
1

The Spatial Statistics of Structural Magnetic
Resonance Images: Application to Quality

Assessment of Brain MRI Images
Michael Osadebey, Marius Pedersen, Douglas Arnold, and Katrina Wendel-Mitoraj, The

Alzheimer’s Disease Neuroimaging Initiative*

Abstract

Popular algorithms for quality evaluation of medical images are generic, global and distortion-specific. Per-
formance is limited by complexity introduced by presence of disease signatures such as lesions. Application of
classical statistics ignores spatial dependency and the unique image attributes in different imaging modalities. We
propose a new no-reference method that overcomes some draw-backs of current algorithms and correlate with human
visual system in terms of ‘fidelity’, ‘usefulness’ and ‘naturalness’. We define the sample space as local entropy
at pixel locations in a MRI volume data. Furthermore we segment each slice into eight equal angular segments
and partition the sample space into low and high entropy regions. These regions, in a MRI volume data, are
regarded as regionalized random variables which exhibit distinct and organized geographic patterns. Our proposal
has ’usefulness’ because it exploits similarity in geometry of human anatomy to build quality models from 250 brain
MRI images of different subjects sourced from the Alzheimer’s disease neuroimaging initiative (ADNI) database.
‘Fidelity’ is impacted by comparing quality models built from ADNI images with quality features extracted from
a test image. ‘Naturalness’ comes from application of spatial statistics to describe distinct geographic patterns of
different anatomic structures of brain. Quality scores computed using law of total probability takes into account
presence of lesions in MRI data. Partition of feature space encourages focus on region of interest. Experimental
results show that our proposal correlates with different levels of degradation and can improve discernment of a
physician or a trained reader towards reliable diagnosis.

Index Terms

Magnetic Resonance Imaging, Image Quality, Quality Feature, Quality Score, Total Probability, Semivariogram
and Gaussian Distribution

I. INTRODUCTION

EVALUATION of image quality is a preliminary post-acquisition step. The quality of image acquisition
devices, the necessary post-acquisition processing procedures, performance evaluation of image

processing and image analysis algorithms and the level of utility of an image is determined by the
outcome of image quality evaluation. Strategic imaging work-flow decisions such as choice of imaging
device, algorithms for image processing and image analysis, re-scan, re-processing and re-analysis are
influenced by image quality evaluation. The extent to which a trained reader or an automated image
analysis system can optimally extract the information contained in an image is determined by the image
quality. Thus image quality assessment is a very important step in the process of utilization of an image.
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The first step in the evaluation of image quality is the identification of manageable image quality
attributes [1], [2]. These attributes expressed as quality features are then measured using different quality
scores to obtain a total quality score referred to as image quality index [3]. The goal of objective image
quality evaluation is to derive an image quality metric which correlates with the evaluation by the human
visual system in terms of ‘fidelity’, ‘usefulness’ and ‘naturalness’ [4]. Image quality can be evaluated by
humans in what is referred to as subjective method or by a measuring device in what is referred to as
objective method. This paper focus on how to quantify the diagnostic information contained in structural
magnetic resonance images of the brain without reference to an original image and such that the evaluation
correlates with the human visual system.

Advances in image acquisition technology encouraged increasing interest in the use of magnetic reso-
nance imaging (MRI) system images for the study of human anatomy [5], [6] diagnosis of diseases [7],
[8] and the clinical trials of drugs for treatment of neurological diseases [9], [10], [11]. The attractive
feature of a MRI system is its potential to produce high contrast images of soft anatomical structures.
This potential is an ideal expectation because of imperfections of the system component, trade-offs in
system operating parameters, patient induced artifact and operator error. The perceived visual quality of a
MRI image of the brain is influenced by features that manifest in the image. The features include noise at
different levels, intensity non-uniformity, acquisition artifacts, blurring, geometric distortion, lesion load
and extraneous artifacts introduced by image processing and image analysis algorithms. These features
influence each other as well as the classical terms of perception such as sharpness, contrast and saturation,
and thus makes image quality evaluation a nontrivial task [2].

A. Literature Review
Several objective image quality measures have been proposed in the literature. They can be categorized

into reference methods [12], [13], [14], [15], [16] and no-reference methods [17], [18], [19], [20], [21].
Detailed review of image quality evaluation for a general class of images and MRI images can be found in
[22], [23], [24], [25],[26], [27], [28], [29]. Despite the several contributions on image quality the popular
quality assessment metrics for medical images are the age-old techniques; root-mean-square error (RMSE),
signal-to-noise ratio (SNR) and structural similarity index (SSIM) [12]. These metrics were designed to
solve research problems that were not related to image interpretation but on efficient compression, storage
and transmission of images. We identified six draw-backs in current automated image quality assessment
methods. They are explained below:

1) Generalization of Medical Images
The popular quality evaluation metrics assume that all classes of medical images and all other natural
images have same descriptive features. Medical images exhibit characteristics such as texture, gray-
scale color, noise and homogeneity which distinguish them from each other and other classes of
natural images.

