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ABSTRACT 

The effect of solute atoms on grain boundary migration has been modelled on the basis of the idea that 

solute atoms will locally perturb the collective re-arrangements of solvent atoms associated with 

boundary migration. The consequence of such perturbations is cusping of the boundary and 

corresponding stress concentrations on the solute atoms which will promote thermal activation of these 

atoms out of the boundary. This thermal activation is considered to be the rate-controlling mechanism 

in boundary migration. It is demonstrated that the present statistical approach is capable of explaining, 

in phenomenological terms, the known effects of solute atoms on boundary migration. The 

experimental results on the effect of copper on boundary migration in aluminium, due to Gordon and 

Vandermeer, have been well accounted for.  
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1. INTRODUCTION 

It has been known for a long time that impurity solid solution atoms have a tendency of segregation 

to grain boundaries, an effect which may strongly retard the grain boundary mobility and thus the 

kinetics of recrystallization and grain growth in pure metals, even when present in the ppm range. 

The first quantitative treatment of this phenomenon, usually referred to as solute drag, was 

presented by Lucke and Detert [1], where they concluded that the effect is due to a direct interaction 

between the solute atoms and the moving grain boundaries.      

Since the first quantitative treatment of Lucke and Detert, two main theoretical approaches of the 

solute drag effect on grain boundary mobility have come to dominate the literature. These are the 

treatments of Cahn [2] (commonly referred as the solute drag force approach) and Hillert [3] 

(commonly referred as the dissipation approach). Typical application examples for the force and 

dissipation approach are respectively [4-5] and [6]. In the force approach the solute drag is estimated 

by summing the forces that the solute atoms exert on the boundary and in the dissipation approach by 

evaluating the amount of free energy dissipated due to diffusion when the boundary goes through a 

volume containing one mole of material. Over the last decades, a lot of efforts have been made to 

generalize these approaches to a migrating phase boundary into a multi-component system [3, 7-9]. 

Indeed in the initial treatment of the solute drag effect by Cahn and by Lücke and Stüwe [10] the 

equation used for evaluating the solute drag does not apply to phase transformations. It only applies to 

the migration of grain boundaries, i.e. to one phase materials. 

 

The force approach and the dissipation approach have both a sound physical basis and should therefore 

be equivalent. However the formula for calculating the solute drag for a migrating phase boundary into 

a multi-component system in steady-state conditions has been a subject of debates over the years and it 

was only recently that a valid expression has been found with a remarkable amount of empirical insight 

[11]. The general expression has also been derived in a deductive and completely independent way by 

applying the principle of maximum dissipation in [12]. 

 

Even if in the recent years more complex situations than the one treated in the initial works of Cahn [2] 

and Lücke and Stüwe [10] could be tackled, as two different types of solute [13-14], curved interfaces 

[15], solute drag occurring in a regular solid solution [16], during massive phase transformations [12, 

17-20] or in non-steady state condition [21-22], they rely on the same framework: the composition 

profile of the solute atoms around the migrating phase boundary is calculated by solving Fick’s law for 

diffusion and then the solute drag stems from the solute profile by applying the appropriate equation. In 
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this paper, however we will limit our discussion to the initial case treated by Cahn [2] and Lücke and 

Stüwe [10]: a moving grain boundary in a binary solid solution which is supposed ideal. 

 

2. BACKGROUND THEORIES 

The classical treatment. Lücke and Detert [1] were the first to present a quantitative theory of grain 

boundary mobility which took into account the interaction between the grain boundary and solute 

atoms. Their approach was further developed by Cahn [2] and Lücke and Stüwe [10, 23], to be 

refereed to as the CLS-theory. This theory rests on the assumption that a solute atom near a grain 

boundary interacts with the boundary, the interaction force being: 

where x is the distance between the solute atom and the boundary and U(x) is the free energy of 

interaction. For a boundary at rest this interaction will result in a symmetrically shaped solute 

concentration profile across the boundary region. For dilute alloys (solute concentrations c<<1) it 

follows from Boltzmann-statistics that the boundary concentration cb becomes: 

where 0( 0)U x U   , T is the temperature and k is Boltzmann's constant. If a pressure P causes the 

boundary to migrate at a rate vb , a consequence of this migration will be a redistribution of the solute 

concentration in the vicinity of the boundary. This solute atom redistribution will result in a net 

dynamic drag force 
sP  opposing the migration. And it follows from the treatment of Lücke and Stüwe 

[10] that the boundary migration rate becomes: 

where m is the intrinsic boundary mobility (i.e. that corresponding to c = 0). The treatments by Cahn 

[2] and Lücke and Stüwe [10, 23] are derived on the basis of the assumption that the effects on 

boundary mobility due to the cusp-formation resulting from the solute-boundary interaction can be 

neglected, the validity of this assumption is discussed below in this section. Another necessary 

assumption in order to derive Eq. (3) is that a migrating boundary in a solute containing metal can be 

assigned a mobility equal to that of the boundary in the pure metal. Or in other words, that the 

diffusivity of solute atoms across the boundary is approximately equal to that of the solvent ones. The 

dU(x)
F(x) = 

dx
  (1) 

 
expb

U x
c = c  

kT

 
 
 

 (2) 

vb s = m(P P )  (3) 
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consequence of relaxing this latter assumption has been addressed by Westengen and Ryum [24]. They 

demonstrated that by assuming different boundary diffusion coefficients for solute and solvent atoms, a 

drag force of similar nature to that introduced above will result even if U(x)=0 for all values of x. 

