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ABSTRACT:  19 

Among the rest raw material in herring (Clupea harengus) fractions, produced during the 20 

filleting process of herring, there are high value products such as roe and milt. As of today there 21 

has been little or no major effort to process these by-products in an acceptable state, except 22 

for by manual separation and mostly mixed into low-value products. Even though pure roe and 23 

milt fractions can be sold for as much as ten times the value of the mixed fractions, the 24 

separation costs using manual techniques render this economically unsustainable. Automating 25 

this separation process could potentially give the pelagic fish industry better raw material 26 

utilization and a substantial additional income. In this paper, a robust classification approach is 27 

described which enables separation of these by-products based on their distinct reflectance 28 

features. The analysis is conducted using data from image recordings of by-products delivered 29 

by a herring processing factory. The image data is divided into three respective classes: roe, milt 30 

and waste (other). Classifier model tuning and analysis is done using multiclass support vector 31 

machines (SVMs). A grid search and cross-validation is applied to investigate the separation of 32 

the classes. Two-class separation was possible between milt/roe and roe/waste. However, 33 

separation of milt from waste proved to be the most difficult task, but it was shown that a grid 34 

search maximizing the precision – the true positive rate of the predictions – results in a precise 35 

SVM model that also has a high recall rate for milt versus waste. 36 
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Introduction 40 

In 2014 a total of 162 000 tons of rest raw material was produced by herring fileting industries 41 

in Norway. This number is much lower than in the previous years, due to regulation of the 42 

herring quota. A relatively large part of landed herring is fileted in Norway (70 %). For the time 43 

being herring rest raw material is exclusively utilized as meal for the salmon feed industry and 44 

not for human consumption [16]. The greater part of the material is sold to other industries 45 

which process it into oil, flour or a product called silage. Unless the rest raw material is 46 

separated - the most valuable byproducts being milt and roe, with belly flap also being a 47 

valuable fraction - it is worth relatively little. If separated, the by-products can be worth ten 48 

times as much. However, the separation costs using manual techniques render this 49 

uneconomical. The potential for better utilization of these products is large, and in a survey 50 

conducted by Nofima AS [6], the potential utility value of milt from herring is described, in part 51 

due to the high nutritional value. Both milt and roe from herring contains the important fatty 52 

acids EPA, DHA, ARA and DPA along with large amounts of proteins (22-25 % and 24-26 % 53 

respectively), [15]. The gonads have a fat content of around 4-5 % of which 65-75 % consists of 54 

phospholipids – important lipids that are a major component of all cell membranes. In addition, 55 

the utility value of the belly flaps has been studied [13], along with the other filleting by-56 

products (bits and pieces). New product and market possibilities were discovered, regarding the 57 

utility value of these products for human consumption. 58 

In previous work, a system for sorting herring roe has been developed [11] They used a fuzzy 59 

classifier and 2D features to grade the roe as being either ‘good’ or ‘poor’. Due to the 60 



uncertainties in the classifier performance, Hu et al. [11] also propose a general grading 61 

framework that includes manual regrading of the fraction of roe that lies near the classification 62 

border between ‘good’ and ‘poor’. Later versions of the roe grading system included color 63 

features, and 3D imaging using multiple laser stripes was added in order to enable automated 64 

weighing of the roe and detection of deformed (3D deformations) class of roe called ‘henkei’ 65 

[14]. This previous work is topically close to ours, even though it does not distinguish between 66 

herring fractions. There is machinery available for high speed sorting of other types of food 67 

such as nuts, fruit and vegetables. Examples of such systems are the Opus free-fall camera/laser 68 

sorting machine (TOMRA Systems ASA, Asker, Norway) – an optical food sorting solution for IQF 69 

(frozen) fruit and vegetable processors. Machines such as these do not directly solve our 70 

problem, but the techniques they use are worth considering, and are quite similar in some ways 71 

to that which we present. 72 

The work presented draws some inspiration from research [17] demonstrating a significant 73 

difference in NIR absorbance in herring roe and milt. We also investigated several wavelengths 74 

in the visible and NIR regions in previous work [8] and found that a wavelength of 785 nm 75 

enabled the best distinction between milt and roe. This paper takes the previous research a 76 

large step closer to practical industrial application, by demonstrating a proof-of-concept 77 

machine vision system for robust sorting of herring fractions. The hope is that new research 78 

and sorting machine development, which the work in this paper is a part of, might help give 79 

birth to a whole new consumer market for herring products and enable a better raw material 80 

utilization. Implementation of a sorting machine of this kind might generate new income for the 81 



processing industry, and also has the potential of giving both the market and herring processing 82 

industry more flexibility and choices in terms of product assortment from herring fractions.  83 

