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In this work the stability properties as well as possible applications of a partial differential equation (PDE)
with state-dependent parameters are investigated. Among other things, the PDE describes freezing of
foodstuff, and is closely related to the (Potential) Burgers’ Equation. We show that for certain forms of
coefficient functions, the PDE converges to a stationary solution given by (fixed) boundary conditions
that make physical sense. These boundary conditions are either symmetric or asymmetric of Dirichlet
type. Furthermore we present an observer design based on the PDE model for estimation of inner-
domain temperatures in block-frozen fish and for monitoring freezing time. We illustrate the results with
numerical simulations.

Keywords: Distributed Parameter Systems; Stability Analysis; Observer Design; Freezing Process.

1. Introduction

In order to extend the shelf life of different foodstuff, freezing has shown itself superior to many
other preservation techniques. Among other reasons, freezing preserves distinct characteristics of
the original product to a large extent, such as taste and nutritional value. If suitable freezing
and storage methods are applied correctly, food can be stored for months or even years without
significant quality degradation. Especially for rapidly spoiling food, such as fish and fish products,
freezing is often essential to deliver high-quality and safe products to the consumer. Thus the
physical process of freezing gets more and more attention in the scientific community and various
mathematical tools describing heat transfer phenomena get applied. These tools can also be applied
to other applications than freezing fish; in fact they can be applied to a whole range of physical
processes where phase change occurs.

As the temperature-dynamics during freezing depend both on space and time, a good approach
to model these dynamics is using distributed parameter systems (DPS), in particular partial dif-
ferential equations (PDEs). As available computational power grows, the possibilities of simulating
complex heat exchange processes modeled by PDEs are enhanced as well. Even if finding an ex-
plicit analytical solution to the PDE is hard or impossible, simulations can provide qualitative and
quantitative results. The most common PDE for thermal problems is the famous heat equation, a
parabolic PDE. The heat equation as a model for freezing problems is described in a whole range
of publications, where Pham (2006b) and Pham (2006a) give an overview over how to model heat
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and mass transfer in frozen foods. A comparison between experimental and theoretical results of
freezing with a simplified heat equation model is provided in Woinet, Andrieu, and Laurent (1998).
Numerical results for a latent heat thermal energy storage system modeled by a diffusion equation
is presented in Costa, Buddhi, and Oliva (1997), whereas Cleland, Cleland, Earle, and Byrne (1987)
deliver experimental data for freezing and thawing of multi-dimensional objects modeled by finite
element techniques.

An example of a PDE model describing freezing of a specific material (fish species), taking the
phenomenon of thermal arrest caused by latent heat of fusion into account, was introduced in Backi
and Gravdahl (2013). The parameters have to be state- (i.e. temperature)-dependent because their
values change significantly not just above and below, but also around the freezing point according
to the latent heat of fusion principle. In this case, the method used to model the latent heat of
fusion is the so-called apparent heat capacity method, as introduced e.g. in Muhieddine, Canot, and
March (2008). In this paper, we wish to study the stability properties of this model.

1.1 Application-oriented aspects

The aforementioned numerical models together with analytical models have application-oriented
aspects with regard to the prediction of freezing time. Freezing time denotes the time it takes to
freeze the “worst point” (the point hardest to affect - depending on geometry and freezing method)
down to the safe temperature (mostly −18 ◦C). Analytical methods are often based on Plank’s
equation, see Plank (1941). In Pham (1985a) freezing time predictions for rectangular blocks of
foodstuff are described, whereas Pham (1984) introduces an extension of Plank’s equation for
simple shapes. Examples for numerical modelling methods are introduced by Pham (1985b), who
describes a finite-difference scheme for freezing foodstuff, and Cleland, Cleland, and Earle (1987),
who present results for freezing and thawing time prediction by numerical methods.

Due to the fact that freezing time estimation is often done by simplified analytical means and
prior-to-freezing-calculations, the freezing time is often overestimated. Since energy-efficiency has
become a big topic in the recent past due to the finiteness of primary energy carriers as well as
their impact on the climate, it is important to gain more knowledge of energy-consuming processes,
such as freezing processes. In that sense a better estimation of freezing time could help terminate
the freezing process even before the above mentioned analytical methods would suggest.

Again, as computational power has grown significantly in the last decades, it makes sense to
introduce real time monitoring and estimation of freezing time; that is, to design state-observers
which provide estimates of the non-measurable temperature field in the interior of the good’s
volume. With this knowledge the freezing time can be estimated. For PDE models there exist
two ways to design observers, namely early lumping and late lumping. In the former approach,
the spatial domain is discretized prior to the observer design (finite-dimensional), whereas in the
latter, the observer is designed for the PDE itself (infinite-dimensional). An example of an early
lumping design can be found in Kobayashi and Hitotsuya (1981), where the observer is split up into
a finite- and an infinite-dimensional part. Examples of late lumping approaches are presented in
Sallberg, Maybeck, and Oxley (2010), where an infinite-dimensional sampled data Kalman Filter
is introduced and in Krstic and Smyshlyaev (2008), where transformations are used to reduce the
system’s complexity prior to designing the observer by backstepping methods. For an overview
over different types of PDE observers see Hidayat, Babuska, Schutter, and Nunez (2011). All of the
above mentioned designs have one thing in common, namely that all rely on system descriptions
with constant parameters, such that transformations (e.g. gauge-transformations) can be used to
obtain simplified system structures with known properties. As the system we are investigating is
defined by state-dependent parameter functions, however, we cannot use the already established
methods. This motivates the investigation presented in Section 4.
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1.2 Related works

The model we consider is closely related to Burgers’ equation,

ut(t, x) = εuxx(t, x) + u(t, x)ux(t, x) (1)

where subscript refers to partial derivative with respect to the argument, e.g., ut(t, x) ≡ ∂u(t, x)/∂t.
This PDE is commonly used to describe turbulent flows and is closely related to the Navier-Stokes

equations. The Burgers’ equation is one of the very few nonlinear partial differential equations that
can be solved exactly (for a restricted set of initial functions only, and for a constant parameter
ε). In the context of gas dynamics, Hopf (1950) and Cole (1951) independently showed that this
equation can be transformed into the linear diffusion equation and solved exactly for arbitrary
initial conditions (but again for constant ε). The study of the general properties of the Burgers’
equation has motivated considerable attention due to its applications in fields as diverse as number
theory, gas dynamics (Korshunova & Rozanova, 2009), heat conduction (Hills, 2006), elasticity
(Sugimoto & Kakutani, 1985), special cases of transport phenomena (Hasan, Sagatun, & Foss,
2010), etc.