 

An important question to be addressed in the following becomes: is it acceptable, as proposed by 

Lücke and Stüwe [10], to reduce the effect of solute atoms on grain boundary migration into a drag 

only, ignoring the effects due to in-situ interactions between solute atoms and the boundary? This 

question will be tried answered below by considering the phenomenon of solute induced cusping of a 

migrating boundary. Firstly, however, the main predictions and the general applicability of the CLS-

theory will briefly be considered. 

 

Theory vs. experimental results. In qualitative terms the CLS-theory predicts that a grain boundary, 

subjected to a driving pressure (in a solute containing alloy), will migrate at a rate which will depend 

on solute concentration, driving pressure and temperature as schematically outlined in Fig. 1 a-c 

respectively. A characteristic feature displayed in these diagrams is the discontinuous speed changes 

commonly referred to as break-away or loading phenomena. For instance, by increasing the solute 

content, Fig. 1a, the drop is caused by a discontinuous increase in the boundary solute content 

(loading), while by increasing the pressure, Fig 1b, the rapid increase in speed is caused by a 

discontinuous decrease in solute content (break-away). However, these loading/break-away 

phenomena are not so precisely defined as that shown by the fully drawn curves in Fig 1. Rather, the 

CLS-theory predicts an S-shaped behaviour as indicated by the broken lines. The physical 

interpretation of this effect is that within these S-regions, where the theory has no unique solution, a 

general state of boundary solute instability exists. Only in the extreme cases, the CLS-theory is capable 

of quantitative predictions: for low solute contents, high driving pressures, high temperature situations 

there is no solute effect or the boundary is free and has the property of that in the pure metal, while in 

the other extreme of a loaded boundary this theory predicts a migration rate as given by: 

where the concentration c is given as atomic fraction, Us is the activation energy for solute diffusion, b 

is a typical inter-atomic spacing, D is the Debye frequency and Γ is a constant. 

 

3
1v exp s o

b D

+Pb U U
 b c    

kT kT
     

    
  

 (4) 
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This relationship was derived for the first time by Lücke and Detert [1]. While the CLS-theory seems 

to provide a reasonable description, as shown above (Fig. 1), of the effects of solute atoms on grain 

boundary mobility, there are important aspects which are not satisfactorily covered. The following 

three comments seem relevant in this context. Firstly, in the low solute regime where a break-away 

situation predicts no solute-boundary interaction, the classic experiments of Aust and Rutter [25-28] do 

indicate the existence of such an effect as illustrated in Fig. 2. Secondly, within the relatively broad 

instability region of the CLS-theory where no predictions can be made, experimental investigations 

reveal no similar scatter in migration rate observations as also evident from Fig. 2 or in other words, 

reproducible results can be obtained even in regions of rapidly changing migration rates. Thirdly, for 

solute atoms which have activation energies of diffusion (within the boundary) different from that of 

the solvent atoms, a solute effect on boundary mobility is to be expected even if the interaction energy 

Uo is negligible or zero [24], in contrast to the prediction of the CLS-theory.  

 

Boundary pinning. Machlin [29] considered that a moving grain boundary should become cusped at a 

point where it meets a solute atom, Fig. 3a, and he derived an expression for the pinning force by 

applying a Zener-drag type analysis. He supposed that the rate-controlling step in the migration process 

was diffusion of impurity atoms along the cusped parts of the boundary. Lücke and Stüwe [23] also 

considered this effect of cusping, but they concluded that the Zener-drag treatment was not very 

satisfactory from a theoretical point of view. It requires that the thickness of the boundary is small in 

comparison with the diameter of the solute atom, Fig. 3b, where, as argued by Lücke and Stüwe, for an 

individual solute atom just the opposite is true, Fig. 3c. Lücke and Stüwe's conclusion is probably 

correct in terms of the applicability of a Zener-drag type analysis in order to obtain the pinning action 

of individual solute atoms on a migration boundary. On the other hand, even if a Zener type analysis 

has to be rejected, it does not necessarily follow from such a conclusion that the solute cusping effect is 

insignificant or can be ignored. Roy and Bauer [30] were thinking along similar lines when suggesting 

a two-dimensional model where diffusion both parallel and perpendicular to the boundary were 

considered in terms of causing non-uniform solute distribution and associated shape changes and 

clustering. Their model indicated that clustering of impurities in the boundary and subsequent break-

away of the boundary from the clusters are natural consequences of grain boundary migration. 