Materials and Methods 84 

Herring and the filleting process. 85 

In Norway, whole herring is filleted using filleting machines such as Baader 221 (Nordischer 86 

Maschinenbau Rud.Baader GmbH, Lübeck, Germany) that output fillets and other herring 87 

fractions. These herring fractions consist of heads, tails, belly flaps, back bones, skins, gonads 88 

(roe or milt) and other internal organs. An overview of the filleting process can be seen in 89 

Figure 1. 90 

After the herring has been sorted according to size and distributed to the filleting machines, it is 91 

oriented head first and with the belly pointing downwards, and then the head and tail is cut. 92 

The fish is then brought to the first set of knives where the belly flap is cut and removed, 93 

thereby opening the abdominal cavity. The gonads, along with the rest of the intestines, are 94 

separated from the rest of the fish by a spinning wheel that scoops out the contents of the 95 

abdominal cavity. The content falls directly down through a vertical shaft and drops onto a 96 

conveyor belt. Most of the content that drops through this vertical shaft is either milt or roe, 97 

normally with just a minimal amount of intestines and other organs. The other content usually 98 

drops down at other locations, before and after the milt and roe. The work in this paper focuses 99 

on the herring fractions that fall down the vertical shaft where the milt and roe drops. 100 



With high processing speeds of up to 5 fish per second, equivalent to 250-300 fish processed 101 

every minute, some will inevitably get stuck and some will avoid the filleting knives and pass 102 

intact through the entire machine, ending up among the rest-raw material falling down the 103 

vertical shaft where the milt and roe drops. This is something that needs to be taken into 104 

consideration when designing the machine vision system, in order to make it robust. It is 105 

imperative that unknown or unwanted waste material does not mix with the pure fractions of 106 

milt and roe that have been extracted. The different rest raw material fractions are shown in 107 

Figure 2. 108 

For the image acquisition in this paper, the herring processor sent us four different herring 109 

fractions – milt, roe, belly flap and backbone. Belly flap and backbone are categorized as waste. 110 

The fractions were hand-sorted at Nergård Sild AS, vacuum packed fresh in bags and frozen, 111 

and then shipped in frozen state to our lab. The day before the image acquisition, the bags 112 

were taken out of the freezer and thawed in water at room temperature for 2 hours, before 113 

being put into a refrigerated room for thawing at 4˚ C over night. The herring fractions in 114 

thawed condition are shown in Figure 2.  115 

Imaging system and image acquisition 116 

The image acquisition system is illustrated in Figure 3, and the concept is based on imaging of 117 

herring fractions in free fall, as they drop down out of the filleting machine and onto a rest raw 118 

material moving conveyor. The camera is a NIR1-enhanced CMOS imager model MQ013RG-E2 119 

(Ximea s.r.o., Slovakia) with an imaging resolution of 1280×1024 pixels. The camera images a 120 

                                                           
1
 NIR – Near infra-red 



reduced-row region of interest as the rest raw material drops through a laser line sheet of light. 121 

The laser used is a Z80M18SF785LP30 (Z-LASER GmbH, Germany), emitting an 80 mW near 122 

infrared laser line with wavelength 785 nm and fan half-angle of 15 degrees. Imaging is done at 123 

a frame rate of 250 images per second at a bit depth of 8 bits per pixel. An angle of 15 degrees 124 

between the camera and the laser ensures that the laser line is outside the region of interest 125 

(ROI) unless it intersects with a herring fractions falling through the drop zone. This enables us 126 

to easily detect the presence or absence of herring fractions. 127 

Laser line reflectance features 128 

The laser line reflectance is different for milt and roe, as can be seen in the image in Figure 4. 129 