The stability properties of the Burgers’ equation with constant and time-varying parameters have
been studied previously. In Krstic (1999) stability results for both viscous and inviscid Burgers’
equation are presented by defining control laws satisfying a Lyapunov analysis in the L2-norm.
Balogh and Krstic (2000) introduce H1-stability for the Burgers’ equation with nonlinear boundary
feedback, whereas Krstic, Magnis, and Vazquez (2008) show results in nonlinear stabilization of
shock-like unstable equilibria in the viscous Burgers’ equation. Moreover, Krstic, Magnis, and
Vazquez (2009) go a step further and present results for the same problem in trajectory generation,
tracking and observer design.

However, as explained above, the PDE considered here represents a freezing case with phase
transition. This change in phase is the reason for introducing state-dependent parameters due to
the fact that the physical properties of the material to be frozen change significantly after crossing
the freezing point.

This means that the parameter ε depends on the state variable itself, namely ε = ε (u (t, x)), which
is a more challenging case than the situations outlined above. This problem was initially introduced
in Backi and Gravdahl (2013) for an application that describes the freezing of fish in a vertical
plate freezer. Inspired by this problem, the present paper, among other things, investigates the
stability properties of the Burgers’ equation with specific functional forms of ε and its derivatives.

1.2.1 Parameter function ε = const.

First of all, let us introduce the diffusion equation for a constant parameter ε. Let u = u(t, x) be
a function of two variables, time t ∈ R+ and space x ∈ [0, L] ⊂ R. The function u must satisfy a
partial differential equation of the form

ut = [εux]x , u(0, x) = U(x), (2)

where ε is a parameter and U(x) denotes an initial condition. For the problem to be well posed, u
must also satisfy various relevant boundary conditions. With constant ε, the diffusion equation (2)
can be rewritten as the linear heat equation

ut = εuxx. (3)

The stability properties of (2) and thus of (3) have been studied extensively in many publications,
see for example Krstic and Smyshlyaev (2008). In particular, it is known that the heat equation
is stable in the sense that u(t, x) → ū(x) for any ε > 0, where ū(x) describes the steady-state
solution.
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1.2.2 Parameter function ε = ε(x)

If the parameter ε depends on the spatial variable x, i.e. ε = ε (x), we obtain the slightly more
complicated expression for (2)

ut = εxux + εuxx. (4)

This may be handled by means of so-called gauge transformations, which eliminate the spatial
dependency of ε (x), see e.g. Smyshlyaev and Krstic (2010). In addition, the spatial derivative of
the parameter, εx, vanishes after transforming the system; hence system (4) can be transformed
into system (3) for which the stability properties mentioned above are known to hold.

Similar techniques can be applied to the previously introduced Burgers’ equation (1). In Heredero,
Levi, and Winternitz (1999) it is shown that the standard Burgers’ equation with ε = 1,

ut = uxx + 2uux (5)

can be transformed into the Potential Burgers’ equation by using the transformation u = vx,
resulting in

vtx = vxxx + 2vxvxx.

After integrating this expression we obtain

vt = vxx + v2
x

which represents the potential form of the Burgers’ equation. After introducing the transformation
w = ev the Potential Burgers’ equation then boils down to the linear heat equation, as outlined
above.

1.2.3 Parameter function ε = ε(t)

Finally, if the coefficient ε is a known function of time, Burgers’ equation becomes

ut = ε(t)uxx + uux. (6)

For this case, it was shown in Sophocleous (2004) that a time-dependent gauge transformation
exists, which transforms the nonlinear PDE into a linear one.

1.3 Contribution

As this paper deals with nonconstant, state-dependent parameters in the form ε = ε (u (t, x)), the
earlier described transformations from Burgers’ equation to linear heat equation cannot be applied.
Furthermore, the system considered in Backi and Gravdahl (2013) is quite limited in actuation,
meaning that only limited Dirichlet and Neumann boundary control can be applied. Strictly speak-
ing the Dirichlet boundary condition is equal to the temperature of the cooling medium, whereas
the Neumann boundary condition represents heat flux through the boundary which is proportional
to the difference between the temperature at the boundary and the temperature of the cooling
medium. The main contribution of the paper is to generalize the results in Backi and Gravdahl
(2013) and show that under certain assumptions, the version of Burgers’ equation we consider
converges to a stationary solution determined by (constant) boundary conditions.

Furthermore, this paper addresses the topic of observer design for estimation of inner-domain
temperatures for a freezing process. We present an observer based on an early lumping approach,
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meaning that the PDE is discretized prior to the design. Due to the fact that the parameter
functions depend on the state variable, established observer designs based on late lumping ap-
proaches, as introduced in Subsection 1.1, could not be applied. Therefore the observer is chosen
as an Extended Kalman Filter. We show that the observer error converges to zero for the non-
measurable inner-domain temperatures. These inner-domain temperatures are required in order
to apply (boundary) control techniques to the PDE system, as presented in Backi and Gravdahl
(2013).

1.4 Notation

We write fx for the (partial) derivative of the function f with respect to x. Moreover, let L2 ([0, 1])
denote the space of real-valued, square integrable functions f defined on [0, 1] with finite L2-norm;

‖f‖2 =
∫ 1

0 f(x)2dx <∞. The space H1([0, 1]) is the subspace of L2([0, 1]) consisting of functions g
with finite H1-norm; ‖g‖H1 = ‖g‖2+‖gx‖2 <∞. In this paper we deal with functions w = w(t, x) of
time t and space x (the spatial variable). To ease notation we frequently leave out the dependency
on t and/or x, e.g., ‖w(t)‖ is the L2-norm of the function x 7→ w(t)(x) = w(t, x).

