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Abstract: Digital �ngerprinting has been much studied in the literature
for more than twenty years, motivated by applications in copyright protec-
tion. A popular and practical approach is to use spread spectrum watermark-
ing to embed �ngerprints in multimedia objects. Solutions are normally only
validated against known attacks in simulation.
In this paper we review known attacks on spread spectrum �ngerprinting,

and give a mathematical argument for the e�cacy of the so-called MMX
attack. We also provide a new, mathematical description the obfuscation
technique which we proposed at ICIP 2015, identifying some key properties
which are necessary to resist the MMX and other attacks.

Keywords: Digital �ngerprinting, watermarking, collusion-secure code, signal pro-
cessing, coding theory, spread spectrum, copyright protection

1 Introduction

More than thirty years have passed since Wagner [Wag83] suggested digital �ngerprinting
as a means of copyright protection. Every legitimate copy of the copyrighted work is
marked with the identity of the licensed user. If unauthorised copies ever appear, they
can be traced back to the guilty source. Obviously, the mark, which we call a �ngerprint,
must be embedded in such a way that the users cannot remove it. The major challenge
is collusion attacks, where multiple users compare their copies and make attacks based
on the di�erences between copies.
Following the pioneering work of Boneh and Shaw [BS95], there has been substantial

research into collusion-secure �ngerprinting. Most works on �ngerprinting assume (ex-
plicitly or implicitly) a layered model, consisting of a �ngerprinting code (coding layer)
and an embedding (watermarking) layer.
The �ngerprinting layer can be described as a code, mapping user identities into

codewords, or �ngerprints, over some alphabet, and a decoding algorithm which makes
the inverse mapping, also allowing for corrupt �ngerprints. Studies on this layer typically
assumes an abstract model, with a marking assumption which describes what attacks
a collusion of users can perform. It is simply assumed that it is possible to embed the
codeword symbol by symbol in a multimedia object so that the marking assumption is
satis�ed. A number of di�erent marking assumptions have been proposed.
The embedding layer typically borrows a solution from digital watermarking, with

spread spectrum watermarking (SS) being particularly popular. Additional care must
be taken to make the system collusion-secure. It is common to combine spread-spectrum
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�ngerprinting with well-known �ngerprinting codes, such as the Tardos code [Tar05], in
spite of the fact that SS watermarking does not satisfy the Marking Assumption.
Practical �ngerprinting systems in the literature are usually tested experimentally to

assess robustness against known attacks. Theoretical analysis is not possible without
some attack model, such as the marking assumption. It is interesting to note that
the practical solutions use much higher code rates than we would require based on the
theoretical analysis of the �ngerprinting layer on its own. Equally interesting, there are
few, if any, practical �ngerprinting system which resist all currently known attacks.
In this paper we review some of the known �ngerprinting systems and attacks, focus-

ing on spread spectrum constructions. We analyse the MMX and Uniform attacks which
has previously proved e�ective in simulations, and we demonstrate their e�cacy math-
ematically. Finally, we provide a new mathematical framework to study the obfuscation
technique which has thwarted the MMX attack in simulations [KS15]. A security proof
for obfuscation remains an open problem, but we do identify some interesting properties
which may be relevant for further research.

2 The �ngerprinting problem

Wagner [Wag83] introduced a taxonomy for digital watermarking as early as 1983. A
distributor is the authorised supplier of �ngerprinted objects, giving authorised access
to users. The opponent is an entity who makes unauthorised use of objects, through
one or more users. The distributor's goal is to identify the user(s) whom the opponent
has compromised. The opponent's goal, conversely, is to prevent the identi�cation, even
when the distributor is able to inspect objects which have been used in unauthorised
ways.

2.1 Collusion-secure codes

Boneh and Shaw [BS95, BS98] introduced a model for digital �ngerprinting in the pres-
ence of collusion attacks, i.e. when the opponent has access to the copies of several
users. Creating a hybrid copy based on multiple objects, the opponent can hope to
prevent identi�cation.
Each user is identi�ed by a codeword, called a �ngerprint, from some code C, and

each symbol from the codeword is embedded in the �ngerprinted copy. Extracting a
�ngerprint from a hybrid copy, the distributor can get a hybrid �ngerprint. This is ana-
logous to a noisy codeword in conventional communication. The Marking Assumptions
de�nes the opponent's space of opportunity, i.e. the set of hybrid �ngerprints which can
possibly be created in an attack. It says that for each coordinate position i, the hybrid
copy can only contain a symbol which is seen by at least one of the users.

