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Abstract

A formalism is introduced for the non-perturbative, purely numerical, so-
lution of the reduced Rayleigh equation for the scattering of light from
two-dimensional penetrable rough surfaces. In the papers included in this
thesis, we apply this formalism to study the scattering of p- or s-polarised
light from two-dimensional dielectric or metallic randomly rough surfaces,
or from two-dimensional randomly rough thin dielectric films on metal-
lic substrates, by calculating the full angular distribution of the co- and
cross-polarised intensity of the scattered light.

We present calculations of the mean differential reflection coefficient for
glass and silver surfaces characterised by (isotropic or anisotropic) Gaus-
sian and cylindrical power spectra, and find a good match with experimen-
tal results, as well as results obtained from another numerical method. We
also present a numerical calculation of the Mueller matrix for scattering
from rough surfaces, based on the same method.

We investigate the optical phenomena of enhanced backscattering, en-
hanced forward scattering and satellite peaks. Enhanced backscattering is
a well known phenomenon, and is used as one among several indicators of
correct results. The phenomenon of enhanced forward scattering has not
previously been investigated in two-dimensional systems. We demonstrate
its presence, and provide an explanation for why it is qualitatively different
from the same phenomenon in one dimension. Regarding satellite peaks,
there has been a dispute in the literature, where one group found they
should be present in scattering from a thin dielectric film on a metallic
substrate, while another group found they should not. We have demon-
strated their presence, and shown how the one-dimensional phenomenon
of satellite peaks become “satellite rings” in the two-dimensional case.

The proposed method is found, within the validity of the Rayleigh hy-
pothesis, to give reliable results. For a non-absorbing metal surface the
conservation of energy was explicitly checked, and found to be satisfied
to within 0.03%, or better, for the parameters assumed. This testifies to
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the accuracy of the approach and a satisfactory discretisation. We also
perform a numerical investigation of the range of validity of the reduced
Rayleigh equation for scattering from two-dimensionally rough silver and
perfectly conducting surfaces.
The advantage of using a numerical solution of the reduced Rayleigh

equation, rather than a rigorous numerical method such as the surface
integral method, lies in the required computational resources. The main
limitation of these methods for considering two-dimensionally rough sur-
faces are their memory requirements. To calculate the scattering ampli-
tude for a typical system studied in this thesis, by the reduced Rayleigh
equation, requires 12 GB of memory. To solve a similarly sized system
with a rigorous method requires one or two orders of magnitude more.
The limitation of the reduced Rayleigh equation is that it can only be
applied to weakly rough surfaces, due to the assumption of the Rayleigh
hypothesis.

iv



Preface

This thesis is submitted as part of the requirements for the degree of
Philosiphiae Doctor at the Norwegian University of Science and Technol-
ogy (NTNU), in Trondheim, Norway. The work on this thesis began in
December 2008, and was concluded in December 2012. My supervisor has
been Professor Ingve Simonsen, at the Department of Physics, NTNU, and
my secondary supervisor was Associate Professor Turid Worren Reenaas,
also at the Department of Physics, NTNU. This work has mainly been
carried out at NTNU, but with several visits to the University of Edin-
burgh. The first part of the thesis serves as an introduction to the work
done, while the last part consists of the papers published and submitted
for publication as a result of this work.

I would like to thank Professor Ingve Simonsen, who took me on as a
PhD student even though I had never compiled a program in my life. He
has taught me a lot about science and computational work in general, and
rough surface scattering in particular.

My secondary supervisor, Associate Professor Turid Worren Reenaas,
tried in vain to keep my work related to photovoltaics. It is not her fault
it turned out otherwise. Still, I think it is good for me to be reminded
of the existence of the “real world” and its practical applications, and I
still hope to use the simulation code developed during my work with this
thesis to study the effect of rough surfaces on photovoltaic cells.

Most of the work contained in this thesis has been carried out in collab-
oration with Paul Anton Letnes, without whom it would only have been
half as thick. He has proved to be excellent company during the more
than three years we shared an office, and has also taught me to appreciate
the command line in a way I never could before.

Professor Alexei Maradudin, at the University of California at Irvine,
has also been a collaborator on several of the papers in this thesis. I have
only met him once, but he immediately struck me as a thoroughly likable
fellow. I am glad I took the trip to California to see him.

v



Knut Gjerden also deserves thanks for being a good friend and excellent
company on our trips abroad, as well as for the stapler1. It has been very
handy.

Furthermore, I would like to thank my other colleagues in the optics cor-
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1. Introduction - a brief history
of light

“Amicus Plato – amicus Aristoteles – magis amica veritas.

— Isaac Newton

Light is a physical phenomenon that has always fascinated natural
philosophers, even in the ancient world. While various other philosophers
had a range of generally uninformed opinions, the empirical study of light
can be said to have started with Euclid, who lived around 300 BC, and
his work Optics. Without speculating too much on the physical nature of
light, he introduced a geometrical description of vision, stating that the
visual cone extends from the eye in straight lines. Note that this is not
the same as saying light itself comes from the eye. He did in fact express
some doubts about this idea, proposed by Empedocles (490 BC–430 BC),
as it would require light to move infinitely fast, since we can immediately
see distant objects when opening our eyes.

Many others have contributed to the theory of light. For example,
Snell’s law, named after Willebrord Snellius (1580–1626), which describes
how light is deflected when moving from one medium to another, was
in fact described by Ibn Sahl (ca 940–1000) in his treatise On burning
mirrors and lenses. Isaac Newton (1642–1727) experimented with prisms
and lenses. He realised that the problem known as chromatic aberration,
i.e., that a lens does not focus all colours at the same spot, is caused
by the lens acting like a prism in splitting the colours. To circumvent the
problem, he invented the reflecting telescope now known as the Newtonian
telescope, using a curved mirror to focus light instead of a lens.

An increasingly better description of the behaviour of light was made
available in the centuries leading up to the 1700s. However, fundamental
questions about the nature of light remained unanswered. What light
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1. Introduction - a brief history of light

really is, why it behaves as it does, and even how fast it moves where still
unknown in the early 1600s. Around 1670, however, a tentative answer
to the question of the speed of light was found, marking the discovery of
the first fundamental constant of Nature (beating Newton’s gravitational
constant by about 15 years), and laying the groundwork for Einstein’s
theory of relativity.

1.1. The speed of light

There has always been a consensus that whatever light is, it does not move
slowly. It has been claimed that it does not move at all, it just is, that it
moves infinitely fast (which is perhaps the same thing as not moving) and
to simply move too fast to be measured. The first to make a reasonably
accurate quantitative measurement of the speed of light was the Danish
astronomer Ole Rømer (1644–1710). Around 1670 he noticed that the
times for eclipses of the moons of Jupiter varied with the Earth’s position
around the Sun, and calculated that light takes 22 minutes to travel the
diametre of the orbit of the Earth. He did not actually calculate the speed
of light himself, but others did based on his measurements, and found a
value for the speed of light of about 222,000 kilometres per second. A
century later, Jean Baptiste Joseph Delambre repeated the calculation,
with the more accurate observations then available, and found that light
takes 8 minutes and 12 seconds to travel from the Sun to the Earth. This
is very close to the modern value of 8 minutes 19 seconds.

Incidentally, Rømer can also be said to have discovered the Doppler
effect, which is the shift of frequency in a phenomenon that is observed
when the sender or the receiver (or both) is moving along the line between
them. What he observed was that the frequency with which the moon
eclipsed Jupiter seemed to change with the position of the Earth. The
explanation is that as the Earth moves towards Jupiter, the light from
the moon has to travel a shorter distance each time, and each consecutive
eclipse appears to happen a little earlier than expected, with the opposite
being true when the Earth moves away from Jupiter.

The first terrestrial measurements of the speed of light happened around
180 years later. The main problem with so-called time of flight measure-
ments is of course that light moves very fast, which means that measuring
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1.2. Wave or particle?

its speed with accuracy amounts to measuring exceedingly short intervals
of time. While today, we have clocks accurate enough to be able to send
light a few metres in the lab and measure the time it takes to travel this
distance with an accuracy of a few percent, this was not possible in the
17th century.

The trick used to measure time of flight accurately was to use a spinning
wheel with notches along the edge. Knowing the angular frequency of the
wheel’s rotation, one could calculate the time between consecutive notches.
Starting out with the wheel stationary, light was sent through one notch,
onto a mirror some distance away, and back through the same notch to the
observer. Setting the wheel in motion at increasingly higher speed, you
would eventually get the situation where light passed through one notch,
hit the mirror, and on its way back hit the wheel between two notches.
Increasing the speed further, light might be able to pass through the next
notch on the return journey. When the distance to the mirror, as well
as the rotational speed of the wheel, was known, it was then possible to
calculate the speed of light with impressive accuracy.

This apparatus was designed by Hippolyte Fizeau (1819–1896) and Léon
Foucault (1819–1868), who used it separately to measure the speed of
light. Fizeau, using a mirror located 8 kilometres away, measured a speed
of 315,000 kilometres per second, a result he published in 1849. Fou-
cault, using a modified version of the apparatus with a rotating mirror
deflecting the beam in place of the notched wheel, obtained in 1862 a
value of 298,000 kilometres per second, very close to the current value of
299,792.458 kilometres per second.

Interestingly, the current value of the speed of light is in fact exact.
The reason for this is that the metre since 1983 has been defined as the
distance light travels through vacuum in 1/299792458 seconds, a way of
defining distance that was in fact suggested by Fizeau in 1864. This, in a
sense, makes the speed of light a defined, rather than measured, quantity.

1.2. Wave or particle?

For a long time, the corpuscular theory of light advocated by Newton,
i.e., that light consists of small particles, dominated. However, in the
early 1800s, Thomas Young (1773–1829) performed the famous double
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1. Introduction - a brief history of light

slit experiment, and demonstrated that light can display interference phe-
nomena, just like water waves. The experiment consisted of sending light
through two parallel, narrow slits, and allowing it to shine onto a screen
some distance away. This was observed to produce an interference pattern
of bright and dark bands.
If light consisted of classical particles, i.e., tiny, hard spheres, no such

pattern would be observed. When adding the intensity of two classical
particle beams, one simply adds the number of particles in each beam.
Waves, on the other hand, have a phase, and when two waves are out
of phase they interfere destructively, so the resultant intensity can reach
zero.
After Young’s double slit experiment had established that light exhibits

wave-like properties, this was the dominant view for around 100 years.
This view was of course reinforced by James Clerk Maxwell (1831–1879),
who in the 1860s provided the mathematical description of light as elec-
tromagnetic waves. However, around the turn of the century, quantum
theory was starting to emerge, and it became clear that the wave theory
of light was insufficient to explain all observations.
Einstein, who had started playing with the idea of light particles in

his thought experiments, in 1905 provided a correct theory for the photo-
electric effect, the effect that electrons can be ejected from a metal when
light is shone upon it, by describing light as small particles with a certain
amount of energy. His theory for the photoelectric effect says that an elec-
tron can only be emitted if it is hit by a particle of light, called a photon,
with at least enough energy to overcome the binding energy of the mate-
rial. This explained the observation that only light of certain wavelengths
could eject electrons. If using light of too long wavelengths, increasing
the intensity of the light still didn’t lead to electrons being ejected. If
the light had short enough wavelengths, however, increasing the intensity
would increase the number of electrons ejected. Thus Einstein concluded
that light consisted of small particles, whose energy was determined by the
wavelength of the light, with shorter wavelengths corresponding to higher
energies, and that intensity was proportional to the number of particles.
It was in fact for the theory of the photoelectric effect, and not for the
more famous theory of relativity, that Einstein got the 1921 Nobel Prize
in physics.
In the early 1900s, one was thus in the seemingly paradoxical situation
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1.2. Wave or particle?

that light behaves as both a wave and a particle. It is fairly common,
at least in high school physics books, to interpret this to mean that light
actually is both a wave and a particle, whereas the obvious interpretation
seems to be that it is neither. Rather, it is something new altogether
which exhibits both wave-like and particle-like properties, depending on
the experiment. During the 1920s and 1930s, when quantum mechanics
was developed, it eventually became clear that this wave-particle duality
is indeed the normal order of things, and that particles can also exhibit
wave-like properties like interference. The quantum nature of light and
matter is however outside the scope of this thesis. From here on, we will
treat light as classical electric and magnetic fields, the theory of which will
be introduced in the next chapter.
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2. Basic theory

“We can scarcely avoid the inference that light consists in the
transverse undulations of the same medium which is the cause
of electric and magnetic phenomena.

— James Clerk Maxwell

2.1. Electricity

Both electric and magnetic phenomena have been known since ancient
times. For example, the ancient Greeks knew and described how a piece
of amber1, when rubbed with a piece of fur, could attract light objects
like hair. This phenomenon is today known as static electricity, caused by
charge building up on the piece of amber.

Eventually, it was realised that electric charge could flow like a current
between objects of different charge. Benjamin Franklin described electric-
ity as a fluid which naturally occurs in all things, and said that objects
which are deficient in this fluid are negatively charged, whereas objects
with excess fluid are positively charged. Franklin was also responsible
for the convention of the electron being negatively charged, by arbitrarily
calling the kind of electric charge that builds up on a piece of resin rubbed
with fur negative. This was more than one hundred years before the dis-
covery of the electron, and had the unintended effect that the current in a
wire, which is conventionally defined as the movement of positive charge,
flows in the opposite direction of the movement of the charge carriers,
which are the electrons.

1In fact, the word electron comes from the Greek word for amber.
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2. Basic theory

2.1.1. Coulomb’s law

Coulomb’s law, first formulated by Charles Augustin de Coulomb in 1785,
describes the electric force between two charged objects. Using a torsion
pendulum to perform accurate measurements, he discovered that the force
is proportional to the product of the charges on the objects, as well as
inversely proportional to the square of the distance between the objects:

Fe = r̂ke
q1q2
r2

. (2.1)

Here, ke is a proportionality constant, sometimes known as Coulomb’s
constant, q1 and q2 are the charges of the objects, r is the centre to centre
distance between them, and r̂ is the unit vector pointing from the centre
of one object, directly away from the other. Thus, we see that if q1 and q2
have the same sign, the force is repulsive, whereas if they have opposite
signs, the force is attractive.
Coulomb’s law is also frequently written in the form

Fe = r̂
1

4πε0

q1q2
r2

, (2.2)

i.e., with ke replaced by 1/4πε0, where ε0 ≈ 8.85 · 10−12 F/m is known
as the vacuum permittivity. As we will see later in this chapter, the
vacuum permittivity is a property of the vacuum which also shows up in
the expression for the speed of light. However, this was not discovered
until about 80 years later, by Maxwell.

2.1.2. Gauss law

Michael Faraday (1791–1867) introduced the concept of the electric field,
which is often a more convenient tool than working directly with Coulomb’s
law and forces between pairs of particles. When a particle with charge q,
is placed in an electric field E, the electric force on the particle is given by

Fe = qE. (2.3)

Thus, we can trivially derive the expression for the electric field due to a
charged particle by combining Eqs. (2.2) and (2.3). A more general for-
mula for the electric field due to the presence of charge is Gauss’ law. It
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2.2. Magnetism

was formulated by Carl Friedrich Gauss (1777–1855) in 1835, and pub-
lished 12 years after his death, and reads∮

S
E · da =

Q

ε0
. (2.4)

Here, the integral is to be taken over a closed surface S, and Q is the charge
enclosed by the surface. Gauss’ law says that the flux of the electric field
through a surface is directly proportional to the amount of charge enclosed
by the surface. Gauss’ law is always true, which makes it more general
than Coulomb’s law, which strictly speaking only holds for stationary
point charges, but Gauss’ law alone does not give the expression for the
force between two charged particles. With the extra assumption that the
field is spherically symmetric, however, Gauss’ law can be used to obtain
the electric field from a point charge, and thus to derive Coulomb’s law.

2.2. Magnetism

Similarly to electric forces, magnetic forces have been known for a long
time. The naturally occurring magnetic mineral lodestone, and its abil-
ity to attract iron, was described by Thales of Miletus around 600 BC.
Magnetic forces have also been used in navigation for at least a thousand
years, in the form of the compass. A needle, magnetised by rubbing it
with a piece of magnetic material, and suspendend so it can rotate freely
in the plane, will always point north-south.

2.2.1. The Biot-Savart law

In 1820, Hans Christian Ørsted (1777–1851) discovered that a current
through a wire could deflect a compass needle, thus discovering the first
connection between electric and magnetic phenomena. He found that a
steady current in a wire would set up a circular magnetic field around the
wire. In the same year, Jean-Baptiste Biot (1774–1862) and Félix Savart
(1791–1841) performed a series of experiments and worked out a general
formula for the magnetic field, B, due to a steady current in a thin wire:

B =
μ0

4π
I

∫
dl× r̂

r2
. (2.5)
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2. Basic theory

Here, μ0 = 4π · 10−7 H/m is the vacuum permeability, which is a property
of the vacuum that will be seen to enter in the expression for the speed of
light, along with the vacuum permittivity. The current in the wire is given
by I, dl points in the direction of the current, and r is the distance from
the wire element to the point where the field is to be calculated. This law
is now known as the Biot-Savart law.

2.2.2. Ampère’s law

Ampère’s law, discovered by André-Marie Ampère (1775–1836) in 1826,
relates the integrated magnetic field around the boundary of a surface to
the total current passing through the surface:∮

L
B · dl = μ0I. (2.6)

Here, the integral is over any closed loop L, and I is the current enclosed
by the loop. Ampère’s law plays a similar role for magnetic fields as Gauss’
law does for electric fields, and it is more general than the Biot-Savart law.
It is not always true, however, as it turned out that a current is not the
only thing that can create a magnetic field. We will return to this point
in Sec. 2.3.

2.2.3. Gauss’ law for the magnetic field

For a while, it was thought that a piece of magnetic material contained two
different kinds of fluid, similar to positive and negative electric charges,
which were responsible for the two poles. Eventually, however, it was re-
alised that the magnetic field from a piece of lodestone or other permanent
magnetic material could be modelled by a current through a coil of wire,
and the theory of two types of “magnetic fluid” was abandoned. This led
to the realisation of the curious fact that there are no magnetic monopoles,
later summarised by Maxwell in what is today known as Gauss’ law for
the magnetic field, ∮

B · da = 0. (2.7)

Later, Paul Dirac (1902–1984) showed that the existence of magnetic
monopoles would explain why electric charge is quantised, i.e., why charge
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only exists in multiples of the elementary charge [7]. His paper created
a certain interest in the topic, but to this day, magnetic monopoles have
never been observed.

2.2.4. Faraday’s law

A little later, in 1831, Faraday discovered that a changing magnetic field
can induce a current in a wire. Using a metal ring with two pieces of
wire wrapped around it, he found that a current would be induced in one
wire when he connected the other wire to a battery. Disconnecting the
second wire would also produce a current in the first, but in the opposite
direction. He also discovered that he could induce a current in a loop of
wire by moving a magnet in and out of the loop.
Faraday’s law describes the electric field along a closed loop, due to a

changing magnetic field through the loop∮
L
E · dl = −

∮
S
∂B

∂t
da. (2.8)

Here, the first integral is to be taken over the closed loop L, and the second
over any continuous surface S bounded by the loop L.

In the middle of the 1830s, this was the status of electromagnetic the-
ory: it had been discovered that electric and magnetic phenomena were
intimately connected, and several laws describing the behaviour of electric
and magnetic fields were known, including how a changing magnetic field
would induce an electric field. Then, in 1841, came the first hint that light
might in fact be an electromagnetic effect, when Faraday discovered what
is today known as Faraday rotation. This effect consists of a rotation of
the plane of polarisation when linearly polarised light travels through a
dielectric medium in the presence of a magnetic field. Polarised light had
been known at least since Rasmus Bartholin (1625–1689) described bire-
fringence in calcite, but was not well understood at the time. With the
work of Maxwell, however, that was about to change.

2.3. Maxwell’s equations

Almost 25 years after the discovery of Faraday rotation, electromagnetic
theory was summed up by James Clerk Maxwell. In his 1865 paper “A

11
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Dynamical Theory of the Electromagnetic Field” [8], he published 20 equa-
tions, working with the components of the vector potentials and the scalar
potentials. Later, Oliver Heaviside (1850–1925) used modern vector cal-
culus and the concepts of electric and magnetic fields to reformulate 12 of
these equations into the four equations we now know as Maxwell’s equa-
tions, presented here in differential form:

∇ ·E =
1

ε0
ρ (2.9a)

∇ ·B = 0 (2.9b)

∇×E = −∂B

∂t
(2.9c)

∇×B = μ0J+ μ0ε0
∂E

∂t
. (2.9d)

Beginning at the top, these are known as Gauss’ law, with ρ the charge
density, Gauss’ law for magnetism (sometimes claimed not to have a
name), Faraday’s law and finally Ampère’s law with Maxwell’s correc-
tion, with J the current density. Maxwell’s correction to Ampère’s law
reflects what was previously mentioned in Sec. 2.2.2, that not only cur-
rents can produce magnetic field. Just as a changing electric field will
induce a magnetic field, so a changing magnetic field will also induce an
electric field.

These equations completely describe the behaviour of electric and mag-
netic fields, both in vacuum and in materials. However, when working
with materials containing charges which can be displaced or even flow
under the influence of electric and magnetic fields, it is more convenient
to write Maxwell’s equations in terms of “free” charges and currents, i.e.,
those charges and currents we can apply and control.

We introduce the displacement field, D, in a material, which is written

D = εE, (2.10)
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where ε = εrε0 is the permittivity of the material, with εr known as the
relative permittivity. We also define the field H, often known simply as
the magnetic field:

H =
B

μ
(2.11)

where μ = μrμ0 is the permeability of the material, with μr similarly
known as the relative permeability. Strictly, Eqs. (2.10) and (2.11) are
only approximations, valid for what is known as linear materials. For
sufficiently strong fields, no linear materials exist, as the fields will start
ripping apart the atoms, and even for relatively weak magnetic fields, some
materials (like iron) have a non-linear response. Additionally, for changing
electric and magnetic fields, both ε and μ are generally functions of both
the rate of change and the direction of the fields. For the study of light and
optical phenomena in this thesis, however, we will assume that Eqs. (2.10)
and (2.11) are valid, and that ε is a complex function of the frequency of
oscillation of the electric field. In all systems considered in the papers in
this thesis, μ will be a constant equal to μ0, i.e., we assume non-magnetic
materials.
Using Eqs. (2.10) and (2.11), we can thus rewrite Maxwell’s equations

in terms of the free charge distribution, ρf , and the free current density
Jf :

∇ ·D = ρf (2.12a)

∇ ·B = 0 (2.12b)

∇×E = −∂B

∂t
(2.12c)

∇×H = Jf +
∂D

∂t
. (2.12d)

In these equations, the effect of the electric and magnetic fields on the
properties of the material is accounted for by the fields D and H, given
the above assumptions, i.e., that the material is linear and isotropic.
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2.4. Electromagnetic waves

In addition to formulating these equations, Maxwell also demonstrated
that there are solutions to Maxwell’s equations which are at the same
time solutions to the wave equation, describing fluctuations of the electric
and magnetic fields that travel in straight lines like waves. Assuming we
are in vacuum, with no charges and currents present, i.e., ρ = 0 and J = 0,
we apply the curl operator to Eq. (2.9c), and we find

∇×∇×E = −∇× ∂B

∂t
, (2.13)

which we can rewrite using the vector identity

∇×∇×A = ∇(∇ ·A)−∇2A. (2.14)

We obtain

∇ (∇ ·E)−∇2E = −∇× ∂B

∂t
. (2.15)

Since ∇·E = 0 in vacuum with no charges present, we can ignore the first
term, and finally, applying Eq. (2.9d) with J = 0 to the right hand side of
Eq. (2.15), we obtain the wave equation for the electric field

∇2E = μ0ε0
∂2E

∂t2
. (2.16)

Similarly, we can obtain the wave equation for the magnetic field:

∇2B = με
∂2B

∂t2
. (2.17)

This demonstrates that in vacuum, the electric and magnetic fields obey
the wave equation,

∇2f =
1

c2
∂2f

∂t2
. (2.18)

with their speed given by

c =
1√
μ0ε0

. (2.19)
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We also note that giving Eq. (2.12) the same treatment, we find that light
can propagate in materials with a speed slower than c, given by

v =
1√
με

. (2.20)

The ratio of the speed of light in vacuum, c, to the speed of light in a
material, v,

n =
c

v
, (2.21)

is called the refractive index of the material.
The fact that fields obeying Maxwell’s equations in vacuum are also

solutions of the wave equation was what Maxwell referred to in the opening
quote of this chapter:

“We can scarcely avoid the inference that light consists in the
transverse undulations of the same medium which is the cause
of electric and magnetic phenomena.

Today, we know that Maxwell was right, and that visible light is merely
electromagnetic radiation with wavelengths in the range 380 to 740 nanome-
tres, fundamentally no different from for example X-rays or radio waves.

2.4.1. Reflection and refraction

In the previous section, we saw that electric and magnetic fields, obeying
Maxwell’s equations in vacuum, are also solutions to the wave equation.
However, the opposite is not necessarily true. We consider a plane wave,
propagating in the x3-direction, i.e., an electric field whose amplitude is
constant along the x1- and x2-directions, but changing with x3 and t. We
write this field as

E(x3, t) = E0e
i(kx3−ωt), (2.22)

where k = 2π/λ is the wavenumber and ω = 2πc/λ is the angular fre-
quency, with c the speed of light in vacuum. Similarly, we consider a
magnetic field written on the form

B(x3, t) = B0e
i(kx3−ωt). (2.23)
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While Eqs. (2.22) and (2.23) satisfy the wave equation as they are,
Maxwell’s equations impose additional constraints. Beginning with Gauss’
law in vacuum, we find that

∇ ·E(x3, t) = ikE3e
i(kx3−ωt) = 0, (2.24)

which requires that E3 = 0. Similarly, Gauss’ law for the magnetic field
requires B3 = 0. Hence, the directions of the electric and magnetic fields
are always perpendicular to the direction of propagation.

Furthermore, Maxwell’s equations couple the behaviour of changing
electric and magnetic fields. From Faraday’s law, we find

∇×E(x3, t) = x̂2∂3E1(x3, t)− x̂1∂3E2(x3, t) = −∂tB. (2.25)

This can be rewritten into the relations

ωB1 = −kE2 (2.26)

ωB2 = kE1, (2.27)

which can be further rewritten into

B =
k

ω
(x̂3 ×E) . (2.28)

From this, we see that the oscillating electric field is accompanied by an
oscillating magnetic field. The electric and magnetic fields are perpendic-
ular to each other, as well as the direction of propagation. We also find
that the amplitudes of the electric and magnetic fields are related by

B0 =
1

c
E0, (2.29)

where we have used that k = ω/c.

