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Abstract

This paper presents an approach for reliability analysis of engineering structures, referred to as Metamodel Line Sampling (MLS). The approach

utilizes a metamodel of the performance function, within the framework of the Line Sampling method, to reduce computational demands associ-

ated with the reliability analysis of engineering structures. Given a metamodel of the performance function, the failure probability is estimated as

a product of a metamodel-based failure probability and a correction coefficient. The correction coefficient accounts for the error in the metamodel

estimate of failure probability introduced by the replacement of the performance function with a metamodel. Computational efficiency and ac-

curacy of the MLS approach are evaluated with the Kriging metamodel on analytical reliability problems and a practical reliability problem of a

monopile foundation for offshore wind turbine. The MLS approach demonstrated efficient performance in low to medium-dimensional reliability

problems.
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1. Introduction

Reliability analysis is performed to address the inherent ran-

domness of structural parameters and a lack of knowledge about

the driving processes defining the behavior of structures. A

primary interest in reliability analysis of structures is to eval-

uate the probability of unsafe or undesired state of the struc-

ture, i.e., failure probability, PF . Given an n-dimensional vec-

tor of random variables affecting the performance of a structure,

Z = [Z1, ...,Zn]T ∈ Ω, in the variable space Ω, associated with

the joint probability density function (pdf ), fZ(z), PF is defined

as:

PF = P(Z ∈ F) =

∫
F

fZ(z)dz =
∫
Rn

IF(z) fZ(z)dz (1)

where z ∈ R
n denotes a realization of Z, F is the failure do-

main, IF is an indicator function such that IF(z) = 1 if z ∈ F
and IF(z) = 0 otherwise. In this study, Z is defined as a vector

of independent standard normal random variables with the joint

pdf φZ, in the standard normal space Ω. In the case of a gen-

eral random vector X, composed of non-normal and dependent

random variables, it is assumed that a probability preserving
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transformation, Z = ΘX,Z(X) (e.g., Nataf [8]) exists. It is worth

noting that the transformations to the standard normal space are

often approximate and can introduce additional nonlinearities

in the shape of the failure domain.

The state of a structure or an engineering system is commonly

evaluated by a so-called performance function, g(z). g(z) plays

a central role in the reliability analysis of structures, because it

separates the n-dimensional variable space Ω into a safe g(z) >
0, and an unsafe domain {z ∈ F ⊂ R

n : g(z) ≤ 0} by the hyper-

surface denoted as the failure limit state {z ∈ L : g(z) = 0}. In

the majority of applications g(z) is an implicit function of the

random structural parameters, z, (e.g., finite element model).

The implicit formulation of the performance function introduces

constraints on the applicable mathematical tools for the evalu-

ation of PF , as often only pointwise evaluations of the perfor-

mance function and its gradients are obtainable.

Analytical solutions of PF are achievable only for a limited

group of problems with explicit formulations of g(z) and simple

definitions of failure domains. In reliability analysis of struc-

tures, PF is often evaluated numerically by employing opti-

mization (e.g., First and Second Order Reliability Method) or

sampling methods (e.g., Monte Carlo, Importance Sampling,

Subset Simulation) [28]. Among these, the Monte Carlo (MC)

method is widely used due to its straightforward implementa-

tion and robust performance [28]. The MC method is based on
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drawing N independent identically distributed (i.i.d.) samples

zi ∼ φZ(z); i = 1, ...,N and evaluating g(zi) at these samples.

The unbiased estimate of the failure probability, P̂F , is calcu-

lated as the ratio of the number of failed samples, NF , over the

total number of samples, N:

P̂F =
1

N

N∑
i=1

IF(zi) =
NF

N
(2)

where NF is binomial distributed random variable, which leads

to the coefficient of variation of P̂F , CoV(P̂F) ≈
√

(1 − P̂F)/(P̂F N).

Investigation of the CoV(P̂F) reveals that the P̂F is indepen-

dent of the dimensionality of the problem in the MC method,

and that the CoV(P̂F) reduces with increasing N. For a small

P̂F , a relatively large N is necessary to obtain a reasonably

low CoV(P̂F). Large numbers of simulations of g(z) are fre-

quently infeasible to execute as the models used to evaluate g(z)

can be computationally demanding. Although the MC method

is accurate, robust and independent of the dimensionality of

the reliability problem, the method is considered to be ineffi-

cient when evaluating small PF and/or when computationally

intensive structural models are used to evaluate the performance

function.

The previously mentioned inefficiency of the MC method has

led to the development of various methods suited for the esti-

mation of small PF in probabilistic analysis of structures. The

Importance Sampling (IS) method, based on the MC approach,

introduces an importance pdf with a relatively high density over

the failure domain of the variable space (e.g., [2]). By sampling

the importance pdf, the IS method can provide P̂F with reduced

computational expense when compared to the MC method [28].

A series of benchmark tests conducted in [28] showed that the

IS approach is applicable in low to medium-dimensional prob-

lems (n < 100) with efficiency and accuracy dependent on

the implementation of the method. The Line Sampling (LS)

method, based on the IS approach, evaluates PF by a number

of conditional one-dimensional reliability problems along an

important direction, which points to the failure domain near-

est to the origin of Ω [28]. Benchmark tests in [28] showed

high accuracy and efficient performance of the LS method in

high-dimensional problems.

An alternative method for estimating PF in high-dimensional

problems is the Subset Simulation (SS) method [1]. In the SS

method, PF is expressed as a product of a series of conditional

failure probabilities corresponding to, prior to the analysis, un-

known intermediate failure limits. The conditional failure prob-

abilities can be selected to be relatively high (e.g., P = 0.1),

requiring consequently a small number of samples to be evalu-

ated accurately.

Reductions in computational demands associated with the reli-

ability analysis of engineering structures can be also achieved

by replacing g(z) with a computationally less expensive meta-

model g̃(z). Metamodels are commonly built by implementing

statistical learning methods [14] (e.g., Neural Networks [26],

Support Vector Machines [3, 16], regression, or Kriging [9]) on

a set of observations of g(z) in the variable space. Several meta-

model implementations showed high efficiency and accuracy in

low to medium-dimensional problems (n < 100) (e.g., [9, 3]).

An approach which aims at reducing computational cost com-

monly associated with the reliability analysis, referred to as

Metamodel Line Sampling (MLS), is presented in this study.

The MLS approach combines the efficiency of the LS method

with a relatively low computational cost of g̃(z) to provide re-

ductions in computational expenses. Given g̃(z), PF is eval-

uated as a product of a metamodel-based failure probability

and a correction coefficient. The correction coefficient accounts

for the uncertainty in the metamodel-based failure probability,

resulting from the replacement of g(z) with g̃(z). The perfor-

mance of the MLS approach is evaluated on analytical reliabil-

ity problems and a practical reliability problem of a monopile

foundation for offshore wind turbine.

2. Metamodel Line Sampling

2.1. Line Sampling

LS is a method which formulates a reliability problem as

a number of conditional one-dimensional reliability problems

in the standard normal space [27]. The formulation of the LS

method is based on the assumption that an important direction,

α, can be approximated. α points to the region of the failure

domain nearest to the origin of Ω, as illustrated in Figure 1. An

MC estimate of PF is calculated based on a number of condi-

tional one-dimensional reliability problems along α. The one-

dimensional reliability problems are conditioned on the MC

samples from the (n− 1)-dimensional standard normal space of

random variables orthogonal to α. Based on the set of bench-

mark tests [27], it is reported that the LS method has a wide

range of applications in reliability analysis of structures, except

for strongly nonlinear performance functions where α cannot

be estimated.
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Figure 1: Line sampling method.
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Given α, the failure domain, F, can be expressed as shown

in [27]:

F =
{
z ∈ Rn : zα ∈ Fα(z⊥1 , ..., z

⊥
n−1)
}

(3)

where zα is a realization of the random variable, Zα, which is

defined along α, z⊥ ∈ Rn−1 is a realization of a vector of random

variables orthogonal to α, denoted as Z⊥, while Fα is a function

representing the failure domain along α, defined on R
n−1 [27].

Then PF can be expressed as:

PF =

∫
Rn

IF(z)φZ(z)dz = Ez⊥
[
Φ(Fα(z⊥))

]
(4)

In the case that Fα(z⊥) lies within the half open interval
[
β(z⊥),∞),

the one-dimensional conditional failure probability can be eval-

uated as Φ(Fα(z⊥)) = Φ(−β(z⊥)), where β(z⊥) is a ’reliability

index’, as indicated in Figure 1. An unbiased estimate of PF is

calculated on a set of samples
{
z⊥i ∼ φZ⊥ (z⊥) : i = 1, ...,N

}
as:

P̂F =
1

N

N∑
i=1

Φ(Fα(z⊥i )) =
1

N

N∑
i=1

Φ(−β(z⊥i )) =
1

N

N∑
i=1

PFi (5)

where PFi = Φ(−β(z⊥i )). Variance of the estimator P̂F is esti-

mated as:

Var(P̂F) =
1

N(N − 1)

N∑
i=1

(
PFi − P̂F

)2
(6)

Coefficient of variation of P̂F , defined as CoV(P̂F) ≈
√

Var(P̂F)

/P̂F , is commonly used as a convergence measure of P̂F .

2.2. Metamodel-Based Failure Probability
As discussed in Section 1, reliability analysis of structures

can be a computationally intensive and time consuming task.