2. Modeling

The physical process that will be modeled in this paper is the temperature distribution inside a
block of foodstuff (here fish) inside a plate freezer. In Figure 1 a vertical plate freezer is displayed,
whereas Figure 2 presents a typical freezing process, as it can be found on board a fishing vessel,
for example. The refrigerant (liquid ammonia) is pumped through the evaporator, where it partly
vaporizes while taking heat off the fish block. The separator receives the liquid-vapor mixture from
the evaporator and separates phases. Then the heat added to the refrigerant will be removed in a
compression-condensation-expansion cycle. This freezing process is more or less a standard vapor-
compression refrigeration process with the exception that the refrigerant is not fully vaporized in
the evaporator, making a separator necessary.

Figure 1. A typical vertical plate freezer (MMC Kulde AS, Ålesund, Norway)

In the case considered in the present paper and in Backi and Gravdahl (2013), a parabolic PDE
is formulated in the state variable T = T (t, x) representing temperature, as follows:

ρ (T ) c (T )Tt = [λ (T )Tx]x (7)

subject to Dirichlet boundary conditions

T (t, 0) = T0

T (t, L) = TL
(8)
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Figure 2. The freezing process

where ρ (T ) denotes the density, c (T ) indicates the specific heat capacity at constant pressure
and λ (T ) describes the thermal conductivity of the medium to be frozen. Note that ρ (T ) > 0,
c (T ) > 0 and λ (T ) > 0 all depend on the temperature T . The boundary conditions T0 and TL
are given by the refrigerant temperatures at x = 0 and x = L, respectively. Since λ depends on T ,
differentiation yields

λx (T ) = λT (T )Tx

and thus

ρ (T ) c (T )Tt = λT (T )T 2
x + λ (T )Txx. (9)

We point out that the variation in ρ(T ) over T is of minor consequence and therefore we assume
ρ(T ) = ρ = const. To keep notation simple, two new parameters can be introduced as

k (T ) =
λ (T )

ρ c (T )
(10)

and

κ (T ) =
λT (T )

ρ c (T )
. (11)

This leads to a rewritten form of (9):

Tt =κ (T )T 2
x + k (T )Txx, (12)

which is still subject to the boundary conditions defined in (8).
The heat equation (12), however, does not permit modeling for phase change phenomena, such

as thermal arrest caused by latent heat of fusion (Çengel & Boles, 2004). These phenomena can
be imposed to the PDE by adapting the parameter functions. In the present case this is done by
applying the so called apparent heat capacity method as introduced e.g. in Muhieddine et al. (2008),
which in principle overestimates the temperature-dependent specific heat capacity c(T ) around the
freezing point TF in order to slow down heat conduction.

Figure 3 displays a qualitative sketch of parameter variations in λ(T ) and c(T ) over T . The
parameter functions were defined to approximate real parameter values sufficiently well. The tran-
sitions from cs to ci and from ci to cl are considered to be functions of the shape c(T ) = p

T+q

in small neighbourhoods outside I∆T =]TF − ∆T, TF + ∆T [, where p and q are constants. The
model (12) holds for freezing, where both boundary conditions are strictly lower than TF − ∆T .
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Figure 3. Qualitative sketch of parameter variations in λ(T ) and c(T )

The linear heat equation in the form Tt = k (T )Txx holds for processes where no phase change
occurs, meaning all temperatures initially are and remain above or below the region I∆T around
the freezing point for all t. Thus the linear heat equation is valid for both cooling and heating. In
the presence of phase change, however, the additional term κ (T )T 2

x has to be regarded as well.
As mentioned, the stability properties of the Burgers’ equation have been subject to many pub-

lications. However, these results are not applicable to (12), mostly due to the fact that the effect of
the non-constant parameters κ and k on the stability properties of the overall PDE are unknown.
This motivates the subsequent investigation.

3. Stability Analysis

The stability investigation that is presented in this section holds for the freezing case only. This
means that both boundary conditions T0 and TL are strictly below TF −∆T .

3.1 Steady state solution

Before conducting the stability analysis of (12) we here derive an explicit formula for the steady-
state solution to (12). This is done by setting Tt = 0, which results in

κ (T )T 2
x + k (T )Txx = 0. (13)

For general κ(T ) and k(T ) the solution to the nonlinear ODE (13) can be found by evaluating the
following expression:

C1x+ C2 =

T (x)∫
exp

(∫ κ(z)

k(z)
dz
)
dz. (14)

Now from physical considerations it follows that the steady state solution must be within the
interval [T0, TL] (or [TL, T0] depending on which of T0 and TL is the smallest) for all values of the
spatial coordinate. Also, inspired by the qualitative sketch shown in Figure 3, we henceforth state
that κ = 0 outside I∆T . Based on this and since we assume that the boundary conditions T0 and
TL are strictly below TF − ∆T we conclude that κ is zero along the steady state solution. From
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(13) it then follows that the steady-state solution can be described as the solution of the ODE

k (T )Txx = 0, (15)

which, since k(T ) > 0, has the solution

T (x) = C1x+ C2. (16)

The coefficients can be found by applying the boundary conditions to (16) leading to C2 = T0 and
C1 = 1

L(TL − T0) and thus

T (x) =
1

L
(TL − T0)x+ T0, (17)

which represents a straight line between the two boundary values T0 and TL.

3.2 Stability for asymmetric boundary conditions u0 6= uL

The PDE (12) is specific for the freezing application. As we intend to prove stability, however,
we choose to take a more general view of the problem and to indicate this, we follow the general
notation from the Introduction and change the state variable from T to u. First, we are going to
investigate stability properties of (12) for asymmetric boundary conditions as defined in (8).

In general, the function u can be expressed as the sum of a transient part w(t, x) and a stationary
part ū(x), i.e. u(t, x) = w(t, x)+ū(x). Here, ū(x) is a function of x due to the asymmetric boundary
conditions, and as we have shown above, ū(x) takes a function of the form ū(x) = Sx+R, where
S and R are constants. Furthermore, we normalize the spatial coordinate to belong to [0, 1]. With
these conventions, we study the following equivalent form of (12):

wt =
κ

L2
(wx + S)2 +

k

L2
wxx

=
κ

L2
(w2

x + S2 + 2Swx) +
k

L2
wxx

(18a)

with boundary conditions

w(t, 0) = w(t, 1) = 0. (18b)

Remark 1: We must point out that our focus lies on continuously differentiable solutions with
finite H1-norm only. From a stringent mathematical point of view the question of existence of such
solutions is a crucial aspect, however, we will not approach that here. For the (related) Stefan
problem we refer to Prüss, Saal, and Simonett (2007), who provide a treatment of the existence of
solutions for that case. Nevertheless, our application studies indicate that at least some solutions
of this form exist.

