for a body frame SLAM-like filter. It can
be shown that the joint transition matrix is

ΦSB =

[
Φ ΦE − EΨ
0 Ψ

]
while the joint process noise covariance matrix is

QSB =

[
Q+ EQoET −EQo

−QoET Qo

]
.

The prediction is then given by

ξ̄bk+1 = ΦSB ξ̂
b
k +

[
−E
I

]
uk+1

S̄bk+1 = ΦSB Ŝ
b
k+1 ΦT

SB +QSB

where the hat denotes previous estimate and the bar denotes
current prediction. Proving these equations is straightfor-
ward by applying a linear transformation to the world frame
SLAM-like state vector and utilizing standard results for
multivariate Gaussians.

The ownship update and reframing—As for the world-frame
SKF, receiving an ownship measurement yk affects both
ownship estimate and target estimate in the same manner as
for the optimal SLAM-like filter. For brevity, the details are
omitted.

The target update—Let x̄bk be the predicted state estimate
of the target at time step k, let P̄ bk be the corresponding
covariance, and let C̄k be the predicted cross-covariance with
the ownship state. By setting the ownship part of the joint
Kalman gain equal to zero, we are left with the target part of
the Kalman gain, which is

Wk = P̄ bkH
T(HP̄ bkH

T +R)−1.

The updated target state estimate, its covariance and its cross-
covariance with the ownship state are then found as

x̂bk = x̄bk +Wk(zk −Hx̄bk)

P̂ bk = (I −WkH)P̄ bk

Ĉk = C̄k −WkHC̄k.
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The updated joint state is then constructed by concatenating
x̂bk with the standalone ownship prediction, and the same is
done for the covariance.

The correlation-free world filter

The remaining three filters differ from the previous filters
in that they compensate for navigation uncertainty without
maintaining any cross-correlations between their target state
vectors and the ownship state. For the correlation-free world
filter, the target state vector is xwk = [ρwk , v

w
k ]

T, and the
corresponding covariance matrix maintained by the filter is
denoted Pwk .

The propagation step—The propagation step is trivial for this
filter, as both target and ownship propagation are carried out
independently according to p(xwk+1 |xwk ) and p(ηk+1 | ηk) as
specified in Section 3.

The ownship update and absence of reframing—Since this
filter does not maintain target-ownship-correlations, it effec-
tively treats the target as stochastically independent of the
ownship. If Bayes rule is applied to the joint density under
this assumption, it is easily seen that the target density is
unaffected by any ownship measurement yk. Therefore, the
correlation-free world filter does not do any reframing of the
target estimate when ownship measurements are received.

The target update—Recall that target measurements are re-
ceived according to zk = Hxwk −Gηk +mk. Thus, despite a
priori independence, the link between xwk and zk is affected
by the uncertainty in our estimate of ηk, and this should be
taken into account in the measurement update.

PROPOSITION 1: Let the prior joint density of world frame
target state and ownship state before observing zk be

p(xwk , ηk | zk−1) = N
([

xwk
ηk

]
;

[
x̄wk
η̄k

]
,

[
Pwk 0
0 P o

k

])
The marginal density of the world frame target state after
observing zk is then given by

p(xwk | zk) = N (xwk ; x̂wk , P̂
w
k )

where

x̂wk = x̄wk +W (zk −Hx̄wk −Gη̄)

P̂wk = Pwk − Pwk HT(HPwk H
T +GP o

kG
T +R)−1HPwk

Wk = Pwk H
T(HPwk H

T +GP o
kG

T +R)−1.

Proof: This is seen by employing the fundamen-
tal product identity [12] on the product of Gaussians
p(zk |xwk , ηk) p(xwk , ηk | zk−1) and marginalizing.

The ingenuous body filter

In the last two filters that we discuss, which we call the
ingenuous and the factitious body filters, the position of the
target is parameterized in the body frame of the ownship. In
the ingenuous body filter, not only the target position, but also
the target velocity is parameterized in the body frame. The
state vector is xbk =

[
ρbk, v

b
k

]T
. We call this filter ingenuous

because it only tries to estimate how the target moves relative
to the observer, and not how it moves relative to any other
frame. For this filter, the disregard of correlations between
the target and ownship amounts to assuming that xbk and ηk
are a priori independent before any step in the filtering cycle.