One of the approaches to reduce the computational demands

is to approximate g(z) with a computationally less expensive

metamodel, g̃(z). A metamodel is commonly constructed by

implementing statistical learning methods on a set of observa-

tions of g(z) obtained with an information gathering process

known as Design of Experiments (DoE) (e.g., Latin Hypercube

Sampling). Some of the early metamodels employed first- and

second-order polynomials to approximate the limit state in the

proximity of the design point (i.e., the most probable point at

the limit state) (e.g., [4]). More recent applications of meta-

models are based on Neural Networks (e.g., [25]), Support Vec-

tor Machines (e.g., [3]), and Kriging metamodels (e.g., [9]).

An estimate of the metamodel failure probability, PF̃ , is ob-

tained by coupling a metamodel with a reliability method (e.g.,

[3, 9]). An LS formulation of PF̃ , based on g̃(z) in Ω, is defined

as:

PF̃ =

∫
Rn

IF̃(z)φZ(z)dz = Ez⊥̃
[
Φ(Fα̃(z⊥̃))

]
(7)

where IF̃ is an indicator function defined by g̃(z), α̃ is an im-

portant direction determined by g̃(z), z⊥̃ ∈ R
n−1 is a vector of

random variables orthogonal to α̃, while Fα̃ is the function in

Eq. 3 defined with respect to α̃. With g(z) replaced by g̃(z), as

illustrated in Fig. 2, P̂F̃ and Var(P̂F̃) can be calculated according

to Eqs. 5 and 6. In this study α̃ is approximated with α since the

goal of a metamodel is to provide a good approximation of the

limit state in the proximity of the important direction. However,

it is worth noting that although the metamodel might provide a

good approximation of the limit state, α̃ does not necessarily

need to be close to α.
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Figure 2: Metamodel-based Line Sampling.

2.3. Correction Coefficient

Although some metamodels can provide an error estimate

to quantify the epistemic uncertainty associated with the meta-

model (e.g., Kriging prediction variance), this measure cannot

quantify the overall error resulting from replacing g(z) with

g̃(z). This problem was recognized in [9], where a correction

coefficient, defined as a ratio of PF and PF̃ , is implemented in

the Kriging-based importance sampling. The correction coef-

ficient in [9] is estimated by sampling a ratio of the indicator

function and a Kriging-based probabilistic classification func-

tion on samples from an importance sampling distribution.

In this study, a metamodel independent correction coefficient, κ,
is implemented to quantify the error resulting from substituting

g(z) with g̃(z). κ is formulated by considering the probability of

a union of two events:

P(F ∪ F̃) = P(F) + P(F̃) − P(F ∩ F̃) (8)

where F represents a failure event (domain) defined by g(z),

while F̃ is a failure event (domain) defined by g̃(z). After rear-

ranging Eq. 8, κ is formulated as a ratio of PF and PF̃ :

κ =
P(F)

P(F̃)
=

P(F ∪ F̃)

P(F̃)
+

P(F ∩ F̃)

P(F̃)
− 1 (9)

κ is dependent on two terms denoted as κU and κI :

κ =
1

κU
+ κI − 1 (10)
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where

κU =
P(F̃)

P(F ∪ F̃)
; 0 ≤ κU ≤ 1 (11)

κI =
P(F ∩ F̃)

P(F̃)
; 0 ≤ κI ≤ 1 (12)

Given a relatively accurate metamodel approximation of the

limit state function it follows that κU ≈ 1 and κI ≈ 1, which

leads to κ ≈ 1. The definition of κ is not metamodel dependent

which means that it can be integrated in various metamodel-

based approaches for reliability analysis to quantify the error

introduced by substituting g(z) with g̃(z).

An expression for κU is formulated by introducing an impor-

tance distribution hF∪F̃(z) in the integral which defines P(F̃):

P(F̃) =

∫
Rn

IF̃(z)φZ(z)dz =
∫
Rn

IF̃(z)φZ(z)

hF∪F̃(z)
hF∪F̃(z)dz (13a)

where hF∪F̃(z) is defined as a product of the indicator function

denoting union of events F and F̃, IF∪F̃(z), and the joint pdf
φZ(z):

hF∪F̃(z) =
IF∪F̃(z)φZ(z)∫

Rn IF∪F̃(z)φZ(z)dz
=

IF∪F̃(z)φZ(z)

P(F ∪ F̃)
(13b)

With the hF∪F̃(z) in Eq. 13b inserted in Eq. 13a, κU is defined

as:

κU =
P(F̃)

P(F ∪ F̃)
=

∫
Rn

IF̃(z)

IF∪F̃(z)
hF∪F̃(z)dz (13c)

An MC estimator of κU can be constructed by drawing samples

from hF∪F̃(z) and evaluating the ratio of the indicator functions

IF̃(z) and IF∪F̃(z). Due to an unknown value of the normalizing

constant P(F∪ F̃) prior to a reliability analysis, a Markov Chain

Monte Carlo or a resampling method (e.g., [12]) can be used to

draw samples from hF∪F̃(z).

At the fundamental level, the problem of estimating the fail-

ure probability, PF = E [IF(z)], is substituted with the prob-

lems of estimating the correction coefficients κU and κI (the

estimate of κI will be discussed shortly). In the case of κU =
EhF∪F̃

[
IF̃(z)/IF∪F̃(z)

]
, the substitution will require a smaller sam-

ple size to be evaluated with comparable accuracy if the event

corresponding to κU is less rare than the failure event, EhF∪F̃

[
IF̃(z)/IF∪F̃(z)

] ≥
E [IF(z)]. In the case of a relatively accurate metamodel ap-

proximation of the limit state κU ≈ 1, which provides a poten-

tial to reduce the computational demands commonly associated

with the estimation of rare failure events.

Due to the focus on the LS method, an LS estimator of κU is

constructed in this study. Assuming that α can be estimated, a

marginal distribution of hF∪F̃(z) in the (n−1)-dimensional stan-

dard normal space orthogonal to α, denoted as h⊥
F∪F̃

(z⊥), can be

defined as presented in the example of h⊥F (z⊥) in Appendix A.

To implement an LS estimator of κU , Eq. 13c is formulated as:

κU =

∫
Rn−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫
R

IF̃(z)

IF∪F̃(z)
hFα∪F̃α (zα)dzα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ h⊥F∪F̃(z⊥)dz⊥ (13d)

where hFα∪F̃α (zα) is a distribution of random variables along α

conditioned on F∪F̃. For a given
{
z⊥j ∼ h⊥

F∪F̃
(z⊥) : j = 1, ...,NU

}
,

the one-dimensional integral in Eq. 13d is rewritten as:

κU(z⊥j ) = κU j =

∫
R

IF̃(zα, z⊥j )

IF∪F̃(zα, z⊥j )
hFα∪F̃α (zα)dzα (13e)

Based on a set of samples
{
zαk ∼ h⊥

Fα∪F̃α
(zα) : k = 1, ...,Nα

}
an

MC estimator of κU j can be defined as:

κ̂U j =
1

Nα

Nα∑
k=1

IF̃(zαk, z⊥j )

IF∪F̃(zαk, z⊥j )
(13f)

In the case that the failure domains, Fα(z⊥) and F̃α(z⊥), are

specified with the intervals
[
β(z⊥),∞) and

[
β̃(z⊥),∞

)
respec-

tively, an LS estimator of κU(z⊥j ) is defined:

κ̂U j =
Φ(−β̃(z⊥j ))

Φ
(
−min

[
β̃(z⊥j ), β(z⊥j )

]) (13g)

An estimate of κU is then calculated by solving the following

(n − 1)-dimensional integral:

κU =

∫
Rn−1

κU(z⊥)h⊥F∪F̃(z⊥)dz⊥ (13h)

A self-weighted importance sampling estimate of κU is imple-

mented to utilize the relation between h⊥
F∪F̃

(z⊥) and the (n −
1)-dimensional standard normal distribution orthogonal to α,

φZ⊥ (z⊥) as shown in the example of h⊥F (z⊥) in Appendix A.

Given a set of samples
{
z⊥j ∼ φZ⊥ (z⊥) : j = 1, ...,NU

}
, a set of

weights, wF∪F̃(z⊥) can be calculated as presented in the exam-

ple of h⊥F (z⊥) in Appendix A. A self-weighted importance sam-

pling estimate of κU is calculated as a weighted average:

κ̂U =

NU∑
j=1

wF∪F̃(z⊥j )κ̂U j (13i)

Variance of κ̂U is estimated as:

Var(κ̂U) =

NU∑
j=1

w2
F∪F̃(z⊥j ) ·

(
κ̂U j − κ̂U

)2
(13j)

Similar to κU , an expression for κI is formulated by introducing

an importance distribution hF̃(z) into the integral defining P(F∩
F̃):

P(F ∩ F̃) =

∫
Rn

IF∩F̃(z)φZ(z)dz =
∫
Rn

IF∩F̃(z)φZ(z)

hF̃(z)
hF̃(z)dz

(14a)

3
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where hF̃(z) is defined as a product of the indicator function

denoting the event F̃, IF̃ , and the joint pdf φZ(z):

hF̃(z) =
IF̃φZ(z)∫

Rn IF̃(z)φZ(z)dz
=

IF̃φZ(z)

P(F̃)
(14b)

With the hF̃(z) in Eq. 14b inserted in Eq. 14a, κI is defined as:

κI =
P(F ∩ F̃)

P(F̃)
=

∫
Rn

IF∩F̃(z)

IF̃(z)
hF̃(z)dz (14c)

As discussed earlier, the problem of estimating the failure prob-

ability, PF = E [IF(z)], is substituted with the problems of es-

timating the correction coefficients κU and κI . In the case of

κI = EhF̃

[
IF∩F̃(z)/IF̃(z)

]
, the substitution will require a lower

smaller sample size to be evaluated with comparable accuracy

if the event corresponding to κI is less rare than the failure event,

EhF̃

[
IF∩F̃(z)/IF̃(z)

] ≥ E [IF(z)]. In the case of a relatively accu-

rate metamodel approximation of the limit state κI ≈ 1, which

provides a potential to reduce the computational demands com-

monly associated with the estimation of rare failure events.