Lemma 1: Let w satisfy (18a)–(18b). Suppose that there exist constants β > α > 0 such that
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α ≤ k ≤ β. If

(κ+ ku)2 < 2
(
κku − kuuk + k2

u

)
(19a)

kuuk < k2
u + κku (19b)

w > 0 ∀u ∈ I∆u (19c)

κku ≥ 0 (19d)

kuu ≤ 0 ∀u ∈ I∆u (19e)

κ < 0 ∀u ∈ I∆u (19f)

κ ≡ 0 ∀u 6∈ I∆u (19g)

then ‖w(t)‖ → 0 as t→∞.

The details of the assumptions in Lemma 1 will be discussed at the end of this subsection.

Proof. Define the Lyapunov candidate V by

V =

1∫
0

1

k
w2 dx (20)

and note that

V ≥ 1

β
‖w(t)‖2 (21)

since k ≤ β by assumption.
Differentiating (20) with respect to time leads to

V̇ =

1∫
0

2

k
wwt −

ku
k2
w2wt dx

=
1

L2

1∫
0

(2κ

k
ww2

x +
2κ

k
wS2 +

4κ

k
wSwx + 2 wwxx

− κku
k2

w2w2
x −

κku
k2

w2S2 − 2κku
k2

w2Swx −
ku
k
w2wxx

)
dx.

(22)

Integrating the terms wwxx and ku
k w

2wxx by parts yields

1∫
0

wwxx dx =
[
wwx

]1

0
−

1∫
0

w2
x dx (23)

1∫
0

ku
k
w2wxx dx =

[ku
k
w2wx

]1

0
− 2

1∫
0

ku
k
ww2

x dx−
1∫

0

kuuk − k2
u

k2
w2w2

x dx. (24)

with
[
wwx

]1

0
= 0 and

[
ku
k w

2wx

]1

0
= 0 due to (18b). Then, after inserting (23) and (24) into (22)

9
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and collecting terms the following expression is obtained

V̇ =
1

L2

1∫
0

1

k

[
Aw2

x +Bwx + C
]
dx (25)

where we have used the shorthand

A =− w2 1

k
(κku − kuuk + k2

u) + w(2κ+ 2ku)− 2k (26a)

B =w2 1

k
(−2κkuS) + w(4κS) (26b)

C =w2 1

k
(−κkuS2) + w(2κS2). (26c)

Note that A < 0, since the coefficients

a =− 1

k
(κku − kuuk + k2

u) (27a)

b =2κ+ 2ku (27b)

c =− 2k (27c)

of the parabola aw2 + bw + c defined by (26a) fulfill a < 0 and b2 − 4ac < 0, by (19a)–(19b).
The rest of the proof consists of the following two observations outside and inside I∆T , respec-

tively.
The first observation is based upon the fact that outside I∆T both B = 0 and C = 0 due to

(19g). Hence, for this case, we can bound (25) using that 1
β ≤ 1

k followed by applying Poincaré’s

Inequality (Krstic & Smyshlyaev, 2008, Lemma 2.1), leading to

V̇ ≤ K1

L2β
‖wx‖2 ≤

K1

4L2β
‖w‖2 (28)

with K1 = max(A) < 0.
For the second observation we note that the inequality B2 − 4AC < 0 is satisfied inside I∆T ,

as can be seen as follows. Using (26) the inequality B2 − 4AC < 0 is equivalent to the following
quartic inequality

w4

k4

(
4κkuS

2(kuuk − k2
u)
)

+
w3

k3

(
− 8κS2(kuuk − 2k2

u)
)

+
w2

k2

(
− 24κkuS

2
)

+
w

k

(
16κS2

)
< 0.

(29)

Let

ψ(w) = a4w
4 + a3w

3 + a2w
2 + a1w

denote the 4th order polynomial defined by the left hand side of (29) and note that ai < 0, i =
1, 2, 3, 4 inside I∆T by the assumptions (19d)–(19f). Let φ(w) denote the 3rd order polynomial
defined by ψ(w) = wφ(w). Then (29) holds inside I∆T iff φ(w) < 0 for w > 0 (assumption (19c)).
Since both, a4 < 0 and a1 < 0 inside I∆T , it is enough to show that the roots of φ(w) all are
negative or complex, which follows from the fact that inside I∆T we have a4 < 0, φw(0) = a2 < 0

10
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and φww(0) = a3 < 0. Hence, as long as we are inside I∆T there exists a constant K2 < 0 such that

V̇ ≤ K2

L2β
‖wx‖2 ≤

K2

4L2β
‖w‖2 (30)

By letting K̄ = max{K1,K2}, inequalities (28) and (30) now yield

V̇ ≤ 1

4L2β
K̄‖w‖2 (31)

which together with (20) and Henry (1981, Theorem 4.1.4) proves the lemma.

We now extend Lemma 1 to the H1-case.

Lemma 2: Suppose that the assumptions of Lemma 1 hold true. If moreover

κu ≤ 0 (32a)

wx(t, 1)wxx(t, 1)− wx(t, 0)wxx(t, 0) ≤ 0 (32b)

κS
(
w2
x(t, 1)− w2

x(t, 0)
)
≤ 0 (32c)

κ
(
w3
x(t, 1)− w3

x(t, 0)
)
≤ 0 (32d)

then the origin is globally asymptotically stable (wrt ‖·‖H1). In particular ‖w(t)‖H1 → 0 as t→∞.

Proof. Define the Lyapunov candidate Λ by

Λ = V1 + V =
1

2

1∫
0

w2
x dx+ V (33)

where V denotes the Lyapunov function defined by (20). The time derivative of V1 is

V̇1 =

∫ 1

0
wxwtx dx. (34)

To obtain an expression for wtx in terms of spatial derivatives of w only, the derivative of (18) with
respect to x is calculated and one obtains

wtx =
1

L2

(
κuw

3
x + 2κuSw

2
x + κuS

2wx + 2κwxwxx + 2κSwxx + kuwxwxx + kwxxx

)
. (35)

Combining (35) and (34) and collecting terms gives

V̇1 =
1

L2

1∫
0

(
κuw

4
x + 2κuSw

3
x + κuS

2w2
x + 2κw2

xwxx + 2κSwxwxx + kuw
2
xwxx + kwxwxxx

)
dx.