2) Globalization
Quality assessments in [12], [13], [19], [20], [21] takes into account the entire image and does not
allow focus towards region-of-interest. In some clinical applications such as the study of disease
progression in multiple sclerosis the focus is detection of lesions in the white matter region. With
global quality measures there is the risk of non-optimal quality measure in a region which is the
focus of the physician or a trained reader.

3) Distortion-Specific Bias
Many current quality assessment methods such as [17], [19] adopt specific type of distortion,
considered as common, to evaluate the image under consideration. This approach can be said to
be biased towards specific distortion because all possible distortions combine with ideal features to
manifest as image attribute [18].

4) Fidelity Bias
Image quality as viewed by the human visual system can be represented in three dimensions: fidelity,
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usefulness and naturalness. Researchers have argued that the use of reference images such as in
[12] for quality evaluation is a measure of fidelity and does not account for the other two attributes
of image quality

5) Limitations of Classical Statistics
All the current quality assessment metrics adopt the principles of classical statistics to describe
quality attributes. Classical statistics does not account for the distinct geographic patterns of the
constituent anatomic structures in medical images. The absence of spatial dependency in the de-
scription of these attributes excludes the naturalness of the image in the evaluation of image quality.
The inability of popular image quality measures to perceptually distinguish different images was
reported in [14]. The authors demonstrated that two images with the same root-mean-square error
(RMSE) can be perceptually dissimilar. They proposed a technique called null space analysis for
quality evaluation.

6) Complexity Induced by Disease Signatures
Presence of disease signatures such as lesions in the white matter structures in the brain of multiple
sclerosis patients mimic edges of anatomic structures and spurious details. This makes quality
measure complicated. The performance of edge-based brain MRI quality measures can be unreliable
in the presence of high lesion load.

B. Importance of Automated Objective Quality Measures
There are many real-world applications where there is little room to operate the human visual system

method for the evaluation of image quality. A typical scenario is in clinical research organizations. Several
thousands of brain MRI images are delivered daily from clinical trial sites around the globe to clinical
research organizations that manage clinical trials of new drugs for pharmaceutical organizations. Variations
in the quality of images acquired with different scanners from the different clinical trial sites need to
be quantified to ensure conformity with protocols set out by sponsoring pharmaceutical organizations.
Efficient management of this large amount of data demands high level of automation in the methods of
quality assessment of the MRI images. There is little tolerance for subjective quality measures because
they are manual, time consuming and lack repeatability. No-reference, objective and automatic quality
measures are preferred because they can be computed in real-time and are repeatable. Objective quality
measures encourages efficient data management by the classification of images for assignment of real-time
automated processing, manual processing and, if necessary, further processing to improve image quality.

C. Introduction to Spatial Statistics
Spatial statistics [30] is a branch of classical statistics. It is a relatively new area in statistics. It became

an active research area because of the limitations of classical statistics to solve some real-world problems.
There are three major techniques in spatial statistics. They are geostatistics, spatial point patterns and lattice
data. For the purpose of this research our interest is in the area of geostatistics. Geostatistical technique
focus on fixed spatial region such as a geographical region for the modeling of continuous variables, data
prediction from the relationship between variables and evaluation of spatial structures. It can distinguish the
visual perception of images by incorporating information about their spatial dependencies. Data from brain
images acquired by MRI system have characteristics suitable for spatial analysis. Three dimensional display
of brain MRI image reveals clearly defined pattern in the spatial location and the spatial arrangement of
the anatomical structures of the brain. The data are continuous variables describing different anatomic
structures within a fixed spatial region. The nomenclature adopted for the acquisition planes and some
of the constituent anatomic structures: axial, sagittal, coronal, left hemisphere, right hemisphere and mid-
sagittal plane are borrowed from the field of geography to describe spatial locations within the brain. The
spatial arrangement is the most important attribute of MRI image that is easily perceived by an observer.
Every trained reader has the knowledge that the brain is approximately symmetrical with respect to the
mid-sagittal plane, the lateral ventricle is approximately centered on the mid-sagittal plane and farther
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from the brain surface than the cortical grey matter [31], [32]. After careful review of the literature we
can say that, to the best of our knowledge, there is yet no proposal on the application of the principles
of spatial statistics to the evaluation of image quality.

D. Our Proposal
We propose a new fully automated, no-reference, objective method to evaluate the quality of MRI system

images. It is based on encoding different image quality attributes with local entropy and the similarity in
the geometry of human anatomy across age, gender and race [33], [34], [35]. The human brain is regarded
to be located in a fixed spatial region which exhibit distinct and organized patterns. The spatial region is
regionalized by segmenting each slice in the MRI volume data into eight equal angular segments of 45
degrees. The sample space is the the set which elements are the normalized entropy at each pixel location
within a segment in the the foreground of the image. The sample space is partitioned into two regions,
low entropy region and high entropy region. The regionalized random variable is the ratio of sum of the
normalized entropy within a segment to the total number of pixels within the same segment. Four spatial
quality models were built from brain MRI images of 250 subjects sourced from the Alzheimer’s disease
neuroimaging initiative (ADNI) database. They are area, semivariogram, nugget of semivariogram and the
sill of semivariogram. Given a test MRI volume data, quality features corresponding to the four quality
models are extracted. Quality score of each feature is computed by comparison to corresponding quality
models. Experimental results shows that our proposal correlate with different levels of degradation and
for this reason it can be said to correlate with human visual perception.