To implement an LS estimator of κI , Eq. 14c is formulated as:

κI =

∫
Rn−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫
R

IF∩F̃(z)

IF̃(z)
hF̃α (zα)dzα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ h⊥F̃ (z⊥)dz⊥ (14d)

where hF̃α (zα) is a distribution of random variables along α
conditioned on F̃, while h⊥

F̃
(z⊥) is a marginal distribution of

hF̃(z) in the (n − 1)-dimensional space orthogonal to α. For

a given
{
z⊥j ∼ h⊥

F̃
(z⊥) : j = 1, ...,NI

}
, the one-dimensional inte-

gral in Eq. 14d is rewritten as:

κI(z⊥j ) = κI j =

∫
R

IF∩F̃(zα, z⊥j )

IF̃(zα, z⊥j )
hF̃α (zα)dzα (14e)

Based on a set of samples
{
zαk ∼ h⊥

F̃α
(zα) : k = 1, ...,Nα

}
an MC

estimator of κI j can be defined as:

κ̂I j =
1

Nα

Nα∑
k=1

IF∩F̃(zαk, z⊥j )

IF̃(zαk, z⊥j )
(14f)

In the case that the failure domains, Fα(z⊥) and F̃α(z⊥), are

specified with the intervals
[
β(z⊥),∞) and

[
β̃(z⊥),∞

)
respec-

tively, an LS estimator of κI(z⊥j ) can be defined as:

κ̂I j =
Φ
(
−max

[
β̃(z⊥j ), β(z⊥j )

])
Φ(−β̃(z⊥j ))

(14g)

An estimate of κI is then calculated by solving an (n − 1)-

dimensional integral:

κI =

∫
Rn−1

κI(z⊥)h⊥F̃ (z⊥)dz⊥ (14h)

A self-weighted importance sampling estimate of κI is devel-

oped to utilize the relation between h⊥
F̃

(z⊥) and the (n − 1)-

dimensional standard normal distribution orthogonal to α, φZ⊥ (z⊥).

Given a set of samples
{
z⊥j ∼ φZ⊥ (z⊥) : j = 1, ...,NI

}
, a set of

weights wF̃(z⊥) can be calculated as presented in the example

of h⊥F (z⊥) in Appendix A. A self-weighted importance sam-

pling estimate of κI is calculated as a weighted average:

κ̂I =

NI∑
j=1

wF̃(z⊥j )κ̂I j (14i)

Variance of κ̂I is estimated as:

Var(κ̂I) =

NI∑
j=1

w2
F̃(z⊥j ) ·

(
κ̂I j − κ̂I

)2
(14j)

Given κ̂U and κ̂I and their respective variances, an approximate

value of κ̂ and Var(κ̂) can be obtained as shown in Appendix

B. A first-order approximation of κ̂, which corresponds to sub-

stituting κU and κI in Eq. 10 with their estimates, κ̂U and κ̂I ,
is shown in Appendix B to be asymptotically unbiased and

consistent estimator. Provided with the estimate of the bias in

Eq. B.4, a bias-correction term can be added to the first-order

approximation of κ̂ as follows:

κ̂ ≈ 1

κ̂U
+ κ̂I − 1 − Var(κ̂U)

κ̂3U
(15)

The estimator in Eq. 15 remains approximate since the bias-

correction term, Var(κ̂U)/κ̂3U , is an approximation of the bias.

Additionally, κ̂ in Eq. 15 remains to be an asymptotically unbi-

ased and consistent estimator. As shown in Appendix B, the

variance of the estimator in Eq. 15 is evaluated as follows:

Var(κ̂) ≈ Var(κ̂U)

κ̂4U
+ Var(κ̂I) (16)

The coefficient of variation of κ̂, CoV(κ̂) ≈ √Var(κ̂)/κ̂ is used

as a measure of convergence of κ̂ in this study.

2.4. MLS Failure Probability

The estimate of PF with the corresponding variance is de-

rived based on an unbiased estimate of the metamodel-based

failure probability, P̂F̃ and asymptotically unbiased estimate of

the correction coefficient κ̂. The estimates P̂F̃ and κ̂ are inde-

pendent as they are evaluated on samples from different distri-

butions. The estimate of PF then becomes:

P̂F = P̂F̃ · κ̂ (17)

Given that P̂F̃ is an unbiased estimator and κ̂ is asymptotically

unbiased estimator, P̂F is an asymptotically unbiased estima-

tor. Expressions for the corresponding variance, Var(P̂F), and

coefficient of variation, CoV(P̂F) are derived in Appendix C.

Since the values of P̂F̃ and κ̂ are usually calculated with rela-

tively low CoVs (e.g., < 0.1), the CoV(P̂F) can be relatively

4
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accurately approximated as shown in Appendix C:

CoV(P̂F) ≈
√

CoV2(P̂F̃) + CoV2(κ̂) (18)

3. Metamodel

3.1. Design of Experiments
A metamodel, g̃(z), is constructed to approximate the func-

tional relationship between z and g(z). In reliability analysis

of structures g̃(z) is implemented to classify a combination of

random structural parameters as a safe or failure state of the

structure with lower computational expenses than g(z). A meta-

model can be built by implementing interpolation, regression

or classification methods from the group of statistical learning

methods [14] on a set of pointwise evaluations of g(z):

Γ =
{(

z j, g(z j)
)
, j = 1, .., S

}
(19)

In reliability analysis of structures Γ is obtained through a De-

sign of Experiments (DoE), commonly initiated by a space-

filling DoE and updated by a model-based or an adaptive DoE.

The initial space-filling DoE attempts to gather the largest amount

of information to construct a metamodel by filling Ω. Com-

mon approaches for the space-filling DoE include Monte Carlo

sampling, Latin Hypercube Sampling [21], Full factorial design

[22], or K-means clustering [9].

On the other hand, model-based or adaptive DoE utilizes in-

formation provided by a model (e.g., structural model, meta-

model) to construct an optimal DoE. For example, several adap-

tive Kriging-based DoEs were formulated on the information

provided by the Kriging variance (e.g., [9, 17]).

A model-based DoE, adapted to the LS method, is implemented

in this study. Motivation for an LS based DoE (LS-DoE) stems

from the requirement that an efficient implementation of a meta-

model for reliability analysis requires accurate approximation

of g(z) around the limit state with a relatively low number of ob-

servations. The limitation in the number of observations is com-

monly encountered due to computationally demanding struc-

tural models, employed to generate observations, and a decrease

in efficiency of certain metamodels (e.g., Kriging) with an in-

crease in the number of observations. For these reasons, the

LS-DoE is formulated as a sampling strategy to select realiza-

tions of random parameters from the variable space in the prox-

imity of the limit state. The sampling strategy for the LS-DoE

is derived by expanding the concept of the limit state with ’ar-

tificial uncertainty’. In the expanded formulation, the position

of the limit state is assumed to be uncertain and modeled with

a pseudo random variable ε ∼ fε(ε):

g′(z) = g(z) + ε (20)

Similar to the LS method, the LS-DoE conducts a series of line

searches along α to locate the limit state defined by g′(z) as

illustrated in Figure 3. The set of observations obtained with

the LS-DoE is specified as:

Γ =
{(

z j, g(z j)
)

: g′(z j) = 0, g(z j) = −ε j, j = 1, .., S
}

(21)

Figure 3: Illustration of the LS-DoE.

ε can be selected as a zero-mean random variable with the

standard deviation on the magnitude of g(z) at the mean of Ω.

This enables the LS-DoE to focus observations of g(z) on the

region extending from around the limit state to the mean of Ω.

The LS-DoE can be adaptively updated during the metamodel

training by modifying the standard deviation of ε to provide a

varying resolution of observations around the limit state. For

example, one can stepwise reduce the standard deviation of ε to

adaptively increase the number of observations in the proximity

of the limit state. It is expected that the LS-DoE can provide a

comparable information for an approximation of the limit state

with a lower number of observations than a space-filling DoE

due to its focus on observations in the proximity of the limit

state.

3.2. Kriging Metamodel

In this study, a Kriging predictor is implemented as a meta-

model due to several efficient applications in the field of relia-

bility analysis (e.g., [9]). A relatively robust and numerically

efficient DACE MatlabT M Kriging toolbox [5] is employed to

estimate Kriging parameters and to predict values at unobserved

locations.

In the Kriging predictor, the set of pointwise observations of

g(z) in Eq. 21 is interpreted as a realization of a Gaussian pro-

cess (e.g., [9]):

g(z) = q(z)Tη + U(z) (22)

which can be decomposed into a regression model defined by a

set of known functions q = {qr, r = 1, ...,R} and unknown co-

efficients η, and a zero-mean stationary Gaussian process U(z).