(36)
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Integrating the terms kwxwxxx and κwxwxx by parts yields

1∫
0

kwxwxxx dx =
[
kwxwxx

]1

0
−

1∫
0

kw2
xx dx−

1∫
0

kuw
2
xwxx dx (37)

1∫
0

κwxwxx dx =
[
κw2

x

]1

0
−

1∫
0

κwxwxx dx−
1∫

0

κuw
3
x dx

=
[κ

2
w2
x

]1

0
−

1∫
0

κu
2
w3
x dx.

(38)

Putting (37) and (38) into (36) one obtains

V̇1 =
1

L2

1∫
0

(
κuw

4
x + κuSw

3
x + κuS

2w2
x + 2κw2

xwxx − kw2
xx

)
dx+

1

L2

[
kwxwxx + κSw2

x

]1

0
. (39)

Furthermore, integrating the expression κw2
xwxx by parts gives

1∫
0

κw2
xwxx dx =

[
κw3

x

]1

0
−

1∫
0

2κw2
xwxx dx−

1∫
0

κuw
4
x dx

=
[1

3
κw3

x

]1

0
−

1∫
0

1

3
κuw

4
x dx.

(40)

After substituting (40) into (39) we receive

V̇1 =
1

L2

1∫
0

(κu
3
w4
x + κuSw

3
x + κuS

2w2
x − kw2

xx

)
dx+

1

L2

[
kwxwxx + κSw2

x +
2κ

3
w3
x

]1

0
. (41)

Now we need to have a closer look at the quartic equation θ(wx) = dw4
x + ew3

x + fw2
x with the

shorthand

d =
κu
3
, e = κuS, f = κuS

2,

which can be rewritten as w2
xγ(wx). For the quadratic equation γ(wx) we must impose that it is

less than zero for all wx and thus it must hold that d < 0 and e2 − 4df ≤ 0. If now (32a) holds,
we see that γ(wx) < 0 for all wx and therefore θ(wx) < 0. If furthermore (32b)–(32d) hold, we can
infer that

V̇1 ≤ −
1

L2

1∫
0

kw2
xx dx ≤ −

α

L2

1∫
0

w2
xx dx. (42)

12
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Thus by putting (31) and (42) into the time-derivative of (33), using Krstic and Smyshlyaev (2008,
Lemma 2.1) (Poincaré’s Inequality) and recalling that K̄ < 0, we receive

Λ̇ ≤ − α

L2

1∫
0

w2
xx dx+

K̄

L2β

1∫
0

w2
x dx ≤

K̄

L2β

1∫
0

w2
x dx

≤ K̄

2L2β

1∫
0

w2
x dx+

K̄

2L2β

1∫
0

w2
x dx

≤ K̄

8L2β

1∫
0

w2 dx+
K̄

2L2β

1∫
0

w2
x dx

≤ K̄

8L2β
‖w(t)‖H1 ,

(43)

which, together with (33) and Henry (1981, Theorem 4.1.4) proves the lemma.

Together with Agmon’s Inequality (Krstic & Smyshlyaev, 2008, Lemma 2.4), Lemma 2 now
immediately implies the following main result of the paper.

Theorem 1: Let w satisfy (18a)–(18b). Suppose that the assumptions of Lemma 2 are satisfied.
Then w(t, x)→ 0 as t→∞, hence u(t, x)→ ū(x) as t→∞.

3.2.1 Discussion of the assumptions in Lemma 1 and Lemma 2

The assumptions in Lemma 1 and Lemma 2 impose limitations on the parameter functions k(u)
and κ(u) and their respective derivatives with respect to u. In Lemma 1 assumptions (19d)–(19g)
are satisfied due to the definition of the parameter functions in Figure 3. Assumption (19c) holds
true due to the fact that the boundary conditions are chosen constant below the region I∆u and the
definition of w in the beginning of this subsection. Assumptions (19a)–(19b) have to be imposed
to the problem and are valid, also due to the definition of the parameter functions.

In Lemma 2 assumption (32a) is satisfied by the definition of the parameter functions, again see
Figure 3. Assumptions (32b)–(32d) define conditions for the temperature change with respect to
the spatial domain and its derivative, both evaluated at the respective boundaries.

3.3 Stability for symmetric boundary conditions u0 = uL

In the case of symmetric boundary conditions, which represents a special case of the above inves-
tigation, one can use the same fundamentals of the previously conducted proofs. Note that the
boundary condition in (18b) will stay the same, but the boundary condition in (8) in terms of u
as state variable becomes

u(t, 0) = u(t, L) = uB.

In fact, to prove stability for symmetric boundary conditions, we can use the same Lyapunov
functions and are thus able to state almost identical versions of Lemma 1 and Lemma 2, but with a
reduced amount of assumptions on the parameter functions. In Lemma 1 particularly, assumptions
(19c)–(19g) can be removed. This is due to the fact that all terms including S disappear, as S = 0.
This is valid due to the fact that the steady state solution is now represented by a constant straight

13
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line between the two boundary values

u(x) = uB = const.

That this is actually valid can be shown be calculation using the results presented in Subsection 3.1.
Therefore, (25) can be rewritten in a reduced form

V̇ =
1

L2

1∫
0

1

k
Aw2

x dx (44)

with A defined in (26a) and thus only (19a)–(19b) are required to hold in order for ‖w(t)‖ → 0 as
t → ∞. In (41) the terms containing S can be removed due to the same argument as used above
and thus it can be changed into

V̇1 =
1

L2

1∫
0

κu
3
w4
x − kw2

xx dx+
1

L2

[
kwxwxx +

2κ

3
w3
x

]1

0
.

We can directly see that now only assumptions (32a)–(32b) and (32d) have to be fulfilled in order
for ‖w(t)‖H1 → 0 as t → ∞. The argumentation in Theorem 1 is untouched by these changes, as
the reduced versions of both, Lemma 1 and Lemma 2, hold for the case with symmetric boundary
conditions. However, we must point out that w(t, x) → 0 as t → ∞, but now u(t, x) → uB as
t → ∞, meaning that u(t, x) now tends to the steady state value u(x) = uB, which is constant
over the whole spatial domain.