E. Outline
This paper is organized as follows. The next section explain the theory behind our proposal. Section III

describe our methods for evaluation of image quality. Experiment on quality assessment of test images is
in section IV. Experimental results are discussed in section V. Section VI concludes this report.

II. THEORETICAL BACKGROUND

The theory section begins with the relationship between the local entropy of an image and the classical
quality attributes. The Geostatistics model of brain MRI image is explained, followed by definition of
quality models and the law of total probability.

A. Relationship between Local Entropy and Classical Quality Attributes
Entropy is a term borrowed from the field of physics to describe the spread in the energy states

of particles within a closed system. It describes the disorderliness of energy states in the system. When
adapted to images entropy quantifies the diversity in the composition of pixel intensity levels. The particles
are the pixel locations and energy states are the possible intensity levels. In a 8-bit grayscale image there
256 possible intensity levels ranging from 0 to 255 at each pixel location. Local entropy E(I(x, y)) is a
function of probability P (I(x, y)) of a pixel I(x, y) located at the center (x, y) of a N ×N local region
B within an image I:

E(I(x, y)) = −
∑
x

∑
y

P (I(x, y)) log2 P (I(x, y)) (1)

The probability is directly proportional to the sum of the absolute difference between the intensity level
of the center pixel and its (N2 − 1) immediate neighbors indexed by g;

P (I(x, y)) ∝
N2−1∑
g=1

∥I(x, y)−Bg∥ (2)
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The expression in Eq. 2 is a measure of the local contrast. The probability of the absolute difference in
the horizontal direction:

Py(I(x, y)) ∝
∑
ny

∥I(x, y)−Bgy∥ (3)

and the probability of the absolute difference in the vertical direction:

Px(I(x, y)) ∝
∑
nx

∥I(x, y)−Bgx∥ (4)

is a measure of sharpness which is the amount of details and contrast along edges in the local region
Equation 2 can be simplified by computing the mean brightness of the local region so that P (I(x, y))

is expressed as deviation from the mean µB, the luminous brightness of the local region

P (I(x, y)) ∝ ∥I(x, y)− µB∥ (5)

and as a function of the variance σ2
B, a measure of noise level in the local region

P (I(x, y)) ∝ ∥I(x, y)− µB∥2 = σ2
B (6)

Thus entropy is a direct measure of the classical image quality attributes; luminous brightness, contrast,
sharpness, noise and texture.

B. Geostatistical Model of Brain MRI image
The geostatistic model of brain MRI image is built from W ideal quality MRI volume data. Each

data consist of K useful slices so that the total number of slices in the database is Z = KW where
Z = {z|1, · · · , Z}.

1) Geographic Region: The geographic region s is an hypothetical 3D cylindrical coordinate system
of unit radius and height T shown in Fig. 1:

s = {r, θ, t|0 ≤ r ≤ 1,−π ≤ θ ≤ π, 1 ≤ t ≤ T} ∈ R3 (7)

where r and θ are the radial and angular distances of pixel locations in the foreground of each slice. The
geographic region is regionalized as shown in Fig. 2 by patching the foreground of each slice into Q
equal angular segments

θq =

{(
−π + (q − 1)

2π

Q

)
< θ <

(
π + (q −Q) (

2π

Q
)

)}
(8)

where q = {1, 2, ....., Q}.
2) Sample Space: The sample space S consist of the distribution of normalized local entropy λ within

each angular segment q(r, θ, z) in a slice z ∈ Z:

S = {λq(r,θ,z) : 1 ≤ q ≤ Q, 0 ≤ λ ≤ 1} (9)

For some global threshold τ we partition the sample space into low entropy region SL:

SL = {λq(r,θ,z) : 1 ≤ q ≤ Q, 0 ≤ λ ≤ τ} (10)

and high entropy region SH :

SH = {λq(r,θ,z) : 1 ≤ q ≤ Q, τ < λ ≤ 1} (11)

such that:
S = SL ∪ SH (12)
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3) Random Variable: In the model database there are Z ×Q feature vectors indexed by {q|1, · · · , Q}
angular segments. If Z is large enough such that Z ≫ Q, then Z feature vectors generated from the
database will be randomly distributed into each angular segment in the hypothetical cylindrical coordinate
system of Fig. 1. A random variable X is defined as a function that assigns a real number X(λ) to each
outcome λ in the sample space S of a random experiment [36]. We express the random variable as the
ratio of the sum of normalized local entropy values λq(r,θ,z) within an angular segment of a slice z to the
total number of pixels nq within the angular segment.