The zero-mean stationary Gaussian process, U, specifies the

covariance structure of the Gaussian process in Eq. 22, with

variance σ2
g, and a correlation function ρ:

Cov
{
g(z′), g(z′′)

}
= σ2

gρ(z
′, z′′); (z′, z′′) ∈ Ω (23)

5
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A Gaussian correlation model is selected for ρ:

ρ(z′, z′′) = exp

⎛⎜⎜⎜⎜⎜⎝−
n∑

i=1

(z′i − z′′i )2

θ2i

⎞⎟⎟⎟⎟⎟⎠ (24)

where {θi : i = 1, ..., n} is a set of parameters.

Given a realization, {z0 ∈ Ω}, the Kriging predictor of g(z0)

based on the set of observations, Γ, is defined as a linear un-

biased predictor:

g̃(z0) =

S∑
j=1

ζ jg(z j) (25)

where ζ =
{
ζ j, j = 1, ..., S

}
is a set of unknown weights. The set

of unknown weights ζ is determined by minimizing the predic-

tion error variance:

ζ̂ = arg min
ζ

Var {g(z0) − g̃(z0)} (26)

with respect to unbiasedness constraint:

E {g̃(z0)} = E {g(z0)} (27)

After estimating ζ̂, the prediction is calculated as:

g̃(z0) =

S∑
j=1

ζ̂ jg(z j) (28)

with associated error variance:

σ2
g̃ = Var {g(z0) − g̃(z0)} =

σ2
g

⎛⎜⎜⎜⎜⎜⎜⎝1 − 2

S∑
j=1

ζ̂ jρ(z0, z j) +

S∑
j=1

S∑
k=1

ζ̂ jζ̂kρ(z j, zk)

⎞⎟⎟⎟⎟⎟⎟⎠ (29)

Details on the implementation of the Kriging predictor can be

found in various sources (e.g., [5]).

The accuracy of the predictor in Eq. 28 depends on the selec-

tion of q, η, σ2
g and θ. The set of functions, q, can be selected

as an optimal set of functions when performing regression anal-

ysis on observations in Eq. 19. After determining the optimal

regression fit, η, σ2
g, and {θi : i = 1, ..., n} are calculated as maxi-

mum likelihood estimates (MLEs) [5] on the set of observations

in Eq. 19. The error variance, σ2
g̃, is dependent on the number

S and the location of samples in Eq. 19. The value of σ2
g̃ can

be reduced by generating new pointwise observations of g(z)

from the region of the variable space where predictions are to

be made.

4. MLS Implementation

This section summarizes the implementation of the MLS

method. The flowchart in Figure 4 illustrates the three main

steps of the MLS method. In the first step, a metamodel of g(z)

is trained according to the Algorithm 1. Once the metamodel

is trained, the metamodel-based failure probability PF̃ and the

correction coefficient, κ, are evaluated by two independent steps

defined according to Algorithms 2 and 3 respectively. Finally,

PF is calculated as a product of the estimates of PF̃ and κ.

Figure 4: Flowchart of the MLS method.

The implementation of the MLS method is initiated with

the metamodel training based on the LS-DoE, as presented in

Algorithm 1. The implementation of the LS-DoE requires the

important direction, α, to be specified. For example, α can

be approximated by a gradient vector of g(z) pointing in the

direction of steepest descent. In [19] α was determined as a

unit vector which points to a set of samples generated with

the Markov Chain Monte Carlo method from the distribution

of random variables conditioned on the failure event, h(z) =

IF(z) fZ(z))/PF . Alternatively, Adaptive Line Sampling method

[6] can be implemented, where an initial crude estimate of α
is updated during the reliability analysis to converge to a near

optimal α.

As presented in Algorithm 1, a metamodel is stepwise refined

with S observations, generated by the LS-DoE, until maximum

number of refinement steps, NS , is achieved or convergence of

κ within the bounds κmin and κmax occurs. A relatively accurate

estimate of κ, according to Algorithm 3, can present a compu-

tationally demanding task at early stages of the metamodel re-

finement. For this reason, a relatively low number of samples,

Nt
κ > 50, is used during the metamodel refinement to obtain

a relatively crude estimate of κ. The refinement procedure is

conducted until PF and PF̃ are within less than one order of

magnitude, which corresponds to κmin ≥ 0.1 and κmax ≤ 10. As

discussed in Section 3.1, ε can be selected as a zero-mean ran-

dom variable with standard deviation on the magnitude of g(z)

at the mean.

Once g̃(z) is trained, PF̃ and κ can be estimated according

to Algorithms 2 and 3 respectively. Since Algorithms 2 and 3

are independent, the estimates of PF̃ and κ can be calculated in

parallel to optimize computational efforts.

Assuming that g̃(z) approximates the limit state reasonably well,

α specified for Algorithm 1 can be used for the LS estimate

of PF̃ . Additionally, the implementation of Algorithm 2 re-

quires the specification of the limitations in the number of line

searches for the LS estimate of PF̃ , Nmin
PF

and Nmax
PF

, together

with the target coefficient of variation, τF̃ . Since CoV(P̂F̃) and

6
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Algorithm 1 Metamodel training

1: Define α,NS ,Nt
κ, S , κmin, κmax, fε(ε)

2: Initiate i← 0

3: while {i < NS & κmin ≤ κ̂ ≤ κmax} do
4: i← i + 1

5: j← (i − 1) · S
6: while (i − 1) · S ≤ j < i · S do
7: j← j + 1

8: z⊥j ∼ N(0, In−1) � In−1 is an identity matrix of size

(n − 1)

9: ε j ∼ fε(ε)
10: Solve g(αβ j + z⊥j ) + ε j = 0 for β j � Performance

function line search

11: z j ← αβ j + z⊥j , g(z j)← −ε j � Update DoE

12: end while
13: Train g̃(z) on Γ = {(zk, g(zk)) , k = 1, .., j}
14: Evaluate κ̂ according to Algorithm 3 with Nmax

κ = Nt
κ

15: end while
16: return g̃(z)

CoV(κ̂) contribute equally to CoV(P̂F) in Eq. 18, the following

target values can be selected; τF̃ = τκ = τF/
√

2, where τκ and

τF are target coefficients of variation for κ̂ and P̂F respectively.

κ is calculated according to Algorithm 3 with the target co-

efficient of variation τκ and minimum and maximum number of

line searches, Nmax
κ and Nmin

κ .

Finally, P̂F and the corresponding CoV(P̂F) are calculated

according to Eqs. 17 and 18.

5. Application Example with Parabolic Failure Limit

In the following section, the performance of the MLS ap-

proach will be illustrated with a reliability problem defined by

a parabolic failure limit. The problem is studied for a range

of dimensions to evaluate the effect of dimensionality on the

performance of the MLS method.

5.1. Problem Definition

The reliability problem is defined by an n-dimensional

paraboloid studied in [18]:

g(Z) = a ·
n∑

i=2

Z2
i − Z1 − b (30)

where Z = [Z1, ...,Zn]T ∈ Ω is an n-dimensional vector of inde-

pendent random variables distributed by the joint multivariate

normal pdf, φZ(z) = Nn(μZ,Σ), where μZ = 0 and Σ = In

is an identity matrix of size n. The parameters a and b in

Eq. 30 are constants defining the shape of the paraboloid. High-

dimensional applications of the reliability problem (Eq. 30) can

be assessed by implementing the following substitution:

Q =
n∑

i=2

Z2
i (31)

Algorithm 2 Metamodel-based failure probability, PF̃

1: Define α,Nmin
PF
,Nmax

PF
, τF̃

2: Initiate i← 0

3: while
{
i < Nmax

PF
& CoV(P̂F̃) > τF̃

}
do

4: i← i + 1

5: z⊥i ∼ N(0, In−1) � In−1 is an identity matrix of size

(n − 1)

6: Solve g̃(αβ̃i + z⊥i ) = 0 for β̃i �Metamodel line search

7: if i ≥ Nmin
PF

then

8: P̂F̃ ← 1
i

i∑
j=1
Φ(−β̃ j)

9: Var(P̂F̃)← 1
i(i−1)

i∑
j=1

(
Φ(−β̃ j) − P̂F̃

)2

10: CoV (P̂F̃)←
√

Var(P̂F̃)/P̂F̃

11: end if
12: end while
13: return P̂F̃ , CoV(P̂F̃)

where Q ∼ χ2
n−1 is a Chi-square distributed random variable

with n − 1 degrees of freedom. With the substitution imple-

mented, the n-dimensional reliability problem can be transformed

to an equivalent 2-dimensional problem with a linear perfor-

mance function:

g(Z1,Q) = a · Q − Z1 − b (32)

The joint pdf of the equivalent 2-dimensional reliability prob-

lem is defined by a product: f (z1, q) = φZ1
(z1) · fQ(q), where

φZ1
(z1) = N(0, 1), and fQ(q) = χ2

n−1. The transformation of the

n-dimensional problem (Eq. 30) to an equivalent 2-dimensional

problem (Eq. 32) is applied to illustrate the performance of the

LS-DoE.

The reliability problem in Eq. 30 is evaluated for a range of

dimensions with the paraboloid parameters a and b defined in

Table 1.

Table 1: Parameters for the reliability problem in Eq. 30.

n a b σε S
2 1 -3 1 10

10 1 0 1 50

100 0.1 4.5 1.5 200

5.2. Kriging Metamodel

The implementation of the MLS method is initiated with

the Kriging metamodel training according to Algorithm 1. The

effect of a regression model on the performance of the Kriging

predictor is evaluated by implementing a linear, q1 = {1, z1, ..., zn},
and a quadratic regression model, q2 =

{
1, z1, ..., zn, z2

1, ..., z
2
n

}
.