Since milt and roe are the fractions we are focused on sorting in this paper, the wavelength has 130 

been optimized for the purpose of distinguishing these two fractions. Milt has a higher peak 131 

reflectance, and less laser line scattering than roe. 132 

Several laser line reflectance features are computed, in order to compactly describe the laser 133 

reflectance as it varies with the distance from the laser line. The image has 𝑚𝑟𝑜𝑤 rows and 𝑚𝑐𝑜𝑙 134 

columns. Let 𝑥 denote the column index and 𝑦 denote the row index in the image acquired by 135 

the camera, and let 𝑟(𝑥, 𝑦) be the reflectance corresponding to the image intensity in column 𝑥  136 

on row 𝑦. Let 𝑦𝑝𝑒𝑎𝑘(𝑥) be the row with peak reflectance in column 𝑥. Then for each image 137 

column 𝑥, the following laser line reflectance features are computed: 138 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝑥) = ∑ 𝑟(𝑥, 𝑦)

𝑚𝑟𝑜𝑤

𝑦=1

, 



𝐷𝑖𝑟𝑒𝑐𝑡(𝑥) = 𝑟 (𝑥, 𝑦𝑝𝑒𝑎𝑘(𝑥)), 

𝑆𝑐𝑎𝑡𝑡𝑒𝑟(𝑥, 𝑦𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑟(𝑥, 𝑦𝑝𝑒𝑎𝑘(𝑥) + 𝑦𝑜𝑓𝑓𝑠𝑒𝑡), 

𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝐷𝑖𝑟𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜(𝑥, 𝑦𝑜𝑓𝑓𝑠𝑒𝑡) =
𝑆𝑐𝑎𝑡𝑡𝑒𝑟(𝑥, 𝑦𝑜𝑓𝑓𝑠𝑒𝑡)

𝐷𝑖𝑟𝑒𝑐𝑡(𝑥) + 1
. 

A scatter offset of 𝑦𝑜𝑓𝑓𝑠𝑒𝑡 = 10 pixels is selected for the work in this paper, as it was found to 139 

optimally separate milt and roe. 140 

The laser line reflectance features in the above equations are essentially feature scan profiles 141 

along the 𝑥 direction of the image. These scan profiles are computed for all the image frames, 142 

thereby accumulating feature scan profiles over time which are represented as feature images 143 

with 𝑥 as one dimension and frame number as the other, hence providing a 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 144 

image, a 𝐷𝑖𝑟𝑒𝑐𝑡 image, a 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 image and a 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝐷𝑖𝑟𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜 image. 145 

Feature vector 146 

The image columns containing herring fractions are segmented from the background, based on 147 

𝑦𝑝𝑒𝑎𝑘(𝑥) being valid and within the ROI, since the absence of any falling herring fractions 148 

results in an image with no laser line within the ROI. Herring fraction features are computed for 149 

each segmented herring fraction, and for each laser line reflectance feature, by taking the mean 150 

of the feature image over the segmented area. In addition to the reflectance features, we also 151 

include the width (in pixels) and the height (in number of scans) of the herring fractions. Thus, 152 

for each segmented herring fraction we get the six-dimensional feature vector 153 



𝐱 = [𝑊𝑖𝑑𝑡ℎ 𝐻𝑒𝑖𝑔ℎ𝑡 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝐷𝑖𝑟𝑒𝑐𝑡 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝐷𝑖𝑟𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜]𝑇 . 

Support vector machine classifier 154 

Despite all the popularity as an industrial machine learning and classification technique, the 155 

support vector machine (SVM) has one major drawback – it is designed for two-class binary 156 

classification. Most SVM algorithms are built on the work of Cortes and Vapnik [5] developed 157 

for binary classification (two classes). Though new methods for multiclass SVMs have been 158 

proposed, many have the drawback of being computationally expensive. Although not directly 159 

related to SVMs, an early documented method where a multiclass classification problem is 160 

broken down to pairwise binary classifications is in Hastie and Tibshirani [18]. They suggest a 161 

one-vs.-one (OVO) scheme which involves estimating class probabilities for each pair of classes, 162 

and then coupling the estimates together. The OVO technique is also reviewed in Friedman [9], 163 