Xq(λ) =

∑
λq(r,θ,z)

nq

(13)

The random variable is expressed to reflect the partitioning of the sample space into low and high entropy
regions;

XqL = {xqL1, xqL2, · · · , xqLZ} (14)

XqH = {xqH1, xqH2, · · · , xqHZ} (15)

4) Regionalized Variable: The random variables expressed in Eq. 13, Eq. 14 and Eq. 15 are distributed
over space s, and thus can be regarded as regionalized variable X(s):

{X(s) : s ∈ R3} (16)

where s = s(r, θ, t). Regionalized variable like the classical random variable exhibit random characteristic
at a specific location s. However, unlike the classical random variable they possess structured spatial
characteristics because they are distributed over space [37].

5) Semivariogram: The semivariogram is a function that measures the rate of change of a regionalized
variable with distance [38]. Given that X(s) and X(s+t) are measurements of a regionalized variable at
K finite locations separated by distance t, the semivariogram V is expressed as.

V (t) =
1

2K

K∑
i=1

[X(si) +X(si + ti)]
2 (17)

Semivariogram is a description of the squared difference between successive points in a region of interest
and assigns spatial correlation structure to the data. An example of the plot of a theoretical semivariogram
is shown in Fig. 3 [39]. There are three notable features in the profile. The nonzero intercept of the
variogram called the nugget effect gives an estimate of measurement error and variability within the
spatial region. The sill corresponds to the maximum height of the variogram and gives an estimate of
the variance of the region of interest. The range of influence is the distance beyond which successive
locations have negligible spatial correlation.

The definition of the semivariogram in Eq. 17 requires the regionalized variable to vary across slices
hence the semivariogram is applicable only to multi-slice MRI volume data and not to a single slice. Given
that the semivariogram is quantized into P linearly spaced points, there will be L = P ×Q semivariogram
feature vectors for each MRI volume data and W × L feature vectors for the entire database.

V =


vw1,l1, vw1,l2, . . . , vw1,L

vw2,l1, vw2,l2, . . . , vw2,L

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
vW,l1, vW,l2, . . . , vW,L

 (18)
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C. Quality Models
The random variables XqL and XqH expressed in Eq. 14 and Eq. 15, respectively are defined within a

finite interval, {0 ≤ x ≤ 1}. For each volume data their mean and variance are finite:

µxwL
=

1

K

k=K∑
k=1

xkL (19)

µxwH
=

1

K

k=K∑
k=1

xkH (20)

σ2
xwL

=
1

K

k=K∑
k=1

(xkL − µxwL
)2 (21)

σ2
xwH

=
1

K

k=K∑
k=1

(xkH − µxwH
)2 (22)

The central limit theorem states that the distribution will tend to a Gaussian [40],[36],[41]. We now define
two quality models, the low entropy area XAL

quality model:

P (XAL
) =

1√
2πσXAL

exp−

(XAL
− µAL

)2

2σ2
XAL

 (23)

and the high entropy area XAH
quality model:

P (XAH
) =

1√
2πσXAH

exp−

(XAH
− µAH

)2

2σ2
XAH

 (24)

The third quality model is the variogram quality model, a 1×L matrix derived from the mean, along the
column dimension of the semivariogram expressed in Eq. 18:

Vr =
1

W

w=W∑
w=1

l=L∑
l=1

Vw,l (25)

The expression in Eq. 25 can be resized into a P ×Q matrix;

Vrr =


vp1,q1, vp1,q2, . . . , vp1,Q
vp2,q1, vp2,q2, . . . , vp2,Q
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
vP,q1, vP,q2, . . . , vP,Q

 (26)

where each column is the mean semivariogram of each angular segment. The first element in each column
is the nugget and the last element is the sill. We define the first row of the resized matrix as the fourth
quality model and is referred to as the nugget of the semivariogram:

Vng = {vp1,q1, vp1,q2, . . . , vp1,Q} (27)

The fifth quality model is the absolute difference between the nugget and the sill in each angular segment.
This model is referred to as the sill quality model

Vsl = {∥vp1,q1 − vP,q1∥, ∥vp1,q2 − vP,q2∥, . . . , ∥vp1,Q − vP,Q∥} (28)
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D. The Law of Total Probability
We denote the feature vector extracted from a test image as α. The extent to which the area feature

vector αAL
, αAH

extracted from a test image normalizes the area quality model in Eq. 23 and Eq. 24 is
the area feature quality score γAL

, γAH
for the test image:

γAL
=

1√
2πσXAL

exp−

(αAL
− µAL

)2

2σ2
XAL

 (29)

γAH
=

1√
2πσXAH

exp−

(αAH
− µAH

)2

2σ2
XAH

 (30)

For any given feature vector of a test image including the area feature vectors αAL
, αAH

, the law of
total probability is applied to compute the quality scores because the sample space is partitioned by the
low and the high entropy regions. Given the variogram feature vector αV r the variogram quality score
γV r is:

γVr = P (αVr)P (αVr |αAL
) + (1− P (αVr))P (αVr |αAH

) (31)

where
P (αVr) = ∥Vr − αVr∥ (32)

P (αVr |αAL
) = γAL

(33)

