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PROBLEM DESCRIPTION

During the past decades, the price of Atlantic salmon has been subject to increased fluctua-
tions both in terms of frequency and magnitude, leading to uncertainty and costs imposed
on the entire value chain for salmon farming. Alongside this rise in volatility, the indus-
try has experienced significant growth. In particular, the global aquaculture production of
Atlantic salmon has increased from a few thousand tonnes in 1980, to beyond two million
tonnes in 2016. Today, production, processing, and marketing of salmon is a multi-billion
dollar industry that has an increasing presence in the capital markets. It is correspondingly
relevant to have a detailed outlook on the possible price paths of salmon. Operationally, a
consideration such as harvest timing is sensitive to the spot price in the short term. Corre-
spondingly, the production cycle spans up to three years, making a decision such as smolt
release dependent on long-term prices. Financially, accurate price expectations can facili-
tate improved risk management, valuations, and investment decisions. The ability to make
accurate predictions of the salmon spot price is thus of increasing importance; also, the
capability to reason about the uncertainty in such predictions may prove beneficial.

In this study, we aim to assess and reason about the future uncertainty of the Atlantic
salmon spot price through predicting the corresponding price distribution. To represent
the price, we use the NASDAQ Salmon Index, denoted in USD. There are no past studies
on predicting the distribution of the Atlantic salmon spot price. Our approach is twofold:

i) Methodologically, we build a framework based on quantile regression to
predict the distribution of the 1- to 12-month ahead log returns of the
Atlantic salmon spot price. We use a genetic algorithm for variable se-
lection, which in the context of quantile regression is a novel approach.
Based on the chosen variables across these twelve months, we build cor-
responding quantile regression models to estimate the multi-step ahead
conditional distribution.

ii) Qualitatively, we provide industry hypotheses, corresponding results from
the modelling, discussions, and scenario analyses to give insight into
which exogenous factors affect the 1- to 12-month ahead distribution of
the log returns of the spot price. According to the industry, the price
is generally argued to be affected by factors such as harvest volumes,
disease outbreaks, and prices of alternative proteins. Through the distri-
bution model, we are able to give an increased understanding of these
factors’ importance and joint effect on the salmon spot price.
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ABSTRACT

The growth in salmon farming production has outperformed the average growth in aqua-
culture production during the last decades. Alongside this growth, the industry has strength-
ened its presence in the capital markets. However, the salmon price has become increas-
ingly volatile, imposing uncertainty and additional costs across the entire value chain. This
motivates the development of more accurate price distribution prediction models. Such
models can support operational and financial considerations that are subject to price un-
certainty, such as harvest timing, futures hedging, and investments.

This study aims to provide a framework for predicting the distribution of the Atlantic
salmon spot price, and to identify the most important exogenous drivers in this respect.
The spot price is represented by the NASDAQ Salmon Index (NQSALMON), denoted in
USD. We build on a database of 25 carefully selected explanatory variables, and design a
1- to 12-month ahead quantile regression prediction model for the spot price. Each of the
twelve months to be predicted are appointed a designated submodel, which is independent
of the other submodels. Moreover, each submodel utilises eight explanatory variables that
are selected from the database using a novel genetic algorithm-assisted variable selection
approach.

There are several encouraging results from this study. First, the approach with a ge-
netic algorithm for variable selection in quantile regression quickly finds submodels with
favourable goodness-of-fit. Generally, the 2- to 7-month submodels explain slightly more
variation in the NQSALMON distribution compared to the 8- to 12-month submodels. Re-
garding model specification, the regressions provide the correct unconditional coverage;
however, the exceedances at quantiles are often clustered. This might be the result of un-
explained, non-linear effects and higher-order statistical moments. However, the quantile
regression equation specification error test (QRESET) suggests that linear quantile regres-
sion in most cases is a sound functional form for the given data. Finally, the results indicate
that exogenous variables such as standing biomass, feed consumption, and prices of alter-
native proteins are important predictors of the future spot price of Atlantic salmon.
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SAMMENDRAG

I løpet av de siste tiårene har produksjonsveksten innen lakseoppdrett overgått den gjen-
nomsnittlige produksjonsveksten innen akvakultur for øvrig. Parallelt med denne veksten
har industrien befestet sin tilstedeværelse i kapitalmarkedene. Samtidig har lakseprisen
blitt stadig mer volatil, hvilket har resultert i økt risiko og økte kostnader i hele verdikje-
den for lakseoppdrett. Dette motiverer utvikling av mer nøyaktige modeller for prediksjon
av prisfordelingen til laks, som senere kan bli brukt til å bistå ved operasjonelle og finan-
sielle beslutninger som er særlig sensitive til prisusikkerhet. Eksempler her er planlegging
av utslakt, prissikring og investeringer.

Dette studiet forsøker å kartlegge de viktigste prisdriverne for atlantisk laks, samtidig
som det foreskriver et rammeverk for prediksjon av den statistiske fordelingen til spot-
prisen. Spotprisen er representert ved NASDAQ Salmon Index (NQSALMON), angitt i
USD. Vi tar utgangspunkt i en database bestående av 25 omstendelig utvalgte forklar-
ingsvariabler, og vi predikerer spotprisen 1- til 12-måneder frem i tid ved bruk av kvan-
tilregresjon. Hver og én av de tolv månedene som predikeres tilegnes én unik delmodell,
som er uavhengig av de andre delmodellene. Videre er hver delmodell basert på åtte fork-
laringsvariabler, som velges fra den nevnte databasen ved bruk av en genetisk algoritme.

Vi oppnår en rekke lovende resultater i dette studiet. Anvendelsen av en genetisk al-
goritme for variabelseleksjon viser seg å være passende, ettersom algoritmen raskt klarer
å identifisere delmodeller med tilfredsstillende forklaringskraft. Videre indikerer resul-
tatene at delmodellene for 2- til 7-måneder presterer best i å forklare variasjonen i pris-
fordelingen til NQSALMON. Hva gjelder modellspesifikasjon, så oppnår regresjonene ko-
rrekt dekning av kvantilene. Samtidig observerer vi at kvantiloverskridelser ofte er grup-
perte, hvilket kan være en konsekvens av at ikke-lineære effekter og høyere ordens mo-
menter ikke blir tilstrekkelig inkorporert i modellen. Videre antyder resultatene fra "quan-
tile regression equation specification error test" (QRESET) at lineær kvantilregresjon er en
passende funksjonell form for dataen modellen forsøker å beskrive. Avslutningsvis indik-
erer resultatene våre at eksogene variabler som stående biomasse, fôrforbruk og priser på
alternative proteiner har stor prediktiv kraft på prisen for atlantisk laks.
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1
INTRODUCTION

Seafood prices are volatile, and that is also the case for the salmon price (Asche, Dahl, &
Steen, 2015; Dahl & Oglend, 2014). During the past decades, the salmon price has been
subject to increased fluctuations both in terms of frequency and magnitude (Oglend, 2013).
This high volatility brings uncertainty, leading to additional, and possibly unnecessary,
costs imposed on the entire value chain for salmon farming. In addition, the market for
salmon is becoming more globalised, forcing salmon farming companies to stay highly
competitive to maintain their market positions (Tveteras & Asche, 2008).

The price volatility and the increasingly competitive market motivate the creation of
a model for predicting the salmon price. A reliable model could be of use for the entire
value chain for salmon, ranging from farmers, and their suppliers, to exporters and retail-
ers. As an example, a price model would provide vital decision support in determining
when to harvest the fish,1 or on which terms producers should engage in salmon forward
contracts. Furthermore, alongside the extensive production growth within salmon farm-
ing during the last decades (Brækkan & Thyholdt, 2014), the industry has strengthened
its presence in the capital markets. A number of companies have been listed on stock
exchanges, there have been numerous corporate bond issuances, and the need for finan-
cial hedging instruments has become evident, leading to the establishment of Fish Pool.2

Accordingly, investors and analysts pay increased attention to the salmon farming indus-
try. From a financial standpoint, an accurate price model could facilitate better stock and
bond valuations, investment decisions, risk management, and trading. Finally, for a more
thorough assessment of future uncertainty, the ability to predict a range of possible future
prices, rather than a price point, could prove useful. This enables relevant parties to plan
according to the different outcomes from a predicted future price distribution (Chatfield,
2000).

This study has two key purposes: Firstly, to provide market participants with a tool for
prediction of the salmon price distribution. Secondly, to achieve increased understanding
of how fundamental explanatory variables, such as harvest volumes, smolt release, and
sea lice occurrence, affect the price formation of salmon. Hence, we develop a probabilis-
tic model based on linear quantile regression, as by Koenker and Bassett (1978), enabling
us to obtain a complete picture of how exogenous variables affect the salmon price at var-
ious quantiles. We use the NASDAQ Salmon Index (NQSALMON), denoted in USD, to
represent the spot price of salmon.3

Our model selects its explanatory variables from a database consisting of 25 time series,
of which 24 are exogenous. Each of the 24 exogenous variables is carefully included in the
database based on discussions with industry experts. Moreover, most of the variables are
expected to have a lagged relationship with respect to the spot price, and industry experts
have therefore helped us to develop sets of realistic lags for each variable. The literature
provides no insight on which combinations of variables, at what lags, have strong predic-
tive power for the spot price. Hence, we let a variable selection procedure search the space
of such combinations. As this search space grows exponentially in the number of variables,
an exhaustive search is computationally demanding. Therefore, we employ a genetic algo-

1A. Guttormsen (2008) provides an example of a harvesting model showing how harvest responds to changes
in prices and other decision variables.

2Fish Pool is an international marketplace for price hedging of seafood products. See Appendix A.10 for more
information.

3All variants in the text for expressing the salmon price will from here on concern the NQSALMON, i.e., the
export price received by Norwegian producers of fresh Atlantic salmon, unless otherwise stated. See Section 4.1
for a complete definition of the NQSALMON. Note that all salmon farmed in Norwegian waters belong to the
Atlantic salmon species (Salmo salar).
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rithm (genetic algorithm (GA)), which quickly is able to find good candidate solutions in
this setting (Oreski & Oreski, 2014). We utilise these selected variables (at some particular
lags) as covariates in a quantile regression framework for modelling the 1- to 12-month
ahead distributions of the NQSALMON. To obtain each distribution, we develop a sub-
model with corresponding regressions for five quantiles. Each submodel has a fixed set of
eight covariates selected from the aforementioned, GA-assisted search. On a final note, we
predict the density of the log returns of the salmon spot price in this framework; however,
this density may be converted to a corresponding prediction of the price distribution.4

Furthermore, for illustrative purposes we implement a scenario analysis based on the
above framework. Here, the value of a single covariate is varied to create a conditional
distribution of the salmon price. Although not covered in detail by this study, our frame-
work can be used to further examine how a particular covariate impacts various parts of
the price distribution, and whether it can be considered a significant driver of risk.

The existing literature on both point and density prediction of the salmon spot price is
scarce. To our knowledge, this study is the first in applying exogenous variables to predict
the distribution of the salmon price, irrespective of the salmon species under considera-
tion. Also, we have not encountered any recent work that model the 1- to 12-month ahead
salmon price. Hence, our study represents a significant contribution to the literature. It
should provide risk managers in the industry, traders, and analysts with an important tool
for handling price risk and developing hedging strategies. Moreover, the use of genetic
algorithms for variable selection is, to our knowledge, not represented in the literature for
quantile regression.

From a methodological standpoint, there are several encouraging results from this study.
Firstly, the novel approach with a genetic algorithm for variable selection in quantile re-
gression shows promising properties. It relatively quickly finds subsets of the database
that yield favourable goodness-of-fit for the respective regressions, and it is able to identify
covariates whose coefficients jointly have high significances – particularly at more central
quantiles. Generally, the submodels are able to explain a somewhat higher degree of the
variation in the 2- to 7-month ahead log returns’ respective quantiles, to the disadvantage of
slightly longer horizons. Regarding model specification, the regressions provide the correct
unconditional coverage; however, the quantile exceedances are often clustered. Clustered
exceedances at quantiles might, however, be explained by non-linear effects and higher-
order statistical moments. Nonetheless, functional specification tests indicate that, in most
cases, linear quantile regression is a sound model for the given data. In sum, we have
been able to fit quantile regression submodels with often highly significant coefficients and
relatively favourable goodness-of-fit; however, there are some misbehaviour that can be
explored in further research.

Next, from a qualitative point of view, the results indicate that exogenous variables
such as standing biomass, feed consumption, prices of alternative animal proteins, and sea
temperatures are important predictors for the Atlantic salmon spot price. Over the twelve
submodels, these variables tend to have the largest coefficients and greatest significance.
However, as the regressions appear to be subject to multicollinearity effects in their vari-
ables, we are unable to give a full interpretation of the submodels’ respective regression
coefficients.

The remainder of the study is structured as follows: Chapter 2 discusses previous re-
search related to modelling different aspects of the salmon market, particularly the salmon
price and returns, and corresponding volatility. We also elaborate on past applications of

4We write that we develop a model for prediction of the salmon price. As we do not evaluate the model out-
of-sample, we are reluctant to define this study as one that conducts forecasts, as this is often synonymously
with out-of-sample evaluations in the literature. However, when the model is specified in-sample, it predicts the
salmon price 1- to 12-months ahead, based on the information available at the start of that period. Hence, the
model can easily be applied to forecast the price, both out-of-sample and in actual forward-looking situations.
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quantile regression for commodity modelling. Chapter 3 provides a thorough discussion
of explanatory variables and associated lags, whereas Chapter 4 describes the processing of
the collected data, presents descriptive statistics for the NQSALMON and the explanatory
variables in the database, and elaborates on the data transformations that have been carried
through in order to generate the respective log returns. Chapter 5 outlines the methodol-
ogy, and puts particular emphasis on the concepts of quantile regression and GA-aided
variable subset selection. Chapter 6 then proceeds with the results, presenting the per-
formance of the variable selection procedure, the different model formulations, in-sample
model performance, and key explanatory variables. Next, Chapter 7 provides an example
of applying the model for scenario analysis. Finally, in Chapter 8, we present our conclu-
sions and suggestions for further research.
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2
LITERATURE REVIEW

This study may placed in the context of two research areas: (i) to reveal the fundamental
factors affecting the price of salmon, and (ii) to model its price distribution. As follows
from the consecutive parts of this chapter, it is clear that understanding the formation of
the salmon price, and modelling of its price distribution, are novel topics in the existing
literature. Thus, we believe this study contributes substantially to the field of salmon price
prediction, and it could relatively easily be extended to forecasting.

2.1 LITERATURE ON MODELLING SALMON PRICES

The existing literature on modelling salmon prices is rather twofold. On the one hand, there
are studies modelling salmon prices directly and pointwise, which are scarce and dated. By
directly, we refer to research examining explicit modelling and prediction of the salmon
price. To our knowledge, the last published study modelling the salmon price directly is
carried out by A. G. Guttormsen (1999). On the other hand, studies modelling the salmon
price indirectly are somewhat more frequently represented. By indirectly, we refer to studies
that discuss other aspects related to the price, such as volatility and salmon futures. How-
ever, the existing literature on price modelling and prediction has not dealt specifically with
the NQSALMON. Moreover, general price distribution forecasts and scenario analyses are
scarce, irrespective of commodity investigated. In the following sections, contributions to
modelling and predicting salmon prices directly and indirectly are considered.

Research Papers on Modelling and Predicting Salmon Prices Directly

Although the existing literature on modelling and predicting the salmon price directly is
limited and dated, a variety of econometric methods have been employed. In all instances,
pointwise, not distributional, predictions have been generated.

Vukina and Anderson (1994) and Gu and Anderson (1995) both use a state-space ap-
proach to model and forecast salmon prices directly and pointwise. Vukina and Anderson
(1994) model and forecast the price of five different salmon products on the Tokyo whole-
sale market, using four state-space models for modelling vector-valued nonstationary time
series. The price series evidently exhibit cyclical behaviour, and the out-of-sample forecasts
generated by the models are satisfactorily accurate, encouraging future research in the area.

Gu and Anderson (1995) develop deseasonalised state-space time series models to pro-
vide short-term price forecasts for the U.S. salmon market. The time series used include
the U.S. fresh Atlantic salmon wholesale price index, fresh salmon (that is; Atlantic, coho
and Chinook) monthly U.S. import quantities and prices, and U.S. chum and sockeye
salmon monthly export prices. Gu and Anderson (1995) embed seasonal factors in the
modelling, by combining an ordinary least squares (OLS)-approach with a state-space time
series model. Out-of-sample forecasts 3-, 6-, and 12-months ahead are implemented to val-
idate the models’ performance. The study demonstrates that deseasonalisation improves
the overall performance of the state-space models, and models that apply deseasonalisa-
tion produce substantial out-of-sample predictive power. The paper provides meaningful
insight, but the methodology may be considered intricate for market participants with lim-
ited knowledge of statistics and econometrics, and thus troublesome to apply for practical
use. However, the fact that certain salmon prices exhibit seasonal movements, as empha-
sised by Vukina and Anderson (1994) and Gu and Anderson (1995), might be a key result
impacting the formulation of our model. Certainly, a well-performing forecasting model
needs to conform to this property.
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A somewhat broader approach, and probably more easily applicable, for forecasting
salmon prices directly is employed by A. G. Guttormsen (1999). The author applies in total
six different methods to forecast weekly producer prices for the Norwegian salmon mar-
ket: classical additive decomposition (CAD), Holt-Winters exponential smoothing (HW),
autoregressive moving average (ARMA), vector autoregression (VAR), and two naïve tech-
niques. Moreover, 4-week, 8-week, and 12-week ahead forecasts are calculated. The models
might be considered simpler and more intuitive to understand and apply for market par-
ticipants, compared to the procedure carried out by Gu and Anderson (1995). However, the
forecasting horizon in this study might be regarded short for some applications; for exam-
ple, salmon production planning may require a prediction horizon several months ahead
due to long farming cycles. For a thorough discussion on the salmon farming industry and
its fundamentals, see Appendix A.10.

The out-of-sample forecast results of A. G. Guttormsen (1999) were generally promis-
ing. Of the six models, he found that the CAD model forecast the direction of price move-
ments best. Moreover, concerning accuracy measures for out-of-sample forecasting, the
VAR model performs best. However, A. G. Guttormsen (1999) finds no evidence for a gen-
eral, superior model for point forecasts of the price of Norwegian salmon. This motivates
further research on forecasting salmon prices, particularly for the Norwegian market.

Research Papers on Modelling and Forecasting Salmon Price Volatility

As previously discussed, Vukina and Anderson (1994), Gu and Anderson (1995) and A. G. Gut-
tormsen (1999) all model a selection of different salmon prices directly and pointwise. How-
ever, the price forecasting techniques they apply somewhat rely on accurate knowledge of
the noise generating part of the prices. That is, the precision of the forecasts is highly linked
to the volatility term in the salmon price process.

Some more recent studies focus on modelling the salmon price volatility, such as Oglend
and Sikveland (2008b), Solibakke (2012), and Oglend (2013). The studies present several
interesting findings with practical implications. First, they indicate that the salmon price
volatility has increased over the past decade, and that the volatility is higher in periods
of elevated prices. For industry actors, this implies that greater expected profits usually
follow larger price risks.

In particular, Oglend and Sikveland (2008b) employ a generalised autoregressive con-
ditional heteroscedasticity (GARCH)-model to, among other things, test for volatility clus-
tering in Norwegian salmon prices. They find that the previous week’s volatility provides
predictive power for the next week’s volatility. However, they do not find any predictive
patterns in the volatility over horizons of one month and above. This implies that the in-
clusion of volatility parameters might be of limited use for our model, as we aim to model
the NQSALMON 12-months ahead using monthly granularity.

Oglend (2013) also models volatility, using weekly salmon prices received by Norwe-
gian producers. He applies GARCH to parametrically model conditional variance with
salmon price returns as input, and discovers that the volatility of the salmon price has in-
creased since the start of the 2000s. Oglend argues that the increasing volatility trend is
driven by a wide range of factors, but he highlights tighter conditions for supply and de-
mand as an important cause. Moreover, he suggests that prices of alternative animal proteins
are important drivers of the salmon price, and that they account for a major part of the
volatility in the salmon price.

Research Papers on Salmon Futures

Another topic discussed in the literature is the use of salmon futures for predicting the
price of salmon. Asche, Misund, and Oglend (2016b) and Ankamah-Yeboah, Nielsen, and
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Nielsen (2016) study the spot-forward relationship on the Fish Pool IndexTM (FPI), using
different empirical approaches. Here, Asche et al. (2016b) conclude that the futures market
is immature; hence, salmon futures lack a price discovery role and the spot price leads the
futures prices. However, this contradicts the results of Ankamah-Yeboah et al. (2016), who
find that the futures market is mature and closed. Another study on salmon futures, carried
out by Asche, Misund, and Oglend (2016a), analyses the relationship between changes in
the futures-spot basis and the spot price. They find that the basis does not appear as a
robust determinant for changes in the salmon spot price. This is in line with the findings
of Asche et al. (2016b), and the study validates their suspicion of limited price discovery
abilities in the salmon futures market.

2.2 LITERATURE ON PREDICTING THE PRICE OF OTHER COMMODITIES

As previously stated, past research on modelling salmon prices directly is scarce, and,
specifically, studies on predicting the NQSALMON are non-existent. However, other com-
modity markets, such as markets for oil, cattle, and gold are widely discussed in the liter-
ature, and there are numerous publications attempting to predict and explain the price of
these commodities. Nevertheless, past studies on price distribution forecasts are generally
limited irrespective of commodity. In the following sections, a selection of contributions on
modelling and forecasting the price of commodities such as crude oil, electricity, and meats
are considered.

A Selection of Research Papers on Modelling and Forecasting Commodities

Coleman (2012) models crude oil prices using exogenous variables and linear regression,
obtaining satisfactory explanatory power. Furthermore, Ye, Zyren, and Shore (2005) fore-
cast crude oil prices using petroleum inventory levels, achieving superior out-of-sample
forecast performance compared to that of a naïve approach. Moreover, Ates, Lusk, and
Brorsen (2016) use consumer price expectations to predict a selection of meat prices, con-
cluding that survey data is a suitable indicator for projecting price changes. In other words,
a selection of past studies on forecasting commodity prices have proven quite successful.
This indicates that it should be possible to develop a model using exogenous variables for
forecasting salmon prices as well, including the NQSALMON.

Studies on Price Distribution Forecasting

The literature on density and interval forecasts is somewhat limited compared to that of point
forecasts (Diebold, Gunther, & Tay, 1997; Tay & Wallis, 1999).5 According to Tay and Wallis
(1999), the evaluation and use of density forecasts is at an elementary stage. Neverthe-
less, recent studies have provided promising results with respect to accurate density and
interval forecasts. In this section, a selection of papers applying such methods for various
commodities are discussed.

Morana (2001) employs GARCH properties in oil price changes to forecast oil price dis-
tributions over short-term horizons. The out-of-sample results suggest that the forecast ap-
proach might be used to obtain a performance measure for the forward price and estimate
interval forecasts for the oil price. Moreover, Zhou, Yan, Ni, Li, and Nie (2006) employ an
extended autoregressive integrated moving average (ARIMA) approach to develop hourly
spot price forecasts for electricity markets. They incorporate confidence interval estima-
tions in the forecast procedure, and obtain acceptable accuracy even in market conditions
with significant volatility. Furthermore, Zhao, Dong, Xu, and Wong (2008) apply a novel

5Density forecasts: Refer to estimation of a probability distribution for the future value of a random variable.
They provide a description of the underlying uncertainty of the forecast. Interval forecasts: The specification of
intervals of future values, based on e.g. quantiles.
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data mining-based approach to accurately estimate the prediction interval of electricity
price series. They find this method strikingly efficient compared to existing methods such
as GARCH models. Hence, overall, past research suggests that density or interval forecasts
applied on commodity prices may result in decent accuracy.

2.3 THIS STUDY IN THE CONTEXT OF EXISTING LITERATURE

In this study, we predict the 1- to 12-month ahead density of the log returns of the salmon
spot price on a monthly resolution. We also seek to identify exogenous variables that,
conceivably, have significant explanatory power with respect to the NQSALMON. Thus,
the modelling approaches applied in the literature for direct and indirect forecasting of the
salmon price are of limited value to our study. This is due to:

i) The econometric methods applied in the literature are different from the
one used in this study. There are few, if any, that use a regression-based
approach to predict the price of salmon.

ii) Our study applies a multi-step ahead procedure to predict the distribu-
tion of the NQSALMON log returns, while previous studies have pre-
dicted prices pointwise, and mostly over the short term.

iii) The models specified in the literature for salmon price forecasting do not
utilise any exogenous variables – in general, these are purely endogenous
models. Hence, they are of no use in determining fundamental price
drivers of the salmon price.

These observations also underpin the value of this study. As discussed in Chapter 1, salmon
market participants are in need of greater knowledge of which drivers that affect the price
of salmon, and a model for predicting its distribution over medium to long term horizons.
These two aspects are both covered by our study.

Although past research on the salmon market is of limited value for this study, we have
identified a few key results from the literature. These should be accounted for in the model
formulation:

i) Several studies, including Vukina and Anderson (1994) and Gu and An-
derson (1995), state that salmon prices exhibit seasonal movements.

ii) Oglend and Sikveland (2008b), Solibakke (2012), and Oglend (2013) sug-
gest that salmon price volatility has increased in recent years and that
raised volatility follows increased salmon prices.

iii) Oglend (2013) provides empirical evidence suggesting that protein sub-
stitutes for salmon might explain a significant part of the salmon price
volatility. Also, he highlights tight supply and demand dynamics as an
important driver of volatility.

iv) Asche and Misund (2016) and Asche et al. (2016a) find that salmon fu-
tures do not provide any predictive power for the salmon price, suggest-
ing that futures prices should not be included as explanatory variables.

As salmon prices exhibit seasonal movements, an accurate price forecasting model needs
to conform to this property. A reasonable strategy, as employed in this study, is to use
explanatory variables causally related to the NQSALMON, which also exhibit similar sea-
sonal properties. Moreover, the recent years’ increased salmon price volatility suggests
that the incorporation of volatility dynamics is essential to create accurate predictions of
the salmon price distribution. Thus, our modelling approach needs to accommodate these
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dynamics.6 Furthermore, Oglend (2013) finds that food substitutes for salmon may explain
parts of the salmon price volatility dynamics; hence, we have included several explanatory
variables for the price of alternative animal proteins in our database. Moreover, Oglend
points to the balance between supply and demand as an important trigger of volatility.
As both supply and demand are inevitable price determinants for most commodity mar-
kets with perishable products, it is essential to capture their dynamics when implementing
distribution forecasts. In our modelling procedure, we have attempted to capture their dy-
namics by identifying their most important determinants, as discussed in the next chapter.
Finally, due to the aforementioned findings of Asche and Misund (2016) and Asche et al.
(2016a), we choose not to include time series for futures prices in our database.

6Although volatility is not included in our database as a parameter to be chosen in the variable selection, we
construct a time-varying volatility estimate that is added on top of the other explanatory variables used by the
model. This is discussed more closely in the results, Section 6.3.
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3
FACTORS AFFECTING THE SALMON PRICE

Our model selects its explanatory variables from a database of 25 time series. The database
contains time series highlighted by an undisclosed industry participant and Marine Har-
vest (2016),7 a handbook for the salmon farming industry. It provides a discussion on
indicators most frequently used by the industry in order to make assumptions on where
the salmon price is heading in the future. The rest of this chapter presents the explanatory
variables highlighted by the industry participant and Marine Harvest (2016), and suggests
the appropriate lag structure and time window for each variable.8 We divide the potential
explanatory variables into two groups, based on whether they are assumed to affect the
supply or demand for salmon.

3.1 SUPPLY-DRIVING FACTORS

The NQSALMON has been closely related to the supply of salmon in the past, as depicted
by Figure 11 in Appendix A.1. The figure shows that changes in the NQSALMON, ceteris
paribus, are negatively correlated with changes in the supply of salmon. This relationship
is the basis for the discussion that follows.

Smolt Release

A smolt is defined as a young salmon at the stage when it is transferred from fresh water to
seawater cages. Smolt release is an indicator of future supply, and changes in smolt release
are expected to be negatively correlated with changes in the NQSALMON.

Smolts typically spend about 16 months in seawater before harvest, implying that fig-
ures for smolt release are suitable indicators for predicting medium-term supply (Marine
Harvest, 2016). Appropriate number of lags is assumed to be 15-17 months.

The release of smolt is cyclical, as seen in Figure 12 in Appendix A.2, and it typically
peaks in May and September for Norwegian producers (Directorate of Fisheries, 2017a).
This implies that year-over-year (YoY) time windows should be used in the modelling. As
figures for smolt release are proprietary for most salmon producing countries, only data
for Norway is employed in the modelling.

Feed Consumption

Feed consumption, defined as the total feed consumption from the fish in a given area over
a specified period, is an indicator of future supply. The larger consumption of feed, the
larger is the expected future supply of salmon. Hence, changes in feed consumption are
expected to be negatively correlated with changes in the NQSALMON.

The amount of feed consumed is a function of the size of the fish. The larger fish, the
higher is the feed consumption. Accordingly, an increase in total feed consumption for a
given area is mostly expected to be attributed to the consumption from larger fish. This
implies that changes in feed consumption are expected to induce changes in supply after a
relatively short period of time, such as 2-4 months.