De�nition 1 (Boneh-Shaw Marking Assumption). Let P ⊂ C be a collusion of t users,
and suppose they create a hybrid �ngerprint r = (r1, . . . , rn). Then

∀i = 1, . . . , n, ∃(c1, . . . , cn) ∈ P s.t. ci = ri. (1)
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A code C is said to be collusion-secure if the distributor, observing the hybrid �n-
gerprint r, can identify at least one user �ngerprint c ∈ P . Boneh and Shaw also
provided a code construction which is collusion-secure with bounded error probabil-
ity. The Tardos code [Tar05] is a more recent construction with better code rate. His
construction has been studied, analysed, improved and generalised by several authors
[�VCT06, AT09, NFH+09, �KC08, CXFF09, SKSC11, OSD13, ISO13]. Combination of
the Tardos code with speci�c modulation schemes for embedding in multimedia has also
been studied [XFF08].
It is also possible to construct combinatorially secure codes, which always allow the

distributor to correctly identify at least one user with zero error probability [SSW01,
CS04].
A number of alternative marking assumptions exist. Guth and P�tzmann [GP00]

introduced a marking assumption allowing for random errors, meaning that the condition
(1) could be broken in each position i with a bounded probability ε. This marking
assumption is arguable much more realistic, because the watermarking system used to
embed the �ngerprint does not have to be perfect. The Boneh-Shaw code is secure also
under the Guth-P�tzmann Marking Assumption with only a modest sacri�ce of code
rate [Sch08b].
The Marking Assumptions establish abstract models, and the problem of making

practical systems which satisfy the assumption has received signi�cantly less attention
than the construction of collusion-secure codes within the model.

2.2 Spread Spectrum Fingerprinting

Digital watermarking based on spread spectrum was proposed very early [CKLS97], and
many authors have further applied this to digital �ngerprinting. As with collusion-secure
codes, each user is represented by a �ngerprint wi ∈ C, but now, the �ngerprint is a
real-valued signal, rather than a word over a discrete alphabet. The set C ⊂ Rn of
�ngerprints is a a family of orthogonal or near-orthogonal sequences. The media �le
(object to be �ngerprinted) can be viewed as a signal x ∈ Rn, and the �ngerprint can
be added thereto, to give the �ngerprinted object for user i:

yi = x + αwi,

for some embedding strength α.
On the receiver side, the decoder is given a noisy version y′ of the �ngerprinted copy,

and aims to recover the original watermark wi or the corresponding user i. A non-blind
decoder knows the original work x, and can subtract it to obtain a noisy �ngerprint

w′ =
y′ − x

α
.

Thus, the original work has no impact on a non-blind decoder. A blind decoder does not
know the original host signal x and has to treat it as additional noise to the �ngerprint.
This paper will only consider non-blind decoding.
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The main constraint in SS �ngerprinting is that the distortion must be negligible.
More precisely, the �ngerprinted copy yi must be perceptually indistinguishable from
the original work x. A common measure for the distortion is squared Euclidean distance,

||yi − x||2 = α2||wi||2,

which is also known as the power of the �ngerprint αwi. For particular classes of
media, it may be possible to make perceptual models which more accurately measure
the relevant distortion. In this paper, we will stick to power as the distortion measure,
because of its generality.
The �ngerprinting strength α scales the �ngerprint to make a trade-o� between de-

codability and distortion. When the decoder is non-blind, we can ignore the host signal
x and assume α = 1 without loss of generality.
A simple and well-known spread spectrum decoder uses the correlation

si(w
′) = w′ ·wi

as the detection score of user i. The decoder can output the user i maximising this
score. Alternatively, a list decoder can output a set of users with scores above a given
threshold. We observe that

si(wi) = ||wi||2, (2)
si(wi′) ≈ 0, when i 6= i′ (3)

because the sequences are near-orthogonal.
Each sample, or co-ordinate position, in the watermark is commonly referred to as a

mark in the �ngerprinting literature. Note that the detection score is a sum of one term
for each mark:

si(wk) =
∑
j

wi,jwk,j. (4)

This is an important observation because it allows us to do most of the analysis based
on a single mark. We will refer to the map wi,j 7→ wi,jwk,j as the mark detection score.
In this paper we will focus on random binary sequences, to allow for simple proofs

based on randomness. Each �ngerprint wi is selected independently and uniformly at
random over the alphabet {±1}. It is easily veri�ed that the expected value E(si(wj)) =
0 when i 6= j and the �ngerprint wj is drawn at random. Thus (3) holds when the
�ngerprint length n is su�ciently large.
Other authors have studied random Gaussian �ngerprints [ZWWL05] or orthogonal

families [Kur12]. The same principles apply in all cases. Alternative decoding scores
can also be found [ZWWL05]. Various techniques can be added to improve perform-
ance against certain attacks, such as interference removal [Kur12] and the preprocessor
proposed in [ZWWL05].
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Figure 1: Block diagram of embedding procedure in [Kur14].