Finally, we can use Maxwell’s equations, along with the boundary condi-
tions on the electric and magnetic fields, to calculate what happens when
an electromagnetic wave passes from one medium to another. We con-
sider a plane interface at x3 = 0, separating two regions, which we will
call regions 1 and 2. Region 1 is filled with a medium whose permittiv-
ity is a complex number ε1, and region 2 with a medium with complex
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permittivity ε2. A plane wave, with the electric and magnetic fields given
by

Ei(x, t) = Ei
0e

i(ki·x−ωt), Bi(x, t) = Bi
0e

i(ki·x−ωt), (2.30)

propagates towards the interface from region 1. We previously found that
the electric and magnetic fields in a propagating plane wave are always
perpendicular to each other as well as the direction of propagation, with
the relative amplitudes of the fields given by Eq. (2.29). We thus have

Bi
0 =

1

v1
k̂i ×Ei

0, (2.31)

where v1 is the speed of light in medium 1.

When the plane wave hits the interface between regions 1 and 2, it will
in general be partially reflected and partially transmitted. The reflected
plane wave, we write

Er(x, t) = Er
0e

i(kr·x−ωt), Br(x, t) = Br
0e

i(kr·x−ωt), (2.32)

where

Br
0 =

1

v1
k̂r ×Er

0. (2.33)

Similarly, the transmitted plane wave can be written

Et(x, t) = Et
0e

i(kt·x−ωt), Bt(x, t) = Bt
0e

i(kt·x−ωt), (2.34)

where

Bt
0 =

1

v2
k̂t ×Et

0. (2.35)

Here, v2 is the speed of light in medium 2. When we know the general
form of the incident, scattered and transmitted field, what remains is to
match them up at the boundary. The boundary conditions on the electric
and magnetic fields are [9]:

ε1E
⊥
1 − ε2E

⊥
2 = 0, (2.36a)
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B⊥1 −B⊥2 = 0, (2.36b)

E
‖
1 −E

‖
2 = 0, (2.36c)

1

μ1
B
‖
1 −

1

μ2
B
‖
2 = 0. (2.36d)

Assuming μ1 = μ2 = 1, as we will do throughout this thesis, we can
combine Eqs. (2.36b) and (2.36d) into

B1 −B2 = 0. (2.36e)

It follows that

Bi
0e

i(ki·x−ωt) +Br
0e

i(kr·x−ωt) = Bt
0e

i(kt·x−ωt), (2.37)

when x3 = 0. From this, it is possible to prove that

Bi
0 +Br

0 = Bt
0, (2.38)

and

ei(k
i·x−ωt) = ei(k

r·x−ωt) = ei(k
t·x−ωt)

⇒ ki · x = kr · x = kt · x,
(2.39)

again when x3 = 0. This leads to

ki1 = kr1 = kt1, ki2 = kr2 = kt2, (2.40)

which is really nothing other than conservation of momentum. A flat
interface cannot change the components of the wave vector parallel to the
surface, and thus the incident and reflected wave vectors lie in the same
plane, called the plane of incidence. We also see that the transmitted
wave vector will lie in the same plane. Without loss of generality, we will
therefore orient our coordinate system such that the plane of incidence is
the x1x3 plane, or in other words,

ki2 = kr2 = kt2 = 0. (2.41)
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Furthermore, we find from Eq. (2.40) that

ki sin θi = kr sin θr = kt sin θt, (2.42)

where ki = |ki| is the magnitude of the wave vector of the incident light
(with similar definitions for the reflected and transmitted light). The
angle of incidence, θi, is measured from the surface normal pointing into
region 1, the angle of reflection, θr, is measured in the same way, and θt
is the angle of refraction, measured from the surface normal pointing into
region 2.

Since the angular frequency, ω, is the same for all waves, we have

kiv1 = krv1 = ktv2 = ω. (2.43)

This leads immediately to ki = kr, which combined with Eq. (2.42) gives

θi = θr. (2.44)

Equation (2.44), the law of reflection, has been known since ancient times,
when it was discovered by careful experimentation. Two millennia later,
we can derive it from Maxwell’s equations and the boundary conditions
on the back of an envelope.

From Eqs. (2.42) and (2.43) we also find

sin θi
sin θt

=
n2

n1
, (2.45)

where we have used Eq. (2.21) to obtain n1 and n2, the refractive indices
of media 1 and 2 respectively. Equation (2.45) is known as Snell’s law
of refraction, though as mentioned in the introduction it was discovered
more than 500 years before the birth of Willebrord Snellius. It tells us
how a beam of light changes its direction when moving from one material
to another.

2.4.2. Fresnel’s equations

Having established what happens to the direction of propagation of elec-
tromagnetic waves passing from one medium to another, we move on to
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their amplitudes. From Eq. (2.38), and still assuming μ1 = μ2 = 1, we
can rewrite the boundary conditions given in Eq. (2.36) into

ε1
(
Ei

0⊥ + Er
0⊥
)
= ε2E

t
0⊥ (2.46a)

Ei
0‖ +Er

0‖ = Ei
0‖ (2.46b)

Bi
0 +Br

0 = Bt
0. (2.46c)

We will now consider separately the two cases where either Ei
0 points along

x̂1, or it points along x̂2. In the first case, i.e., Ei
0 = x̂1E

i
0, the electric

field is parallel to the plane of incidence. This is called p-polarised light,
where p is for parallel. In the second case, Ei

0 = x̂2E
i
0, the electric field

is perpendicular to the plane of incidence. This is called s-polarised light,
where s is for senkrecht, which is German for perpendicular. As all other
polarisation states can be written as a combination of p- and s-polarised
light, we will only deal with these two cases.

We begin by considering p-polarised light. From Eq. (2.46b), we get the
condition

Ei
0 cos θi + Er

0 cos θr = Et
0 cos θt, (2.47)

and from Eq. (2.46c), and using the relationship between the electric and
magnetic fields given in Eq. (2.28), we obtain

1

v1

(
Ei

0 − Er
0

)
=

1

v2
Et

0. (2.48)

Using Eq. (2.44), Eqs. (2.47) and (2.48) can be trivially rewritten into

Ei
0 + Er

0 =
cos θt
cos θi

Et
0. (2.49)

Ei
0 − Er

0 =
v1
v2

Et
0, (2.50)

Solving Eqs. (2.49) and (2.50), we can eliminate either Er
0 or Et

0, and
we get the following expressions for the transmitted and scattered field
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amplitudes:

Er
0 =

n1

√
1− sin2 θi

n2
1

n2
2
− n2 cos θi

n1

√
1− sin2 θi

n2
1

n2
2
+ n2 cos θi

Ei
0, (2.51)

Et
0 =

2n1 cos θi

n1

√
1− sin2 θi

n2
1

n2
2
+ n2 cos θi

Ei
0. (2.52)

In arriving at Eqs. (2.51) and (2.52), we have made use of Eq. (2.45) to
eliminate the angle of refraction from the expressions.
We then turn to the case of s-polarised light, i.e., Ei

0 = x̂2E
i
0, still with

the x1x3 plane as the plane of incidence. We use Eq. (2.46b), and get

Ei
0 + Er

0 = Et
0, (2.53)

and from Eq. (2.46c), we get

Bi
0 cos θi +Br

0 cos θr = Bt
0 cos θt. (2.54)

Using the relationship between the amplitudes of the electric and magnetic
fields, given by Eq. (2.28), as well as the law of reflection, Eq. (2.44), we
can rewrite Eq. (2.54) into

Ei
0 − Er

0 =
v1 cos θt
v2 cos θi

Et
0. (2.55)

And finally, just as in the case of p-polarised light, we can solve Eqs. (2.53)
and (2.55) to eliminate either Er

0 or Et
0, and we find

Er
0 =

n1 cos θ1 − n2

√
1− sin2 θi

n2
1

n2
2

n1 cos θ1 + n2

√
1− sin2 θi

n2
1

n2
2

Ei
0, (2.56)

Et
0 =

2n1 cos θi

n1 cos θ1 + n2

√
1− sin2 θi

n2
1

n2
2

Ei
0. (2.57)

Equations (2.51), (2.52), (2.56) and (2.57) are known as Fresnel’s equa-
tions.
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3. The reduced Rayleigh equation

“The history of science teaches only too plainly the lesson
that no single method is absolutely to be relied upon, that
sources of error lurk where they are least expected, and that
they may escape the notice of the most experienced and con-
scientious worker.

— Lord Rayleigh

3.1. Introduction

In the previous chapter, we introduced Maxwell’s equations, and saw how
they could be solved to obtain the reflection and transmission amplitudes
for a flat interface between two different media. In this chapter, we will in-
troduce the topic of this thesis, the scattering of light from rough surfaces.
While clearly much more interesting and useful for practical applications,
this is also considerably more difficult. It is mathematically more challeng-
ing, in that it is rather more complicated to obtain an equation that can
be solved to find the reflection amplitudes, and it is numerically relatively
heavy to solve said equations.

Scattering from rough surfaces was first studied systematically by Lord
Rayleigh [10], who considered both acoustic and optical scattering from
sinusoidal gratings. He also considered scattering from liquid surfaces,
and thus became the first to consider randomly rough surfaces. While
scattering from liquid surfaces turned out to be an important problem,
with applications in for example marine radar, randomly rough surfaces
on solids are also abundant both in nature and industrial processes, and
scattering from randomly rough surfaces is thus a topic of great interest.
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x1

x2

x3

q

k

q‖
k‖

φs

φ0

θs
θ0

Figure 3.1.: A sketch of the scattering geometry assumed in this work. The
figure also shows the coordinate system used, angles of inci-
dence (θ0, φ0) and scattering (θs, φs), and the corresponding
lateral wavevectors k‖ and q‖, respectively.

3.2. Scattering geometry

Throughout the papers included in this thesis, we will consider scattering
from either a substrate with a rough surface in vacuum, or from a flat
substrate with a film in vacuum, where the film–vacuum interface is rough.
In both cases, we divide space into regions, where region 1 [x3 > ζ(x‖)]
is assumed to be vacuum (ε1 = 1). The height of the surface separating
regions 1 and 2, measured in the positive x3 direction from the x1x2-
plane, is given by the single-valued function x3 = ζ(x‖), where x‖ =
(x1, x2, 0). The surface profile function, ζ(x‖), is assumed to be at least
once differentiable with respect to x1 and x2.

In the case of the bare substrate in vacuum, the substrate will be called
region 2 [x3 < ζ(x‖)], with a complex dielectric function ε2(ω), where the
angular frequency is ω = 2πc/λ. Here, λ is the wavelength of the incident
light in vacuum and c is the speed of light in vacuum.
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In the case of film on substrate, we divide space into three regions. Again
region 1 [x3 > ζ(x‖)] is vacuum (ε1 = 1). Region 2 [−d < x3 < ζ(x‖)] is
the film, with complex dielectric function ε2(ω) and average thickness d,
and region 3 (x3 < −d) is the substrate, with complex dielectric function
ε3(ω). The interface between the film and the substrate is flat, and par-
allell to the x1x2-plane, while the height of the surface separating the
film and the vacuum, measured in the positive x3 direction from the
x1x2-plane, is given by the single-valued function x3 = ζ(x‖). As before,
x‖ = (x1, x2, 0), and ζ(x‖) is assumed to be at least once differentiable
with respect to x1 and x2.

In both the case of the bare substrate and the substrate with film,
the angles of incidence (θ0, φ0) and scattering (θs, φs) are defined positive
according to the convention given in Fig. 3.1.

3.3. Surface profiles

In principle, the reduced Rayleigh equation and the scattering theory pre-
sented in Sec. 3.4 can be used to calculate the scattering of light from any
surface, as long as the Rayleigh hypothesis is satisfied. It could for exam-
ple be used to simulate the scattering from surface profiles obtained by
measurements on real surfaces, to provide a comparison for experimental
results. (Note, though, that this is not necessarily straightforward, due
to the effort involved in sampling a large surface area with sufficient res-
olution.) Throughout this thesis, however, we will consider numerically
generated randomly rough surface profiles with particular statistical prop-
erties. A brief outline of how to numerically generate surface realisations
is given here.

The surface profile function, ζ(x‖), constitutes a stationary random
process defined by

〈
ζ(x‖)

〉
= 0,〈

ζ(x‖)ζ(x‖′)
〉
= δ2W (x‖ − x‖′),

(3.1)

where the angle brackets denote an average over an ensamble of surface
realisations. Here, W (x‖−x‖′) denotes the height-height auto-correlation
function of the surface, normalised so that W (0) = 1 [11], and we have
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defined the root-mean-square height of the surface, δ =
〈
ζ2(x‖)

〉1/2
. Ac-

cording to the Wiener-Khinchin theorem [12], the power spectrum of the
surface profile function is given by

g(k‖) =
∫
d2x‖ W (x‖) exp

(−ik‖ · x‖
)
. (3.2)

The power spectra which will be considered in the papers included in this
thesis are of one of two types: the first is the Gaussian form [13]

g(k‖) = πa1a2 exp

(
−k21a

2
1

4
− k22a

2
2

4

)
, (3.3)

where a1 and a2 denote the lateral correlation length along x1 and x2
respectively. If a1 = a2, the surface is isotropic, if a1 �= a2 it is anisotropic.

The second type is the cylindrical form [14]

g(k‖) =
4π

k2+ − k2−

[
θ(k‖ − k−)θ(k+ − k‖)

]
, (3.4)

where k‖ = |k‖|, θ denotes the Heaviside unit step function, and k± are
wavenumber cutoff parameters, with k− < k+. The cylindrical form in
Eq. (3.4) is a two-dimensional generalisation of the power spectrum used
in experiments by West and O’Donnell where they confirmed the existence
of the enhanced backscattering phenomenon for weakly rough surfaces [15].
We will also use a variation of the cylindrical form where the power spec-
trum is non-zero in two separate regions. See Ref. [6] (included in this
thesis) for a more thorough discussion of both power spectra in general
and the double cylindrical power spectrum in particular.
To numerically generate a realisation of a surface profile with a given

power spectrum, an array of uncorrelated random numbers with a Gaus-
sian distribution of standard deviation unity and zero mean is created.
Then the discrete Fourier transform of this array is taken, which results in
an array of random complex numbers which are symmetric about the zero
frequency under complex conjugation. Each element of this array, which
represents components of the Fourier spectrum, is then multiplied by the
value of the power spectrum at the corresponding wave number. Thus,
the power spectrum acts as weights on the random numbers, suppress-
ing some frequencies and amplifying others. Finally, the inverse discrete
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Fourier transform of the array is taken. Since both the complex random
numbers and the power spectrum are symmetric about the zero frequency,
the inverse fourier transform results in an array of purely real values, which
make up a realisation of the surface profile function with an RMS-height
of unity. Multiplying the array by the desired RMS-height yields a re-
alisation of the surface profile with the same number of elements as the
original array of random numbers. See also Refs.[16, 13] for more details.

3.4. Scattering theory

In this section, we will introduce the reduced Rayleigh equation for re-
flection from a substrate with a rough surface in vacuum. We consider a
linearly p or s polarised plane wave which is incident on the surface from
region 1, with the electric field given by E(0)(x; t) = E(0)(x|ω) exp(−iωt)
where

E(0)(x|ω) = E(0)(k‖) exp
[
ik‖ · x‖ − iα1(k‖)x3

]
, (3.5a)

with

E(0)(k‖) = − c

ω

[
k̂‖α1(k‖) + x̂3k‖

]
E(0)
p (k‖)

+
(
x̂3 × k̂‖

)
E(0)
s (k‖),

(3.5b)

and

α1(k‖) =
(
ω2

c2
− k2‖

)1/2

, Reα1 ≥ 0, Imα1 ≥ 0. (3.5c)

Throughout this thesis, as well as in the included papers, a caret over a
vector indicates a unit vector. The expressions in front of the amplitudes

E(0)
p (k‖) and E(0)

s (k‖) in Eq. (3.5b) are the unit polarisation vectors for
incident light of p- and s-polarisation respectively. Furthermore, k‖ =
(k1, k2, 0) denotes the lateral component of the wave vector k = k‖ −
α(k‖)x̂3 of the incident light, with k‖ related to the angles of incidence
indicated in Fig. 3.1 by

k‖ =
ω

c
sin θ0 (cosφ0, sinφ0, 0) , (3.6)
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3. The reduced Rayleigh equation

where θ0 and φ0 are the polar and azimuthal angles of incidence, respec-
tively (Fig. 3.1). In the expression for the incident field, E(0)(x; t), a time
harmonic dependence of the form exp(−iωt) was included. A similar time
dependence will be assumed in all field expressions, but will for conve-
nience not be written explicitly.

Above the surface roughness region, i.e., for x3 > max ζ(x‖), the scat-
tered field can be written in the form of a superposition of upwards prop-
agating reflected plane waves, i.e., with a positive sign on the third com-
ponent of the wave vector:

E(s)(x|ω) =
∫

d2q‖
(2π)2

E(s)(q‖) exp
[
iq‖ · x‖ + iα1(q‖)x3

]
, (3.7a)

where

E(s)(q‖) =
c

ω

[
q̂‖α1(q‖)− x̂3q‖

] E(s)
p (q‖) +

(
x̂3 × q̂‖

) E(s)
s (q‖). (3.7b)

Here, q = q‖ + α1(q‖)x̂3 is the wave vector of the scattered light, with
α1(q‖) given by Eq. (3.5c). The integral in Eq. (3.7a) is to be taken over
the entire q1q2-plane, including the region q‖ > ω/c. Note that this means
that even though we said we would write the scattered field in the form of
a sum of upwards propagating modes, we also include mode which are not
propagating in the vacuum at all. In particular, a mode with q‖ ≤ ω/c
will propagate away from the surface in the vacuum. For a mode with
q‖ > ω/c, on the other hand, the third component of q, given by α1(q‖),
will be purely imaginary. These are so-called evanescent modes, which
decay exponentially to either direction away from the surface, but which
under certain circumstances can propagate quite far along the surface.
Both propagating modes in the vacuum and evanescent modes on the
surface are thus included in E(s)(x|ω).
We will furthermore assume that a linear relationship between the am-

plitudes of the incident and the scattered fields exists, which we write

E(s)
α (q‖) =

∑
β=p,s

Rαβ(q‖|k‖)E(0)
β (k‖), (3.8)

where α = p, s. Here we have introduced the so-called scattering ampli-
tude, Rαβ(q‖|k‖), which describes how incident light of polarisation β,
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3.4. Scattering theory

characterised by a lateral wave vector k‖, is scattered into light of polar-
isation α, with lateral wave vector q‖. When q‖ ≤ ω/c, i.e., for vacuum
propagating modes, the wave vector q‖ is related to the angles of scattering
(θs, φs) by

q‖ =
ω

c
sin θs (cosφs, sinφs, 0) . (3.9)

Below the surface region, i.e., for x3 < min ζ(x‖), the transmitted
electric field can similarly be written as a sum of downward propagat-
ing modes:

E(t)(x‖|ω) =
∫

d2p‖
(2π)2

E(t)(p‖) exp
[
ip‖ · x‖ − iα2(p‖)x3

]
(3.10a)

with

E(t)(p‖) = − 1√
ε2(ω)

c

ω

[
p̂‖α2(p‖) + x̂3p‖

] E (t)
p (p‖)

+
(
x̂3 × p̂‖

) E(t)
s (p‖).

(3.10b)

In writing Eq. (3.10) we have introduced the wave vector of the transmitted
field p = p‖ − α2(p‖)x̂3, where

α2(p‖) =
[
ε2(ω)

ω2

c2
− p2‖

]1/2
, Reα2 ≥ 0, Imα2 ≥ 0. (3.11)

Again, the integral in Eq. (3.10) is over the entire p1p2-plane.

In complete analogy to what was done for reflection, we assume a linear
relation between the amplitudes of the incident and transmitted fields:

E(t)
α (p‖) =

∑
β=p,s

Tαβ(p‖|k‖)E(0)
β (k‖), (3.12)

where Tαβ(p‖|k‖) is the transmission amplitude.

The expressions Eqs. (3.5), (3.7), and (3.10) for the electric fields are cor-
rect far away from the surface region, and are referred to as the asymptotic
forms. These equations automatically satisfy the boundary conditions at
infinity.
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3. The reduced Rayleigh equation

3.4.1. The Rayleigh hypothesis

Above the surface, i.e., in the region x3 > max ζ(x‖), the total elec-
tric field is equal to the sum of the incident and the scattered field,
E(0)(x|ω) +E(s)(x|ω). Below the surface, in the region x3 < min ζ(x‖), it
equals the transmitted field, E(t)(x|ω). In the surface roughness region,
min ζ(x‖) ≤ x3 ≤ max ζ(x‖), these forms of the total field will not gener-
ally be valid. In particular, when we are above the surface but still below
its maximum point, i.e., ζ(x‖) ≤ x3 < max ζ(x‖), the expression for the
scattered field may also have terms containing exp

[
iq‖ · x‖ − iα1(q‖)x3

]
.

Similarly, the transmitted field in the surface region may contain addi-
tional terms similar to Eq. (3.10a) but with the exponential function re-
placed by exp

[
ip‖ · x‖ + iα2(p‖)x3

]
.

If the surface roughness is sufficiently weak, however, the asymptotic
forms of the fields, Eqs. (3.5), (3.7), and (3.10), can be assumed to be
a good approximation to the total electric field in the surface roughness
region. This assumption is known as the Rayleigh hypothesis [17, 10,
18], named after Lord Rayleigh, who used it in his seminal studies of
wave scattering from sinusoidal surfaces [17, 10]. For a (one-dimensional)
sinusoidal surface, i.e., a surface whose height measured from x3 = 0 can
be written x3 = ζ0 sin(Λx1), the criterion for the validity of the Rayleigh
hypothesis is known to be ζ0Λ < 0.448, independently of the wavelength
of the incident light [19, 20]. For a randomly rough surface, however,
the absolute limit of validity of this hypothesis is not generally known.
Some numerical studies have been devoted to finding the region of validity
for random surfaces, though, including Ref. [21] and [5] (included in this
thesis).

Even if no absolute criterion for the validity of the Rayleigh hypothesis
for randomly rough surfaces is known, it remains true that it is a small-
slope hypothesis. In particular, if the randomly rough surface is charac-
terised by an root-mean-square (RMS) height δ, and a correlation length
a (see Sec. 3.2 and Ref. [11] for details), there seems to be a consensus in
the literature on the Rayleigh hypothesis being valid if δ/a 	 1 [21, 18].
We stress that the validity of the Rayleigh hypothesis does not require the
amplitude of the surface roughness to be small, only its slope.
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3.5. The reduced Rayleigh equations

3.5. The reduced Rayleigh equations

Assuming that the Rayleigh hypothesis is valid, the total electric field in
the surface region, min ζ(x‖) < x3 < max ζ(x‖), can be written in the
asymptotic form given by Eqs. (3.5), (3.7) and (3.10), and these expres-
sions can be used to satisfy the boundary conditions on the electric and
magnetic fields at the rough surface x3 = ζ(x‖). If there are no free cur-
rents or charges at the boundary, the boundary conditions are given by
Eq. (2.36).
Inserting the field expressions from Eqs. (3.5), (3.7) and (3.10), with the

amplitudes for the scattered and transmitted fields written in terms of the
incident field and the scattering and transmission amplitudes, Rαβ(q‖|k‖)
and Tαβ(q‖|k‖), into Eq. (2.36), one obtains the so-called Rayleigh equa-
tions. These are a set of coupled inhomogeneous integral equations, which
the reflection and transmission amplitudes should satisfy.
In the mid-1980s, Brown et al. [22] showed that either the reflection or

transmission amplitude could be eliminated from the Rayleigh equations,
resulting in an integral equation for the remaining amplitude only. This
equation was later re-derived by Soubret et al. in a somewhat more acces-
sible manner [23]. Since this simplified integral equation contains only one
of the unknown amplitudes, it is known as the reduced Rayleigh equation
for reflection or transmission.

3.5.1. Reduced Rayleigh equation for reflection from a
single rough interface

If the scattering amplitudes are organised as the 2× 2 matrix

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
, (3.13)

the reduced Rayleigh equation for reflection from a rough surface on a
substrate in vacuum can be written in the form [14, 23, 24]∫

d2q‖
(2π)2

I
(
α2(p‖)− α1(q‖)|p‖ − q‖

)
α2(p‖)− α1(q‖)

M+(p‖|q‖)R(q‖|k‖)

= −I
(
α2(p‖) + α1(k‖)|p‖ − k‖

)
α2(p‖) + α1(k‖)

M−(p‖|k‖),
(3.14a)
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3. The reduced Rayleigh equation

where

I(γ|Q‖) =
∫

d2x‖ exp
[−iγζ(x‖)

]
exp

(−iQ‖ · x‖
)
, (3.14b)

and

M±(p‖|q‖) =
(

p‖q‖ ± α2(p‖)p̂‖ · q̂‖α1(q‖) −ω
c α2(p‖)

[
p̂‖ × q̂‖

]
3

±ω
c

[
p̂‖ × q̂‖

]
3
α1(q‖) ω2

c2
p̂‖ · q̂‖

)
,

(3.14c)

where the integrals in Eq. (3.14a) and (3.14b) are over the entire q‖-plane
and x‖-plane, respectively.

As an illustrative exercise, we will now show that the reduced Rayleigh
equation for reflection from a flat surface reproduces the Fresnel equations
for reflection, Eqs. (2.51) and (2.56), which we derived in the previous
chapter.