4. Observer

In this section we want to provide a possible application for the model (12), namely an observer
design with the aim to estimate the temperature distribution throughout a block of foodstuff. This
can be used to monitor freezing time.

4.1 Observer model

The model for the observer design is based upon (12), but in a 2-dimensional formulation.
The model describes thus the temperature distribution T = T (t, x, y) throughout a block of fish

that is frozen inside a vertical plate freezer

ρ(T )c(T )Tt =
(
λ(T )Tx

)
x

+
(
λ(T )Ty

)
y

= λT (T )
(
T 2
x + T 2

y

)
+ λ(T )

(
Txx + Tyy

) (45)

where ρ(T ), c(T ) and λ(T ) have been introduced in Section 2. Rewritten, (45) becomes

Tt = κ(T )
(
T 2
x + T 2

y

)
+ k(T )

(
Txx + Tyy

)
(46)

where k(T ) and κ(T ) have been defined in (10) and (11), respectively.

The effects of the freezing medium (vaporizing liquid ammonia) at x = 0 and x = L as well as of
exposure to air (y = 0) are modeled by Dirichlet boundary conditions, whereas presumed perfect
insulation at the bottom of the fish block (y = h) is modeled by Neumann boundary conditions.

14
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Note that the boundary inputs at x = 0 and x = L are not actively controlled. As an introduction
to the upcoming subsections we illustrate in Figure 4 how the spatial domain is discretized and
furthermore which of the states are measurable (orange) and which are not (blue). In addition
Figure 4 shows how the boundary conditions are chosen and the way they act on the system.

DBC DBC 

NBC: perfect insulation 

DBC: exposure to air 

TM,N

T1,1 T1,N

TM,1

Tm,n

x

y

Figure 4. DBC denotes Dirichlet boundary conditions and NBC denotes Neumann boundary conditions

4.1.1 Discretization

Discretization is performed by means of finite difference methods for the spatial derivatives only.
This corresponds with an early lumping approach and will lead to an approximation of the PDE by
a set of coupled ODEs. For discretization it is necessary to use uneven discretization numbers N
and M in x- and y-direction, in order to be able to define central layers for both spatial domains.

The terms Tx and Ty will both be approximated by first order forward and central difference
methods. It is important to mention that, in this case, the discretization direction is not consistent
with positive x- and y-directions. This means that discretization is performed from the left/right
and from the bottom/top boundaries towards the central layers of the spatial domain using a first
order forward difference approach, whereas a first order central difference approach is used at the
very center of the spatial domain, both regarding x- and y-directions. The reason for this is that
the boundary conditions at x = 0 and x = L must be imposed to the discretized equations with
the same sign (here positive), which will not be the case with a consistent discretization direction.

The following discretizations are defined for fixed y- and x-positions, respectively

Tx =


Tm,n−1−Tm,n

∆x , if n < N+1
2

Tm,n+1−2Tm,n+Tm,n−1

2∆x , if n = N+1
2

Tm,n+1−Tm,n

∆x , if n > N+1
2 ,

(47)

Ty =


Tm−1,n−Tm,n

∆y , if m < M+1
2

Tm+1,n−2Tm,n+Tm−1,n

2∆y , if m = M+1
2

Tm+1,n−Tm,n

∆y , if m > M+1
2 .

(48)

Note that the terms for n = N+1
2 and m = M+1

2 in (47) and (48) are computed by using central
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differences instead of forward differences

Tm,n+1 − 2Tm,n + Tm,n−1

2∆x
=

1

2

Tm,n−1 − Tm,n
∆x

+
1

2

Tm,n+1 − Tm,n
∆x

,

Tm+1,n − 2Tm,n + Tm−1,n

2∆y
=

1

2

Tm−1,n − Tm,n
∆y

+
1

2

Tm+1,n − Tm,n
∆y

.

The approximations for the terms Txx and Tyy are obtained by using a second order central differ-
ence method. This approach can be applied by following a consistent discretization direction, due
to the fact that the boundary conditions enter the discretized equations with the same sign. As a
result the following equations hold for fixed y- and x-positions, respectively

Txx =
Tm,n+1 − 2Tm,n + Tm,n−1

∆x2
, (49)

Tyy =
Tm+1,n − 2Tm,n + Tm−1,n

∆y2
. (50)

The discrete expressions (47), (48), (49) and (50) are defined for 1 ≤ n ≤ N and 1 ≤ m ≤ M ,
where the values at Tm,0, Tm,N+1, T0,n and TM+1,n represent the fictional states where the boundary

conditions enter the equations. The discretization step sizes are ∆x = L
N and ∆y = h

M , where h
defines the height of the fish block. This discretization procedure will lead to N × M coupled
ordinary differential equations (ODEs). For 1 ≤ n < N+1

2 and 1 ≤ m < M+1
2 , a general description

of this ODE has the form

Ṫm,n =κ(Tm,n)
[(Tm,n−1 − Tm,n

∆x

)2
+
(Tm−1,n − Tm,n

∆y

)2]
+ k(Tm,n)

[Tm,n+1 − 2Tm,n + Tm,n−1

∆x2
+
Tm+1,n − 2Tm,n + Tm−1,n

∆y2

]
.

(51)

4.1.2 Boundary conditions

As mentioned before, Dirichlet boundary conditions are imposed on the system at Tm,0, Tm,N+1

and T0,n. We point out that these boundary conditions are assumed constant and can therefore be
defined as Tm,0 = Tm,N+1 = TAmmonia for all m and T0,n = TAir for all n. Furthermore, perfect
insulation at the bottom of the fish block is defined by Neumann boundary conditions at TM+1,n,
leading to the expression TM+1,n − TM,n = 0 for all n.

4.2 Observer

The observer is designed to estimate the unmeasurable states inside the spatial domain of the fish
block. For this system, inner-domain measurements are difficult to set up and thus not practical.
The estimation of the unmeasurable states is important to predict when the desired temperature
is reached inside the inner layers of the spatial domain. Thus it can replace simpler, approximative
freezing time prediction methods.