For the paraboloid parameters a and b in Table 1, the problem

features a single design point along the z1 axis. Based on these

observations, α is select as a unit vector parallel to the z1 axis

with the sign dependent on the value of b.

7
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Algorithm 3 Correction coefficient κ

1: Define α,Nmax
κ , Nmin

κ , τκ
2: Initiate i← 0

3: while
{
i < Nmax

κ & CoV(κ̂) > τκ
}

do
4: i← i + 1

5: z⊥i ∼ N(0, In−1) � In−1 is an identity matrix of size

(n − 1)

6: Solve g(αβi + z⊥i ) = 0 for βi � Performance function

line search

7: Solve g̃(αβ̃i + z⊥i ) = 0 for β̃i �Metamodel line search

8: κUi ← Φ(−β̃i)/Φ
(
−min

[
β̃i, βi

])
� Indicator ratio

9: wUi ← Φ
(
−min

[
β̃i, βi

])
�Weight

10: κIi ← Φ
(
−max

[
β̃i, βi

])
/Φ(−β̃i) � Indicator ratio

11: wIi ← Φ(−β̃i) �Weight

12: if i ≥ Nmin
κ then

13: wU j ← wU j/
∑i

j=1 wU j; j = 1, ..., i � Normalize

weights

14: κ̂U ← ∑i
j=1 wU jκU j

15: Var(κ̂U)← ∑i
j=1 w2

U j(κU j − κ̂U)2

16: wI j ← wI j/
∑i

j=1 wI j; j = 1, ..., i � Normalize

weights

17: κ̂I ← ∑i
j=1 wI jκIk

18: Var(κ̂I)← ∑i
j=1 w2

I j(κI j − κ̂I)2

19: κ̂ ← 1/κ̂U + κ̂I − 1 − Var(κ̂U)/κ̂3U � Correction

coefficient estimate

20: Var(κ̂)← Var(κ̂U)/κ̂4U + Var(κ̂I)
21: CoV(κ̂)← √Var(κ̂)/κ̂

22: end if
23: end while
24: return κ̂, CoV(κ̂)

To generate the LS-DoE, ε is defined as a zero-mean normal

random variable with the standard deviation σε specified in Ta-

ble 1. The performance of the LS-DoE on the reliability prob-

lem in Eq. 30 can be examined on realizations in Figures 5 (a)

and (b) for n = 2 and n = 100 respectively. Figures 5 (a) and

(b) display a set of 100 observations generated by the LS-DoE.

From Figures 5 (a) and (b) it can be detected that the LS-DoE

is able to provide a set of independent observations in the prox-

imity of the limit state for the reliability problem in Eq. 30.

The metamodel is stepwise refined with S observations, as spec-

ified in Table 1, until 0.2 ≤ κ̂ ≤ 5 or NS ≤ 5. During the

metamodel refinement an estimate of κ is evaluated according

to Algorithm 3 with Nt
κ = 50 line searches.

In addition to the computational demands associated with

the performance function evaluations during the metamodel train-

ing, a significant computational expense can be required to eval-

uate MLEs for the Kriging parameters. A parametric study

was conducted to investigate the effect of n in the problem in

Eq. 30 and the LS-DoE size on the computational time required

by the pattern search algorithm in the DACE library to locate

MLEs. Simulations in Table 2 were performed with the DACE

library [5] in MatlabT M on an Intel R©CoreT M i7-3770 CPU @

x1

-2 0 2 4 6 8

x
2

-3

-2

-1

0

1

2

3
(a)

g(z) = 0

φ
Z
(z)

(b)

z1

-2 0 2 4 6 8

q

50

100

150

g(z) = 0

φ
Z
(z)

Figure 5: Realizations of the LS-DoE with ε ∼ N(0, 1) for the reliability prob-

lem in Eq. 30; (a) n = 2, (b) n = 100.

3.40 GHz running on Windows R©7.

Table 2: Computational time required to calculate MLEs for the Kriging pa-

rameters in seconds.

n
S

20 200 500 1000 2000

2 0.01 0.10 0.48 2.71 11.88

10 0.03 0.46 3.35 16.72 76.03

100 - 12.59 70.94 302.89 1629.80

The results in Table 2 indicate that potential computational

savings of the MLS approach can be affected by the compu-

tational expenses employed to locate MLEs for the Kriging

parameters in high-dimensional reliability problems with large

LS-DoE sizes.

5.3. Results

An estimate of PF , defined as a product of P̂F̃ and κ̂, is ob-

tained by evaluating Algorithms 2 and 3 respectively. Follow-

ing the procedure in Algorithm 2, P̂F̃ is evaluated with the fol-

lowing parameters Nmin
PF
= 50, Nmax

PF
= 105, and τF̃ = 0.05/

√
2.

κ̂ is calculated with the following convergence criteria Nmin
κ =

50, Nmax
κ = 105, and τκ = 0.05/

√
2 according to Algorithm 3.

In total, 30 reliability analyses were conducted to evaluate the

8
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performance of the MLS approach with the target coefficient of

variation τF =
√
τ2

F̃
+ τ2
κ = 0.05. The results in Table 3 are

average values over 30 MLS reliability analyses.

The performance of the MLS method is compared to several

reliability methods; LS, SS, and MC. The results in Table 3 are

averages over 30 reliability analyses conducted with each of

the reliability methods. The implementation of the LS method

is based on α defined for the MLS method in Section 5.2. The

SS method is carried out with intermediate probability levels

of 0.1, estimated with 20000 samples generated with the Mod-

ified Metropolis algorithm. Upper and lower bounds for the

CoV(P̂F) of the SS estimate of PF were calculated as defined

in [1].

Table 3 summarizes the comparison of the performance of sev-

eral reliability methods with the MLS method on the problem

in Eq. 30. The reliability methods are compared with respect to

the average number of calls to the performance function, N, and

average estimates of PF and CoV(P̂F). In the case of the MLS

approach, N represents the total number of calls to the perfor-

mance function for the metamodel training and evaluation of κ.
The computational cost associated with P̂F̃ is not included in

N due to a relatively low computational cost of a metamodel

evaluation (i.e., on the magnitude of a milisecond or lower for

a single evaluation) when compared to a performance function

evaluation in a general reliability problem. Due to a relatively

simple formulation of the performance function in Eq. 30 no

additional computational costs were required for the determi-

nation of α for the MLS and LS methods. In a general reli-

ability problem the computational cost related to the determi-

nation of α can be on the magnitude of n performance func-

tion evaluations. Additionally, as a result of the formulation

of the performance function in Eq. 30, line search along α can

be solved analytically with a single evaluation. Depending on

the nonlinearity of a performance function in a general reliabil-

ity problem, line search can require ≥ 2 performance function

evaluations for a single line search.

Table 3: Results for the reliability problem in Eq. 30.

Method
MLS

LS SS MCq1 q2

n = 2

N 135 55 433 101800 843190

P̂F · 104 4.80 4.81 4.80 4.62 4.76

CoV (%) 3.97 3.54 4.99
≥ 5.39

5.00≤ 11.78

n = 10

N 1201 71 41893 100000 518360

P̂F · 104 7.94 7.77 7.67 7.58 7.74

CoV (%) 3.53 3.54 5.00
≥ 4.93

5.00≤ 10.54

n = 100

N 100930 251 45066 104200 1057890

P̂F · 104 3.82 3.77 3.76 3.90 3.79

CoV (%) 6.63 3.54 5.00
≥ 5.43

5.00≤ 11.95

It can be observed from Table 3 that the MLS approach can

provide consistent estimates of PF for the reliability problem in

Eq. 30, comparable to several commonly used reliability meth-

ods (i.e., LS, SS, and MC). The MLS approach demonstrates a

potential to reduce computational expenses associated with re-

liability problems by estimating PF with similar CoV(P̂F) for a

smaller or comparable N with respect to the reliability methods

considered in Table 3.

The comparison between the computational expenses of the

MLS method with regression models q1 and q2 reveals that the

quality of the metamodel approximation considerably affects

the performance of the MLS method. For example, due to the

inability of the Kriging predictor with q1 to accurately approx-

imate the performance function for n = 100, the MLS method

does not provide reductions in computational expenses when

compared to the other reliability methods in Table 3. Com-

putational expenses for the MLS implementation with q1 are

dominated by the performance function evaluations employed

to estimate κ as presented in Table 4. On the other hand, the

calculation expenses for the MLS implementation with q2 are

composed of the minimal number of samples for a multivari-

ate regression analysis with q2 (i.e., 2n + 1), and the specified

minimum number of samples for the estimate of κ, Nmin
κ = 50.

Table 4: Average ratio (%) of the computational expenses employed to estimate

κ over N.

n 2 10 100

q1 80.5 80.1 99.0

q2 90.9 70.4 19.9

To investigate if the estimator CoV(P̂F) in Eq. 18 is a rea-

sonable estimate of the accuracy of P̂F , the empirical coeffi-

cient of variation, CoVE(P̂F), calculated from 30 MLS analyses

is compared to the predicted values. The consistency between

CoV(P̂F) and its estimate, CoVE(P̂F), in Table 5 confirms that

CoV(P̂F) is a sound estimate of accuracy of P̂F .