ηk ηk+1

xbk xbk+1

xwk xwk+1

Figure 1: Dependencies in the ingenuous body filter.

The propagation step—In the propagation step, the objective
of the filter is to evaluate the predicted density

p(xbk+1 | zk, yk) =

∫
p(xbk+1 |xbk)p(xbk | zk, yk) dxbk.

Notice that the body-frame transition density p(xbk+1 |xbk)
is not the same as the world frame target Markov model
(1). In contrast, this density is given by marginalization of
the joint density p(xbk+1, x

w
k+1, x

w
k , ηk+1, ηk |xbk) over xwk+1,

xwk , ηk+1 and ηk. Nevertheless, we can find a Gaussian
expression for p(xbk |xbk−1), and thus obtain the predicted
density p(xbk | zk−1, yk−1) by means of a standard Kalman
filter prediction step.

PROPOSITION 2: The body-frame transition density is
given by p(xbk+1 |xbk) = N (xbk+1 ; abk+1, Q

b
k+1) where

abk+1 = Φxbk + (ΦE − EΨ) η̂k + Euk+1

Qbk+1 = Q+ EQoET + (ΦE − EΨ)P o
k (ΦE − EΨ)

T

and η̂k and P o
k are the moments of the current navigation

probability density, that is, p(ηk | yk) = N (ηk, η̂k, P
o
k ).

Proof: From the definition of conditional probability
and the total probability theorem, and by exploiting the
dependencies and independencies visualized in Figure 1, we
find that

p(xbk+1 |xbk) =
1

p(xbk)

∫
p(xbk+1 |xwk+1, ηk+1) p(xwk+1 |xwk )

p(xwk |xbk, ηk) p(ηk+1 | ηk)

p(xbk, ηk) dxwk+1 dxwk dηk+1 dηk.

where all dependence on previous measurements have been
suppressed for simpler notation. In the ingenuous body
filter we make the assumption that p(xbk, ηk) ≈ p(xbk) p(ηk),
which allows cancellation of the denominator. The densities
involved in p(xbk+1 |xbk) can be written as

p(xwk |xbk, ηk) = δ(xwk − xbk − Eηk)

p(xbk+1 |xwk+1, ηk+1) = δ(xwk+1 − xbk+1 − Eηk+1)

p(ηk) = N (ηk ; η̂k, P
o
k )

p(xwk+1 |xwk ) = N
(
xwk+1 ; Φx̂wk , Q

)
p(ηk+1 | ηk) = N (ηk+1 ; Ψηk + uk+1, Q

o) .
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By stacking all the Gaussians together in one joint Gaussian,
and integrating over xwk+1 and xwk , we get

p(xbk+1 |xbk) =

∫
N

([
xbk+1 + Eηk+1

ηk+1
ηk

]
;

[
Φ(xbk + Eηk)
Ψηk + uk+1

η̂k

]
,

[
Q 0 0
0 Qo 0
0 0 P o

k

])
dηk+1 dηk

In order to marginalize away ηk+1 and ηk we need to trans-
form this into a Gaussian where xbk+1, ηk+1 and ηk only enter
as a stacked vector in the random vector slot (and not in the
expectation slot). For this purpose we define the vectors

β =

[
xbk+1
ηk+1
ηk

]
, ζ =

[
Φxbk
uk+1

η̂k + uk+1

]
and the matrices

A =

[
I E −ΦE
0 I −Ψ
0 0 I

]
, Q̃ =

[
Q 0 0
0 Qo 0
0 0 P o

k

]
.

With these notations, the expression for p(xbk+1 |xbk) be-
comes

p(xbk+1 |xbk) =

∫
N
(
Aβ ; ζ, Q̃

)
dηk+1 dηk

=

∫
N
(
β ; A−1ζ, A−1Q̃(A−1)T

)
dηk+1 dηk.

Inverting A is straightforward by means of standard results
for block matrices. The proposition follows from picking the
upper 2 × 1-vector in A−1ζ and the upper left 2 × 2-matrix
in A−1Q̃(A−1)T.

The ownship update and absence of reframing— When an
ownship measurement yk is received, the ownship state is
updated according to the standard Kalman filter correction
step using the model described in Section 3. For the same
reason as in the pure world filter, nothing happens to the target
estimate during this step.

