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Abstract: Backlash in gearing and other transmission components is a common positioning-degrading
phenomenon that develops over time in industrial machines. High-performance machine controls use
backlash compensation algorithms to maintain accurate positioning of the tool to cope with such
deadzone phenomena. As such, estimation of the magnitude of deadzones is essential. This paper
addresses the generic problem of accurately estimating the width of the deadzone in a single-axis
mechanical drive train. The paper suggests a scheme to estimate backlash between motor and load,
employing a sliding mode observer and a nonlinear adaptive estimator. High fidelity simulations
illustrate the efficacy of the approach.
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1. INTRODUCTION

Developing backlash due to wear in spindles, gears, clutches
and guides is one of the main reasons for performance degra-
dation in machine tool systems. Since high precision tool po-
sitioning is fundamental for obtaining the required quality of
the machined end-products, backlash compensation is used in
nearly all modern Computer Numerical Control (CNC) algo-
rithms. Compensation necessitates knowledge of the backlash
offset angle so that it can be used in the position servo loops that
control motors on the machine’s axes. In such context, online
estimation methods may facilitate automatic compensation for
developing backlash.

A substantial amount of research has been conducted on esti-
mation of the backlash phenomenon for various systems over
the past three decades. In Stein and Wang [1998] the backlash
in a gearing system was indirectly estimated by calculating the
bounce, i.e. the change of the speed of the driving part of the
gear due to the backlash impact when exiting the deadzone.
Extended Kalman Filter (EKF) was employed in Hovland et al.
[2002] for estimating a backlash torque in a two-mass motor
arm, based on torque and position measurements. Modelling of
backlash torque was presented in Merzouki and Cadiou [2005],
who used using a differentiable function to represent backlash
and suggested a nonlinear observer for estimation of backlash
amplitude. This method was validated experimentally in Mer-
zouki et al. [2007], in which a sliding mode observer was used
for estimation of backlash torque. Based on this estimation,
backlash function parameters were identified offline. The effect
of the deadband due to backlash in a closed loop motion system
was studied in Hågglund [2007] using describing functions.
The function parameters were calculated online using a static

relation for controller gains. Backlash in automotive power-
trains was described in Lagerberg and Egardt [2003] based on
position difference between drive motor and load. A Kalman
filter was shown to estimate backlash within 10% error. A four-
parameter model was used in Vörös [2010] to describe back-
lash effects in generic linear cascaded systems. The backlash
identification was treated as a quasi-linear problem such that
iterative algorithms could be used. Minimization of a quadratic
prediction error was employed in Templin [2008] where po-
sition, velocity and torque measurements were used for offline
identification of backlash torques in a vehicle drive-line system.

In the previous approaches, the backlash phenomenon were
described through the resulting torque upon contact of two
parts of a coupling. In the cases where the deadzone angle
was identified directly, this was done offline or around a lin-
earization point of the system. The previous results showed the
need for new ideas for high accuracy estimation of backlash if
compensation shall be useful in machinery systems where very
high precision is required.

This paper considers the problem of designing a dynamic es-
timator for the deadzone angle of a developing backlash in a
single-axis drive-train system. The proposed method employs
modelling of backlash in terms of variable shaft stiffness, de-
pending on the deadzone size, and it addresses the requirement
for fast and accurate estimation of the deadzone angle. Simi-
larly to Merzouki et al. [2007], a second order Super-twisting
Sliding Mode observer (STSMO) is used to estimate the back-
lash torque. This value is utilized by an adaptive estimator
designed with the purpose to determine the deadzone angle.
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Fig. 1. Correspondence between mechanical drive-train and
single-axis machine-tool systems. The angular velocities
of the motor and the load are denoted by ωm,ωl , respec-
tively, while υT is the tool linear velocity.

The paper is organized as follows: Section 2 states the problem
in concise terms, describing the drive-train system as an ab-
straction of a single-axis machine tool, and presents a model
for backlash based on varying shaft stiffness. The design of
the parameter estimator is presented in Section 3 and Section 4
presents results obtained from high fidelity simulations. Finally,
conclusions are drawn and results are discussed in Section 5.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

A typical single-axis machine tool consists of a linear axis,
which positions the tool. The axis is actuated by a drive mo-
tor that is typically connected to an angular-to-linear motion
conversion device (e.g. a ball-screw).