Table 5: Comparison between the empirical and the predicted CoV for the MLS

method.

n 2 10 100

q1

CoV (%) 3.97 3.53 6.63

CoVE (%) 3.44 4.80 6.70

q2

CoV (%) 3.54 3.54 3.54

CoVE (%) 4.20 3.19 3.31

6. Parallel System Analysis

A two component parallel system reliability problem, stud-

ied in [13], is evaluated to investigate the performance of the

MLS approach on a problem with a highly nonlinear perfor-

mance function. The reliability problem is defined as:

g(z1, z2) = max

{
2 − z2 + exp(−0.1z2

1) + (0.2z1)4

4.5 − z1z2
(33)

9
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where z1 and z2 are realizations of two independent standard

normally distributed random variables, Z1 and Z2. The problem

features a single design point, zP = (1.6148, 2.7806)T as dis-

played in Figure 6.

The implementation of the MLS approach is initiated with the

Kriging metamodel training according to Algorithm 1 with q1

and S = 50 observations per refinement step until 0.2 ≤ κ̂ ≤ 5

or NS ≤ 5. The Kriging metamodel is trained on observations

of the performance function generated by the LS-DoE. The LS-

DoE is constructed with α = (0.5030, 0.8643)T , pointing in the

direction of zP, and a zero-mean normally distributed pseudo

random variable ε ∼ N(0, 2). To demonstrate the performance

of the LS-DoE on the problem in Eq. 33, a set of 100 realiza-

tions is presented in Figure 6. During the metamodel refine-

ment κ̂ is evaluated according to Algorithm 3 with Nt
κ = 50 line

searches.

z1

0 1 2 3 4 5 6

z
2

0

1

2

3

4

5

6
zP

g(z1, z2) = 0

Figure 6: Realization of the LS-DoE with ε ∼ N(0, 1) for the reliability problem

in Eq. 6.

Following the MLS algorithm, an estimate of PF is calcu-

lated as a product of P̂F̃ and κ̂. P̂F̃ is evaluated as specified

in Algorithm 2 with Nmin
PF
= 50, Nmax

PF
= 105, and τF̃ = 0.01.

κ̂ is calculated according to Algorithm 3 to satisfy the follow-

ing convergence criteria Nmin
κ = 50, Nmax

κ = 105, and τκ =

0.05/
√

2. In total, 30 reliability analyses were conducted to

evaluate the performance of the MLS approach with the target

coefficient of variation τF =
√
τ2

F̃
+ τ2
κ = 0.0367. The MLS

estimates are validated with 30 reliability analyses conducted

with the LS, IS, SS, and MC method. The LS method is imple-

mented with α pointing in the direction of zP. An importance

sampling distribution for the IS approach is defined as a bivari-

ate normal distribution N(zP, I2) with the mean at zP and a two-

dimensional identity matrix I2 as the covariance matrix. The

SS method is carried out with intermediate probability levels

of 0.1, estimated with 20000 samples generated with the Mod-

ified Metropolis algorithm. Upper and lower bounds for the

CoV(P̂F) of the SS estimate of PF were calculated as defined

in [1].

Table 6 summarizes the comparison of the performance of sev-

eral reliability methods with the MLS method on the problem in

Eq. 6. The reliability methods are compared with respect to the

average N, P̂F , and CoV(P̂F). In the case of the MLS approach,

N represents the total number of calls to the performance func-

tion used to determine α, train the metamodel and evaluate κ.
After comparing the results in Table 6 it can be observed that

the MLS approach can provide estimates of PF for the relia-

bility problem in Eq. 6, comparable to several commonly used

reliability methods. The MLS approach provided estimates PF

with similar CoV(P̂F) for a smaller or comparable N with re-

spect to the reliability methods considered in Table 6. On aver-

age, computational expenses employed to train the metamodel

dominate in this example with 53.3 % of the total performance

function evaluations.

To investigate if the estimator CoV(P̂F) in Eq. 18 is a reason-

able estimate of the accuracy of P̂F , the empirical coefficient

of variation, CoVE(P̂F) is compared to CoV(P̂F). Based on the

results in Table 6, CoVE(P̂F) = 5.19% is slightly higher than

the estimated value CoV(P̂F) = 3.46%.

Table 6: Results for the reliability problem in Eq. 33.

Method MLS LS IS SS MC

n = 2

N 762 2905 2883 114000 1650190

P̂F · 104 2.42 2.45 2.43 2.80 2.43

CoV (%) 3.52 4.00 4.95
≥ 5.70

5.00≤ 12.87

7. Reliability Analysis of a Laterally Loaded Pile

The development of an efficient approach for reliability anal-

ysis is important for a wide range of engineering problems, in-

cluding natural hazards (e.g., water triggered landslides) and

engineering structures (e.g., offshore wind turbines). In this

study, a reliability analysis of a monopile foundation for off-

shore wind turbines is performed with the MLS method to ex-

amine the performance of the approach on a practical engineer-

ing problem. The reliability analysis is conducted to quantify

the effects of uncertainties in lateral load and soil properties on

the ultimate limit state of a monopile foundation. The response

of a monopile is simulated by a numerical finite element pile-

soil model, which is an implicit function of the lateral load and

soil parameters. The performance of the MLS approach is vali-

dated with the LS method.

7.1. Numerical Pile-soil Model.

The response of a pile to lateral load can be simulated by

a finite element model, known as the API or p-y model (e.g.,

[10]). This model is based on Winkler’s beam on elastic foun-

dation theory, where the response of soil is simulated by a series

of elastic springs. The original Winkler model assumes elastic

behavior of soil, while in the API formulation it incorporates

nonlinearities. The nonlinearities in soil response are modeled

by p-y curves, where p is the soil reaction per unit length of a

pile, and y is the lateral displacement of a pile. P-y curves were

10
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developed by backcalculating a series of field test on laterally

loaded piles performed in different soil types. The API model

is currently recommended in several design codes for offshore

wind turbine foundations (e.g., [10]).

The monopile, in this study, is a hollow tube with length LP=30

m, diameter of D=5.0 m, and pile wall thickness of t=0.05 m.

The pile material is steel with Young’s modulus of E=2.1 · 105

MPa, and a Poisson’s ratio of ν=0.3. The material behavior of

the pile is assumed to be linearly elastic. Soil response is simu-

lated by a series of springs with material behavior defined by p-

y curves for medium stiff clay. Basic elements of the monopile

model are presented in Figure 7.

M

H

d LP

d

D,t,LP,E,ν

su γ J y

y

p

Figure 7: Laterally loaded monopile foundation.

Reliability analysis of the pile-soil system is conducted by

considering the lateral load, H, and the undrained shear strength

of the clay, su, as random variables. The pile is laterally loaded

with a horizontal force H and a moment M = H · 30 m at d = 0

m. Other parameters of the p-y curves are assumed to be deter-

ministic with the following values; unit weight γ=18.0 kN/m3,

empirical model parameter J=0.25, strain corresponding to one

half of the maximum principal stress difference y50=0.005.

7.2. Random Load
Uncertainties associated with H are modeled by a Gumbel

distributed random variable:

H ∼ fH(μH , μH · CoV(H)) (34)

where μH = 2500 kN is the mean, and CoV(H) = 0.1 is the

coefficient of variation, with the corresponding pdf presented

in Figure 8.

7.3. Soil Variability
Variability of su is expected to significantly influence the

pile-soil response since su is directly related to the peak value

of soil resistance. The variability of su is modeled by means of

an one-dimensional random field:

{
su(d); d ∈ G ⊂ R

1
}
∼ fsu (su) (35)

H

1500 2000 2500 3000 3500 4000 4500

f
H
(H

)

×10-3

0

0.5

1

1.5

Figure 8: Probability density function of H.

where d is soil depth or the reference variable {d ∈ G : 0 ≤ d ≤ LP},
G is the studied domain, and fsu (su) is a pdf specifying the ran-

dom field. fsu (su) is a multivariate lognormal pdf, with mean

linearly increasing with depth:

μsu = αsu + βsu · d (36)

where αsu and βsu are parameters of the mean function. The co-

variance structure of the random field is determined by a given

coefficient of variation CoV(su) and a Markov correlation func-

tion:

ρln su (τ) = exp

(
−2 · |d

′ − d′′|
θd

)
(37)

where {(d′, d′′) ∈ G}, and θd is the correlation length of ln su.

Realizations of the random field in Eq. 35 are generated by

discretizing the domain {d ∈ G : 0 ≤ d ≤ LP} into P = 40 in-

tervals, with interval length of dL = LP/P. The generated

random field is fully described by a P-dimensional joint pdf,
fsu (su). The intervals are selected to correspond to the dis-

cretization of the finite element mesh of the numerical pile-soil

model. In this study, the random field, {su(d); d ∈ G}, is spec-

ified with the following parameters; αsu = 50 kPa, βsu = 3

kPa/m, CoV(su) = 0.4, θd = 2 m, and P = 40. A realization of

{su(d); d ∈ G} is presented in Figure 9.

d [m]
5 10 15 20 25 30

s
u
[k
P
a]

50

100

150

200
μSu

Figure 9: A random field realization of su.

7.4. Reliability Analysis
The reliability analysis of the monopile foundation is per-

formed to quantify the effects of uncertainties in the set of ran-

dom variables X = [H, su]T on the ultimate limit state. In this

study, the ultimate limit state is defined by the monopile steel

11
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yield strength, σlim = 235 MPa. A transformation to a vector

of independent standard normal distributed random variables,

Z ∈ Ω, is applied to implement the MLS approach. The perfor-

mance function is thus defined as:

g(z) = σlim − σ(z) (38)

where σ = σ(z) is the maximum stress along the monopile.