where Bayes optimal two-class decision rule is used.  164 

For a general k-class decision problem, they train a series of 𝑘(𝑘 − 1)/2 Bayes classifiers, each 165 

separating two of the classes. These boundaries are then used to assign an unknown sample to 166 

one of its two respective classes. A voting scheme then selects the class with the most winning 167 

two-class predictions as the final prediction for the sample. Although the method might be less 168 

sensitive to imbalanced dataset, it suffers from being computationally expensive as the number 169 

of classes increases. For a general 𝑘-class classification problem, the one-vs.-one method would 170 

need 𝑘(𝑘 − 1)/2 separate binary classifiers. 171 



In our paper we consider 𝑘 = 3, with the classes milt, roe, and waste. Using the OVO scheme 172 

for multi-class SVM requires training of three binary SVM classifiers: 1) milt vs. roe, 2) roe vs. 173 

waste, and 3) milt vs. waste.  174 

Assuming we have 𝑙 samples, each sample indexed by 𝑖 having a feature vector 𝐱𝑖 and a binary 175 

class label 𝑦𝑖 ∈ {−1, +1}, the support vector machine (SVM) [1,5] requires solving the following 176 

optimization problem: 177 

minimize
𝐰,𝑏,𝛏

 
1

2
𝐰𝑇𝐰 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝐰𝑇𝜑(𝐱𝑖) + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0

𝑖 = 1, … , 𝑙.

 

Given 𝐰 and 𝑏, the discriminant function can be written as 178 

�̂�(𝐱) = 𝐰𝑇𝜑(𝐱) + 𝑏. 

If the discriminant function is a positive value, the SVM classifies the sample as belonging to the 179 

positive (label +1) class, and similarly for a negative value. The mapping 𝜑(𝐱𝑖) is an implicit 180 

mapping that depends on the kernel 𝐾(𝐱𝑖 , 𝐱𝑗) = 𝜑(𝐱𝑖)
𝑇𝜑(𝐱𝑗). For the linear SVM, the kernel is 181 

𝐾(𝐱𝑖, 𝐱𝑗) = 𝐱𝑖
𝑇𝐱𝑗, and when using nonlinear SVM the radial basis function (RBF) kernel is 182 

𝐾(𝐱𝑖, 𝐱𝑗) = 𝑒−𝛾‖𝐱𝑖−𝐱𝑗‖.  In practice, the optimization problem is solved in its simpler dual form 183 

(Bottou and Lin 2007), since this ensures that the implicit mapping only occurs in the form of 184 

the kernel 𝐾(𝐱𝑖, 𝐱𝑗) in the optimization problem and the discriminant function. For the SVM 185 

implementation in this paper, we use the LIBSVM [4] library, and follow the usage 186 



recommendations outlined by its authors [12]. The recommended model selection technique is 187 

a grid-search on the RBF kernel hyper-parameters 𝛾 and 𝐶 using cross-validation. Various pairs 188 

of these hyper-parameters are tested, and the pair returning the best cross-validation accuracy 189 

is selected. For milt vs. waste we also select the hyper-parameter pair with the best precision 190 

for milt. 191 

For handling unbalanced classes and to adjust the relative importance of each class, we use the 192 

asymmetric soft margin penalty formulation as described by Ben-Hur and Weston [2], and 193 

where we use separate soft margins 𝐶+ and 𝐶− with a relative weighting of 1 for the positive 194 

class and 𝑤− for the negative class. 195 

Evaluating classifier performance 196 

There are several methods for evaluating a binary classifier. Assuming one class is designated as 197 

the positive and the other class is designated the negative, we may illustrate the performance 198 

of a binary classifier by the four numbers in the confusion matrix in Figure 5. The numbers TP, 199 

FP, TN and FN are the number of samples belonging to each specific location in the confusion 200 

matrix. TP denotes the number of positive samples predicted to be positive, FP denotes the 201 

number of negative samples predicted to be positive, and similarly for TN and FN. With that 202 

notation we can define the following performance metrics for a classifier. 203 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Another performance metric for measuring the performance of a binary classifier is the AUC –204 

the area under the receiver operator curve [7], which is sometimes used as an alternative to 205 

accuracy. 206 

Accuracy, AUC and precision are three metrics that will be used during the cross-validation and 207 

selection of kernel hyper-parameters 𝛾 and 𝐶  using a grid search. 208 

Results and Discussion 209 

Image acquisition and feature extraction was done on herring fractions (n = 814). The different 210 

fraction types are milt, roe, belly flap and backbone, shown in Figure 2. The mean and standard 211 

deviations of these features, as well as the number of each herring fractions, are listed in Table 212 