The combined elasticity, friction, damping and total mass of all
the mechanical components that connect to the drive shaft can
be lumped into a generalised load. The single-axis machine tool
can then be viewed as a mechanical drive train comprising the
drive motor, a flexible shaft with damping, a backlash and a
load with friction as show in Figure 1.

2.1 Drive train modelling

With identification of backlash being in focus of this work,
angular accelerations, velocities and difference of angles be-
tween mechanical components are essential. Torque produced
by the drive motor is measured, hence the closed-loop electrical
dynamics of the motor need not be considered. An overview of
the most important variables and notation used in the modelling
of the system is provided in Table 1.

The dynamics of the mechanical drive-train system reads:

Table 1. System model nomenclature

Symbol Description Units

States and Outputs
ωm,ωl Motor/load angular velocity rads−1

θm,θl Motor/load angular position rad
Inputs and disturbances

u Torque command Nm
TF,m,TF,l Motor/load friction Nm

Tl Interconnection/backlash torque Nm
Constant parameters

Jm,Jl Motor/load inertia kgm2

KS Shaft stiffness Nmrad−1

DS Shaft damping coefficient Nmsrad−1

N Gearing ratio −
TC,m,TC,l Coulomb friction on the motor/load Nm

βm,βl Motor/load viscous friction coefficient Nmsrad−1

δ Deadzone angle rad

ω̇m =
1

Jm
u− 1

Jm
TF,m−

1
NJm

Tl (1)

θ̇m = ωm (2)

ω̇l =−
1
Jl

TF,l +
1
Jl

Tl (3)

θ̇l = ωl . (4)
In the backlash-free case the interconnecting torque Tl is given
from:

Tl = KS

(
1
N

θm−θl

)
+DS

(
1
N

ωm−ωl

)
(5)

where KS, DS and N are defined in Table 1 and are assumed to
be known. The friction torques acting on the drive motor and
the load are modelled as described in the following equation
Egeland and Gravdahl [2002]:

TF,i = TC,isgn(ωi)+βiωi, i ∈ {m, l} (6)
where sgn(·) is the signum function defined as:

sgn(ξ ) =


1 if ξ > 0
0 if ξ = 0
−1 if ξ < 0 .

(7)

and the parameters βm,βl ,TC,m,TC,l are considered known and
constant.

2.2 Backlash modelling

Backlash is the effect of sudden disengagement between drive
motor and load as shown in Figure 2. A number of static
and dynamic models have been developed, based on the inter-
connecting (restoring and damping) torque in a mass-spring-
damper system (see for example Nordin et al. [1997]; Gerdes
and Kumar [1995]; de Marchi [1998] and Nordin and Gutman
[2002]). The most intuitive and common one is the deadzone
model presented by Nordin et al. [1997], in which the inter-
connecting torque Tl becomes zero inside the deadzone, while
outside of it the angle difference (between motor and load) is
offset by the width of the deadzone angle.

Although the existing backlash models can accurately describe
the phenomenon, the discontinuities that they contain make
these models difficult to use in control and estimation design. A
model for backlash, which is based on changing shaft stiffness,
will be presented in this section and compared to the deadzone
model. This model will subsequently be used for deadzone
estimation and monitoring.

Defining the angular position and velocity differences between
drive motor and load as

Fig. 2. Backlash: When the difference between the motor and
the load position is smaller than δ , then the two shafts
are disengaged and no torque is applied to the motor or
the load. The picture is taken from Nordin and Gutman
[2002].



∆θ ,
1
N

θm−θl (8)

∆ω ,
1
N

ωm−ωl (9)

the interconnection torque Tl in the deadzone model is given by

T DZ
l =

{
KS(∆θ −δ · sgn(∆θ))+DS∆ω , |∆θ |> δ
0 , |∆θ | ≤ δ .