 

The objective of the following treatment is to reconsider the Machlin idea that solute-atom-cusping 

will retard the migration of grain boundaries. The approach taken, however, differs from that of both 

Machlin [29] and Roy and Bauer [30]. The main effect of cusping in the present treatment is assumed 
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to be “stress-concentration” on the cusp-forming atoms and a corresponding change in the activation 

volume associated with the thermal activation of these atoms. 
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3 THE EFFECT OF SOLUTE PINNING ON BOUNDARY MIGRATION 

3.1 General considerations 

The migration of a high angle grain boundary in a pure metal has been treated in terms of different 

approaches, a review of which has been given by Humphreys and Hatherly [31]. All treatments, 

however, assume that if a pressure, P, acts on a boundary it will migrate at a rate:  

In this equation 
p  is a constant and b

SDU  is an activation energy associated with boundary migration. 

This activation energy is typically found to have a value half that of self-diffusion. 

 

If solute atoms are added to the metal the situation will change. These atoms will interact with both a 

stationary and a migrating boundary as defined by Eq (1). The present treatment assumes a boundary 

region potential for the boundary-solute interaction as schematically outlined in Fig. 4a. i.e. 

  0U x U   for (x(t) - 
2


)  x(t)  (x(t) + 

2


) and U(x)=0 for all other values of x, where x(t) is the 

instantaneous position of the boundary and  its thickness. Outside the boundary region thermal 

activation of the solute atoms is associated with an energy Us (i.e. that of solute bulk diffusion) except 

for jumping into the boundary where the activation barrier may be somewhat less ( *

sU  in Fig. 4a), 

however, such an energy-profile-refinement will not be included in the present treatment at this stage. 

It follows that in the static case, Fig. 4a, the solute atom concentration in the boundary will be given by 

Eq. (2).  

 

If a pressure acts on the boundary the boundary may start to migrate and this boundary concentration 

will change. In the present model the basic idea is that the effect of the solute atoms on the boundary 

migration rate will be determined by the rate at which such atoms are activated out of the boundary 

region. The pressure P driving the boundary, results in a cusping force CF  on each solute atom which 

reduces the activation barrier out of the boundary by CF b  as illustrated by the “jumping out of the 

boundary” energy profile in Fig. 4b. To calculate the size of this pinning force CF  in mechanical terms 

requires a breaking-angle analysis, and as demonstrated by Lücke and Stüwe [23] the conclusions 

3

v exp
b

SD
b p D

UPb
mP b     

kT kT


 
    

 
 (5) 
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which can be drawn from such an analysis are uncertain, indeed. In the present treatment, however, CF  

is calculated in a different way making such an analysis unnecessary, see below.  

The presence of the work-term, CF b , may influence the boundary migration rate as qualitatively 

described in the following: imagine a situation where a pressure P is applied on a statically saturated 

boundary at time t=0. On the assumption of a dilute solid solution, the boundary regions far away (in 

terms of atomic dimensions) from boundary solute atoms will respond by migrating at a rate as 

determined by Eq. (5). Such a migration of the boundary is inhibited at the solute atom sites with the 

consequence that these atoms cusp the boundary. Let us assume, for a moment, that these atoms have 

an infinite interaction energy with the boundary, in which case the boundary bulges out until the local 

curvatures generated counter-balance the applied pressure. If, on the other hand, the boundary solute 

atoms are associated with a local energy situation as illustrated by the “jumping out of the boundary” 

energy profile in Fig. 4b, one alternative becomes an unpinning of the cusps by thermal activation of 

solute atoms out of the boundary (evaporation into the lattice), another alternative becomes un-cusping 

by boundary re-arrangements of solvent atoms. Which of these mechanisms will be rate controlling is 

difficult to decide, but will depend on the effect a solute atom has on the local collective solvent atom 

re-arrangements associated with boundary migration. However, the present treatment of solute 

boundary interaction rests on the postulate that the first alternative above, i.e. "cusping-pressure-

biased" thermal activation of boundary solute atoms out of the boundary, is the rate controlling step 

for the migration of the boundary. The objective of the following becomes to explore the consequence 

of such a thermal activation mechanism on grain boundary migration in dilute solid solutions. This 

approach represents a 2D-analogy to similar treatments for the corresponding 1D-situation, i.e. 

migration of dislocations where solute pinning may control the migration rate, see Hirth and Lothe 

[32]. 

 

3.2 The model 

Consider a boundary which migrates due to a constant driving pressure P. Some time after the pressure 

P has been applied a steady state boundary solute concentration cb will be established, to which 

corresponds a steady state boundary migration rate vb . This steady state solute concentration will be 

defined by 

- +
 +  = 0   (6) 
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where   is the rate per unit area at which the solute atoms leave the boundary and    is the 

corresponding arrival rate. It should be noticed that only the atoms jumping behind the boundary 

contribute to the leaving rate   . Indeed the atoms jumping forward will be immediately recaptured by 

the migrating boundary. Then the leaving rate    is proportional to the backwards jump frequency out 

of the boundary  : 

b b =c n               (7) 

where the boundary concentration bc  is given in terms of atomic fraction and bn  is the number of 

atoms per unit volume inside the boundary. Within the context of the schematic energy profiles in Fig. 