2.3 A complete �ngerprinting system

The �ngerprinted objects are usually assumed to be images or media objects. Here we
give an example of how spread spectrum �ngerprinting can be applied to images. We
consider the recent scheme from [Kur14], as shown in Figure 1. This design is typical
for many systems in the literature.
The system consists of several key components. Following [HW06] and [Sch08b], the

modules are called layers. The coding layer (watermark generation) de�nes the code
C of �ngerprints. The watermarking (embedding) layer embeds �ngerprints into host
signals to create �ngerprinted signals. Each of these components are parameterised by
secret keys k1 and k2.
Finally, we need a layer to extract a suitable signal from the host objects (media

�les). In Figure 1, this consists of taking only the luminance (grey-scale) component
and making a frequency transform (DCT). The DCT transform means that the region
selector can avoid the highest frequencies where the �ngerprint would be vulnerable to
noise attacks and image resizing, and also the lowest frequencies where the perceptible
impact would be unacceptable. Observe that there is no secret key in the host layer.
Therefore, in accordance with Kerckho�s' (second) principle, we assume that the attacker
can extract the same signal as the decoder, and apply the attack on the watermarking
layer, and then reinsert the attacked �ngerprinted signal in the host.
For each layer, especially the host and coding layers, there are a large number of

proposed constructions in the literature.
The core element of the Watermarking Layer is the embedding operation. In this

paper, we will only consider additive spread spectrum (SS) �ngerprinting with non-
blind decoder, as described in the previous section. Additionally, the Watermarking
Layer commonly includes a region selector, which pseudo-randomly selects coe�cients
to be used by the embedding operation. A key k2 is used to seed the pseudo-random
generator for this selection. The motivation for the region selector has been to make it
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harder for the opponent to know which coe�cients to attack.
For the coding layer, we will only consider a random binary code over the alphabet
{±1} with correlation decoding. Other spread spectrum constructions are likely to have
similar properties.

3 Attacks on Spread Spectrum Fingerprinting

Digital �ngerprinting is concerned with two types of attacks, collusive and non-collusive.
Non-collusive attacks include attacks known from other applications of spread-spectrum,
such as additive noise (Gaussian or otherwise). Spread spectrum is very robust against
such attacks.

3.1 Collusion attacks

It is natural to expect the attacks to be most e�ective when they are applied to the
same domain as the embedding. Assuming that the opponent knows the system design,
and only the secret keys are secret (cf. Section 2.3), he can extract the signal in the host
layer, and apply the attacks to the �ngerprinted signals y.
In a collusive attack, the opponent has access to a set of �ngerprinted copies. Typically,

the assumption is that the opponent is a collusion of users, each holding one �ngerprinted
copy, but it does not matter to the analysis how the opponent came by the �ngerprinted
copies. The colluding users are commonly referred to as colluders or pirates, and we use
the term pirate �ngerprints about the �ngerprints embedded in the copies held by the
opponent. The set of pirate �ngerprints will be called the collusion.
The output of a collusion attack is not just a noisy version of one �ngerprinted copy,

but a hybrid of multiple copies with di�erent �ngerprints. Let P be a matrix with all
the pirate copies as rows. We will only consider attacks which operate independently on
each mark. Thus we can write the attack as a function a : c 7→ z, where c is a column
of P . The attack a is applied to every column to produce the hybrid �ngerprint.
It is well known that SS �ngerprinting is robust against a number of collusive attacks

based on basic signal processing operations, such as minimum, maximum, and average
(see Table 1). It is also robust against non-collusive noise attacks, such as AWGN, and
against a combination of averaging and AWGN.
In contrast, SS �ngerprinting is very vulnerable to two less well-known attacks, namely

the MMX attack [Sch07] and the Uniform attack [Sch08a]. These attacks are de�ned as
follows.