P (αVr |αAH
) = γAH

(34)

Given the nugget feature vector αVng the nugget quality score γVng is:

γVng = P (αVng)P (αVng |αAL
) + (1− P (αVng))P (αVng |αAH

) (35)

where
P (αVng) = ∥Vng − αVng∥ (36)

P (αVng |αAL
) = γAL

(37)

P (αVng |αAH
) = γAH

(38)

Given the sill feature vector αVsl
the sill quality score γVsl

is:

γVsl
= P (αVsl

)P (αVsl
|αAL

) + (1− P (αV sl))P (αVsl
|αAH

) (39)

where
P (αVsl

) = ∥Vsl − αVsl
∥ (40)

P (αVsl
|αAL

) = γAL
(41)

P (αVsl
|αAH

) = γAH
(42)

III. METHODS

This section begins with the setup of the experiment. It explains the choice of a suitable data for the
model database. This is followed by modeling experiment which explains how the database feature vectors
were generated. The section ends with the derivation of quality models from the feature vectors. The
algorithm was implemented in the MatLab computing environment. The flow chart in Fig. 4 introduce our
methods. Model image MIM are the elements of the modeling experiment MEX for generating model
feature database FED. Quality models QM are computed from the feature database using probability
density function PDF technique. Given a test image TIM features are extracted FEX to create feature
vectors FV. Quality features QF are determined from classification CL. Quality measure QM compare
the quality features QF of the test image with the corresponding quality model QM of the model images
to determine the quality score QS.



9

A. Setup of Modeling Experiment
T1-weighted MRI images acquired using three-dimensional magnetization-prepared rapid gradient echo

(MPRAGE) technique was our choice for the model database images. Images acquired using MPRAGE
pulse sequence exhibit superior gray-white matter contrast compared to the conventional T1 and other
structural brain MRI images [42], [43], [44]. Two hundred and fifty high quality, high resolution, 3D,
T1-weighted MPRAGE MRI images were sourced from the Alzheimer’s disease neuroimaging initiative
(ADNI) database (www.adni.loni.usc.edu). Each slice has thickness of 1.2 mm and dimension of 190×160.
The pixel intensity levels are stored as unsigned 16-bit integers. Details of ADNI acquisition protocol and
the initial processing steps are available in [45]. During data sourcing at ADNI website we seek MRI
data of patients with healthy and normal brains that were without lesions or with very mild lesions. For
each MRI data, slices towards the most inferior and most superior sections are discarded because they
highlight more of scalp and bone structures than brain structures. There are variations in the number of
useful slices for different patients. For each patient data the index of useful slices were coded in a special
function which can be called up by the algorithm during the modeling experiment.

B. Modeling Experiment
Graphical description of the modeling experiment can be explained using the flow chart in Fig. 5.
1) Foreground Extraction: Foreground function FR extracts foreground FI from each slice in a volume

data. The centroid and the number of elements in each foreground are recorded.
2) Local Entropy Filtering: Local entropy image LEI of each slice is computed using local entropy

filter ENF of size 3× 3.
3) Binary Transformation: The mean of the local entropy image is determined and used as a global

threshold for transformation BT to the binary domain. Pixel locations in the binary image BEI is trans-
formed from the classical cartesian coordinate system to cylindrical coordinate system. In the cylindrical
coordinate system the binary image is partitioned into eight equal angular segments of 45 degrees.

4) Local Entropy Classification: The global threshold for binary transformation is used as criteria for
classifying CL the local entropy image into low LOW and high HIGH entropy regions.

5) Feature Extraction (FEX): The number of pixels in each of the low and high entropy regions are
determined. The number of pixels in each region is divided by the number of pixels in the foreground
to determine the pixel density for each region. The pixels density for each region in all the slices in
a volume data are summed and averaged to obtain a single pixel density for a volume data. The pixel
density feature vector for the model database is a 1× 250 random variable for each of the low and high
entropy regions.

Angular pixel density is the ratio of sum of entropy values in each angular segment to the total number
of pixels in the same angular segment. Eight angular pixel density are computed for each slice. Each
angular pixel density is an element of a 1 × K column vector where K is the number of slices in a
volume data. The semivariogram of the feature vector is computed for each angular segment. There are
variations in the number of useful slices for each patient. To ensure uniformity in the size of the feature
vectors for all the data in the database the semivariogram is quantized into 10 linearly spaced column
vector. Thus there are a total of 10× 8 semivariogram feature vector for each volume data. Each column
is normalized to lie between 0 and 1. Thereafter the feature vector is resized to a 1× 80 feature vector.
For the entire database we obtain a 250× 80 semivariogram feature vector.

C. Quality Models
Five quality models were generated from the modeling experiment. Two of the models are Gaussian

distributions derived from the random variables representing the low and high entropy regions. The random
variables were modeled as Gaussian distributions because the process of their generation conform with the
central limit theorem. The distributions were centered at the mean of the random variables. The standard
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deviation was set such that 47.5 percent of all the random variables lie between 0 and its mean so that 95
percent of all the random variables will lie on either side of the mean for a normally distributed Gaussian
distribution.