The target update—For the ingenuous body filter, the target
state xbk is updated by means of a standard Kalman filter
correction step with the measurement model p(zk |xbk) =
N (zk ; Hxbk, R). In this step, again due to the assumed
independence, nothing happens with the ownship estimate.

The factitious body filter

The factitious body filter is very similar to the ingenuous body
filter, but for this filter the velocity is parameterized in the
world frame. Thus, its state vector is xfk =

[
ρbk, v

w
k

]T
.

The propagation step— It can be shown in a manner very
similar to the proof of Proposition 2 that

p(xfk+1 |x
f
k) = N (xfk+1 ; afk+1, Q

f
k+1)

where

afk+1 = Φxfk + (ΦT − TΨ) η̂k + Tuk+1

Qfk+1 = Q+ TQoTT + (ΦT − TΨ)P o
k (ΦT − TΨ)

T
.

The ownship update and absence of reframing— For the
factitious body filter, the assumed independence between
the target state and the ownship state again implies that the
ownship update is carried out without affecting the target state
estimate.

The target update—Again, the target state is updated using a
likelihood of the form p(zk |xfk) = N (zk ; Hxfk , R) without
affecting the ownship state.

5. SIMULATIONS OF PURE FILTERING
Performance measures

For each filter and scenario we conduct 4000 Monte-Carlo
simulations in order to study root mean square error (RMSE)
and consistency. We study RMSE and covariance consistency
separately for world frame position, body frame position,
world frame velocity and body frame velocity.

For example, for the SLAM-like filter, which has the esti-
mated state vector ξ̂k = [ρ̂wk , v̂

w
k , η̂

T
k ]T with the target state

parameterized in the world frame, the raw and normalized
world-frame errors are

ewpos,k = ρwk,true − ρ̂wk
ewvel,k = vwk,true − v̂wk
cwpos,k = (ρwk,true − ρ̂wk )2/Pk,[11]

cwvel,k = (vwk,true − v̂wk )2/Pk,[22]

where Pk,[ij] is the element in row number i and column
number j in the covariance matrix provided by the filter. We
use the root mean square normalized errors as a measure of
consistency. For a good filter, these values should be close to
one.

The body-frame estimates of target position and velocities are
linear transformations of ξ̂k, given by ρ̂bk = [1, 0,−1, 0, 0]ξ̂k
and v̂bk = [0, 1, 0,−1, 0]ξ̂k in the SLAM-like filter. Their
corresponding covariances are given by

P bk,pos = [1, 0,−1, 0, 0]Pk[1, 0,−1, 0, 0]T (4)

P bk,vel = [0, 1, 0,−1, 0]Pk[0, 1, 0,−1, 0]T. (5)

The raw and normalized body-frame errors are

ebpos,k = ρbk,true − ρ̂bk
ebvel,k = vbk,true − v̂bk
cbpos,k = (ρbk,true − ρ̂bk)2/P bk,pos

cbvel,k = (vbk,true − v̂bk)2/P bk,vel.

It is straightforward to evaluate these performance measures
in the same way for the SKF’s, since these filters also main-
tain a joint covariance matrix for the target state and ownship
state.

For the correlation-free world filter, the raw and normal-
ized errors in world frame are readily available. Also
for this filter, we can construct a joint state estimate
ξ̂k,world = [ρ̂wk , v̂

w
k , η̂

T
k ]T where η̂k in this case comes from
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Quantity Symbol/Units High noise Low noise

Ownship acceleration plant noise σ2
o [m2/s5] (0.01)2 (0.01)2

Bias time constant 1/p [s] 1000 1000
Mean square bias σ2

b [m/s2] (0.1)2 (0.1)2

GPS measurement noise Rη [m2] 102 102

Accelerometer white noise σ2
w [m2/s3] (0.0002)2 (0.0002)2

Target measurement noise R [m2] (0.2)2 (0.01)2

Target plant noise σ2
v [m2/s3] (1.0)2 (0.05)2

Acceleration sampling time [s] 0.01 0.01
Target measurement sampling time [s] 2.5 2.5
GPS sampling time [s] 1.0 1.0

Table 1: Simulation parameters

the standalone ownship navigation filter. The body frame
estimates are then available as linear transformations of
ξ̂k,world according to ρ̂bk = [1, 0,−1, 0, 0]ξ̂k,world and v̂bk =

[0, 1, 0,−1, 0]ξ̂k,world. To get the normalized errors we con-
struct a joint covariance matrix, which in this case becomes
block-diagonal since no cross-correlations are maintained.
The joint covariance is again transformed according to (5).
We proceed in a similar manner for the correlation-free body
filters and for the basic world filter.