4b the backwards jump frequency    can be expressed, in terms of thermal activations, as follows: 

with   a constant. The work CF b done by the force CF  decreases the energy barrier 0sU U even if 

the atom does not jump in the direction of the force CF  because the displacement of the grain 

boundary releases the stress accumulated at the pinning atom. Finally the leaving rate is given by: 

0exp s C
b b D

U U F b
 = c n

kT
     

  
 

        (9) 

The arrival rate    can be written as follows 

where c is the bulk solute concentration (in atomic fraction), n  the number of atoms per unit volume in 

the bulk of the material and  is a constant. The first term in Eq. (10) represents thermal activation of 

bulk atoms into the boundary and the second “sweeping term” reflects the constant flux of solute atoms 

arriving in the boundary due to its migrating at a rate vb into a lattice containing a solute concentration 

c . 

 

Balancing the expressions for    and   (Eq. (6)) makes it possible to calculate ( , , )b Cc c T F , provided 

an expression for the boundary migration rate v ( , , )b Cc T F  is obtained. A characteristic of a steady state 

conditions (Eq. (6)) is that when a solute atom ‘evaporate’ from the grain boundary another necessarily 

will arrive and pin it again. Consequently, as a statistical average, the distance the boundary will move 

exp
s o C

D

+ F bU U
 =   

kT
    

  
 

 (8) 

exp vs
D b

U
 =  cnb    + cn

kT
 
   

    
  

 (10) 
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in-between thermal activation and repinning typically becomes an atomic distance of size b. And it 

follows that in terms of thermal activations the boundary speed can be written: 

 

 0v exp s C
b D

U U F b
b

kT
      

    
  

                                                                  (11) 

 

The second term inside the parenthesis is required in order to take into account the statistical 

probability that solute atoms may jump against the cusping induced bias, CF b , as illustrated 

schematically in Fig. 5. So a solute atom has to overcome an energy barrier equals to the energy barrier 

when there is no cusping effect 0sU U  plus the necessary energy CF b  to compensate for the work 

done by the force CF  during the backward jump, as illustrated by the “jumping with the boundary” 

energy profile in Fig. 4b. In this case the solute atom will remain in the boundary and consequently the 

jump has no effect on the   -term. Similar backwards jumps are also included in Hirth and Lothe’s 

treatment of solute drag of moving dislocations [32]. 

 

Combination of Eqs. (8) and (11) gives the following expressions for the boundary velocity vb : 

 

 0v 2 exp sinhs C
b D

U U F b
b

kT kT
    

     
   

       (12) 

 

and by combining this relationship with Eq. (10) an expression for   is obtained and it then follows 

from Eq. (6), that the boundary solute concentration bc  can be written: 

 

 0 0exp 1 2 exp sinhC C
b

b

U F b U F bnb
c c

n kT kT kT

        
         

       
     (13) 

 

In deriving this expression the constants  and  have been assumed to be of approximately the 

same size and have consequently been represented by a common symbol, s , in the following. It is 

easily seen that Eq. (13) is consistent with the required boundary conditions that for low driving 

pressures/high solute concentrations, i.e. and / 1CF b kT  , the boundary concentration becomes the 
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equilibrium level 0expb

U
c c

kT

 
  

 
 assuming the ratio 

b

n b

n 
 nearly equal to 1, and for high 

pressures/low solute concentrations, i.e. / 1CF b kT , bc c , conditions referred to as loaded and 

break-away situations, respectively, in the solute drag theory.  

 

In order to achieve complete solutions of Eq. (12) and (13), an expression for the pinning force CF  is 

needed, or more exactly for the ratio CF b

kT
. Fortunately it is possible to calculate this force because an 

alternative expression to Eq. (12) for the migration rate can be formulated. By having two independent 

relationships for the same migration rate the pinning force problem can be solved.  

  

A second expression for the boundary speed is obtained by considering a boundary subjected to a 

driving pressure P and which also experiences a restraining pressure /C C C b bP F A F c n  , Fig. 4. In-

between these restraining points the boundary is free of solute atoms with a mobility, m, typical of that 

of a pure metal, Eq. (5), and it follows that boundary speed now can be written: 

 

 
2

vb Cm P P
R

 
   

 
          (14) 

with R the effective radius of the boundary curvature between the restraining points. The pressure 

stemming from the grain boundary curvature will be neglected in the following treatment, which 

assumes that the grain boundary remains macroscopically planar during its migration. It should be 

remarked that this treatment is different from that of Cahn and Lucke and Stüwe [2, 10] where the 

relationship  vb sm P P   is applied regardless whether the grain boundary is free of solute atoms or 

not. 