(10)

The proposed model is based on factorization of the backlash
torque as a function of shaft stiffness. The latter is very small,
virtually zero, when inside the deadzone, and assumes its nom-
inal value outside of it. The transition between the two extreme
values of the stiffness is fast but smooth. The corresponding
torque reads:

Tl =

[
∆θ −δ · sgn(∆θ)+

DS

KS
∆ω
]
·KBL(∆θ ,δ ) (11)

KBL =
KS

π
[π + arctan(α(∆θ −δ ))− arctan(α(∆θ +δ ))]

(12)
The positive constant α expresses the rate of change in the
stiffness as it can be seen in Figure 3. For α → ∞, it is clear
that Tl → T DZ

l .
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Fig. 3. Shaft stiffness varying between two values. The larger
the value of α , the steeper the change in the stiffness is.

2.3 Problem formulation

The collective objective can be summarised in the following
problem formulation:

Problem 1. (Deadzone angle estimation). Given the single-axis
drive-train system described in (1)-(6) and the backlash model
in (11),(12), design an online dynamic estimator for the dead-
zone angle δ with the following requirements:

• Maximum steady-state estimation error less than 10−3 rad.
• Asymptotic convergence to the real parameter value.

3. BACKLASH DEADZONE ANGLE ESTIMATION

Estimation of the deazone angle belongs to a family of prob-
lems of online parameter estimation in systems with nonlinear

parametrization that has been treated in numerous works in the
literature. The approach followed in this paper is based on a
method for parameter estimation in nonlinearly parametrized
systems presented in Grip et al. [2010]. The basic idea relates to
estimating a perturbation of the system dynamics that depends
on the unknown parameter and then finding an adaptive law for
estimating the parameter itself.

3.1 Method overview

Consider that the system dynamics is described by
ẋ = f (x)+g(x) [u(x)+d(x,δ )] (13)

where x ∈ Rn is measured, f : R≥0×Rn → Rn and g : R≥0×
Rn → Rn×m are the unforced system dynamics and gain, re-
spectively, which can be evaluated from the measurements,
δ ∈ D ⊂ R is the unknown parameter, u ∈ Rm is the control
input and d : R≥0 ×Rn ×D → Rm is a matched disturbance
vector, which can be evaluated if δ is known. The method
pertains to finding an estimation φ̂ of the perturbation

φ , g(x)d(x,δ ) (14)
and then derive an adaptive law

˙̂δ = ρ(x, φ̂ , δ̂ ) (15)
for estimating the unknown parameter.

Regarding the drive-train system, all states are measured and
the unknown parameter δ affects the dynamics of both the
motor and the load in the same way, i.e. through the torque Tl .
We can then choose either of the subsystems in (1), (3) on which
to apply the method. For simplicity, the load velocity dynamics
is chosen. The system can be written in the form of (13) with

f (x)≡ f (ωl) =
1
Jl

TF,l

g(x)≡ g =
1
Jl

d(x,δ ) = Tl ,

where Tl has been defined in (11), (12) and

x , [ωm θm ωl θl ]
T

is the state vector of the drive-train system. The method is
divided in two parts: estimation of the perturbation φ and
derivation of the adaptive law ρ(x, φ̂ , δ̂ ).

3.2 Sliding mode perturbation observer

A second-order Sliding Mode Observer (SMO) is used for
finding an estimate of φ . In general SMOs can offer finite-time
estimation of unmeasured states by using high-frequency injec-
tion signals in their design, which depend on the observer in-
novation term (i.e. the error between real and predicted output)
as shown in Shtessel et al. [2014]. By doing so, the estimation
error dynamics reaches the sliding manifold, i.e. a manifold on
which the error an its first time derivative are zero, and remain
so thereafter. This provides at the same time an estimation of
any unknown perturbations that affects the system dynamics
(Fridman et al. [2011]). This idea can be clarified as follows.