Simulation setup

Two cars drive on a straight road over a time span of 100
seconds. The first car, hereafter referred to as ownship, begins
at 0 m with velocity 10 m/s, while the second car, hereafter
referred to as target, begins at 800 m with velocity 10 m/s.
The ownship accelerates with up to 1.5 m/s2 in the time
interval 5s-25s, and decelerates by up to 2.5 m/s2 in the time
interval 50s-52s. The target then accelerates by 1.5 m/s2

during the time interval 80s-85s.

The scenario can be divided into three phases: In the transient
phase (0s-50s), the ownship filter is still working on estimat-
ing its own accelerometer bias, and this has a noticeable im-
pact on several of the tracking filters. In the stationary phase
(50s-80s), the bias has been estimated. The deceleration of
the ownship is less noticeable in the error statistics, since
the bias now is under control. In the mismatch phase (50s-
100s), the target accelerates more than what the process noise
accounts for, and this has a huge impact on the error statistics.

The differences between the tracking filters are most pro-
nounced when the process noise of the target is low. There-
fore we run both a realistic high noise version of the scenario,
and a more ideal low noise version of the scenario, with
tuning parameters as given in Table 1.

Observations and discussion

Overall results from the Monte-Carlo simulations are dis-
played in Tables 2-13. Furthermore, curves for RMSE and
consistency are shown for the body frame velocity in Figures
2 and 3, respectively. Results for the mismatch phases are
excluded in the figures in order to improve the resolution for
transient and stationary phases.

The impact of navigation uncertainty compensation in gen-
eral—The basic world filter is substantially inferior to the
other filters in several contexts. In the transient phase of the
low noise case (Table 8) its normalized position error in the
world frame is 177 times too large. In the same phase of the

high noise case this is reduced to 6 times too large, which still
is quite significant. Figure 2 reveals that its RMSE also can
be quite bad for low noise. For high noise, this is much less
pronounced.

The impact of noise levels—For the high-noise scenario, most
of the filters have a comparable performance, although we
see some tendencies with poor consistency for the factitious
body filter (Table 2), and poor RMSE for the correlation-free
world filter (Table 6), which should warrant some caution
with these filters. In the low-noise case, these tendencies are
increased (compare with Tables 8 and 12, respectively), and
many more differences become visible. This is important,
because it shows turning down the process noise (e.g., during
debugging) can have unpredictable consequences for target
tracking with navigation uncertainty.

RMSE of the corelation-free world filter—A cause for the poor
body frame RMSE of the correlation-free world filter may be
as follows: Since the target measurement noise is much lower
than the GPS measurement noise, it is possible to estimate
the body frame target position with higher accuracy than then
navigation accuracy. The body-parameterized filters achieve
this by working directly in body frame, while the SKFs and
the SLAM-like filter achieve this by having access to relevant
correlations. The correlation-free world filter is unable to
utilize any of these benefits.

Body versus World parametrization—The body filters tend to
have lower RMSE in the body frame, while the suboptimal
world filters in many cases have lower RMSE in the world
frame. For consistency, on the other hand, the picture is
opposite: The normalized error decreases when we transform
to the alternative frame. This happens for all the filters except
the SLAM-like filter. The reason for this pattern is that both
the SKFs and the correlation-free filters have an “excess” of
ownship covariance, which inflates the covariance in the other
frame through the transformations described in Section 5. For
example, the target covariance and cross-covariance of the
world SKF are quite similar to the corresponding quantities
for the SLAM-like filter, while the ownship covariance used
in the SKF is significantly higher than for the SLAM-like
filter since the SKF does not exploit target measurements to
improve the navigation.