A first choice for a practical observer design is often a Kalman Filter based design. Due to
the fact that a Kalman Filter is a well-established observer in engineering practice, it is often
used as a benchmark in order to compare other observer designs with regard to performance. The
Kalman Filter has certain robustness properties which are based on the fact that modeling and
measurement errors are introduced to the system model by adding up white Gaussian noise signals
v and z to the state derivatives and the outputs, respectively. Here we will investigate the possibility
of implementing an Extended Kalman Filter (EKF).
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4.2.1 Design

The design relies on a nonlinear model running in parallel to the plant. Both, plant and model are
based on the same spatially discretized equations of the PDE (46) and are fed with the same inputs,
namely the boundary conditions at x = 0, x = L (TAmmonia) and y = 0 (TAir). The boundary
conditions at y = h are directly embedded in the spatially discretized equations of the plant and
the model. The plant’s equations look therefore as follows:

Ṫ = f1 (T ) ,

y = CT,
(52)

where in fact f1(T ) is given by equations in the form (51) with the respective difference expressions
for distinct values for n and m. In order to introduce the design of the proposed EKF, we first
introduce the standard Kalman-Bucy-Filter. Let the plant be in the form

ẋ = f (x, u) + v,

y = Cx+ z,
(53)

and thus the observer dynamics become

˙̂x = Ax̂+Bu+KC (x− x̂) ,

y = Cx,
(54)

where A =
∂f

∂x

∣∣∣∣
(x0,u0)

and B =
∂f

∂u

∣∣∣∣
(x0,u0)

are the Jacobians of f(x, u) with respect to the state

variables x and the input u, respectively, around an equilibrium point (x0, u0). C defines the output
matrix and K is the observer feedback gain calculated by the Riccati differential equation

Ṗ = AP + PAT − PCTR−1CP +Q (55a)

K = PCTR−1, (55b)

where Q = QT ≥ 0 and R = RT > 0 denote the covariance matrices of the white Gaussian noise
signals v representing errors in the model and z indicating measurement noise, respectively.

We propose the following observer dynamics for the EKF

˙̂
T = f2(T̂ ) +KC

(
T − T̂

)
y = CT,

(56)

where we use a nonlinear model for the observer, as can be seen by comparing (56) and (54). In

(56), f2(T̂ ) is also given by equations in the form (51), just like f1(T ). This means that A in the
proposed design will only be used to calculate the solutions to the Riccati equation and thus to
compute the observer feedback gain K.

4.2.2 Linearization

In contrast to the above mentioned standard design (54), the Jacobian in the proposed observer
is not linearized around a fixed setpoint, but around the actual setpoints defined by the solutions

to the ODEs, T̂S , meaning AT̂S
=
∂f2

∂T̂

∣∣∣∣
T̂S

. Thus the system matrix AT̂S
represents the linearized
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system’s behavior at particular points in state-space and changes as the system is progressing in
time.

We define the state vector as

T =
[
T1,1 · · · T1,N T2,1 · · · T2,N · · · TM,N

]T
,

and obtain a sparse matrix AT̂S
with a regular pattern of diagonal and side-diagonal entries. Note

that the system matrix can be subject to change due to the definition of the chosen parameter
functions and also to the discretization scheme.

4.2.3 Measurements

It is assumed that no in-domain measurements are available, compare to Figure 4. Thus it is only
possible to measure temperatures at the boundaries. This means that the output is

y =
[
T1,1 · · · T1,N T2,1 T2,N · · · TM,1 TM,N

]T
which results in an output matrix on the following form

C = blockdiag
[
C1 C2 · · · CM

]
where C1 = I(N×N) and Ck =

[
1 0(1×N−1)

0(1×N−1) 1

]
for 2 ≤ k ≤M .

4.2.4 Riccati equation

In this setup we use the matrix Riccati differential equation in the same form like (55)

Ṗ = AT̂S
P + PAT

T̂S
− PCTR−1CP +Q (57a)

K = PCTR−1 (57b)

where Q = QT ≥ 0 and R = RT > 0 represent the noise-covariance matrices of the signals v and z,
respectively. We assume no correlation between single states and outputs. Note that the feedback
gain K is actually a function of time and the linearization point T̂S .

The overall design can be seen in Fig. 5.

Plant Model 

Observer Model 

Jacobian Riccati 
Solver 

- 

1/s

1/s ×

Ṫ = f1(T )TAir

T̂

TTAmmonia

K · C

˙̂
T = f2(T̂ )

AT̂S

Figure 5. Design schematic
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5. Simulation Examples

In this section simulation results for both the stability analysis and the observer design will be
presented.

5.1 Simulations regarding the stability analysis

For the simulations we now return to the original freezing application, where we have chosen asym-
metric boundary conditions and noisy initial conditions in order to exemplify the theoretical results
in Section 3. Simulation parameters can be found in Backi and Gravdahl (2013) and represent a
physical freezing process. Second order central differences and first order forward and central dif-
ferences have been used to discretize the PDE (12) in its spatial coordinates only. This resulted
in a set of coupled ODEs representing a spatial resolution of approximately 1 × 10−3 m (N = 99
discretization steps).

We present one case whose behavior has already been discussed in Backi, Bendtsen, Leth, and
Gravdahl (2015).
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Initial condition

Figure 6. Initial condition, red: sum of sinusoidals, blue: sinusoidals plus added white Gaussian noise

Figure 6 shows the noisy initial condition that was chosen for the simulations. It consists of a
sum of sinusoidals of different frequencies around T = 280 K plus added white Gaussian noise. The
red line illustrates the sinusoidals alone whereas the blue line the overall noisy initial condition.
By choosing the initial condition in this fashion we want to emphasize the damping character of
the system.

Figure 7. Asymmetric boundary conditions and noisy initial condition

In Figure 7 a simulation with boundary conditions T (t, 0) = 260 K and T (t, 0.1) = 240 K is pre-
sented. We can see that the temperature distribution converges towards the expected steady state
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solution and is clearly stable in accordance with Theorem 1. Moreover, we can see the phenomenon
of thermal arrest, which takes the form of a plateau of nearly constant temperatures inside I∆T .
The region I∆T is emphasized by the two orange planes. Furthermore, the thermal arrest is best
visible in the very center of the spatial domain. The overall behavior corresponds with freezing
curves obtained by measurements, as presented e.g. in Nicholson (1973).