1. All features are in units output directly from the feature extractor algorithm, and depend on 213 

the image resolution, gain and other image acquisition parameters. The 𝑊𝑖𝑑𝑡ℎ and 𝐻𝑒𝑖𝑔ℎ𝑡 214 

features have substantial overlap. One can see that milt and roe are very well separated with 215 

respect to the features 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒, 𝑆𝑐𝑎𝑡𝑡𝑒𝑟, 𝐷𝑖𝑟𝑒𝑐𝑡 and 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝐷𝑖𝑟𝑒𝑐𝑡𝑅𝑎𝑡𝑖𝑜, and that roe 216 

is also well separated from belly flap and backbone in these features, and that milt has some 217 

overlap with belly flap and backbone. 218 

The desired outcome of a sorting machine for herring fractions is to have pure milt and roe 219 

fractions – i.e. as close to 100 % precision as possible for these two fractions. The other 220 

fractions, such as belly flap and backbone, are to be categorized as waste. When maximizing 221 

the sorting precision for milt and roe, it is of less importance whether some of the milt and roe 222 



is classified as waste.  In the case of e.g. a classifier where roe is the positive class and waste is 223 

the negative class, one may want to increase the precision with the consequence of a lowered 224 

recall. Unless the classifiers are perfect, there will be such a tradeoff between precision and 225 

recall. 226 

Classifier performance is evaluated for each of the three possible one-vs-one classifiers. For 227 

each of the three classifiers, a 10-fold cross-validated grid search is done on 70 % of the 228 

samples, and the classifier performance is evaluated on a validation set consisting of the 229 

remaining 30 % of the samples. The classifier performance results are summarized in Table 2. 230 

Referring to this table, the kernel used is either a linear SVM kernel or a nonlinear SVM kernel 231 

of the radial basis function (RBF) type. The objective column describes the objective used in 232 

cross-validated grid search over the hyper-parameters. A further parameter 𝑤_ is also varied in 233 

order to adjust the classifier performance balance between the two classes. The classifier 234 

performance is measured by accuracy, precision and recall. The waste class consists of belly flap 235 

and backbone.  236 

The classifiers were visualized in a normalized feature space consisting of three of the laser-237 

based features. The features are normalized to the range between 0 and 1, as a preprocessing 238 

step for the SVM classifier. A linear SVM classifier was sufficient to perfectly distinguish 239 

between milt and roe, as can be seen in Figure 6. A nonlinear SVM classifier, of the RBF type, 240 

can perfectly distinguish between roe and waste, as seen in Figure 7. A linear classifier also 241 

worked in this case, but had a tight maximal margin [10]. A nonlinear classifier for milt vs. waste 242 

is shown in Figure 8, and there is some overlap between the classes. 243 



Several grid search objectives and negative class weights (𝑤−) were tested, with the goal of 244 

getting as close to 100 % precision for milt vs. waste. Referring to Table 2, we see that the use 245 

of accuracy, as the grid search objective, does not enable perfect precision. The use of AUC 246 

increases the precision up to 98.7 % at a recall of 93.1 %. Using precision as the grid search 247 

objective enables a 100% precision, at a recall rate of 77%. 248 

In summary, the analysis showed that the milt was perfectly separable from roe, and roe was 249 

perfectly separable from waste. Separation of milt and waste on the other hand proved 250 

difficult, and the accuracy depended highly on the grid search objective and negative class 251 

weight (𝑤−). When the objective of the grid search was to maximize precision, perfect precision 252 

was possible at a relatively high recall rate. 253 

Based on the positive results from the work in this paper, the natural next steps are to 254 

implement the machine vision system in an industrial setting. The herring fractions used in this 255 

paper were shipped in frozen condition, and are not in the same state as when they exit the 256 

filleting machine. Also, the work in this paper focuses on four types of herring fractions. 257 