Feed consumption is seasonal, as shown in Figure 12 in Appendix A.2, and it typically

7The industry participant is a significant player in the global industry for farmed salmon.
8Lag structure: The variables employed in this study are expected to have a lagged relationship with the salmon

price. The lag structure for a particular variable refers to the range of lags that are deemed appropriate.
Time window: The time window used for any variable refers to whether changes between consecutive observations
for a particular time series are used (that is, changes month-over-month, as all variables are obtained monthly), or
whether we rather apply changes year-over-year. The year-over-year time window is likely to be most appropriate
for many of the variables, as they often exhibit seasonal patterns.
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peaks shortly before most volumes are harvested.9 Hence, YoY time windows will be used
in the modelling. Time series are obtained for the consumption of feed in Norway, as
retrievable time series for other producing nations, such as Chile, United Kingdom, and
the Faroe Islands, are too short (starting Jan. 2010).

Standing Biomass

Standing biomass is defined as the total salmon biomass at a given area at the present
time. It is typically measured in tonnes or number of individuals. Standing biomass is
an important parameter for predicting future supply, as it indicates the volumes expected
to be harvested within the foreseeable future (Marine Harvest, 2016). Hence, we expect
changes in standing biomass to be negatively correlated with changes in NQSALMON.

Ideally, time series for standing biomass should be split according to generation,10 yield-
ing greater visibility of the size distribution of the fish in the cages. In turn, this enables
more accurate estimates for when the fish, or equivalently, the standing biomass, is ex-
pected to be harvested. However, we have not been able to retrieve time series split by
generation, implying great uncertainty attached to when changes in standing biomass will
materialise in altered harvest volumes. Hence, we apply a relaxed lag structure for this
variable, allowing lags of 3, 6, and 9 months. Here, a discrete range is chosen to achieve
more consistency for the lag chosen by the GA across the models. Ideally, the majority of
the submodels will utilise either 3, 6, or 9 months lag.

The time series for standing biomass exhibits strong seasonality, as shown in Figure
12 in Appendix A.2. Therefore, YoY time windows will be used in the modelling. Yet
again, time series are only obtained for the production in Norway, as time series for other
producers are too short (starting Jan. 2010).

Harvest Volume

Harvest volume is the most reliable measure of the supply of Atlantic salmon in the very
short term, and the variables above are merely indicators of future harvest volumes. Changes
in harvest volume are expected to be negatively correlated with changes in NQSALMON.

As Atlantic salmon primarily is marketed as a fresh product, the majority of the har-
vested volumes is sold immediately after harvest. Accordingly, there should not be a
lagged relationship between harvest volume and the NQSALMON. However, we include
time series for Norwegian harvest volumes at 1 month lag, in case the variable is able to
provide any predictive power in the very short term. We also include average harvest
weights for Norway, as the size of the fish has a rather large impact on the price of salmon
on a per kg basis.11 Here, we also allow 1 month lag. Moreover, we include time series
for global harvest volumes, with Norwegian harvest volumes stripped out. We assign a
longer lag structure to these volumes, as we assume that the volumes use time to find new
distribution channels and flow to important markets for Norwegian producers, such as
Europe. For instance, we assume that a sudden increase in Chilean production will not be
consumed by Chile’s usual markets (US), and that volumes to a larger extent will find new
markets, such as Europe, and thereby affect the price of NQSALMON directly. We allow
lags of 3 and 6 months.

Again, by referring to Figure 13 in Appendix A.2, it is clear that harvest volumes are
seasonal, suggesting that YoY time windows is appropriate.

9For Norway, most volumes are harvested during the autumn, with a peak in October (Directorate of Fisheries,
2017a).

10The generation refers to the time of smolt release. In Norway, smolts are mainly released into seawater twice a
year. Hence, the generation of a particular amount of biomass is assigned the year of release, and whether it was
released in the first or second half of the given year.

11Larger fish typically trade at a premium to smaller fish. See Figure 2.
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Sea Lice

Sea lice are naturally occurring seawater parasites, and can cause lesions, act as catalysts for
infections, and slow down the growth rate of the fish (Marine Harvest, 2016). High concen-
tration of sea lice may also lead to premature harvest, due to legal obligations constraining
the maximum allowed occurrence of sea lice. Also, the prevalence of sea lice requires treat-
ment of the fish, leading to elevated mortality rates due to rough treatment methods. In
other words, a bloom in sea lice populations leads to reduced supply of salmon in terms of
total volumes supplied over the medium term. However, in the short term, increased sea
lice levels may lead to increased supply as a consequence of premature slaughtering. We
choose to focus on both the short and medium term. Hence, we allow 12 month lag to meet
the effect from lower total volumes supplied over the medium term, and 3 month lag to
meet the effect from premature harvest and increased volumes over the short term. We ex-
pect changes in sea lice levels to be positively correlated with changes in the NQSALMON
over the medium term, and negatively correlated over the short term.

The occurrence of sea lice exhibits seasonal patterns, as seen in Figure 13 in Appendix
A.2. Accordingly, we apply YoY time windows in the modelling. Time series for sea lice
levels are obtained for Norway.

Sea Temperatures

The sea temperature affects the length of the production cycle, implying that large varia-
tions in sea temperatures may cause changes in supply due to changes in productivity. At
times of higher sea temperatures, the production cycle is generally expected to be shorter,
leading to increased harvest rates (Marine Harvest, 2016). Therefore, a negative relation-
ship between sea temperatures and salmon prices is expected.

Changes in temperatures affect all the fish in the cages, irrespective of their sizes. Hence,
an increase in the sea temperature is likely to trigger a consistent wave of higher harvest
rates. We expect the effect from elevated temperatures to materialise rather promptly, and
allow lags of 3 and 6 months.

Sea temperatures are highly seasonal, implying that YoY time windows should be ap-
plied in the modelling. Time series are obtained for Norway.
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3.2 DEMAND-DRIVING FACTORS

The global demand for Atlantic salmon is not directly observable, but as all the fish is
marketed and sold, it is reasonable to assume that consumption equals supply (Marine
Harvest, 2016). Below we discuss four potential demand-driving factors.
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Figure 1: Monthly index prices for salmon, meat and poultry. Rebased to NQSALMON. 12-months
moving-average is included for NQSALMON.

Alternative Animal Proteins (Excluding Trout)

Due to salmon being a source of protein, the demand for salmon is likely to be affected
by the price of alternative animal protein sources. Among the substitutes, there are land-
based animal proteins such as beef and chicken, and more direct substitutes such as cod
and shrimp. Higher prices on these protein sources, ceteris paribus, should result in higher
consumption of salmon. In turn, this is likely to give support to higher salmon prices.
Hence, a positive relationship between changes in the price of alternative animal proteins
and changes in the NQSALMON is expected. This relationship is confirmed by Figure 1,
illustrating the NQSALMON versus price indices for poultry and meat. Here, the overall
trend is that price changes are positively correlated among the different types of proteins,
although with a few severe discrepancies.12

The appropriate lag structure is not easily determined, but our hypothesis is that there
is no instant effect on the NQSALMON from changes in the prices of alternative animal
proteins. Retailers need time to adjust their prices of alternative proteins, and consumers
need time to adjust their consumption patterns. Also, retailers often negotiate long-term
contracts with their suppliers of both salmon and other proteins, which imposes additional
uncertainty to when price changes of alternative proteins will materialise in altered salmon
prices (Ripegutu, 2017). Hence, we apply relaxed lag structures for the price of the different
alternative proteins, allowing lags of 3, 6, 9, and 12 months.

Prices of alternative animal proteins do not exhibit seasonality, as shown by the time
series for the meat price index, poultry index, beef, and shrimp in Figure 14 and Figure 15
in Appendix A.2. Hence, we use changes between consecutive price observations for these
time series, i.e. month-over-month (MoM) time windows.

12Most of the discrepancies were due to extraordinary events. The discrepancy in 2006-07 was largely driven
by a fear of bird flu combined with an E. Coli outburst in Norway, leading to strong demand for salmon. The
deviation in 2011-13 was driven by a strong recovery of Chilean production, after a disease outbreak in Chile in
2008. The strong salmon prices seen in 2016 were triggered by an algae bloom in Chile, and to some extent high
sea lice levels in Norway.
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Trout

Trout is a direct substitute to salmon, with global production volumes of 0.81 million tonnes
as of 2014, or 35% of the global production of Atlantic salmon (FAO, 2017a). We include
data for Norwegian trout production, represented by time series for standing biomass, har-
vest volumes, and the export price.

We choose to consider trout as an alternative protein, and base the lag structure on the
preceding discussion on the prices of other alternative proteins. Also, we build on the
discussions of the lag structures for standing biomass and harvest volumes of salmon. This
leads to the following lag structures:

i) Standing biomass of trout. We argued that standing biomass of salmon is
related to the NQSALMON at lags of either 3, 6, or 9 months. As the
production cycle for trout resembles that of salmon (FAO, 2017a), we
assume the same lag structure between changes in standing biomass of
trout and the price of trout. Moreover, we argued that changes in prices
of other alternative proteins affect the NQSALMON after either 3, 6, 9,
or 12 months. Drawing on the two lag structures, we get that changes in
standing biomass for trout should be related to changes in NQSALMON
at lags of 6-21 months. We choose to focus on the lower end of the im-
plied lag structure, and allow lags of 6, 9, and 12 months. Also, we as-
sume negative correlation between changes in standing biomass of trout
and the price of trout, and positive correlation between changes in the
price of trout and the NQSALMON. This implies a negative correlation
between changes in standing biomass of trout and the NQSALMON.

ii) Harvest volume of trout. We argued that changes in harvest volumes of
salmon should affect the NQSALMON instantly, as most salmon is sold
fresh. This is also the case for trout (FAO, 2017a), implying that changes
in harvest volumes of trout should affect the price of trout instantly.
Hence, we use the same line of argument as for changes in the price of
other alternative proteins. Lags of either 3, 6, 9, or 12 months should
be appropriate between changes in the harvest volume of trout and the
NQSALMON.

iii) Price of trout. Same line of argument as for other alternative proteins.
Changes in the price of trout should be correlated with the NQSALMON
at lags of either 3, 6, 9 or 12 months.

Time series for standing biomass and harvest volume of trout exhibit seasonality. Hence,
we apply YoY time windows in the modelling. Moreover, we use MoM time windows for
the price of trout, as it is not seasonal. See Figure 13 and Figure 15 in Appendix A.2 for
plots of the time series.

Exchange Rates

We expect correlation between the currency pair USD/EUR and the NQSALMON. The
relationship is rather complex, and it is expressed as follows: First, we expect the price
of alternative proteins to have an impact on the price of salmon, as elaborated on above.
Secondly, the prices of proteins in Europe, adjusted for agricultural subsidies, are affected
by the prices of commodities (Harri, Nalley, & Hudson, 2009; Saghaian, 2010), which again
are partly driven by the U.S. Dollar (Akram, 2009; Kowalski, 2016). Noting that nearly
one half of the Atlantic salmon volumes are consumed in Europe (Marine Harvest, 2016),
and that the price is quoted in Euro, it is clear that the Euro is an important driver for the
NQSALMON. Ultimately, when the U.S. Dollar strengthens against the Euro, we expect
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negative price pressure on commodities from European consumers (Akram, 2009), which
again results in lower prices of proteins (Harri et al., 2009; Saghaian, 2010). Subsequently,
this will have a negative impact on the price of Atlantic salmon. Hence, changes in the
USD/EUR are expected to be negatively correlated with changes in the NQSALMON.

We assume that changes in the U.S. Dollar will have a rather instant impact on prices of
commodities, such as crude oil (Kowalski, 2016). According to Harri et al. (2009), the price
of crude oil is correlated with prices of agricultural products at lags of 2 to 4 months. Thus,
we assume that changes in prices of commodities will impact the prices of the most widely
used sources of animal proteins after 3 months. Moreover, changes in prices of alternative
proteins will impact the price of salmon after 3, 6, 9, or 12 months, as concluded above.
Hence, implied lag structure between changes in USD/EUR and the NQSALMON is 6-15
months. We apply lags of 6, 9, 12, and 15 months.

The USD/EUR does not exhibit seasonality, implying that we use MoM time windows.

Consumption of Salmon Split by Country

Although the demand for Atlantic salmon is not directly observable, it is possible to obtain
total import volumes split by country. Our hypothesis is that the NQSALMON is sensi-
tive to changes in consumption from a particular country or region, and vice versa. When
the NQSALMON increases, we expect that the consumption of salmon decreases, imply-
ing weaker salmon prices in the following period. We have obtained import figures, or
equivalently, consumption figures, for the EU, the U.S., Japan, Russia, and other emerging
markets (excluding Russia). In total, the amount of salmon consumed by these markets
constituted 2.2 million tonnes as of 2016, or close to the entire global production of salmon.
Ideally, we should have obtained import figures for Norwegian exports, but these are pro-
prietary for observations prior to 2015. Of the five markets above, Europe is by far the most
important market for Norwegian producers, with 64% of their volumes flowing to Europe
as of 2015 (Marine Harvest, 2016). Hence, the NQSALMON is expected to be most sensitive
to changes in European consumption.

We expect changes in consumption from the aforementioned markets to have an instant
impact on the NQSALMON, and allow lags of 1 to 3 months. Time series for consumption
are seasonal, following from harvest volumes being seasonal and the fact that most salmon
is consumed immediately after harvest. Hence, we use YoY time windows in the modelling.

3.3 OTHER FACTORS

NQSALMON

A study carried out by Oglend and Sikveland (2008b) reveals short-term predictability in
the price received by Norwegian salmon exporters. They find that the log return in any
week is positively correlated with the log return of the preceding week and five weeks
ago. Hence, we choose to include the NQSALMON itself at lags of one to two months.
Moreover, the NQSALMON has exhibited signs of seasonality in the past, with prices being
somewhat higher from the fourth to the first quarter of any given year. See Section 4.1 in
the next chapter for a plot of the salmon price. However, we do not consider the pattern
consistent enough to model on a YoY-basis. Thus, we employ MoM time windows in the
modelling.

3.4 HYPOTHESIS OVERVIEW

Table 1 provides a brief overview of the variables previously discussed, and the expected
impact on the NQSALMON log return from a change in the log return of one of the vari-
ables. The impact is illustrated by the expected coefficient sign in the regression model.
Note that some of the table entries below represent several time series, such as the entry
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Price of alternative proteins. For a complete list of all variables included in the database, and
details regarding lag structures and time windows, see Table 13 in Appendix A.2.

Table 1: Variable and hypothesis overview.

CATEGORY VARIABLE UNIT GEOGRAPHY IMPACT1

Supply-driving

Smolt release #Individuals Norway -

Feed consumption Tonnes Norway -

Standing biomass Tonnes, #Individuals Norway -

Harvest volume Tonnes Norway, Global -

Sea lice occurrence #Lice/fish Norway +/-

Sea temperature Degrees celsius Norway -

Demand-driving

Price of alternative proteins Index, USD – +

Supply of trout Tonnes, #Individuals Norway -

Exchange rates USD/EUR – -

Consumption split by country Tonnes
EU, US, Russia, Japan,
Emerging markets +

Other

NQSALMON USD/kg Norway +

1) The impact is illustrated by the expected coefficient sign in the regression model.

3. FACTORS AFFECTING THE SALMON PRICE 15



4
DATA ANALYSIS

4.1 THE NASDAQ SALMON INDEX

In this study, we model the log return distribution of the spot price of salmon, which is
represented by the NASDAQ Salmon Index (NQSALMON) denoted in USD. The index
is the volume-weighted average of weekly reported sales prices of fresh Atlantic Superior
Salmon, head-on-gutted (HOG). Similar to the Fish Pool IndexTM, it is reported on a weekly
basis – being published on Tuesdays (Fish Pool ASA, 2017; The Nasdaq Group Inc., 2016).
The index contributors are Norwegian salmon exporters and producers with export license,
who report prices for salmon in nine weight classes. There are eight weight classes for the
1 kg-subintervals 1-2 kg, 2-3 kg, and up to 8-9 kg, and one weight class for larger fish that
belong to the 9 kg+ class. The particular rules and details concerning the requirements for
index contributors, reporting of spot reference transactions, and adjustments for costs such
as transportation are described in the rulebook provided by The Nasdaq Group Inc. (2016).

The NASDAQ OMX Group (NASDAQ) provides all relevant data for the calculation of
the weighted price; that is, the total reported volume of Atlantic salmon that has been ex-
ported (thousand metric tonnes), the distribution of volume in the aforementioned weight
classes (in percentage terms), and the average unit (kg) price in each weight class.
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Figure 2: Weekly index prices of the NQSALMON, from Jan. 2005 to Feb. 2017, with the grey area
representing the overall price range across the different weight classes (1 to 7+ kg).13

Regarding price history, NASDAQ provides weekly quotes in NOK dating back to 1995. As
a consequence of the historical reporting in NOK, we have converted unit prices to USD
with the average of the Monday through Thursday in the spot reference week weighted 60%
plus the Friday prior to the spot reference week weighted 40%. This is similar to how fresh
Atlantic Superior Salmon (HOG) transactions are converted in terms of foreign currencies
when published by Nasdaq Clearing (The Nasdaq Group Inc., 2016).14 Note that the re-
porting week is the week after the spot reference week in question. Thus, the price that
is reported on Tuesdays before 14:00 represent spot reference transactions where prices and

13Generally, there is a price premium on the upper weight classes; larger fish tend to have higher unit prices
relative to smaller fish.

14We employ daily foreign exchange rates, in this case the NOK/USD pair, which have been retrieved through
Oanda.
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corresponding volumes, belonging to the week of invoicing (i.e., the spot reference week), or
the week prior to invoicing, are agreed upon (The Nasdaq Group Inc., 2016).

Figure 2 displays the weekly prices of the NQSALMON. When utilised in modelling
of the log returns, we will effectively work on returns starting in Aug. 2007 – this due to
various transformations of the data that primarily will be discussed in Chapter 5.

Now, as our sample data of the NQSALMON stretches back approximately one decade,
one might expect structural breaks and shocks due to e.g. political and economic events.
However, we note that the index did stay at low levels before and throughout the financial
crisis of 2007 to 2008 -– not taking any extraordinary hit compared to the time period as a
whole. That being said, it plateaued at a high level from 2010 to 2012. During this period,
Norwegian fish farming facilities experienced a severe situation of high sea lice levels,15

with a corresponding long-term negative impact on the produced volume. Furthermore,
the salmon spot price might have historical indications of being somewhat sensitive to po-
litical events. For instance, the index significantly declined during the autumn of 2014. This
might to some extent be attributed to Russia’s imposed sanctions on the import of Norwe-
gian salmon in Aug. 2014. Analysts expected that the prices for the fish could fall by 10%
or 12% in Europe (Reklaitis, 2014), which, ex-post, seem to be relatively good predictions.
Equivalently, the decline in Norway’s market share of salmon exports to China from 2010
to 2013 might have had a political cause (Milne, 2013), which again may have influenced
the salmon price.

4.2 DATA SOURCES

In addition to the index data provided by NASDAQ, we use various other data sources
to gather in total 24 exogenous variables. These will be employed in determining candi-
date predictors for the log returns of the salmon spot price. An overview of the variables
and units, along with corresponding description, pre-determined lag range, respective data
source, and retrieved time resolution (e.g. weekly or monthly data points) is given in Ta-
ble 13. Furthermore, as the level of quality and accuracy of the data provided by various
sources can never be assured, we provide a brief description of the data sources that have
been used in Appendix A.9.

4.3 DATA PRE-PROCESSING

The NQSALMON and all the exogenous variables are assessed on a monthly time resolu-
tion. Even though the salmon spot price index is quoted every week, the majority of the
exogenous variables are reported on a monthly basis, as is evident in Table 13, Appendix
A.2. Furthermore, there are certain irregularities in the data sets, such as missing data
points due to non-trading weekdays. This motivates the usage of a pre-processing and
cleaning procedure prior to the modelling. A selection of robust approaches are discussed
in Hellerstein (2008); we build on these concepts and employ the procedure as outlined
below.

PROCEDURE 1: General data pre-processing

1) To account for irregularities in the time series, replace N/As, zeros, and
other erroneous values with the previous value in each fundamental time
series.

2) For the time series with monthly observations, select the reported value.
Generally, these correspond to the end-of-the-month-value. For the time

15Specifically, female sea lice levels in Norwegian waters peaked at historically high levels in the years from
2009 to 2011, confirmed by data provided by Sjømat Norge (2016).
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series with weekly and daily observations, keep the value constituting
the latest observation in the respective month, and discard the others.

3) Perform a stationarity transformation by calculating the associated log
returns of the observations. This transform should apply a time window
being either month-over-month (MoM) or year-over-year (YoY), in corre-
spondence with Eq. 2 in the upcoming Section 4.5.

4) Calculate the descriptive statistics for the log return series, and create
corresponding scatter plots (versus the NQSALMON log return), his-
tograms (see Figures 12-16 in Appendix A.2), and normal Q-Q plots to get
an idea of the series’ distribution and potential outliers. Replace visual
outliers that significantly skew the data’s distribution with the previous
observed log return.

4.4 DESCRIPTIVE STATISTICS

Table 2 displays a selection of descriptive statistics for the monthly log returns of the
NQSALMON and the other 24 exogenous variables. Furthermore, a normality test, two
stationarity tests, and an autocorrelation test are included.16 Arithmetic returns have not
been used in the price distribution prediction. Nevertheless, for reference, they are dis-
played in Table 14 in Appendix A.2.

Descriptive Statistics of the NQSALMON

With reference to Table 2, we note that the log returns of the NQSALMON yield an in-
significant Jarque-Bera (JB) statistic, indicating the presence of normality. In particular, the
skewness is quite low; thus, the empirical distribution is more or less symmetric. Further-
more, the excess kurtosis is almost negligible. In other words, skewness and kurtosis seem
to fit well with a normal distribution. The same conclusions can be drawn from the descrip-
tive plots in Figure 3, in particular by the histogram in Figure 3a. That being said, by visual
inspection, the log returns have slightly more mass in the tails rather than at the peak, prin-
cipally with respect to the excess observations at the upper quantiles. The extra mass in the
tails is also present in the shape of the normal Q-Q plot in Figure 3d – upper and lower em-
pirical quantiles deviate somewhat from the normal distribution. Furthermore, by the log
return time series plot, some months exhibit large price jumps. In conclusion, even though
the JB statistic is insignificant, there are indications of some non-normal behaviour. Conse-
quently, more data points could certainly be useful in determining distributional properties
of the NQSALMON log returns.

Moreover, the (augmented) Dickey-Fuller (ADF) stationarity statistics are rejected at
high significance levels, which indicates stationary log returns. The Ljung-Box Q test yield
a sufficiently low test statistic, corresponding to a somewhat higher p-value than the 10%-
level, suggesting no presence of significant autocorrelation in the NQSALMON at lag ρ = 6
months. However, this is slightly at odds with the plot of the autocorrelation function in
Figure 3e, which suggests a modest sinusoid memory. In particular, there seems to be an
annual pattern with negative autocorrelation at every 6 + 12k lags, k ∈ Z+

0 , as well as an
annual pattern with positive autocorrelation at every 12k lags.

Figure 3b and Figure 3c suggest time-varying volatility, i.e. heteroscedasticity, in the
monthly log returns, as there seems to be some clustering of "spikes" in the squared log
returns. This conforms to previous studies; for instance do Oglend and Sikveland (2008a)
find evidence for persistence and reversion in the salmon price volatility.

16For a description of the tests, see Appendix A.6.
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Figure 3: Descriptive figures of the monthly log returns of the NQSALMON.17

Descriptive Statistics for the Exogenous Variables

By Table 2, we observe that the monthly log returns for ∼ 40% of the exogenous variables
exhibit non-normal behaviour, characterised by respective JB statistics significant at the 1%
level. A prominent category of such variables is prices of alternative proteins; log returns of
meat, poultry, beef, and shrimp reject normality at the 1% level according to this test. Also,
salmon biomass-related variables exhibit positive skew and are non-normal at the 5% sig-
nificance level. Variables with the high positive excess kurtosis, i.e., leptokurtosis, are Av-
erage harvest weight, kg (Norway) and Shrimp price, US cents/pound, which might help explain
the excess probability mass in the tails of the monthly log return of the NQSALMON. The
category of variables having the most significant skewness is that representing consump-
tion figures of Atlantic salmon across various geographies (e.g. Consumption of Atl. salmon,

17Regarding Figure 3a: The fitted Gaussian curve represents the corresponding normal distribution of the log
return of the NQSALMON, parameterised by the sample mean and sample variance as given in the figure.
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1000 tonnes (Russia)), in which the skewness generally is negative. That is, the presence of
excess mass in the left tails of these figures might help explain some of the tail behaviour of
the NQSALMON log return as well. However, most variables exhibit only slight skewness
– the kurtosis seems to be to be the main driver for rejection of normality by the JB statistic.

Some variables have significant outliers in their log returns, such as Smolt release, #in-
dividuals (Norway) and Sea lice treatments, % of fish being treated (Norway). This is observed
from their minimum and maximum values. However, on a monthly basis, this might be ex-
plained by the binary nature of these variables. For instance, smolts are usually released at
particular times at the year, particularly in May and September for Norwegian producers,
as discussed previously in Section 3.1. High fluctuations of release levels between months
might again yield correspondingly extreme log returns.

Next, we consider various time series test results of the exogenous variables. Firstly,
from the statistics of the Dickey-Fuller (DF) and ADF tests, it is evident that all the exoge-
nous variables’ monthly log returns exhibit stationarity significant at the 1% level. Further-
more, the Ljung-Box Q test at ρ = 6 lags reveals significant autocorrelation at the 1% level
for approximately half of the exogenous variables. This is particularly present in seasonal
variables, such as the biomass levels, sea temperature, and smolt release.
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Table 2: Descriptive statistics of the log returns of the data series, time period: Jul. 2007 – Jan. 2017.18

GENERAL INFORMATION DESCRIPTIVE STATISTICS TESTS

Series name N Mean Std. dev. Min Max Skew Ex. kurt. NQSALMON corr. JB DF ADF Ljung-Box
# ρ = 6

∆ ln[NQSALMON, USD/kg] 115 7.37× 10−3 1.24× 10−1 −3.60× 10−1 3.02× 10−1 1.34× 10−1 2.59× 10−1 1.00 0.67 −12.21 −7.63 7.81
∆ ln[Standing biomass, #Individuals (Norway)] 115 2.87× 10−3 5.58× 10−2 −7.20× 10−2 1.84× 10−1 1.02 7.99× 10−1 -0.20 22.81 −6.89 −9.41 44.94
∆ ln[Standing biomass, Tonnes (Norway)] 115 5.56× 10−3 4.77× 10−2 −7.52× 10−2 1.05× 10−1 4.34× 10−1 −9.50× 10−1 -0.22 7.94 −4.00 −6.29 218.25
∆ ln[Feed consumption, Tonnes (Norway)] 115 3.63× 10−3 1.94× 10−1 −3.43× 10−1 3.82× 10−1 2.79× 10−1 −1.09 -0.22 7.22 −4.16 −4.85 269.50
∆ ln[Smolt release, #Individuals (Norway)] 115 −1.82× 10−2 1.40 −5.77 6.45 2.26× 10−1 4.87 -0.08 114.77 −9.57 −7.90 34.12
∆ ln[Harvest volume, Tonnes (Norway)] 115 2.63× 10−3 1.30× 10−1 −4.17× 10−1 2.89× 10−1 −1.02× 10−1 4.95× 10−2 -0.23 0.21 −11.77 −9.20 21.01
∆ ln[Standing biomass of trout, #Individuals (Norway)] 115 −4.68× 10−3 5.14× 10−2 −1.23× 10−1 1.48× 10−1 3.75× 10−1 −1.07× 10−1 -0.12 2.75 −7.71 −7.40 35.46
∆ ln[Standing biomass of trout, Tonnes (Norway)] 115 −4.68× 10−3 5.93× 10−2 −1.50× 10−1 1.22× 10−1 2.05× 10−1 −3.73× 10−1 -0.19 1.47 −6.36 −5.48 68.54
∆ ln[Harvest volume of trout, Tonnes (Norway)] 115 −4.38× 10−3 2.57× 10−1 −8.20× 10−1 5.58× 10−1 −3.61× 10−1 1.49× 10−2 -0.16 2.50 −12.62 −9.63 16.35
∆ ln[Sea lice occurrence, #Lice/fish (Norway)] 115 −8.62× 10−4 3.98× 10−1 −1.05 9.48× 10−1 −2.73× 10−2 −4.51× 10−4 -0.24 0.01 −7.22 −6.05 56.22
∆ ln[Sea lice treatments, % of fish being treated (Norway)] 115 −6.10× 10−3 4.91× 10−1 −2.39 2.18 −3.28× 10−1 6.92 -0.14 231.68 −15.89 −9.62 23.59
∆ ln[Sea temperature, Degrees celsius (Norway)] 115 −4.83× 10−3 1.99× 10−1 −3.26× 10−1 4.83× 10−1 4.02× 10−1 −1.09 -0.17 8.80 −3.40 −7.96 276.80
∆ ln[Meat price index, Index] 115 1.47× 10−3 2.89× 10−2 −9.08× 10−2 5.97× 10−2 −8.12× 10−1 7.60× 10−1 0.08 15.42 −6.00 −4.21 75.22
∆ ln[Poultry index, Index] 115 −4.01× 10−4 3.96× 10−2 −1.49× 10−1 1.14× 10−1 −4.39× 10−1 2.52 0.02 34.10 −9.83 −5.40 13.82
∆ ln[Beef price, US cents/pound] 115 3.48× 10−3 4.82× 10−2 −1.80× 10−1 1.80× 10−1 −4.48× 10−2 2.70 0.15 34.88 −7.93 −7.42 18.63
∆ ln[Shrimp price, US cents/pound] 115 1.81× 10−3 5.02× 10−2 −2.43× 10−1 1.84× 10−1 −3.31× 10−2 8.16 -0.04 319.30 −7.59 −6.17 14.63
∆ ln[Currency pair, USD/EUR] 115 2.03× 10−3 2.47× 10−2 −6.30× 10−2 7.82× 10−2 2.71× 10−1 5.77× 10−1 -0.24 3.00 −8.11 −6.66 10.03
∆ ln[Trout price, NOK/kg (Norway)] 115 8.91× 10−3 8.89× 10−2 −2.76× 10−1 2.39× 10−1 −1.13× 10−1 4.37× 10−1 0.32 1.16 −9.61 −8.57 11.43
∆ ln[Average harvest weight, kg (Norway)] 115 −1.18× 10−3 5.21× 10−2 −2.41× 10−1 2.28× 10−1 −1.30× 10−1 5.35 -0.03 137.40 −11.87 −8.70 10.98
∆ ln[Consumption of Atl. Salmon, 1000 Tonnes (EU)] 115 3.51× 10−3 1.14× 10−1 −3.58× 10−1 2.62× 10−1 −4.72× 10−1 7.12× 10−1 -0.13 6.70 −12.02 −9.79 34.42
∆ ln[Consumption of Atl. Salmon, 1000 Tonnes (US)] 115 1.59× 10−3 9.42× 10−2 −2.21× 10−1 2.79× 10−1 3.53× 10−1 1.02× 10−1 -0.16 2.45 −19.87 −11.61 53.49
∆ ln[Consumption of Atl. Salmon, 1000 Tonnes (Russia)] 115 4.19× 10−3 2.25× 10−1 −8.77× 10−1 4.50× 10−1 −9.38× 10−1 1.46 -0.01 27.10 −11.43 −9.46 8.04
∆ ln[Consumption of Atl. Salmon, 1000 Tonnes (Japan)] 115 7.11× 10−3 1.89× 10−1 −5.66× 10−1 3.92× 10−1 −7.06× 10−1 8.34× 10−1 0.09 12.89 −14.81 −10.24 14.85
∆ ln[Consumption of Atl. Salmon, 1000 Tonnes (Emerging markets)] 115 8.94× 10−3 9.01× 10−2 −2.67× 10−1 2.04× 10−1 −3.48× 10−1 7.24× 10−2 -0.07 2.34 −13.20 −9.63 13.04
∆ ln[Harvest volume, 1000 Tonnes (Global, excl. Norway)] 115 4.89× 10−3 6.81× 10−2 −1.60× 10−1 2.08× 10−1 −1.56× 10−1 6.37× 10−1 -0.21 2.41 −11.74 −7.61 3.25

Critical values: JB: χ2
2,α=10% > 4.61; χ2

2,α=5% > 5.99; χ2
2,α=1% > 9.21

DF, ADF: τα=10% < −1.62; τα=5% < −1.95; τα=1% < −2.58
Ljung-Box: χ2

6,α=10% > 10.64; χ2
6,α=5% > 12.59; χ2

6,α=1% > 16.81

18Note the choice of the time period, namely Jul. 2007 to Jan. 2017, corresponding to N = 115 observations present in the table. We, however, note that the modelling data set is of 103 observations of
1- to 12-step ahead NQSALMON log returns. For the case of shorter horizons, say horizon h = 1, the data set of log returns will stretch from Jul. 2007 to Jan. 2016. Similarly, for longer horizons, e.g.
horizon h = 12, the data set comprises observations from Jul. 2008 to Jan. 2017, as it is pushed forward with h months.
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4.5 CHOOSING THE APPROPRIATE TIME WINDOW

In the literature, we find that forecasting a stationary time series as a function of stationary
explanatory variables is the most common approach (Nau, 2017). Predicting a station-
arised series involves assessing whether or not its statistical properties will be the same
in the future as they have been in the past. Furthermore, sample statistics such as mean,
standard deviation, and higher-order moments are only useful as descriptors for future
behaviour if the series is stationary. The same rationale motivates to stationarise the ex-
planatory variables; joint distribution metrics such as correlation will only be meaningful
when the underlying series are stationary.