The implementation of the MLS method for the reliability prob-

lem in Eq. 38 is initiated with the Kriging metamodel training

based on an LS-DoE, as defined in Algorithm 1. To generate

an LS-DoE it is necessary to specify α and the pseudo-random

variable, ε. α is determined by evaluating gradients of the per-

formance function at the mean point of the standard normal

space, μZ. It is expected that a gradient vector pointing in the

direction of the steepest descent of the performance function is

a reasonable estimate of α. A normalized gradient with respect

to the i-th random variable is defined as:

ωi =

∂g(z)

∂zi

∣∣∣∣
μZ√∑P+1

j=1

(
∂g(z)

∂z j

∣∣∣∣
μZ

)2 (39)

where ∂g(z)/∂zi is the derivative of g(z) with respect to the i-
th random variable. Estimates of ω are evaluated by the central

difference scheme with two evaluations of g(z) per random vari-

able. Estimated ω are presented in Figure 10 with the gradient

with respect to H on the first position, followed by gradients

with respect to P = 40 random variables associated with the

su random field discretization. Based on the estimates of ω in

Figure 10, α is selected as a unit vector in the standard nor-

mal space pointing in the positive direction, parallel to the axis

assigned to H.

zi

0 5 10 15 20 25 30 35 40

ω
i

0

0.5

1

Figure 10: Performance function gradients at μZ.

ε is modeled as a zero-mean normally distributed random

variable with σε = 30 kPa, selected to be on the magnitude

g(μZ) ≈ 170. The metamodel is stepwise refined with S = 100

observations from the LS-DoE until 0.2 ≤ κ̂ ≤ 5 or NS ≤ 10.

During the metamodel training a crude estimate of κ is calcu-

lated with Nt
κ = 100 simulations according to Algorithm 3. To

minimize the number of evaluations of the performance func-

tion, the Nt
κ samples used to evaluate κ̂ in Algorithm 1 are inte-

grated within the set of samples in Algorithm 3 for an accurate

estimate of κ once the metamodel is trained.

Given a Kriging metamodel, P̂F is calculated as a product of

P̂F̃ and κ̂, according Algorithms 2 and 3 respectively. P̂F̃ is

evaluated with the target coefficient of variation τF̃ = 0.05/
√

2

with Nmin
PF
= 50 and Nmax

PF
= 105. κ̂ is calculated with the

following convergence criteria Nmin
κ = 50, Nmax

κ = 105, and

τκ = 0.05/
√

2. In total, 30 reliability analyses were conducted

to investigate the performance of the MLS method on the relia-

bility problem in Eq. 38 with τF =
√
τ2

F̃
+ τ2
κ = 0.05. Average

MLS estimates of PF and CoV(PF) among 30 reliability analy-

ses are presented with the average number of evaluations of the

performance function, N, in Table 7. N includes the number

of performance function evaluations conducted to determine α,

train the Kriging metamodel, and evaluate κ̂.
The performance of the MLS method is validated by conducting

10 reliability analyses with the LS method. The implementation

of the LS method is based on the α, estimated for the MLS ap-

proach. Total number of performance function evaluations, N,

for the LS approach includes the performance function evalua-

tions used to determine α and evaluate PF . Average values of

P̂F , CoV(P̂F), and N among 10 reliability analyses conducted

with the LS method are presented in Table 7.

Table 7: Results for the reliability problem in Eq. 38.

Method MLS LS

n = 41

N 6889 33983

P̂F · 1010 1.74 1.78

CoV (%) 4.90 5.00

From Table 7 it can be observed that the MLS method pro-

vided an estimate of PF comparable to the LS estimate with

reduced computational expense. The MLS approach provided

estimates with on average 20% of the performance function

evaluations required by the LS method. The computational

expenses employed to evaluate κ dominate on average in this

example with 80.0% of the total performance function evalu-

ations. To verify that the estimator in Eq. 18 is a sound esti-

mate of the accuracy of P̂F the empirical coefficient of varia-

tion, CoVE(P̂F) is compared to CoV(P̂F). Based on 30 MLS

estimates CoVE(P̂F) = 6.86% is slightly higher than the aver-

age MLS estimate CoV(P̂F) = 4.90%. These results indicate

that CoV(P̂F) in Eq. 18 provides a reasonable estimate of accu-

racy of P̂F .

8. Conclusion

Reliability analysis of structures can be a computationally

challenging task if the failure probability to be estimated is low

and/or if the structural model is computationally complex. The

Metamodel Line Sampling method shows considerable poten-

tial to reduce the computational efforts for such problems by

utilizing the efficiency of the Line Sampling method with a rel-

atively low computational cost of a metamodel of the perfor-

mance function.

12
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A metamodel of the performance function is trained on a set of

observations generated with a Line Sampling-based Design of

Experiments. The Line Sampling Design of Experiments pro-

vides a set of observations in the proximity of the limit state by

expanding the definition of the limit state with artificial uncer-

tainty.

Once a metamodel is trained, the estimate of failure probability

is calculated as a product of a metamodel-based failure prob-

ability and a correction coefficient. The correction coefficient

accounts for the error in the metamodel estimate of failure prob-

ability resulting from the replacement the performance function

with a metamodel. The estimate of failure probability is asymp-

totically unbiased and consistent.

The performance of the Metamodel Line Sampling method was

examined on academic reliability problems and a practical re-

liability problem of a monopile foundation for offshore wind

turbines. The implementation of the Metamodel Line Sam-

pling with the Kriging predictor provided accurate estimates

of failure probability under lower or comparable computational

expense when compared to several commonly used reliability

methods. The Metamodel Line Sampling approach performs

optimally in reliability problems with no strong nonlinearities

in the performance function, such that the importance direction

can be estimated. Based on the studied examples, efficient per-

formance is observed in low to medium-dimensional reliability

problems (n < 100). The limitation in the dimensionality of a

reliability problem is mainly due to the decrease in efficiency

and accuracy of the Kriging metamodel with increasing dimen-

sionality of a reliability problem.

Appendix A. Distribution of Random Variables Conditioned
on the Failure Event

The distribution of random variables in Ω, conditioned on

the failure event, is defined as:

hF(z) =
IF(z)φZ(z)∫

Rn

IF(z)φZ(z)dz
=

IF(z)φZ(z)

PF
(A.1)

Assuming that an important direction, α, can be approximately

estimated, the marginal distribution of hF(z) in the (n − 1)-

dimensional standard normal space of random variables orthog-

onal to α, can be obtained by integrating out the random vari-

able along α, denoted as Zα.

h⊥F (z⊥) =

∫
R

hF(z)dzα (A.2)

With the formulation of hF(z) from Eq. A.1 incorporated into

Eq. A.2, the following expression is obtained:

h⊥F (z⊥) =

∫
R

IF(z)φZ(z)

PF
dzα (A.3)

Due to the rotational symmetry and independence of Ω:

h⊥F (z⊥) =

∫
R

IF(z)φZα (zα)φZ⊥ (z⊥)

PF
dzα (A.4)

h⊥F (z⊥) =
φZ⊥ (z⊥)

PF

∫
R

IF(z)φZα (zα)dzα (A.5)

Following the implementation of the LS method, the integral

in Eq. A.5 can be expressed as Φ
(−β(z⊥)

)
, where β(z⊥) is the

solution of a line search along α defined as g
(
αβ(z⊥) + z⊥

)
= 0.

The marginal distribution is defined as:

h⊥F (z⊥) =
Φ
(−β(z⊥)

)
φZ⊥ (z⊥)

PF
(A.6)

The proportionality operator can be used to define the relation

between φZ⊥ (z⊥) and h⊥F (z⊥) because PF is usually unknown

prior to a reliability analysis;

h⊥F (z⊥) ∝ Φ
(
−β(z⊥)

)
φZ⊥ (z⊥) (A.7)

Due to an unknown value of the normalizing constant, PF , the

distribution in Eq. A.7 can be sampled by Markov Chain Monte

Carlo (e.g., Metropolis-Hastings algorithm [12]) or resampling

methods (e.g., rejection method [12]).

The relation between φZ⊥ (z⊥) and h⊥F (z⊥) is used to define self-

normalized importance sampling estimates (e.g., mean, vari-

ance). Self-normalized importance sampling estimates are eval-

uated on
{
z⊥i ∼ φZ⊥ (z⊥); i = 1, ...,K

}
with the following weights:

wi =
h⊥F (z⊥i )/φZ⊥ (z⊥i )

K∑
j=1

h⊥F (z⊥j )/φZ⊥ (z⊥j )

=
Φ
(
−β(z⊥i )

)
K∑

j=1
Φ
(
−β(z⊥j )

) (A.8)

Consider a function l(z⊥) such that μl =
∫

l(z⊥)h⊥F (z⊥)dz⊥ and

σ2
l =

∫
(l(z⊥) − μl)

2h⊥F (z⊥)dz⊥ exist with σ2
l > 0. A self-

normalized importance sampling mean estimate is calculated

as:

μ̂l =

K∑
i=1

wi · l(z⊥i ) (A.9)

The variance of the self-normalized importance sampling esti-

mator in Eq. A.9 is defined as:

Var(μ̂l) =

K∑
i=1

w2
i Var(l(z⊥i )) =

K∑
i=1

w2
i

(
l(z⊥i ) − μ̂l

)2
(A.10)

Provided that all the observations have the same variance, Var(l(z⊥i )) =

σ2
l , the variance can be expressed as Var(μ̂l) = σ

2
l
∑K

i=1 w2
i .