 

By equating the two expressions for the boundary migration rate, Eq. (12) and (14), and by replacing m 

by its expression Eq. (5) the pinning force is obtained. Unfortunately it is not possible to give this force 

in terms of an analytical expression, only an implicit expression can be given: 

 

 

3

0

3

0

2 exp sinh exp
1

exp 2sinh

b

s s SD C C

p

C C

U U U F b F bPb

kT kT kT kT
c

nb F b U F b

kT kT kT

        
              

    
    

    

 (15) 
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However, by numerical treatments it becomes possible to calculate 

( , , ),  c ( , , ) and v ( , , )C b bF c P T c P T c P T  for any given combination of materials specific parameters 

, , 0,  ,  ,    ,  U ,  and 
SD

b

p s sn b c U U   if it is assumed the ratio 
b

n b

n 
 close to 1. In computing the boundary 

solute concentration bc  and the migration rate vb  the size of the pinning force CF  is monitored in 

order to check that this force does not exceed that expected from a mechanical breaking-angle analysis. 

As argued by Lücke and Stüwe [23] such an analysis is very uncertain, but an estimate for the 

maximum possible force CF  is obtained from a Zener-drag type argument, i.e. maxF b , where   is 

the boundary energy. In the subsequent numerical treatment the pinning force CF  is always smaller, or 

much smaller than this maximum value, see also Appendix 1. 

 

In the special case of a low driving pressure/high solute concentration, i.e. / 1CF b kT  , a good 

approximate solution for the migration rate of a loaded boundary becomes: 

 
3

1 0

3

22
v exp s

b s D

U UPb
b c

nb kT kT
     

     
  

       (16) 

 

where s  is a constant. This expression for the boundary migration rate is, except for the numerical 

factors 
3

2

nb
and 2 in front of 0U , similar to Eq. 4, i.e. that was originally derived by Lücke and Detert 

[1]. The origin of the factor 2 in front of 0U  stems from that in the present model the interaction 

energy 0U  appears twice: (i) in the boundary solute concentration in the fully loaded case (Eq. (2)), 

and (ii) in the activation frequency of atoms jumping out of the boundary (Eq. (8)). 

 

3.3 Model predictions 

In contrast to the solute-drag theory the present analytical treatment is simple indeed. The predictions 

for the boundary solid solution contents cb and the migration rates vb  for grain boundaries, acted upon 

by a pressure P in a generic solid solution alloy of various solute contents c, are illustrated qualitatively 

in Figs 6 a and b, respectively. The metal studied is assumed to have a close packed spacing b  equal to 

3 Å (typical value in metals). Then the atomic density n  is estimated as
3

1

b
 and the ratio 

b

n b

n 
 as close 

to 1. The values of the input parameters used are given in Fig. 6a, except for the activation energy for 
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boundary migration b

SDU , which for the sake of simplicity is taken as the half of the activation energy 

for solute diffusion SU , and for the constants  and p s   for which numerical values 18 and 82 

respectively, have been selected (the procedure adopted for the quantification of these parameters in an 

experimental case is explained below). Figure 6a shows the grain boundary concentration cb as a 

function of the matrix concentration c for various values of the interaction energy Uo. The 

corresponding variation in the boundary migration rate vb  is illustrated in Fig. 6b. Note that for values 

of Uo larger than some critical level, the bc  vs. c curves become S-shaped, and consequently the vb  vs 

c curve takes the form of a similarly shaped configuration, broken lines in the figures. A similar 

behaviour is predicted also by the CLS-theory and is there interpreted as an instability phenomenon 

associated with either break-away or loading, see Section 1. The physics, however, behind this peculiar 

behaviour is more transparent in the present treatment where the break-away/loading phenomenon is 

reduced to a well defined discontinuity (fully drawn lines), the reason for which can be explained in 

free energy terms as follows: by increasing the c-values from the lower side in Fig. 6a one eventually 

reaches the point marked A where the system spontaneously can lower its free energy by a 

discontinuous increase in boundary concentration, point B, i.e. a concentration close to the equilibrium 

one defined by Eq. (2).  

 

In terms of comparing the predictions which follow from the present solute pinning approach to that of 

the CLS-theory, two important differences emerge: (i) the present model predicts a c-dependence in the 

boundary migration rate, vb  also for c-values below the break-away level in accordance with 

experimental observations e.g. Fig. 2, in contrast to the CLS-theory, and (ii) a strong solute pinning 

effect may, according to the present approach, prevail even in cases where the interaction energy Uo = 

0. It appears as intuitively obvious that in cases where the activation energy for solute diffusion in the 

boundary is significantly different from that of boundary self diffusion the solute atoms will disturb the 

solvent redistribution pattern and restrict boundary migration even if the "long range" elastic 

interaction is negligible. A similar 0U -effect is found in the model by Westengen and Ryum [24]. The 

effect of varying the main variables P and T on the boundary migration rate is illustrated in Figs 7a and 

7b, respectively. While the CLS-theory is capable of making quantitative predictions only in the low 

pressure/high concentration/low temperature (fully loaded) regime, the present model gives equally 

good predictions for any combination of driving pressure, solute concentration and temperature, as will 

be demonstrated in the application section below. 
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4 APPLICATIONS 

The present model will now be tested on the bases of some classical experimental investigations, of 

which the most notable ones are those due to Aust and Rutter [25-28] and Gordon and Vandermeer 

[33-36]. The latter work, on the effect of small additions of Cu on grain boundary migration in 

aluminium is the most carefully conducted experiment of its kind, and will therefore firstly be 

examined. 