Who has the best RMSE?—In the low-noise case, the body fil-
ters have significantly lower RMSE in the body frame, while
their world frame RMSE values are not significantly worse
than those of the suboptimal world filters. The ingenuous
body filter has the best RMSE results of these, and is the only
suboptimal filter that comes close to the SLAM-like filter
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during the stationary phase of the low-noise scenario (Table
12). It is also worth noticing that the ingenuous body filter,
and the other body filters to a lesser extent, outperform the
SLAM-like filter with regard to world position error in the
subsequent mismatch phase (Table 13).

Who has the best consistency?—All of the suboptimal filters
exhibit significant inconsistency problems in the low-noise
scenario. Nevertheless, every one of them also beats the
consistency of the SLAM-like filter in one way or another
during the mismatch phase. This provides an example of why
one may want to avoid the optimal SLAM-like solution if
model mismatch or similar issues are a concern.

For data association, consistency of the position estimates
in the body frame is particularly important. During the
mismatch phase, the world SKF achieves the lowest normal-
ized error, and this filter also has impeccable concistency
properties during the other two phases. In the low-noise
scenario, this comes at the price of 3 to 25 times higher
RMSE than for the SLAM-like filter, which may be well
worth paying for the increased robustness.

Velocity inconsistency for the factitious body filter— The
factitious body filter has the worst consistency properties of
all the filters. For example in Table 9, this can be seen for
both the world-frame and the body-frame velocities. We see
in Figure 3 that this in particular is a problem during the
transient phase. The cause of this has to do with the neglect
of correlations between target velocity and ownship velocity
in the factitious body filter. We outline the role of these
correlations below:

From a handful of range measurements of the target, we can
estimate its relative velocity vbk (assuming nearly constant
ownship velocity), but to estimate its world-frame velocity
vwk we must also have access to good navigation estimates.
In the transient phase, when a good navigation solution still
is under development, the poor estimability of the world-
frame target velocity vwk translates into substantial cross-
correlations between this quantity and the ownship velocity
vok. During the prediction of the target state, it can be
shown that these correlations should counteract growth in the
correlations between ρbk and vwk . However, as the correlations
between vwk and vok are ignored in the factitious body filter,
we end up with artificially high correlations between ρbk and
vwk . This again causes the target measurements to have too
strong an impact on the covariance of vwk . This quantity is
therefore artificially reduced, and this leads to inconsistency.

The quasi-commutators—The matrices ΦE −EΨ and ΦT −
TΨ appear in the correlation-free body filters, and govern
leakage of ownship uncertainty into the target process noise.
These leakage terms are not of much significance for re-
alistic values of the process noise. Nevertheless, for very
low process noise, e.g., σv = 10−4 m2/s3, we have found
that ignoring these terms will cause significant deterioration
in position RMSE and consistency. Let us also remark
that these matrices also arise in body-frame implementations
of the SLAM-like filter, where they play a crucial role in
propagating the cross-correlations discussed in the previous
paragraph.

Artificial text to push next section down.
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Figure 2: RMSE of target velocity decomposed in body
frame for the low-noise scenario.
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Figure 3: Consistency of target velocity decomposed in
body frame for the low-noise scenario.

Table 2: Consistency: High noise, transient phase

Pos. Pos. Vel. Vel.
Body World Body World

World basic 0.78 9.00 1.30 1.89
SLAM-like 1.06 0.99 1.03 0.99
Ingenuous Body 1.08 0.97 1.04 0.96
Factitious Body 1.13 0.98 1.11 1.25
World 0.57 1.09 0.87 0.97
Schmidt Body 1.05 0.96 1.03 0.94
Schmidt World 0.34 0.98 0.82 0.99
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Table 3: Consistency: High noise, stationary phase

Pos. Pos. Vel. Vel.
Body World Body World

World basic 0.64 6.95 1.30 1.38
SLAM-like 1.00 0.99 1.00 0.99
Ingenuous Body 1.00 0.99 1.00 0.99
Factitious Body 1.01 0.99 1.01 1.04
World 0.51 1.05 0.91 0.94
Schmidt Body 1.01 0.99 0.98 0.97
Schmidt World 0.28 0.99 0.94 1.00

Table 4: Consistency: High noise, target accelerates

Pos. Pos. Vel. Vel.
Body World Body World

World basic 0.79 6.48 1.81 1.82
SLAM-like 1.46 1.01 1.62 1.51
Ingenuous Body 1.47 1.00 1.63 1.51
Factitious Body 1.47 1.00 1.63 1.55
World 0.71 1.13 1.55 1.52
Schmidt Body 1.48 1.01 1.61 1.49
Schmidt World 0.47 1.01 1.54 1.52