When ζ(x‖) = 0, it follows that the integrals I(γ|Q‖) are proportional
to delta functions:

I(γ|Q‖) =
∫

d2x‖ exp
(−iQ‖ · x‖

)
= (2π)2δ2(Q‖). (3.15)

Equation (3.14a) thus becomes

∫
d2q‖
(2π)2

(2π)2δ2(p‖ − q‖)
α2(p‖)− α1(q‖)

M+(p‖|q‖)R(q‖|k‖)

= −(2π)2δ2(p‖ − k‖)
α2(p‖) + α1(k‖)

M−(p‖|k‖),
(3.16)

Performing the integral on the left hand side, which is now trivial due to
the delta function, we obtain

1

α2(p‖)− α1(p‖)
M+(p‖|p‖)R(p‖|k‖)

= −(2π)2δ2(p‖ − k‖)
α2(p‖) + α1(k‖)

M−(p‖|k‖),
(3.17)
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3.5. The reduced Rayleigh equations

Using the fact that the off-diagonal elements of M±(p‖|q‖) are 0 when
p‖ = q‖, we easily see that Rps(q‖|k‖) = 0 and Rsp(q‖|k‖) = 0. We then
obtain the following equations for the two remaining reflection amplitudes:

Rpp(p‖|k‖) = (2π)2δ2(p‖ − k‖)
α1(p‖)− α2(p‖)
α1(k‖) + α2(p‖)

M−
11(p‖|k‖)

M+
11(p‖|p‖)

(3.18)

Rss(p‖|k‖) = (2π)2δ2(p‖ − k‖)
α1(p‖)− α2(p‖)
α1(k‖) + α2(p‖)

M−
22(p‖|k‖)

M+
22(p‖|p‖)

. (3.19)

We immediately note that the remaining delta function ensures that
Rpp(p‖|k‖) = 0 when p‖ �= k‖, and the same for Rss. This is as we expect
from Eq. (2.40), the law of reflection. We then insert the M11 and M22

matrix elements from Eq. (3.14c), and use the fact that p‖2 + α1
2(p‖) =

p2 = ω2/c2, as well as p‖2 + α2
2(p‖) = ω2/v22, where v2 is the speed of

light in medium 2. Considering for the moment only the fractions in the
right hand sides of Eqs. (3.18) and (3.19), and setting k‖ = p‖, as enforced
by the delta function, we can write these as

c2α1(p‖)− v22α2(p‖)
c2α1(p‖) + v22α2(p‖)

=
n2 cos θi −

√
1− sin2 θi

n2
2

n2 cos θi +
√
1− sin2 θi

n2
2

(3.20)

α1(p‖)− α2(p‖)
α1(p‖) + α2(p‖)

=
cos θi − n2

√
1− sin2 θi

n2
2

cos θi + n2

√
1− sin2 θi

n2
2

(3.21)

Here, we have made use of the expression for the refractive index of mate-
rial 2, n2 = c/v2, as well as the fact that n2 =

√
ε2 when μ2 = 1. Inserting

these fractions back into Eqs. (3.18) and (3.19), we obtain

Rpp(p‖|k‖) = (2π)2δ2(p‖ − k‖)
n2 cos θi −

√
1− sin2 θi

n2
2

n2 cos θi +
√
1− sin2 θi

n2
2

. (3.22)

Rss(p‖|k‖) = (2π)2δ2(p‖ − k‖)
cos θi − n2

√
1− sin2 θi

n2
2

cos θi + n2

√
1− sin2 θi

n2
2

. (3.23)
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3. The reduced Rayleigh equation

Inspection reveals that the prefactor in front of the fraction will cancel
when we insert Eqs. (3.22) and (3.23) into Eq. (3.7), using Eq. (3.8) to
relate the scattered and incident fields. The delta function is removed by
the integral over q‖, ensuring the law of reflection is obeyed. Comparing
Eqs. (3.22) and (3.23) to the Fresnel equations for reflection, Eqs. (2.51)
and (2.56), with n1 = 1, we see that the reduced Rayleigh equation reduces
to the Fresnel equations in the case of a flat interface.

3.5.2. Reduced Rayleigh equation for reflection from a
perfectly conducting substrate

The reduced Rayleigh equation for reflection from clean, perfectly con-
ducting, two-dimensional randomly rough surfaces [25] has also been been
derived. This system is equivalent to the one discussed in the previous
section, in the limit ε2 → −∞. With the same conventions as in the
previous section, R(q‖|k‖) will satisfy the equation

∫
d2q‖
(2π)2

M+(p‖|q‖)R(q‖|k‖) = −M−(p‖|k‖), (3.24)

where

M±(p‖|q‖) = I(±α1(q‖)|p‖ − q‖)

×
⎛
⎝ ± c

ω

p‖q‖−(ω/c)2 p̂‖·q̂‖
α1(q‖)

[p̂‖ × q̂‖]3

±ω
c

[p̂‖×q̂‖]3
α1(q‖)

p̂‖ · q̂‖

⎞
⎠ ,

(3.25)

and

I
(
γ|Q‖

)
=

∫
d2x‖ exp

(−iQ‖ · x‖
)
exp

[−iγζ
(
x‖
)]

. (3.26)

3.5.3. Reduced Rayleigh equation for reflection from a
rough film on a flat substrate

The reduced Rayleigh equation for reflection from a film of finite thickness
on top of an infinitely thick substrate, where only one interface is rough,
has been derived by Soubret et al. [23, 24] and Leskova [2, 26]. The
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3.5. The reduced Rayleigh equations

scattering amplitudes, Rαβ(q‖|k‖), for reflection from a rough film on a
flat substrate satisfy the matrix integral equation

∫
d2q‖
(2π)2

M+(p‖|q‖)R(q‖|k‖) = −M−(p‖|k‖), (3.27)

where as before, we use the convention

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
, (3.28)

as well as

M±(q‖|k‖) =
(

M±
11(q‖|k‖) M±

12(q‖|k‖)
M±

21(q‖|k‖) M±
22(q‖|k‖)

)
, (3.29)

and the matrix elements of M± are given by:

M±
11(q‖|k‖) = ± [

p‖q‖ ± α2(p‖)(p̂‖ · q̂‖)α1(q‖)
]

× Γp(p‖) exp
(−i

[
α2(p‖)∓ α1(q‖)

]
d
) I (α2(p‖)∓ α1(q‖)|q‖ − k‖

)
α2(p‖)∓ α1(q‖)

± [
p‖q‖ ∓ α2(p‖)(p̂‖ · q̂‖)α1(q‖)

]
×Δp(p‖) exp

(
i
[
α2(p‖)± α1(q‖)

]
d
) I (− [

α2(p‖)± α1(q‖)
] |q‖ − k‖

)
α2(p‖)± α1(q‖)

(3.30a)

M±
12(q‖|k‖) = −ω

c
α2(p‖)

(
p̂‖ × q̂‖

)
3(

Γp(p‖) exp
(−i

[
α2(p‖)∓ α1(q‖)

]
d
) I (α2(p‖)∓ α1(q‖)|q‖ − k‖

)
α2(p‖)∓ α1(q‖)

− Δp(p‖) exp
(
i
[
α2(p‖)± α1(q‖)

]
d
) I (− [

α2(p‖)± α1(q‖)
] |q‖ − k‖

)
α2(p‖)± α1(q‖)

)

(3.30b)
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3. The reduced Rayleigh equation

M21(q‖|k‖) =
ω

c

(
p̂‖ × q̂‖

)
3
α1(q‖)(

Γs(p‖) exp
(−i

[
α2(p‖)∓ α1(q‖)

]
d
) I (α2(p‖)∓ α1(q‖)|q‖ − k‖

)
α2(p‖)∓ α1(q‖)

+ Δs(p‖) exp
(
i
[
α2(p‖)± α1(q‖)

]
d
) I (− [

α2(p‖)± α1(q‖)
] |q‖ − k‖

)
α2(p‖)± α1(q‖)

)

(3.30c)

M22(q‖|k‖) =
ω2

c2
(
p̂‖ · q̂‖

)
(
Γs(p‖) exp

(−i
[
α2(p‖)∓ α1(q‖)

]
d
) I (α2(p‖)∓ α1(q‖)|q‖ − k‖

)
α2(p‖)∓ α1(q‖)

+ Δs(p‖) exp
(
i
[
α2(p‖)± α1(q‖)

]
d
) I (− [

α2(p‖)± α1(q‖)
] |q‖ − k‖

)
α2(p‖)± α1(q‖)

)
.

(3.30d)

In writing Eq. (3.30), we have introduced the functions

Γp(p‖) = ε2α3(p‖) + ε3α2(p‖) (3.31a)

Δp(p‖) = ε2α3(p‖)− ε3α2(p‖) (3.31b)

and

Γs(p‖) = α3(p‖) + α2(p‖) (3.32a)

Δs(p‖) = α3(p‖)− α2(p‖). (3.32b)

Just as was the case previously, the integral I(γ|Q‖) is given by

I
(
γ|Q‖

)
=

∫
d2x‖ exp

(−iQ‖ · x‖
)
exp

[−iγζ
(
x‖
)]

. (3.33)

All these variations of the reduced Rayleigh equations for reflection
have a similar structure, and once a framework for numerically solving
Eq. (3.14) has been implemented, it is mostly straightforward to extend
this to other geometries. For a detailed description of how we solve the
reduced Rayleigh equations, the reader is referred to Ref. [4] (included in
this thesis).
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3.6. Mean differential reflection coefficient

The solution of the reduced Rayleigh equation determines the scattering
amplitudes Rαβ(q‖|k‖) for a given surface profile, ζ(x‖). When the inci-
dent field is known, the scattering amplitude completely specifies the total
field in the region above the surface. However, it is not directly measurable
in experiments. A more useful quantity for comparison with experimental
data is the mean differential reflection coefficient (DRC), which is defined
as the time-averaged fraction of the incident power scattered into the solid
angle dΩs about the scattering direction q. The mean DRC is given by [14]

〈
∂Rαβ

∂Ωs

〉
=

1

L2

ω2

4π2c2
cos2 θs
cos θ0

〈∣∣Rαβ(q‖|k‖)
∣∣2〉 , (3.34)

where L2 is the area of the x1x2 plane covered by the rough surface.

The reduced Rayleigh equation, due to the limitations introduced when
assuming the Rayleigh hypothesis, can only be used to calculate the scat-
tering from weakly rough surfaces. For this reason, specular (coherent)
scattering will dominate the results. When plotting the mean DRC, and
derived quantities like the Mueller matrix, it will be convenient to separate
the mean DRC into its coherent and incoherent parts. By coherent scat-
tering, we mean the part of the scattered light which does not cancel when
the ensemble average of Rαβ is taken, i.e., the part where the scattered
field is in phase between surface realisations. Conversely, the incoherent
part is the part which cancels in the ensemble average. The component of
the mean DRC from incoherent scattering is [14]

〈
∂Rαβ

∂Ωs

〉
incoh

=
1

L2

ω2

4π2c2
cos2 θs
cos θ0

×
[〈∣∣Rαβ(q‖|k‖)

∣∣2〉− ∣∣〈Rαβ(q‖|k‖)
〉∣∣2] . (3.35)

The contribution to the mean DRC from the coherently scattered light
is given by the difference between Eqs. (3.34) and (3.35). An example plot
of the incoherent part of the mean DRC for reflection from a silver surface
is presented in Fig. 3.2.
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Figure 3.2.: Incoherent part of the mean differential reflection coefficient
[Eq. (3.35)], as a function of outgoing lateral wave vector,
averaged over 14,200 randomly rough surface realisations on
a silver substrate. The wavelength (in vacuum) of the incident
light was λ = 457.9 nm, and the surface power spectrum was
Gaussian [Eq. (3.3)], with correlation lengths a1 = a2 = 0.25λ
and RMS height δ = 0.025λ. The angle of incidence was
θ0 = 18.24◦, and the specular direction is indicated by the
white dots.38



3.7. Conservation of energy

3.7. Conservation of energy

Energy conservation can be a useful guide to the accuracy of our results.
When considering reflection from a metallic substrate, we know that the
fraction of reflected power over incident power should be less than one, and
in the special case of a non-absorbing metallic sustrate, it should be equal
to one. The fraction of incident power, in the form of light of polarisation
β, which is scattered into light of polarisation α, is given by the integral
of the corresponding mean DRC over the upper hemisphere:

Uαβ =

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
. (3.36)

Thus, for a non-absorbing metal, if we send in light of polarisation β, we
should have ∑

α

Uαβ = 1, (3.37)

if energy is conserved in our simulations. While the conservation of energy
is useful as a relatively simple test, it is important to note that it is a
necessary, but not sufficient, condition for correct results. The use of
conservation of energy as a test is discussed in more detail in Ref. [5]
(included in this thesis).
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ABSTRACT

We present results, obtained by rigorous computational approaches, for light of p- and s-polarization scattered
from two-dimensional, randomly rough, perfectly conducting, lossy metallic, and dielectric surfaces. The perfectly
conducting surfaces we study are characterized by an isotropic power spectrum of the surface roughness and by
an anisotropic power spectrum. The mean differential reflection coefficient and the full angular distribution of
the intensity of the scattered light are calculated for the perfectly conducting and metal surfaces. From the
latter calculations it is found that the computational approach used in these calculations conserves energy in the
scattering from a perfectly conducting and from a lossless metal surface with an error that is smaller than 0.5%.
Finally, we presents results obtained by a numerical, nonperturbative, solution of the reduced Rayleigh equation
for the scattering of p- and s-polarized light from two-dimensional randomly rough, metallic and dielectric
surfaces. We show that the results for the metallic surface are in good agreement with results for the same
metallic surface obtained by the rigorous computational approach.

Keywords: randomly rough surfaces; mean differential reflection coefficient; impedance boundary condition;
reduced Rayleigh equation; Müller integral equations; Franz formulas; Stratton–Chu equation; scattering

1. INTRODUCTION

Despite the significant advances that have been made in the last 15 years or so in approaches to the calculation
of the scattering of light from two-dimensional randomly rough perfectly conducting1–8 and penetrable6,9–14

surfaces, such calculations remain computationally intensive, and need further improvements in the methods
used in carrying them out. In this paper we review some of our recent work devoted to this problem, and present
some new results. The emphasis will be on the results obtained and their significance, but the methods by which
the results were obtained will be sketched out.

The physical system we consider in this paper consists of vacuum in the region x3 > ζ(x‖), where x‖ =
(x1, x2, 0), and the scattering medium in the region x3 < ζ(x‖) (Fig. 1). The latter will be a perfect conductor,
a metal, or a dielectric. The surface profile function ζ(x‖) is assumed to be a single-valued function of x‖ that is
at least twice differentiable with respect to x1 and x2, and constitutes a stationary, zero-mean, Gaussian random

process defined by
〈
ζ(x‖)ζ(x′

‖)
〉
= δ2W (x‖ −x′

‖). The angle brackets here denote an average over the ensemble

of realizations of the surface profile function, and δ =
〈
ζ2(x‖)

〉 1
2 is the rms height of the surface. The power

spectrum of the surface roughness is defined by

g(k‖) =

∫
d2x‖ W (x‖) exp

(−ik‖ · x‖
)
, (1)

where k‖ = (k1, k2, 0). Each realization of the surface profile function is generated numerically by a two-
dimensional version of the filtering method used in [15], which is based on the power spectrum (1).

This paper is organized as follows. Scattering from two-dimensional randomly rough perfectly conducting
surfaces will be discussed in Section 2, both when the surface roughness is characterized by an an isotropic
power spectrum and when it is characterized by an anisotropic power spectrum. In Section 3 scattering from a
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Figure 1. A sketch of the studied scattering geometry. The figure also shows the coordinate system used, angles of
incidence (θ0, φ0) and scattering (θs, φs), and the corresponding transverse wavevectors k‖ and q‖, respectively.

two-dimensional randomly rough penetrable surface is considered, specifically scattering from a metallic surface
and from a dielectric surface. Section 4 is devoted to a presentation of results obtained from a purely numerical,
nonperturbative, solution of the reduced Rayleigh equation for the scattering of polarized light from a two-
dimensional, randomly rough, penetrable surface. A discussion of the results obtained, and conclusions drawn
from them, in Section 5, concludes this paper.

2. A PERFECTLY CONDUCTING SURFACE

2.1 Mathematical Formulation

The starting point for the calculation of the electromagnetic field scattered from a two-dimensional rough perfectly
conducting surface is the Stratton–Chu formula16 for the magnetic field in the vacuum

θ(x3 − ζ(x‖))H>(x|ω) = H(x|ω)inc + 1

4π

∫
d2x′

‖ [∇g0(x|x′)]|x′
3=ζ(x′

‖)
× JH(x′

‖|ω), (2)

where θ(z) is the Heaviside unit step function, and H(x|ω)inc is the magnetic component of the incident field.
In writing Eq. (2) we have assumed the time dependence exp(−iωt) for the field, but have not indicated this
explicitly.

The function g0(x|x′) is the scalar free-space Green’s function,

g0(x|x′) =
exp

[
iωc |x− x′|]
|x− x′| (3a)

=

∫
d2q‖
(2π)2

2πi

α0(q‖)
exp

[
iq‖ · (x‖ − x′

‖)
]
exp

[
iα0(q‖)|x3 − x′

3|
]
, (3b)

where ω and c are the angular frequency and speed of light in vacuum, respectively, while α0(q‖) = [(ω/c)2−q2‖]
1
2 ,

with Reα0(q‖) > 0, Imα0(q‖) > 0. The electric surface current JH(x‖|ω) is defined by JH(x‖|ω) = [n ×
H>(x|ω)]x3=ζ(x‖), where n = (−ζ1(x‖),−ζ2(x‖), 1) and ζj(x‖) ≡ ∂ζ(x‖)/∂xj (j = 1, 2). On evaluating Eq. (2)
at x3 = ζ(x‖) + η and at x3 = ζ(x‖)− η, where η is a positive infinitesimal, adding the resulting two equations,
and taking the vector cross product of the sum with n, we obtain the integral equation satisfied by JH(x‖|ω),

JH(x‖|ω) = 2J
(i)
H (x‖|ω) + 1

2π
P

∫
d2x′

‖ n×
{�∇g0(x|x′)

� × JH(x′
‖|ω)

}
, (4)
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where J
(i)
H (x‖|ω)inc = n×H(x|ω)inc|x3=ζ(x‖), P denotes the Cauchy principal value, and we have introduced the

definition

�
f(x|x′)

�
= f(x|x′)

∣∣∣∣x3=ζ(x‖)
x′
3=ζ(x′

‖)

. (5)

Because n ·JH(x‖|ω) = 0, only two components of JH(x‖|ω) are independent. We choose them to be JH(x‖|ω)1
and JH(x‖|ω)2, and obtain JH(x‖|ω)3 from

JH(x‖|ω)3 = ζ1(x‖)JH(x‖|ω)1 + ζ2(x‖)JH(x‖|ω)2. (6)

The two coupled, inhomogeneous, two-dimensional integral equations satisfied by JH(x‖|ω)1,2 are solved by
converting them into matrix equations. This is done by generating a realization of the surface profile function
on a grid of N2 points within a square region of the x1x2 plane of edge L, where the discretization intervals for
both directions are Δx = L/N . The integrals over this region are carried out by means of a two-dimensional
version of the extended midpoint method,17 and the values of JH(x‖|ω)1 and JH(x‖|ω)2 are calculated at the
points of this grid. The resulting matrix equations are solved by means of the biconjugate gradient stabilized
method.18 The values of JH(x‖|ω)3 are then obtained by the use of Eq. (6).

In these calculations the incident electric field has the form of a p- or s-polarized Gaussian beam, propagating
in the direction of k = (ω/c)(sin θ0 cosφ0, sin θ0 sinφ0,− cos θ0). In the case that k‖ = k‖x̂1, it is given by

Eν(x|ω)inc =

∫
q‖<ω

c

d2q‖ Ê(i)

ν (q−|ω) exp [iq− · x] W (q‖|k‖), (7)

where ν = p or s, q±(q‖, ω) = q‖ ± α0(q‖)x̂3, and W (q‖|k‖) is

W (q‖|k‖) =
w2

2π
exp

[
−w2

2
(q‖ − k‖)2

]
. (8)

For an incident field that is p polarized

Ê(i)

p (q−|ω) =
α0(q‖)x̂1 + q1x̂3

[q21 + α2
0(q‖)]

1
2

, (9a)

while for an incident field that is s polarized

Ê(i)

s (q−|ω) =
q1q2x̂1 − [q21 + α2

0(q‖)]x̂2 − q2α0(q‖)x̂3

ω
c [q

2
1 + α2

0(q‖)]
1
2

. (9b)

The scattered electric field, written in terms of JH(x‖|ω), is

E(x|ω)sc =

∫
d2q‖
(2π)2

[Ep(q+|ω)γ̂p(q+|ω) + Es(q+|ω)γ̂s(q+|ω)
]
exp [iq+ · x] , (10)

where

γ̂p(q+|ω) =
−α0(q‖)q̂‖ + q‖x̂3

ω/c
(11a)

γ̂s(q+|ω) = q̂‖ × x̂3, (11b)

and (ν = p, s)

Eν(q+|ω) = − (ω/c)

2α0(q‖)

∫
d2x‖ γ̂ν(q+|ω) · JH(x‖|ω) exp

[−iq‖ · x‖ − iα0(q‖)ζ(x‖)
]
. (12)
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The differential reflection coefficient (∂R/∂Ωs) is defined such that (∂R/∂Ωs)dΩs is the fraction of the total
time-averaged flux incident on the surface that is scattered into the element of solid angle dΩs about the scattering
direction (θs, φs). Since we are studying the scattering of light from a randomly rough surface, it is the average
of this quantity over the ensemble of realizations of the surface profile function that we need to calculate. The
mean differential reflection coefficient for the scattering of light of polarization β, the projection of whose wave
vector on the mean scattering surface is k‖, into light of polarization α, the projection of whose wave vector on
the mean scattering surface is q‖, is given by

〈
∂Rαβ

∂Ωs

〉
=

1

4π2

(ω
c

)3

cos2 θs

〈|Eα(q+|ω)|2
〉

pinc
, (13)

where for both polarizations of the incident light,

pinc = w4

∫
q‖<ω

c

d2q‖ α0(q‖) exp
[−w2(q‖ − k‖)2

]
. (14)

The dependence of the right-hand side of this equation on the polarization index β is through the dependence
of the amplitude Eα(q+|ω) on the surface current JH(x‖|ω) in Eq. (12). The surface current satisfies Eq. (4) in
which the inhomogeneous term depends on the incident field and hence on its polarization β = p, s. Therefore
Eα(q+|ω) depends implicitly on the polarization β of the incident field and consequently so does the mean
differential reflection coefficient.

If one is interested in nonspecular effects, it is the contribution to the mean differential reflection coefficient
from the light that has been scattered incoherently (diffusely) that is of interest. It is given by

〈
∂Rαβ

∂Ωs

〉
incoh

=
1

4π2

(ω
c

)3

cos2 θs

〈
|Eα(q+|ω)|2

〉
−
∣∣∣〈Eα(q+|ω)

〉∣∣∣2
pinc

. (15)

We now turn to some results obtained on the basis of this method.

2.2 Results for a Perfectly Conducting Surface

2.2.1 An Isotropic Roughness Power Spectrum

The first set of calculations were carried out for a two-dimensional randomly rough perfectly conducting surface
defined by an isotropic surface height autocorrelation function, i.e. one that depends on the vector x‖ only
through its magnitude. We have chosen for it the Gaussian form W (x‖) = exp(−x2

‖/a
2). The characteristic

length a is called the transverse correlation length of the surface roughness. The power spectrum of the surface,
given by Eq. (1), in this case has the form

g(k‖) = πa2 exp

(
−
k2‖a

2

4

)
. (16)

We have carried out calculations of the scattering of p-polarized light from such a surface with an rms height
δ = λ and a transverse correlation length a = 2λ, where λ is the wavelength of the incident field in vacuum.
The incident field had the form of a Gaussian beam, Eq. (7), with w = 4λ. The surface, covering an area
L2 = 16λ×16λ in the mean surface plane, was generated at the points of a 112×112 grid of mesh size Δx = λ/7
for both directions.

In Fig. 2 we plot the mean differential reflection coefficients as functions of the polar scattering angle θs for
the in-plane (φs = 0◦, 180◦) and out-of-plane (φs = ±90◦) co-(p → p) and cross-(p → s) polarized scattering
when a p-polarized Gaussian beam is incident on the surface at angles of incidence (θ0, φ0) given by (0◦, 0◦)
and (20◦, 0◦). Results obtained for 12 000 realizations of the surface profile function were averaged to obtain
these figures. The calculations for each realization of the surface profile function required 76 CPU seconds on an
Intel Core 2 CPU (Q9550) operating at 2.83 GHz and running the Linux operating system. For the roughness
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Figure 2. The mean differential reflection coefficients, 〈∂Rαβ/∂Ωs〉 (β → α), as functions of the polar scattering angle θs
for the in-plane (φs = φ0 or φs = φ0 + 180◦) (a) co-polarized (p → p) and (b) cross-polarized scattering (p → s), and
the out-of-plane (φs = φ0 ± 90◦) (c) co-polarized (p → p) and (d) cross-polarized scattering (p → s) of a p-polarized
incident beam (β = p) of width w = 4λ (θ0 = 0◦ and θ0 = 20◦; φ0 = 0◦) scattered from a Gaussian randomly rough
perfectly conducting surface. The Gaussian correlated surface had a correlation length a = 2λ and an rms height δ = λ. To
facilitate comparison between the various configurations presented in this figure, notice that we have used similar scales for
all ordinate axes. Moreover, to simplify the presentation of the figures, a convention was adopted where negative (positive)
values of θs correspond to φs = φ0 + 180◦ (φs = φ0). (After Ref. 7).

parameters assumed in these calculations the contribution to the mean differential reflection coefficient from the
light scattered coherently is smaller than the contribution from the light scattered incoherently by a factor of
approximately 10−4.

There is no single scattering contribution to the mean differential reflection coefficient in the cases of in-plane
cross-polarized [Fig. 2(b)] and out-of-plane co-polarized [Fig. 2(c)] scattering.1 What is plotted in these figures
therefore is due to multiple scattering only. The results plotted in Figs. 2(a) and 2(d) contain a contribution
from single-scattering processes.

The peaks in the retroreflection directions in the results for in-plane co-polarized scattering [Fig. 2(a)] are
enhanced backscattering peaks.19–22 However, as we will see from the full angular distribution of the intensity of
the scattered light, the structures seen as peaks in the results for in-plane cross-polarized scattering [Fig. 2(b)]
are not real peaks. The results that the out-of-plane co- and cross-polarized scattering [Figs. 2(c) and 2(d)] are
even functions of θs are consequences of the scattering geometry, namely that φ0 = 0◦, φs = ±90◦, and the
isotropy of the power spectrum of the surface roughness.