De�nition 2 (Moderated Minority Extreme (MMX)). Let ∆ = aavg(c)− amid(c). The
MMX attack for a given threshold θ is de�ned as

aMMX
θ (c) =


amin(c) if ∆ ≥ θ
aavg(c) if |∆| < θ
amax(c) if ∆ ≤ −θ

(5)
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Average: aavg(c) =
1

t

t∑
j=1

yj

Minimum: amin(c) = min
j
cj

Maximum: amax(c) = max
j
cj

Median: amed(c) = medianj cj

Midpoint(MinMax): amid(c) =
amin(c) + amax(c)

2

Table 1: Common signal processing attacks.

De�nition 3 (Uniform attack). The uniform attack aUα with scaling factor α, (0 ≤ α ≤
1) is a probabilistic attack. Given a column c it outputs a hybrid mark z drawn uniformly
at random from the range amid(c)± αdi where di = (amax(c)− amin(c))/2.

3.2 Classi�cation of Attacks

The attacks, as discussed above, are applied to the �ngerprinted copies, and one might
assume that the e�ect depends on the host signal. This is not the case, at least not when
the embedding is additive watermarking. We introduce the concept of homomorphic
attacks. By abuse of notation, we take c + P for any n-dimensional row vector c and
n×m matrix P to mean the matrix obtained by adding c to each row of P .

De�nition 4 (Homomorphic Attack). An attack a is said to be homomorphic if it
satis�es

a(x + P ) = x + a(P ) (6)

for any collusion P and any signal x.

Homomorphic attacks can be studied independently of the host signal. If we let x be
the host signal, and P a matrix with the pirate �ngerprints as rows, then (6) means that
the attack applied to the �ngerprinted copies gives the same signal as the attack applied
to the pirate �ngerprints and then added to the host. In other words, we can ignore the
host signal in the analysis of the attack.

Remark 1. It is easy to con�rm that all the attacks considered above (MMX, uniform,
MAX, MIN, and average) are homomorphic.

3.3 Attack analysis

We consider a single mark. Both the attack a and the decoding score s is well-de�ned
on each mark. Let xi be the mark seen by the ith pirate. The score associated with
pirate i is

Si = si(a(x1, x2, . . . , xt)) = xi · a(x1, x2, . . . , xt).
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which is a stochastic variable with a probability distribution induced by the probability
distribution of the random �ngerprints, and also by the attack in the event of a prob-
abilistic attack. All the attacks we have considered are symmetric in the pirates, so Si
has the same distribution for all i. In the sequel, we omit the subscript i.
Below, we shall �nd E(S) under di�erent attacks. The code is a random binary code

over ±1. We will write Xmin = amin(X1, . . . , Xt) for the sake of brevity, and similarly
for Xmax, Xmid, XMMX

θ , etc.

Proposition 1. Let Xi for i = 1, 2, . . . , t be uniformly and independently distributed
over the alphabet {±1}. Let

S = X1 · amin(X1, X2, . . . , Xt).

Then we have

E(S) = 0.5t−1 (7)
var(S) = 1− 0.52t−2 (8)

Proof. Both Xmin and X1 are ±1, and hence S = ±1. With probability 0.5, we get
X1 = −1, and in this case, we always get Xmin = −1 and S = 1. With probability 0.5,
X1 = +1, and in this case, we get Xmin = +1 if Xi = +1 for all i, something which
happens with probability 0.5t−1. Otherwise Xmin = −1. Thus we get the following
probabilities:

P(Xmin = +1, X1 = −1) = 0, (9)

P(Xmin = +1, X1 = +1) = 0.5t, (10)

P(Xmin = −1, X1 = −1) = 0.5 (11)

P(Xmin = −1, X1 = +1) = 0.5(1− 0.5t−1). (12)

It follows that

P(S = −1) = 0.5− 0.5t, (13)
P(S = +1) = 0.5 + 0.5t. (14)

We get

E(S) = −(0.5− 0.5t) + (0.5 + 0.5t) = 0.5t−1. (15)

The variance is easily calculated using (13)�(15).

Proposition 2. Let Xi for i = 1, 2, . . . , t be uniformly and independently distributed
over the alphabet {±1}. Let

S = X1 · amax(X1, X2, . . . , Xt).

Then we have

E(S) = 0.5t−1 (16)
var(S) = 1− 0.52t−2 (17)
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The proof is similar to that of Proposition 1 by symmetry.