In our case, the stationarity transform of some explanatory variable series i ∈ N , where
N is the set of explanatory variables, is the natural logarithm of the relative change between
time increments. This transform will be called the log return. We will refer to a price or
observation at some time t ∈ T of some explanatory variable i by zt,i, whereas the log return
or change will be denoted xt,i.19 With the increment in time, often called time resolution,
being one month in this study, the log returns of some series i are given by

xi ≡ {xt,i}T
t=1 : xt,i = ln

(
zt,i

zt−1,i

)
= ln(zt,i)− ln(zt−1,i). (1)

When predicting the log returns of some commodity price, conditional on the observa-
tion of the log returns of some explanatory variables, the notion of change is of importance.
Some explanatory variables might have cyclical behaviour; in our case, sea temperatures
and lice levels are appropriate examples – as visualised in Appendix A.2. Furthermore, all
cyclical variables that are used in this study have annual cycles – i.e., they can be consid-
ered seasonal. In such cases, as discussed in the previous chapter, one might argue for the
consideration of YoY (logarithmic) returns. Usually, such variables are also transformed to
YoY percentage changes in e.g. industry reports and exhibits (Marine Harvest, 2016). Vari-
ables without cyclical patterns, such as foreign exchange rates, alternative protein prices,
and feed prices, might be more interesting on a shorter time window.

There are a few studies that have considered transforming time series through various
time windows. Although not used here, stock indices have tended to have positive auto-
correlations, significantly different from zero, on daily, weekly, and monthly time windows
(Campbell, Lo, & MacKinlay, 1996, p. 68), and one might possibly discover such patterns
with respect to e.g. currencies on both monthly and multi-monthly returns. Although in-
traday returns are not in the scope of this study, Politi, Millot, and Chakraborti (2012) use
time windows to investigate near-extreme densities of higher-frequency log returns.

We will proceed on to consider the predictive accuracy of various time windows. In line
with Shen, Jiang, and Zhang (2012), varying the time window, denoted δ, we can generate
new, auxiliary time series ∆δzi ∀i ∈ N and add them to the set of candidate predictors in the
following way:

∆δzt,i = ln

(
zt,i

zt−δ,i

)
= ln(zt,i)− ln(zt−δ,i). (2)

The set of candidate predictors will be those that are available in the variable subset selec-
tion search procedure for the quantile regressions. Now, in the case of variables exhibiting
seasonality, we would in a YoY transform consider the case δ = 12; likewise, the MoM
transform, equivalent to Eq. 1, consider the case δ = 1. Intuitively, a larger time win-
dow δ corresponds to a change representing a longer trend of the underlying, explanatory
variable.

The performance of some predictor of a dependent variable y, the NQSALMON log

19The variable y ≡ {yt}T
t=1 is reserved for the NQSALMON log return at time t.
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return in this case, will, not considering the effects of other candidate predictors, depend
significantly on their cross-correlation. In the context of multi-step ahead prediction, we
label y(h)t as the h-step ahead log return of the dependent variable. Correspondingly, in

the same way as Eq. 2, a particular h-step ahead log return can be written as y(h)t =

ln(pt+h,i) − ln(pt,i), where pt,i is the price of the dependent variable, i.e. the value of the
NQSALMON, at time t. Shen et al. (2012) investigate temporal autocorrelation and cross-
correlation among global stock markets and different financial products, by exploring com-
binations of lags l and time windows δ, to select predictors with the highest temporal cor-
relation. The results yield a high one-day ahead prediction accuracy for indices such as
NASDAQ, S&P500, and DJIA. They also find that temporal correlation between various
markets increase with the time window δ. In addition, the authors suggest that an in-
creased time window δ might remove noise and result in a clearer correlation between
various stock market indices. Thus, such an approach might prove successful in building
prediction models for other indices – in our case the NQSALMON.

A Preliminary Candidate Predictor Analysis

As discussed in Chapter 3, there might be some structure in the lagged values and the time
windows of the explanatory variables. Therefore, in a preliminary candidate predictor
analysis, we initially combine lags with time windows to create auxiliary time series. Next,
the cross-correlation relationships between the auxiliary time series and the h-step ahead
log return of the salmon spot price are assessed to investigate candidate predictors. As
we will consider forecasts of up to one year at monthly time increments, we have that
h ∈ {1, . . . , 12} ≡ H. We refer to H as the index set of steps ahead, and interchangeably
refer to h as the horizon or the steps ahead for the NQSALMON log return. Now, based
on the resulting cross-correlation metrics, we will discuss whether or not the presumed
structure as discussed in the variable analysis section has empirical evidence, and which
predictors to include in the modelling of the NQSALMON.

Formally, we consider a space of candidate predictors generated from the explanatory
variables i ∈ N . The candidate predictors are lagged with respect to the h-month ahead
log return of the NQSALMON at lags l ∈ L with time windows δ ∈ {1, . . . , 12}. That is,
we consider up to 12-month trends. The lags l ∈ L for each explanatory variable i ∈ N are
determined according to the discussion in Chapter 3. However, in the preparatory analysis,
we set L = {1, . . . , 24}∀i ∈ N , that is, we consider explanatory variables lagged up to two
years. Now, each candidate predictor generated by combining lags and time windows with
respect to some explanatory variable zi can be denoted ∆δ,lzi, where each observation at
time t ∈ T is given by:

∆δ,lzt,i = ln

(
zt−l,i

zt−l−δ,i

)
= ln(zt−l,i)− ln(zt−l−δ,i), (3)

∀i ∈ N , l ∈ L = {1, . . . , 24}, δ ∈ {1, . . . , 12}.

Based on this preparatory candidate predictor analysis, we are at first able to check
whether or not the particular time windows discussed in Chapter 3 are sound – e.g., whether
to consider MoM returns (δ = 1), YoY returns (δ = 12), or some other time window
(1 ≤ δ ≤ 12). That is, we use the analysis to validate how the industry considers these
parameters, as summed up in Table 13 in Appendix A.2. Secondly, we are able to visually
identify which combinations of lags l and time windows δ that empirically have strong
correlation (in absolute terms) with the h-month ahead price and therefore, conceivably,
strong predictive power.
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NQSALMON, USD/kg - 1-step ahead vs. 
Standing biomass, Tonnes (Norway)
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(a) Cross-correlation between NQSALMON 1-step
ahead log returns and the log returns of Standing
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NQSALMON, USD/kg - 1-step ahead vs. 
Harvest volume, Tonnes (Norway)
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(b) Cross-correlation between NQSALMON 1-step
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NQSALMON, USD/kg - 1-step ahead vs. 
Meat price index, Index
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(c) Cross-correlation between NQSALMON 1-step
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NQSALMON, USD/kg - 1-step ahead vs. 
Sea lice occurrence, #Lice/fish (Norway)
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Figure 4: Examples of cross-correlation surfaces generated by the 1-step ahead NQSALMON log
returns and four arbitrarily chosen time series’ log returns across combinations of lags

l ∈ {1, . . . , 24} and time windows δ ∈ {1, . . . , 12}.

Revision of Lag Structure and Time Window

Although the following analysis may result in conclusions regarding lags and time win-
dows in conflict with the discussion in Chapter 3, we choose to not implement changes
that are considerably in conflict with the relationships suggested by Marine Harvest (2016).
Hence, this approach can not be criticised as data mining. Moreover, changes that can not
be supported by fundamental relationships will not be implemented.

Each plot in Figure 4 displays a surface in which the lattice points represent respective
cross-correlations between the 1-month ahead NQSALMON log return and the given ex-
planatory variable i lagged at some lag l ∈ {1, . . . , 24} relative to the 1-month ahead index
return at a certain time window δ ∈ {1, . . . , 12}. Formally, each point is the correlation
between y(1) versus the candidate predictor ∆δ,lzi. Correlation surfaces for all the explana-
tory variables with respect to the 1-step ahead NQSALMON log return are visualised in
Figures 17-19 in Appendix A.2. Note that most of the cross-correlation plots in Figures
17-19 propose both positive and negative correlation between the NQSALMON and the
variables being examined. This is due to seasonality effects in the explanatory variables,
and we account for this by holding on to the directional impacts concluded on in Chapter
3. That is, for e.g. Standing biomass, tonnes (Norway), we only consider areas of the surface
where the correlation with the NQSALMON is negative. Furthermore, with respect to sea-
sonal variables, we note that correlation effectively "levels out" for larger time windows –
particularly in the YoY case with δ = 12. This confirms the previous discussion regard-
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ing the usage of large time windows, as they will remove cyclicality in the corresponding
candidate predictor ∆δ,lzi.

In Table 3, we present the lag structures and time windows suggested by the cross-
correlation plots, and benchmark the results against the lag structures and time windows
concluded upon in Chapter 3 and Table 13 in Appendix A.2. Note that the relationships in
Table 3 are obtained from visual inspection of the cross-correlation plots, and consequently
they are not entirely accurate and represent qualitative judgement. However, the relation-
ships should provide enough evidence to consider whether or not empirical data are in line
with industry assumptions.

By examining Table 3, it is clear that the industry assumptions, regarding time win-
dows, deviate substantially from the results of the candidate predictor analysis. Firstly, the
preparatory analysis is very reluctant to propose YoY time windows as a means of increas-
ing cross-correlation with the salmon spot price. For all variables, the correlation surfaces
essentially propose the usage of MoM time windows, as the corresponding correlation will
be the strongest (in absolute terms). We account for these results by introducing the follow-
ing changes to the application of time windows:

i) Variables that previously were allowed YoY time windows. We allow the use
of both YoY and MoM time windows in the modelling.

ii) Variables that previously were allowed MoM time windows. No alterations in
the use of time windows.

The lag structures proposed by this candidate predictor analysis also deviate substan-
tially from the industry assumptions. Of the 25 potential explanatory variables in the
database, the analysis indicates that the lag structure suggested by two approaches are
more or less aligned for 16 of the variables. Hence, for nine of the variables the indus-
try assumptions do not comply with this preliminary analysis. In particular, it is worth
highlighting the lag structure proposed for Sea lice occurrence, #lice/fish (Norway) and Sea
lice treatments, % of fish being treated (Norway). We argued in Chapter 3 that changes in
sea lice levels and sea lice treatments should be correlated with changes in NQSALMON
with varying signs, depending on the lag structure used. Over the short term, we ex-
pected changes in sea lice levels and sea lice treatments to be negatively correlated with
the NQSALMON, and positively correlated over the long term. Interestingly, the results
from the candidate predictor analysis suggest the opposite. However, we consider the rea-
soning from Chapter 3 as sufficiently robust, and choose to not alter the lag structure for
these two variables. Moreover, we decide to base the lag structure for all variables only on
industry assumptions, as we are not able to support potential changes with fundamental
relationships. Hence, we do not make any changes to the lag structure.

Overall, we find the results from the candidate predictor analysis surprising, and al-
though we choose to put limited emphasis on the analysis, it provides useful insight for
industry participants, as well as for further modelling of salmon prices.
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Table 3: Lag structures and time windows: Assumptions versus empirical evidence from
cross-correlation plots, 1-month-ahead.

TIME SERIES, UNIT
INDUSTRY ASSUMPTIONS CANDIDATE PREDICTOR ANALYSIS

Lag(s)1 Time window Lag(s)1 Time window

NQSALMON, USD/kg 1-2 MoM 8-11 MoM

Standing biomass, #Individuals (Norway) 3,6,9 YoY 10-12 MoM

Standing biomass, Tonnes (Norway) 3,6,9 YoY 11-13 MoM

Feed consumption, Tonnes (Norway) 2-4 YoY 11-13 MoM

Smolt release, #Individuals (Norway) 15-17 YoY 15-17 MoM

Harvest volume, Tonnes (Norway) 1 YoY 10-12 MoM

Standing biomass of trout, #Individuals (Norway) 6,9,12 YoY 11-13 MoM

Standing biomass of trout, Tonnes (Norway) 6,9,12 YoY 12-14 MoM

Harvest volume of trout, Tonnes (Norway) 3,6,9,12 YoY 10-12 MoM

Sea lice occurrence, #Lice/fish (Norway) 3,12 YoY 10-12, 4-6 2 MoM

Sea lice treatments, % of fish being treated (Norway) 3,12 YoY 10-12, 4-6 2 MoM

Sea temperature, Degrees celsius (Norway) 3,6 YoY 10-12 MoM

Meat price index, Index 3,6,9,12 MoM 7-10 MoM

Poultry index, Index 3,6,9,12 MoM 6-8 MoM

Beef price, US cents/pound 3,6,9,12 MoM 6-8 MoM

Shrimp price, US cents/pound 3,6,9,12 MoM 20-24 MoM

Currency pair, USD/EUR 6,9,12,15 MoM 9-11 MoM

Trout price, NOK/kg (Norway) 3,6,9,12 MoM 9-11 MoM

Average harvest weight, kg (Norway) 1 YoY 12-14 MoM

Consumption of Atl. Salmon, 1000 Tonnes (EU) 1-3 YoY 1-3 MoM

Consumption of Atl. Salmon, 1000 Tonnes (US) 1-3 YoY 1-3 MoM

Consumption of Atl. Salmon, 1000 Tonnes (Russia) 1-3 YoY 1-3 MoM

Consumption of Atl. Salmon, 1000 Tonnes (Japan) 1-3 YoY 1-3 MoM

Consumption of Atl. Salmon, 1000 Tonnes
(Emerging markets) 1-3 YoY 1-3 MoM

Harvest volume, 1000 Tonnes (Global excl. Norway) 3,6 YoY 10-12 MoM

1) All lags are denoted in months.
2) Recalling the discussion from Chapter 3, we assumed two regimes with different direction of price impacts from changes
in sea lice levels.
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5
METHODOLOGY

5.1 METHODOLOGY OVERVIEW

Formalisation of the Prediction Problem

We consider the empirical modelling of the h-step ahead, conditional distribution function
of the monthly log returns of the NQSALMON. That is, for each timestep t, construct a
model to predict the conditional distribution of returns at t + h, where

h ∈ {1, 2, . . . , 12} ≡ H.

This corresponds to a modelling horizon of up to 12 months. Formally, the problem is to
make a prediction model for the h-step ahead distribution of the log return

y(h)t | Ft, where y(h)t = ln
(

pt+h
pt

)
, ∀h ∈ H, (4)

where pt and pt+h are the prices (in USD terms) of the NQSALMON at times t and t + h,
andFt is a suitable filtration representing the information available at time t (Mikosch, 1998,
p. 77). In our case, Ft typically contains the data available in a (subset) of covariates up to
t,20 i.e. {x1, x2, . . . , xt} ⊂ Ft. As the key problem here is to address the distribution of the
y(h)t , we approximate the h-step ahead distribution, conditional on Ft at various quantiles

τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90} ≡ T ,

this through a procedure called quantile regression, which will be described in Section 5.2.
That is, we create estimates

ŷ(h)t,τ | Ft, ∀h ∈ H ∀τ ∈ T , (5)

where ŷ(h)t,τ | Ft is an approximation of the τth quantile of the true conditional distribution

y(h)t | Ft, which, in practice, is unobservable at time t given Ft.

The Application of Variable Selection

A key issue in this analysis is to fit an in-sample model with a sufficiently small number of
degrees of freedom in order to avoid problems such as overfitting, as the variable search
space consists of 357 candidate predictors and as the number of observations is small (ap-
proximately 100 monthly returns). That is, a significant part of the methodology will ex-
plain how we perform variable selection in our quantile regression framework through a
genetic algorithm-assisted combinatorial optimisation search (in shorthand referred to as
the GA). To our knowledge, this is a novel approach to variable selection in the context of
quantile regression. Furthermore, as candidate predictors represent explanatory variables
being lagged and transformed at up to two different time window sizes, the variable search
space is also somewhat constrained, which also has to be accounted for in the optimisation
problem. Thus, we expand existing methodology in a twofold way: Firstly, through ex-
ploring a new approach to variable selection in quantile regression (the GA); secondly, in
applying constraints in this optimisation problem to be able to make prediction models for
quantiles τ ∈ T for several h-step ahead conditional distributions, h ∈ H.

20We refer to the covariates as the subset of candidate predictors included in the model.
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Model Overview

In essence, the modelling procedure involves the creation of candidate predictors, followed
by the selection of a subset of these for each horizon h in the overall model, and finally the
design of corresponding quantile regressions. It can be summarised in the following steps:

PROCEDURE 2: The h-step ahead log return conditional distribution predic-
tion model

1) 25 explanatory variables, indexed i ∈ N , are selected based on the dis-
cussion in previous chapters. N contains 24 exogenous explanatory vari-
ables as well as the NQSALMON itself (as lagged versions of the index
might have predictive power).

2) The explanatory variables are lagged and transformed through time win-
dows outlined in the previous chapter. These comprise a set of 357 can-
didate predictors. In total, all these candidate predictors will comprise
the relevant information available in Ft.

3) A quantile regression framework is applied to make estimates of the h-
step ahead conditional log return distribution of the NQSALMON. To
determine the U = 8 most predictive covariates in this framework, we
consider a variable selection problem across the joint set of h-step ahead
quantiles τ ∈ T . That is, for each horizon h ∈ H:

i) A genetic algorithm (GA) is employed to determine the combina-
tion of candidate predictors that yields the lowest sum of quantile
regression loss functions of the respective quantiles τ ∈ T . That
is, the predictors employed across the quantiles are held constant,
differing only in the regression coefficients.

ii) The result from the algorithm’s search is a set of covariates that
will be applied in multivariate quantile regressions for horizon h.
I.e., |T | = 5 linear quantile regression models are created for each
particular h.

4) Finally, |H| · |T | = 12 · 5 = 60 quantile regression models are obtained,
providing estimates of the h-step ahead conditional distribution ŷ(h)t,τ | Ft.
This set of models can then be used to perform forecasts of the NQSALMON
h-step ahead (conditional) log return distribution.

An overview of the procedure is depicted in Figure 5 on the next page.

Terminology and Other Practical Considerations

Due to the many aspects of the model as summarised previously, we find it convenient
to introduce some modelling-related terminology that will be used throughout the rest of
the study, as well as some other practical considerations. At first, by the term model, we
refer to the overall set of quantile regression models across all the twelve horizons, in each
of which five quantiles are considered. The variable selection search will be performed in
such a way that the set of quantile regression models for one particular horizon h ∈ H will
contain the same set of covariates, although with varying coefficients (and corresponding
significances) across the five quantiles. Now, with the term submodel, we refer to the set of
quantile regressions at a particular horizon h ∈ H. As there are |T | = 5 quantiles under
consideration, a submodel will therefore contain five quantile regressions. Correspond-
ingly, the model will contain a set of |H| = 12 submodels. Next, as the overall application
of variable selection and quantile regression only has been done in an in-sample setting,
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Loop 
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Figure 5: Overview of the h-step ahead log return conditional distribution prediction model.

the notions of in-sample and sample will be used interchangeably. Finally, we note that the
size of the modelling data set is of 103 observations of 1- to 12-step ahead NQSALMON
log returns. For the case of shorter horizons, say horizon h = 1, the data set of log re-
turns will stretch from Jul. 2007 to Jan. 2016. Similarly, for longer horizons, e.g. horizon
h = 12, the data set comprises observations from Jul. 2008 to Jan. 2017, as it is pushed
forward with h months. Also, note that the data set is somewhat shrunk due to several
data transformations, which will be discussed later on.

5.2 THE LINEAR QUANTILE REGRESSION MODEL

Quantile regression applies concepts from standard linear regression to parametrically es-
timate the quantiles of the conditional distribution of the dependent variable (Koenker &
Bassett, 1978). Whereas standard linear regression provides a prediction of the mean and
variance of the dependent variable y = (yt)T

t=1, conditional on some given value of n co-
variates X = (xt,i)

T,n
t=1,i=1, quantile regression enables the computation of the set of empir-

ical quantiles τ ∈ (0, 1) of the whole conditional distribution. This helps building a more
thorough picture of the conditional distribution, denoted y |X. We will work with the linear
quantile regression model (Alexander, 2008a, p. 305), which considers a linear relationship
in the empirical quantile of the dependent variable with respect to its covariates. This par-
ticular framework will be described in the next paragraphs, and will thus be referred to as
the quantile regression model.

Theoretical Aspects of Quantile Regression

In our case, y = (yt)T
t=1 is the log return vector of the NQSALMON at times t, whereas

xt,i is the value of the covariate i at time t (also some log return). In the quantile regression
model setup, we let X denote the design matrix that incorporates the covariates. Also, as per
the notation of Härdle and Simar (2014, p. 253), we let the leftmost column in X correspond
to a column of ones 1T – thus, the overall design matrix has dimension T × (n + 1). Now,
to define the quantile regression model, we start by recalling the formulation of the linear
regression model:

y = Xβ + ε, ε
i.i.d.∼ N (0, σ2 I), (6)

where y and X are as above, β = (βi)
n
i=0 is the (n + 1) × 1 column vector of true model

parameters where β0 is defined as the constant intercept term, and ε is the T × 1 col-
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umn vector of the independent and identically distributed (i.i.d.) normal error process
terms. Now, we define our quantile regression model in similar terms as Alexander (2008a,
pp. 305-307). Consider the random variable Y with a cumulative distribution function
F−1
Y (y) = P(Y ≤ y). Let the τth quantile of Y , τ ∈ (0, 1), be given by

QY (τ) = F−1
Y (τ) = inf(y : FY (y) ≥ τ). (7)

Now, we have a set of T samples y of Y , and corresponding T observations of n covariates
X. We define a specific cumulative error distribution function, Fε, and denote the τ quantile
of the error by F−1

ε (τ). Taking conditional τ quantiles of Eq. 6 gives:

F−1(τ | X) = Xβτ + F−1
ε (τ), (8)

This equation is often referred to as the (simple) linear quantile regression model (Alexan-
der, 2008a, p. 305). We would like to obtain sample estimates F̂−1

τ (y | X) of the conditional
quantiles τ under consideration, which require the computation of coefficient estimates β̂τ

for the true model parameter vector βτ . Koenker and Bassett (1978) show that this corre-
sponds to the following optimisation problem:

β̂τ = arg min
βτ

T

∑
t=1

(τ − 1yt≤xt βτ︸ ︷︷ ︸
ρτ

)(yt − xtβτ︸ ︷︷ ︸
et

) : 1yt≤xt βτ
=

{
1, if yt ≤ xtβτ

0, otherwise.
(9)

Here, xt denotes the t-th row of X, i.e. the 1× (n + 1) row vector of intercept and covari-
ate realisations at time t. Now, large residuals et will be penalised according to the loss
function ρτ . Thus, for small quantiles τ the penalisation will be larger for data points below
the estimated regression line X β̂τ ,21 moving the regression line towards smaller observa-
tions. Mutatis mutandis, for large quantiles τ, data points above the regression line will be
significantly penalised, effectively moving the line towards these observations.

5.3 LIMITING THE NUMBER OF QUANTILE REGRESSION PREDICTORS

In the case of forecasting the distribution of log returns of the salmon price, a large num-
ber of candidate predictor variables p are available. In our case, the space of candidate
predictor variables is defined by the number of explanatory variables |N | = n = 25, the
allowed lags for each explanatory variable li ⊆ {1, . . . , 18} ∀i ∈ N (as variables are at
most lagged 18 months), and the time window per explanatory variable δi ⊆ {1, 12} ∀i ∈
N – being it month-over-month (MoM) or year-over-year (YoY). In the completely unre-
stricted case, and, for simplicity, disregarding the fact of multiple horizons, there would
be p = 25 · 18 · 2 = 900 candidate predictors. However, the data set of observations, i.e.
the number of monthly log returns, effectively has size T = 103, thus in-sample overfit-
ting is a significant concern. When a fitted model is too complex, that is, it has too many
free parameters to estimate for the amount of information in the data, the in-sample worth
of the model will be overestimated (Harrell, 2015, p. 72). In our case, the worth in the
context of quantile regression is represented by the goodness-of-fit metric pseudo-R-squared
of quantile regression, denoted R1(τ). This metric is described in Appendix A.7. In the
out-of-sample-case (not modelled in this study), many covariates in the regression model
can yield the potential consequence of overfitting. That is, future observed values may not
necessarily agree with respect to the quantiles predicted by the regression model. As pre-
viously discussed, we only consider in-sample modelling of the conditional distribution of
the NQSALMON log returns. Consequently, this imposes discipline in the number of pre-

21For simplicity, we refer to this as the regression line; however, in the case of multivariate quantile regression,
this is essentially a regression plane.
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dictors to include as covariates in a quantile regression model. This motivates the process
of variable selection.

The goal of variable selection, often called variable subset selection, is to identify and
select the most important and non-redundant variables from a large pool of candidate
variables – often called predictors in this context (Mao, 2004). Variable selection is often
considered the hardest part of model building (Ratner, 2010). To begin with, each variable
will to a larger extent add noise to the estimation of the dependent variable. Secondly,
too many variables might increase the chance of multicollinearity (Ruczinski, 2005). This
is associated with information overlap in the covariates (Kutner, Nachtsheim, Neter, & Li,
2005), and might in turn yield erratical behaviour of the coefficient estimates. Multiple
studies have showed that in many situations, a fitted standard linear regression model is
likely to be reliable when the number of predictors p is less than T/10 or T/20 (Harrell,
2015, p. 72), where T is the number of observations. Taking the average of T/15, this
would in our case imply a subset size of U ≤ 103/15 ' 7, as there are 103 observations
available to the quantile regressions. However, in low signal-to-noise environments such as
short- to medium-term financial time series, one can relax the T/15 rule to some extent.
The intuition is that such domains usually are complex in the sense that they represent the
interaction between a large set of variables. That being said, being on the safe side and
taking the phenomenon of overfitting into consideration, we have decided to set the subset
size, i.e. the number of covariates in each quantile regression model, to U = 8.