Three quality models were derived from the semivariogram. They are the normalized variogram, the
nugget and the sill. The normalized variogram is the mean of the semivariogram feature vector along
the column dimension, a 1× 80 quality model. The nugget and the sill are derived from the normalized
variagram, resized to a 10×8 quality model. The first row of the resized data, a 1×8 vector representing
the minimum values of the semvariogram in each angular segment is the nugget quality model. Absolute
value of difference between the first and last row of the resized variogram is the sill quality model.

IV. EXPERIMENTAL RESULTS

A. Setup of Experiment
Performance evaluation of our proposal was carried out using original MRI data from two different

sources. They are NeuroRx research Inc and BrainCare Oy. NeuroRx inc. (https://www.neurorx.com)
is a clinical research organization dedicated to working with the pharmaceutical industry to facilitate
clinical trials of new drugs for multiple sclerosis (MS) and other neurological diseases. BrainCare Oy
(http://braincare.fi/) is a Tampere University of Technology spin-off company founded in 2013 to deliver
personalized solutions to improve the quality of life of epilepsy patients. The organization recently
concluded clinical trials for a novel mobile application and supporting solutions for long-term monitoring
for epileptic patients.

There are two original T1-weighted and one original FLAIR images from NeuroRx research Inc. All
the data from NeuroRx has same slice thickness of 2.4 mm, dimension 256 × 256 and consist of 60
slices. The image quality were considered within acceptable limits. Slices of the T2-weighted data from
NeuroRx are displayed in Fig. 6 and Fig. 9. A slice from the FLAIR data is shown in Fig. 8. The data
from BrainCare Oy are one original T2-weighted data with high lesion load and dimension 240 × 200
and another original T2-weighted image with dimension 480 × 360. They have same slice thickness of
7.5mm and consists of 25 slices. Both data from BrainCare are considered good quality. Slices from the
T2-weighted data can be viewed in Fig. 7 and Fig. 12.

Quality evaluation was carried out on the test images in their original state and in their noisy and
blurred versions. The different levels of noise and blur range from 0 to 10.

B. Quality Assessment Experiment
The initial steps in the quality assessment of a test image is depicted in Fig. 6. A slice of the test image

is in Fig. 6a. The image is rotated by 180 degrees as shown in Fig. 6b so as to be in the same orientation
as the model images. Foreground extracted from the rotated image is shown in Fig. 6c. Local entropy
of the test image computed using a 3× 3 local entropy filter is shown in Fig. 6d. Figure 6e and Fig. 6f
show the low and the high entropy regions that were extracted by transforming the local entropy image
into a binary image. The area density or ratio of the number of pixels in both regions to the number of
pixels in the foreground are computed. The area density for the low and high entropy regions for all the
slices in the volume data are summed and averaged. Pixel locations of the extracted entropy regions are
transformed to the cylindrical coordinate system. Each of the two region images are patched into 8 angular
segments of 45 degrees. Feature density in each angular segment, for all the slices, are computed to form
a column vector with length equal to the number of slices in the volume data. The semivariogram of the
data is computed, mormalized to lie between 0 and 1 and quantized to 10 linearly spaced data points. The
normalized semivariogram of the MRI volume data is a 10× 8 feature vector which is resized to a 1× 80
data. The nugget feature vector is the first row of the 10 × 8 normalized semivariogram feature vector.
The sill feature vector is the absolute difference between the first and last rows of the semivariogram.

The area quality scores for the low and high entropy regions are determined according to Eq. 29 and
Eq. 30, respectively. The semivariogram quality score, the nugget quality score and the sill quality score
are computed according to Eq. 31, Eq. 35 and Eq. 39 respectively.
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1) MRI Volume Data: Results of quality evaluation of T2-weighted MRI volume data from BrainCare
is displayed in Fig. 7. Presence of lesions in the white matter region is obvious in the slice shown in
Fi.g 7a. Plot of the low entropy and high entropy area quality scores are displayed in Fig. 7b. Variogram
quality scores in each angular segment of the volume data are displayed in Fig. 7c. For each angular
segment the quality score for the low and high entropy regions are displayed. The sill quality score for
the low and high entropy regions in each angular segment is displayed in Fig. 7d

Figure 8a is a slice in a FLAIR volume data from NeuroRx. The area quality scores for the low and
high entropy regions are shown in Fig. 8b. The variogram quality score is in Fig. 8c and the sill quality
score is in Fig. 8d.

2) Blur Degradation: Images in Fig. 9 explains different levels of degradation in a T2-weighted MRI
volume data from NeuroRx. The image in Fig. 9a is one of the 60 slices in a MRI volume data. The
image in Fig. 9b is degraded by insignificant level of blur, blur level=1. The blur level is significantly
increased to 5 as shown in Fig. 9c. Figure 9d shows very severe degradation of the original image, blur
level=10.