Proposition 3. Let Xi for i = 1, 2, . . . , t be uniformly and independently distributed
over the alphabet {±1}. If

S = X1 · aavg(X1, X2, . . . , Xt),

then

E(S) =
1

t
(18)

var(S) =
t− 1

2t2
. (19)

Proof. Spelling out the attack function, we get

S =
1

t

t∑
i=1

XiX1 =
X2

1

t
+

1

t

t∑
i=2

XiX1

The �rst term is always 1/t. The expected value can be written as

E(S) =
1

t
+
∑
x=±1

P(X1 = x) · x · 1

t

t∑
i=2

E(Xi)

and since E(Xi) = 0, we get E(S) = 1/t.
The variance is given as

var(S) =
∑
x1=±1

∑
x2=±1

· · ·
∑
xt=±1

(
1

2

)t(
x21
t

+
1

t

t∑
i=2

xix1 −
1

t

)2

. (20)

Because x21 ≡ 1, we get

var(S) =
∑
x1=±1

∑
x2=±1

. . .
∑
xt=±1

(
1

2

)t
1

t2
x21

( t∑
i=2

xi

)2

=
1

2t2
· V, (21)

where V is the variance of a sum of t−1 stochastic variables, independently and uniformly
distributed on ±1. Hence V = t− 1, and the variance follows as stated.

Proposition 4. Let Xi for i = 1, 2, . . . , t be uniformly and independently distributed
over the alphabet {±1}, and

S = X1 · aMMX
θ (X1, X2, . . . , Xt).

Then

E(S) =
1

2t−1

[
1−

(1−θ)t/2∑
i=1

(
t

i

)
t− 2i

t
+

1

2t
·

(1+θ)t/2∑
i=(1−θ)t/2

(
t

i

)]
(22)
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Note that if θ = 0, then the last term is zero, and E(S) � 0. If θ = 1, then the
second term is zero, and E(S) � 0. Furthermore, E(S) is monotonically increasing in
θ, so E(S) can be tuned by changing θ.

Proof. Let C denote the number indices i such that Xi = +1. Obviously C is binomially
distributed with t trials and trial probability 0.5. Write ∆ = Xavg −Xmid. We get

∆ =

{
0, when C = 0 or C = t,
2C−t
t
, otherwise.

To analyse S, we distinguish between three cases.

1. C = 0 or C = t.

2. C = i or C = t− i, and also 0 < i <
(1− θ)t

2
.

3. other values of C, i.e. close to t/2.

Case 1 corresponds to columns where all pirates have the same symbol. In this case
S = 1, and

E(S|Case 1) = 1.

In Case 2, the MMX attack outputs the minority choice. If X1 is part of the minority,
then S = 1, otherwise S = −1. The probability that X1 is part of the minority is i/t.
Hence, we get

E(S|Case 2) = −t− i
t

+
i

t
= −t− 2i

t
.

In Case 3, the MMX attack returns the average, and S = X1X
avg. There is a useful

symmetry in Case 3. If C = i is a Case 3 event, then so is C = t − i. It follows, that
(X1, X2, . . . , Xt) = x is a Case 3 event, then so is (X1, X2, . . . , Xt) = −x. Furthermore,
x and −x give the same score,

X1X
avg = (−X1)(−X)avg.

Thus, we can use an argument similar to the proof of Lemma 3. The score is given as

S =
1

t

t∑
i=1

XiX1 =
1

t
+
X1

t

t∑
i=2

Xi,

and the expected value is

E(S|Case 3) =
1

t
+
∑
x=±1

P(X1 = x) · x · 1

t

t∑
i=2

E(Xi) =
1

t
.

The expected value of the score is the weighted sum of the conditional expected values

E(S) =
∑
i=1,2,3

P(Case i)E(S|Case i), (23)

and the proposition follows.
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Proposition 5. Let Xi for i = 1, 2, . . . , t be uniformly and independently distributed
over the alphabet {±1}, Let

S = X1 · aUα (X1, X2, . . . , Xt).

Then

E(S) =
1

2t−1
(24)

Proof. Note that with probability 0.5t−1, all the Xi are equal. In this case XU = ±1 and
Xi ·XU = 1 for any i. In all remaining cases, the pirates can see both +1 and −1 and
XU is uniformly distributed on the interval ±α. Thus the expected value E(S|¬X1 =
X2 = . . . = Xt) = 0. The lemma follows.