Consider the load velocity dynamics presented in (3) and a
SMO given by

˙̂ωl =−
1
Jl

TF,l + v(ω̃l) (16)

where ω̃l = ωl − ω̂l is the state estimation error and v is an
appropriate high frequency term depending on the error signal



ω̃l . Define the sliding manifold S =
{

ω̃l ∈ R : ω̃l = ˙̃ωl = 0
}

.
The dynamics of the state estimation error reads:

˙̃ωl = ω̇l− ˙̂ωl =
1
Jl

Tl− v . (17)

If the error dynamics reaches the sliding manifold, then ˙̃ωl =
ω̃l = 0 for all future times, which means that v = 1

Jl
Tl . In

other words, if the injection signal v is designed such that
the estimation error dynamics reaches the sliding manifold
S and remains on the manifold thereafter, then the unknown
perturbation φ = 1

Jl
Tl is estimated indirectly by v. The design

of v can be obtained as in Levant [1993]:

v = k1|ω̃l |
1
2 sgn(ω̃l)+ k2

∫ t

0
sgn(ω̃l(τ))dτ (18)

where k1,k2 are positive gains. The resulting observer is re-
ferred to as the STSMO and it is proven in Davila et al. [2005]
that for appropriate gains k1,k2, the term v brings the observer
error dynamics onto the sliding manifold S. Hence, the un-
known perturbation can be estimated by (18), where

φ̂ = k2

∫ t

0
sgn(ω̃l(τ))dτ . (19)

The choice of a second order SMO for a system of relative
degree 1 (the subsystem is scalar) was made due to the property
of higher order SMOs to alleviate the chattering in the injection
and estimation signals (Shtessel et al. [2014]).
Remark 1. Finite-time estimation of φ is ensured by select-
ing v as in (18) with k1,k2 being appropriately chosen pos-
itive gains. One additional requirement is that Tl , Ṫl need be
bounded, which is ensured by the boundedness of the state
vector and the smoothness of the backlash model. However, the
bound on Ṫl is proportional to α . This means that the closer the
model is to the deadzone model, the larger this bound will be,
which in turn leads to higher gains for the observer.

3.3 Adaptive backlash angle estimator

The estimator design is inspired by the method proposed in Grip
et al. [2010] for the estimation of unknown parameters. For the
rest of the analysis we consider that the unknown parameter
δ lies in a compact set D ⊂ R, with δ̇ = 0 and we define the
backlash angle estimation error as δ̃ = δ − δ̂ .

Considering the dynamics of the load velocity expressed in
the form of (13) with g = 1

Jl
and d(x,δ ) = Tl(x,δ ) defined in

(10),(12), the adaptive estimator for the deadzone angle is given
by (Grip et al. [2010]):

˙̂δ = ρ(x, φ̂ , δ̂ ) = Proj
[

δ̂ ,γµ(x, δ̂ )
(

φ̂ − 1
Jl

Tl(x, δ̂ )
)]

(20)

with γ > 0 being the adaptive gain, φ̂ an asymptotic estimate of
1
Jl

Tl and Proj(·, ·) the projection operator defined in Appendix

A. In the adaptive law (20) µ(x, δ̂ ) is a real-valued function
defined on R4×D , bounded for bounded x, with the following
property:

Property 1. For all pairs δ1,δ2 ∈D and ∀x ∈ R,

µ(x,δ1)
1
Jl

∂Tl

∂δ
(x,δ2)≥ σ(x) (21)

where σ(x) is a non-negative real-valued function defined on
R4 with the following two properties:

Property 2. There exists a positive real constant number L > 0
such that ∀δ1,δ2 ∈D ,

1
Jl
|Tl(x,δ )−Tl(x, δ̂ )| ≤ L

√
σ(x)|δ̃ | . (22)

Property 3. There exist positive real numbers T,ε such that
∀t ∈ R≥0, ∫ t+T

t
σ(x(τ))dτ ≥ ε . (23)

Following a similar reasoning as the one in the proof of Propo-
sition 4 in Grip et al. [2010], it can be shown that the estimation
error δ̃ converges asymptotically to 0, and uniformly in x if an
asymptotic estimate of φ is available.