For standard linear regression, there are a plethora of frameworks for the selection of
U ≤ p variables from a pool of candidate predictors. Given some fixed model size U, the
simplest simultaneous selection method is the exhaustive-subset search. However, due to
the combinatorial nature of this search problem, in a minimally-restricted case, described
above, one would have to search (900

8 ) > 1019 combinations. Clearly, such combinatorial
search problems quickly become computationally infeasible. Heuristic approaches such
as adding or removing variables in a model to effectively yield the highest increase or
the lowest decline, respectively, in the model worth often prove useful. Common meth-
ods following such approaches are stepwise regression, forward, and backward selection
(Hastie, Tibshirani, & Friedman, 2009, pp. 57-61). However, some of them are greedy and
effectively omit large parts of the search space, i.e. combinations of candidate predictors.
Regularisation through various penalties is another approach.22 Recently, some of these
approaches have been adapted for quantile regression; for example, Wu and Liu (2009)
apply norm-based penalties such as the adaptive-LASSO and smoothly clipped absolute
deviation (SCAD) in this context. In this study, we apply a genetic algorithm, which is a
stochastic optimisation technique, to search the pool of candidate predictors.

5.4 VARIABLE SELECTION THROUGH A GENETIC ALGORITHM-ASSISTED SEARCH

The variable subset selection problem for quantile regression, and in our case with multiple
h-step ahead submodels across multiple quantiles τ, can be considered a constrained non-
linear combinatorial optimisation problem. As discussed, exhaustive testing of all com-
binations of variables will find the optimal solution according to some objective function
– in our case, the models’ respective worth metrics – but is a computationally infeasible
approach. The branch-and-bound algorithm and genetic algorithms (GAs), the latter be-
ing a particular approach of stochastic optimisation, can provide optimal variable selection
without exhaustive search in the context of standard linear regression (Siedlecki & Sklan-
sky, 1989). We utilise a tailored genetic algorithm for our particular problem, which, to
our knowledge, in the context of quantile regression is a novel approach to variable sub-
set selection. GAs have been used successfully in the context of variable selection for e.g.

22See e.g. the seminal introduction of the L1-penalty in this context, called the least absolute shrinkage and
selection operator (LASSO), by (Tibshirani, 1996).
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standard linear regression (i.e., OLS) problems (Acosta-González & Fernández-Rodríguez,
2007; Broadhurst, Goodacre, Jones, Rowland, & Douglas, 1997). However, we have not
found examples in the literature for the application of GAs for this selection problem in
connection with (linear) quantile regression. Thus, we expand the limited work on vari-
able selection for this class of statistical models.

The Quantile Regression Variable Selection Optimisation Problem

For each h-timestep ahead, where h ∈ {1, . . . , 12} ≡ H, we seek to find a subset of can-
didate predictors that will be fixed across the corresponding h-step ahead regressions for
quantiles τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90} ≡ T (differing only in regression coefficients). A
main reason for this design choice is interpretability; we are able to assess how each predic-
tor influences the h-step ahead distribution at various quantiles. Each timestep is 1 month,
thus the overall prediction model will span up to one year ahead. We will refer to each
step ahead as a quantile regression model’s respective horizon. Correspondingly, for each
horizon we model five quantiles, resulting in 12 · 5 = 60 quantile regressions. Together,
these comprise an approximation of the 1- to 12-step ahead conditional distributions of the
log returns of the NQSALMON index.

The non-linear combinatorial optimisation program to determine the optimal subset of
variables to be included is described in Table 4. Note that we consider the set of models
for each horizon h ∈ H as separate optimisation problems, quantified by the ∀h ∈ H in the
objective function in the table.

The Concept of Genetic Algorithms

Genetic algorithms (GAs) are stochastic optimisation techniques based on principles of nat-
ural evolution, initially developed by Holland (1992). Generally, they try to overcome prob-
lems of traditional optimisation algorithms, such as absence of continuity or differentiabil-
ity of the loss function, or many local optima (Acosta-González & Fernández-Rodríguez,
2007). The original genetic algorithm works in binary search spaces, that is, search spaces
consisting of binary strings (Siedlecki & Sklansky, 1989).23

Unlike hill climbing and other stochastic search approaches, a genetic algorithm does
not evaluate and try to improve a single solution; rather, it does this simultaneously for a
population, i.e. a set, of candidate solutions. To begin with, this set consists of randomly
initialised solutions. Each member of the population is an individual, with a corresponding
binary string representation that is called a chromosome. In each population generation (i.e.,
algorithm iteration), the algorithm will manipulate this set of solutions in a way similar to
that of natural selection. Initially, each individual’s fitness will be assessed. In general, bet-
ter fitness is associated with a better approximation to the optimal solution. "Fit" individ-
uals, i.e., promising solutions, are selected and recombined ("bred") through an operation
called crossover. The child chromosome resulting from the crossover operation will repre-
sent a solution being a synthesis of its parents. To avoid local optima, various randomisa-
tion procedures might be introduced. The most common one is the mutation operation, in
which a chromosome’s binary representation, at random, is slightly altered. Now, the pop-
ulation size is fixed, and only a predefined number of the best individuals will "survive" to
the next generation. Usually, more "fit" individuals in the pool of parents and children will
proceed in this last selection procedure of each iteration. In the end, the objective of the
GA is to create new population generations whose individuals gradually become better fit,
and thus provide better approximations to the solution of the optimisation problem. For
a thorough introduction to genetic algorithms, we refer to the seminal work of Goldberg
(1989).

23Through various encoding schemes, continuous search spaces can be considered as well.
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Table 4: Combinatorial optimisation program to determine the variable selection for quantile
regression model across h-step ahead horizons and quantiles τ ∈ T .

SETS AND INDICES

i ∈ N Explanatory variable i. There are 25 such
variables, as by Table 2

τ ∈ T Quantile τ
h ∈ H Horizon h to be modelled; i.e., which log re-

turns y(h) | Ft to model
l ∈ L Lag l
δ ∈ D Time window δ
t ∈ T Observation t

PARAMETERS

U ∈N The upper bound on the number of variables
to be included in a model, set to 8

ψ
(h)
i,l ∈ {0, 1} ∀(i, l, h) ∈ N ×L×H Indicator function with value 1 if lag l of ex-

planatory variable i is allowed for models be-
longing to horizon h, 0 otherwise

θi,δ ∈ {0, 1} ∀(i, δ) ∈ N ×D Indicator function with value 1 if time win-
dow δ of explanatory variable i is allowed, 0
otherwise

VARIABLES

φ
(h)
i,l,δ ∈ {0, 1} ∀(i, l, δ, h) ∈ N ×L×D ×H Indicator with value 1 if variable i at lag l

and time window δ is included in all quantile
regression models at horizon h, 0 otherwise.
Note: If 1, it reserves one column vector slot
xi in the design matrix X.

β
(h)
τ ∈ RU+1 ∀(τ, h) ∈ T ×H The U + 1-dimensional coefficient vector for

the h-step ahead τth quantile regression
model

OBJECTIVE FUNCTION

minimise ∑
τ∈T

∑
t∈T

(
τ − 1

y(h)t ≤xt β
(h)
τ

)(
y(h)t − x(h)t β

(h)
τ

)
∀h ∈ H

CONSTRAINTS

∑
i∈N

∑
l∈L

∑
δ∈D

φ
(h)
i,l,δ ≤ U ∀h ∈ H Maximum model size

φ
(h)
i,l,δ ≤ ψ

(h)
i,l ∀(i, l, δ, h) ∈ N ×L×D ×H Allowed lag at horizon

φ
(h)
i,l,δ ≤ θi,δ ∀(i, l, δ, h) ∈ N ×L×D ×H Allowed time window
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Applying a Genetic Algorithm to Variable Selection

A high-level overview of the genetic algorithm that have been applied to solve the problem
in Table 4 is described in pseudocode in Algorithm 1. Many of the functional aspects of the
algorithm have been omitted in the pseudocode, and will be described in the upcoming
paragraphs. Also, we will provide an overview of the parametrisation of the algorithm,
e.g. values for the crossover rate Pc and the mutation Pm, which is applied in the variable
selection search.

In the case of variable subset selection, each chromosome consists of bits φ
(h)
i,l,δ, and can

therefore be represented as a binary vector (or, equivalently, a binary string). Each bit
will then represent the presence (1) or absence (0) of the predictor, which again will be
used to generate a corresponding quantile regression model formulation. For instance, one
possible chromosome, denoted ai, could be ai = 00010011101. This can be translated such
that predictors 4, 7, 8, 9, and 11 are to be used in the modelling process, whereas candidate
predictors 1, 2, 3, 5, 6, and 10 are to be omitted.

Algorithm 1: Genetic algorithm for variable selection
Input: Horizon h for which the variable selection is to be solved
Output: Set of covariates {x1, x2, . . . , x8}

1 Construct an initial population set Π← {ai}pop_sizei=1
2 for ai ∈ Π do
3 eval_fitness(a_i)

4 Initialise the elite set E ← ∅
5 for i← 1 to n_generations do
6 Keep the elitism% of the most fit individuals in Π in E
7 Initialise mating set M← ∅, offspring O← ∅
8 for j← 1 to pop_size do
9 M← M ∪ run_tournament(Π)

10 for j← 1 to pop_size do
11 Select a pair aj, ak from M
12 if rand() < Pc then
13 O← O ∪ do_crossover(aj, ak)

14 else
15 O← O ∪ aj

16 for aj ∈ O do
17 if rand() < Pm then
18 Randomly select and flip one of the 1-bits in aj to 0
19 Randomly select and flip one the 0-bits in aj that belongs to

allowable_indices(h) to 1

20 for aj ∈ O do
21 eval_fitness(aj)

22 Π← combine(Π, O, E)
23 return The set of covariates {x1, . . . , x8} corresponding to the chromosome of the

best-fit individual in the final population Π

The first important function in Algorithm 1 is the fitness evaluation. Denoted func-
tionally as eval_fitness(ai), it involves assigning an individual, with its chromosome
ai, a numeric value representing its fitness, the lower the better. In particular, solution ai
is translated into a design matrix X which incorporates an intercept column 1T and up to
U = 8 candidate predictors, at some lag and time window (MoM or YoY). Recall that each
index d ∈ ai corresponds to a candidate predictor with a particular combination of lag and
time window. Now, this design matrix is used in the objective function described in Table
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4 to find coefficients β
(h)
τ , while at the same time yielding a value for the corresponding

objective function across quantiles τ ∈ T for the given horizon h ∈ H. As mentioned, a
lower fitness indicates that the corresponding set of quantile regressions in the submodel
of a horizon h to a better extent fit the data.

The fitness function is, however, slightly different from the aforementioned objective
function due to the fact that it also has to penalise infeasible solutions. In particular, one
outstanding problem associated with the mapping from chromosome (bit string) to a set of
covariates is that the latter may be infeasible solutions as specified by the optimisation pro-
gram. This problem may become particularly severe for constrained and/or combinatorial
optimisation problems (Gen & Cheng, 1999, p. 4), and the optimum may typically occur
at the boundary between feasible and infeasible regions of the solution space. Therefore,
instead of straight out discarding infeasible solutions, the fitness function penalises the
number of constraint breaches and corresponding "severities". This will force the genetic
search to approach potential optima from both sides of the feasible and infesible regions. In
our variable subset selection case, solution strings that have more than U = 8 bits of value
1 are penalised, in addition to penalties regarding violations of the other constraints in Ta-
ble 4. Intuitively, such constraint violations incur positive-valued penalties, as we seek to
minimise the overall fitness value. The result is that one observes a large number of infea-
sible combinations of candidate predictors in the early generations; however, this share of
individuals is generally close to zero in later generations (and discarded as final solutions).

Next, the crossover operation, defined in do_crossover, merges two candidate solu-
tions, called parents, to create a new child chromosome. Before running crossover, a mating
set M is initialised through the run_tournament(Π) function. In accordance with Broad-
hurst et al. (1997), in this tournament function, a weighted, random selection is applied
to the original population Π where the probability of a particular individual (representing
a particular subset) being selected is inversely proportional with its fitness value. Thus,
"fit" individuals (low fitness values), with correspondingly "good" subsets, have a higher
chance of entering the mating set and subsequently become parents. After having ini-
tialised M, iterations are run in which two parents (aj, ak) at random are selected from M.
With a given probability Pc, the crossover is carried through and a child is added to the
offspring set O, otherwise, the first parent aj is added to O. In our implementation, the
do_crossover(aj, ak) function saves the two parent chromosomes’ respective indices of
ones (recall that the chromosome length is fixed), and uniformly samples at most U indices
from this joint set. For instance, given two bit strings 00010011101 and 10001010110, with
U = 5, the joint index set of ones is {4, 7, 8, 9, 11} ∪ {1, 5, 7, 9, 10} ≡ {1, 4, 5, 7, 8, 9, 10, 11}.
Thus, a child chromosome might be represented by indices {4, 5, 7, 9, 11}, i.e. 000101010101.

The mutation is done with probability Pm, and works essentially as described in the
pseudocode in Algorithm 1. Specifically, it is a variant of the swap mutation (Gen & Cheng,
1999, p. 88). In our case, one randomly selected bit of the U = 8 1-bits is set to 0, and
another randomly selected, "feasible" bit is set to 1. A feasible bit is present at indices
found by the allowable_indices(h) function. For instance, a particular index of the
chromosomes may represent a lag that is allowed at some horizons h, but not allowed at
other horizons – as specified by the constraint φ

(h)
i,l ≤ ψ

(h)
i,l in the optimisation program in

Table 4.
Finally, there are some principles and procedures regarding the management of the pop-

ulation from generation to generation. An important principle that is employed is elitism.
Specifically, we retain the elitism_rate share of the most "fit" individuals as unaltered
copies at the beginning of each generation, placing them elite set E . At the end of each
generation, the elite set is merged in together with the offspring set O and the current pop-
ulation Π to create a new population through the Π ←combine(Π, O, E) operation. The
combine operation selects the pop_sizemost fit individuals from the union of these three
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sets. In other words, even though the elite individuals are unaltered throughout the gen-
eration, they still will have to "compete" with the other individuals at the end. However,
elitism is clearly an exploitation measure, ensuring that the best available solution has to
monotonically improve for every generation.

Parametrisation and Implementation of the Genetic Algorithm

The most significant GA parameters are summarised in Table 5. The selection of parame-
ters is governed by known, useful default values provided by Holland (1992), as well as
by some preparatory experimentation. Also, the available processing power is an impor-
tant factor: To achieve reasonable total running times for the selection procedure across all
horizons, the number of generations is set to the relatively modest number of 200. Also,
due to architecture of the multiprocessing system which is to be employed, the population
size is set to 230 – a multiple of the available processing cores. The GA is implemented in
R, supported by the quantile regression package quantreg, described by Koenker (2017).
Due to the parallel nature of the operations performed in every generation of the GA, e.g.
crossover and mutation, the code is designed to work in a multicore setting for appropriate
speedup.

Table 5: Parameters for the genetic algorithm that is used in the variable selection search.

PARAMETER VALUE DESCRIPTION

Population size pop_size = 230 The population size, i.e. the number of chro-
mosomes that is worked with in parallel per
generation. Essentially controls the search
depth. This is set to a multiple of the num-
ber of cores on the computer that is used in
the search.

Generations n_generations = 200 The number of generations, i.e. iterations, of
which to run the genetic algorithm. Essen-
tially controls the search depth. The given
number proves sufficient; in particular, the al-
gorithm usually converges to a minimum fit-
ness in less than half this number.

Elitism elitism_rate = 0.10 The percentage of chromosomes in the cur-
rent population (before crossover and muta-
tion) to retain unaltered to the next genera-
tion. Important exploitation parameter.

Crossover rate Pc = 0.60 The probability of carrying through a
crossover for a particular pair of covariates.
Important exploitation parameter (as it
preferably merges "fit" chromosomes).

Mutation rate Pm = 0.80 The probability of carrying through a muta-
tion for a particular (child) chromosome. Im-
portant exploration parameter (as it may in-
troduce entirely new variables).

5.5 MODEL RATIONALE AND CHALLENGES

The overall approach, building specific models based on a general pool of candidate predic-
tors through some process of variable selection, draws resemblance to the general-to-specific
paradigm of Campos, Ericsson, and Hendry (2005). That is, the modeller simplifies a gen-
eral model, which satisfactorily fits the evidence, to a more specific theoretical framework.
In our case, we start out with a slightly restricted pool of candidate predictors, as outlined
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initially in this chapter – as well as Chapter 3. Thus, one might argue that the overall ap-
proach is not entirely general in nature, as we have utilised industry expertise in order to
restrict the problem. Equivalently, the argument of data mining, which frequently is used
with respect to the general-to-specific framework (Hoover & Perez, 2000), does not carry
as large weight here as in the "unrestricted search" case. However, we will discuss the
choices done with respect to the distribution model (here being linear quantile regression)
and overall problem parametrisation (e.g. the choices of quantiles τ ∈ T to be modelled,
as well as horizons).

On the Choice of Distribution Model: Linear Quantile Regression

There are several advantages of quantile regression relative to simpler approaches, such
as the standard linear regression framework. The main idea is that a dense set of quan-
tiles essentially describes any conditional distribution function (Alexander, 2008a). This is
useful in the case of predicting the NQSALMON (log) returns, as one might in a detailed
and structured way assess how explanatory variables and information available at some
time t might impact the h-step ahead returns. Now, as the justification for making predic-
tion models for the conditional distribution of the log returns of the NQSALMON, we will
reason for why quantile regression in particular is a suitable framework in this context.

Quantile regression provides a simple and intuitive framework for scenario analysis
and assessing covariate effects (Fahrmeir, Kneib, Lang, & Marx, 2013, p. 598). Ranging
a particular covariate from its minimum to its maximum past observed value, one might
easily retrieve the impact on the estimated conditional distribution. Similarly, higher-order
effects can be assessed.24 This is useful in our case, as there are intuitively several candidate
predictors that either alone or together ought to have an impact on the salmon price log
return. Should these predictors be chosen in the variable selection process, one might try
out corresponding scenario analyses.

Relative to an approach such as standard linear regression, quantile regression avoids
several restrictive assumptions; for example, the error terms need no longer follow a spe-
cific type of distribution, neither are they required to be homoscedastic (Fahrmeir et al.,
2013, p. 598). This might be useful as the (log) returns of the NQSALMON visually seems
to exhibit some volatility clustering, evident in Figure 3c. This might again impact a regres-
sion model’s residuals, violating the OLS assumption of homoscedasticity. Furthermore, in
standard linear regression, the mean is modelled rather than respective quantiles. As the
median (or other quantiles) are less sensitive to outliers, quantile regression might prove
robust in this setting. Generally, Koenker and Hallock (2001) find that inference for quan-
tile regression is, if anything, more robust than most other forms for inference commonly
found in econometrics. That being said, as evident by Figure 3a-3d, the empirical, weekly
log return distribution of the index is not particularly heavy-tailed; however it is clear that
monthly movements might be of greater magnitude.

Nonetheless, there are some drawbacks of quantile regression in our specific application
of predicting the log return of NQSALMON, however we argue that there does not seem to
be other appropriate frameworks in this regard. In applications, there is often a particular
interest in regression quantiles that describe extreme observations in terms of covariates
(Fahrmeir et al., 2013, p. 598). For agents in energy markets such as that of the power
market, modelling the tails is often more important than formulating central expectations
(Hagfors, Bunn, Kristoffersen, Staver, & Westgaard, 2016). However, in our case, we only
consider a sample size of n = 103 log returns. Thus, trying to fit extreme quantiles, say
at levels smaller than ∼ 0.01 or larger than ∼ 0.99, is, to put it mildly, impractical. With

24By higher-order effects, we mean that the predictors themselves interact, for instance by having slight collinear-
ity. Thus, the increase in one predictor might be correlated with an increase in another, and one has to take into
account this joint effect in a regression.
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such a small sample, considering tail dependencies could possibly require distributional
assumptions. Thus, one moves into the area of "unknown unknowns" (Taleb, 2009), that
is, we have neither observed nor are able to fit a particular distribution for extremes in
the log returns of the NQSALMON. In the end, we argue that our approach with quantile
regression is sound – we are primarily interested in a robust model for the more "central"
expectations rather than the extremes, as there are few literary examples in general of a
distribution-based prediction model for the returns of the price of salmon.

In this study, we employ a linear quantile model, which, by definition, may be unable
to capture certain non-linear relationships (Landajo, De Andrés, & Lorca, 2008). One might
consider to specify and fit parametric non-linear models for the relevant conditional quan-
tiles to deal with a non-linear quantile regression problem (Joshua, Victor, & Fernandez-Val,
2013). However, it requires rich a priori knowledge to specify a functional form for each con-
ditional quantile, which is scarce in our case. Equivalently, inherently non-linear models
such as neural networks will usually require many degrees of freedom to make a good fit
(Bishop, 2006, Chapter 5), which, as previously described, quickly may result in overfitting.
Hence, we apply a linear quantile regression approach to model the price distribution for
the NQSALMON.

On Model Parameters: Choices and Challenges

The model overall utilises a monthly time resolution, even though the salmon spot price is
reported on a weekly basis. In particular, many important fundamental, exogenous vari-
ables are reported on a monthly basis. Furthermore, the signal-to-noise ratio might be
increased with a courser time scale (Aas & Dimakos, 2004). Also, market participants are
often interested in long-term price movements, and a monthly resolution might therefore
suffice. However, such a resolution also yields equivalently few observations for which to
estimate respective models. As discussed above, due to the 103 log return observations,
the choice of monthly resolution makes us unable to assess more "extreme" quantiles. That
being said, due to the fact that exogenous variables often are available only at course time
scales, one would eventually have a strategy to "smooth" out such observations to obtain
e.g. weekly estimates. The strength of a monthly time resolution is that it fits all explana-
tory variables, and does not depend on any smoothing assumptions.25

The horizon set h ∈ {1, · · · , 12} ≡ H is deemed appropriate for the h-step ahead mod-
elling, as it reflects the desired forecasting range for market participants. Since the produc-
tion cycle is long, up to approximately three years from the spawning of smolt to harvest,
slaughtering and processing (Marine Harvest, 2016), it makes sense to have a long-term
picture of the plausible price paths of the particular commodity price. However, the cho-
sen set of horizons effectively restricts the sample size slightly more. That is, to be able
to fit the 12-month ahead price, the last twelve observations of the sample have to be cut
off. Thus, as the last observation of the NQSALMON in our data set is of Jan. 2017, the
sample which is used to fit the model has to end in Jan. 2016. From this, the whole range
of horizons h ∈ {1, . . . , 12} can be assessed, whereas e.g. for Feb. 2016 the 12-month ahead
value would not be available.

The model size is restricted to U = 8 covariates to create parsimonious models – avoid-
ing issues such as overfitting and other issues when applied in an out-of-sample context,
as discussed previously in Section 5.3. Including too many variables in a linear quantile
regression model might cause overfitting, and, thus, unsatisfactory out-of-sample perfor-
mance. We could possibly have fitted even sparser quantile regression models, however, a
part of our approach is to consider how the candidate predictors interact and jointly impact

25Smoothing monthly observations of exogenous variables to weekly observations could result in badly be-
havioured log returns. For instance, linear smoothing would yield constant weekly log returns between each two
respective, monthly data points – the intuition being that the (price) series derivative is constant.
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the h-step ahead log return distribution.
Quantiles τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90} ≡ T are considered appropriate in ap-

proximating the h-step ahead log return distribution. As previously discussed, due to the
limited number of observations, it does not makes sense to model extreme quantiles in the
quantile regression framework. Furthermore, due to the small sample size, specification
procedures, such as Christoffersen’s test for independence, might be particularly sensitive
to violations at extreme quantiles.

An important aspect with respect to the quantiles is that the variable selection is done
across quantiles for each horizon h ∈ H, as outlined in Algorithm 1. This is an important
design choice, and has several motivations. Firstly, this approach avoids unnecessarily
many different covariates (12 · 8 = 96 versus 12 · 8 · 5 = 480). Secondly, this introduces a
constrained search for suitable variables, which has to a smaller extent been carried through
in existing literature. Finally, the results will be slightly more interpretable in the context
of scenario analyses and sensitivities with respect to the selected covariates; one might for
instance consider how the coefficients β

(h)
τ vary across quantiles τ ∈ T for some selected

h-step ahead submodel.

In-Sample Modelling Due to Lack of Data

In additional to the reduction in data points due to the aforementioned horizons h ∈
{1, . . . , 12}, the amount of data points is furthermore reduced by the fact that not all past
history is available for all the exogenous variables. Even though the NQSALMON ranges
back to Jan. 1995, we only have data for e.g. Smolt release, #individuals (Norway), ranging
back to Jan. 2005.26 Also, the usage of particularly large lags, for instance up to 17 months
in the smolt release case, as per Table 3, effectively shrinks the data set further, having the
first observation in Jul. 2007.

A particular caveat of the few data points is the design choice to employ the whole,
available data set to fit the model. That is, we do not perform any out-of-sample modelling.
In particular, the results and robustness of tests for the quantile regression models’ respec-
tive out-of-sample predictive power would be no better than the size of the out-of-sample
data set. A common split of the in- and out-of-sample data is 80/20, thus hypothetically
∼ .2 · 103 ' 21 data points would be available out of sample. For a "tail" quantile, such as
τ = 0.10, one would expect very few observations below, in this case ∼ 2. Specification
tests, such as Kupiec’ unconditional coverage test, would in such cases be highly sensitive
to small deviations in the number of out-of-sample data points that fit particular quantiles.
We acknowledge that such prediction models are no better than they perform in an out-
of-sample setting; also, it would be of interest to assess whether or not the GA is able to
select candidate predictors that jointly yield a set of out-of-sample predictive quantile re-
gression models. However, the methodological approach might prove interesting enough;
also, one might draw some qualitative and quantitative conclusions based on the covariates
and associated regression coefficients across quantiles. Ultimately, the prediction model is
unquestionably functional in the context of forecasting. It predicts the salmon price 1- to
12-months ahead, based on the information available at the start of the period. Thus, it can
be applied to forecast the salmon price, both out-of-sample and in actual forward-looking
situations.

5.6 SPECIFICATION TESTS

After the selection of variables for all submodels, we perform various specification tests
for the corresponding quantile regression models. At first, we consider the coverage tests

26As we do not utilise dummy variables in the regression, we essentially have monthly values from Jan. 2005
to Jan. 2016 in the observation set.
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of Kupiec (1995) and Christoffersen (1998), to evaluate whether or not the observed ex-
ceedances at the quantiles of interest are in line with what is predicted by the respective
regression. Note that the aforementioned tests are constructed for evaluating interval fore-
casts (Christoffersen, 1998). In this study, however, they are applied for evaluating the
quantile regression models in-sample. Next, we apply the novel quantile regression equa-
tion specification error test (QRESET) by Otsu (2009) to assess whether or not there are
non-linear effects in the quantile regressions that have not been accounted for.

Unconditional Coverage: The Coverage Rate and the Kupiec Test

Initially, we evaluate the coverage rate of each quantile regression model. This is essentially
the proportion of observed exceedances below some predicted quantile τ of the conditional
distribution y | X. For instance, in a particular model which is fitted to n = |T| = 103
observations with τ = 0.10, one would expect the corresponding coverage rate, equivalent
to 0.10 · 103 ' 10 exceedances.

Our first statistical test for model specification is that of Kupiec (1995), which considers
whether or not the quantile regression model provides the appropriate unconditional cov-
erage. The test is likelihood-based, and compares the observed proportion of exceedances
πobs against the expected proportion of exceedances πexp ≡ τ. Now, using the notation of
Alexander (2008a, p. 359), an exceedance is defined by the following indicator function:

It =

{
1, if yt falls into a given interval, i.e. yt is an exceedance

0, otherwise, i.e. yt is a non-exceedance,
(10)

where the given interval is given as all values below the predicted quantile. It is assumed
to follow an i.i.d. Bernoulli process. The unconditional test statistic is given as:

−2 ln(LRuc) = −2
[
n0 ln(1− πexp) + n1 ln(πexp)− n0 ln(1− πobs)− n1 ln(πobs)

] asy∼ χ2
1, (11)

where n1 is the number of exceedances, and n0 is the number of non-exceedances. More-
over, n = n1 + n0 is the number of observations in the sample, corresponding to the total
number of observations – that is, n = |T| = 103. Thus, πobs =

n1
n .

Conditional Coverage: The Christoffersen Test

A drawback with the Kupiec test is that it does not take into account whether or not the
quantile exceedances are related, that is, whether they tend to appear in clusters or are iso-
lated. To account for this, we employ the conditional coverage test of Christoffersen (1998).
Informally, it tests whether an exceedance today influences the probability of an exceedance
tomorrow. It jointly tests unconditional coverage, as before, as well as independency in the
exceedances. The test statistic can be written as

−2 ln(LRcc) =− 2 ln(LRuc · LRind) = −2
[
n0 ln(1− πexp) + n1 ln(πexp)

− n00 ln(1− π01)− n01 ln(π01)− n10 ln(1− π11)− n11 ln(π11)
] asy∼ χ2

2,
(12)

where
π01 =

n01

n00 + n01
, and π11 =

n11

n10 + n11
.