 

To allow some flexibility in the model a tuning parameter has been introduced. The area acted upon by 

the restraining pressure CP  was taken only as a fraction   of the geometrical area A  initially assigned: 

 
b b

a A
c n





   (17) 

The physical meaning is that the activation volume related to the work of the force F is actually 

smaller than the one predicted geometrically. This parameter modifies the restraining pressure in the 

following way 
1C

C C b b

F
P F c n

a



  . The consequence of this takes the form of introducing   as a 

multiplication factor in the right-hand side of Eq.(15) whereas the expressions for the boundary 

velocity vb  (Eq.(12)) and the boundary solute concentration bc  (Eq. (13)) in function of CF  are 

unaffected. It also slightly modifies the expression of the migration rate vb  of a loaded boundary 

(Eq.(16)) which now takes the form: 

 
3

1 0

3

2
v 2 exp s

b s D

U UPb
b c

nb kT kT


   

   
 

 (18) 

 

 

The experiments of Gordon and Vandermeer. These researchers investigated the effect of adding 

copper (range 2-250 ppm to zone refined aluminium) on grain boundary migration [33-36]. The 

experimental procedure adapted was to cold roll the various compositions to a reduction of 40% and 

subsequently follow the initial stage of recrystallization at various temperatures carefully monitoring 

initial growth rate of the largest grain. Great care was exercised in order to assure that this initial stage 

of growth in all investigated conditions occurred under constant driving pressure [36]. Their results, in 

terms of migration rates vs. solute concentration, are shown in Fig. 8. From these results it follows that 

in the extremes the boundary migration rates are well represented by Eqs. (5) and (18). Equation (5) 

applies to zone refined aluminium with an activation energy 65kJ/molb

SDU  . The results in the 

ultimate (high concentration) range, satisfy Eq. (16) with Us +2 Uo = 131 kJ/mol. Further, it follows 

from the behaviour in these extremes that the two pre-exponential constants can be identified as: 
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92.510P P   and 101.210s P  . A test of the present model now becomes to find out if it is 

capable of accounting for the effect of solute atoms on boundary migration also in-between these 

extremes. 

 

In order to apply the present model to the results in Fig. 8 the driving pressure involved needs to be 

quantified. Gordon and Vandermeer estimated the driving pressure on the basis of a relationship of the 

form: P = 4Z / Nao
3
, where Z is the stored free energy per mole, N is Avogadros number and ao is the 

lattice parameter. On the basis of calorimetric measurements Z was estimated to 16.7 J/mol which 

gives P = 1.7 MPa, which again corresponds to a dislocation density estimate (P = 0.5 Gb2, where G 

is the shear modulus and is the dislocation density) at  = 1.6*1015 m-2. This is a high density, indeed, 

to be the result of a 40% rolling reduction of zone-refined-grades of aluminium. In terms of a shear 

flow stress estimate ( 0 0.5Gb    ) such a dislocation density corresponds to a stress level of 

about 150 MPa, which is about an order of magnitude larger than expected. In commercial 5N-grades 

of aluminium the shear flow stress (in multiple slip, at 40% elongation) is found to be about 15 MPa 

[37]. Typical value for 0  is about 5 MPa, which again gives the following estimates for the 

dislocation density and the stored energy:  = 7*1012 m-2 and P = 7 500 Pa, respectively. Gordon and 

Vandermeer, however, investigated aluminium with Cu-contents in the atomic fraction range from 

62 10  to 43 10 . This variation in solute content will result in a corresponding variation in flow stress 

and driving pressure at a constant rolling reduction (see Table 1). This effect is illustrated in Fig. 9 

where the driving pressure for three low-solute variants (5N, 4N and commercial purity aluminium) 

indicate an approximate power relationship in this solute regime. The model predictions illustrated in 

Fig. 8 are based on this driving pressure relationship. Note that this fit also requires 0,4   and 

0 3kJ/molU  , from which it follows that the activation energy Us becomes 125 kJ/mol, which is also 

a reasonable value, close to the activation energy for bulk diffusion of Cu in Al; 135 kJ/mol [38]. From 

the diagram in Fig. 8, vb  vs. 1/T-plots at constant concentrations can be generated, from which the 

theoretically predicted variation in the (partly apparent) activation energy in Fig. 10 is obtained. In 

contrast to what is observed no maximum in the apparent activation energy is predicted by the model. 