The full angular distribution of the intensity of the scattered light is presented as contour plots in Fig. 3,
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Figure 3. The complete angular distributions of the mean differential reflection coefficient, 〈∂Rαβ/∂Ωs〉, for the scattering
of an β-polarized Gaussian beam incident on the surface at polar angle θ0 = 20◦ and azimuthal angle φ0 = 0◦. The
perfectly conducting rough surface was characterized by a Gaussian height distribution of rms-value δ = λ and a Gaussian
correlation function of transverse correlation length a = 2λ. The incident beam was p polarized in Figs. 3(a)–(c) [left
column], and s polarized in Figs. 3(d)–(f) [right column]. Moreover, in the top two figures [Figs. 3(a) and (d)] the
polarization of the scattered light was not recorded; in Figs. 3(b) and (e) [central row] only p-polarized scattered light was
recorded; while the bottom two figures correspond to recording only s-polarized scattered light [Figs. 3(c) and (f)]. The
rough surface, covering an area 16λ× 16λ, was discretized at a grid of 112× 112 points corresponding to a discretization
interval λ/7 for both directions. The presented figures were obtained by averaging results for the differential reflection
coefficient obtained for 12 000 surface realizations. (After Ref. 7).

which correspond to polar and azimuthal angles of incidence (θ0, φs) = (20◦, 0◦), when the incident beam is
p polarized and the scattered light is p and s polarized. In Fig. 3(a) we present a contour plot of the mean
differential reflection coefficient for the scattering of p-polarized light into both p- and s-polarized scattered light,
i.e. the polarization state of the scattered light was not recorded. It is seen that there is a pronounced enhanced
backscattering peak in the retroreflection direction at θs = 20◦ and φs = 180◦. From Figs. 3(b) and 3(c),
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where only p-polarized light or s-polarized scattered light is recorded, respectively, we see that the co-polarized
scattering displays a structure that is elongated along the plane of incidence, while the cross-polarized scattering
has a scattering pattern that is elongated perpendicular to this plane. In principle an enhanced backscattering
peak should be present in the retroreflection direction in both co- and cross-polarized scattering.20–22 However,
for the roughness parameters assumed in this work, instead of a well-defined peak in the retroreflection direction
we see a ridge of constant enhanced intensity in parts of the region q1 < 0, forming a semicircle of constant
polar scattering angle θs ≈ θ0 = 20◦, with 90◦ < φs < 270◦ [Fig. 3(c)]. In precisely the retroreflection direction,
θs = 20◦ and φs = 180◦, there is little, if any, additional enhancement in the cross-polarized scattering compared
to the intensities at other values of φs in the interval [90◦, 270◦]. We speculate that the enhancement ridge seen
in Fig. 3(c) is a constructive interference effect similar to the effect underlying enhanced backscattering.

We note that if we had examined only the in-plane and out-of-plane results for the same angle of incidence,
the peak observed in Fig. 2(b) for θ0 = 20◦ could easily have been interpreted as the well-localized feature in
the retroreflection direction similar to the one present for co-polarized scattering in Fig. 3(b). Thus the angular
distributions of the intensities of the scattered light, such as those presented in Fig. 3, can provide information
that helps in better understanding multiple scattering phenomena.

When the incident beam was s polarized, we obtain the results presented in Figs. 3(d)–(f). Also here an
enhanced backscattering peak is observed, and the intensity distributions of the co- and cross-polarized scattered
light are oriented along and perpendicular to the plane of incidence, respectively.

A necessary, but not sufficient, criterion for the accuracy of a scattering calculation is that energy be conserved
in the scattering process. In scattering from a perfectly conducting surface this requires that the total time-
averaged scattered flux must equal the total time-averaged incident flux. This requirement can be stated as

Uβ(θ0, φ0) =
∑

α=p,s

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
= 1 β = p, s. (17)

Under the conditions assumed in obtaining the results presented in Figs. 2 and 3, the value of Up(θ0, φ0) and
Us(θ0, φ0) were calculated to be 0.9962 and 0.9966, respectively. Consequently, the computational approach
outlined in Section 2 conserves energy in the scattering process with an error that is smaller than 0.5%. This
error is expected to be reduced further by decreasing the sampling interval Δx and/or by increasing the area
(L2) of the the mean surface.

2.2.2 An Anisotropic Roughness Power Spectrum

The existing computational studies of the scattering of light from two-dimension randomly rough perfectly
conducting surfaces1–7 have been based on the assumption that the surface profile function ζ(x‖) is a stationary,
zero-mean, isotropic, Gaussian random process. Very little work has been devoted to the case where ζ(x‖)
is an anisotropic random process. In this section we present results obtained by the rigorous computational
approach described in Section 2.1 for the light scattered from a two-dimensional, randomly rough, perfectly
conducting surface defined by a surface profile function that is a stationary, zero-mean, anisotropic, Gaussian
random process.

The surface we assume in these calculations is defined by a surface height autocorrelation function that has
an anisotropic Gaussian form, W (x‖) = exp[−(x1/a1)

2−(x2/a2)
2] where, for specificity, we assume that a1 < a2.

Thus, we will refer to the x1 and x2 axes as the minor and major axes of the anisotropy, respectively. The power
spectrum of the surface roughness, defined by Eq. (1), in the present case has the form

g(k‖) = πa1a2 exp

[
−k21a

2
1

4
− k22a

2
2

4

]
, (18)

and is elongated along the minor anisotropy axis.

To provide a reference against which results for the angular distribution of the fields scattered from an
anisotropic random surface can be compared, we first present, in Fig. 4, contour plots of the angular distributions
of the fields scattered from an isotropic random surface. The incident field is a p-polarized beam with the width
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Figure 4. A p-polarized beam of wavelength λ and width w = 4λ is scattered from an isotropic perfectly conducing rough
surface characterized by a Gaussian height distribution of rms-value δ = λ/2 and a Gaussian correlation function of
correlation lengths a1 = a2 = λ. The panels show contour plots of the full angular distributions of the mean differential
reflection coefficient, 〈∂Rαp/∂Ωs〉, obtained by a rigorous computer simulation approach for the scattering of the beam
incident on the rough surface at a polar angle θ0 = 20◦ and an azimuthal angle φ0 = 45◦. The three panels correspond
to various configurations for the polarization of the scattered light. They are: (a) the polarization of the scattered light
is not recorded [α = p, s]; (b) only p-polarized scattered light is measured [α = p]; and (c) only s-polarized scattered
light is recorded [α = s]. The rough surface, covering an area 16λ × 16λ, was discretized on a grid of 112 × 112 points
corresponding to a discretization interval λ/7 for both directions. The presented figures were obtained by averaging results
for the differential reflection coefficient obtained for 6 000 surface realizations. (After Ref. 8).

parameter w = 4λ, where λ is the wavelength of the field. The polar and azimuthal angles of incidence are
(θ0, φ0) = (20◦, 45◦). The surface is characterized by the Gaussian power spectrum (16), with a correlation
length a = λ. The rms height of the surface is δ = λ/2. The surface was generated on the same grid as the
surface studied in Section 2.2.1. The mean differential reflection coefficient was obtained as the arithmetic average
of results obtained for 6000 realizations of the surface profile function. The three panels in this figure correspond
to different choices for the polarization of the scattered light. Thus, in obtaining Fig. 4(a) the polarization of
the scattered light was not recorded; in obtaining Fig. 4(b) only the p-polarized component of the scattered light
was recorded; while in obtaining Fig. 4(c) only the s-polarized component of the scattered light was recorded.

We see from these results that the co-polarized (p → p) scattering has a dipole-like angular distribution with
the main intensity oriented parallel to the plane of incidence [Fig. 4(b)]. In contrast the cross-polarized (p → s)
scattering has its main intensity distribution oriented perpendicular to the plane of incidence [Fig. 4(c)]. In both
cases the intensity distributions are symmetric with respect to the plane of incidence, and the scattered intensity
patterns simply rotate as the azimuthal angle of incidence φ0 is changed. When the polarization of the scattered
light is not recorded [Fig. 4(a)], the pronounced peak in the retroreflection direction (θs = θ0, φs = φ0 +180◦) is
the enhanced backscattering peak.
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Figure 5. Same as Fig. 4 with the only difference that now the rough surface is weakly anisotropic and characterized by
the correlation lengths a1 = λ and a2 = 1.5λ. (After Ref. 8).

Turning now to the scattering from an anisotropic surface, in Fig. 5 we present contour plots of the full angular
distributions of the mean differential reflection coefficients when the randomly rough surface is defined by the
power spectrum (18) with a1 = λ and a2 = 1.5λ. The remaining experimental and computational parameters
have the values used in obtaining the results presented in Fig. 4. The three panels correspond to different choices
for the polarization of the scattered light. In obtaining Fig. 5(a) the polarization of the scattered light was not
recorded; in obtaining Fig. 5(b) only the p-polarized component of the scattered light was recorded; while in
obtaining Fig. 5(c) only the s-polarized component of the scattered light was recorded. Unlike in the scattering
of light from an isotropic surface, the intensity distribution of light scattered from an anisotropic surface in
general is not symmetric with respect to the plane of incidence. It is only when the plane of incidence is parallel
to either the minor or the major axis of the anisotropy that this type of symmetry obtains.

The dipole-like angular intensity patterns in Figs. 5(b) and 5(c) are no longer symmetric with respect to
the plane of incidence, as their isotropic equivalents are. This asymmetry is particularly pronounced in the
cross-polarized scattering [Fig. 5(c)]. It is explained by the fact that the cross-polarized component of the mean
differential reflection coefficient to the lowest (second) order in the surface profile function is proportional to

g(q‖ − k‖) [(q̂‖ × k̂‖)3]2, where q‖ = (ω/c) sin θs(cosφs sinφs, 0).
23 When the power spectrum g(k‖) is given by

Eq. (18), this function is not symmetric with respect to the plane of incidence.

The co-polarized scattering pattern [Fig. 5(b)] is explained in a similar fashion. In this case the contribution
to the mean differential reflection coefficient of the lowest order in the surface profile function contains terms
proportional to g(q‖ − k‖)(q̂‖ − k̂‖)m with m = 1, 2.23 The maxima of these functions are in the forward
scattering direction and, for an anisotropic surface, move away from the plane of incidence toward the minor
axis of the anisotropy.
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3. A PENETRABLE SURFACE

3.1 Mathematical Formulation

In calculating the electromagnetic field scattered from a two-dimensional randomly rough surface a convenient
starting point are the Franz formulas of electromagnetic scattering theory.24,25 These formulas for the magnetic
and electric fields in the vacuum region x3 > ζ(x‖) can be written as

H>(x|ω) = H(x|ω)inc + 1

4π
∇×

∫
d2x′

‖ g0(x|x′)|x′
3=ζ(x′

‖)
JH(x′

‖|ω)

− ic

4πω
∇×∇×

∫
d2x′

‖ g0(x|x′)|x′
3=ζ(x′

‖)
JE(x

′
‖|ω) (19a)

E>(x|ω) = E(x|ω)inc + 1

4π
∇×

∫
d2x′

‖ g0(x|x′)|x′
3=ζ(x′

‖)
JE(x

′
‖|ω)

+
ic

4πω
∇×∇×

∫
d2x′

‖ g0(x|x′)|x′
3=ζ(x′

‖)
JH(x′

‖|ω). (19b)

The Franz formulas for the magnetic and electric fields in the scattering medium x3 < ζ(x‖) can be written as

H<(x|ω) = − 1

4π
∇×

∫
d2x′

‖ gε(x|x′)|x′
3=ζ(x′

‖)
JH(x′

‖|ω)

+
ic

4πω
∇×∇×

∫
d2x′

‖ gε(x|x′)|x′
3=ζ(x′

‖)
JE(x

′
‖|ω) (20a)

E<(x|ω) = − 1

4π
∇×

∫
d2x′

‖ gε(x|x′)|x′
3=ζ(x′

‖)
JE(x

′
‖|ω)

− ic

4πωε(ω)
∇×∇×

∫
d2x‖ gε(x|x′)|x′

3=ζ(x′
‖)
JH(x′

‖|ω). (20b)

In writing these equations we have introduced the vectors

JH(x‖|ω) =
[
n×H>(x|ω)]∣∣

x3=ζ(x‖)
, (21a)

=
[
n×H<(x|ω)]∣∣

x3=ζ(x‖)
, (21b)

and

JE(x‖|ω) =
[
n×E>(x|ω)]∣∣

x3=ζ(x‖)
, (22a)

=
[
n×E<(x|ω)]∣∣

x3=ζ(x‖)
. (22b)

The vector n has been defined in Section 2.1. The scalar free-space Green’s function for an infinite scattering
medium is defined by

gε(x|x′) =
exp [− |x− x′| /d(ω)]

|x− x′| (23a)

=

∫
d2k‖
(2π)2

2π

β(k‖)
exp

[
ik‖ · (x‖ − x′

‖)
]
exp

[−β(k‖)|x3 − x′
3|
]
, (23b)

where

β(k‖) =

[
k2‖ +

1

d2(ω)

] 1
2

, Reβ(k‖) > 0, Imβ(k‖) < 0, (24)
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and d(ω) = (c/ω)[−ε(ω)]−
1
2 , Re d(ω) > 0, Im d(ω) > 0, while ε(ω) is the dielectric function of the scattering

medium.

To obtain the equations satisfied by JH(x‖|ω) and JE(x‖|ω) we proceed as follows. We take the vector cross
product of Eqs. (19a) and (20a) with the vector n, evaluate each product at x3 = ζ(x‖)+ η, and x3 = ζ(x‖)− η,
respectively, where η is a positive infinitesimal, and add the resulting equations. In this way we obtain the
equation

JH(x‖|ω) = JH(x‖|ω)inc + 1

4π
P

∫
d2x′

‖
�
n× {∇× [g0(x|x′)− gε(x|x′)]JH(x′

‖|ω)}
�

− ic

4πω

∫
d2x′

‖
�
n× {∇×∇× [g0(x|x′)− gε(x|x′)]JE(x

′
‖|ω)}

�
, (25a)

where JH(x‖|ω)inc = n×H(x|ω)inc|x3=ζ(x‖), and P denotes the Cauchy principal value.

If we next take the vector cross product of Eq. (19b) and of ε(ω) times Eq. (20b) with the vector n, evaluate
each product at x3 = ζ(x‖) + η, and at x3 = ζ(x‖)− η, respectively, and add the resulting equations, we obtain

JE(x‖|ω) = 2
JE(x‖|ω)inc
1 + ε(ω)

+
2

4π[1 + ε(ω)]
P

∫
d2x′

‖
�
n× {∇× [g0(x|x′)− ε(ω)gε(x|x′)]JE(x

′
‖|ω)}

�

+
2ic

4πω[1 + ε(ω)]

∫
d2x′

‖
�
n× {∇×∇× [g0(x|x′)− gε(x|x′)]JH(x′

‖|ω)}
�
, (25b)

where JE(x‖|ω)inc = n×E(x|ω)inc|x3=ζ(x‖).

In obtaining Eq. (25) we have used the results

lim
η→0+

∫
d2x′

‖ n(x‖)×
⎧⎨
⎩∇×

⎡
⎣g(x|x′)

∣∣∣∣x3=ζ(x‖)
x′
3=ζ(x′

‖)±η

J(x′
‖|ω)

⎤
⎦
⎫⎬
⎭

= ±2π J(x‖|ω) + P

∫
d2x′

‖ n(x‖)×
{�∇× [g(x|x′)

�
J(x′

‖|ω)]
}
, (26)

where g(x|x′) is either g0(x|x′) or gε(x|x′), J(x‖|ω) is either JH(x‖|ω) or JE(x‖|ω), and P denotes the Cauchy
principal value. Equations of the type of Eq. (25) are called Müller integral equations.26,27 These equations are
convenient for numerical calculations. Because g0(x|x′) and gε(x|x′) have the same limiting behavior as x′ → x,
the most divergent terms in the integrands, associated with the second derivatives of these Green’s functions,
cancel, rendering the resulting integrals integrable. The terms containing the first derivatives of the Green’s
functions possess integrable singularities.

From the definitions of JH,E(x‖|ω) it follows that n · JH,E(x‖|ω) = 0. Therefore JH,E(x‖|ω) have only two
independent elements, which we choose to be JH,E(x‖|ω)1 and JH,E(x‖|ω)2. The elements JH,E(x‖|ω)3 are then
obtained from the analogues of Eq. (6). Equations (25) thus provide a system of four coupled, inhomogeneous
two-dimensional integral equations for JH,E(x‖|ω)1,2.

By the use of a local impedance boundary condition,28

JE(x‖|ω)i = Kij(x‖|ω)JH(x‖|ω)j (i = 1, 2), (27)

the dependence on JE(x‖|ω)1,2 can be removed from Eq. (25a), yielding a pair of coupled, inhomogeneous,
two-dimensional, integral equations for JH(x‖|ω)1,2. These equations are converted into matrix equations in
the manner described in Section 2, which are then solved by the biconjugate gradient stabilized method. The
solutions are used to calculate the contribution to the mean differential reflection coefficient from the light
scattered incoherently, by the use of the expressions obtained in Section 2.
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Figure 6. The mean differential reflection coefficients, 〈∂Rαp/∂Ωs〉 (p→ α) for a p-polarized incident beam of wavelength
λ = 632.8nm and width w = 4λ, whose polar angle of incidence is θ0 = 20◦, as functions of the polar scattering angle
θs for the (a) in-plane and (b) out-of-plane scattering. Negative values for θs are interpreted as in the caption to Fig. 2.
The scattering system assumed in obtaining these results consisted of a silver substrate (ε(ω) = −16 + i1.088) separated
from vacuum by a Gaussian-correlated randomly rough surface of rms-height δ = λ/4 and correlation length a = λ/2.
The randomly rough surface covered an area of 16λ×16λ and the discretization length used in the numerical calculations
was Δx = λ/7 thus resulting in a 112× 112 grid of x‖ values. A total of 5 000 surface realizations were used to calculate
〈∂Rαp/∂Ωs〉. (After Ref. 14).

3.2 Results for a Penetrable Surface

3.2.1 A Metallic Surface

We first present results for scattering from a metallic surface. We have carried out numerical simulations for the
scattering of a p-polarized beam of light of wavelength λ = 632.8 nm and width parameter w = 4λ, incident on
a randomly rough silver surface. The dielectric function of silver at this wavelength is ε(ω) = −16.00+ i1.088.29

The surface roughness is characterized by the Gaussian power spectrum (16) with a correlation length a = λ/2,
and an rms height δ = λ/4. The rough surface was assumed to cover an area 16λ× 16λ on the mean scattering
surface, and the discretization length Δx was λ/7 on a 112× 112 grid of x‖ values.

In Fig. 6 we present the mean differential reflection coefficients as functions of the polar scattering angle θs
for the in-plane [Fig. 6(a)] and out-of-plane (φs = ±90◦) [Fig. 6(b)], co-(p→p) and cross-(p→s) scattering of
the beam when the polar and azimuthal angles of incidence (θ0, φ0) are (20◦, 0◦). The results obtained from
Np = 5000 realizations of the surface profile function were averaged to obtain these results. The calculations
required 96 CPU seconds on a 2.67 GHz Intel i7 CPU for each realization of the surface profile function. The
peak at θs = −20◦ in the mean differential reflection coefficient for in-plane co-polarized scattering plotted in
Fig. 6(a) is the enhanced backscattering peak.

For the same parameters we present in Figs. 7(a)–(c) the full angular distribution of the mean differential
reflection coefficient when the polarization state of the scattered light is not recorded [Fig. 7(a)], when only the
p-polarized component of the scattered light is recorded [Fig. 7(b)], and when only the s-polarized component
of the scattered light is recorded [Fig. 7(c)]. Similar results, but for an s-polarized incident beam, are presented
in Figs. 7(d)–(f). The peaks observed in Figs. 7(a), 7(b), 7(d), and 7(f) in the retroreflection direction (θs =
θ0, φs = φ0 + 180◦) are the enhanced backscattering peaks.

From a knowledge of the full angular distribution of the mean differential reflection coefficient, the conserva-
tion of energy in the scattering process can be checked by means of Eq. (17). For this purpose the full angular
distribution of the mean differential reflection coefficient was calculated for “nonabsorbing” silver, i.e. for the
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Figure 7. Similar to Fig. 3, but now the scattering medium is silver, and therefore penetrable. The roughness and numerical
parameters assumed in obtaining these results are identical to those used to obtain the results of Fig. 6.

case in which the imaginary part of its dielectric function was set equal to zero, so that ε(ω) = −16.00. For the
parameters used in obtaining the results presented in Figs. 6 and 7 it was found that Up,s(20

◦, 0◦) > 0.995 , a
result that demonstrates the accuracy of our computational approach.

In order to obtain such a good unitarity value it was necessary to treat not only the diagonal elements of the
matrix versions of Eq. (25) accurately, but also close-to-diagonal elements, because of the singular behavior of
the Green’s functions for small arguments. The need to treat close-to-diagonal matrix elements more accurately
than matrix elements between more widely separated points in the solution of the volume integral equation
arising in scattering from finite-sized objects has also been noted.30 If the extended midpoint method was used
in calculating the off-diagonal matrix elements, while the diagonal elements were treated exactly, as in [6] and
[9], a value of Up(20

◦, 0◦) = 0.834 was obtained. The ability to calculate unitarity values, and the need to treat
close-to-diagonal matrix elements accurately to obtain good unitarity values, are some of the main results of this
work.
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4. SOLUTION OF THE REDUCED RAYLEIGH EQUATIONS

4.1 Mathematical Formulation

The calculation of the electromagnetic field scattered from a randomly rough surface of a penetrable medium
is greatly simplified if the field in the scattering medium does not need to be taken into account. The use of
an impedance boundary condition at the interface between the medium of incidence and the scattering medium
accomplishes this, so that only the field in the medium of incidence needs to be determined.

The same result can also be achieved by the use of the reduced Rayleigh equation for calculating the scattered
field. In this section we present this equation and describe its numerical solution.

We begin by writing the electric field in the vacuum region x3 > ζ(x‖) as the sum of an incident and a

scattered field, E(x; t) =
[
E(i)(x|ω) +E(s)(x|ω)] exp(−iωt), where

E(i)(x|ω) =
{
c

ω

[
α0(k‖)k̂‖ + k‖x̂3

]
E(i)
p (k‖) + [k̂‖ × x̂3] E(i)

s (k‖)
}
exp

[
ik‖ · x‖ − iα0(k‖)x3

]
, (28a)

E(s)(x|ω) =
∫

d2q‖
(2π)2

{
c

ω

[−α0(q‖)q̂‖ + q‖x̂3

] E(s)
p (q‖) + [q̂‖ × x̂3] E(s)

s (q‖)
}
exp

[
iq‖ · x‖ + iα0(q‖)x3

]
. (28b)

Note that the factors appearing in Eq. (28) in front of E(i)
α (k‖) and E(s)

α (q‖) (α = p, s) are the polarization
vectors as defined previously in Section 2.1, but now written out explicitly. Maxwell’s equations imply a linear

relation between the amplitudes E(s)
α (q‖) and E(i)

β (k‖) of the form (α = p, s, β = p, s)

E(s)
α (q‖) =

∑
β

Rαβ(q‖|k‖)E(i)
β (k‖). (29)

The contribution to the mean differential reflection coefficient from the incoherent (diffuse) component of the
scattered light, when incident light of β polarization (whose wave vector has the projection k‖ on the mean
scattering surface) into light of α polarization (whose wave vector has the projection q‖ on the mean scattering
surface), is given by〈

∂Rαβ

∂Ωs

〉
incoh

=
1

S

( ω

2πc

)2 cos2 θs
cos θ0

[〈 ∣∣Rαβ(q‖|k‖)
∣∣2 〉−

∣∣∣〈Rαβ(q‖|k‖)
〉∣∣∣2] , (30)

where S is the area of the plane x3 = 0 covered by the rough surface.

It was shown by Celli and his colleagues32 by the use of the Rayleigh hypothesis,33 the extinction theorem,34

and the vectorial equivalent of the Kirchhoff integral,35 that the scattering amplitudes Rαβ(q‖|k‖) satisfy the
matrix integral equation∫

d2q‖
(2π)2

I(α(p‖)− α0(q‖)|p‖ − q‖)
α(p‖)− α0(q‖)

M(p‖|q‖)R(q‖|k‖) = −I(α(p‖) + α0(k‖)|p‖ − k‖)
α(p‖) + α0(k‖)

N(p‖|k‖), (31)

with Rpp and Rps forming the first row of the matrix R, where

I(γ|Q‖) =

∫
d2x‖ exp

[−iγζ(x‖)
]
exp

[−iQ‖ · x‖
]
, (32)

and α(p‖) = [ε(ω)(ω/c)2 − p2‖]
1
2 , with Reα(p‖) > 0, Imα(p‖) > 0. The matrices M(p‖|q‖) and N(p‖|k‖) are

given by

M(p‖|q‖) =

(
[p‖q‖ + α(p‖)p̂‖ · q̂‖α0(q‖)] −ω

c α(p‖) [p̂‖ × q̂‖]3
ω
c [p̂‖ × q̂‖]3 α0(q‖) ω2

c2 p̂‖ · q̂‖

)
(33a)

and

N(p‖|k‖) =

(
[p‖k‖ − α(p‖)p̂‖ · k̂‖α0(k‖)] −ω

c α(p‖) [p̂‖ × k̂‖]3
−ω

c [p̂‖ × k̂‖]3 α0(k‖) ω2

c2 p̂‖ · k̂‖

)
. (33b)
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Figure 8. Full angular intensity distribution of the light scattered incoherently from a two-dimensional randomly rough
silver surface calculated by solving the reduced Rayleigh equations. Light of either p (left column) or s polarization
(right column) is incident on the surface at angles of incidence (θ0, φ0) = (25◦, 45◦). The wavelength (in vacuum) of the
incident light is λ = 632.8 nm for which frequency ω = 2π/λ the dielectric function of silver is ε(ω) = −16.0 + 1.088i.
The white dots indicate the position of the specular direction. The surface parameters assumed in these calculations are
L = 25λ; δ = λ/40; and a = λ/4. The surface was discretized so that Q = 6.4ω/c or equivalently Δx = π/Q ≈ 0.0781λ.
Figures 8(a)–(c) correspond to a p-polarized plane incident wave, while in Figs. 8(d)–(f) the incident plane wave is s
polarized. In Figs. 8(a) and (d) all scattered light is recorded, i.e. no distinction is made between scattered p- and
s-polarized light. However, in Figs. 8(b) and (e) only the scattered p-polarized light is recorded, while Figs. 8(c) and (f)
include only s-polarized scattered light. The presented figures were obtained by averaging the results for the differential
reflection coefficient obtained for Np = 10 000 surface realizations.