Here, nij represents the number of times an observation of indicator value i is followed by
an observation of indicator value j. Thus, clustering in exceedances are identified by high
proportions π11. In small samples, which is particularly relevant for our case with n = 103,
it might be likely that e.g. n11 = 0, making the test statistic in Eq. 12 being handled
slightly differently. In particular, it can be shown that in the corresponding (log) likelihood
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function, the term −n10 ln(1− π11) + n11 ln(π11) in the parentheses can be removed alto-
gether (MathWorks, 2017), and the remaining, reduced likelihood ratio −2 ln(LRcc) will still
be well-defined. This equivalently holds for the case when n00 = 0, again implying that
π01 = 1. In this case, the n00 ln(1− π01)− n01 ln(π01) term will be removed in Eq. 12.

Testing for Non-Linearities: The QRESET Test

As the Kupiec and Christoffersen tests only utilise information on past quantile violations,
they might not have satisfactory capability in detecting misspecified models. To increase the
power, Bunn, Andresen, Chen, and Westgaard (2013) suggest that one may want to con-
sider whether or not violations can be predicted by including other data in the information
set such as past returns and estimated volatility. Due to our small sample, we do not adapt
this method, as incorporating long lags will yield correspondingly short data sets for test-
ing. The same argument applies when we choose to disregard the dynamic quantile (DQ)
test of Engle and Manganelli (2004). Thus, we do not conduct tests to investigate the areas
in which the prediction model might be misspecified, and what variables might help to
mitigate this misspecification. Rather, we employ a novel, functional form test to assess the
validity of using linear quantile regression. This is the novel quantile regression equation
specification error test (QRESET), introduced by Otsu (2009). This test can be used for de-
termining the soundness of some particular functional specification of a quantile regression
model. It is based on the regression equation specification error test (RESET) by Ramsey
(1969). Except for using quantile regression estimators rather than least-squares estimators,
the implementation of the QRESET is almost equivalent as that of the RESET. In particu-
lar, this novel test verifies whether or not a quantile regression is correctly specified in the
sense of being linear in its covariates. Each variant of the test, denoted QRESET(p), adds
powers to the fitted dependent variables ŷ up to order p ≥ 2 and check the significance of
those added covariates. For specific details regarding our implementation of the QRESET
test, we refer to Appendix A.8.

There are several reasons for why this test fits our domain: Firstly, it is easier to imple-
ment than nonparametric tests, as it is free from choices of kernel function and bandwidth
parameters (Otsu, 2009). Furthermore, in small sample sizes, typically less than 100 (recall
that, in our case, |T| = 103), the test may be more robust than the nonparametric kernel-
based specification test for quantile regression introduced by Zheng (1998). That being
said, there is no clear ordering in the suggested number of powers p to include of the fit-
ted dependent variable. As the sample size increases, the differences among the QRESETs
become insignificant (Otsu, 2009). However, the QRESET(2), which correspondingly adds
the covariate ŷ2, is more suited than QRESET(3) and QRESET(4) for small samples of size
≤ 200. Moreover, for polynomial misspecifications, QRESET(2) is generally more powerful
than the other QRESET(p)s (Otsu, 2009). Thus, QRESET(2) is probably more applicable for
evaluating the model specification in this study.
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6
RESULTS AND DISCUSSION

We structure our evaluation of the overall model in the chronological order of its compo-
nents, which has been outlined in Section 5.1. At first, we present relevant algorithmic
results, selected model statistics, and overall performance of the genetic algorithm (GA)
that is applied in the variable subset selection search. Next, we consider the performance
of each submodel for each horizon h ∈ H, and its corresponding quantile regressions, with
respect to goodness-of-fit. That is, we evaluate each quantile regression’s ability to explain
the variation in the salmon price. We then proceed with a set of measures for determin-
ing the soundness of the specifications of the quantile regressions. Initially, this is done
through evaluating the coefficient significances and determine if the quantile regressions
can be considered significant in some general sense. Next, we examine whether there exist
misspecifications – such as dependencies in the exceedances of the predicted quantiles or
non-linearities that are unaccounted for. Finally, the selected covariates, with respective
coefficients and significances, is discussed in context of the variable hypotheses that were
outlined in Chapter 3.

6.1 GENETIC ALGORITHM SEARCH EVALUATION

In this section, we present relevant results and statistics from running the genetic algorithm
(GA). The intent of using variable selection is to evaluate p = 357 candidate predictors and
shrink this set down to parsimonious submodels with U = 8 covariates across the twelve
horizons. The GA, whose implementation details and parameters are provided in Section
5.4 in the methodology, is run for each horizon h ∈ H in accordance with Table 4. The
selected covariates for each submodel, together with coefficients and pseudo-R-squared in
the corresponding regressions, can be found in Tables 15-18 in Appendix A.3.

A visualisation of the per-generation performance for the runs of the GA, each run be-
longing to a particular horizon h ∈ H, is presented in Figure 6. In Figure 6a, the develop-
ment of the fitness value of the best-fit individual per generation is displayed. As specified
in the parametrisation given in Table 5, the GA is run for 200 generations for each horizon
h – in line with what has been used as stopping criterion in the literature for variable selec-
tion (Broadhurst et al., 1997). However, evident from both plots in Figure 6, the algorithm
converges relatively quickly for all horizons. By convergence, we mean that as the genera-
tions proceed, the algorithm gets closer and closer to a specific value. As evident by Figure
6a, the improvement (i.e., reduction) in fitness is generally small after approximately 50
generations, and the usage of the term convergence is therefore appropriate in this setting.
Note that the lack of solution improvement not necessarily implies that a global optimum
in the search space of candidate predictors is reached – the search might as well have found
a local optimum. However, by experimentally running the algorithm multiple times, with
slightly varying parameter settings, we are able to verify that the fitness values as plotted
in Figure 6a generally are close to the global optimum. Consequently, the plot’s horizontal
axis is cut at 100 generations, as the improvement in the final 100 generations is minuscule.
Lastly, in the context of variable selection for quantile regression, this study is a proof-of-
concept of the usage of GAs. Thus, we let actual comparison with branch-and-bound, or
greedy algorithms such as forward or backward selection, be left to further benchmarking
studies.

Next, in Figure 6b, the development in the R1(τ) : τ ∈ T for the individual with the
best (i.e., lowest) fitness in each generation is tracked for each horizon h ∈ H. The R1(τ)

metric, also referred to as pseudo-R-squared, creates a local measure for the goodness-of-fit
for a particular quantile regression, by calculating a weighted sum of the absolute resid-
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Figure 6: Various metrics for the "best-fit" individual in each generation of the genetic algorithm, for
each horizon.

uals over the in-sample period (Koenker & Machado, 1999). Generally, a higher pseudo-
R-squared means that the regression is able to explain a larger amount of variation at the
given quantile. For a detailed specification of the R1(τ), see Appendix A.7. Now, as a sub-
model contains five quantile regressions, we have that R1(τ) denotes the average across
these quantiles. Back to Figure 6b, we clearly observe convergence also in this case. Fur-
thermore, the fitness plots verify that lower fitness implies better overall submodel fit by
the R1(τ) metric. However, it is of importance to note that the initial noise in Figure 6b is
due to the fact that infeasible submodels are fitted, which temporarily might increase the
goodness-of-fit. By infeasibility, we refer to a solution whose respective subset of selected
covariates violates one or more of the constraints in Table 4. The algorithm penalises (i.e.,
increases) the fitness of such infeasible submodels to a slight extent, thus the infeasible
covariates are not present in later generations due to this impact on the fitness function.
However, as initialisation is done at random, infeasible covariates might be present even in
the best-fitness solution in earlier generations.

The apparent convergence of the implemented algorithm, given the current parametri-
sation, is verified by similar findings in the literature on GAs. Frost and Molt (1998) find
good convergence properties of a GA considering p = 15 candidate predictors for princi-
pal component regression (PCR), with the corresponding algorithm being able to solve the
problem with a population size of 200 within 20 generations. For comparison, in this study,

6. RESULTS AND DISCUSSION 43



we employ a population size of 230, a multiple of the number of available computational
cores (23),27 and experience more or less full convergence in approximately 50 generations.

Depending on the horizon, there is some variation in running time. Specifically, each
run for a horizon h lasts from 30 minutes to approximately 1 hour. This variation is due
to our structure on lags and time windows as defined in Table 3. In particular, we see that
shorter horizons require more running time relative to longer horizons. Shorter horizons
typically offer a larger subset of candidate predictors in accordance with the constraints
outlined in Table 4. On the other hand, longer horizons will typically constrain the search
space, i.e. the number of available predictors, significantly, so the overall number of can-
didate predictors in this case will be � 357. This results in longer horizons potentially
yielding fewer, highly predictive combinations of covariates, and thus the submodels will
generally have a poorer fit. Visually, we observe this phenomenon in Figure 6, where longer
horizons have higher fitness values and correspondingly lower goodness-of-fit. On the
other hand, one could expect a better fit with increasing horizon as e.g. the signal-to-noise
ratio might improve accordingly.

6.2 IN-SAMPLE MODEL PERFORMANCE

Model Performance

The goodness-of-fit metric R1(τ) was estimated for all quantile regressions.28 For the re-
sults, we refer to Table 6. Here, from the lowermost row of the table, it appears that the
performances of the cross-models for all quantiles are rather evenly distributed.29 However,
the cross-models are generally more successful in explaining the variation in the salmon
price for the tails of the distribution. Specifically, the cross-model for quantile τ = 0.10
achieves the best performance, producing a pseudo-R-squared of 0.40.

Table 6: Aggregated results. Values for R1(τ) for the model.

Horizon τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90 Average
h = 1 0.25 0.23 0.23 0.24 0.27 0.24
h = 2 0.43 0.35 0.35 0.39 0.40 0.39
h = 3 0.48 0.44 0.42 0.40 0.43 0.43
h = 4 0.47 0.38 0.42 0.43 0.46 0.43
h = 5 0.39 0.32 0.35 0.40 0.42 0.37
h = 6 0.45 0.37 0.34 0.35 0.39 0.38
h = 7 0.42 0.33 0.32 0.37 0.38 0.38
h = 8 0.45 0.36 0.30 0.31 0.31 0.35
h = 9 0.37 0.35 0.30 0.34 0.34 0.34

h = 10 0.39 0.30 0.18 0.13 0.20 0.24
h = 11 0.34 0.31 0.29 0.21 0.23 0.28
h = 12 0.39 0.37 0.33 0.23 0.21 0.31

Average 0.40 0.34 0.32 0.32 0.34 0.35

Focusing on the rightmost column of the table, we observe that the submodels’ perfor-
mance in terms of pseudo-R-squared is comparatively better for horizons h ∈ {2, 3, 4, 5, 6, 7}.

27On a technical note, we run the algorithm on a Windows Server 2012 R2 system, employing two Intel® Xeon®

X5650 2.67 GHz CPUs in which a total of 23 logical cores are utilised.
28We attempted to incorporate other goodness-of-fit metrics as well, such as the AIC and BIC. However, most

metrics, including the AIC and BIC, can not be used to compare models of different data sets. Also, the same
dependent variable have to be used for all the models (Hyndman, 2013). Hence, as our submodels utilise different
subsets of covariates, and forecast over twelve horizons yielding twelve different dependent variables, we have
not been able to identify any metrics other than the R1(τ) to compare the performance.

29By the term cross-model for some quantile τ, we refer to the quantile regressions for a particular quantile τ ∈ T
across all submodels. Therefore, each cross-model will contain twelve regressions for the quantile τ, each such
regression belonging to a particular submodel.
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Also, worth noticing is the relatively poor R1(τ) produced by horizon h = 1. A possi-
ble explanation might be the presence of noise in the log returns of NQSALMON over
the very short term, and a corresponding low signal-to-noise ratio. Moreover, the poor
performance of the submodels for longer horizons, compared to the performance of the
horizons h ∈ {2, 3, 4, 5, 6, 7}, might be a consequence of restrictions imposed by the lag
structure. With reference to the discussion in Chapter 3 and Section 5.4, a richer variable
search space is considered when the genetic algorithm (GA) selects covariates for submod-
els on shorter horizons. Longer horizons should intuitively yield a comparatively lower
predictive power, as the variable search space for these horizons are more constrained.

Visualisation of In-Sample Predictive Power

Figure 7 illustrates the in-sample predictive power of the submodels for all horizons h ∈
{1, . . . , 12}. See Tables 15-18 in Appendix A.3 for the covariates, with corresponding coeffi-
cients, employed by the twelve submodels. As evident from the figure, the submodels cap-
ture the fluctuations in the salmon price distribution reasonably well across the 12-month
period, given the information available at the end of July 2013.
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Figure 7: Visualisation of the in-sample predictive power of the 1- to 12-month ahead submodels.
Based on the information available at July 31st 2013, the price distributions for August 31st 2013

through July 31st 2014 are predicted.

6.3 IN-SAMPLE MODEL SPECIFICATION

Several tests have been conducted to examine the soundness of the model specification. In
particular, we test for the significance of the covariates’ coefficients, the model’s ability to
provide the correct unconditional and conditional coverage, and whether it has a correct
specification in terms of being linear in its covariates. In the following subsections, the
corresponding test results are presented and discussed.

Significance of the Covariates’ Coefficients

We assess the significance of the covariates’ coefficients to further examine their predic-
tive power and the robustness of the model. For a complete overview of the significance
of the covariates in the model, see Tables 15-18 in Appendix A.3. Here, we present only
aggregated results, as seen in Table 7 and Figure 8. Table 7 illustrates the number of co-
efficients that are significant for the model at the 1% level, from which we notice that 111
out of 540 are significant at the 1% level. Figure 8 provides a detailed representation of the
significance of the coefficients for the different cross-models.

From the lowermost row of the Table 7, we observe that the significance of the coeffi-
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Table 7: Aggregated results. Number of occurrences of coefficient p-values less than 0.01 (including
intercept), for the model.

Horizon τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90 Sum
h = 1 0 2 0 2 1 5
h = 2 2 5 3 3 0 13
h = 3 0 4 3 2 0 9
h = 4 2 2 2 2 2 10
h = 5 1 1 3 5 0 10
h = 6 1 3 3 2 0 9
h = 7 1 4 1 6 0 12
h = 8 1 3 1 2 0 7
h = 9 0 4 3 3 0 10

h = 10 3 3 2 1 1 10
h = 11 2 3 2 1 1 9
h = 12 1 4 2 0 0 7
Sum 14 38 25 29 5 111 of 5401

1) 9 coefficients · 5 quantiles · 12 horizons = 540. Of the 111, intercepts constitute 30.

cients is greatest around the central quantiles, that is, for τ ∈ {0.25, 0.50, 0.75}. Conversely,
the occurrence of coefficients significant at the 1% level is much less frequent at the tails,
which likely is a consequence of few observations in our data sets, as discussed in Section
5.5. We have 103 log return observations to base the model on, implying on average ∼ 10
exceedances and non-exceedances for the cross-models for τ ∈ {0.10, 0.90}. From Figure
8, it is clear that the tails not only have few occurences of coefficients significant at the 1%
level, but at the 5% and 10% levels as well.
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Figure 8: Aggregated results. Distribution of p-values for the coefficients of the five cross-models.

Examining the significance of the coefficients over the submodels, we observe from
the rightmost column of Table 7 that significances at the 1% level are relatively evenly
distributed. However, the submodels for horizons h ∈ {1, 8, 12} compare negatively to
the others. In particular, for horizon h = 1, only five coefficients are significant at the 1%
level. This is somewhat counterintuitive, as this submodel is the only one that is allowed
to select its covariates from the entire search space. As mentioned in the previous section,
a possible explanation might be the presence of noise in the salmon price over the very
short term. On the other hand, horizon h = 2 stands out as the one with the highest
number of coefficients with significance at the 1% level. When examining this submodel
more thoroughly, focusing on the occurrence of coefficients significant at the 5% and 10%
levels from Table 15 in Appendix A.3, we observe that the submodel has a higher number
of coefficients at these significance levels than the average submodel. This is also the case
for the submodels for horizons h ∈ {3, 4}, which, indeed, indicates that the larger variable
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search space available for the shorter horizons increase their ability to predict the variation
in the salmon price distribution.

Model Specification Test Results

Here, the results from the Kupiec, Christoffersen, and QRESET tests are presented. See
Section 5.6 for the motivation behind including these tests, and a description of how they
are implemented. The complete test results, together with coverage rates for the model, are
given in Table 19 in Appendix A.4. In line with the previously presented results, we only
include the aggregated test results here, as seen in Table 8 and Table 9.

Table 8: Aggregated specification test results for the cross-models. The coverage rate displays the
average for each cross-model, while the numbers assigned to the tests correspond to the number of

quantile regressions in the cross-model that pass the test under consideration. That is, their test
statistics yield no significance for p<0.1. Thus, optimal score = |H| = 12.

Quantile Average coverage rate Kupiec test Christoffersen test QRESET(2) QRESET(3) QRESET(4)

τ = 0.10 0.10 10 11 12 10 12
τ = 0.25 0.25 12 5 12 0 1
τ = 0.50 0.50 12 1 10 0 3
τ = 0.75 0.74 12 5 2 2 5
τ = 0.90 0.89 12 4 11 12 12

Average1 – 97% 43% 78% 40% 55%

1) The proportion of quantile regressions that pass the tests for the overall model.

Table 9: Aggregated specification test results for the submodels. The coverage rate displays the
average for each submodel over all quantile regressions. The numbers assigned to the tests

correspond to the number of quantile regressions that, for each submodel, pass the test under
consideration. That is, their test statistics yield no significance for p<0.1. Thus, optimal score =

|T | = 5.

Horizon Average coverage rate Kupiec test Christoffersen test QRESET(2) QRESET(3) QRESET(4)

h = 1 0.49 5 3 4 3 4
h = 2 0.51 5 4 4 2 3
h = 3 0.51 5 2 5 3 3
h = 4 0.50 5 3 4 1 2
h = 5 0.51 5 2 5 2 3
h = 6 0.50 4 2 4 2 4
h = 7 0.47 5 2 4 2 3
h = 8 0.49 5 3 4 2 2
h = 9 0.49 5 2 4 2 3
h = 10 0.49 4 1 2 1 2
h = 11 0.49 5 1 4 2 2
h = 12 0.50 5 1 3 2 2

Average1 – 97% 43% 78% 40% 55%

1) The proportion of quantile regressions that pass the tests for the overall model.

Coverage Rate and the Unconditional Test of Kupiec

Generally, the model produces satisfactory coverage rates, especially for exceedances at
central quantiles. By considering Table 8, it is clear that the coverage rates for the cross-
models are in agreement with the nominal coverage rates that are to be fitted. For the
central quantiles τ ∈ {0.25, 0.50, 0.75}, the variation in the submodels’ coverage rates is low.
In other words, each predicted interval is fairly in line with the corresponding quantile,
irrespective of the submodel under consideration. However, the average coverage rates are
somewhat misleading for the cross-models for quantiles τ ∈ {0.10, 0.90}, as the coverage
rates vary considerably across the submodels. Evident from Table 19 in Appendix A.4,
for quantile τ = 0.10, the coverage rates range from 0.049 to 0.155, and it is merely a
coincidence that the average coverage rate equals 0.10 for the corresponding cross-model.
For the τ = 0.90 quantile, the coverage rates vary from 0.854 to 0.932. To explain the results
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for the cross-models for these two quantiles, we refer to the discussion in Section 5.5. The
number of observations in the log returns is limited to 103, which undoubtedly inhibits the
model’s ability to capture the tail properties of the corresponding distributions.

Despite the relatively wide range of coverage rates produced by the submodels for the
quantiles τ ∈ {0.10, 0.90}, the results from the Kupiec test are generally insignificant. As
seen from Table 8, all cross-models achieve satisfactory unconditional coverage, except for
two instances for quantile τ = 0.10. Now, if we consider Table 9, which presents the test re-
sults for the submodels, it is clear that the two instances of incorrect unconditional coverage
occur for the submodels for horizons h ∈ {6, 10}.

Note that, although the submodels appear to provide the correct unconditional cover-
age, this is no more than a minimum requirement. This follows from the formulation of
linear quantile regression, explained in Section 5.2. Specifically, the objective function ef-
fectively weights the data observations to be distributed above and below the regression
line in the same proportion as the modelled quantile of interest.

The Conditional Test of Christoffersen

Of all the 60 quantile regression models under consideration, the Christoffersen test is sig-
nificant for more than a half at the 10% level, as depicted by the lowermost row in Table 8.
As evident by the squared log returns in Figure 3c, the log returns of the NQSALMON have
been subject to occasional volatility shifts in the past, with periods of raised volatility. The
fact that the Christoffersen test proves significant across so many submodels justifies that
the current model is unable to capture higher-order moment dynamics of the NQSALMON
log returns.

By Table 19 in the Appendix A.4, it is apparent that the Christoffersen test is significant
at the 1% level for 12 out of 60, i.e. 20%, of the quantiles. In all these cases, however, the
Kupiec test passes. Thus, the unconditional coverage distribution does not seem to change
over the sample. Correspondingly, the conditional coverage test fails because the inde-
pendence test fails . According to Alexander (2008a, p. 360), this is a common case when
backtesting e.g. value-at-risk (VaR) or other quantile models that are unable to predict
conditional volatility.

The failure of the respective Christoffersen tests can at first be investigated through
considering quantiles. Some particular quantiles, across all submodels, are more frequently
yielding test violations. Specifically, the median quantile is significant at all horizons h 6= 1.
Generally, we see that the predicted median log return tracks the realised log return quite
well, however the pattern in exceedances is striking, as visualised by Figure 9. The figure
displays the median quantile predictions in the particular case of h = 10. An exceedance
is signified by a grey bar in the figure. It is clear that the exceedances in the plot exhibit a
high degree of clustering, with the π11 rate being 0.71. Equivalent patterns can be found in
the same set of median quantiles. However, there are longer periods in which the predic-
tions overestimate the returns, and longer periods in which they provide understimations.
This might hint at various return regimes, which possibly could be modelled with Markov
switching (Hamilton, 1989). Another explanation might be more intuitive: In distributions
without fat tails, one might encounter many observations around the mean, which should
be close to the median as long as the distribution is not severely skewed. In this case, an
exceedance will happen whenever an observation is just slightly below the median, which
could happen quite often.

Along the second explanatory dimension are the various horizons. Generally, the num-
ber of quantiles that violate the Christoffersen test is higher for the longer horizons. This is
particularly true for horizons h ≥ 10, of which every submodel has only one quantile that
passes the Christoffersen test at the 10% level, as evident from Table 9. Also, by observing
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Table 19 in Appendix A.4, there are no test results significant at the 1% level for horizons
h ≤ 3.
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Figure 9: In-sample exceedance plot at horizon h = 10 and quantile τ = 0.50.30

The broad conclusion is that the submodels at longer horizons are worse in the sense that
they yield clustering in the exceedances. However, this is to some extent unsurprising.
In the value-at-risk (VaR) literature, which is somewhat analogue to quantile modelling
in the context of risk management, much interest has been put in long-term VaR fore-
casts. Initial attempts have used the simple square-root rule to scale up the 1-step ahead
VaR with the square root of the horizon of interest (Down, Blake, & Cairns, 2004), that is
VaR(h) = VaR(1)

√
h (the analogue holds for quantile forecasting). However, this obvi-

ously does not account for volatility, which also generally is much more difficult to model
many steps ahead (Christoffersen, 1998, p. 109). That being said, Down et al. (2004) rela-
tively successively employ a standard quantile formula over a long-term horizon to esti-
mate VaR, not considering volatilities along the timesteps. We employ a similar approach;
however, in our case there is in fact clustering in the exceedances. This indicate that volatil-
ity, and potentially higher-order statistical moments, might be influential after all, particu-
larly at longer horizons.

In order to better capture volatility fluctuations, we tried to include a volatility param-
eter as an additional covariate. This parameter was added on top of the eight covariates
that already were selected by the GA for each submodel, resulting in nine covariates (plus
intercept) in total. In particular, we used the log returns history of the NQSALMON to
construct the time-varying volatility estimate, firstly by an exponentially weighted mov-
ing average under the RiskMetricsTM settings (J.P. Morgan, 1996), and secondly through
the exponential GARCH (EGARCH) model by Nelson (1991). This resulted in slightly im-
proved goodness-of-fit metrics, however, the results of the Christoffersen test remained
more or less unchanged. Our preliminary efforts suggest that adding a volatility parame-
ter is not a sufficient improvement. This is in line with the results of Oglend and Sikveland
(2008b), which state that the predictive power in the salmon price volatility (with respect

30The first panel displays the NQSALMON and the 10-step ahead NQSALMON time series. The second panel
displays the corresponding, realised 10-step ahead log return of the NQSALMON time series, as well as the
predicted median (τ = 0.50) of the 10-step ahead log return distribution. The third panel display the absolute dif-
ference between the realised and the predicted median 10-step ahead log returns. Finally, each grey bar indicates
an exceedance, in which the realised log return is lower than the predicted median.
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to future volatility) is negligible over horizons of one month or above. Hence, they indicate
that the benefit from including volatility parameters in our case, predicting the price 1- to
12-months ahead, is minimal. According to Christoffersen (1998), clustered exceedances
are a consequence of the model failing to account for the dynamics of higher-order mo-
ments. Therefore, other ways of mitigating the effect of clustered exceedances, although
not explored in this study, could be to incorporate time series of higher moments such as
skewness and kurtosis, and eventually through regime switching as previously proposed.

The consequence of the failure of Christoffersen’s test is obvious: In the current setup,
there will be some periods in which the model fails to predict the correct quantiles several
months in a row. Furthermore, as we have seen, the median prediction as well as longer
horizons are particular issues. In the context of risk management, the longer horizons’
respective quantile estimates should be judged carefully – as we have seen, they tend to
overstate or understate the realised long-term returns. Hence, although our model may be
correct on average, as indicated by the Kupiec test for unconditional coverage, it fails to
properly incorporate times of volatile returns.

Linear Specification: The QRESET Test

We conduct three different QRESET(p) tests on the submodels, that is, the QRESET(2), QRE-
SET(3), and QRESET(4). When synthesising the results from the three tests, we choose
to put particular emphasis on the p ∈ {2, 4} tests. According to Otsu (2009), the QRE-
SET(2) and QRESET(4) tests are the most powerful in determining polynomial and non-
polynomial misspecification, respectively. Also, recalling the discussion from Section 5.6,
the QRESET(2) test should be given the most attention, as this is comparatively more suit-
able for data sets with few observations. We also include the p = 3 test to give additional
support to the two others; however, this particular test does not have any comparative
advantage in determining misspecifications.

If we put particular emphasis on the results from the QRESET(2), due to our small
data set, we find that ∼ 78%, i.e., the majority, of all quantiles are correctly specified in
terms of being approximated by quantile regressions that have a linear functional form.
Nevertheless, the results are not entirely unanimous, as the p = 2 test is significant for the
majority of the submodels for the τ = 0.75 quantile. Therefore, we argue that the given
QRESET test results indicate that some non-linear effects are unaccounted for in the overall
model. However, for other quantiles τ ∈ {0.10, 0.25, 0.50, 0.90}, linear quantile regression
appears to be a sound functional form to estimate the multi-step ahead distributions.

For an overview of the cross-models that behave well under the linear quantile regres-
sion specification, according to the respective QRESET tests, we refer to Table 8. Consid-
ering the p ∈ {2, 4} tests, which, as discussed, are the most relevant, the tables can be
summed up as follows:

i) τ = 0.10. The submodels are properly specified. The results do not
indicate that the submodels would benefit from fitting neither higher-
order polynomials nor other non-linear combinations, as indicated by
QRESET(2) and QRESET(4), respectively.

ii) τ ∈ {0.25, 0.50}. The results indicate no need to fit higher-order polyno-
mials, given by QRESET(2), but they suggest the use of other non-linear
combinations, suggested by QRESET(4).

iii) τ = 0.75. Most submodels are misspecified according to both QRESET(2)
and QRESET(4). These submodels might benefit from fitting higher-
order polynomials or other non-linear combinations.

iv) τ = 0.90. All submodels are properly specified, apart from one. The
results do not indicate that the submodels would benefit from fitting nei-
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ther higher-order polynomials nor other non-linear combinations, as in-
dicated by QRESET(2) and QRESET(4), respectively.

As the above results indicate, the cross-model for quantile τ = 0.10 is the only one with no
types of linear misspecifications. Overall, according to the p = 2 test, the cross-models for
quantiles τ ∈ {0.10, 0.25, 0.50, 0.90} are correctly specified, while the τ = 0.75 cross-model
is possibly incorrectly specified. This is also supported by the results of the QRESET(3) and
QRESET(4) for τ = 0.75.

Evident from Table 9, there is not a very consistent pattern regarding which submodels
that generally yield correctly specified linear quantile regressions. If anything, we observe
a slightly higher occurrence of linear misspecifications for longer horizons. As discussed
in the previous section, the search space of candidate predictors generally shrinks with in-
creasing horizons. Thus, at longer horizons, the variable selection procedure is likely to
output subsets of predictors that provide a worse fit to the data. Ostensibly, such lesser-
fitting subsets may yield regression model misbehaviour – as observed in terms of unex-
plained non-linear effects indicated by the QRESET tests.

As with the RESET, a drawback with the QRESET is that it provides no clear direction
on how to proceed if the model is rejected (Wooldridge, 2011, p. 304). That being said,
there are many possible approaches in which to accommodate possible non-linear effects
in the covariates of the quantile regressions for the above, failing τ = 0.75 quantile. Firstly,
the regressions of interest might be multiplicatively non-linear, in which a sensible solution
could be to transform the data into logarithms (Brooks, 2008, p. 175). However, in our case,
the data is already stationarised through logarithmic differencing, as thoroughly discussed
in Section 4.5. Thus, another logarithmic transformation is probably not sufficient. Another
approach might be to introduce a polynomial formulation of the regression equation, as
indicated by the relatively frequent significance of the QRESET(2) test for the τ = 0.75
quantile.