Preliminary work [10] suggests that the machine vision system and classifiers may be applicable 258 

for other herring fraction types. As future work, it is suggested to perform image acquisition at 259 

the rest raw material exit points of a filleting machine, in order to obtain as fresh and as varied 260 

herring fractions as possible.  261 

Conclusion 262 

The rest raw material in herring fractions can be accurately sorted by using machine vision in 263 

combination with a robust classification approach. Illuminating the herring fractions with a 264 



single laser line at 785 nm enables the extraction of laser direct and indirect reflectance 265 

features that sufficiently distinguish between roe, milt and waste. A support vector machine 266 

classifier, with a radial basis function kernel, is trained on these reflectance features and the 267 

classifier hyper-parameters are selected through a grid search that maximizes classification 268 

accuracy and precision. Distinguishing between roe and milt, and roe and waste, has 100 % 269 

classification accuracy. When distinguishing between milt and waste, milt can be classified with 270 

100 % precision, at a recall rate of 77 %. 271 
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Table 1 – Number of samples, and the mean and standard deviations of the 326 

feature values for each herring fraction used in the classification experiments. 327 

SDR is short for the feature ScatterDirectRatio. 328 

 n Width Height Reflectance Direct Scatter SDR 

Milt 288 9.03±4.24 6.67±3.02 2178.7±467.0 185.7±31.1 19.8±9.6 0.20±0.09 
Roe 236 8.89±3.64 6.77±3.50 364.0±161.6 20.1±7.9 7.8±4.8 0.49±0.17 

Belly flap 201 13.7±5.88 6.16±2.63 1923.0±439.8 176.6±27.8 25.5±14.7 0.20±0.12 
Backbone 89 16.5±5.83 7.53±2.14 1674.4±487.7 130.5±27.0 29.0±13.1 0.25±0.09 
 329 

  330 



Table 2 - Evaluation of classifier performance, with classification accuracy, 331 

precision and recall measured on validation sets. 332 

Pos. Neg. Kernel Objective 𝑤− Accuracy (%) Precision (%) Recall (%) 

Milt Roe Linear Accuracy 1 100.0 100.0 100.0 
        
Roe Waste RBF Accuracy 1 100.0 100.0 100.0 
        
Milt Waste RBF Accuracy 1 93.4 92.9 93.8 
    2 94.5 97.5 91.8 
    4 91.3 92.8 89.5 
        
Milt Waste RBF AUC2 1 92.6 91.9 93.5 
    2 93.6 97.5 89.5 
    4 93.1 98.7 93.1 
    8 90.8 98.6 82.6 
    16 87.3 98.5 75.6 
        
Milt Waste RBF Precision 1 93.2 93.8 92.4 
    2 90.8 98.0 83.5 
    4 88.5 100.0 77.0 
    8 85.0 100.0 70.0 
    16 82.5 100.0 65.0 
  333 

                                                           
2
 Area under the receiver operator curve (ROC). 



 334 

Figure 1 - Overview of the filleting process, showing the singulation and orienting 335 

of herring (a), internal components of the filleting machine (b), fillets (c) and rest 336 

raw material herring fractions (d) exiting the filleting machine in separate 337 

streams. 338 
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 340 

 341 

Figure 2 - Herring fractions considered in this paper. Milt (a), roe (b), belly flap 342 

outside (c, left) and inside (c, right), and backbone (d).  343 
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 345 

Figure 3 - Illustration of the imaging setup and the principle of dropping the 346 

fractions through a laser beam, and imaging a local region of interest.  347 
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 349 

Figure 4 – Image of a laser line (785 nm) illuminating a milt (a) and a roe (b), with 350 

indicated image x and y axes. 351 
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 353 

Figure 5 - The confusion matrix for a binary classifier. 354 
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 356 

Figure 6 - Linear SVM classifier for milt vs. roe, plotted into the normalized feature 357 

space spanned by three of the features.  358 
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 360 

Figure 7 - Radial basis function SVM classifier for roe vs. waste, plotted into the 361 

normalized feature space spanned by three of the features. 362 
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 364 

Figure 8- Radial basis function SVM classifier for milt vs. waste, plotted into the 365 

normalized feature space spanned by three of the features.  366 
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