Although purely numerical, nonperturbative solutions of the reduced Rayleigh equations for the scattering
of light from one-dimensional randomly rough clean metal surfaces36,37 and coated perfectly conducting sur-
faces38,39 have been carried out, up to now Eq. (31) has been solved only by small-amplitude perturbation
theory through terms of third order in the surface profile fuction.23,40,41 Here we present some preliminary
results for the mean differential reflection coefficient obtained by a purely numerical, nonperturbative solution of
Eqs. (31)–(33). This was done by generating a realization of the surface profile as this was done in the preceding
two sections, and evaluating the function I(γ|Q‖) by expanding the integrand in Eq. (32) in powers of ζ(x‖), and
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calculating the Fourier transform of ζn(x‖) by the Fast Fourier Transform. As in previous sections, the random
surface covered a square region of the x1x2 plane of edge L, and a grid of N2 points was created within this
square so that the (linear) sampling interval is Δx = L/N . The infinite limits of integration in Eq. (31) were
replaced by finite ones: |q1| < Q/2, |q2| < Q/2 where Q = π/Δx. A quadratic grid within the square region
of the q1q2 plane of edge Q was constructed with a grid constant Δq = 2π/L. The integral over this region
in Eq. (31) was carried out by a two-dimensional version of the extended midpoint method, and the values of
Rαβ(q‖|k‖) were calculated for values of q‖ at the points of this grid for a given value of k‖, which was a point
on the same grid. The resulting matrix equations were solved by LU factorization. This is a slower solution
method than the biconjugate gradient stabilized method, but has the advantage of being able to handle multiple
right-hand sides, i.e. different angles of incidence, more-or-less with no extra addition to the computational time.
With the reflection amplitudes, Rαβ(q‖|k‖), available, the differential reflection coefficient was then calculated
by the use of Eq. (30).

4.2 Results Obtained by the Solution of the Reduced Rayleigh Equations

4.2.1 A Metallic Surface

As the first example of the application of this approach to the scattering of light from a penetrable surface we
apply it to the scattering of a p- or s-polarized plane wave of wavelength λ = 632.8 nm incident on a silver
surface. The dielectric function of silver at this wavelength is ε(ω) = −16 + i1.088.29 The roughness of the
surface was characterized by the Gaussian power spectrum, Eq. (16), where the transverse correlation length was
given the value a = λ/4, while the rms height of the surface was δ = λ/40. In the calculations the rough surface
was assumed to cover an area of 25λ × 25λ of the plane x3 = 0, while for the wavenumber cut-off we assumed
Q = 6.4ω/c, which corresponds to a spatial discretization interval of Δx = π/Q ≈ 0.0781λ (for both directions).

In Fig. 8 we present contributions to the mean differential reflection coefficients from the light scattered
incoherently as functions of q1 and q2 when a plane wave is incident on the surface at angles (θ0, φ0) = (25◦, 45◦).
Figure 8(a) corresponds to a p-polarized incident plane wave being scattered by the rough surface into both p-
and s-polarized light, i.e. the polarization state of the scattered light was not recorded. However, in Figs. 8(b)
and 8(c) contour plots of the same quantity are presented for the cases where only p-polarized or s-polarized
scattered light, respectively, are recorded. Similar results are presented in Figs. 8(d)–(f) for the case when the
incident light is s-polarized. An arithmetic average of results obtained for Np = 10 000 realizations of the surface
profile function was carried out to produce Fig. 8.

By artificially putting the imaginary part of the dielectric constant of the metal to zero, Im ε(ω) ≡ 0, so
that there is no absorption in the scattering system, it has been found that the numerical method used to solve
the reduced Rayleigh equation, Eq. (31), conserves energy with an error smaller than 0.5% for the parameters
assumed here.

The numerical calculations used to obtain the results of Fig. 8 required for each realization of the surface
profile function approximately 8.8 cpu hours on a single 12-core 2.4 GHz AMD Opteron computer node and
using approximately 20 GB of memory.

The calculations whose results are presented in Fig. 8 and which were performed by solving numerically the
reduced Rayleigh equations (31), could also have been done by solving the Müller equations, as was discussed
in Section 3. In order to compare the two approaches, we present in Fig. 9 the results obtained by these two
methods for the contributions to the mean differential reflection coefficients from the light scattered incoherently
as functions of the polar scattering angle θs for the in-plane (φs = 0◦, 180◦) and out-of-plane (φs = ±90◦)
co-(s → s) and cross-(s → p) polarized scattering when an s-polarized wave is incident on the surface at angles
of incidence (θ0, φ0) = (25◦, 0◦). The roughness parameters assumed in obtaining these results are identical to
those assumed in obtaining Fig. 8. The numerical parameters used to obtain these results were those of Fig. 8
when using the reduced Rayleigh equation. However, when solving the Müller equations, a Gaussian beam of
width (w = 4λ) was assumed to be incident on the surface, which was discretized with an interval Δx = λ/7 (in
both directions). It is observed from Fig. 9 that the two approaches produce quantitatively similar results. The
minor differences between the results of the two approaches we believe are due to the differences in the areas
covered by the rough surfaces, and to the differences in the discretization intervals, assumed in the two sets of
calculations, which have not been optimized as yet.
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From the results presented in Figs. 8 and 9, we can draw the conclusions that a purely numerical, nonper-
turbative solution of the reduced Rayleigh equation yields accurate results for the mean differential reflection
coefficient that are in good agreement with those obtained by the use of the Müller equations.

4.2.2 A Dielectric Surface

The reduced Rayleigh equation (31) can also be used for calculating the field scattered from a dielectric surface.
We apply it here to calculate the contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light when a p- or s-polarized plane wave whose wavelength in vacuum is λ = 632.8 nm
is incident at (θ0, φ0) = (27.5◦, 45◦) on the surface of a dielectric medium whose dielectric constant is assumed
to be εd = 2.64 (photoresist). The results are presented in Fig. 10. The randomly rough surface had an
rms roughness of δ = 3λ/200 = 0.015λ and it covered a 20λ × 20λ area in the x3 = 0 plane. Moreover, the
wavenumber cut-off assumed in these calculations was Q = 8ω/c, corresponding to a discretization interval of
Δx = π/Q = 0.0625λ. Except for these differences, the remaining roughness and computational parameters were
the same as the ones assumed in the calculations that produced Fig 8.

By comparing Figs. 8 and 10 it is observed that the overall structure of the angular distributions of the
intensity of the light scattered from a metal and dielectric is rather similar, and that, as expected, the scattered
intensity for the metallic surface is stronger (by a factor of about 70) than that for the dielectric surface.

5. DISCUSSION AND CONCLUSIONS

We have shown that the use of the method of moments and the biconjugate gradient stabilized method provides
a formally exact solution to the scattering of p- and s-polarized light from a two-dimensional randomly rough
perfectly conducting surface, with a modest expenditure of computational time. The addition of an impedance
boundary condition on a two-dimensional rough surface to these two methods has been shown to provide a
formally exact solution to the scattering of polarized light from two-dimensional randomly rough metallic surfaces,
also with a modest expenditure of computational time.

Figure 9. Comparison of the mean differential reflection coefficients for the scattering of s polarized waves from a rough
silver surface with the roughness parameters given in the caption of Fig. 8. The results were obtained by two different
numerical approaches: the solution of the reduced Rayleigh equation (solid lines), and by the use of the rigorous approach
(dashed lines). The numerical parameters and number of surface realizations assumed when using the former approach
were those used to obtain the results presented in Fig. 8. However, when using the rigorous approach, the parameters
given in the caption to Fig. 6 were assumed with the exception that now θ0 = 25◦, L = 20λ, and only a small number of
surface realizations were used (Np = 750) to obtain these results.
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Figure 10. Full angular intensity distribution of the light scattered incoherently from a two-dimensional randomly rough
dielectric surface calculated by solving the reduced Rayleigh equations. The dielectric substrate was taken to be photoresist
which at the frequency of the incident light λ = 632.8 nm is characterized by a dielectric constant ε(ω) = 2.64. The angles
of incidence assumed are (θ0, φ0) = (27.5◦, 45◦), and the white dots indicate the position of the specular direction. These
figures were obtained by averaging results for the scattered intensity obtained for Np = 6000 surface realizations. The
surface parameters assumed in these calculations were L = 20λ; δ = 3λ/200 = 0.015λ; and a = λ/4. The surface
discretization was done so that Q = 8ω/c, or equivalently, Δx = π/Q = 0.0625λ. The remaining parameters and the
organization of the sub-figures are identical to those of Fig. 8.

The computational methods employed in these calculations have made it possible to obtain a formally exact
full angular distribution of the intensity of the light scattered from a strongly rough random surface. In the case
of scattering from a perfectly conducting surface, and from a metallic surface when the imaginary part of its
dielectric function is set equal to zero, knowledge of the full angular distribution of the intensity of the scattered
light enables the conservation of energy in the scattering process to be checked. It was found to be satisfied with
an error smaller than 0.5%, a result that testifies to the accuracy of the methods used in our calculations and
the adequacy of the discretization of the mean scattering surface employed in them.

We have also presented results obtained from a rigorous numerical solution of the reduced Rayleigh equation
for the scattering of p- and s-polarized light from a penetrable surface. These results demonstrate the feasibility
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of using this equation in studies of the scattering of light from weakly rough surfaces. The good agreement
between the results obtained by the solution of the reduced Rayleigh equation and those obtained by the use
of the rigorous computational method indicates that the simpler approach yields accurate results for scattering
from surfaces that are not very rough. The limits of validity of this equation have yet to be determined.

The success of the methods used in carrying out the calculations described here opens the door to rigorous
computational studies of other properties of electromagnetic waves scattered from two-dimensional randomly
rough surfaces. These include calculations of the ellipsometric parameters of metallic and dielectric surfaces,
transmission through dielectric surfaces, and all of the elements of the Mueller matrix for scattering from and
transmission through such surfaces. This work will be reported elsewhere.
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Abstract: A nonperturbative, purely numerical, solution of the reduced
Rayleigh equation for the scattering of p- and s-polarized light from a
dielectric lm with a two-dimensional randomly rough surface deposited
on a planar metallic substrate, has been carried out. It is found that satellite
peaks are present in the angular dependence of the elements of the mean
differential re ection coef cient in addition to an enhanced backscattering
peak. This result resolves a con ict between the results of earlier approxi-
mate theoretical studies of scattering from this system.
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In the earliest analytic [1] and computer simulation [2,3] studies of the multiple scattering of
light from clean one-dimensional randomly rough surfaces of perfect conductors or of penetra-
ble media, the focus was on the phenomenon of enhanced backscattering. This is the presence
of a well-de ned peak in the retrore ection direction in the angular dependence of the intensity
of the light that has been scattered incoherently (diffusely).
In subsequent work on the multiple scattering of light from free-standing or supported lms

with a one-dimensional randomly rough surface that support two or more guided waves, new
effects were discovered [4]. These include enhanced transmission, which is the presence of a
well-de ned peak in the anti-specular direction in the angular dependence of the intensity of
the light transmitted through the lm [5]. Perhaps more interesting was the discovery of satel-
lite peaks in the angular dependence of the intensity of the light scattered from or transmitted
through the lm. These are well-de ned peaks present on both sides of the enhanced backscat-
tering and enhanced transmission peaks, respectively, that arise from the coherent interference
of guided waves with the frequency of the incident light, but with different wavenumbers [6].
It should be noted, however, that the prediction of these satellite peaks was rst made in the

context of the scattering of electromagnetic waves from a dielectric lm containing a random
distribution of volume scatterers [7], rather than from a randomly rough surface, when the
thickness of the lm is small compared to the mean free path of the electromagnetic wave in
the random medium.
In analytic [8–10] and computer simulation calculations [11–13] of the multiple scattering

of light from clean two-dimensional randomly rough surfaces of perfect conductors and pen-
etrable media, enhanced backscattering was observed in the results. However, when attention
turned to the scattering of light from a perfectly conducting surface coated with a dielectric
lm, con icting results were obtained. In these studies the dielectric-perfect conductor inter-
face was assumed to be planar, while the vacuum-dielectric interface was assumed to be a
two-dimensional randomly rough interface. In the rst of these studies Kawanishi et al. [14]
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applied the stochastic functional approach to this problem and found no evidence for satellite
peaks in their results. They suggested that the ensemble averaging of the intensity of the scat-
tered eld restores isotropy in the mean scattering plane, and thereby eliminates the occurrence
of special scattering angles at which satellite peaks could occur. In subsequent work in which
the reduced Rayleigh equation for scattering from this structure [10,15] was solved in the form
of expansions of the amplitudes of the p- and s-polarized components of the scattered eld in
powers of the surface pro le function through terms of third order, satellite peaks were found.
However, the contribution to the scattering amplitudes associated with the third-order term was
larger than that from the rst-order term for the roughness and experimental parameters as-
sumed in that work. It is therefore possible that these values fell outside the ranges for which a
perturbative solution of the reduced Rayleigh equation is reliable.
Although satellite peaks were observed in experiments carried out by Méndez et al. [16] that

utilized the double passage of polarized light through a random phase screen, the experimental
conditions were suf ciently different from those studied theoretically in Refs. [10, 14], that
these results could not be used to support the predictions of either of these studies.
In an effort to resolve the issue of whether satellite peaks do or do not exist in the scattering

of light from a rough dielectric lm deposited on the planar surface of a metal, in this paper we
carry out a nonperturbative, purely numerical, solution of the reduced Rayleigh equation [17]
for the scattering of p- and s-polarized light from a structure consisting of a dielectric lm
deposited on a metal substrate when the dielectric-metal interface is planar, while the vacuum-
dielectric interface is a two-dimensional randomly rough interface. This is an approach that
was used successfully in recent calculations of the scattering of p- and s-polarized light from
a two-dimensional randomly rough interface between a dielectric and a metal [17, 18], which
prompts its application to the present problem.
The system we study consists of vacuum (ε1) in the region x3 > d+ ζ

(
x‖
)
, where x‖ =

(x1,x2,0); a dielectric lm (ε2) in the region 0 < x3 < d+ ζ
(
x‖
)
; and a lossy metal (ε3) in

the region x3 < 0. The surface pro le function ζ
(
x‖
)
is assumed to be a single-valued function

of x‖ that is differentiable with respect to x1 and x2, and constitutes a zero-mean, stationary,
isotropic, Gaussian random process de ned by〈

ζ (x‖)ζ (x′‖)
〉
= δ 2W

(∣∣∣x‖ −x′‖∣∣∣) . (1)

The angle brackets here denote an average over the ensemble of realizations of the surface
pro le function, and δ =

〈
ζ 2
(
x‖
)〉1/2 is the rms height of the surface roughness.

The electric eld in the vacuum
[
x3 > d+ζ

(
x‖
)]
is the sum of an incident eld and a scat-

tered eld, E(x; t) = [E(x|ω)inc+E(x|ω)sc]exp(−iωt), where

E(x|ω)inc =

{
c
ω
[
k̂‖α1(k‖)+ x̂3k‖

]
Bp(k‖)+

(
x̂3× k̂‖

)
Bs(k‖)

}
× exp(ik‖ ·x‖ − iα1(k‖)x3)

(2a)

E(x|ω)sc =

∫ d2q‖
(2π)2

{
c
ω
[
q̂‖α1(q‖)− x̂3q‖

]
Ap(q‖)+

(
x̂3× q̂‖

)
As(q‖)

}
× exp(iq‖ ·x‖+ iα1(q‖)x3) ,

(2b)

while the subscripts p and s denote the p-polarized and s-polarized components of these elds
with respect to the local planes of incidence and scattering. A caret over a vector indicates that
it is a unit vector, and the vector k‖ is de ned as k‖ = (k1,k2,0) (with similar de nitions for q‖
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and p‖). The functions αi(q‖) (i= 1,2,3) are de ned by

αi(q‖) =
[

εi
(ω
c

)2
−q2‖

]1/2
, Reαi(q‖)> 0, Imαi(q‖)> 0. (3)

A linear relation exists between the amplitudes Aα(q‖) and Bβ (k‖) (α,β = p,s), which we
write as

Aα(q‖) = ∑
β
Rαβ (q‖|k‖)Bβ (k‖) (4)

where Rαβ is the scattering amplitude for incident β -polarized light scattered into α-polarized
light. The convention we use with respect to the polarization subscripts is

R(q‖|k‖) =
(
Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
. (5)

It has been shown by Soubret et al. [10] and Leskova [19] that the scattering amplitudes[
Rαβ (q‖|k‖)

]
satisfy the matrix integral equation

∫ d2q‖
(2π)2

M(p‖|q‖)R(q‖|k‖) =−N(p‖|k‖), (6)

called a reduced Rayleigh equation because it is an equation for only the scattered eld in the
medium of incidence, and not for the elds in the lm and in the substrate.The effects of the
latter two elds are contained in the elements of the matricesM(p‖|q‖) and N(p‖|k‖). With the
shorthand notation α(q‖,ω) ≡ α(q‖), the elements of these matrices in the forms obtained by
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Leskova [19] are

Mpp(p‖|q‖) =
[
p‖q‖+α2(p‖)(p̂‖ · q̂‖)α1(q‖)

]
×Γp(p‖)exp

(−i[α2(p‖)−α1(q‖)
]
d
) I (α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

+
[
p‖q‖ −α2(p‖)(p̂‖ · q̂‖)α1(q‖)

]
×Δp(p‖)exp

(
i
[
α2(p‖)+α1(q‖)

]
d
) I (−[

α2(p‖)+α1(q‖)
] |p‖ −q‖)

α2(p‖)+α1(q‖)

(7a)

Mps(p‖|q‖) =−ω
c

α2(p‖)
(
p̂‖ × q̂‖

)
3(

Γp(p‖)exp
(−i[α2(p‖)−α1(q‖)

]
d
) I (α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

− Δp(p‖)exp
(
i
[
α2(p‖)+α1(q‖)

]
d
) I (−[

α2(p‖)+α1(q‖)
] |p‖ −q‖)

α2(p‖)+α1(q‖)

) (7b)

Msp(p‖|q‖) =
ω
c
(
p̂‖ × q̂‖

)
3α1(q‖)(

Γs(p‖)exp
(−i[α2(p‖)−α1(q‖)

]
d
) I (α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

+ Δs(p‖)exp
(
i
[
α2(p‖)+α1(q‖)

]
d
) I (−[

α2(p‖)+α1(q‖)
] |p‖ −q‖)

α2(p‖)+α1(q‖)

) (7c)

Mss(p‖|q‖) =
ω2

c2
(
p̂‖ · q̂‖

)
(

Γs(p‖)exp
(−i[α2(p‖)−α1(q‖)

]
d
) I (α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

+ Δs(p‖)exp
(
i
[
α2(p‖)+α1(q‖)

]
d
) I (−[

α2(p‖)+α1(q‖)
] |p‖ −q‖)

α2(p‖)+α1(q‖)

)
,

(7d)
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and

Npp(p‖|k‖) =−[
p‖k‖ −α2(p‖)(p̂‖ · k̂‖)α1(k‖)

]
×Γp(p‖)exp

(−i[α2(p‖)+α1(k‖)
]
d
) I (α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

− [
p‖k‖+α2(p‖)(p̂‖ · k̂‖)α1(k‖)

]
×Δp(p‖)exp

(
i
[
α2(p‖)−α1(k‖)

]
d
) I (−[

α2(p‖)−α1(k‖)
] |p‖ −k‖)

α2(p‖)−α1(k‖)

(8a)

Nps(p‖|k‖) =−ω
c

α2(p‖)
(
p̂‖ × k̂‖

)
3

×
(

Γp(p‖)exp
(−i[α2(p‖)+α1(k‖)

]
d
) I (α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

− Δp(p‖)exp
(
i
[
α2(p‖)−α1(k‖)

]
d
) I (−[

α2(p‖)−α1(k‖)
] |p‖ −k‖)

α2(p‖)−α1(k‖)

) (8b)

Nsp(p‖|k‖) =
ω
c
(
p̂‖ × k̂‖

)
3α1(k‖)

×
(

Γs(p‖)exp
(−i[α2(p‖)+α1(k‖)

]
d
) I (α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

+ Δs(p‖)exp
(
i
[
α2(p‖)−α1(k‖)

]
d
) I (−[

α2(p‖)−α1(k‖)
] |p‖ −k‖)

α2(p‖)−α1(k‖)

) (8c)

Nss(p‖|k‖) =
ω2

c2
(
p̂‖ · k̂‖

)
×
(

Γs(p‖)exp
(−i[α2(p‖)+α1(k‖)

]
d
) I (α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

+ Δs(p‖)exp
(
i
[
α2(p‖)−α1(k‖)

]
d
) I (−[

α2(p‖)−α1(k‖)
] |p‖ −k‖)

α2(p‖)−α1(k‖)

)
.

(8d)

In writing Eqs. (7) and (8) we have introduced the functions

Γp(p‖) = ε2α3(p‖,ω)+ ε3α2(p‖,ω) (9a)
Δp(p‖) = ε2α3(p‖,ω)− ε3α2(p‖,ω) (9b)

and

Γs(p‖) = α3(p‖,ω)+α2(p‖,ω) (10a)
Δs(p‖) = α3(p‖,ω)−α2(p‖,ω), (10b)

as well as

I
(
γ |Q‖

)
=
∫
d2x‖ exp

(−iQ‖ ·x‖
)
exp

[−iγζ
(
x‖
)]
. (11)

The scattering amplitudes
[
Rαβ (q‖|k‖)

]
play a central role in the present theory because the

mean differential re ection coef cient, an experimentally measurable function, can be ex-
pressed in terms of these amplitudes. The differential re ection coef cient (∂R/∂Ωs) is de ned
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such that (∂R/∂Ωs)dΩs is the fraction of the total time-averaged ux incident on the surface
that is scattered into the element of solid angle dΩs about the scattering direction (θs,φs). Since
we are studying the scattering of light from a randomly rough surface, it is the average of this
function over the ensemble of realizations of the surface pro le function that we need to calcu-
late. The contribution to the mean differential re ection coef cient from the incoherent (diffuse)
component of the scattered light, when incident light of β polarization whose wave vector has
the projection k‖ on the mean scattering surface is scattered into light of α polarization whose
wave vector has the projection q‖ on the mean scattering surface, denoted

〈
∂Rαβ/∂Ωs

〉
incoh, is

given by
〈

∂Rpp
∂Ωs

〉
incoh

=
1
S

√
ε1
4π2

ω
c

α21 (q‖)
α1(k‖)

[〈∣∣Rpp(q‖|k‖)∣∣2〉− ∣∣〈Rpp(q‖|k‖)〉∣∣2] (12a)

〈
∂Rps
∂Ωs

〉
incoh

=
1
S

ε3/21
4π2

ω
c

α21 (q‖)
α1(k‖)

[〈∣∣Rps(q‖|k‖)∣∣2〉− ∣∣〈Rps(q‖|k‖)〉∣∣2] (12b)

〈
∂Rsp
∂Ωs

〉
incoh

=
1
S

1
4π2

√
ε1

ω
c

α21 (q‖)
α1(k‖)

[〈∣∣Rsp(q‖|k‖)∣∣2〉− ∣∣〈Rsp(q‖|k‖)〉∣∣2] (12c)

〈
∂Rss
∂Ωs

〉
incoh

=
1
S

√
ε1
4π2

ω
c

α21 (q‖)
α1(k‖)

[〈∣∣Rss(q‖|k‖)∣∣2〉− ∣∣〈Rss(q‖|k‖)〉∣∣2] , (12d)

where S is the area of the plane x3 = 0 covered by the rough surface. The two-dimensional
wave vectors k‖ and q‖ are de ned in terms of the polar and azimuthal angles of incidence
(θ0,φ0) and scattering (θs,φs), respectively, by k‖ =

√
ε1(ω/c) sinθ0 (cosφ0,sinφ0,0) and

q‖ =
√

ε1(ω/c)sinθs(cosφs,sinφs,0). Thus these wave vectors in Eq. (12) are restricted to the
domains k‖ <

√
ε1(ω/c) and q‖ <

√
ε1(ω/c) of the q1q2 plane.

Up to now Eq. (6) has been solved by small-amplitude perturbation theory through terms
of third order in the surface pro le function [10, 20]. Here we present results for the mean
differential re ection coef cient and for the full angular distribution of the intensity of the
scattered light obtained by a nonperturbative, purely numerical solution of Eqs. (6)–(11), as
described in Ref. [17]. This was done by generating a realization of the surface pro le func-
tion numerically on a grid of N2x points within a square region of the x1x2 plane of edge L, so
that the (linear) sampling interval was Δx = L/Nx. A two-dimensional version of the ltering
method used in [17, 21] was used to generate the pro le function [13]. The function I(γ|Q‖)
was then evaluated by expanding the integrand in powers of the surface pro le function ζ (x‖),
and calculating the Fourier transform of ζ n(x‖) by the fast Fourier transform. In evaluating the
integral over q‖ in Eq. (6) the in nite limits were replaced by nite ones:

(
q21+q22

)1/2 ≤ Q/2.
The Nyquist sampling theorem requires that |q1| and |q2| be smaller than Qc = π/Δx [22, p.
605]. The components of the vector p‖ −q‖ entering I(γ |p‖ −q‖) lie in the interval [−Q,Q],
so we have chosen Q = Qc. A grid with a grid constant Δq1 = Δq2 = Δq = 2π/L was con-
structed within the circular region of the q1q2 plane where

(
q21+q22

)≤ Q/2. The integral over
this region in Eq. (6) was carried out by a two-dimensional version of the extended midpoint
method [22, p. 161] and the values of Rαβ (q‖|k‖) were calculated for values of q‖ at the points
of this grid for a given value of k‖, which was also a point on this grid. The resulting matrix
equations were solved by LU factorization and backsubstitution. The values of Rαβ (q‖|k‖) and
|Rαβ (q‖|k‖)|2 were then calculated for Np realizations of the surface pro le function. An arith-
metic average of the Np results for each of these functions yielded the averages

〈
Rαβ (q‖|k‖)

〉
and

〈|Rαβ (q‖|k‖)|2
〉
, from which the incoherent contribution to the mean differential re ection

coef cients were calculated according to Eq. (12).
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We apply this approach to the scattering of p- and s-polarized plane waves, whose wave-
length is λ = 633 nm, incident from vacuum (ε1 = 1) on a dielectric lm (ε2 = 2.6896+0.01i)
coating a silver surface (ε3 = −18.28+ 0.481i) [23]. The mean thickness of the lm is
d = 0.756λ = 478.5 nm. The roughness of the vacuum-dielectric interface is characterized
by a two-dimensional version of the West–O’Donnell power spectrum [24] given by [8]

g(|k‖|) =
4π

k2+− k2−
θ(|k‖|− k−)θ(k+−|k‖|), (13)

where θ(x) is the Heaviside unit step function, and k− = 0.82(ω/c), k+ = 1.97(ω/c). The
rms height of the surface roughness was assumed to be δ = λ/40 = 15.82 nm, the surface
was discretized on a grid of resolution Δx1 = Δx2 = 0.123λ = 77.6 nm and the edge of the
(quadratic) surface was L= 55λ = 34.8 μm.
The contribution to the mean differential re ection coef cient

〈
∂Rαβ (q‖|k‖)/∂Ωs

〉
incoh

from single-scattering processes
[
second order in ζ (x‖)

]
is proportional to g(|q‖ − k‖|) [8].