Table 5: RMSE: High noise, transient phase

Pos. Pos. Vel. Vel.
Body World Body World

m m m/s m/s

World basic 2.92 4.87 2.45 2.54
SLAM-like 1.88 5.21 1.48 1.61
Ingenuous Body 1.88 5.32 1.48 1.63
Factitious Body 2.02 5.37 1.60 1.73
World 4.63 6.42 1.98 1.98
Schmidt Body 2.06 5.32 1.63 1.72
Schmidt World 2.36 5.28 1.57 1.66

Table 6: RMSE: High noise, stationary phase

Pos. Pos. Vel. Vel.
Body World Body World

m m m/s m/s

World basic 2.91 4.87 1.85 1.88
SLAM-like 1.71 4.25 1.41 1.45
Ingenuous Body 1.71 4.26 1.41 1.45
Factitious Body 1.72 4.27 1.42 1.46
World 3.44 5.16 1.81 1.84
Schmidt Body 1.72 4.27 1.42 1.46
Schmidt World 1.72 4.26 1.42 1.45

Table 7: RMSE: High noise, target accelerates

Pos. Pos. Vel. Vel.
Body World Body World

m m m/s m/s

World basic 2.80 6.70 2.69 2.62
SLAM-like 2.78 4.35 2.40 2.30
Ingenuous Body 2.78 4.34 2.40 2.30
Factitious Body 2.78 4.33 2.40 2.29
World 4.88 5.79 3.13 3.03
Schmidt Body 2.80 4.37 2.43 2.32
Schmidt World 2.81 4.35 2.41 2.30

Table 8: Consistency: Low noise, transient phase

Pos. Pos. Vel. Vel.
Body World Body World

World basic 0.62 177.28 3.19 31.67
SLAM-like 1.14 0.98 1.11 0.96
Ingenuous Body 2.98 0.96 3.12 0.84
Factitious Body 4.10 0.96 6.81 9.00
World 0.71 1.49 0.83 1.13
Schmidt Body 0.91 0.90 2.60 0.85
Schmidt World 0.61 0.94 0.86 0.92

Table 9: Consistency: Low noise, stationary phase

Pos. Pos. Vel. Vel.
Body World Body World

World basic 0.60 137.66 3.19 19.15
SLAM-like 1.00 1.01 1.11 0.96
Ingenuous Body 1.11 0.99 3.21 0.84
Factitious Body 1.99 0.99 6.81 9.00
World 0.68 1.80 0.83 1.14
Schmidt Body 0.72 0.96 2.60 0.85
Schmidt World 0.50 1.01 0.86 0.92

Table 10: Consistency: Low noise, target accelerates

Pos. Pos. Vel. Vel.
Body World Body World

World basic 0.82 128.03 6.16 30.51
SLAM-like 18.21 2.48 21.53 12.18
Ingenuous Body 21.68 1.02 25.89 4.87
Factitious Body 19.24 1.03 25.86 24.00
World 1.37 2.73 7.11 14.17
Schmidt Body 6.17 1.18 15.53 6.52
Schmidt World 1.23 1.97 7.10 12.95

Table 11: RMSE: Low noise, transient phase

Pos. Pos. Vel. Vel.
Body World Body World

m m m/s m/s

World basic 4.15 6.46 1.99 2.09
SLAM-like 0.78 3.74 0.46 0.45
Ingenuous Body 0.81 5.02 0.49 0.81
Factitious Body 1.15 5.00 0.81 0.92
World 4.39 4.82 0.93 0.46
Schmidt Body 1.31 4.84 0.92 0.83
Schmidt World 3.87 3.61 0.94 0.42
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Table 12: RMSE: Low noise, stationary phase

Pos. Pos. Vel. Vel.
Body World Body World

m m m/s m/s

World basic 2.38 4.58 1.99 2.09
SLAM-like 0.09 3.14 0.08 0.21
Ingenuous Body 0.10 3.91 0.08 0.32
Factitious Body 0.23 3.91 0.19 0.35
World 3.07 4.01 0.31 0.25
Schmidt Body 0.36 3.84 0.26 0.32
Schmidt World 2.54 3.19 0.32 0.22