To investigate the effect of unequally weighted samples on the

mean estimate, consider the unweighted mean based on Ke in-

dependent observations. The unweighted mean has variance

σ2
l /K

e. After setting Var(μ̂l) = σ
2
l /K

e and solving for Ke, a

13
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so-called effective sample size is obtained as follows:

Ke = 1/

K∑
i=1

w2
i (A.11)

Appendix B. Correction Coefficient Estimate

A relatively simple approximation of the estimator for κ can

be obtained by inserting the estimators κ̂U and κ̂I in Eq. 10:

κ(κU , κI) ≈ κ(κ̂U , κ̂I) = 1

κ̂U
+ κ̂I − 1 (B.1)

Due to the ratio 1/κ̂U , the estimator in Eq. B.1 is biased. The

bias in the estimator is evaluated with the delta method by ex-

amining the expectation of the Taylor’s series expansion of κ(κ̂U , κ̂I)
at κU and κI . The Taylor’s series expansion of κ(κ̂U , κ̂I) up to the

second-order terms is evaluated as follows:

κ(κ̂U , κ̂I) ≈ κ(κ̂U , κ̂I)|κU ,κI +

(κ̂U − κU)
∂κ(κ̂U , κ̂I)

∂κ̂U

∣∣∣∣∣
κU ,κI

+ (κ̂I − κI)∂κ(κ̂U , κ̂I)
∂κ̂I

∣∣∣∣∣
κU ,κI

+
1

2
(κ̂U − κU)2 ∂

2κ(κ̂U , κ̂I)

∂κ̂2U

∣∣∣∣∣∣
κU ,κI

+
1

2
(κ̂I − κI)2 ∂

2κ(κ̂U , κ̂I)

∂κ̂2I

∣∣∣∣∣∣
κU ,κI

+ (κ̂U − κU)(κ̂I − κI)∂
2κ(κ̂U , κ̂I)

∂κ̂U∂κ̂I

∣∣∣∣∣∣
κU ,κI

(B.2)

After applying the expectation operator to the terms of the Tay-

lor’s series expansion in Eq. B.2 the following expression is

obtained:

E [κ(κ̂U , κ̂I)] ≈ 1

κU
+ κI − 1 +

Var(κ̂U)

κ3U

= E [κ(κU , κI)] +
Var(κ̂U)

κ3U
(B.3)

Based on Eq. B.3 the bias in κ(κ̂U , κ̂I) can be approximated as

follows:

E [κ(κ̂U , κ̂I)] − E [κ(κU , κI)] ≈ Var(κ̂U)

κ3U
(B.4)

Provided that the samples in Eq. 13i, κU j; j = 1, ...,NS have the

same variance, Var(κU j) = Var(κU) the bias becomes:

E [κ(κ̂U , κ̂I)] − E [κ(κU , κI)] ≈ 1

Ne
U

Var(κU)

κ3U
(B.5)

where Ne
U = 1/

∑NU
j=1

w2
F∪F̃

(z⊥j ) is the effective sample size, ob-

tained as shown in Eq. A.11. From Eq. B.4 it follows that the

estimator in Eq. B.1 is asymptotically unbiased as

{E [κ(κ̂U , κ̂I)] − E [κ(κU , κI)]} → 0 as Ne
U → ∞.

The application of the variance operator to Eq. B.1 leads the

following expression:

Var [κ(κ̂U , κ̂I)] = E
[
{κ(κ̂U , κ̂I) − E [κ(κ̂U , κ̂I)]}2

]

≈ E

⎡⎢⎢⎢⎢⎢⎣
{

1

κ̂U
+ κ̂I − 1

κU
− κI

}2
⎤⎥⎥⎥⎥⎥⎦ ≈ Var(κ̂U)

κ4U
+ Var(κ̂I)

=
1

Ne
U

Var(κU)

κ4U
+

1

Ne
I

Var(κI) (B.6)

where Ne
U = 1/

∑NU
j=1

w2
F∪F̃

(z⊥j ) and Ne
I = 1/

∑NU
j=1

w2
F̃

(z⊥j ) are

the effective sample sizes, obtained as shown in Eq. A.11. From

Eq. B.6 it follows that κ(κ̂U , κ̂I) in Eq. B.1 is a consistent esti-

mator as the variance diminishes as Ne
U → ∞ and Ne

I → ∞.

Provided with the approximation of the bias in Eq. B.4, a mod-

ified estimator for κ can be derived as follows:

κ(κU , κI) ≈ κb(κ̂U , κ̂I) = κ(κ̂U , κ̂I) − 1

Ne
U

Var(κU)

κ3U

=
1

κ̂U
+ κ̂I − 1 − 1

Ne
U

Var(κU)

κ3U
(B.7)

The expectation of the estimator in Eq. B.7 is:

E [κb(κ̂U , κ̂I)] = E [κ(κ̂U , κ̂I)]− 1

Ne
U

Var(κU)

κ3U
≈ 1

κU
+κI−1 (B.8)

The variance of the estimator in Eq. B.7 remains the same as in

Eq. B.6:

Var [κb(κ̂U , κ̂I)] = E
[
(κb(κ̂U , κ̂I) − E [κb(κ̂U , κ̂I)])

2
]

= E
[
(κ(κ̂U , κ̂I) − E [κ(κ̂U , κ̂I)])

2
]
= Var [κ(κ̂U , κ̂I)] (B.9)

Appendix C. Estimate of Failure Probability

The estimate of PF with the corresponding variance is de-

rived based on an unbiased estimate of the metamodel-based

failure probability, P̂F̃ , with the variance Var(P̂F̃), and asymp-

totically unbiased estimate of the correction coefficient κ̂ with

the variance Var(κ̂). The estimates P̂F̃ and κ̂ are independent as

they are evaluated on samples from different distributions. The

estimate of PF then becomes:

P̂F = P̂F̃ · κ̂ (C.1)

The variance of P̂F is obtained as follows:

Var(P̂F) = Var(P̂F̃ · κ̂)
= E(P̂2

F̃ · κ̂2) − E(P̂F̃ · κ̂)2

= E(P̂2
F̃) · E(κ̂2) − E(P̂F̃ · κ̂)2 (C.2)

Given that Var(P̂F̃) = E(P̂2
F̃

) − E(P̂F̃)2 and Var(κ̂) = E(κ̂2) −
E(κ̂)2 the variance becomes:

Var(P̂F) =
[
Var(P̂F̃) + E(P̂2

F̃)
]
·
[
Var(κ̂) + E(κ̂2)

]
− E(P̂F̃ · κ̂)2

= Var(P̂F̃)E(κ̂2) + E(P̂2
F̃)Var(κ̂) + Var(P̂F̃)Var(κ̂) (C.3)
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Since P̂F̃ is an unbiased estimate E(P̂F̃) = PF̃ . Similarly, since

κ̂ is asymptotically unbiased E(κ̂) = κ. The variance becomes:

Var(P̂F) = Var(P̂F̃)κ2 + Var(κ̂)P2
F̃ + Var(P̂F̃)Var(κ̂) (C.4)

In order to achieve a relatively accurate estimate of P̂F with

a low variance, it is necessary to achieve correspondingly low

values of Var(P̂F̃) and Var(κ̂). Given that P̂F̃ and Var(P̂F̃) are

evaluated with a computationally inexpensive metamodel, it is

expected the majority of computational expenses will be uti-

lized to achieve a relatively low value of the second term on

the right side of the expression in Eq. C.4, Var(κ̂)P2
F̃

. After in-

cluding the expression from Eq. B.6 in Var(κ̂)P2
F̃

, the following

expression is obtained:

Var(κ̂)P2
F̃ ≈

⎛⎜⎜⎜⎜⎝ 1

Ne
U

Var(κU)

κ4U
+

1

Ne
I

Var(κI)

⎞⎟⎟⎟⎟⎠ P2
F̃ (C.5)

From Eq. C.5 it can be observed that the decay of Var(κ̂)P2
F̃

is advanced by the increase in the effective sample sizes, and

low values of Var(κU), Var(κI), and P2
F̃

. On the other hand, the

convergence rate of Var(κ̂)P2
F̃

is decreased with relatively low

values of κU . Given a relatively accurate metamodel approxi-

mation of the limit state, the events corresponding to κU and κI
become less rare when compared to the failure event. Conse-

quently, this provides a potential to achieve relatively low val-

ues of Var(κ̂U) and Var(κ̂I) with smaller effective sample sizes,

relative to the sample size that would be required to achieve

comparable Var(P̂F) in the direct estimation of PF . Given the

influence of κ on Var(P̂F) in Eqs. C.4 and C.5, it is advised to

train a metamodel such that PF and PF̃ are on the same magni-

tude, with 0.1 ≤ κ ≤ 10.

The coefficient of variation of the estimate, CoV(P̂F), is derived

by dividing Eq. C.4 with P2
F̃
· κ2.

CoV(P̂F) =

√
CoV2(P̂F̃) + CoV2(κ̂) + CoV2(P̂F̃)CoV2(κ̂)

(C.6)

Given that the estimates P̂F̃ and κ̂ are usually evaluated with

CoV(P̂F̃) and CoV(κ̂) between 1% and 10%, CoV(P̂F) can be

approximated relatively accurately as follows:

CoV(P̂F) ≈
√

CoV2(P̂F̃) + CoV2(κ̂) (C.7)
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[28] Schuëller G., Pradlwarter H., & Koutsourelakis P. (2004). A critical ap-

praisal of reliability estimation procedures for high dimensions. Proba-
bilistic Engineering Mechanics, 19.4, 463-474.

15