Since the power spectrum (13) is identically zero for |k‖| < k−, there is no contribution to the
mean differential re ection coef cient from the light scattered incoherently by single-scattering
processes when the wave vectors q‖ and k‖ satisfy the inequality |q‖ −k‖| < k−. The contri-
bution to

〈
∂Rαβ (q‖|k‖)/∂Ωs

〉
incoh when this condition is satis ed is due only to multiple-

scattering processes, including the enhanced backscattering peak and the satellite peaks. These
features are more clearly visible in this case because they do not ride on a large background
due to single-scattering processes. This is the reason that the calculations whose results are
presented here were carried out on the basis of the power spectrum (13).
In Fig. 1(a) we present the contribution to the mean differential re ection coef cient from

the light scattered incoherently as functions of the polar scattering angle θs for the in-plane
(φs = φ0 = 45◦) co-(p→p, s→s) and cross-(p→s, s→p) polarized scattering when a p- or s-
polarized plane wave is incident on the dielectric surface at angles of incidence (θ0,φ0) given
by (0.74◦,45◦). (In gures showing in-plane or out-of-plane scattering, we depart from the com-
monly accepted principle of not using negative polar angles, in that we allow for negative θs.).
An arithmetic average of results obtained for Np = 11,165 realizations of the surface pro le
function was carried out to produce these gures. In Fig. 1(b) we present the analogous results
for out-of-plane (φs = φ0± 90◦) scattering when the roughness and experimental parameters
have the values assumed in generating Fig. 1(a).
In the results depicted in Fig. 1(a) [1(b)] single-scattering processes give no contributions to

the mean differential re ection coef cient for −53.8◦ < θs < 56.4◦ (−55.08◦ < θs < 55.08◦).
In both gures a well-de ned enhanced backscattering peak is seen in the retrore ection direc-
tion. In addition, in Fig. 1(a) additional peaks are seen on both sides of the enhanced backscat-
tering peak in the s→ s co-polarized scattering contribution to the mean differential re ection
coef cient. These peaks are identi ed as satellite peaks.
We base this identi cation on the following consideration. It was shown in [6] that in the in-

plane co-polarized scattering of light of frequency ω from a one-dimensional randomly rough
surface of a lm system when the plane of incidence is perpendicular to the generators of the
surface, satellite peaks occur at scattering angles given by

sinθ (m,n)
s =−sinθ0± c

ω
√

ε1
[qm(ω)−qn(ω)] . (14)

The wave numbers q1(ω),q2(ω), . . . ,qN(ω) are the wavenumbers of the guided waves sup-
ported by the lm structure at the frequency of the incident light. Not all of the peaks predicted
by Eq. (14) may be present in the mean differential re ection coef cient. This happens when the
absolute value of the right-hand side of Eq. (14) is greater than unity. Then the corresponding
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Fig. 1. (a) The contributions to the mean differential re ection coef cient as functions of
the polar scattering angle θs from the in-plane (φs = φ0) co-polarized (p→p, s→s) and
cross-polarized (p→s, s→p) scattering of light incident on the two-dimensional randomly
rough surface of a dielectric lm deposited on the planar surface of silver, whose dielectric
constant is ε3 = −18.28+ 0.481i. The wavelength of the incident light is λ = 633 nm,
the angles of incidence are (θ0,φ0) = (0.74◦,45◦). The dielectric constant of the lm is
ε2 = 2.6896+0.01i, and its mean thickness is d = 478.5 nm. The roughness of the surface
is characterized by the power spectrum in Eq. (13), with k− = 0.82(ω/c), k+ = 1.97(ω/c),
and its rms height is δ = λ/40 = 15.82 nm. (b) The same as (a) for out-of-plane (φs =
φ0+90◦) scattering.
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peak lies in the nonradiative region of the q1q2 plane. In addition, among the real satellite peaks
that should appear in the radiative region, not all may be suf ciently intense to be observable.
The scattering angles de ned by Eq. (14) are expected to give the angles at which satellite

peaks occur in the in-plane co-polarized scattering from the two-dimensional randomly rough
surface of the lm system studied here.
In the absence of absorption and roughness the {qj(ω)} are the solutions of the dispersion

relation

α2(q‖,ω) =
1

2ε1ε3

(
ε2
[
ε1β3(q‖,ω)+ ε3β1(q‖,ω)

]
cot

[
α2(q‖,ω)d

]
±{

ε22
[
ε1β3(q‖,ω)+ ε3β1(q‖,ω)

]2 cot2 [α2(q‖,ω)d
]

+4ε1ε22 ε3β1(q‖,ω)β3(q‖,ω)
}1/2)

(15a)

in p polarization, and

α2(q‖,ω) =
1
2

([
β1(q‖,ω)+β3(q‖,ω)

]
cot

[
α2(q‖,ω)d

]
±{

[β1(q‖,ω)+β3(q‖,ω)]2 cot2
[
α2(q‖,ω)d

]
+4β1(q‖,ω)+β3(q‖,ω)

}1/2) (15b)

in s polarization. In these equations βi(q‖,ω) =
[
q2‖ − εi(ω/c)2

]1/2
for i= 1,3, while α2(q‖,ω)

is de ned in Eq. (3). The lm structure studied in this paper is found to support two guided
waves in p-polarization, whose wave numbers are

q1(ω) = 1.4391(ω/c), q2(ω) = 1.0119(ω/c), (16a)

and two guided waves in s polarization, with wave numbers

q1(ω) = 1.5467(ω/c), q2(ω) = 1.2432(ω/c). (16b)

These results predict satellite peaks at scattering angles θs = −25.22◦ and 23.74◦ in p polar-
ization and at θs = −18.13◦ and 16.65◦ in s polarization when we are considering in-plane
scattering, assuming the same angles of incidence as in Fig. 1. These scattering angles are in-
dicated by vertical dotted lines in Fig. 1(a). The peaks at θs = −18.13◦ and 16.65◦ are seen
in the s→s co-polarized scattering contribution to the mean differential re ection coef cient.
There is no evidence of satellite peaks at θ (1,2)

s =−25.22◦ and 23.74◦ in the p→p co-polarized
scattering contribution to the mean differential re ection coef cient, presumably because they
are too weak to be seen. These results disagree with those of [10], in which no satellite peaks
were found in the in-plane s→s scattering contribution to the mean differential re ection coef-
cient (although they are present in this contribution when the dielectric lm is deposited on a
planar perfectly conducting surface). However, in [10] the surface roughness was characterized
by a Gaussian power spectrum, not the West–O’Donnell power spectrum assumed here. The
results of earlier calculations [25] of the scattering of p- and s-polarized light from a lm with
a one-dimensional randomly rough surface characterized by a Gaussian power spectrum that
is deposited on a planar perfectly conducting surface, display satellite peaks more weakly than
when the roughness is characterized by a West–O’Donnell power spectrum [26].
Turning now to the results for out-of-plane scattering presented in Fig. 1(b), we see that an

enhanced backscattering peak is present in each scattering con guration. It is cut off in each
con guration. This is an artifact of the present calculation that results from the line de ned by
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φs = φ0± 90◦ being exactly one grid point away from the backscattering direction. It is im-
portant to note that in out-of-plane scattering the predominant contribution to the differential
re ection coef cient is in the cross-polarized part. We see that the satellite peaks are now ob-
served in the p→s scattering con guration, meaning that incident p-polarized light excites both
of the s-polarized guided modes with wave vectors in the φ = φ0±90◦ directions, which sub-
sequently interfere to cause satellite peaks in out-of-plane scattering. Hence, the well-known
“satellite peaks” found in scattering from 1D surfaces turn into a kind of “satellite rings” for
scattering from 2D surfaces, where part of the ring is co-polarized (s→s in-plane) and part of
the ring is cross-polarized (p→s out-of-plane).
In Fig. 2 we present contour plots of the complete angular distribution of the mean differential

re ection coef cient for the light scattered incoherently from the lm system studied here. The
material and experimental parameters used in producing these results have the same values used
in obtaining Fig. 1.
Light of p polarization (left column) or s polarization (right column) is incident on the struc-

ture. In Figs. 2(a) and 2(d) all of the scattered light is recorded; in Figs. 2(b) and 2(e) only the
p-polarized scattered light is recorded; while in Figs. 2(c) and 2(f) only the s-polarized scat-
tered light is recorded. In Fig. 2(f) we see two regions of high intensity in the in-plane polar-
ized (s→s) intensity distribution, centered at radii of approximately 0.29(ω/c) at φs = 45◦, and
0.31(ω/c) at φs = 225◦. These are the satellite peaks seen in the plot of 〈∂Rss/∂Ωs〉incoh pre-
sented in Fig. 1(a). No such regions of high intensity are seen in Fig. 2(b) at radii of 0.34(ω/c)
at φs = 45◦ and 0.52(ω/c) at φs = 225◦, where satellite peaks are predicted by Eq. (14) for
in-plane co-polarized scattering of p-polarized incident light. This result is consistent with the
absence of satellite peaks in the result for

〈
∂Rpp/∂Ωs

〉
incoh presented in Fig. 1(a). The intensity

maxima in the out-of-plane cross-polarized (p→s) scattering intensity distribution depicted in
Fig. 2(c) correspond to the peaks at θs ≈ 19◦ seen in the plot of

〈
∂Rsp/∂Ωs

〉
incoh presented in

Fig. 1(b).
The result that satellite peaks are observed in scattering processes in which the scattered light

is s polarized, independent of the polarization of the incident light, is an interesting result of the
present calculations. It may be connected with the fact that s-polarized light is re ected more
strongly from a dielectric surface than is p-polarized light.
In Fig. 3 we present results analogous to those presented in Fig. 1, but for angles of incidence

(θ0,φ0) = (5.19◦,45◦). In Fig. 3(a) we present results for the in-plane (φs = φ0) co-(p→p,
s→s) and cross-(p→s, s→p) polarized scattering, while in Fig. 3(b) we present results for out-
of-plane (φs = φ0± 90◦) co-(p→p, s→s) and cross-(p→s, s→p) polarized scattering. In the
results presented in Fig. 3(a) [3(b)] single-scattering processes give no contribution to the mean
differential re ection coef cient for −46.85◦ < θs < 65.57◦ (−54.59◦ < θs < 54.59◦). The
limits of these angular regions are clearly seen in these gures.
A well-de ned enhanced backscattering peak is seen in the results plotted in Fig. 3(a). Satel-

lite peaks are predicted by Eq. (14) to occur (in-plane) at θ (1,2)
s = −31.18◦ and 19.68◦ for

p-polarized incident light, and at θ (1,2)
s = −23.20◦ and 12.30◦ for s-polarized incident light,

when the angles of incidence were the same as in Fig. 3. These scattering angles are indi-
cated by vertical dotted lines in this gure. Peaks at θs =−23.20◦ and θs = 12.30◦ are present
in the s→s co-polarized scattering contribution to the mean differential re ection coef cient.
There is no suggestion of peaks at θs =−31.8◦ and 19.68◦ in the p→p co-polarized scattering
contribution to the mean differential re ection coef cient, nor any suggestions of peaks in the
cross-polarized (p→s, s→p) contribution to it.
The results for out-of-plane scattering presented in Fig. 3(b) show no enhanced backscat-

tering peaks. The reason for this is simply that since the abscissa points along φ = φ0± 90◦,
it does not cut through the backscattering peak, localized at (θs,φs) = (θ0,φ0+ 180◦). We do
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Fig. 2. The complete angular distribution of the mean differential re ection coef cient
〈∂Rαβ /∂Ωs〉incoh for the light scattered incoherently from the lm structure. The material
and experimental parameters assumed here are those used in obtaining the plots presented
in Fig. 1. Light of either p (left column) or s (right column) polarization is incident on the
structure. In (a) and (d) all (diffusely) scattered light is recorded. In (b) and (e) only the
p-polarized scattered light is recorded, while in (c) and (f) only the s-polarized scattered
light is recorded. The dark dot in each panel indicates the enhanced backscattering peak.
Note that the gray scale bar is cut at both ends in order to enhance the satellite rings. Also
note that the contribution from single scattering is suppressed, i.e. the differential re ection
coef cient is arti cially set to 0 for

∣∣∣q‖ −k‖∣∣∣> k−.
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Fig. 3. The same as Fig. 1, but for angles of incidence given by (θ0,φ0) = (5.19◦,45◦).

see some remainders of the satellite ring structure; the low peaks around θs ≈ ±20◦ are part
of the rings to the upper left in Fig. 4. As the rings decay in strength away from the direction
φ = φ0±90◦, they are weaker than what is seen in-plane.
As a necessary, but not suf cient, condition of the validity of our simulation results is energy

conservation. If all materials in the scattering system are lossless, i.e. Im(εi) = 0 (i = 1,2,3),
the power of the scattered light has to be equal to the power of the incident light. Under these
conditions, energy was conserved within 0.03% in our simulations.
In conclusion, in this paper we have presented a nonperturbative approach to the solution of
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Fig. 4. The same as Fig. 2, but for angles of incidence given by (θ0,φ0) = (5.19◦,45◦).
Note that the color bar is cut at both ends in order to enhance the satellite rings. Also
note that the contribution from single scattering is suppressed, i.e. the differential re ection
coef cient is arti cially set to 0 for

∣∣∣q‖ −k‖∣∣∣> k−.
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the reduced Rayleigh equation for the scattering of polarized light from a dielectric lm with
a two-dimensional randomly rough surface deposited on a planar metallic surface. We have
applied this result to calculate the contributions to the mean differential re ection coef cient
from the in-plane co- and cross-polarized components of the light scattered incoherently, as
well as from the out-of-plane co-and cross-polarized components of the light scattered incoher-
ently. The out-of-plane scattering contributions have not been calculated in earlier perturbative
studies of this problem [10, 14]. In addition, we have calculated the full angular distribution of
the intensity of the scattered light, which has helped to re ne the conclusions drawn from the
calculations of the mean differential re ection coef cient. The main physical result obtained
in this work is the demonstration that satellite peaks (or rings) can arise in scattering from the
lm structure studied here. This result is in agreement with the results of Soubret et al. [10]
but not with those of Kawanishi et al. [14]. A detailed study of the conditions under which
satellite peaks occur is lacking, but perhaps the approach developed here will be used to deter-
mine them. The work reported here also opens the door to the possibility of calculating other
properties of the light scattered from the lm system studied here, such as all the elements of
the associated Mueller matrix, and offers the possibility of designing such structures to possess
speci ed scattering properties. These are problems that have to be left to the future.
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Calculation of the Mueller matrix for scattering of light from two-dimensional rough surfaces
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We calculate all the elements of theMueller matrix for light scattering from a two-dimensional randomly rough
lossy metal surface. The calculations are carried out for arbitrary angles of incidence by the use of nonperturbative
numerical solutions of the reduced Rayleigh equations. We foresee that the ability to model polarization effects
in light scattering from surfaces will enable better interpretation of experimental data and allow for the design of
surfaces which possess useful polarization effects.

DOI: 10.1103/PhysRevA.86.031803 PACS number(s): 42.25.−p, 41.20.−q

Introduction. When light is scattered from a surface,
it carries a great deal of information about the statistical
properties of the surface in its polarization. Even when the
structures in question are beyond the imaging limit, polarized
optical scattering can be employed to distinguish between
material inhomogeneities, particles, or even buried defects and
the roughness of both interfaces of thin films [1]. However, to
extract information from experimental data, one has to be able
to model the polarization effects [2]. The ability to calculate
the polarization effects found in light scattering also opens the
door to the possibility of designing surfaces which produce
specified polarization properties in the scattered or transmitted
light [3,4].
All the information about the polarization transformations

light undergoes when scattered from rough surfaces is con-
tained in the Mueller matrix [5–7]. Still, very few calculations
of the Mueller matrix for a two-dimensional randomly rough
surface have so far been carried out by numerical methods,
largely because calculations of the scattering of light from
such surfaces are still computationally demanding [8–11].
An exception [12] is a calculation of the Mueller matrix

for perfectly conducting and metallic surfaces characterized
by a surface profile function that is a stationary, zero-mean,
isotropic, Gaussian random process, defined by a Gaussian
surface height autocorrelation function. These calculations
were carried out by a ray-tracing approach on the assumption
that the surface was illuminated at normal incidence. In this
work it was also shown that due to the assumptions of normal
incidence and the isotropy of the surface statistics, the elements
of the correspondingMueller matrix possess certain symmetry
properties. Experimental Mueller matrices have later been
interpreted using the ray-tracing method [13]. Zhang and
Bahar [14] carried out an approximate analytic calculation
of the elements of the Mueller matrix for the scattering of
light from two-dimensional randomly rough dielectric surfaces
coated uniformlywith a different dielectric material. A related,
yet qualitatively different, system is that of a slab of random

*Paul.Anton.Letnes@gmail.com
†aamaradu@uci.edu
‡Tor.Nordam@ntnu.no
§Ingve.Simonsen@ntnu.no

scatterers deposited on a substrate. The Mueller matrix of this
system was discussed by Lam and Ishimaru [15,16].
In this Rapid Communication we report a step toward

realizing the possibilities mentioned above. We present an
approach to calculating, for arbitrary angles of incidence, all
the elements of the Mueller matrix for the scattering of light
from a two-dimensional weakly rough surface. It is based on
nonperturbative numerical solutions of the reduced Rayleigh
equation for the scattering of p- and s-polarized light from a
two-dimensional rough penetrable surface [10,17].

Theory and computational method. The system we study
consists of vacuum in the region x3 > ζ (x‖), where x‖ =
(x1,x2,0), and a metal whose dielectric function, for angular
frequency ω, is ε(ω) in the region x3 < ζ (x‖). The surface
profile function ζ (x‖) is assumed to be a single-valued
function of x‖ that is differentiable with respect to x1 and x2,
and constitutes a stationary, zero-mean, isotropic, Gaussian
random process defined by 〈ζ (x‖)ζ (x′

‖)〉 = δ2W (|x‖ − x′
‖|).

The angle brackets here and in all that follows denote an
average over the ensemble of realizations of the surface profile
function, and δ = 〈ζ 2(x‖)〉1/2 is the rms height of the surface.
Each realization of the surface profile function was generated
numerically by the filtering method [11,18].
We begin by writing the electric field in the vacuum region

x3 > ζ (x‖) as the sum of an incident and a scattered field,
E(x,t) = [E(0)(x|ω)+ E(s)(x|ω)] exp(−iωt), where

E(0)(x|ω) = [E (0)p (k‖)ê(0)p (k‖)+ E (0)s (k‖)ê(0)s (k‖)
]

× exp[ik‖ · x‖ − iα0(k‖)x3], (1a)

E(s)(x|ω) =
∫

d2q‖
(2π )2

[E (s)p (q‖)ê(s)p (q‖)+ E (s)s (q‖)ê(s)s (q‖)
]

× exp[iq‖ · x‖ + iα0(q‖)x3]. (1b)

Here k‖ = (k1,k2,0), the unit polarization vectors are
ê(0)p (k‖) = (c/ω)[α0(k‖)k̂‖ + k‖x̂3], ê(0)s (k‖) = k̂‖ × x̂3,
ê(s)p (q‖) = (c/ω)[−α0(q‖)q̂‖ + q‖x̂3], ê(s)s (q‖) = q̂‖ × x̂3,
while α0(q‖) = [(ω/c)2 − q2‖ ]

1/2, with Reα0(q‖) > 0,
Imα0(q‖) > 0. Here, c is the speed of light in vacuum,
and a caret over a vector indicates that it is a unit
vector. In terms of the polar and azimuthal angles of
incidence (θ0,φ0) and scattering (θs,φs), the vectors k‖
and q‖ are given by k‖ = (ω/c) sin θ0(cosφ0, sinφ0,0) and
q‖ = (ω/c) sin θs(cosφs, sinφs,0).

031803-11050-2947/2012/86(3)/031803(5) ©2012 American Physical Society
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A linear relation exists between the amplitudes E (s)α (q‖) and
E (0)β (k‖), which we write in the form (α = p,s)

E (s)α (q‖) = ∑
β=p,s Rαβ(q‖|k‖)E (0)β (k‖). (2)

It was shown byBrown et al. [17] that the scattering amplitudes
Rαβ(q‖|k‖) satisfy the matrix integral equation (the reduced
Rayleigh equation)∫

d2q‖
(2π )2

I (α(p‖)− α0(q‖)|p‖ − q‖)
α(p‖)− α0(q‖)

N+(p‖|q‖)R(q‖|k‖)

= −I (α(p‖)+ α0(k‖)|p‖ − k‖)
α(p‖)+ α0(k‖)

N−(p‖|k‖), (3)

with Rpp and Rps forming the first row of the matrix R, where

I (γ |Q‖) =
∫

d2x‖ exp[−iγ ζ (x‖)] exp(−iQ‖ · x‖), (4)

and α(p‖) = [ε(ω)(ω/c)2 − p2‖]
1/2, with Reα(p‖) > 0,

Imα(p‖) > 0. The matricesN±(p‖|q‖) are given by

N±(p‖|q‖)

=
(

p‖q‖ ± α(p‖)p̂‖ · q̂‖α0(q‖) −ω
c
α(p‖)[p̂‖ × q̂‖]3

±ω
c
[p̂‖ × q̂‖]3α0(q‖) ω2

c2
p̂‖ · q̂‖

)
.

(5)

These equations were solved by the method described in detail
in Ref. [10]. First, a realization of the surface profile function
was generated on a grid of Nx × Nx points within a square

region of the x1x2 plane of edgeL. In evaluating the q‖ integral
in Eq. (3) the infinite limits of integration were replaced by
finite ones, |q‖| < Q/2, and the integral was carried out by
a two-dimensional version of the extended midpoint rule [19]
using a grid in the q1q2 plane that is determined by the Nyquist
sampling theorem and the properties of the discrete Fourier
transform. The function I (γ |Q‖) was evaluated by expanding
the integrand in Eq. (4) in powers of ζ (x‖) and calculating the
Fourier transform of ζ n(x‖) by the fast Fourier transform. The
resulting equations were solved by LU factorization.
The scattering amplitudes Rαβ(q‖|k‖) play a central role

in the calculation of the elements of the Mueller matrix. In
terms of these amplitudes the elements of the Mueller matrix
M are [20]

M11 = C(|Rpp|2 + |Rsp|2 + |Rps |2 + |Rss |2),
M12 = C(|Rpp|2 + |Rsp|2 − |Rps |2 − |Rss |2),
M13 = C(RppR∗

ps + RspR∗
ss + RpsR

∗
pp + RssR

∗
sp),

M14 = iC(RppR∗
ps + RspR∗

ss − RpsR
∗
pp − RssR

∗
sp),

M21 = C(|Rpp|2 − |Rsp|2 + |Rps |2 − |Rss |2),
M22 = C(|Rpp|2 − |Rsp|2 − |Rps |2 + |Rss |2),
M23 = C(RppR∗

ps − RspR∗
ss + RpsR

∗
pp − RssR

∗
sp),

M24 = iC(RppR∗
ps − RspR∗

ss − RpsR
∗
pp + RssR

∗
sp),

M31 = C(RppR∗
sp + RspR∗

pp + RpsR
∗
ss + RssR

∗
ps),

M32 = C(RppR∗
sp + RspR∗

pp − RpsR
∗
ss − RssR

∗
ps),
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FIG. 1. (Color online) Color-level plots
of the contribution to the Mueller matrix
elements from the light scattered incoherently
as functions of q1 and q2 for angles of
incidence (θ0,φ0) = (2◦,45◦). An ensemble
consisting of Np = 10 000 surface realiza-
tions was used in obtaining these results.
The elements, 〈Mij 〉incoh (i,j = 1,2,3,4), are
organized as a matrix with 〈M11〉incoh in the
top left corner, 〈M12〉incoh top row and second
column, etc. The white spots indicate the
specular direction in reflection.
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FIG. 2. (Color online) Same as Fig. 1,
but now for angles of incidence (θ0,φ0) =
(25◦,45◦).

M33 = C(RppR∗
ss + RspR∗

ps + RpsR
∗
sp + RssR

∗
pp),

M34 = iC(RppR∗
ss + RspR∗

ps − RpsR
∗
sp − RssR

∗
pp),

M41 = −iC(RppR∗
sp − RspR∗

pp + RpsR
∗
ss − RssR

∗
ps),

M42 = −iC(RppR∗
sp − RspR∗

pp − RpsR
∗
ss + RssR

∗
ps),

M43 = −iC(RppR∗
ss − RspR∗

ps + RpsR
∗
sp − RssR

∗
pp),

M44 = C(RppR∗
ss − RspR∗

ps − RpsR
∗
sp + RssR

∗
pp), (6)

where

C = 1

2L2

( ω

2πc

)2 cos2 θs

cos θ0
, (7)

and L2 is the area of the plane x3 = 0 covered by the rough
surface. For clarity, we note that the conventions used in
deriving the above expressions for the elements of the Mueller
matrix are as follows. The Stokes parameters are defined as⎛

⎜⎜⎜⎝
I

Q

U

V

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

|Ep|2 + |Es |2
|Ep|2 − |Es |2
2 Re(EpE∗

s )

2 Im(EpE∗
s )

⎞
⎟⎟⎟⎠, (8)

where the superscript ∗ denotes complex conjugation, and
Ep and Es are the amplitudes of the p- and s-polarized
components of the electric field, respectively. It is also of
importance to note that the definition of the handedness of

circularly polarized light is opposite to that of, e.g., Hauge
et al. [21].
As we are concerned with scattering from a randomly

rough surface, it is the average, 〈M〉, of the Mueller matrix
over the ensemble of realizations of the surface profile
function that we seek. In evaluating an average of the form
〈RαβR∗

γ δ〉 we can write Rαβ as the sum of its mean value
and its fluctuation about the mean, Rαβ = 〈Rαβ〉 + (Rαβ −
〈Rαβ〉). We then obtain the result 〈RαβR∗

γ δ〉 = 〈Rαβ〉〈R∗
γ δ〉 +

(〈RαβR∗
γ δ〉 − 〈Rαβ〉〈R∗

γ δ〉). The first term on the right-hand
side of this equation arises in the contribution to an element
of the ensemble averaged Mueller matrix from the light
scattered coherently (specularly); the second term arises in
the contribution to that ensemble averaged matrix element
from the light scattered incoherently (diffusely). It is the latter
contribution, 〈M〉incoh, that we calculate.