Table 13: RMSE: Low noise, target accelerates

Pos. Pos. Vel. Vel.
Body World Body World

m m m/s m/s

World basic 3.47 6.46 2.30 2.20
SLAM-like 2.00 7.75 1.79 2.57
Ingenuous Body 2.21 3.98 1.95 1.82
Factitious Body 2.38 4.05 2.07 1.93
World 6.19 6.10 2.96 2.81
Schmidt Body 3.47 4.68 2.80 2.66
Schmidt World 6.24 6.25 3.04 2.89

6. IMPACT ON DATA ASSOCIATION
One reason to investigate different parameterizations of mov-
ing platform target tracking is that the choices may affect
susceptibility to clutter and misdetections. It was found in
[13] that even small inaccuracies in navigation, due to EKF
linearization, could seriously jeopardize data association for
Bayesian SLAM. There exist dozens of different multi-target
tracking algorithms that address data association, and a sys-
tematic study of how different multi-target tracking algo-
rithms cope with navigation uncertainty is beyond the scope
of this paper. Here we restrict attention to multi-dimensional
assignment (MDA) implemented by means of Lagrangian
Relaxation as described in Deb’s paper [14]. This method can
be viewed as a version of track-oriented multiple hypothesis
tracking (TO-MHT) which attempts to find the most probable
data association hypothesis over a sliding window of previous
measurement scans.

Implementation of MDA

A Matlab implementation of Deb’s method, adapted to mov-
ing platform tracking, was programmed. While the reader is
referred to [14] for the details of the method, we provide a
cursorial description of the method and implementation here.

Lagrangian Relaxation solves the data association problem
for L scans (together with a list of tracks, hereafter referred
to as the zeroth scan, making the problem L+1-dimensional)
through an iterative process conducted until convergence.
Each iteration consist of a relaxation phase and an enforce-
ment phase. In the relaxation phase, the best assignments for
scans L − 1, L − 2, . . . , 0 are found by minimizing costs
of the possible assignments at scans L, L− 1, . . . , 1. These
costs involve both negative track scores [15] and Lagrange
multipliers (there is one Lagrange multiplier for each non-
dummy measurement). In the enforcement phase, assign-
ments between candidate tracks at scans 0, 1, . . . , L − 1 and

measurements at scan number 1, 2, . . . , L are constructed by
means of the Auction algorithm [16]. After each iteration, the
Lagrange multipliers are updated by means of a subgradient
method. Whenever a measurement has been contended, that
measurement is made less popular by means of the Lagrange
multipliers.

We use Lagrangian Relaxation purely as a sliding window
track maintenance method. We do not initialize new tracks,
and neither do we allow tracks to die. The implementation
uses a track tree in which different descents correspond to
different possible tracks for each target. We use L-scan
pruning on the track tree. We also prune tracks whose cost
is 6 times higher than the cost of assigning all measurements
to false alarms.

The MDA method is relatively straightforward to implement
for all the filters, except the SLAM-like filter. For all the
other filters, the dimensionless track score function of [15]
is straightforward to adapt to our problem. The logarithmic
contributions from different measurements and tracks at a
given can be organized in a cost matrix, and the total cost
of a data association hypothesis can be found by summing to-
gether elements from these matrices according to the chosen
assignment.

For the SLAM-like filtering architecture, this cannot be done,
at least not without additional approximations. The reason is
that the unknown ownship state will affect the likelihood the
measurements. The posterior probability of a data association
hypothesis is an integral over the ownship state, and its
logarithm cannot be decomposed into a sum of contributions
from individual tracks [13]. This makes the construction of
a track-oriented MHT or a JPDA for the SLAM-like tracking
problem difficult. For this reason we omit the SLAM-like
filter from the multi-target investigations.

Test design for multi-target simulations

We simulate 4 targets with initial states

x
(1)
0 =

[
100
22

]
, x

(2)
0 =

[
50
10

]
,

x
(3)
0 =

[
0
16

]
, x

(4)
0 =

[
150
2

]
,

over the time span 0 − 100 s. This time we do not include
any acceleration phase. The targets’ kinematics are solely
given by the plant model (1). Again, we study both the low
noise and the high noise scenarios with parameters given
in Table 1. The ownship simulation and all the ownship
parameters are as before. We also include misdetections
(PD = 0.8) and false alarms. We draw false alarms according
to a Poisson cardinality distribution with expectation φ̄ = 15
and according to a uniform spatial density extending 1000m
behind and in front of the ownship.