Going beyond quantile regression, one might consider to specify and fit other paramet-
ric non-linear models (Joshua et al., 2013). With reference to the discussion in Section 5.5,
sufficient a priori knowledge is needed to specify a functional form for the conditional quan-
tile – however, we lack such knowledge in our case. Later efforts could incorporate more
complex, non-linear models such as neural networks or support vector machines (support
vector machine (SVM)s) (Bishop, 2006, Chapters 5 and 7); nonetheless, the difficulty of
such approaches lies in their often unintuitive interpretation. The advantage of quantile
regression in particular is the ability to read out and analyse the coefficients, and perform
subsequent sensitivity analyses, in a straightforward way.

In total, we argue that a linear quantile regression still might be considered a reasonable
functional form for approximating the density of the log returns of the salmon price. That
being said, the QRESET test statistics of this study indicate that more work can be done
with respect to modelling the quantiles in a more accurate way.

6.4 KEY EXPLANATORY VARIABLES

In total, the twelve submodels utilise 17 of the 25 variables available in the database, as can
be seen from Table 11. Of the eight variables that are not utilised in the submodels, five rep-
resent consumption of salmon. Thus, none of the consumption-related variables from the
database are included in the model. The last three variables that have not been utilised are
harvest volumes for Norway, global harvest volumes exclusive of Norway, and the price of
trout. Moreover, across the twelve models, time series for standing biomass of both salmon
and trout, feed consumption, the price of alternative proteins, and the currency pair US-
D/EUR are generally assigned the largest coefficients and greatest significances. See Tables
15-18 in Appendix A.3 for a complete overview of the covariates’ coefficients and signifi-
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cances across the modelling horizons. Also, note that, due to the log transformation of all
time series, as discussed in Chapter 4.5, all results presented here refer to the relationship
between the log returns of the covariates and the NQSALMON.

As discussed previously in this study, the variable selection is less constrained by the
lag structures for shorter horizons relative to longer horizons. Consequently, the shorter
horizons tend to return the best goodness-of-fit when predicting the salmon price, as dis-
cussed in Section 6.2. Also, they appear to exhibit the highest coefficient significances,
as elaborated on in Section 6.3. Hence, when pointing out the most important variables
for predicting the NQSALMON, the shorter horizons are probably the most insightful.
In particular, we demonstrate in the previous sections that the submodels for horizons
h ∈ {2, 3, 4} yield best performance, both with respect to goodness-of-fit and statistical sig-
nificance of their covariates. However, we also suggest that horizon h = 1 provided limited
explanatory power for the salmon price, possibly due to short term noise in the log returns.
Accordingly, we now proceed with an analysis of the explanatory variables employed by
the submodels for h ∈ {2, 3, 4}.

By looking at Tables 15-18, among the most important covariates over these three hori-
zons, in terms of significance and coefficient sizes, are the prices of alternative proteins,
standing biomass of salmon, sea temperatures, and feed consumption. The lags and time
windows employed for these covariates are rather consistent over the three horizons. Prices
of alternative proteins employ 6 and 9 months lags and MoM time windows, standing
biomass of salmon employs 3 and 6 months lag and MoM time window, and sea tempera-
ture employs 6 months lag and MoM time window.31 Feed consumption is less consistent
in its appearance, employing 3-4 months lag, as well as both MoM and YoY time windows.

Holding on to the most important covariates for the three horizons h ∈ {2, 3, 4}, and
thereby the most important covariates for predicting the NQSALMON, it is evident from
Table 11 on p. 55 that their regression coefficient signs deviate considerably from expec-
tations. At first, we know that prices of alternative proteins exhibit positive correlation
with the NQSALMON, as by Table 2. Therefore, based on direct effects alone, we would
expect these covariates to have positive coefficients. However, of their 24 appearances over
the twelve horizons, there is only one instance of a positive coefficient. Hence, our model
suggests that increasing prices of alternative proteins do not give support to higher salmon
prices, which contradicts an assumption that is widely accepted by the industry. Moreover,
standing biomass of salmon has positive coefficient signs for 12 out of 14 appearances. This
implies that increased future supply of salmon is expected to impose upwards price pres-
sure, which is highly unlikely. An unexpected relationship is observed for sea temperatures
as well, with the coefficient sign being positive for three out of five appearances. This indi-
cates that increased temperatures, which speed up the growth rate of the fish and thereby
increase the production rate, contribute to higher prices of salmon. Again, this is highly un-
likely in reality. However, feed consumption exhibits a strictly negative relationship with
the NQSALMON, which is in line with our and the industry’s assumptions. Overall, of the
17 covariates employed for all submodels, only three of them have consistent relationships
with the NQSALMON that comply with our assumptions.

An explanation of the unexpected coefficient signs might be the presence of multi-
collinearity effects in the submodels. According to Kutner et al. (2005), multicollinearity
is associated with information overlap among the covariates. In turn, this makes it nearly
impossible to distinguish between the individual contributions of the covariates. However,
in general, this does not inhibit the overall model’s ability to obtain a good fit (Kutner et al.,
2005). In particular, if the coefficients appear stable both in terms of sign and magnitude, it
is likely that multicollinearity effects have limited impact on the overall model fit. As seen

31Time series for the price of alternative proteins employ MoM time windows by design, i.e. they are not
allowed to use YoY time windows.
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from Table 11, for the coefficient signs, and Tables 15-18, for the coefficient magnitudes, the
calculated regression coefficients appear relatively stable across all horizons. This indicates
a proper overall fit judging from multicollinearity effects alone.

To further investigate the potential presence of multicollinearity in the submodels, and
the implications for the interpretation of the regression coefficients, we build cross-correlation
tables for the covariates of all the submodels. The cross-correlation measure does not en-
able us to confirm, nor disregard, the presence of multicollinearity in the submodels. How-
ever, high cross-correlation between the covariates is certainly indicative of the presence of
multicollinearity effects in the submodels. Table 20 and Table 21 in Appendix A.5 shows
cross-correlations between the covariates employed over the twelve horizons. Here, the re-
spective log returns are lagged and transformed according to each covariate’s lag and time
window size, as chosen by the GA. Also, for illustrative purposes, we include the results
for horizon h = 1 in Table 10 below.

Table 10: Cross-correlation between log returns for horizon h = 1.

TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 NQSALMON, USD/kg (lag 1, MoM) 1.00
β2 Standing biomass, Tonnes (Norway) (lag 3, MoM) -0.03 1.00
β3 Feed consumption, Tonnes (Norway) (lag 2, YoY) -0.11 0.11 1.00
β4 Harvest volume of trout, Tonnes (Norway) (lag 9, MoM) 0.04 -015 -0.03 1.00
β5 Sea lice occurrence, #Lice/fish (Norway) (lag 12, MoM) -0.11 -0.25 -0.08 -0.01 1.00
β6 Sea temperature, Degrees celsius (Norway) (lag 6, MoM) 0.09 0.91 0.04 -0.19 -0.26 1.00
β7 Shrimp price, US cents/pound (lag 6, MoM) 0.16 0.04 -0.19 0.16 -0.10 0.06 1.00
β8 Average harvest weight, kg (Norway) (lag 1, YoY) -0.10 -0.06 -0.13 0.02 -0.05 -0.03 0.03 1.00

In general, the figures in the cross-correlation tables are favourable, with some excep-
tions. All the horizons have at least one instance where the correlation between two co-
variates is greater than or equal to 0.34. Here, naturally, variables that are to provide the
same type of information, such as the supply of salmon from Norwegian producers, or
the supply of trout, tend to be most frequently represented. For instance, we observe that
sea temperatures in Norwegian waters are closely correlated with the standing biomass for
Norwegian producers (0.91). Also, we note that standing biomass of trout, measured by
the number of individuals, is closely correlated with standing biomass of trout measured
in terms of tonnes (0.76 and above). The two time series for standing biomass of trout are
together employed by seven out of twelve submodels, and almost exclusively with oppo-
site coefficient signs. This indicates that there is no use in trying to interpret the proposed
coefficients for the standing biomass of trout.

One could incorporate various measures to obtain more interpretable coefficients. Firstly,
it is likely that our model would benefit from removing some of the variables from the
database, based on the criterion of reducing the cross-correlation between the covariates
employed by a given submodel. In turn, this is likely to reduce the alleged effect of mul-
ticollinearity in the submodels. Another solution is to constrain the variable selection pro-
cedure to only select covariates with low cross-correlation.32 Given that this suffice for
removing multicollinearity effects in the submodels, this approach is probably more ap-
propriate compared to the aforementioned alternative of removing covariates based on a
cross-correlation table. If we were to remove explanatory variables from the database based
only on inspection of cross-correlation tables, we would not be able to effectively measure
the impact of the removals on the submodels’ predictive power. The genetic algorithm, on
the other hand, is able to run hundreds of iterations to ensure that both the cross-correlation
constraint and the predictive power of the submodels are taken into account when disre-

32Optimally, we would utilise a rule that disregards covariates based on multicollinearity effects in the sub-
models, and not direct cross-correlation effects. However, unlike for ordinary least squares regression, where a
straightforward implementation of the variance inflation factor could have been used, we have not been able to
identify its quantile regression counterpart.
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garding the covariates. A third solution is to aggregate groups of intercorrelated variables,
effectively reducing the number of covariates to a smaller set of uncorrelated variables.
Here, principal component analysis (PCA) could have been used, as described in (Jolliffe,
2002). However, this particular study seeks to identify which exogenous variables that af-
fect the price of salmon, and not merely components of them. Hence, the use of PCA is
deemed impractical for our purpose.
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Table 11: Overview of the covariates, with corresponding lag, time window, and coefficient sign, employed for each submodel. Empty cells for a particular submodel (for some
horizon h) imply that use of the variable is not allowed due to lag constraints.

TIME SERIES, UNIT
LAG1, TIME WINDOW COEFFICIENT2

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 h = 12 Hypothesis #+ #-

NQSALMON, USD/kg 1, 1 2, 1 + 0 2

Standing biomass, #Individuals (Norway) - - 3, 1 9, 12 - 9, 1 9, 1 9, 1 9, 1 - 6 0

Standing biomass, Tonnes (Norway) 3, 1 - 3, 1 6, 1 6, 1 9, 12 9, 1 9, 1 9, 1 - 6 2

Feed consumption, Tonnes (Norway) 2, 12 3, 1 3, 1 4, 12 - 0 4

Smolt release, #Individuals (Norway) - - - - - - 17, 1 17, 1 - 15, 12 16, 1 15, 12 - 1 4

Harvest volume, Tonnes (Norway) - - 0 0

Standing biomass of trout, #Individuals (Norway) - - 6, 12 9, 12 6, 12 6, 12 9, 12 9, 12 9, 12 12, 12 12, 12 12, 12 - 0 10

Standing biomass of trout, Tonnes (Norway) - 9, 12 - - 6, 12 - 9, 12 9, 12 9, 12 12, 12 12, 12 12, 12 - 7 1

Harvest volume of trout, Tonnes (Norway) 9, 1 9, 12 9, 12 12, 12 - 12, 12 - - - - - - - 5 0

Sea lice occurrence, #Lice/fish (Norway) 12, 1 - - - 12, 1 12, 1 - - - 12, 1 12, 12 12, 12 + 2 4

Sea lice treatments, % of fish being treated (Norway) - - - - - - 12, 12 12, 12 12, 12 12, 12 12, 12 12, 12 + 0 6

Sea temperature, Degrees celsius (Norway) 6, 1 6, 1 6, 1 - 6, 12 6, 1 - 3 2

Meat price index, Index - 6, 1 - 6, 1 9, 1 6, 1 - - - 12, 1 - - + 1 4

Poultry index, Index - - - - 6, 1 - - - - - - - + 0 1

Beef price, US cents/pound - - 6, 1 6, 1 6, 1 9, 1 9, 1 9, 1 9, 1 12, 1 12, 1 12, 1 + 0 10

Shrimp price, US cents/pound 6, 1 9, 1 - 9, 1 - - 12, 1 12, 1 12, 1 - 12, 1 12, 1 + 0 8

Currency pair, USD/EUR - 6, 1 9, 1 - - - - - 15, 1 12, 1 12, 1 12, 1 - 5 1

Trout price, NOK/kg (Norway) - - - - - - - - - - - - - 0 0

Average harvest weight, kg (Norway) 1, 12 + 0 1

Consumption of Atl. Salmon, 1000 Tonnes (EU) - - - - 0 0

Consumption of Atl. Salmon, 1000 Tonnes (US) - - - - 0 0

Consumption of Atl. Salmon, 1000 Tonnes (Russia) - - - - 0 0

Consumption of Atl. Salmon, 1000 Tonnes (Japan) - - - - 0 0

Consumption of Atl. Salmon, 1000 Tonnes
(Emerging markets) - - - - 0 0

Harvest volume, 1000 Tonnes (Global excl. Norway) - - - - - - - 0 0

1) All lags are denoted relative to the horizon being forecasted. To get the number of lags relative to the forecasters point of view, subtract by h months for any horizon h.
2) Expected vs. employed coefficient sign. The two columns on the right hand side show the frequency of a particular coeffecient sign, measured over all horizons.
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7
SCENARIO ANALYSIS

An important area within risk management is the analysis and prediction of extreme events
that subsequently may cause significant price movements. Due to the stability of the regres-
sion covariate coefficients’ signs and magnitude over the twelve horizons, and the absence
of correlation between most of the covariates, we regard the proposed model as sufficiently
robust to carry out a scenario analysis. Here, we provide an example of a scenario analy-
sis by creating a conditional distribution of the salmon price. In particular, we investigate
the impact on the NQSALMON from changes in Feed consumption, Tonnes (Norway). This
explanatory variable is chosen based on the following criteria: 1) It exhibits limited correla-
tion with other covariates, 2) its coefficients are relatively significant and large in magnitude
when feed consumption is present as a covariate in the quantile regressions, 3) its coeffi-
cient signs are in line with the industry’s assumptions, and 4) it is utilised by the model
across a wide range of submodels.

In the analysis, we create a base scenario using the information available at February
2016 for all explanatory variables other than the feed consumption. Moreover, we employ
the submodel for horizon h = 4, as this is among the best performing submodels both
in terms of goodness-of-fit and specification tests. Hence, as we predict the price 4 months
ahead, we are effectively forecasting the price for June 2016. Furthermore, in this submodel,
feed consumption is represented with a YoY time window and a 4-month lag relative to
the horizon being forecasted. We let the log returns for feed consumption take on values
ranging from their minimum to maximum based on historical values in our sample data
set, i.e. from -0.3179 to 0.3883.33 Now, the observation for feed consumption 16 months
(4-month lag and 12-month time window) prior to June 2016 was 86 702 tonnes. Due to
the given sample minimum and maximum log returns, we let the 4-month lagged value,
prior to June 2016, for feed consumption range from 63 090 tonnes to 127 839 tonnes. Table
12 provides an overview of the input data used in the scenario analysis for the different
covariates applied by the submodel for h = 4. Also, note that the price of salmon was USD
7.06 as of February 2016.

Table 12: Data used in the scenario analysis.

VARIABLE, UNIT1 PAST OBSERVATION2 CURRENT OBSERVATION3 LOG RETURN

Standing biomass, #Individuals (Norway)
(lag 9, YoY) 418 788 415 558 -0.0077

Standing biomass, Tonnes (Norway) (lag
6, MoM) 724 344 721 597 -0.0038

Feed consumption, Tonnes (Norway)
(lag 4, YoY) 86 702 63 090 – 127 839 -0.3179 – 0.3883

Standing biomass of trout, #Individuals
(Norway) (lag 9, YoY) 25 592 26 004 -0.0160

Harvest volume of trout, Tonnes (Norway)
(lag 12, YoY) 5 354 6 706 0.2252

Meat price index, Index (lag 6, MoM) 154.6 150.0 -0.0300

Beef price, US cents/pound (lag 6, MoM) 184.6 177.1 -0.0414

Shrimp price, US cents/pound (lag 9,
MoM) 15.9 15.9 0.0000

1) All lags are denoted relative to the price point being forecasted, that is, 4-months ahead. To get the number of lags
relative to the forecaster’s point of view, subtract by 4 months.
2) Past observation adjusted for lag structure and time windows. Example: For feed consumption, the observation
corresponds to that of 16 months (4 + 12) prior to the point being forecasted.
3) Current observation adjusted for lag structure. Example: For feed consumption, the observation corresponds to
that of 4 months prior to the point being forecasted, i.e. today’s observation from the forecaster’s perspective.

33These correspond to arithmetic returns of -27.2% and 47.4%, respectively.
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Figure 10 displays the results from the scenario analysis, and a corresponding coeffi-
cient sensitivity plot for feed consumption for all quantiles τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}.
Focusing on Figure 10a, it is clear that the price of salmon has an inverse relationship with
feed consumption for all the quantiles of the distribution. This is in line with the expecta-
tions, as increased feed consumption year-over-year generally is expected to increase the
harvest volumes year-over-year.34 Accordingly, the marketed volumes increase, which im-
plies that the price of salmon should decrease given that the demand and the other regres-
sion covariates remain unchanged. Also, recognise that the realised price for June 2016, as
depicted by the red line in the figure, crosses the line representing the median price at the
exact same point as it crosses the line for the February 2016 feed consumption. This is the
observation of feed consumption 4-month lagged relative to the June 2016 spot price, which
is to be predicted. Clearly, the forecasted median quantile is aligned with the realised price.
That being said, no general conclusions with respect to the predicted price distribution can
be made only based on this single data point.
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(b) Coefficient sensitivity across the quantiles of the predicted log return distribution of the NQSALMON.35

Figure 10: Results from the scenario analysis for Feed consumption, Tonnes (Norway), based on the
submodel for horizon h = 4, along with the coefficients employed for feed consumption.

34See Figure 11 in Appendix A.1 and Marine Harvest (2016) for the relationship between harvest volumes and
the price of salmon, and Chapter 3 for the relationship between feed consumption and harvest volumes.

35The red line denotes coefficient values, while the grey band expresses the adjusted standard errors of the
coefficient estimates. The band is calculated with the bootstrap by Parzen, Wei, and Ying (1994), with 1000 repli-
cations.
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It should be noted that the regression line for the quantile τ = 0.25 crosses the line for
the quantile τ = 0.10 in Figure 10a. This can, obviously, not be explained by fundamental
relationships. However, as elaborated upon in the previous chapter, the submodels strug-
gle to correctly capture the properties of the tails, likely due to few observations in the data
sets. This is also reflected by the significance of the coefficients for feed consumption, as
can be seen from Table 16 in Appendix A.3. Here, for horizon h = 4, the coefficients for
feed consumption are significant at the 1% level only for the quantiles τ ∈ {0.25, 0.50, 0.75}.
Hence, we are not able to create proper scenario analyses of the price of salmon, conditional
on changes in feed consumption, for the tails of the price distribution.

We observe from Figure 10b that the coefficients for Feed consumption, Tonnes (Norway)
generally are negative across all quantiles. Only at the lower- and uppermost quantiles are
the coefficients’ standard errors crossing the zero line. Therefore, we can conclude that all
quantiles are skewed negatively when there are positive shocks to the feed consumption.
Ignoring the coefficient for the τ = 0.10 quantile, which is insignificant due to its high p-
value, we observe a trend in which the coefficient values slightly increase with quantiles.
Therefore, sufficiently large positive changes in the feed consumption tend to skew the
lower quantiles, e.g. τ = 0.25, into more negative returns, and thus we should observe
correspondingly higher price drops. Mutatis mutandis, the opposite holds for declines in
feed consumption – in such a case, the τ = 0.25 quantile will be driven in positive direction,
suggesting relatively less frequent observations of price drops.

There are several possible explanations of the fact that Feed consumption, Tonnes (Norway)
to a larger extent drives lower-quantile realisations of salmon price returns. As a direct ef-
fect, feed consumption is an indicator of future harvest volumes. As salmon is a perishable
product whose price is highly sensitive to the balance between supply and consumer de-
mand (Marine Harvest, 2016), increased future volumes will, all else equal, drive supply
and reduce prices. However, this does not fully describe the observed impact on the lower
τ = 0.25 quantile. As positive shocks to feed consumption will impose a negative skew
on the predicted price distribution, one could derive that prices generally are close to con-
sumers’ willingness to pay. Thus, only a slight oversupply in the market will force retailers
to dump the perishable product at significantly lower prices, an event which according to
our lag structure will be incurred four months after the observed year-over-year increase
in feed consumption. This will propagate directly to producers who are required to accept
reduced prices in the spot market.

For producers, the above interpretations suggest that the combination of high spot
prices and observed increases in feed consumption (on a market-wide level) might yield
a higher chance of spot price drops in the relatively short term. This is a relevant result,
particularly for larger producers. They could, for instance, time harvests and inventory to
be able to increase output in the window of higher spot prices before a potential price drop
(in, say, four months). Correspondingly, they could engage in futures hedging activities to
mitigate the increased downside risk of the spot price. This also fits the conclusions of As-
che et al. (2016b), who find that the futures market for salmon is immature. Furthermore,
they conclude that futures lack a price discovery role, and that the spot price leads the fu-
tures prices of salmon. Combined with our findings, the downside risk might therefore not
be reflected in the futures prices. As a result, futures might possibly be bought at cheaper
prices. It should be noted that financial hedging is particularly relevant due to the farmers’
long production cycles, inability to build up inventories, and corresponding lacking capa-
bility to significantly adjust short-term production volumes and spot market sales. Thus,
futures hedging and price distribution insights, such as the sensitivity with respect to feed
consumption, could prove highly useful.
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8
CONCLUSION

8.1 MOTIVATION, FINDINGS, AND REMARKS

The growth in output from salmon farming, together with increasing commercialisation
and financialisation of the aquaculture industry, motivate prediction and increased under-
standing of the Atlantic salmon spot price. The need for financing, risk management such
as hedging, and salmon spot trading increasingly require accurate models for long-term
predictions of the price path and corresponding distributional properties. Furthermore,
operational considerations, e.g. harvest timing, inventory management, and entries into
new markets will need equivalent scrutiny of the development of the spot price of salmon.
Participants in this commodity market will need two interlinked insights in order to suc-
ceed: Firstly, accurate expectations of the price, both in a short- and long-term perspective.
This also entails an understanding of the uncertainty in such estimates. Secondly, aware-
ness of what drivers are important for the salmon spot price across various time frames.

In this study, we choose the NQSALMON index, denoted in USD, to represent the spot
price of Atlantic salmon, and make a prediction model of its log return distribution in a
multi-step ahead framework. In particular, we model 1- to 12-month ahead returns – i.e., 12
horizons. Returns are used due to their favourable statistical properties in context of predic-
tion, however, the conversion to corresponding prices is straightforward. To approximate
this density, we employ linear quantile regressions across a pre-selected set of quantiles
τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. We utilise a set of 25 causally related variables (including
the NQSALMON), such as average sea temperatures, standing biomass, and prices of alter-
native proteins. These are transformed into month-over-month (MoM) or year-over-year
(YoY) log returns, and lagged in accordance with market participants’ judgement of how
and when they ought to impact the spot price. These combinations of monthly and yearly
returns, together with a restricted lag structure, generate a large set of candidate predictors
for the multi-step ahead density estimation. In context of quantile regression, we extend
the current methodology on variable selection by employing a genetic algorithm (GA) for
this purpose, in order to determine the best subsets of size U = 8 of these candidate pre-
dictors. Each selected subset is fixed for a particular horizon, i.e., a submodel, and is used
to construct regressions for each quantile τ.

Generally, we find a good model fit in the sample in terms of explained variation across
the quantiles. The GA is able to select quantile regressions whose pseudo-R-squared av-
eraged over the quantiles of each horizon range from ∼ 0.24− 0.43. That being said, we
see that the shorter horizons generally yield better goodness-of-fit scores. We attribute the
lesser scores on longer horizons with two factors: To begin with, the availability of can-
didate predictors is larger for shorter horizons due to the aforementioned lag structure.
Thus, the variable selection algorithm has a larger search space and more combinations to
assess, possibly yielding better explanatory power. Also, log return dynamics such as its
higher-order statistical moments, e.g. variance, skewness, and kurtosis, may yield difficul-
ties in explaining the variation. These moments are generally hard to predict and obviously
impact the (conditional) distribution (Christoffersen, 1998, p. 109).

In terms of the variable search, the GA shows promising properties and results. It
quickly converges to near-optimal variable subsets across all h-step ahead horizons, usu-
ally after 30-50 iterations (i.e., generations), in line with previous experience by e.g. Frost
and Molt (1998) who applied the same methodology for principal component regression
(PCR). The variable selection problem is inherently combinatorial, with exhaustive search
being computationally intractable. We find that the GA-aided variable selection exhibits
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promising properties, and it should be given further attention in the context of quantile
regression.

We find that the GA is able to select subsets whose corresponding regressions in many
cases are correctly specified; however, the overall model has some slight misbehaviour.
Firstly, a large share of the selected subsets yield covariates that prove significant in the
quantile regressions. Most covariates are highly significant for central quantiles of the dis-
tribution, i.e. the 0.25, 0.50, and 0.75 quantiles. There is, however, no clear pattern with
respect to coefficient significances on shorter versus longer horizons. Regarding uncondi-
tional coverage, the quantile regressions give satisfactory results under the Kupiec test in
the sample, being able to "split" the log returns observations across the respective quan-
tiles. However, under the Christoffersen test we find that these exceedances generally are
not independent – they tend to exhibit clustering, particularly at longer horizons. We argue
that this clustering might be due to aforementioned, uncaptured higher-order dynamics in
the log returns of the NQSALMON. We try to mitigate the clustering in exceedances by
incorporating a time-varying volatility of the NQSALMON log return in addition to the
eight covariates, however this proves unsuccessful. Looking at the 10-, 11-, and 12-month
ahead horizons, the clustering in exceedances is particularly present, with highly signifi-
cant Christoffersen test statistics. For almost all horizons, the median quantile is particu-
larly unfavourable. For this quantile, the regressions have larger stretches of exceedances
and non-exceedances, which indicate regime-like dynamics in the NQSALMON. Therefore,
long-term price predictions will either underestimate or overestimate the quantiles. Finally,
we run a quantile regression equation specification error test (QRESET) to assess whether
or not non-linear effects are present. ∼ 78% of the models pass the QRESET(2) test (i.e.
insignificant at the 10% level), this particular test being the most reliable QRESET-variant
due to our small sample size. Emphasising these test scores, we argue that linear quantile
regression is a sound functional form to approximate multi-step ahead distribution of the
salmon spot price.

There are some patterns in the selected explanatory variables. Specifically, 17 out of the
25 explanatory variables are present in the twelve submodels. However, no consumption-
related figures are included. This indicates that variables for consumed volumes might
lack predictive power for the salmon spot price. In general, the most common categories
of selected variables are the prices of alternative proteins, standing biomass, sea temper-
ature, and feed consumption. Even though they ought to have a causal relationship with
respect to the price, they sometimes have deviating coefficient signs relative to the expecta-
tion. Such deviations might be a result of collinearity between variables and corresponding
information overlaps (Kutner et al., 2005). This phenomenon can be a result of seasonal-
ity found in some explanatory variables. To mitigate collinearity, techniques such as PCA
could be applied on the covariates; however, each resulting principal component derived
from the original data might not have an intuitive interpretation. In this study, we choose
to use a straightforward application of quantile regression because of its interpretability,
which should be of importance for the industry participants.

8.2 FURTHER RESEARCH

The combination of variable selection and quantile modelling could certainly be improved
with more fundamental time series. Even though we model a particular spot price index,
the NQSALMON, with several data series only pertaining to Norway, salmon farming is a
global industry. Correspondingly, we could add variables representing other geographical
areas, such as biomass from the major producers in Chile and Scotland. This could, in turn,
yield better goodness-of-fit.

A general-to-specific approach could also be utilised, more in line with Campos et al.
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(2005). In particular, the same variable selection procedure with the described genetic algo-
rithm (GA) could be run with a lesser-constrained search space, with e.g. variables lagged
more freely. This could certainly yield interesting results; however, such an approach could
be characterised as data mining (Hoover & Perez, 2000).

Due to the possibility of misspecification, indicated by clustered exceedances at some
quantiles, one could consider the application of non-linear models. At the median, the
exceedances seem to have a regime-like structure, thus e.g. Markov switching approaches
as by Hamilton (1989) could be interesting. According to Christoffersen (1998), clustering
in exceedances are a result of the model failing to account for the dynamics of higher-order
statistical moments. Therefore, the incorporation of volatility, skewness, and kurtosis in e.g.
a non-linear quantile regression could prove useful. Even though the QRESET(2) results
generally favour the current linear quantile regression formulation, one might possibly
apply inherently non-linear regression models, such as neural networks and support vector
machines (SVMs), to yield even better results with respect to model specification.

We believe the novel approach with GA-assisted variable selection for quantile regres-
sion can be further investigated. For instance, it could be adapted to other domains, such
as in density modelling of commodities, stock indices, etc. For multi-step ahead prediction,
one could also try to run the variable selection algorithm for a fixed quantile, rather than for
a fixed horizon – as has been done in this study. Also, more rigorous benchmarking studies
of various variable selection algorithms for quantile regression could be considered.