The design of the adaptive deadzone angle estimator includes
steps to find suitable functions µ and σ with the properties (1)-
(3). Selecting µ(x, δ̂ ) as

µ(x, δ̂ ) =
1

K2
S

∂Tl

∂δ
(x, δ̂ ) (24)

condition (21) is satisfied with

σ(x) =
1

K2
S

(
∂Tl

∂δ

)2

=
1

π2

[
χ1(x, δ̂ )+χ2(x, δ̂ )

]2
(25)

where χ1,χ2 are defined as

χ1(x, δ̂ ) = sgn(∆θ)·[
π + arctan(α(∆θ − δ̂ ))− arctan(α(∆θ + δ̂ ))

]
(26)

χ2(x, δ̂ ) =
[

∆θ − δ̂ · sgn(∆θ)+
DS

KS
∆ω
]
· α

1+
[
α(∆θ − δ̂ )

]2 +
α

1+
[
α(∆θ + δ̂ )

]2

 . (27)

Since x and σ(x) are bounded and D is compact, it is easy to
show that there exits L > 0, such that condition (22) holds. The
inequality

∫ t+T
t σ(x(τ))dτ ≥ ε expresses a type of Persistence

of Excitation (PE) condition. From (25)-(27) it can be seen that
this condition does not hold if, during the time interval [t, t +T ],
the system is always within the deadzone. This, however, is
expected, since in that case, there is no engagement between
motor and load, hence no information about the stiffness of the
shaft that connects them.

The adaptive law for the parameter estimate δ̂ is finally given
by:

˙̂δ = Proj
{

δ̂ ,γ
1

K2
S

∂Tl

∂δ
(x, δ̂ )

[
φ̂ − 1

Jl
Tl(x, δ̂ )

]}
, γ > 0 (28)

where
∂Tl

∂δ
(x, δ̂ ) =−KS

π

[
χ1(x, δ̂ )+χ2(x, δ̂ )

]
. (29)

Remark 2. By using the STSMO in (16), (18), we ensure that
φ̂ will converge to the real perturbation φ in finite-time, which
is a stronger convergence property than the one required by
the adaptive estimator. However, the effect of measurement
noise and parameter or model uncertainties (e.g. in friction)
may compromise the exact estimation of φ . In this case, by
using arguments from the stability of interconnected systems,



one can show that the deadzone angle estimation error will not
converge asymptotically to zero but it will reach a compact set
[δ − eδ ,δ + eδ ], where 0 < eδ ≤ c|φ − φ̂ |, c > 0.
Remark 3. It is interesting to note that the selection of the
specific µ(x, δ̂ ) function results into a gradient-type adaptive
law, which is very common in the literature of adaptive tech-
niques. Although for nonlinearly parametrized systems it does
not always guarantee parameter convergence as it does for
linear-in-the-parameters systems, it is a natural first choice for
the adaptive law.

The complete estimator design is summarized in the following
algorithm:

Algorithm 1 Backlash angle estimation
Measured: State variables ωm,θm,ωl ,θl .
Output: Deadzone angle estimate δ̂ .

1: Design a STSMO for the load velocity (Equations (16),
(18)).

2: Estimate the backlash torque (Equation (19)).
3: Design the adaptive estimator for the deadzone angle δ

(Equations (26)-(29)).

Motor dynamics
Eq. (1),(2)

u

Interconnection
system Eq. (5)

ωm θm

Tl

Load dynamics
Eq. (3),(4)

ωl θl

Load velocity
observer Eq.

(16),(18)

ωl

Backlash Model
Eq. (11),(12)

J−1
l

Tl(x, δ̂ )

φ̂ +
− Deadzone

angle estimator
Eq. (26)-(29)

δ̂

Closed-loop System

x

Fig. 4. Block diagram of the closed-loop mechanical drive-train
system and the estimation scheme.