We study three performance measures: Track-loss rates
including track swaps, track-loss rates not including track
swaps and the OSPA metric with cutoff distance 20 m [17].
We define a track lost (possibly swapped) when the track
shares none of the non-dummy measurements with the cor-
responding true track. We define a track lost, with swapping
ignored, when the track has less than half its non-dummy
measurements in common with any of the true tracks over the
sliding window of the MDA. Other definitions of track-loss
are possible, see [18,19].

9



Table 14: Track loss for multi-target low noise scenario

Including swaps Without swaps

World basic 48.90% 15.80%
Ingenuous Body 15.10% 5.80%
Factitious Body 21.25% 8.15%
World 3.10% 2.00%
Schmidt Body 4.50% 2.25%
Schmidt World 3.65% 2.25%

Table 15: Track loss for multi-target high noise scenario

Including swaps Without swaps

World basic 32.62% 6.81%
Ingenuous Body 16.19% 4.81%
Factitious Body 17.25% 4.44%
World 21.81% 5.06%
Schmidt Body 16.94% 4.37%
Schmidt World 16.88% 4.19%

Results for multi-target simulations

For the low noise case, track loss statistics are shown in Table
14. We make the following observations:

First, we notice that compensation of navigation uncertainty
can decrease the track-loss rate by about a factor 10. Second,
the correlation-free world filter emerges as the winner, with
the Schmidt filters second. The correlation-free body filters
suffer from noticeably higher track-loss rates. Based on
this, one could argue that consistency in body frame is more
important than RMSE in the body frame, since the world
filters tend to have good consistency properties in the body
frame, while the body filters tend to have lower RMSE in the
body frame.

These observations are reflected in the OSPA metric between
true world frame target states and the corresponding world
frame estimates, displayed in Figure 4. The OSPA results
for the correlation-free world filter and the SKFs are indis-
tinguishable, and dominated by navigation uncertainty, while
the other correlation-free filters have worse performance. A
SLAM-like multi-target filter could possibly push the OSPA
metric further down by 25% (cf., Table 12).

Results for the high noise case are displayed in Table 15 and
Figure 5. As one would expect from comparison of the low-
noise and high-noise results in Section 5, the differences in
track-loss rates and OSPA metric between the different filters
become less significant as the noise levels increase. Again,
the basic world filter stands out as clearly inferior to the other
filters. A couple of more surprising results can, however,
be noticed. First, in the high noise scenario, the body-
parameterized filters appear to outperform the correlation-
free world filter. Second, track-loss rates and OSPA metric
are often significantly lower than in the low noise scenario.

This is yet another illustration that low noise levels can be
problematic when non-linearities (e.g., due to data associa-
tion) and other sources of model mismatch are present. An
obvious solution is to inflate Q and R in the filter model, but
this may or may not be suitable depending on the application
and the intended use of the tracking system.
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Figure 4: OSPA metric for the low noise case.

20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Time [s]

O
SP

A
 m

et
ric

 

 
World basic
Ingenuous body
Factitious body
World
Smith body
Smith world

Figure 5: OSPA metric for the high noise case.

7. CONCLUSION AND FUTURE RESEARCH
Suboptimal filters such as Schmidt-Kalman filters or
correlation-free filters with navigation uncertainty compen-
sation may or may not achieve the same performance as the
SLAM-like filter for target tracking on a moving platform.
Body-parameterized filters appear preferable if body frame
RMSE is important, while the world-parameterized Schmidt
Kalman filter may be preferable from a consistency perspec-
tive. This filter also performs best when data association is
involved. With basis in this paper and [3], where similar
investigations were conducted in 6 degrees of freedom, fu-
ture research may investigate the impact of various filtering
architectures on data association in greater detail. The issues
discussed in this paper are likely to be of increasing relevance
the more SLAM-like a problem becomes. As an example
in the aerospace setting, these issues are likely to be more
relevant if one attempts to track a satellite from an airplane or
a missile, than for the converse scenario.
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