The bar plots in Fig. 10a, Fig. 10b and Fig. 10c are the semivariogram plots of the low and high entropy
regions for the third angular segment of the volume data for blur level=1, blur level=5 and blur level=10,
respectively. Figure 10d shows the variation of the semivariogram (high entropy region) for successive
different levels of blur ranging from 0 to 10. Variations of the four quality scores, the area, the variogram,
(low entropy region) the nugget and the sill for different levels of blur are displayed in Fig. 11a, Fig.
11b, Fig. 11c and Fig. 11d, respectively.

3) Noise Degradation: Figure 12 shows a slice in a T2-weighted MRI volume data from BrainCare.
The slice in Fig. 12a is the original slice. Different levels of Rician noise degradation of the original
image, 1 percent, 5 percent and 10 percent are displayed in Fig. 12b, Fig. 12c and Fig. 12d, respectively.

Semivariograms corresponding to Rician noise levels of 1 percent, 5 percent and 10 percent are displayed
in Fig. 13a, Fig. 13b and Fig. 13c, respectively. Variation of semvariogram (high entropy region) for
increasing levels of Rician noise is shown in Fig. 13d. The area quality score, the variogram (high
entropy region) quality score, nugget quality score and the sill quality score for different levels of Rician
noise are displayed in Fig. 14a, Fig. 14b, Fig. 14c and Fig. 14d, respectively.

V. DISCUSSION

A. Correlation with Acceptable Quality Images
The plots in Fig. 7 and Fig. 8 demonstrate that our proposal can accurately assess good quality MRI

volume data. The area quality score of T2-weighted data for the low entropy region denoted by the index
1 is close to the ideal as shown in Fig. 7b. The area quality score for the high entropy region is about
0.85. Quality scores of each element of the 1× 10 semivariogram shown in Fig. 7c for the third angular
segment conforms with the level of image quality. The sill quality score in Fig. 7d for each of the 8
angular segment conform with the quality of data. It varies from 0.5 to 0.9.

The area quality scores for both the low and high entropy regions of slices in the FLAIR volume data
(a slice is shown in Fig. 8a) are close to 0.9 as shown in Fig. 8b. In Fig. 8c the average quality score
of each semivariogram element for the third angular segment is about 0.9. The sill quality score in Fig.
8d for each angular segment has average of 0.7 which is a reflection of the good quality status of the
volume data.

B. Correlation with Variations in Image Quality
Our proposal can objectively differentiate images having different levels of image quality. The bar plots

in Fig. 10a, Fig. 10b and Fig. 10c correlate with the three different levels of blur degradation. In Fig. 10d
variations of the semivariogram correlate with successive blur degradation, from 1 to 10. The area quality
score in Fig. 11a, the variogram quality score in Fig. 11b, the nugget quality score in Fig. 11c and the
sill quality score in Fig. 11d also correlate with different levels of blur degradation.
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The bar plot in Fig. 13a, Fig. 13b and Fig. 13c correlate with Rician noise levels of 1 percent, 5 percent
and ten percent, respectively. In Fig. 13d the semivsriogram correlate with successive Rician noise levels,
from 1 to 10 percent. The area quality score, the variogram quality score, the nugget quality score and
the sill quality score in Fig. 14a, Fig. 14b, Fig. 14c and Fig. 14d also demonstrates how our proposal
correlate with different levels of Rician noise.

C. Focus towards Region-of-Interest
Our proposal assess image quality at two spatial resolutions. In the first spatial resolution the image

is classified into low and high entropy regions. Quality assessment in the low and high entropy regions
enables focus towards the white matter and gray matter regions, respectively. The second spatial resolution
encourages finer focus towards region of interest as the volume data is patched into eight equal angular
segments.

D. Robustness to Presence of Lesions
In T1-weighted images lesions in the white matter region are hypointense. The hypointense lesions

mimic gray matter regions. The edges of the lesions also mimic spurious edges which can result from the
presence of noise. In MRI volume data with high lesion load this features can ’fool’ automated objective
quality assessment algorithms to give erroneous results. Our proposal is robust to high lesion load by
partitioning each slice into low and high entropy regions and applying the law of total probability.

E. Robustness to Spatial Dependency
The design of our proposal takes into account the spatial relationship between the constituent anatomic

structures of the brain. The variogram quality score quantifies image quality using inter-slice information
and the area quality score quantifies image quality using intra-slice information in the volume data.

F. Correlation with the Human Visual System
When any of the blur and noise distortion increases the visual quality of the image is decreased as

shown in Fig. 10, Fig. 11, Fig. 13 and Fig. 14, and because of this our proposal can be said to correlate
with the human visual system in terms of usefulness, fidelity and naturalness. The usefulness is derived
from the use of brain MRI data from subjects across age, gender and age to build quality models. The
fidelity comes from comparing a test data with the quality models. The naturalness is derived by the
application of semivariogram to quantify spatial correlation between constituent anatomic structures.