Results. We have calculated in this way the 16 elements of
the Mueller matrix when light of wavelength λ = 457.9 nm is
incident on a two-dimensional randomly rough silver surface
whose dielectric function at this wavelength is ε(ω) = −7.5+
0.24i [22]. The roughness of the surface is defined by a sur-
face height autocorrelation function W (|x‖|) = exp(−x2‖/a

2),
where a = λ/4 and the rms height δ = λ/40. For the numerical
parameters we used L = 25λ and Nx = 319, which implies
thatQ/2 = 3.2(ω/c) is the cutoff in the integral in Eq. (3) [10].
The calculated Mueller matrices were found to be physically
realizable and therefore self-consistent by the method of
Ref. [23].
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FIG. 3. (Color online) The incoherent contribution to the diagonal
Mueller matrix elements, 〈Mii〉incoh, in the plane of incidence
(parameters as in Fig. 2). The vertical dotted line indicates the
backscattering direction. The lines, from top to bottom, correspond
to i = 1,2,4 and 3.

The results presented in Fig. 1 were obtained for angles
of incidence (θ0,φ0) = (2◦,45◦), i.e., for essentially normal
incidence. The first thing to notice from Fig. 1 is that the
individual matrix elements possess the symmetry properties
predicted by Bruce [12,24]. The elements of the first and last
column are circularly symmetric; each element of the second
and third columns is invariant under a combined 90◦ rotation
about the origin and a change of sign; and the elements of
the second column are 45◦ rotations of the elements of the
third column in the same row [25]. Note that the elements
〈M31〉incoh, 〈M41〉incoh, 〈M14〉incoh, and 〈M24〉incoh are zero to
the precision used in this calculation. However, simulations
indicate that this does not hold for anisotropic surfaces.
The results presented in Fig. 2 were obtained for angles of

incidence (θ0,φ0) = (25◦,45◦), and display some interesting
features. The elements 〈M11〉incoh, 〈M22〉incoh, and 〈M33〉incoh
contain a (weak) enhanced backscattering peak at q‖ = −k‖
(Fig. 3). The absolute value of the element 〈M44〉incoh has a dip
in the retroreflection direction. This dip is not present in the
results of a calculation based on small-amplitude perturbation
theory to the lowest (second) order in the surface profile
function, and is therefore a multiple-scattering effect, just as
the enhanced backscattering peak is. In contrast to what was
the case for normal incidence, the elements 〈M31〉incoh and
〈M24〉incoh are no longer zero.

If we denote the ensemble average of the contribu-
tion to a normalized element of the Mueller matrix from
the light that has been scattered incoherently by mij =
〈Mij 〉incoh/〈M11〉incoh, we can estimate the order of magnitude
of the Mueller matrix elements by calculating the quantities
sij = 〈|mij (q‖)|〉q‖ , where

〈f (q‖)〉q‖ =
∫

d2q‖ f (q‖)
c2

πω2
, (9)

and the integral over q‖ is taken over the circular region 0 <

q‖ < ω/c. It was found that s11, s22, s23, s32, s33, s44 are of
O(1), s12, s13, s21, s34, s42, s43 are of O(0.1), and s14, s24, s31,
s41 are of O(0.01). These results are only weakly dependent
on the polar angle of incidence θ0, for the values of θ0 assumed
in this study.

Conclusion. We have presented an approach to the calcula-
tion of all 16 elements of the Mueller matrix for light scattered
from a two-dimensional, randomly rough, lossy metal surface,
for arbitrary values of the polar and azimuthal angles of
incidence. It is based on a rigorous numerical solution of
the reduced Rayleigh equation for the scattering of p- and
s-polarized light from a two-dimensional rough surface of a
penetrable medium that captures multiple-scattering processes
of all orders. The results display multiple-scattering effects in
certain matrix elements, such as an enhanced backscattering
peak in the retroreflection direction, and an unexpected dip
in the same direction. The matrix elements also display
symmetry properties that, for normal incidence, agree with
those predicted by Bruce [12].
The approach used and the results presented in this Rapid

Communication will lead to a better understanding of the
polarimetric properties of random surfaces. Such knowledge
may be critical for improved photovoltaic and remote sensing
applications. It also has the potential to be used in engineering
surface structures which produce well-defined polarization
properties in scattered and transmitted light.
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Abstract: A formalism is introduced for the non-perturbative, purely

numerical, solution of the reduced Rayleigh equation for the scattering

of light from two-dimensional penetrable rough surfaces. As an example,

we apply this formalism to study the scattering of p- or s-polarized light

from two-dimensional dielectric or metallic randomly rough surfaces by

calculating the full angular distribution of the co- and cross-polarized

intensity of the scattered light. In particular, we present calculations of

the mean differential reflection coefficient for glass and silver surfaces

characterized by (isotropic or anisotropic) Gaussian and cylindrical power

spectra. The proposed method is found, within the validity of the Rayleigh

hypothesis, to give reliable results. For a non-absorbing metal surface the

conservation of energy was explicitly checked, and found to be satisfied to

within 0.03%, or better, for the parameters assumed. This testifies to the

accuracy of the approach and a satisfactory discretization.
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1. Introduction

Wave scattering from rough surfaces is an old discipline which keeps attracting a great deal

of attention from the scientific and technological community. Several important technologies

in our society rely on such knowledge, with radar being a prime example. In the past, the in-

teraction of light with rough surfaces was often considered an extra complication that had to

be taken into account in order to properly interpret or invert scattering data. However, with the

advent of nanotechnology, rough structures can be used to design novel materials with tailored

optical properties. Examples include: metamaterials [1, 2], photonic crystals [3], spoof plas-

mons [4], optical cloaking [5–7], and designer surfaces [8, 9]. These developments have made

it even more important to have available efficient and accurate simulation tools to calculate both

the far- and near-field behavior of the scattered and transmitted fields for any frequency of the

incident radiation, including potential resonance frequencies of the structure.

Lord Rayleigh was the first to perform systematic studies of wave scattering from rough sur-

faces when, in the late 1800s, he studied the intensity distribution of a wave scattered from a

sinusoidal surface [10,11]. More than three decades later, Mandel’shtam studied light scattering

from randomly rough surfaces [12] thereby initiating the field of wave scattering from surface
disordered systems. Since the initial publication of these seminal works, numerous studies on

wave scattering from randomly rough surfaces have appeared in the literature [13–19], and

several new multiple scattering phenomena have been predicted and confirmed experimentally.

These phenomena include the enhanced backscattering and enhanced transmission phenom-

ena, the satellite peak phenomenon, and coherent effects in the intensity-intensity correlation

functions [19–24].

These studies, and the methods they use, can be categorized as either perturbative or purely

numerical (and non-pertubative). While the former group of methods is mainly limited to

weakly rough surfaces, and therefore have limited applicability, the latter group of methods can

be applied to a wider class of surface roughnesses. Rigorous numerical methods can in princi-

ple be used to study the wave scattering from surfaces of any degree of surface roughness. Such

simulations are routinely performed for systems where the interface has a one-dimensional

roughness, i.e., where the surface structure is constant along one of the two directions of the

mean plane [19, 25]. However, for the practically more relevant situation of a two-dimensional

rough surface, the purely numerical and rigorous methods are presently less used due to their

computationally intensive nature. The reason for this complexity is the fact that for a randomly



rough surface there is no symmetry or periodicity in the surface structure that can be used to

effectively reduce the simulation domain. For a periodic surface, it is sufficient to simulate a

single unit cell, while for a random surface the unit cell is in principle infinite.

A wide range of simulation methods are currently available for simulating the interaction of

light with matter, including the finite-difference time-domain (FDTD) method [26], the finite-

element method (FEM) [27,28], the related surface integral equation techniques also known as

the boundary element method (BEM) or the method of moments (MoM) [29–33], the reduced

Rayleigh equation (RRE) technique [18, 34–40], and spectral methods [32].

The FDTD and FEM methods discretize the whole volume of the simulation domain. Due

to the complex and irregular shape of a (randomly) rough surface, it is often more convenient,

and may give more accurate results (for the same level of numerical complexity) [41], to base

numerical simulations on methods where only the surface itself needs to be discretized. This

is the case, for example, for the surface integral technique and the reduced Rayleigh equation

methods.

The reduced Rayleigh equation is an integral equation where the unknown is either the scat-

tering amplitude or the transmission amplitude. In the former (latter) case, one talks about the

reduced Rayleigh equation for reflection (transmission). For reflection this equation was origi-

nally derived by Brown et al. [34], and subsequently by Soubret et al. [39,40]. Later it has also
been derived for transmission [42] and film geometries [39, 43, 44].

In the past, the surface integral technique has been used to study light scattering from two-

dimensional randomly rough, perfectly conducting or penetrable surfaces [33, 45, 46]. How-

ever, to date, a direct numerical and non-perturbative solution of the two-dimensional reduced

Rayleigh equation has not appeared in the literature, even if its one-dimensional analog has been

solved numerically and has been used to study the scattering from, and transmission through,

one-dimensional rough surfaces [35–37]. The lesson learned from the one-dimensional scatte-

ring studies reported in Refs. [35–37] is that simulations based on a direct numerical solution

of the reduced Rayleigh equation may give accurate non-perturbative results for systems where

alternative methods struggle to give the same level of accuracy. Moreover, the reduced Rayleigh

method also requires less memory for the same surface dimensions when compared to, e.g., the

rigorous surface integral technique.

The main aim of this paper is to present a numerical method and formalism for the solution of

the two-dimensional reduced Rayleigh equation for reflection. While we exclusively consider

reflection, the formalism for transmission will be almost identical, and the resulting equation

will have a similar form as for reflection. Additionally, the equation for transmission or reflec-

tion for a film geometry, i.e., for a film of finite thickness on top of a substrate, where only one

interface is rough, will also have a similar form. The method presented will be illustrated by

applying it to the study of the scattering of p- or s-polarized light from two-dimensional metal-

lic or dielectric media separated from vacuum by an isotropic or anisotropic randomly rough

surface.

This paper is organized as follows: First, in Sec. 2 we present the scattering geometry to

be considered. We will then present some relevant scattering theory, including the reduced

Rayleigh equation for the geometry under study (Sec. 3), followed by a detailed description of

how the equation can be solved numerically (Sec. 4). Next, we will present some simulation

results obtained by the introduced method (Sec. 5). We then discuss some of the computational

challenges of this method (Sec. 6), and, finally, in Sec. 7 we draw some conclusions.

2. Scattering Geometry

We consider a system where a rough surface separates two regions. Region 1 is assumed to be

vacuum (ε1 = 1), and region 2 is filled with a metal or dielectric characterized by a complex
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Fig. 1: (Color online) A sketch of the scattering geometry assumed in this work. The figure also

shows the coordinate system used, angles of incidence (θ0,φ0) and scattering (θs,φs), and the
corresponding lateral wavevectors k‖ and q‖, respectively.

dielectric function ε2(ω), where the angular frequency is ω = 2πc/λ , with λ being the wave-
length of the incident light in vacuum and c the speed of light in vacuum. The height of the
surface measured in the positive x3 direction from the x1x2-plane is given by the single-valued
function x3 = ζ (x‖), where x‖ = (x1,x2,0), which is assumed to be at least once differentiable
with respect to x1 and x2. Angles of incidence (θ0,φ0) and scattering (θs,φs) are defined positive
according to the convention given in Fig. 1.

In principle, the theory to be presented in Sec. 3 can be used to calculate the scattering of

light from any surface, provided it is not too rough. However, in this paper, we will consider

randomly rough surfaces where ζ (x‖) constitutes a stationary random process defined by〈
ζ (x‖)

〉
= 0,〈

ζ (x‖)ζ (x‖′)
〉
= δ 2W (x‖ −x‖′),

(1)

where the angle brackets denote an average over an ensamble of surface realizations. In writing

Eqs. (1) we have defined the root-mean-square height of the surface, δ =
〈
ζ 2(x‖)

〉1/2
, and

W (x‖ − x‖′) denotes the height-height auto-correlation function of the surface, normalized so
that W (0) = 1 [19]. According to the Wiener-Khinchin theorem [47], the power spectrum of
the surface profile function is given by

g(k‖) =
∫
d2x‖ W (x‖)exp

(−ik‖ ·x‖
)
. (2)

The power spectra that will be considered in this work are of either the Gaussian form [33]

g(k‖) = πa1a2 exp
(
−k21a

2
1

4
− k22a

2
2

4

)
, (3)

where ai (i = 1,2) denotes the lateral correlation length for direction i, or the cylindrical
form [38]

g(k‖) =
4π

k2+− k2−

[
θ(k‖ − k−)θ(k+− k‖)

]
, (4)



where k‖ = |k‖|, θ denotes the Heaviside unit step function, and k± are wavenumber cutoff
parameters, with k− < k+. The cylindrical form in Eq. (4) is a two-dimensional generalization of
the power spectrum used in the experiments whereWest and O’Donnell confirmed the existence

of the enhanced backscattering phenomenon for weakly rough surfaces [21].

3. Scattering Theory

We consider a linearly p- or s-polarized plane wave which is incident on the surface from

region 1, with the electric field given by E(0)(x; t) = E(0)(x|ω)exp(−iωt) where

E(0)(x|ω) = E (0)(k‖)exp
[
ik‖ ·x‖ − iα1(k‖)x3

]
, (5a)

with

E (0)(k‖) = − c
ω
[
k̂‖α1(k‖)+ x̂3k‖

]
E

(0)
p (k‖)+

(
x̂3× k̂‖

)
E

(0)
s (k‖), (5b)

and

α1(k‖) =
(

ω2

c2
− k2‖

)1/2
, Reα1 ≥ 0, Imα1 ≥ 0. (5c)

Here, and in the rest of the paper, a caret over a vector indicates a unit vector. The expressions in

front of the amplitudes E
(0)

α (k‖) (α = p,s) in Eq. (5b) correspond to unit polarization vectors for
incident light of linear polarization α . Moreover, k‖ = (k1,k2,0) denotes the lateral component
of the wave vector k = k‖ −α(k‖)x̂3. When the lateral wavenumber satisfies k‖ ≤ ω/c, as will
be assumed here, k‖ is related to the angles of incidence according to

k‖ =
ω
c
sinθ0 (cosφ0,sinφ0,0) , (6)

where c denotes the speed of light in vacuum and θ0 and φ0 are the polar and azimuthal angles of
incidence, respectively (Fig. 1). When writing the field of incidence, E(0)(x; t), a time harmonic
dependence of the form exp(−iωt) was assumed. A similar time dependence will be assumed
for all field expressions, but not indicted explicitly.

Above the surface roughness region, i.e., for x3>maxζ (x‖), the scattered field can be written
as a superposition of upwards propagating reflected plane waves:

E(s)(x|ω) =
∫ d2q‖

(2π)2
E (s)(q‖)× exp

[
iq‖ ·x‖+ iα1(q‖)x3

]
, (7a)

where

E (s)(q‖) =
c
ω
[
q̂‖α1(q‖)− x̂3q‖

]
E

(s)
p (q‖)+

(
x̂3× q̂‖

)
E

(s)
s (q‖). (7b)

The integration in Eq. (7a) is over the entire plane, including the evanescent region q‖ > ω/c.
Therefore, both propagating and evanescent modes are included in E(s)(x|ω).
We will assume that a linear relationship exists between the amplitudes of the incident and

the scattered fields, and we write (for α = p,s)

E
(s)

α (q‖) = ∑
β=p,s

Rαβ (q‖|k‖)E
(0)

β (k‖). (8)



Here we have introduced the so-called scattering amplitude Rαβ (q‖|k‖), which describes how
incident β -polarized light characterized by a lateral wave vector k‖ is converted by the surface
roughness into scattered light of polarization α and lateral wave vector q‖. When q‖ ≤ ω/c, the
wave vector q‖ is related to the angles of scattering (θs,φs) by

q‖ =
ω
c
sinθs (cosφs,sinφs,0) . (9)

Below the surface region, i.e., for x3 <min ζ (x‖), the transmitted electric field can be written
as

E(t)(x‖|ω) =
∫ d2p‖

(2π)2
E (t)(p‖)× exp

[
ip‖ ·x‖ − iα2(p‖)x3

]
(10a)

with

E (t)(p‖) = − 1√
ε2(ω)

c
ω
[
p̂‖α2(p‖)+ x̂3p‖

]
E

(t)
p (p‖)+

(
x̂3× p̂‖

)
E

(t)
s (p‖). (10b)

In writing Eqs. (10) we have introduced wave vectors of the transmitted field p= p‖−α2(p‖)x̂3,
where

α2(p‖) =
[

ε2(ω)
ω2

c2
− p2‖

]1/2
, Reα2 ≥ 0, Imα2 ≥ 0. (11)

In complete analogy to what was done for reflection, a transmission amplitude Tαβ (p‖|k‖)
may be defined via the following linear relation between the amplitudes of the incident and

transmitted fields (α = p,s)

E
(t)

α (p‖) = ∑
β=p,s

Tαβ (p‖|k‖)E
(0)

β (k‖). (12)

Since the form of the electric fields given by Eqs. (5), (7), and (10) apply far away from the

surface region, they are referred to as the asymptotic forms of the electric field. These equations
automatically satisfy the boundary conditions at infinity.

In passing we note that once the incident field has been specified, the scattered and transmit-

ted fields are fully specified outside the surface roughness region if the reflection [Rαβ (q‖|k‖)]
and transmission [Tαβ (p‖|k‖)] amplitudes are known. We will now address how the reflection
amplitude can be calculated.

3.1. The Rayleigh Hypothesis

Above the surface, i.e., in the region x3 > maxζ (x‖), the total electric field is equal to the
sum of the incident and the scattered field, E(0)(x|ω) + E(s)(x|ω). Below the surface, in

the region x3 < minζ (x‖), it equals the transmitted field, E(t)(x|ω). In the surface rough-
ness region, minζ (x‖) ≤ x3 ≤ maxζ (x‖), these forms of the total field will not generally
be valid. In particular, when we are above the surface but still below its maximum point,

i.e., ζ (x‖) ≤ x3 < maxζ (x‖), the expression for the scattered field will also have terms con-
taining exp

[
iq‖ ·x‖ − iα1(q‖)x3

]
. Similarly, the transmitted field in the surface region has to

contain an additional term similar to Eq. (10a) but with the exponential function replaced by

exp
[
iq‖ ·x‖+ iα2(q‖)x3

]
(and a different amplitude).

If the surface roughness is sufficiently weak, however, the asymptotic form of the fields,

Eqs. (5), (7), and (10), can be assumed to be a good approximation to the total electric field in



the surface roughness region. This assumption is known as the Rayleigh hypothesis [10,11,17],
in honor of Lord Rayleigh, who first used it in his seminal studies of wave scattering from

sinusoidal surfaces [10, 11]. For a (one-dimensional) sinusoidal surface, x3 = ζ0 sin(Λx1), the
criterion for the validity of the Rayleigh hypothesis, and thus equations that can be derived from

it (like the reduced Rayleigh equation to be introduced below), is known to be ζ0Λ < 0.448,
independent of the wavelength of the incident light [48, 49]. For a randomly rough surface,

however, the absolute limit of validity of this hypothesis is not generally known, though some

numerical studies have been devoted to finding the region of validity for random surfaces [50].

Even if no absolute criterion for the validity of the Rayleigh hypothesis for randomly rough sur-

faces is known, it remains true that it is a small-slope hypothesis. In particular, if the randomly

rough surface is characterized by an rms height δ , and a correlation length a (see Sec. 2 and
Ref. [19] for details), there seems to be a consensus in the literature on the Rayleigh hypothesis

being valid if δ/a 	 1 [17, 50]. We stress that the validity of the Rayleigh hypothesis does not

require the amplitude of the surface roughness to be small, only its slope.

3.2. The Reduced Rayleigh Equations

Under the assumption that the Rayleigh hypothesis is valid, the total electric field in the surface

region, minζ (x‖) < x3 < maxζ (x‖), can be written in the form given by Eqs. (5), (7) and

(10) [with Eqs. (8) and (12)]. Hence, these asymptotic fields can be used to satisfy the usual

boundary conditions on the electromagnetic field at the rough surface x3 = ζ (x‖) [51, 52]. In
this way, one obtains the so-called Rayleigh equations, a set of coupled inhomogeneous integral

equations, which the reflection and transmission amplitudes should satisfy.

In the mid-1980s, it was demonstrated by Brown et al. [34] that either the reflection or trans-
mission amplitude could be eliminated from the Rayleigh equations, resulting in an integral

equation for the remaining amplitude only. Since this latter integral equation contains only the

field above (below) the rough surface, it has been termed the reduced Rayleigh equation for
reflection (transmission). Subsequently, reduced Rayleigh equations for two-dimensional film

geometries, i.e., a film of finite thickness on top of an infinitely thick substrate, where only

one interface is rough, was derived by Soubret et al. [39, 40] and Leskova [43, 44]. Moreover,
reduced Rayleigh equations for reflection from clean, perfectly conducting, two-dimensional

randomly rough surfaces [53] and reduced Rayleigh equations for transmission through clean,

penetrable two-dimensional surfaces [42] have been derived.

For the purposes of the present study, we limit ourselves to a scattering system consisting

of a clean, penetrable, two-dimensional rough surface x3 = ζ (x‖) (Sec. 2). If the scattering
amplitudes are organized as the 2×2 matrix

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
, (13)

the reduced Rayleigh equation (for reflection) for this geometry can be written in the form [38–

40]

∫ d2q‖
(2π)2

I
(
α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

M+(p‖|q‖)R(q‖|k‖)

=− I
(
α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

M−(p‖|k‖),
(14a)

where

I(γ|Q‖) =
∫
d2x‖ exp

[−iγζ (x‖)
]
exp

(−iQ‖ ·x‖
)
, (14b)



and

M±(p‖|q‖) =

(
p‖q‖ ±α2(p‖)p̂‖ · q̂‖α1(q‖) −ω

c α2(p‖)
[
p̂‖ × q̂‖

]
3

±ω
c

[
p̂‖ × q̂‖

]
3

α1(q‖) ω2
c2 p̂‖ · q̂‖

)
, (14c)

where the integrals in Eqs. (14a) and (14b) are over the entire q‖-plane and x‖-plane, respec-
tively. Reduced Rayleigh equations for transmission, or film geometries with only one rough

interface, will have a similar structure to Eq. (14) [39, 40], and can be solved in a completely

analogous fashion.

It should be mentioned that the reduced Rayleigh equation can serve as a starting point

for most, if not all, perturbation theoretical approaches to the study of scattering from rough

surfaces [19]. For example, McGurn and Maradudin studied the scattering of light from two-

dimensional rough surfaces based on the reduced Rayleigh equation, going to fourth order

in the expansion in the surface profile function, and demonstrating the presence of enhanced

backscattering [38].

3.3. Mean Differential Reflection Coefficient

The solution of the reduced Rayleigh equation determines the scattering amplitudes

Rαβ (q‖|k‖). While this quantity completely specifies the total field in the region above the
surface, it is not directly measurable in experiments. A more useful quantity is the mean dif-

ferential reflection coefficient (DRC), which is defined as the time-averaged fraction of the

incident power scattered into the solid angle dΩs about the scattering direction q. The mean
DRC is defined as [38]〈∂Rαβ

∂Ωs

〉
=
1

L2
ω2

4π2c2
cos2 θs

cosθ0

〈∣∣Rαβ (q‖|k‖)
∣∣2〉 , (15)

where L2 is the area of the plane x3 = 0 covered by the rough surface. In this work, we are
mainly interested in diffuse (incoherent) scattering. Since we consider weakly rough surfaces,

the specular (coherent) scattering will dominate, and it will be convenient to separate the mean

DRC into its coherent and incoherent parts. By coherent scattering, we mean the part of the

scattered light which does not cancel when the ensemble average of Rαβ is taken, i.e., the part
where the scattered field is in phase between surface realizations. Conversely, the incoherent

part is the part which cancels in the ensemble average. The component of the mean DRC from

incoherent scattering is [38]〈∂Rαβ

∂Ωs

〉
incoh

=
1

L2
ω2

4π2c2
cos2 θs

cosθ0

[〈∣∣Rαβ (q‖|k‖)
∣∣2〉− ∣∣〈Rαβ (q‖|k‖)

〉∣∣2] . (16)

The contribution to the mean DRC from the coherently scattered light is given by the difference

between Eqs. (15) and (16).

3.4. Conservation of Energy

As a way to check the accuracy of our results, it is useful to investigate energy conservation.

If we consider a metallic substrate with no absorption, the reflected power should be equal

to the incident power. The fraction of the incident light of polarization β which is scattered

into polarization α is given by the integral of the corresponding mean DRC over the upper

hemisphere:

Uαβ =
∫
dΩs

〈∂Rαβ

∂Ωs

〉
. (17)



For a non-absorbing metal, if we send in light of polarization β , we should have ∑α Uαβ = 1,
if energy is conserved. While the conservation of energy is useful as a relatively simple test, it

is important to note that it is a necessary, but not sufficient, condition for correct results.

4. Numerical Solution of the Reduced Rayleigh Equation

The starting point for the numerical solution of the reduced Rayleigh equation is a discretely

sampled surface, from which we wish to calculate the reflection. We will limit our discussion

to quadratic surfaces of size L×L, sampled on a quadratic grid of Nx ×Nx points with a grid

constant

Δx =
L
Nx

. (18)

In this paper, we will present results for numerically generated random surfaces. These are

generated by what is known as the Fourier filtering method. Briefly, it consists of generating

uncorrelated random numbers with a Gaussian distribution, transforming them to Fourier space,

filtering them with the square root of the surface power spectrum g(k‖), and transforming them
back to real space. The interested reader is referred to, e.g., Refs. [25, 33].