Figure 8. Asymmetric boundary conditions and noisy initial condition - 0 to 50 s

Figure 8 shows the behaviour in the first 50 s for the case shown in Figure 7. We do this in
order to illustrate the converging and damping character even for noisy initial condition. As can be
seen, the low-frequency parts of the sinusoidals are still present at the end of the simulation time,
whereas the high-frequency peaks caused by white Gaussian noise get levelled out fairly fast.

5.2 Simulations regarding the observer design

The subsequent simulations have already been presented in Backi, Bendtsen, Leth, and Gravdahl
(2014a). They have been conducted for a non-standard case, where white Gaussian noise was
added to the measurements in order to investigate how the observer handles this phenomenon.
The white noise was normed by its largest value, such that values between ±1 K were added to
the measurements. These values correspond to some degree with the specifications of measurement
equipment, such as e.g. thermocouples1. Furthermore, to illustrate robustness, the parameters of
the observer differ from those of the plant. In fact we chose the area of thermal arrest to be double
the size for the observer, ∆TEKF = 2∆TSys, and the observers’ parameter functions are 2 times
larger than those of the system, meaning kEKF = 2kSys and κEKF = 2κSys.

Simulation parameters can be found in the Appendix. The observer parameters were tuned by
simulations and the initial conditions of the plant and the observer differ by 3 K. The values for
N and M present a trade-off between accuracy and performance, as spatial resolution is limited
by computational power. In addition, temperature variations along the y-coordinates for fixed x-
positions are small, but not negligible. This justifies to choose M quite small, but greater than 1
(M = 1 represents a 1-dimensional PDE). Figure 9 shows plots for different x-coordinates at a fixed
y-position (top layer of the fish block). The boundary layer can be seen in the top left, followed
by the top right, bottom left and bottom right as we move along the x-axis towards the center
of the domain. The center is shown in the plot in the bottom right. The area of thermal arrest is
illustrated by the two gray areas (dark corresponds with ∆TEKF , light with ∆TSys). The observer
states are displayed in red, whereas the plant’s states are shown in blue. The noisy measurement
signal is illustrated in green.

1The standard EN 60584 defines three accuracy classes, where the first allows deviations of ±1.5 K
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Figure 9. Observer states (red), real states (blue) and noisy measurement signals (green) at m = 1 and n = 1, 2, 4, 5
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Figure 10. Zoom of observer state (red), real state (blue) and noisy measurement signal (green) at m = 1 and n = 5

In Figure 10 a zoom into the bottom right plot in Figure 9 is illustrated. Due to the fact that
the state can be measured, the observer state is following the real state quite accurately, even in
the presence of white Gaussian noise.
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Figure 11. Observer states (red), real states (blue) and noisy measurement signals (green) at m = 3 and n = 1, 2, 4, 5
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Figure 11 presents plots for different x-coordinates at the center of the y-coordinate (m = 3).
Only the top left plot includes the noisy measurement signal, as it is the only measurable state in
the set of illustrated states. As can be seen the observer follows the real states quite satisfyingly.
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Figure 12. Zoom of observer state (red) and real state (blue) at m = 3 and n = 5

Figure 12 shows a zoom into the bottom right plot in Figure 11. Comparing this to Figure 10,
one can see that now in the absence of measurement, the observer doesn’t follow the real state as
accurately.

0
0.02

0.04
0.06

0.08
0.10

2000
4000

6000
8000

−1

0

1

2

3

4

Length x [m]
Time [s]

T
em

pe
ra

tu
re

 [K
]

Figure 13. Observer error at m = 1

In Figures 13 and 14 the error between real and observed state is shown along the x-coordinate
for a fixed y-position (top and bottom of the block, respectively). It can be seen that the error
is brought back to zero for both cases, even in the presence of noisy measurements and diverging
parameters.

6. Conclusions

In this paper we presented a stability investigation for a partial differential equation with state-
dependent parameter functions and asymmetric boundary conditions. The PDE is a heat equation
derived from the diffusion equation. The work originates in a freezing application and presents a
generalization to already established stability results for the same heat equation with symmetric
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Figure 14. Observer error at m = 5

boundary conditions. Numerical simulations indicate that the theoretical results do in fact hold
for the freezing application. As pointed out in Backi, Bendtsen, Leth, and Gravdahl (2014b) we
firstly proved stability in the sense of convergence in both L2- and H1-norms, and secondly in
terms of absolute value of the solution’s transient part. The conservativeness of the restrictions
on derivatives and signs of the coefficient functions can be relaxed in practice as shown by the
simulations.

Furthermore, we presented an observer design for the aforementioned PDE. The observer is
based upon an Extended Kalman Filter (EKF) with the purpose of estimating the temperature
distribution inside the spatial domain. The results presented show that the non-measurable states in
the inner domain are estimated quite accurately, even in the case of uncertain parameter functions.
In addition, the presence of white Gaussian noise in the measurement signals is handled well by the
observer. Thus it can be concluded that the design is robust to parameter variations and noise.
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Muhieddine, M., Canot, É., & March, R. (2008). Various approaches for solving problems in heat conduction
with phase change. International Journal of Finite Volume Method , 6 (1).

Nicholson, F. J. (1973). The freezing time of fish (Tech. Rep. No. 62). Torry Research Station.
Pham, Q. T. (1984). Extension to planck’s equation for predicting freezing times of foodstuffs of simple

shapes. International Journal of Refrigeration, 7 (6), 377–383.
Pham, Q. T. (1985a). Analytical method for predicting freezing times of rectangular blocks of foodstuffs.

International Journal of Refrigeration, 8 (1), 43–47.
Pham, Q. T. (1985b). A fast, unconditionally stable finite-difference scheme for heat conduction with phase

change. International Journal of Heat and Mass Transfer , 28 , 2079–2085.
Pham, Q. T. (2006a). Mathematical modeling of freezing processes. In Handbook of frozen food processing

and packaging (chap. 7). Taylor & Francis Group, LLC.
Pham, Q. T. (2006b). Modelling heat and mass transfer in frozen foods: a review. International Journal of

Refrigeration, 29 , 876–888.
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