VI. CONCLUSION

In this report we propose a new method to evaluate the quality of brain MRI images. It is based on
the principle of geometric similarity of human anatomy acorss age, gender and race. The principle of
spatial statistics is applied on database of brain MRI images to generate quality models. An MRI image
is evaluated based on how its extracted feature compares with corresponding quality model. Our proposal
incorporates directional information and spatial dependencies of anatomic structures and this encourages
image quality evaluation based on region-of-interest.
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AN MRI SLICE DIVIDED INTO ANGULAR SEGEMENTS

Fig. 2. The red lines demarcate an MRI slice into angular segments.
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THEORETICAL VARIOGRAM

Fig. 3. The plot of a typical theoretical semivariogram.
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FLOW CHART OF THE PROPOSED METHODOLOGY

Fig. 4. The flow chart of our proposal. It begins with the use of model images MIM in a modeling experiment MEX that results in the
generation of feature database FED. Application of classical statistics (PDF) on the feature database results in quality model QM. Given a
test image TIM, quality feature vector FV is computed after feature extraction FEX. Quality feature QF is derived from feature classification
CL. Quality score QS is measured QMeasure by normalizing quality feature QF with the quality model QM.
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FLOW CHART OF THE MODELING EXPERIMENT

Fig. 5. Flow chart of the modeling experiment. Foreground FI of a model image TIM is extracted FX and the same image is fed into an
entropy filter ENF. The local entropy image LEI is thresholded and transformed BT into a binary image BEI. The binary image is classified
CL into low LOW and high HIGH entropy image. Area Area and semivariogram Var features are extracted FEX from each of the low
and high entropy images.
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A SLICE IN THE MRI VOLUME DATA

(a)

ROTATED MRI SLICE

(b)

FOREGROUND OF MRI SLICE

(c)

LOCAL ENTROPY OF A MRI SLICE

(d)

LOW ENTROPY REGION IMAGE

(e)

HIGH ENTROPY REGION IMAGE

(f)

Fig. 6. In the initial steps for quality assessment the test image (a) is rotated by 180 degrees (b) to align with the model images in the
database. The foreground (c) is extracted, followed by filtering to derive the local entropy image (d). The local entropy image is transformed
to the binary domain to derive the low entropy image (e) and the high entropy image (f).
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A SLICE IN THE MRI VOLUME DATA

(a)

1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AREA

Q
U

AL
IT

Y 
SC

O
R

E

AREA QUALITY SCORES IN A MRI VOLUME DATA

(b)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ANGULAR SEGMENT

Q
U

A
LI

TY
 S

C
O

R
E

VARIOGRAM QUALITY SCORES IN A MRI VOLUME DATA

 

 
LOW ENTROPY
HIGH ENTROPY

(c)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ANGULAR SEGMENT

Q
U

A
LI

TY
 S

C
O

R
E

SILL VARIOGRAM QUALITY SCORES IN A MRI VOLUME DATA

 

 
LOW ENTROPY
HIGH ENTROPY

(d)

Fig. 7. A T2-weighted slice in the MRI volume data (a) from BrainCare. The area (b), semivariogram (c) and sill (d) quality scores for the
low and high entropy regions of the volume data.
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A SLICE IN THE MRI VOLUME DATA
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Fig. 8. A FLAIR slice in the MRI volume data (a) from NeuroRx. The area (b), semivariogram (c) and sill (d) quality scores for the low
and high entropy regions of the volume data.
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A SLICE IN THE MRI VOLUME DATA

(a)

BLURRED IMAGE: BLUR LEVEL=1

(b)

BLURRED IMAGE: BLUR LEVEL=5

(c)

BLURRED IMAGE: BLUR LEVEL=10

(d)

Fig. 9. A slice in the MRI volume data without blur degradation (a). The same slice in (a) with different levels of blur degradation, (b)
blur level =1, (c), blur level=5 and (d) blur level=10.
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(d)

Fig. 10. The semivariogram of the MRI volume data for (a) blur level=1, (b) blur level=5, (c) blur level=10 and (d) the variation of the
semivariogram with different levels of blur degradation for the third angular segment of the high entropy region.
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Fig. 11. Variations of the (a) area , (b) semivariogram, (c) nugget and (d) sill of MRI volume data for different levels of blur degradation.



25

A SLICE IN THE MRI VOLUME DATA

(a)

IMAGE DEGRADED BY RICIAN NOISE:NOISE LEVEL=1 percent

(b)

IMAGE DEGRADED BY RICIAN NOISE: NOISE LEVEL=5 percent

(c)

IMAGE DEGRADED BY RICIAN NOISE: NOISE LEVEL=10 percent

(d)

Fig. 12. A slice in the MRI volume data without noise degradation (a). The same slice in (a) with different levels of noise degradation, (b)
noise level =1 percent, (c), noise level=5 percent and (d) noise level=10 percent.
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(d)

Fig. 13. The semivariogram of the MRI volume data for (a) noise level=1 percent, (b) noise level=5, (c) noise level=10 percent and (d) the
variation of the semivariogram with different levels of noise degradation for the third angular segment of the high entropy region.
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Fig. 14. Variations of the (a) area , (b) semivariogram, (c) nugget and (d) sill of MRI volume data for different levels of noise degradation.