4. SIMULATION RESULTS

The drive-train system described in Equations (1)-(5) was sim-
ulated in Matlab to assess the performance of the estimation
algorithm. The deadzone model in (10) was used to emulate the
backlash phenomenon. A Proportional-Integral (PI) controller
was used to regulate the drive motor velocity into following
a sinusoidal profile ωre f

m = Ωsin(νt). A 5% change in the
deadzone angle was considered for the evaluation of the al-
gorithm. The velocity measurements were afflicted with white
Gaussian noise w ∼N (0,σ2

meas). High precision absolute po-
sition encoders were used and the error due to quantization was
ignored. Table 2 shows the values of the constants used for the
simulations. The compact set D is the real axis interval [0,1],
the estimator was initialized at δ̂ (0) = δ̂0, γ was chosen to be
0.1 and the sampling time was 2 ms.

Figure 5 shows the real torque applied in the system accord-
ing to the deadzone model and its estimation by the STSMO.
A small lag can be observed in the estimation of φ̂ , which,

0.00 1.00 2.00 3.00 4.00 5.00
−1

−0.5

0

0.5

1

t in s

J l
φ,

J l
φ̂

in
N

m

Jlφ
Jl φ̂

Fig. 5. Real and estimated backlash torque scaled by the load
inertia Jl .

however, does not affect the performance of the algorithm.
Increasing the gains k1,k2 of the observer reduces the delay in
estimation but makes the method more sensitive to measure-
ment noise.

The real and estimated deadzone angle, as well as the esti-
mation error, are shown in Figure 6. The plots show that the
deadzone angle is estimated with sufficient accuracy in less
that 2 s. Specifically, the average steady state estimation er-
ror is less than 10−3 rad, which the order of magnitude for
positioning precision in machine tool applications Gross et al.
[2001]. Larger sensor noise has a direct impact on the speed of
convergence and the steady-state deviation.

5. CONCLUSIONS

A method for deadzone angle estimation in a single-axis drive-
train with backlash has been presented in this paper. The inter-
connecting torque acting on motor and load was first estimated
using a STSMO, followed by an adaptive algorithm that was
designed to estimate deadzone angle. The method was tested
in a simulation framework, where the adaptive estimator was
able to track the real value of the deadzone angle, as well as a
5% increase in the backlash. The parameter convergence was

Table 2. Values used in the simulations

Symbol Value Units

Jm,Jl 8.31 ·10−4 kgm2

KS 31.7557 Nmrad−1

DS 0.0038 Nmsrad−1

α 105 −
N 1 −
TC,m,TC,l 0.0492 Nm
βm,βl 0.0008 Nmsrad−1

k1 32.712 −
k2 12.0154 −
δ̂0 0.02 rad
γ 0.1 −
δ1 0.1 rad
δ2 0.105 rad
Ω 10 rads−1

ν 24/(2π) rads−1

σmeas 0.0316 rads−1
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Fig. 6. (Top): Real and estimated change of deadzone angle.
(Bottom): Estimation error.

achieved in less than 2 s with precision in the order of 10−3 rad.
Such precision will allow for use of the estimated parameter
in backlash compensation algorithms, that are used in many
machine-tool controls. Moreover, detection of changes in the
deadzone angle can infer a measure of wear in the mechanical
components (i.e. gearing, ball screw, couplings or guides) of the
system.

Experimental validation of the method is ongoing.
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Appendix A. THE PROJECTION OPERATOR

Let Ωc be a convex subset of the parameter space D defined
as Ωc , {δ ∈ D |h(δ ) ≤ c}, where c > 0 and h : R→ R is a
smooth convex function. The projection operator is defined as
following (Hovakimyan and Cao [2010]):

Proj(δ̂ ,τ) =


τ ,h(δ̂ )< 0
τ ,h(δ̂ )≥ 0 & ∇hT τ ≤ 0

τ− ∇h
|∇h|

〈
∇h
|∇h| ,τ

〉
h(δ̂ ) ,h(δ̂ )≥ 0 & ∇hT τ > 0

In this study the convex function h has been chosen according
to Hovakimyan and Cao [2010]:

h(δ̂ ),
(εδ +1)δ̂ 2−δ 2

max

εδ δ 2
max

. (A.1)

In the above definition of h, δmax is a conservative upper bound
for the backlash angle δ and εδ is a small positive number.
The operator 〈·, ·〉 denotes the inner product, which in this case
reduces into a product of real numbers.