3.4 Discussion

The study of the expected value of the decoding score in the presence of attacks explains
why the MMX attack is so e�ective. The expected score can be made negative. Averaging
in contrast, is not e�ective. The expected score E(S) = 1/t declines only linearly in the
collusion size t. The minimum and maximum attacks, as well as the uniform attack.
are e�ective if the collusion is large, since the expected score E(S) = 21−t declines
exponentially. There are other decoding techniques which make spread spectrum more
robust against minimum and maximum, but these techniques are not e�ective against
the uniform attack [Sch08a].

4 Modulation and Obfuscation

To our knowledge, there is only one technique which claims to thwart both the MMX and
uniform attacks, namely the obfuscation described in [Kur16, KS15]. Previous works
have applied obfuscation as one of several advanced features in a complex system, and
evaluated the complete system only. Here, we will introduce obfuscation as a generic
technique and analyse its merits theoretically.

4.1 Obfuscation and modulation

Obfuscation, as introduced in [KS15], is a new layer between the host and watermarking
layers. This is shown in Figure 2. The obfuscation key k3 is used to generate a pseudo-
random sequence s over {±1}. The signal extracted by the host layer is �rst multiplied
(element-wise) by s and subsequently subject to a DCT transform. The DCT transform
is linear, and can be written as multiplication by the matrix T in the �gure. Element-
wise multiplication by s is equivalent to multiplication by the diagonal matrix S, with
s on the main diagonal. Clearly S−1 = S.
In the original work, the host signal x was a matrix, and the DCT transform was

two-dimensional. This does not a�ect the analysis. The 2D DCT transform can also be
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Figure 2: Additive spread spectrum �ngerprinting with obfuscation.

written as xT for a vector x and some matrix T , although not the same matrix T as we
would use for a 1D transform. In this paper, we will view the host signal x is a vector,
and T can really be thought of as any invertible, publicly known matrix.
Disregarding the region selector just for a moment, we can write the obfuscation and

watermarking layers combined as

y = (x · S · T + w) · T−1 · S−1, (25)

where x is the input from the host layer, w is the input from the coding layer, and y
is the output to the host layer. Because the transforms are linear, the equation can be
rewritten as

y = x · S · T · T−1 · S−1 + w · T−1 · S−1

= x + w · T−1 · S−1.
(26)

In other words, the obfuscation layer can equivalently be implemented between the
�ngerprinting and watermarking layers. In this case, we would prefer to let c denote the
codeword from the �ngerprinting layer, and let w = cT−1S−1 denote the watermark to
be embedded. Given a received watermark w′, the receiver would calculate c′ = w′ST in
the watermarking layer, and pass the received word c′ for decoding in the coding layer.
The region selector, which we disregarded in the discussion, can also be written as

matrix multiplication, using a permutation matrix.

De�nition 5. An m×n permutation matrix is an m×n matrix over {0, 1} with m ≤ n,
where each column has at most one 1-entry, and each row has exactly one 1-entry.

Note that a permutation matrix R is semi-orthogonal, in the sense that RRT = I.
In Figure 2, the region selector multiplies the host by RT for some permutation matrix
R. The reinsertion is also trivial, but not as neat. Multiplying by R leaves a number
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of zero entries, where the host samples which were not used for watermarking must be
reinserted.
It is easier and more transparent to implement the region selector in the coding layer.

In Equation (26) we can add a permutation matrix R to pad the watermark w with zeros
corresponding to each unused sample in the host signal. At the receiver, RT removes
the unused samples and returns the (hybrid) �ngerprint. Thus

y = x + w ·R · T−1 · S−1. (27)

Applying the permutation R before the DCT transform T−1 means that we can use a
relatively short codeword w, and have the energy spread across a longer host signal.
Another approach to prevent attacks on the individual co-ordinate positions is modu-

lation [KS15], which is essentially obfuscation as in Equation (26) with a slightly di�erent
interpretation. If S ·T is an orthogonal matrix, which is the case in many implementation
of DCT, we get

T−1S−1 = (ST )−1 = (ST )T. (28)

We can view (ST )−1 as the codebook of spread spectrum sequences. When the encoder
calculates w(ST )−1, it encodes each bit of w as an SS sequence, and these sequences are
added together and embedded as one watermark. When the receiver applies the inverse
transform ST = ((ST )−1)T, it is equivalent to correlation decoding.
Obfuscation and modulation as de�ned in (26) or (28) can be viewed either as part of

the coding layer or as additional layers between the coding and watermarking layers. We
make the following de�nition to facilitate comparison of coding layers with and without
obfuscation.