In the end, the application of our methodology in the context of risk management
should be straightforward. Correspondingly, more complex value-at-risk (VaR) insights
could be derived.
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A.1 FACTORS AFFECTING THE SALMON PRICE

R² = 0,4467
-60 %

-40 %

-20 %

0 %

20 %

40 %

60 %

80 %

-20 % -10 % 0 % 10 % 20 % 30 % 40 %

Harvest volumes: YoY chg. in 3-month moving average

N
Q

S
A

L
M

O
N

: 
Y

o
Y

 c
h

g
. 
in

 3
-m

o
n

th
 m

o
v
in

g
 a

v
e
ra

g
e

Figure 11: Changes in the NQSALMON vs. changes in global harvest volumes.
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A.2 DATA SERIES USED IN THE MODEL

Time Series Overview

On the the following two pages, we provide an overview of all time series that have been
used. The table includes the salmon price itself, NQSALMON, and all variables in the
database.

Table 13: Complete overview of the database of time series. Lags and time windows are based on
the Chapter 3 discussion, and not the candidate predictor analysis that follows in Chapter 4.
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Arithmetic Returns

Next, descriptive statistics for the monthly arithmetic returns of the respective series are
provided in Table 14. Note that arithmetic returns only are provided for reference; we use
log returns for the modelling part.

Table 14: Descriptive statistics of the arithmetic returns of the data series, time period: Jul. 2007 –
Jan. 2017.
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Descriptive Figures

Here we provide descriptive figures for the time series that have been used in the mod-
elling. In particular, plots of both the time series, corresponding log returns, and log returns
histograms are included in the plots below.
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Figure 12: Plot of the explanatory variable time series (p. 1).
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Figure 13: Plot of the explanatory variable time series (p. 2).
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Figure 14: Plot of the explanatory variable time series (p. 3).
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Figure 15: Plot of the explanatory variable time series (p. 4).
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Figure 16: Plot of the explanatory variable time series (p. 5).
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Cross-Correlation with Respect to Lag and Time Window

As per the discussion in Section 4.5, we provide surface plots of the cross-correlation func-
tion between the h-step ahead NQSALMON log return and each explanatory lagged l times
and set to some time window δ.
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Figure 17: 1-month ahead Pearson correlation (p. 1).
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Figure 18: 1-month ahead Pearson correlation (p. 2).
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Figure 19: 1-month ahead Pearson correlation (p. 3).
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A.3 IN-SAMPLE QUANTILE REGRESSION RESULTS

The overall model consists of in total |H| · |T | = 12 · 5 = 60 quantile regressions. On
the following four pages, we present the respective regressions with their covariates (fixed
for all submodels, including intercept in every case), with coefficients and corresponding
significance levels. Also, for each regression the goodness-of-fit metric pseudo-R-squared
(i.e., R1(τ)) is given.
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Table 15: Coefficients overview of in-sample quantile regressions across horizons h ∈ {1, . . . , 12} (p.
1 of 4). 1)

Horizon 1 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.102∗∗ −0.030∗ 0.011 0.099∗∗∗ 0.160∗∗∗

(−2.205) (−1.801) (0.611) (4.652) (2.725)

β1 NQSALMON, USD/kg (lag 1, MoM) −0.137 −0.285∗∗ −0.250∗ −0.374∗∗ −0.283
(−0.682) (−2.094) (−1.765) (−2.402) (−1.067)

β2
Standing biomass, Tonnes (Norway) (lag
3, MoM)

−1.026 −1.831∗∗ −0.943 −1.173 −1.642
(−0.928) (−2.087) (−0.999) (−1.123) (−0.797)

β3
Feed consumption, Tonnes (Norway)
(lag 2, YoY)

−0.184 −0.183 −0.243∗∗ −0.348∗ −0.334
(−0.784) (−1.608) (−2.128) (−1.876) (−0.908)

β4
Harvest volume of trout, Tonnes (Nor-
way) (lag 9, MoM)

0.101 0.145∗∗ 0.119∗∗ 0.198∗∗∗ 0.258∗

(0.741) (2.433) (2.419) (3.043) (1.877)

β5
Sea lice occurrence, #Lice/fish (Norway)
(lag 12, MoM)

−0.115 −0.052 −0.064 −0.102∗∗ −0.068
(−1.407) (−1.318) (−1.392) (−2.187) (−0.760)

β6
Sea temperature, Degrees celsius (Nor-
way) (lag 6, MoM)

0.397 0.648∗∗∗ 0.416 0.428∗ 0.502
(1.548) (2.812) (1.543) (1.717) (1.138)

β7
Shrimp price, US cents/pound (lag 6,
MoM)

−1.273∗ −1.066∗∗∗ −0.783∗ −0.576 −0.397
(−1.870) (−3.086) (−1.960) (−1.080) (−0.430)

β8
Average harvest weight, kg (Norway)
(lag 1, YoY)

−0.046 −0.244 −0.270 −0.282 −0.111
(−0.157) (−1.506) (−1.386) (−1.124) (−0.257)

R1(τ) 0.247 0.233 0.230 0.236 0.269

Horizon 2 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.114∗∗ −0.066∗∗∗ 0.037∗∗ 0.096∗∗∗ 0.155∗∗

(−2.313) (−3.142) (2.036) (5.701) (2.382)

β1 NQSALMON, USD/kg (lag 2, MoM) −0.335 −0.364∗∗ −0.429∗∗∗ −0.356∗∗ −0.167
(−1.558) (−2.414) (−2.658) (−2.005) (−0.518)

β2
Feed consumption, Tonnes (Norway)
(lag 3, MoM)

−0.553∗∗∗ −0.539∗∗∗ −0.590∗∗∗ −0.478∗∗∗ −0.446∗∗

(−2.753) (−4.666) (−5.745) (−5.961) (−2.314)

β3
Standing biomass of trout, Tonnes (Nor-
way) (lag 9, YoY)

−0.453∗ −0.336∗∗ −0.061 −0.038 0.091
(−1.871) (−2.084) (−0.493) (−0.434) (0.432)

β4
Harvest volume of trout, Tonnes (Nor-
way) (lag 9, YoY)

0.247∗ 0.186∗∗∗ 0.095 0.139∗∗ 0.135
(1.878) (2.633) (1.418) (2.087) (1.021)

β5
Sea temperature, Degrees celsius (Nor-
way) (lag 6, MoM)

0.609∗∗∗ 0.539∗∗∗ 0.423∗∗∗ 0.362∗∗∗ 0.291∗

(2.922) (4.246) (4.136) (4.056) (1.934)

β6 Meat price index, Index (lag 6, MoM) −2.885∗∗ −2.946∗∗∗ −1.732∗∗ −1.450∗ −2.626∗∗

(−2.541) (−4.133) (−2.454) (−1.688) (−2.076)

β7
Shrimp price, US cents/pound (lag 9,
MoM)

−1.080 −0.251 −0.801∗ −0.824∗∗ −0.739
(−1.366) (−0.420) (−1.862) (−2.550) (−0.920)

β8 Currency pair, USD/EUR (lag 6, MoM) −0.649 −1.294 −0.647 −0.935 −0.809
(−0.575) (−1.618) (−0.997) (−1.552) (−0.502)

R1(τ) 0.431 0.347 0.353 0.393 0.404

Horizon 3 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.137∗∗ −0.044 0.026 0.102∗∗∗ 0.195∗

(−2.080) (−1.598) (1.409) (4.026) (1.926)

β1
Standing biomass, #Individuals (Nor-
way) (lag 3, MoM)

0.923 0.539 0.522 0.342 0.281
(1.111) (1.242) (1.131) (0.676) (0.173)

β2
Standing biomass, Tonnes (Norway) (lag
3, MoM)

−3.352∗ −3.174∗∗∗ −2.068 −1.216 −2.567
(−1.892) (−2.743) (−1.657) (−0.831) (−1.078)

β3
Feed consumption, Tonnes (Norway)
(lag 3, MoM)

−0.555∗ −0.568∗∗∗ −0.701∗∗∗ −0.492∗∗∗ −0.444
(−1.901) (−4.075) (−6.276) (−2.967) (−1.146)

β4
Standing biomass of trout, #Individuals
(Norway) (lag 6, YoY)

−0.468 −0.375∗ −0.270∗∗ −0.357∗∗ −0.420
(−1.321) (−1.933) (−2.147) (−2.307) (−1.298)

β5
Harvest volume of trout, Tonnes (Nor-
way) (lag 9, YoY)

0.202 0.194∗∗ 0.185∗∗∗ 0.135∗ 0.126
(1.208) (2.150) (2.789) (1.850) (1.010)

β6
Sea temperature, Degrees celsius (Nor-
way) (lag 6, MoM)

0.999∗∗ 0.961∗∗∗ 0.814∗∗∗ 0.595∗ 1.045∗∗

(2.430) (4.126) (3.167) (1.767) (2.040)

β7 Beef price, US cents/pound (lag 6, MoM) −0.242 −1.154∗∗∗ −1.180∗∗ −1.505∗∗ −2.270∗∗

(−0.422) (−2.711) (−2.414) (−2.097) (−2.036)

β8 Currency pair, USD/EUR (lag 9, MoM) 1.724 1.798∗∗ 1.218 1.230 0.217
(1.031) (2.178) (1.573) (1.223) (0.146)

R1(τ) 0.484 0.438 0.423 0.400 0.428

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
1) In parantheses are the adjusted standard errors, which account for possible misspecifications. These are
calculated with the bootstrap by Parzen et al. (1994), with 1000 replications. Also, note that all lags are denoted
relative to the horizon being forecasted.
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Table 16: Coefficients overview of in-sample quantile regressions across horizons h ∈ {1, . . . , 12} (p.
2 of 4).

Horizon 4 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.233∗∗∗ −0.092∗ 0.013 0.113∗∗ 0.224∗∗∗

(−3.481) (−1.918) (0.372) (2.316) (2.664)

β1
Standing biomass, #Individuals (Nor-
way) (lag 3, YoY)

0.820 0.881 1.101∗∗ 0.645 0.344
(0.851) (1.176) (2.007) (1.541) (0.334)

β2
Standing biomass, Tonnes (Norway) (lag
6, MoM)

3.057∗∗∗ 2.645∗∗∗ 2.655∗∗∗ 2.929∗∗∗ 2.901∗∗∗

(3.438) (4.208) (5.389) (5.762) (2.831)

β3
Feed consumption, Tonnes (Norway)
(lag 4, YoY)

−0.414 −0.871∗∗∗ −0.666∗∗∗ −0.635∗∗∗ −0.645
(−0.956) (−3.735) (−3.620) (−2.871) (−1.471)

β4
Standing biomass of trout, #Individuals
(Norway) (lag 9, YoY)

−0.434 −0.252 −0.274∗∗ −0.182 0.039
(−1.197) (−1.047) (−2.190) (−1.231) (0.081)

β5
Harvest volume of trout, Tonnes (Nor-
way) (lag 12, YoY)

−0.009 0.046 0.164∗ 0.162∗ 0.092
(−0.070) (0.429) (1.946) (1.948) (0.527)

β6 Meat price index, Index (lag 6, MoM) −3.058∗∗ −2.456∗∗ −1.038 −1.733∗ −2.630
(−2.220) (−2.482) (−1.228) (−1.665) (−1.455)

β7 Beef price, US cents/pound (lag 6, MoM) −0.693 −0.799 −1.636∗∗ −1.268∗ −1.423
(−1.124) (−1.241) (−2.437) (−1.821) (−1.374)

β8
Shrimp price, US cents/pound (lag 9,
MoM)

−1.107 −1.217 −1.237∗∗ −1.063∗ −1.284
(−1.026) (−1.628) (−2.158) (−1.958) (−1.272)

R1(τ) 0.473 0.378 0.424 0.425 0.461

Horizon 5 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.253∗∗∗ −0.111∗∗∗ 0.027 0.115∗∗∗ 0.223
(−3.168) (−2.837) (1.071) (3.942) (0.989)

β1
Standing biomass, Tonnes (Norway) (lag
6, MoM)

3.592∗∗ 2.374∗∗ 2.519∗∗∗ 2.665∗∗∗ 1.938
(2.399) (2.191) (3.567) (4.086) (0.667)

β2
Standing biomass of trout, #Individuals
(Norway) (lag 6, YoY)

−0.506 −0.878∗∗ −1.339∗∗∗ −1.614∗∗∗ −1.230
(−0.818) (−2.144) (−3.657) (−3.898) (−1.171)

β3
Standing biomass of trout, Tonnes (Nor-
way) (lag 6, YoY)

0.322 0.474 0.722∗∗∗ 1.042∗∗∗ 1.064
(0.495) (1.245) (2.635) (3.853) (1.495)

β4
Sea lice occurrence, #Lice/fish (Norway)
(lag 12, MoM)

−0.044 −0.108 −0.101 −0.132∗∗ −0.141
(−0.236) (−0.723) (−1.515) (−2.286) (−0.588)

β5
Sea temperature, Degrees celsius (Nor-
way) (lag 6, YoY)

−0.279 −0.355 −0.472∗∗ −0.573∗∗∗ −0.340
(−0.800) (−1.348) (−2.178) (−2.841) (−0.552)

β6 Meat price index, Index (lag 9, MoM) −2.042 −2.737∗ −2.893∗∗ −2.006 −1.608
(−0.975) (−1.808) (−2.085) (−1.599) (−0.780)

β7 Poultry index, Index (lag 6, MoM) −1.656 −2.384∗∗ −0.869 −0.825 −0.698
(−1.098) (−2.020) (−0.907) (−1.229) (−0.315)

β8 Beef price, US cents/pound (lag 6, MoM) −1.481 −0.749 −0.670 −0.476 −1.189
(−1.368) (−1.023) (−1.159) (−0.676) (−0.815)

R1(τ) 0.385 0.317 0.347 0.398 0.417

Horizon 6 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.293∗∗∗ −0.184∗∗∗ −0.045 0.088 0.295∗∗

(−3.783) (−3.435) (−0.983) (1.444) (2.088)

β1
Standing biomass, #Individuals (Nor-
way) (lag 9, MoM)

0.157 0.250 1.444∗∗ 1.527∗ 2.236
(0.187) (0.366) (2.484) (1.678) (1.588)

β2
Standing biomass, Tonnes (Norway) (lag
9, YoY)

1.265 1.045∗ 1.007∗∗ 0.846 −0.287
(1.547) (1.831) (2.004) (1.344) (−0.269)

β3
Standing biomass of trout, #Individuals
(Norway) (lag 6, YoY)

−0.472∗ −0.484∗∗ −0.509∗∗ −0.192 −0.680
(−1.689) (−2.505) (−2.268) (−0.520) (−1.168)

β4
Harvest volume of trout, Tonnes (Nor-
way) (lag 12, YoY)

0.265∗ 0.167∗ 0.126 0.191 0.228
(1.754) (1.786) (1.101) (1.615) (1.367)

β5
Sea lice occurrence, #Lice/fish (Norway)
(lag 12, MoM)

−0.166 −0.213∗∗∗ −0.272∗∗∗ −0.281∗∗∗ −0.264
(−1.495) (−3.020) (−3.994) (−2.755) (−1.522)

β6
Sea temperature, Degrees celsius (Nor-
way) (lag 6, MoM)

−0.099 −0.193 −0.286∗∗ −0.406∗∗ −0.226
(−0.324) (−1.043) (−2.224) (−2.206) (−0.551)

β7 Meat price index, Index (lag 6, MoM) −3.393∗ −2.728∗∗∗ −2.748∗∗∗ −2.587∗ −3.000
(−1.686) (−2.673) (−3.321) (−1.939) (−1.305)

β8 Beef price, US cents/pound (lag 9, MoM) −0.580 −1.128 −2.249∗∗∗ −2.163∗∗∗ −2.394∗

(−0.808) (−1.604) (−2.825) (−2.640) (−1.736)

R1(τ) 0.451 0.365 0.341 0.349 0.393

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 17: Coefficients overview of in-sample quantile regressions across horizons h ∈ {1, . . . , 12} (p.
3 of 4).

Horizon 7 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.269∗∗∗ −0.146∗∗∗ 0.028 0.168∗∗∗ 0.265∗∗

(−3.048) (−3.514) (0.717) (4.879) (2.399)

β1
Standing biomass, #Individuals (Nor-
way) (lag 9, MoM)

0.328 0.430 1.494∗∗ 1.879∗∗∗ 1.839
(0.270) (0.466) (1.989) (2.866) (1.372)

β2
Standing biomass, Tonnes (Norway) (lag
9, MoM)

3.073∗∗ 2.651∗∗ 1.723∗∗ 0.954 0.846
(2.128) (2.588) (2.371) (1.425) (0.570)

β3
Smolt release, #Individuals (Norway)
(lag 17, MoM)

−0.041 −0.057∗∗∗ −0.042∗ −0.065∗∗∗ −0.068
(−1.280) (−2.665) (−1.685) (−2.674) (−1.297)

β4
Standing biomass of trout, #Individuals
(Norway) (lag 9, YoY)

−1.583∗∗ −1.140∗∗∗ −0.896∗∗ −0.436 −0.434
(−2.526) (−2.800) (−2.043) (−0.932) (−0.610)

β5
Standing biomass of trout, Tonnes (Nor-
way) (lag 9, YoY)

1.025∗∗ 0.558∗ 0.515 0.170 0.189
(2.072) (1.664) (1.503) (0.476) (0.337)

β6
Sea lice treatments, % of fish being
treated (Norway) (lag 12, YoY)

−0.119 −0.126 −0.132∗ −0.130∗∗∗ −0.107
(−0.795) (−1.177) (−1.941) (−3.034) (−1.328)

β7 Beef price, US cents/pound (lag 9, MoM) −1.167 −1.630∗∗ −1.184 −1.956∗∗∗ −2.374∗∗

(−1.231) (−2.166) (−1.562) (−3.162) (−1.993)

β8
Shrimp price, US cents/pound (lag 12,
MoM)

−0.750 −2.070∗∗∗ −2.557∗∗∗ −3.426∗∗∗ −3.892∗∗

(−0.620) (−2.889) (−3.940) (−3.334) (−2.109)

R1(τ) 0.423 0.328 0.320 0.371 0.375

Horizon 8 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.269∗∗∗ −0.153∗∗∗ 0.003 0.156∗∗∗ 0.284
(−2.927) (−3.608) (0.082) (3.462) (1.271)

β1
Standing biomass, #Individuals (Nor-
way) (lag 9, MoM)

0.384 1.027 1.419∗∗ 1.675∗∗ 0.982
(0.360) (1.363) (2.116) (1.996) (0.376)

β2
Standing biomass, Tonnes (Norway) (lag
9, MoM)

3.756∗∗ 2.517∗∗∗ 1.475∗∗ 1.176∗ 1.695
(2.566) (2.744) (2.296) (1.814) (0.835)

β3
Smolt release, #Individuals (Norway)
(lag 17, MoM)

−0.044 −0.050∗∗ −0.039∗ −0.045 0.002
(−1.165) (−2.133) (−1.725) (−1.270) (0.030)

β4
Standing biomass of trout, #Individuals
(Norway) (lag 9, YoY)

−1.105∗∗ −1.223∗∗∗ −1.330∗∗∗ −0.943 −0.449
(−2.009) (−3.826) (−2.988) (−1.629) (−0.406)

β5
Standing biomass of trout, Tonnes (Nor-
way) (lag 9, YoY)

0.409 0.620∗ 0.751∗∗ 0.505 0.480
(0.674) (1.762) (2.296) (1.443) (0.600)

β6
Sea lice treatments, % of fish being
treated (Norway) (lag 12, YoY)

−0.068 −0.109 −0.156∗∗ −0.133∗∗ −0.089
(−0.419) (−1.070) (−2.393) (−2.417) (−0.911)

β7 Beef price, US cents/pound (lag 9, MoM) −1.734∗∗ −1.619∗∗ −1.307 −2.268∗∗∗ −1.894
(−2.133) (−2.389) (−1.493) (−2.682) (−1.402)

β8
Shrimp price, US cents/pound (lag 12,
MoM)

−1.829 −1.878∗ −1.039 −1.611∗∗ −1.977
(−1.189) (−1.891) (−1.325) (−2.033) (−1.058)

R1(τ) 0.449 0.361 0.302 0.314 0.312

Horizon 9 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.241∗∗ −0.141∗∗∗ 0.002 0.136∗∗∗ 0.209∗

(−2.576) (−3.740) (0.055) (3.461) (1.719)

β1
Standing biomass, #Individuals (Nor-
way) (lag 9, MoM)

0.336 0.555 1.268∗ 0.918 1.027
(0.396) (0.991) (1.953) (1.082) (0.671)

β2
Standing biomass, Tonnes (Norway) (lag
9, MoM)

1.261 2.435∗∗∗ 1.852∗∗∗ 1.682∗∗ 1.567
(0.748) (3.055) (2.742) (2.457) (1.091)

β3
Standing biomass of trout, #Individuals
(Norway) (lag 9, YoY)

−1.696∗∗ −1.635∗∗∗ −1.824∗∗∗ −1.719∗∗∗ −1.754∗

(−2.628) (−4.875) (−4.271) (−2.863) (−1.935)

β4
Standing biomass of trout, Tonnes (Nor-
way) (lag 9, YoY)

0.848 1.046∗∗∗ 0.888∗∗∗ 0.828∗∗ 0.900
(1.174) (2.726) (2.730) (2.327) (1.330)

β5
Sea lice treatments, % of fish being
treated (Norway) (lag 12, YoY)

−0.098 −0.195∗ −0.120 −0.147∗∗∗ −0.134
(−0.528) (−1.788) (−1.573) (−2.668) (−1.451)

β6 Beef price, US cents/pound (lag 9, MoM) −1.436 −1.315∗ −1.284∗ −1.146∗ −1.699
(−1.249) (−1.818) (−1.983) (−1.671) (−1.531)

β7
Shrimp price, US cents/pound (lag 12,
MoM)

0.475 −0.517 −0.977 −1.365∗∗ −1.338
(0.271) (−0.552) (−1.352) (−2.175) (−1.018)

β8 Currency pair, USD/EUR (lag 15, MoM) 2.063 1.625 1.362 2.985∗ 4.357
(0.855) (1.221) (1.065) (1.796) (1.511)

R1(τ) 0.372 0.350 0.305 0.337 0.341

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 18: Coefficients overview of in-sample quantile regressions across horizons h ∈ {1, . . . , 12} (p.
4 of 4).

Horizon 10 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.302∗∗∗ −0.205∗∗∗ −0.019 0.209∗∗∗ 0.367∗∗∗

(−4.345) (−5.529) (−0.369) (4.156) (3.666)

β1
Smolt release, #Individuals (Norway)
(lag 15, YoY)

−0.046 −0.137 −0.150 −0.053 −0.084
(−0.326) (−1.349) (−1.628) (−0.662) (−1.026)

β2
Standing biomass of trout, #Individuals
(Norway) (lag 12, YoY)

−2.306∗∗∗ −2.376∗∗∗ −1.647∗∗∗ −0.721 −0.112
(−2.709) (−4.427) (−3.242) (−1.069) (−0.109)

β3
Standing biomass of trout, Tonnes (Nor-
way) (lag 12, YoY)

1.275∗∗∗ 1.320∗∗∗ 1.155∗∗∗ 0.590 0.075
(3.143) (4.275) (2.804) (0.972) (0.084)

β4
Sea lice occurrence, #Lice/fish (Norway)
(lag 12, MoM)

−0.026 0.125 0.125 0.102 0.040
(−0.143) (1.019) (1.233) (1.387) (0.299)

β5
Sea lice treatments, % of fish being
treated (Norway) (lag 12, YoY)

−0.190 −0.223∗∗ −0.134 −0.136∗ −0.125
(−1.414) (−2.166) (−1.486) (−1.689) (−0.950)

β6 Meat price index, Index (lag 12, MoM) 1.320 1.220 −0.175 −1.234 0.219
(0.588) (0.803) (−0.110) (−0.914) (0.095)

β7
Beef price, US cents/pound (lag 12,
MoM)

−0.919 −0.786 −0.325 −0.687 −2.374
(−1.119) (−1.271) (−0.337) (−0.588) (−1.316)

β8 Currency pair, USD/EUR (lag 12, MoM) 3.721∗ 3.929∗∗ 3.155 1.840 0.838
(1.815) (2.309) (1.380) (0.850) (0.296)

R1(τ) 0.388 0.297 0.176 0.128 0.196

Horizon 11 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.284∗∗∗ −0.180∗∗∗ 0.000 0.185∗∗∗ 0.339∗∗∗

(−3.657) (−4.199) (−0.011) (3.283) (3.791)

β1
Smolt release, #Individuals (Norway)
(lag 16, MoM)

0.033 0.061∗ 0.041∗ 0.014 0.014
(0.711) (1.911) (1.846) (0.610) (0.428)

β2
Standing biomass of trout, #Individuals
(Norway) (lag 12, YoY)

−1.990∗∗∗ −2.324∗∗∗ −1.526∗∗∗ −0.717 −0.563
(−2.864) (−4.572) (−3.224) (−0.950) (−0.528)

β3
Standing biomass of trout, Tonnes (Nor-
way) (lag 12, YoY)

0.981∗ 1.452∗∗∗ 0.852∗∗ 0.390 0.438
(1.787) (4.034) (2.524) (0.708) (0.554)

β4
Sea lice occurrence, #Lice/fish (Norway)
(lag 12, YoY)

−0.086 −0.146 0.016 0.083 0.031
(−0.528) (−1.132) (0.161) (0.917) (0.201)

β5
Sea lice treatments, % of fish being
treated (Norway) (lag 12, YoY)

−0.076 −0.157 −0.255∗∗∗ −0.208∗∗ −0.075
(−0.334) (−1.036) (−3.022) (−2.622) (−0.656)

β6
Beef price, US cents/pound (lag 12,
MoM)

−0.831 −0.399 −1.020 −1.548 −1.492
(−0.856) (−0.542) (−1.244) (−1.644) (−1.359)

β7
Shrimp price, US cents/pound (lag 12,
MoM)

−0.050 −1.067 −1.469∗∗ −1.741 −1.599
(−0.054) (−1.402) (−2.035) (−1.465) (−0.849)

β8 Currency pair, USD/EUR (lag 12, MoM) 2.986 3.068∗∗ 1.594 −0.005 0.915
(1.365) (2.287) (1.251) (−0.003) (0.367)

R1(τ) 0.343 0.311 0.291 0.205 0.227

Horizon 12 τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

β0 (Intercept) −0.254∗∗∗ −0.164∗∗∗ −0.024 0.131∗ 0.315
(−3.170) (−4.508) (−0.632) (1.969) (1.505)

β1
Smolt release, #Individuals (Norway)
(lag 15, YoY)

0.057 −0.125 −0.079 −0.137∗ −0.096
(0.419) (−1.042) (−0.838) (−1.825) (−0.866)

β2
Standing biomass of trout, #Individuals
(Norway) (lag 12, YoY)

−1.858∗∗ −2.073∗∗∗ −2.019∗∗∗ −2.185∗∗ −0.919
(−2.469) (−5.732) (−4.530) (−2.455) (−0.759)

β3
Standing biomass of trout, Tonnes (Nor-
way) (lag 12, YoY)

1.156∗ 1.220∗∗∗ 1.116∗∗∗ 1.177∗∗ 0.735
(1.879) (4.706) (3.427) (1.997) (0.695)

β4
Sea lice occurrence, #Lice/fish (Norway)
(lag 12, YoY)

−0.192 −0.037 −0.058 −0.016 0.158
(−1.392) (−0.354) (−0.533) (−0.120) (0.869)

β5
Sea lice treatments, % of fish being
treated (Norway) (lag 12, YoY)

−0.038 −0.225∗ −0.193∗∗ −0.208∗∗ −0.234
(−0.186) (−1.788) (−2.555) (−2.321) (−1.549)

β6
Beef price, US cents/pound (lag 12,
MoM)

−0.938 −0.742 −0.833 −1.152 −1.419
(−0.929) (−0.953) (−1.018) (−1.220) (−0.739)

β7
Shrimp price, US cents/pound (lag 12,
MoM)

−0.592 −0.381 −0.621 −0.296 −0.670
(−0.678) (−0.675) (−1.024) (−0.341) (−0.394)

β8 Currency pair, USD/EUR (lag 12, MoM) 2.716 3.747∗∗∗ 1.889 1.051 −0.515
(1.627) (3.183) (1.144) (0.502) (−0.154)

R1(τ) 0.394 0.369 0.326 0.234 0.209

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.4 IN-SAMPLE SPECIFICATION TEST RESULTS

In Table 19, we present the results from various specification tests that are run on the quan-
tile regression models. The Kupiec, Christoffersen, and QRESET tests are described in Sec-
tion 5.6. Implementation specifics of the QRESET, with a detailed procedure in accordance
with Otsu (2009), are given in Appendix A.6.

Table 19: Specification test results from the in-sample quantile regressions across horizons
k ∈ {1, . . . 12}.
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A.5 CROSS-CORRELATION TABLES FOR THE EXPLANATORY VARIABLES

Below we present cross-correlation tables for the log returns (lagged and at time windows
MoM or YoY, as indicated) of the covariates utilised in the quantile regressions across the
given horizons.