As this region does not correspond to a simple physical mechanism it is quite difficult to give an 

explanation to this discrepancy. The conclusion becomes that the present theory is able to adequately 

account for the Gordon and Vandermeer observations by means of a fitting parameter. 
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The experiments of Aust and Rutter. These experiments pertain to the effects of small additions of Ag, 

Au and Sn on grain boundary migration in melt grown single crystals of lead [25-28], the driving 

pressure for boundary migration in this case being the grown-in striation (subgrain) structure. The 

claimed advantage of this approach is the thermal stability of the substructure which assured a constant 

driving pressure through-out the experiment. How accurate this claim is will be further discussed 

below. The authors did mention, however, the problems of reproducing the striation structure from 

wire to wire, and of maintaining a constant structure along the wire. This problem probably explains 

the considerable scatter (a factor of 5) in the measured migration rates, especially for low solute 

contents, see Fig 2.  

 

Let us firstly consider the results on the effect of Sn in Pb given in Fig. 11. The diagram gives the 

boundary migration rate as a function of Sn-concentration at 300 °C at a constant driving pressure P. 

By applying the modelling approach described above using 1  , 54kJ/molb

SDU  , 0 5kJ/molU   

and 02 100kJ/molsU U   the pre-exponential factors become: 54,410P P   and 218s P  . As 

can be seen from Fig. 11 the best fit is obtained with a driving pressure P = 15000 Pa. This value is 

more than two order of magnitude larger than the driving pressure estimate made by Aust and Rutter 

(400 Pa). Keeping this low driving pressure and adjusting the fitting parameter   lead to an extremely 

high value ( 32  ), which seems unreasonable to adopt. However before considering the possible 

reasons for this discrepancy, some other observations on the effects of Sn on grain boundary migration 

in zone-refined lead needs to be brought to the attention. Some interesting results on grain growth due 

to Bolling and Winegard [39-40] are shown in Fig. 12. These results are often quoted as demonstrating 

that the effect of these solute elements on the boundary migration rate increases in the order Sn-Ag-Au. 

The effect of Sn is not included in Fig. 12, the reason being that these researchers apparently could not 

find any effect of Sn on grain growth at all. It is difficult to precisely quantify the driving pressure in 

grain growth experiments, but at a grain size of about 1 mm this pressure (
2 GBP

R


 where GB  is 

the grain boundary energy and R the average grain radius) is expected to be of approximately the same 

order as in the experiments of Aust and Rutter. It is, however, very difficult to understand why an 

addition of  around 100 ppm of Sn to Pb has only a marginal effect on grain growth, but causing a 4 

orders of magnitude change in the migration rate in the experiments of Aust and Rutter, Fig. 11. A 

possible explanation will be offered below, but firstly the effects of the other solute additions need to 

be considered. 
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A total representation of the Aust and Rutter data is given in Fig. 2. Although the scatter in the Sn and 

Au data is considerable the trend seems clear, indicating a several orders of magnitude drop in 

boundary migration rate for solute concentration larger than a few ppm. Again, this is in total conflict 

with the grain growth observations by Bolling and Winegard [39-40], showing that the average growth 

rates at a grain size of 1 mm are 67 10  m/s, 6410  m/s and 6310  m/s taken in the order pure Pb, Pb - 

Ag and Pb - Au (Fig 12). While the driving pressure in grain growth experiments is difficult to assess 

one cannot dispute the fact that these growth rates all refer to approximately the same driving pressure. 

An interesting speculation becomes to which extent the observations of Aust and Rutter really reflect a 

constant driving pressure or not. An important argument in favour of such a constant pressure has 

traditionally been that the striation structure is stable during the migration experiments. One has to bear 

in mind, however, that we are here talking about experimenting with single crystal wires, a few mm in 

radius and containing, according to Aust and Rutter, an average dislocation density of about 7*107 m-2, 

i.e. handling thin lead wires having a shear flow stress of about 0.5 MPa. Doing that without 

introducing dislocations in an amount many times larger than that grown in will be a problem in itself. 

Bolling and Winegard reported that as the solute content increased so did the flow stress of the material 

(of course). An interesting speculation then becomes whether or not by increasing the solute content 

the lead wires became stronger and easier to handle without introducing additional dislocations, and 

accordingly the drop in migration speed in Figs. 2 or 11 is partly due to a decrease in driving pressure. 

The works by Aust and Rutter provide no answer to such a speculation. It is, however, the opinion of 

the present authors that the observations of Bolling and Winegard cannot be overlooked in this context. 

They have convincingly demonstrated that the effects of additions of about 100 ppm of either Sn, Ag 

or Au on the grain boundary migration rates in zone-refined lead at a constant driving pressure caused 

migration speed reductions compared to the pure metal of at most a factor of 3. From these 

observations it seems appropriate to question the more spectacular results by Aust and Rutter in Figs. 2 

and 11. The present conclusion then becomes that their results in general are not suited as a basis for 

applications in quantitative modelling. 