De�nition 6. We de�ne a �ngerprinting scheme to be a pair (C, d) of a �ngerprinting
code C and a decoding score d : Rn × C → R. For any �ngerprinting scheme, and
any semi-orthogonal matrix U , we de�ne the obfuscated �ngerprinting scheme (CU , dU)
where

CU = {cU |c ∈ C}, (29)

dU(x, cU) = d(xUT , c). (30)

The matrix U is called the obfuscation matrix.

Our previous construction [KS15] uses two layers of obfuscation, or, as we phrased it
then, obfuscation in addition to modulation. E�ectively this gives the following embed-
ding of a codeword w:

y = x + w ·R1 · T−11 · S1 ·R2 · T−11 · S2, (31)

where the Si are two distinct pseudo-random signature matrices, and R2 is a pseudo-
random permutation which also increases the word length by padding with zeroes. Each
of these three pseudo-random matrices are determined by a distinct secret key. The R1
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matrix only pads the codeword with zeroes at the end. The �rst DCT transform T1 is
1D while T2 is 2D. Clearly, this is equivalent to one layer of obfuscation using

U = R1 · T−11 · S1 ·R2 · T−11 · S2

as the obfuscation matrix.

4.2 Is obfuscation secure?

We have tried to answer this question analytically as well as empirically. To some extent
the available results are contradictory, and they leave several open questions.
The main idea of obfuscation is to change the basis in which the �ngerprint is repres-

ented. The MMX attack is designed to maximise the `attack noise' in each individual
mark, which correspond directly to a co-ordinate position in the �ngerprint (codeword).
When the basis is changed as in (31) or (26), this correspondence is broken, and the
attack noise in one mark, is spread across all the co-ordinate positions of the �ngerprint.
Let us �rst consider the correlation decoder in an obfuscated scheme.

Proposition 6. Let C be a �ngerprinting code, and let d be the correlation decoder.
For any semi-orthogonal matrix U , the obfuscated �ngerprinting scheme (CU , dU) is
equivalent to (CU , d).

Proof. The correlation decoder calculates d(r, c) = r·c, and the corresponding decoder in
the obfuscated scheme calculates dU(r, cU) = rUT · c. Applying the correlation decoder
to a codeword cU ∈ CU we have

d(r, cU) = r · cU = r(cU)T = rUTcT = dU(r, cU),

as required.

The implication of this proposition is that obfuscation of any �ngerprinting scheme
with correlation decoding changes the codebook only, and not the decoding algorithm.
Most �ngerprinting codes are random, and obfuscation then changes the probability
distribution. E�ectively, each symbol in the obfuscated code is a sum of random symbols,
and in many cases the central limit theorem will apply, making the the obfuscated code
a random code with Gaussian distribution. The MMX attack has previously proved
e�ective against Gaussian �ngerprints with correlation decoding [Sch08a].
A study of obfuscation of other �ngerprinting codes is beyond the scope of this pa-

per. Su�ce it to note that an obfuscated Nuida code has proved e�ective in simu-
lations [KS15]. Thus the change of basis evidently has some merit. Both single and
double obfuscation (Equations (27) and (31)) resisted the Uniform and MMX attacks
applied to the signal y. However, single obfuscation was circumvented by applying the
attacks to a DCT transform of y, i.e. by using the attack

a′ = DCT−1 ◦ a ◦DCT,

where a is the MMX or uniform attack.
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5 Discussion and Conclusion

We have given a theoretical explanation to the e�cacy of the MMX attack against
spread spectrum �ngerprinting, and provided a theoretical framework to analyse the
obfuscation technique which we have previously proposed [KS15].
Obfuscation of the Nuida code appears to prevent known attacks, if the obfuscation

transform U has a structure which cannot be circumvented without knowledge of the
secret key. It is still an open question if the current construction with two layers, each
using a secret permutation, a DCT transform, and a secret signature matrix, will su�ce.
Obfuscation is equivalent to modulation by spread spectrum sequences, and this can

potentially lead to a practical implementation of the Marking Assumption with Random
Errors (as suggested by Guth and P�tzmann). Given the existing theory on spread
spectrum, and on collusion-secure codes, it may be possible to get practical �ngerprinting
systems with formal proofs and bounded error probabilities. It is worth investigating.
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