Table 20: Cross-correlation between log returns, h ∈ {1, ..., 6}.

h = 1 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 NQSALMON, USD/kg (lag 1, MoM) 1.00
β2 Standing biomass, Tonnes (Norway) (lag 3, MoM) -0.03 1.00
β3 Feed consumption, Tonnes (Norway) (lag 2, YoY) -0.11 0.11 1.00
β4 Harvest volume of trout, Tonnes (Norway) (lag 9, MoM) 0.04 -015 -0.03 1.00
β5 Sea lice occurrence, #Lice/fish (Norway) (lag 12, MoM) -0.11 -0.25 -0.08 -0.01 1.00
β6 Sea temperature, Degrees celsius (Norway) (lag 6, MoM) 0.09 0.91 0.04 -0.19 -0.26 1.00
β7 Shrimp price, US cents/pound (lag 6, MoM) 0.16 0.04 -0.19 0.16 -0.10 0.06 1.00
β8 Average harvest weight, kg (Norway) (lag 1, YoY) -0.10 -0.06 -0.13 0.02 -0.05 -0.03 0.03 1.00

h = 2 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 NQSALMON, USD/kg (lag 2, MoM) 1.00
β2 Feed consumption, Tonnes (Norway) (lag 3, MoM) -0.31 1.00
β3 Standing biomass of trout, Tonnes (Norway) (lag 9, YoY) 0.00 0.02 1.00
β4 Harvest volume of trout, Tonnes (Norway) (lag 9, YoY) 0.13 0.03 0.52 1.00
β5 Sea temperature, Degrees celsius (Norway) (lag 6, MoM) -0.11 0.29 0.02 0.00 1.00
β6 Meat price index, Index (lag 6, MoM) -0.07 0.16 0.08 0.06 0.34 1.00
β7 Shrimp price, US cents/pound (lag 9, MoM) -0.08 -0.02 -0.07 -0.14 -0.02 0.11 1.00
β8 Currency pair, USD/EUR (lag 6, MoM) -0.08 -0.03 -0.08 0.03 -0.07 -0.36 -0.11 1.00

h = 3 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Standing biomass, #Individuals (Norway) (lag 3, MoM) 1.00
β2 Standing biomass, Tonnes (Norway) (lag 3, MoM) 0.21 1.00
β3 Feed consumption, Tonnes (Norway) (lag 3, MoM) 0.52 0.42 1.00
β4 Standing biomass of trout, #Individuals (Norway) (lag 6, YoY) 0.04 0.12 0.05 1.00
β5 Harvest volume of trout, Tonnes (Norway) (lag 9, YoY) -0.03 0.00 -0.03 0.16 1.00
β6 Sea temperature, Degrees celsius (Norway) (lag 6, MoM) 0.11 0.91 0.29 0.14 0.01 1.00
β7 Beef price, US cents/pound (lag 6, MoM) 0.01 -0.01 0.04 0.00 0.01 -0.04 1.00
β8 Currency pair, USD/EUR (lag 9, MoM) -0.02 -0.04 0.07 -0.09 -0.16 0.00 -0.17 1.00

h = 4 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Standing biomass, #Individuals (Norway) (lag 9, YoY) 1.00
β2 Standing biomass, Tonnes (Norway) (lag 6, MoM) 0.06 1.00
β3 Feed consumption, Tonnes (Norway) (lag 4, YoY) 0.44 0.12 1.00
β4 Standing biomass of trout, #Individuals (Norway) (lag 9, YoY) 0.11 0.10 -0.04 1.00
β5 Harvest volume of trout, Tonnes (Norway) (lag 12, YoY) 0.18 -0.02 -0.01 0.18 1.00
β6 Meat price index, Index (lag 6, MoM) 0.09 0.01 -0.05 0.05 -0.01 1.00
β7 Beef price, US cents/pound (lag 6, MoM) -0.02 0.05 0.00 -0.09 -0.16 0.30 1.00
β8 Shrimp price, US cents/pound (lag 9, MoM) -0.14 0.04 -0.06 0.08 -0.13 0.11 0.07 1.00

h = 5 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Standing biomass, Tonnes (Norway) (lag 6, MoM) 1.00
β2 Standing biomass of trout, #Individuals (Norway) (lag 6, YoY) -0.03 1.00
β3 Standing biomass of trout, Tonnes (Nor- way) (lag 6, YoY) 0.01 0.78 1.00
β4 Sea lice occurrence, #Lice/fish (Norway) (lag 12, MoM) -0.50 -0.08 -0.02 1.00
β5 Sea temperature, Degrees celsius (Norway) (lag 6, YoY) 0.05 0.11 0.22 0.04 1.00
β6 Meat price index, Index (lag 9, MoM) 0.36 0.15 0.00 -0.21 -0.04 1.00
β7 Poultry index, Index (lag 6, MoM) -0.07 0.12 -0.01 -0.15 -0.15 -0.01 1.00
β8 Beef price, US cents/pound (lag 6, MoM) 0.05 0.02 -0.08 0.15 -0.02 0.15 0.15 1.00

h = 6 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Standing biomass, #Individuals (Norway) (lag 9, MoM) 1.00
β2 Standing biomass, Tonnes (Norway) (lag 9, YoY) 0.06 1.00
β3 Standing biomass of trout, #Individuals (Norway) (lag 6, YoY) 0.02 -0.23 1.00
β4 Harvest volume of trout, Tonnes (Norway) (lag 12, YoY) -0.02 0.16 0.01 1.00
β5 Sea lice occurrence, #Lice/fish (Norway) (lag 12, MoM) -0.08 0.01 -0.08 -0.04 1.00
β6 Sea temperature, Degrees celsius (Norway) (lag 12, MoM) -0.18 0.04 0.08 -0.07 -0.25 1.00
β7 Meat price index, Index (lag 6, MoM) -0.07 0.20 0.17 -0.02 -0.17 0.34 1.00
β8 Beef price, US cents/pound (lag 9, MoM) -0.06 0.08 0.03 0.01 0.02 0.06 -0.02 1.00
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Table 21: Cross-correlation between log returns, h ∈ {7, ..., 12}.

h = 7 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Standing biomass, #Individuals (Norway) (lag 9, MoM) 1.00
β2 Standing biomass, Tonnes (Norway) (lag 9, MoM) 0.19 1.00
β3 Smolt release, #Individuals (Norway) (lag 17, MoM) 0.02 -0.35 1.00
β4 Standing biomass of trout, #Individuals (Norway) (lag 9, YoY) 0.07 -0.04 -0.02 1.00
β5 Standing biomass of trout, Tonnes (Norway) (lag 9, YoY) 0.02 0.00 -0.01 0.80 1.00
β6 Sea lice treatments, % of fish being treated (Norway) (lag 12, YoY) 0.02 0.08 -0.10 -0.05 -0.02 1.00
β7 Beef price, US cents/pound (lag 9, MoM) 0.08 0.05 -0.08 0.01 -0.08 -0.01 1.00
β8 Shrimp price, US cents/pound (lag 12, MoM) 0.07 0.04 0.23 0.17 0.00 0.00 0.07 1.00

h = 8 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Standing biomass, #Individuals (Norway) (lag 9, MoM) 1.00
β2 Standing biomass, Tonnes (Norway) (lag 9, MoM) 0.21 1.00
β3 Smolt release, #Individuals (Norway) (lag 17, MoM) -0.01 -0.35 1.00
β4 Standing biomass of trout, #Individuals (Norway) (lag 9, YoY) 0.02 -0.03 -0.05 1.00
β5 Standing biomass of trout, Tonnes (Norway) (lag 9, YoY) -0.03 0.01 -0.02 0.78 1.00
β6 Sea lice treatments, % of fish being treated (Norway) (lag 12, YoY) 0.01 0.08 -0.11 -0.07 -0.03 1.00
β7 Beef price, US cents/pound (lag 9, MoM) 0.09 0.05 -0.08 0.02 -0.08 -0.01 1.00
β8 Shrimp price, US cents/pound (lag 12, MoM) 0.05 0.04 -0.24 0.16 -0.02 0.00 0.07 1.00

h = 9 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Standing biomass, #Individuals (Norway) (lag 9, MoM) 1.00
β2 Standing biomass, Tonnes (Norway) (lag 9, MoM) 0.21 1.00
β3 Standing biomass of trout, #Individuals (Norway) (lag 9, YoY) 0.03 0.00 1.00
β4 Standing biomass of trout, Tonnes (Norway) (lag 9, YoY) -0.03 0.03 0.76 1.00
β5 Sea lice treatments, % of fish being treated (Norway) (lag 12, YoY) 0.00 0.10 -0.13 -0.07 1.00
β6 Beef price, US cents/pound (lag 9, MoM) 0.10 0.06 0.03 -0.08 -0.01 1.00
β7 Shrimp price, US cents/pound (lag 12, MoM) 0.07 0.05 0.17 -0.03 -0.02 0.10 1.00
β8 Currency pair, USD/EUR (lag 15, MoM) -0.02 -0.04 0.01 0.05 0.02 -0.05 -0.08 1.00

h = 10 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Smolt release, #Individuals (Norway) (lag 15, YoY) 1.00
β2 Standing biomass of trout, #Individuals (Norway) (lag 12, YoY) -0.01 1.00
β3 Standing biomass of trout, Tonnes (Norway) (lag 12, YoY) 0.08 0.80 1.00
β4 Sea lice occurrence, #Lice/fish (Norway) (lag 12, MoM) 0.23 -0.05 -0.05 1.00
β5 Sea lice treatments, % of fish being treated (Norway) (lag 12, YoY) -0.21 -0.10 -0.14 -0.03 1.00
β6 Meat price index, Index (lag 12, MoM) -0.06 0.20 0.01 0.02 -0.04 1.00
β7 Beef price, US cents/pound (lag 12, MoM) -0.04 0.01 -0.08 -0.10 -0.09 0.30 1.00
β8 Currency pair, USD/EUR (lag 12, MoM) 0.06 -0.10 -0.12 -0.12 0.10 -0.36 -0.07 1.00

h = 11 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Smolt release, #Individuals (Norway) (lag 16, MoM) 1.00
β2 Standing biomass of trout, #Individuals (Norway) (lag 12, YoY) 0.04 1.00
β3 Standing biomass of trout, Tonnes (Norway) (lag 12, YoY) 0.04 0.78 1.00
β4 Sea lice occurrence, #Lice/fish (Norway) (lag 12, YoY) 0.05 -0.33 -0.20 1.00
β5 Sea lice treatments, % of fish being treated (Norway) (lag 12, YoY) 0.06 -0.14 -0.17 0.49 1.00
β6 Beef price, US cents/pound (lag 12, MoM) 0.09 0.02 -0.08 0.12 -0.09 1.00
β7 Shrimp price, US cents/pound (lag 12, MoM) 0.19 0.08 -0.15 -0.05 -0.06 0.16 1.00
β8 Currency pair, USD/EUR (lag 12, MoM) -0.02 -0.10 -0.12 -0.02 0.10 -0.06 -0.08 1.00

h = 12 TIME SERIES, UNIT β1 β2 β3 β4 β5 β6 β7 β8

β1 Smolt release, #Individuals (Norway) (lag 15, YoY) 1.00
β2 Standing biomass of trout, #Individuals (Norway) (lag 12, YoY) -0.04 1.00
β3 Standing biomass of trout, Tonnes (Norway) (lag 12, YoY) 0.06 0.76 1.00
β4 Sea lice occurrence, #Lice/fish (Norway) (lag 12, YoY) -0.05 -0.35 -0.22 1.00
β5 Sea lice treatments, % of fish being treated (Norway) (lag 12, YoY) -0.22 -0.17 -0.18 0.48 1.00
β6 Beef price, US cents/pound (lag 12, MoM) -0.04 0.03 -0.08 0.12 -0.10 1.00
β7 Shrimp price, US cents/pound (lag 12, MoM) 0.05 0.09 -0.15 -0.05 -0.06 0.15 1.00
β8 Currency pair, USD/EUR (lag 12, MoM) 0.06 -0.11 -0.13 -0.02 0.10 -0.06 -0.08 1.00
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A.6 TESTS FOR STATISTICAL PROPERTIES

Four different statistical tests are conducted to examine the properties of the dependent
variable and the explanatory variables. This include the Jarque-Bera test, the Dickey-Fuller
test, the (Augmented) Dickey-Fuller test, and the Ljung-Box Q-Test to evaluate the descrip-
tive statistics for the variables. A corresponding description for each test is given in the
following section.

Jarque-Bera (JB) Test

The JB test applies to any random variable whenever an assumption of normality can be
justified (Jarque & Bera, 1980). It is based on the estimates of the sample skewness τ̂, and
the sample kurtosis κ̂. In accordance with Alexander (2008b, p. 158), the test statistic is
expressed as:

JB =
T − k

6

(
τ̂ +

1
4
(κ̂ − 3)2

)
asy∼ χ2

2,

where T is the number of observations and k is the number of regressors. The hypotheses
may be summarised as follows:

H0 : Both skewness and excess kurtosis are zero, matching the properties of
the normal distribution.

H1 : Either one or both of the skewness and excess kurtosis differs from zero,
i.e., the sample data is non-normally distributed.

In accordance with the critical values of the χ2
2 distribution, the null hypothesis is rejected

at a 1% significance level whenever JB > 9.21.

Dickey-Fuller (DF) Test

The DF test is a basic unit root test that can be used to determine whether or not a time
series is stationary (Dickey & Fuller, 1979). Consider the time series {xt}T

t=1, apply the DF
regression given as (Alexander, 2008a, p. 217):

∆xt = α + βxt−1 + εt.

The test statistic is the t-ratio of β̂, and it is a one-sided test for:

H0 : β = 0,

H1 : β < 0.

Under H0, {xt}T
t=1 ∼ I(1) - equivalently, the time series is non-stationary. Under the alter-

native hypothesis, H1, {xt}T
t=1 ∼ I(0) - that is, the time series is stationary. H0 is rejected

if the t-ratio of β̂ is more negative than the critical value at a given significance level. The
critical value of the t-ratio of β̂ is somewhat larger than the corresponding t-statistic. In par-
ticular, this depends on the sample size. Note that the ordinary DF test is biased if there is
autocorrelation in the residuals of the DF regression.

Augmented Dickey-Fuller (ADF) Test

In contrast to the DF test, the ADF test removes potential autocorrelation in the residuals
from the DF regression by including a number of lagged dependent variables. The order
for the test is denoted ρ, where ρ refers to the number of lags included for the dependent
variable (Alexander, 2008a, p. 218). The test is obtained from the following auxiliary re-
gression:
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∆xt = α + βxt−1 + γ1∆xt−1 + ... + γρ∆xt−ρ + εt.

The test statistic and hypotheses are the same as for the standard DF test. However, the
critical values will differ depending on the number of lags ρ included in the auxiliary re-
gression. In this paper, all the ADF tests are calculated with a single lag, i.e. ρ = 1, as the
tests do not yield notably different statistics for longer lags.

Ljung-Box Q-Test

The Ljung-Box Q-test is a portmanteau test that evaluates the presence for autocorrelation in
the time series. Thus, the test considers for autocorrelation across several lags ρ, rather than
evaluating autocorrelation effects at a particular lag, for a given time series. The null hy-
pothesis states that no autocorrelation is present, while the alternative hypothesis is more
loosely specified. According to Ljung and Box (1978), the test statistic is given as:

QLB = T(T + 2)
ρ

∑
k=1

r2
k

T − k
,

where T is the sample size, rk is the sample autocorrelation at lag k, and ρ is the number
of lags being tested. Under the null hypothesis, the QLB-statistic follows a χ2

ρ distribution.
Generally, large values of QLB indicate autocorrelation in the time series. Formally, the
hypotheses are:

H0 : No autocorrelation is present, i.e., the data is independently distributed.

H1 : Autocorrelation is present, i.e., the data is not independently distributed.
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A.7 MODEL PERFORMANCE MEASURE

We apply the pseudo-R-squared metric, denoted R1(τ), to assess the goodness-of-fit of the
submodels.

Goodness-of-Fit for Quantile Regression: R1(τ)

R1(τ) measures the relative success of quantile regression models at a specific quantile,
and thus creates a local measure for the goodness-of-fit for a particular quantile (Koenker &
Machado, 1999). In contrast, the conventional goodness-of-fit measures R-squared, denoted
R2, and adjusted R-squared, denoted R2

adj, are global measures that estimates model perfor-
mance over the entire conditional distribution.

Using a similiar notation as in Section 5.2, consider the following linear model for a
conditional quantile regression model for a given quantile τ and price observation yt:

F−1
yt (τ | xt) = xtβτ + F−1

ε (τ) = xt1βτ1 + xt2βτ2 + F−1
ε (τ),

where β̂τ denotes the least squares estimator of the model F−1
yt (τ | xt), and β̃τ = (β̃τ1, 0)

denotes the estimator under the q-dimensional linear restriction that H0 : βτ2 = 0. We may
denote two minimising function; for an unconstrained problem, denoted V̂(τ), and for a
corresponding constrained problem, denoted Ṽ(τ). Moreover, let β̂τ and β̃τ denote the
corresponding minimisers for the unconstrained and constrained problem, respectively.
Then, according to Koenker and Machado (1999), the pseudo-R-squared is given as:

R1(τ) = 1− V̂(τ)

Ṽ(τ)
: V̂(τ) = min

{b∈Rp}

T

∑
t=1

ρτ(yt− xtb), Ṽ(τ) = min
{b∈Rp−q}

T

∑
t=1

ρτ(yt− x1tb1).

Here, ρτ is specified as in Eq. 9 in Section 5.2. Equivalent to R2 and R2
adj, R1(τ) lies

between 0 and 1, where large values indicate a better fit than small values. For a complete
discussion of R1(τ), see Koenker and Machado (1999).
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A.8 TEST FOR MODEL SPECIFICATION

Regression Equation Specification Error Test for Quantile Regression (QRESET)

Based on the RESET introduced by Ramsey (1969), the regression equation specification er-
ror test for quantile regression (QRESET) by Otsu (2009) evaluates whether or not a quan-
tile regression model is linear in its covariates. The test is an auxiliary regression that adds
powers to the fitted dependent variables ŷ up to order p ≥ 2 and check the significance of
those added covariates. Thus, a particular version of the test is denoted QRESET(p).

While the RESET focuses on the misspecification for the conditional mean function
E[y|X], the QRESET(p) focuses on the conditional quantile function F−1(τ | X). A devi-
ation from the linear functional form might be estimated by performing a Taylor expansion
around X = 0, and subsequently investigating the significance of higher-order polynomi-
als of X resulting from the Taylor expansion. However, when the dimension of X is large, it
is impractical to include all the components that appear in the pth order polynomial of the
Taylor expansion (Otsu, 2009). This problem may be prevented by applying the approach
from RESET – substituting the effect of the pth order polynomials by the pth power of the
fitted dependent variable ŷp = (X β̂τ)p. Using the notation of Otsu (2009), this is written
as:

approximate F−1(τ | X) by Xβ + (Ωp)
>ατ

p,

where Ωp = (ŷ2, . . . , ŷp)> and ατp is a (p - 1) × 1 parameter vector for τ. Based on this ap-
proximation, the QRESET(p) for the linear specification against the p-th order polynomial
is defined as the following joint significance test:

H0 : ατp = 0.

The procedure employed to implement the QRESET(p) in this study is specified as follows.

1) Compute β̂τ by Eq. 9 in Section 5.2, and set ŷt = xt β̂τ for t = 1, . . . , T

2) Using {ŷt}T
t=1, compute

(β̂τp, α̂τp) = arg min
(b,a)∈Rn+1×Rp−1

1
T

T

∑
t=1

ρτ(yt − xtb− (Ωpt)
>a),

and estimate the asymptotic variance of α̂τp, where ρτ is defined equiva-
lent to Eq. 9 in Section 5.2.

3) Using α̂τp and its asymptotic variance estimator, denoted by V̂τp, the fol-
lowing Wald test statistic is computed for step 4)

W = α̂τp(V̂τp)
−1α̂τp.

Thereafter, conduct the significance test by the χ2
p−1 critical value. If p =

2, then we can apply the t-value for α̂τ2.

4) If H0 is rejected, there is evidence that the current linear functional form
for the quantile regression is a misspecification.

The QRESET is computationally cheap, as the test only involves one additional quantile
regression. However, the QRESET may provide lower significance when the polynomial
approximation is not exact (Otsu, 2009). On a side note, we employ the bootstrap method of
Parzen et al. (1994) to compute the asymptotic variance estimator (V̂τp)−1, using n = 1000
replications.
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A.9 DATA SOURCES

A variety of online sources have been used for data collection. In every case, we have tried
to find reliable and publicly available sources. In the following, brief descriptions of the
employed data sources are presented.

fiskeridir.no

The Directorate of Fisheries is a part of the Norwegian government. It promotes sustain-
able and user-oriented management of Norway’s marine resources and the marine envi-
ronment. They monitor the Norwegian salmon farming industry closely, and collect large
amounts of data. We use their services to obtain important data on supply indicators, such
as smolt release, feed consumption, standing biomass, and harvest volume.

fao.org

The Food and Agriculture Organization of the United Nations, dating back to 1945, is an
international agency that leads international efforts to defeat hunger. We use their services
to obtain price indices for meat.

lusedata.no

Lusedata provides data on the sea lice levels and sea temperatures in Norwegian waters,
both on a county and nationwide level. Their mission is to aid the Norwegian aquaculture
industry against high levels of sea lice by providing easily accessible statistics, knowledge,
and guidance on the subject. Typically, salmon farming companies and research communi-
ties access their data for risk management and research purposes. The data is reported on
a weekly or monthly basis to The Norwegian Food Safety Authority (Sjømat Norge, 2016).
Therefore, we have used lusedata.no to collect data on sea lice levels, sea lice treatments,
and sea temperatures.

marineharvest.com

Marine Harvest is the world’s largest producer of Atlantic salmon. In their quarterly and
annual reports, they include key information about global harvest volumes and consump-
tion of salmon. We have used these reports to obtain data for consumption of salmon split
by region and global harvest volumes (excl. Norway).

nasdaqomx.com

Nasdaq is a global financial services provider, founded in 1971. It is a product of a merge
between the U.S.-based NASDAQ, and OMX, a leading exchange operator in the Nordics.
We have used Nasdaq to obtain time series for the NQSALMON.

oanda.com

OANDA is a foreign exchange company operating since 1996. On oanda.com, a range
of different services is provided, including currency conversion, retail foreign exchange
trading, foreign currency transfers, and currency exchange information (Oanda, 2016). Due
to OANDA’s comprehensive and publicly accessible data, we have used oanda.com to
collect foreign exchange data for the exchange rates NOK/EUR.

quandl.com

Founded in 2012, Quandl is a platform providing financial and economic data, primarily
for professionals in hedge funds, asset management, and investment banks. The data is
sourced from over 500 publishers including the UN, CLS Group, and Zacks. Quandl’s data
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sets are easily accessible at quandl.com, and through an API via programming languages
such as R, Python, and Matlab. Most of the offered data sets at Quandl are publicly avail-
able. We have used quandl.com for collecting data series on shrimp and beef prices.

seafood.no

The Norwegian Seafood Council is wholly owned by the Norwegian Directorate of Fish-
eries. One of its objectives is to increase the value of Norwegian seafood resources, mainly
through the development of new markets. We have used it to collect data on trout prices.
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A.10 BACKGROUND: IMPORTANT ASPECTS OF THE SALMON FARMING INDUSTRY

Important Producers and Production Growth

The salmon farming space consists of a few dominating producing countries, as several
unique conditions have to be in place to achieve profitable production. Among the most
important requirements are stable and relatively low sea temperatures, in addition to shel-
tered coast lines. Accordingly, the most significant salmon producing countries are Nor-
way, Chile, Canada, Scotland, and the Faroes (Solibakke, 2012). Of the five, Norway and
Chile are the most important producers, producing 54 % and 23% of the volumes of farmed
Atlantic salmon, respectively.

During the last decades, aquaculture has been the world’s fastest growing animal-based
food sector (FAO, 2017b). This is primarily due to rapid productivity growth, which has re-
duced production costs as knowledge has been transferred from the terrestrial sector (An-
derson, 2002; Asche, Hansen, Tveteras, & Tveteras, 2009; Kumar & Engle, 2016). Within
aquaculture, salmon is one of the most successful species in terms of production growth,
outperforming the average production growth in the sector (Brækkan & Thyholdt, 2014),
and it is the second most valuable species after shrimp (FAO, 2017b). In numbers, the aqua-
culture production of Atlantic salmon has increased from a few thousand tons in 1980 to
beyond two million tons in 2016 (FAO, 2017b). This growth is partly illustrated in Figure
20, presenting global harvest volumes of Atlantic salmon from 1998 through 2016. Going
forward, a number of authors indicate that salmon production will continue to increase, as
productivity and demand are expected to continue to grow (Kobayashi et al., 2015; Torris-
sen et al., 2011). However, a further increase in production also requires a certain advance
in technology, as the salmon farming industry has reached a level of production where
biological boundaries are being pushed (Marine Harvest, 2016).
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Figure 20: Historical harvest volumes of Atlantic salmon.

Externalities and Their Impact on Production Growth

During the last decade, the salmon farming industry has been struggling with frequent oc-
currence of sea lice and diseases. The most notable event, with respect to impact on global
harvest volumes of Atlantic salmon, is probably the disease outbreak in Chile in 2008. This
outbreak destroyed two-thirds of the Chilean production from 2009 through 2011, and had
a significant impact on global production volumes, as seen in Figure 20. Another notable
event, also in Chile, resulted in Chilean production volumes falling close to 20% YoY in 2016
(Terazono, 2016). This particular event was caused by a natural toxic algae bloom, and was
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not a consequence of farmers overburdening the surrounding environment. Nevertheless,
the two aforementioned incidents underpin how fragile the salmon farming industry is to
external factors.

To better meet the risks associated with sea lice and diseases, the industry is continu-
ously developing technologies and procedures to prevent large production losses. Vaccines
were introduced in the late 1980s, and have reduced the need for antibiotics. Also, there
has been an increased use of farm monitoring technologies, in addition to specialists such
as veterinarians and marine biologists (Asche & Sikveland, 2015). Furthermore, the Nor-
wegian Government grants development licenses to projects with focus on innovations that
can solve the environmental issues faced by the industry (Directorate of Fisheries, 2016).36

Regulations for Sustainable Growth of the Industry

In addition to encouraging innovation, governments are regulating the production through
license systems. The aim is to achieve better control on parasite and disease outbreaks, and
establish a basis for sustainable development of the industry. While similar production
technology is used across the salmon farming countries, the government efforts designed to
mitigate externalities differ significantly, and so do the effects from the efforts (Gibbs, 2009;
Osmundsen, Almklov, & Tveterås, 2017). In the UK and Canada, strict regulations have
been imposed with rather unsuccessful results. In comparison, Chile has a significantly
more liberal regulation regime. However, Chilean farmers have also been struggling with
disease outbreaks that likely could have been avoided (Asche et al., 2009). Over the period
from 2005 to 2015, Norway’s production volume has increased by 115%, followed by Chile,
the UK, and Canada with production growth of 53%, 38%, and 25%, respectively. Clearly,
Norwegian regulations have been the most successful, as all of the countries have had
increased production as their first priority (Osmundsen et al., 2017).37

The Production Process and Supply Chain of Salmon

The salmon farming production cycle typically lasts two to three years, depending on the
attractiveness of local conditions. During the smoltification the first 10 to 16 months, salmon
eggs are fertilised and spawned, before they are transferred to fresh water. Here, the newly
spawned egg, that is a fry, becomes a parr, and subsequently a smolt. Next, the smolts are
transferred to seawater cages, where they grow for 14 to 22 months and typically gain four
to five kg (Sandvold & Tveterås, 2014). Finally, the salmon is moved to a factory for slaugh-
tering, gutting, and filleting to become a marketable product. The marketed products range
from affordable private label products to expensive branded products. This diversity has
made salmon available to a vast group of consumers, with wide-ranging preferences and
income. In turn, this has lead to an increased demand for salmon (Landazuri-Tveteraas,
Asche, Gordon, & Tveteraas, 2017).

Regarding the supply chain for salmon, there have been profound changes during the
past decades. The market has become global, and the focus from retailers on efficient logis-
tics has resulted in increased coordination upstream and a growing number of large pro-
duction companies (Asche, Roll, Sandvold, Sørvig, & Zhang, 2013; Straume, 2014). Further-

36Development license: Gives salmon farmers the opportunity to increase their production in return for innova-
tions that benefit the entire industry.
Environmental issues: A particular problem for Norwegian salmon farmers is the lack of suitable locations for farm-
ing. A high concentration of farms in a given area increases the probability for high sea lice levels and disease
outbreaks. Hence, most applications for development licenses that have been submitted to the Directorate of Fish-
eries concern innovation of the farming facilities, such as submerged, closed, and offshore facilities (Directorate
of Fisheries, 2017b).

37It is important to note that there are several other factors affecting the production growth, such as technolog-
ical innovations, the cost of production factors, and market access (Anderson, 2002; Asche, 2008; Kumar & Engle,
2016). However, the strong growth seen within Norwegian salmon farming does at the very least indicate that
Norwegian regulations have been somewhat successful in the past.
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more, more advanced transaction methods have been introduced, such as options and fu-
tures contracts, making salmon the species with one of the most diverse transaction modes
compared to other seafoods (Straume, 2014).

Financial Contracts

Along with the development of more advanced transaction methods, Fish Pool has been
established. This is an international marketplace for buying and selling of financial salmon
contracts, and its majority owner is Oslo Stock Exchange, with a stake of 97%. As of 2011,
the participants at Fish Pool consisted of 32% financial players, whereas 68% of the partici-
pants were a part of the salmon farming value chain (Rolland & Johnsen, 2014). Although
Fish Pool aims to be the preferred global exchange for price hedging of fish and seafood
products, its 2015 trading volumes totalled only 55 500 tonnes, or 2.4% of the total harvest
volume that particular year (Fish Pool ASA, 2015). According to a study carried out by
Rolland and Johnsen (2014), many salmon farmers hesitate to engage in contracts through
Fish Pool. This doubt is supposedly attributed to low liquidity and high spreads, combined
with too little knowledge of financial markets among the salmon farmers.
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