 

5. CONCLUDING REMARKS 

The solute pinning approach developed in the present paper rests on the assumption that solute atoms 

within a migrating boundary perturb the collective re-arrangements of solvent atoms associated with 

boundary migration, the consequence of which being cusping of the boundary and a pinning force on 

the solute atoms. This pinning force will promote thermal activation of solute atoms out of the 

boundary, a reaction which is believed to be the rate controlling step for grain boundary migration in 
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solute containing metals. It has been demonstrated that this mechanism is capable of explaining the 

known effects due to solute atoms on grain boundary migration in relation to recrystallization and grain 

growth phenomena. The experimental results on the effect of copper on boundary migration in 

aluminium due to Gordon and Vandermer [33-36] have been described successfully by this new 

model.  
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Appendix 

 

The information contained in equation Eqs. (6)-(15) can be condensed into the following three 

analytical expressions: 
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where CF b
x

kT
  and   the tuning parameter introduced in the application section. The 

computational procedure now becomes to find the value of x which satisfies the first equation and 

then the solute concentration in the boundary bc  and the interface velocity vb  could be deduced 

from the value of x found. It should be noted that the possible values of x are in the interval  max0, x  

where maxx  is obtained from the necessary requirement that the nominator in the first equation has 

to be larger than 0. Making it equal to zero gives: 
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Expression of the interface velocity where 1CF b

kT
: 

This corresponds to the case of a low driving pressure or a high solute concentration. If the 

expression of c is expanded to the lowest order, we obtain: 
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From this expression we simply get the value of x: 
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By substituting the expression of x into the expression of the boundary velocity and using the 

approximation  sinh x x  for small value of x, we easily obtain: 
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It can also be easily demonstrated that 0expb
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It should be noted that in this case the pinning force could be expressed in an analytical way: 
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Everything behaves as if the grain boundary is planar: it is pinned in so many places that the 

curvature between two pinning atoms is small. 

Expression of the interface velocity where 1CF b

kT
 

This corresponds to the case of high driving pressure or low solute concentration. In this case x  is 

close to maxx . 
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The interface velocity is given by: 
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This expression is the same expression of the velocity of a pure boundary. 

For 1x ,  sinh 1
2

xe
x   and the solute concentration in the boundary bc  is given by: 

    0 01
exp 2 exp exp exp

2
b

b

U Unb
c c x x

kT n kT

   
     

   
 

 
b

b

nb
c c

n 
  

For this case there is almost no segregation at the moving interface. 
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FIGURES 

 

 

Fig. 1. Some possible types of transitions (schematically) from free to loaded boundary, for details see 

the text. 

 

 

 

 

 

Fig. 2. Comparison of the grain boundary migration rates at 300 °C as a function of solute 

concentration for tin and gold as solutes in high-purity lead, from Refs. [25] and [26]. The solid 

lines outline the trend displayed by the experimental points. 
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Fig. 3.  a) Formation of a cusp on a migrating grain boundary due to interactions with solute atoms 

(redrawn from Machlin [29]). b) and c) for boundary thickness small and large respectively, 

compared to the atomic diameter (redrawn from Lücke and Stüwe [10]). 
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Fig. 4.  Schematic representation of the interactions between a) a stationary and b) a migrating grain 

boundary and solute atoms, for details see the text. 
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Fig. 5.  Schematic representation of an atom jumping against the cusping bias CF b . 
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Fig 6a) 

 

Fig 6b) 

Fig. 6.  Model predictions for: a) solute atom concentration in the boundary bc  vs. that in the bulk c in 

a migrating boundary under constant driving pressure, for the Uo-values given b) the 

corresponding variation in the migration rate vb . 
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Fig 7a) 

 

Fig 7b) 

Fig. 7.  Model predictions for the variations in the boundary migration rate vb  vs. a) the driving 

pressure  P and b) the inverse temperature 1/T. 
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Fig. 8. Experimental [33] and theoretically predicted variation in migration rate vs. composition for the 

temperatures given (filled symbols, actual data points; open symbols, extrapolated values). As 

velocities for a pure metal could not be reported in a log-log plot, they have been plotted at an 

arbitrary abscise of 72 10 . 

 

 

 

 

Fig. 9 Variation of the estimated driving force for recrystallisation in function of the purity degree of 

aluminium. 
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Fig. 10 Activation energy (partially apparent) for boundary migration as a function of atomic fraction 

of copper, experimental data from Gordon and Vandermeer [33]. 

 

 

 

 

 

 

Fig. 11.Model predictions of the boundary migration rate as a function of solute atom concentration for 

the driving pressures given, as compared to the results on tin in lead by Aust and Rutter [25]. 
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Fig. 12. Grain diameter vs. annealing time at 300 °C for zone-refined lead (top), zone-refined lead with 

100 ppm silver added  (middle) and zone-refined lead with 200 ppm gold added (bottom), from 

Bolling and Winegard [39-40]. 
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Tables 

Purity of aluminium 
0.4 0     

2

0.4 0

2

2
P

G M

  
  

Commercial purity 85 MPa 357 10 Pa  

4N 63 MPa 33110 Pa  

5N 42 MPa 31410 Pa  

Table 1 : Values of the flow stress and the driving pressure for different purity degrees of aluminium at 

40% elongation taken from [37]. (G shear modulus in aluminium taken as 26 GPa and M Taylor factor 

taken as 3). 

 

 