The next step towards the numerical solution of the reduced Rayleigh equation is the evalua-

tion of the integrals I(γ|Q‖) defined in Eq. (14b). These integrals are so-called Fourier integrals
and care should be taken when evaluating them due to the oscillating integrands [54]. Using

direct numerical integration routines for their evaluation will typically result in inaccurate re-

sults. Instead, a (fast) Fourier transform technique with end point corrections may be adapted

for their evaluation, and the details of the method is outlined in Ref. [54]. However, these cal-

culations are time consuming, since I(γ|Q‖) must be evaluated for all values of the arguments
γ = α1(p‖)−α2(q‖) and γ = α1(p‖)−α2(k‖) 1.
Instead, a computationally more efficient way of evaluating I(γ|Q‖) is to assume that the

exponential function exp
[−iγζ (x‖)

]
, present in the definition of I(γ|Q‖), can be expanded in

powers of the surface profile function, and then evaluating the resulting expression term-by-

term by Fourier transform. This gives

I(γ|Q‖) =
∞

∑
n=0

(−iγ)n

n!
ζ̂ (n)(Q‖), (19a)

where ζ̂ (n)(Q‖) denotes the Fourier transform of the nth power of the profile function, i.e.,

ζ̂ (n)(Q‖) =
∫
d2x‖ζ n(x‖)exp

(−iQ‖ ·x‖
)
. (19b)

In practice, the sum in Eq. (19a) will be truncated at a finite value n = J, and the Fourier
transforms are calculated using a fast Fourier transform (FFT) algorithm.

The advantage of using Eqs. (19) for calculating I(γ|Q‖), rather than the method of Ref. [54],
is that the Fourier transform of each power of ζ (x‖) can be performed once, and changing the
argument γ in I(γ|Q‖) will not require additional Fourier transforms to be evaluated. This re-
sults in a significant reduction in computational time. The same method has previously been

applied successfully to the numerical solution of the one-dimensional reduced Rayleigh equa-

tion [35–37].

It should be noted that the Taylor expansion used to arrive at Eq. (19) requires that∣∣γζ (x‖)
∣∣	 1 to converge reasonably fast, putting additional constraints on the amplitude of

1For the calculations used to generate the results presented in this paper, this would amount to evaluating I(γ|Q‖)
on the order of 1010 times.



the surface roughness which may be more restrictive than those introduced by the Rayleigh

hypothesis. Hence, surfaces exist for which the Rayleigh hypothesis is satisfied, but the above

expansion method will not converge, and the more time-consuming approach of Ref. [54] will

have to be applied.

Next, we need to truncate and discretize the integral over q‖ in Eq. (14a). We discretize q‖
on a grid of equidistant points, with spacing Δq, such that

q‖i j =

(
−Q

2
+ iΔq,−Q

2
+ jΔq,0

)
, (20)

where i, j = 0,1,2, . . . ,Nq − 1, and Q = Δq(Nq − 1). Here, Nq denotes the number of points

along each direction of the grid. The length of the vector q‖i j we denote by q‖i j = |q‖i j|. Ad-
ditionally, we limit the integration over q‖ to the region q‖ ≤ Q/2. The choice of a circular
integration domain reduces the computational cost, and will be discussed in more detail in

Sec. 6. Converting the integral into a sum by using a two-dimensional version of the standard

mid-point quadrature scheme, we get the equation:

(
Δq
2π

)2
∑

q‖i j
≤Q/2

I
(

α2(p‖)−α1(q‖i j)|p‖ −q‖i j

)
α2(p‖)−α1(q‖i j)

M+(p‖|q‖i j)R(q‖i j|k‖) =

− I
(
α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

M−(p‖|k‖).

(21)

Here, the sum is to be taken over all q‖i j such that q‖i j ≤ Q/2, where q‖i j =
∣∣∣q‖i j

∣∣∣. This
sum yields a matrix equation where the unknowns are the four components of R(q‖i j|k‖). It is
evident from Eq. (8) that if we consider incident light of either p or s polarization, we need only

calculate two of the components of the scattering amplitude to fully specify the reflected field.

Hence, we solve separately for either p-polarized incident light, i.e., Rpp and Rsp, or s-polarized

incident light, i.e., Rss and Rps. In either case, we have twice as many unknowns as the number

of values of q‖i j included in the sum in Eq. (21). Note that the left hand side of the equation

system is the same for both incident polarizations, and will also remain the same for all angles

of incidence, as k‖ only enters at the right hand side of Eq. (21).
In order to solve for all unknowns, we need to discretize p‖ as well, to obtain a closed set

of linear equations. Using the same grid for p‖ as for q‖ will give us the necessary number
of equations, as Eq.(21) yields two equations for each value of p‖. Since we integrate over a
circular q‖ domain, with q‖ discretized on a quadratic grid, the exact number of values of q‖i j

will depend on the particular values ofQ and Nq, but will be approximately (π/4)N2q .
In order to take advantage of the method for calculating I(γ|Q‖) described by Eq. (19), it is

essential that all possible values of p‖ −q‖ and p‖ −k‖ [see Eq. (21)] fall on the grid of wave
vectors Q‖ resolved by the Fourier transform of the surface profile we used in that calculation.
First, we note that when p‖ and q‖ are discretized on the same quadratic grid, the number of
possible values for each component of p‖ −q‖ will always be an odd number, 2Nq −1, where
Nq is the number of possible values for each component of p‖ and q‖. Thus, by choosing Nq
such that 2Nq − 1 equals the number of elements along each axis of the FFT of the surface
profile we used to calculate the integrals in Eq. (19b), we ensure that the required number of



points is resolved by the FFT 2. Hence, we choose

Nq =

⌊
Nx +2

2

⌋
, (22)

where �x� is the floor function of x, which is equal to the largest integer less than or equal to x.
Next, we let Δq equal the resolution of the FFT [54], i.e.,

Δq =
2π
L

(23)

and we letQ be equal to the highest wavenumber resolved by the FFT [54],

Q = Δq�Nx/2�. (24)

In the end, we get the equation

(
Δq
2π

)2
∑∣∣∣q‖i j

∣∣∣≤Q/2

I
(

α2(p‖kl)−α1(q‖i j)|p‖kl −q‖i j

)
α2(p‖kl)−α1(q‖i j)

M+(p‖kl |q‖i j)R(q‖i j|k‖mn)

=−
I
(

α2(p‖kl)+α1(k‖mn)|p‖kl −k‖mn

)
α2(p‖kl)+α1(k‖mn)

M−(p‖kl |k‖mn),

(25)

where q‖i j, as well as p‖kl and k‖mn, are defined on the grid given by Eq. (20), with

i, j,k, l,m,n = 0,1,2, . . . ,Nq − 1, and where Nq, Δq and Q are given by Eqs. (22), (23) and

(24), respectively.

Evaluating Eq. (25) for all values of p‖kl satisfying p‖kl ≤ Q/2, and assuming one value
of k‖mn, such that k‖mn < ω/c, and one incident polarization β , results in a closed system of
linear equations in Rαβ (q‖i j|k‖mn) where α = p,s. Repeating the procedure for both incident

polarizations allows us to obtain all four components of R(q‖i j|k‖mn).

With the reflection amplitudes Rαβ (q‖i j|k‖mn) available, the contribution to the mean differ-

ential reflection coefficient from the light that has been scattered incoherently is obtained from

Eq. (16) after averaging over an ensemble of surface realizations.

In passing we note that to avoid loss of numerical precision by operating on numbers with

widely different orders of magnitude, we have rescaled all quantities in our problem to dimen-

sionless numbers. When considering an incoming wave of wavelength λ , angular frequency ω ,
and wave vector k, we have chosen to rescale all lengths in our problem by multiplying with
ω/c, and all wavenumbers by multiplying with c/ω , effectively measuring all lengths in units
of λ/2π , and the magnitude of wave vectors in units of ω/c.

5. Results

To demonstrate the use of the formalism for solving the reduced Rayleigh equation, the first

set of calculations we carried out was for two-dimensional randomly rough silver surfaces. The

surface roughness was characterized by an rms height of δ = 0.025λ and an isotropic Gaussian
power spectrum [Eq. (3)] of correlation lengths a1 = a2 = 0.25λ . In Figs. 2(a) and 3(a) we
present simulation results for the contribution to the mean differential reflection coefficients

2Note that since the FFT always resolves the zero frequency, and the FFT of a purely real signal is symmetric about

the zero frequency under complex conjugation, it is always possible to calculate an odd number of elements along each

axis of the FFT
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Fig. 2: Incoherent part of the mean differential reflection coefficient (Eq. (16)), showing only

the in-plane scattering as a function of outgoing lateral wave vector. In both cases, the surface

realizations covered an area L×L, where L = 25λ , and the surface was discretized on a grid of
319×319 points. The position of the specular peak (not present in the incoherent part) and the
enhanced backscattering peak are indicated by the vertical dashed lines.

from light of wavelength (in vacuum) λ = 457.9 nm that was scattered incoherently from a
rough silver surface of size 25λ ×25λ , discretized into 319×319 points. The dielectric function
of silver at this wavelength is ε2 =−7.5+0.24i, and the angles of incidence were θ0 = 18.24◦
and φ0 = 45◦.
Figure 2(a) shows the in-plane scattering for this system. The enhanced backscattering peak,

a multiple scattering phenomenon, is clearly visible, and is as expected strongest in p→ p

scattering, since p-polarized light has a stronger coupling to surface plasmon polaritons [19].

Figure 3(a) shows the full angular distribution of the mean DRC for the same system. In

Figs. 3(a)(a)–(c) and Figs. 3(a)(d)–(e) the incident light was p- and s-polarized, respectively.

Figures 3(a)(c) and 3(a)(f) show scattering into s-polarization, Figs. 3(a)(b) and 3(a)(e) show

scattering into p-polarization and in Figs. 3(a)(a) and 3(a)(d) the polarization of the scatted light

was not recorded. In particular from Fig. 3(a)(b), we observe that the enhancement features seen

in Fig. 2(a) at angular position θs =−θ0, are indeed enhancements in a well-defined direction
corresponding to that of retro-reflection, and not some intensity ridge structure about this direc-

tion (as has been seen for other scattering systems [45]). Moreover, the structures of the angular

distribution of the intensity of the scattered light depicted in Fig. 3(a) are consistent with what

was found by recent studies by using other numerical methods [45,46]. The results presented in

Figs. 2(a) and 3(a) were obtained by averaging the DRC over an ensemble consisting of 14,200

surface realizations.

A test of energy conservation was performed by simulating the scattering of light from a non-

absorbing silver surface (Im ε2 = 0) with otherwise the same parameters as those used to obtain
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(b) The same as in Fig. 3(a), except that ε2 = 2.64, and
the results are averaged over 21,800 randomly rough sur-

faces.

Fig. 3: Incoherent part of the mean differential reflection coefficient (Eq. (16)), showing the

full angular distribution as a function of outgoing lateral wave vector. The specular position is

indicated by the white dots.

the results of Figs. 2(a) and 3(a). For this scattering system we found |U − 1| ≤ 0.0003, i.e.,
energy is conserved to within 0.03%, something that testifies to the accuracy of the approach

and a satisfactory discretization.

As a further test, we studied the scattering from a set of (absorbing) silver surfaces with the

same parameters used to obtain Figs. 2(a) and 3(a), except that the rms roughness δ was varied
between 0 and 0.045λ , while the correlation lengths were held constant at a1= a2= 0.25λ ≡ a.
For the purpose of comparison, we also performed simulations for a similar set of surfaces but

assuming no absorption, i.e., ε2 =−7.5. The results of these tests are presented in Fig. 4.
The reduced Rayleigh equation is only valid for surfaces of small slopes [17]. We have

found that at least for the parameters used in obtaining Fig. 4, our code gives good results for

an rms roughness to correlation-length ratio δ/a � 0.12, as judged by energy conservation. For
larger values of δ/a, the results look qualitatively much the same, but the ratio of reflected to
incident power starts to become nonphysical (increasing past 1), as seen in Fig. 4. It is noted

that decreasing the sampling interval Δq, withQ unchanged, did not change this conclusion in

any significant way, indicating that the observed lack of energy conservation was not caused by

poor resolution in discretizing the integral over q‖.
The next set of calculations we performed was for a dielectric substrate characterized by

ε2 = 2.64. Otherwise, all roughness parameters were the same as for the silver surface used to
produce Figs. 2(a) and 3(a). The mean differential reflection coefficient for light scattered inco-
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correlation length of the Gaussian roughness,

which is a1 = 0.25λ in the x1 direction and
a2 = 0.75λ in the x2 direction, and the results
are the average of 6,800 surface realizations.

herently by the rough dielectric surface is presented in Fig. 3(b). By comparing these results to

those presented in Fig. 3(a), we notice that the dielectric reflects less than the silver (the figures

show only the incoherent scattering, but the same holds for the coherent part), which is as ex-

pected. The ratio of reflected to incident power for these data was U = 0.0467 for p-polarized
light at an angle of incidence of θ0 = 18.24◦. Moreover, from Fig. 3(b) we also notice the ab-
sence of the enhanced backscattering peak, which is also to be expected since this phenomenon

(for a weakly rough surface) requires the excitation of surface guided modes [19]. Note that for

a transparent substrate, it is not possible to verify the conservation of energy without also calcu-

lating the transmitted field. Therefore, energy conservation has not been tested for the dielectric

substrate geometry.

So far, we have exclusively considered surfaces with statistically isotropic roughness. For

the results presented in Fig. 5, we simulated the light scattering from a silver surface of the

same parameters as those assumed in producing the results of Figs. 2(a) and 3(a), except that

now the surface power spectrum was anisotropic, with correlation lengths a1 = 0.25λ in the
x1 direction and a2 = 0.75λ in the x2 direction and an rms roughness of δ = 0.025λ . Figure 5
shows the incoherent part of the mean DRC averaged over 6,800 surface realizations. In this

case, there is more diffuse scattering along the x1 direction than the x2 direction, which is to
be expected, since a shorter correlation length means the height of the surface changes more

rapidly when moving along the surface in this direction. The interested reader is encouraged to



consult Ref. [33] for a more detailed study of light scattering from anisotropic surfaces.

Finally, for the results presented in Fig. 2(b), we have simulated the scattering of light from

a surface of size 25λ ×25λ , discretized into 319×319 points, with ε2 =−16+1.088i, corre-
sponding to silver at a wavelength λ = 632.8 nm. The surface power spectrum was cylindrical
[see Eq. (4)], with k− = 0.82ω/c, k+ = 1.97ω/c and rms roughness δ = 0.025λ , and the
angles of incidence were (θ0,φ0) = (1.6◦,45◦). Figure 2(b) shows the in-plane, incoherent part
of the mean differential reflection coefficient averaged over 7,000 surface realizations.

From perturbation theory [17,19], we know that for an incident wave of lateral wave vector k‖
to be scattered via single scattering into a reflected wave of lateral wave vector q‖, we must have
g(q‖−k‖)> 0, where g(k‖) is the surface power spectrum [Eq. (2)]. Since the power spectrum
in this case is zero for |q‖ −k‖|< 0.82ω/c, we have no contribution from single scattering in
the angular interval from θs =−53.5◦ to θs = 56.7

◦ (for the angles of incidence assumed here).
The enhanced backscattering peak, which is due to multiple scattering processes, is clearly

visible in Fig. 2(b) (at θs = −θ0) partly because it is not masked by a strong single scattering
contribution.

5.1. Comparison with surface integral method

As a way to test our results, we have compared simulation data obtained by the method pre-

sented in this paper to results calculated by the surface integral method described in Ref. [33].

In both cases, we considered randomly rough silver surfaces at an incident wavelength of

λ = 632.8 nm, corresponding to a dielectric constant of ε2 = −16+ 1.088i. The surface
roughness was characterized by an isotropic Gaussian powerspectrum, a correlation length of

a = 0.25λ and rms-roughness δ = 0.025λ . In the reduced Rayleigh simulations, we used a
quadratic surface of edges L = 25λ , discretized to 319×319 points. In the surface integral sim-
ulations, the quadratic surface had edges L = 20λ , and was discretized on a grid of 160×160
points. Additionally, for the surface integral method an impedance boundary condition (See

Ref. [33] for details) and a finite size beam of full width 8λ was used. The reason for the

differences in parameters is the larger memory requirements of the surface integral method.

The results are presented in Figs. 6(a) (p-polarized incident light) and 6(b) (s-polarized in-

cident light), where the data from the reduced Rayleigh simulations are indicated by the solid

lines, and the data for the surface integral method by the dashed lines. The results of Figs. 6(a)

and 6(b) show that rather consistent results are obtained by the reduced Rayleigh method and

the surface integral method at least for the scattering geometries studied here. Moreover, the

total reflected energy obtained from the two methods were equal to three significant digits.

However, we find that the surface integral method gives slightly less diffuse scattering that

what is obtained by the reduced Rayleigh method. We speculate that this is caused by the more

limited resolution used in the surface integral simulations.

To increase the resolution in the surface integral simulations to a surface of 319×319 points
would have required significantly more memory than the about 12GB required to obtain the

reduced Rayleigh simulation results presented here. Performing similar simulations by the sur-

face integral method will require 308GB which is a 25 times increase compared to the require-

ments of reduced Rayleigh method [33]. Furthermore, if fully rigorous surface integral sim-

ulations should be performed, i.e. without imposing the impedance boundary conditions, the
corresponding memory footprint of the simulations would be 1,234GB. These figures demon-

strate some of the significant practical advantages that the reduced Rayleigh equation method

has over the more general surface integral method.
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Fig. 6: Comparison of the incoherent part of the mean differential reflection coefficient

(Eq. (16)), showing in-plane and out-of-plane scattering as function of scattering angle as calcu-

lated by the reduced Rayleigh method (solid lines) and the surface integral method of Ref. [33]

(dashed lines). The angle of incidence was θ0 = 25◦. The surface roughness was Gaussian, with
a correlation length of a = 0.25λ and rms-roughness δ = 0.025λ . For the RRE simulations, a
quadratic surface of edges L = 25λ , discretized to 319× 319 points was used. In the surface
integral simulations, the quadratic surface had edges L = 20λ , and 160× 160 points. In both
cases, a dielectric constant of ε2 = −16+ 1.088i was used. This corresponds to silver, for an
incident wavelength of λ = 632.8 nm.

5.2. Comparison to experimental data

As a further consistency check of our results, we have compared our simulations to experimen-

tal scattering data from well characterized surfaces previously published by Alcalá et al. [55].

The two surfaces in question were prepared on gold substrates. The first surface, sample 0061

in Ref. [55], had roughness characterized by a Gaussian powerspectrum of correlation length

a = 19 μm and rms-roughness of δ = 0.5 μm. The second surface, sample 7047, was charac-
terized by Gaussian powerspectrum with correlation length a = 9.5 μm and rms-roughness of
δ = 1.6 μm. The wavelength of the incident light was λ = 10.6 μm, for which the dielectric
constant of gold is ε2 =−2489.77+2817.36i, and the polar angle of incidence was θ0 = 30◦.
In our simulations, we used the same roughness parameters as those used in the experiments

by Alcalá et al., and we considered quadratic surface realizations of edges L = 30λ , discretized
to 319×319 points. However, in performing the simulations, we used an approximation where
the substrate was treated as a perfect electric conductor. This approximation is expected to be

valid as the skin depth of gold at the wavelength of the incident light is about 34 nm [55].

The advantage of assuming that the substrate is a perfect conductor is that the corresponding

reduced Rayleigh equations will then not explicitly contain ε2 [53]. If a large but finite value for
ε2 is used, the series expansion used to calculate the integral I(γ|Q) [see Eqs. (14b) and (19a)]
will be numerically unstable.

In Figs. 7(a) (sample 0061) and 7(b) (sample 7047) we compare experimental scattering data

to the corresponding simulation results obtained by the method just described. We observe from

these figures generally good agreement for both polarizations of the incident light. The agree-

ment between the measured and simulated data is best for s polarization. For p polarization,

there seems to be a slight shift of the simulated data compared to what was observed experi-

mentally. It is speculated that this may be caused by an alignment problem in the experiment

since the specular peak is not located at θs = θ0 in the measurements of p to p scattering.
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ple 0061). The results shown are for (a) p to p scattering

and, (b) s to s scattering.

θs [deg]
0.00

0.25

0.50

0.75

1.00

〈∂
R

pp
/∂

Ω
s
〉

(a)

Experiment

Simulation

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
θs [deg]

0.00

0.25

0.50

0.75

1.00

〈∂
R

ss
/∂

Ω
s
〉

(b)

Experiment

Simulation

(b) Experimental data obtained by Alcalá et al. [55] (sam-
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Fig. 7: The mean differential reflection coefficient, showing in-plane scattering as function of

the scattering angle θs. Experimental data obtained by Alcalá et al. [55] for polar angle of

incidence θ0 = 30◦, are shown by the blue solid lines, and our simulation results by the green
dashed lines. For the simulation results, only the incoherent component of the mean differential

reflection coefficients are shown. It is noted that the slight shift of the simulations data relative

the measured data for p to p scattering (Fig. 7(b)(a)) is most likely caused by the angle of

incidence used in the experiments being somewhat smaller than θ0 = 30◦ which was assumed
in the simulations.

6. Discussion

A challenge faced when performing a direct numerical solution of the reduced Rayleigh equa-

tion for the scattering of light from two-dimensional rough surfaces is the numerical complexity.

In this section, we discuss some of these issues in detail.

6.1. Memory Requirements

Part of the challenge of a purely numerical solution of the reduced Rayleigh equation by the

formalism introduced by this study, is that it requires a relatively large amount of memory.

With approximately N = (π/4)N2q possible values for q‖, the coefficient matrix of the linear
equation system will contain approximately (2N )2 elements, where the factor 2 comes from
the two outgoing polarizations. Hence, the memory required to hold the left hand side of the

equation system will be approximately 4N 2η , where η is the number of bytes used to store
one complex number.

If each element is a single precision complex number, which is what was used to obtain the

results presented in this paper, then η = 8 bytes, and the matrix will require approximately
2π2N4q bytes of memory for storage. For instance, with the choice Nx = 319, which was used
in all the simulations presented in this paper, and that corresponds to Nq = 160 [Eq. (22)], the
coefficient matrix will take up approximately 12 GB of memory.

Note that if we instead performed the q‖ integration in Eq. (14a) over a square domain
of edge Q, the number of elements in the resulting coefficient matrix would be (2N2q )

2 =

(16/π2)(2N )2. Hence, by restricting the q‖ integration present in the reduced Rayleigh equa-
tion to a circular domain of radius Q/2, the memory footprint of the simulation is approxi-
mately π2/16 ≈ 0.62 of what it would have been if a square integration domain of edge Q
was used. For this reason, a circular integration domain has been used in obtaining the results



presented in this paper. However, we have checked and found that using a square q‖ integration
domain of a similar size will not affect the results in any noticeable way. Indeed, if this was not

the case, it would be a sign thatQ was too small.

When determining the system size, we can freely choose the length of the edge of the square

surface, L, and the number of sampling points along each direction, Nx. These parameters will

then fix the resolution of the surface, Δx, the resolution in wave vector space, Δq, the number
of resolved wave vectors, Nq, and the cutoff in the q‖ integral,Q [see Eqs. (18), (23), (22), and

(24)]. The combination of Δq andQ then determines the number of resolved wave vectors that

actually fall inside the propagating region, |q‖|< ω/c, which is identical to the number of data
points used to produce, e.g., Fig. 3(a).

As we are not free to choose all the parameters of the system, it is clear that some kind of

compromise is necessary. The number of sampling points of the surface along each direction,

Nx, and how it determines Nq via Eq. (22), determines the amount of memory needed to hold

the coefficient matrix, as well as the time required to solve the corresponding linear set of

equations. Hence, the parameter Nx is likely limited by practical considerations, typically by

available computer hardware or time. For a given value of Nx, it is possible to choose the edge

of the square surface, L, to get good surface resolution, at the cost of poor resolution in wave
vector space, or vice versa. Note also that changing L will change Q via Δq [see Eqs. (23)
and (24)]. If Q is not large enough to include evanescent surface modes, like surface plasmon

polaritons, multiple scattering will not be correctly included in the simulations, and the results

can therefore not be trusted. The optimal compromise between values of Nx and L depends on
the system under study.

6.2. Calculation Time

The simulations presented in this paper were performed on shared-memory machines with 24

GB of memory and two six-core 2.4 GHz AMD Opteron processors, running version 2.6.18

of the Linux operating system. The code was parallelized using the MPI library, and the setup

of the linear set of equations ran on all 12 cores in the timing examples given. The linear

equation solver used was a parallel, dense solver based on LU-decomposition [54] (PCGESV

from ScaLAPACK), which runs efficiently on all 12 cores. Setting up the equation system

scaled almost perfectly to a large number of cores, while the solver scaled less well, due to the

need for communication. Numerically solving the reduced Rayleigh equation for the scattering

amplitudes associated with one realization of a rough surface, discretized onto a grid of 319×
319 points, took approximately 17 minutes on the architecture described above, and required

about 12 GB of memory. Out of this time, approximately 100 seconds was spent setting up the

equation system, 950 seconds was spent solving it by LU decomposition, and typically around

1 second was spent on other tasks, including writing data to disk. Table 1 shows timing and

memory details of the calculations, including other system sizes.

Based on the discussion in Sec. 6.1, we note that the use of a circular q‖ integration domain
also significantly reduces the time required to solve the resulting linear system of equations.

When using a dense solver, the time to solve the systems scales as the cube of the number of

unknowns. Thus we expect the CPU time to solve the matrix system for a circular integration

domain of radius Q/2 to be about half (π3/26) the time to solve the corresponding system
using a square domain of edgeQ.
The ratio of the time spent solving one equation system to the total simulation time per

surface realization increases with increasing system size, as the time to set up the equation

system is O(N4x ), while the time to solve the linear system by LU decomposition scales as

O(N6x ). It is clear from Table 1 that for any surface of useful size the runtime is completely
dominated by the time spent in solving the linear set of equations.



Since the time solving the equation system dominates the overall simulation time, we inves-

tigated if one could improve the performance of the simulations by using an iterative solver

instead of a direct solver based on LU decomposition. For example, Simonsen et al. [45] re-

cently reported good performance using BiCGStab [56] on a dense matrix system of a similar

size. In our preliminary investigations into using iterative solvers, we found that convergence

with BiCGStab was slow and unreliable for our linear equation systems. However, it should be

stressed that we did not use a preconditioning scheme, which could potentially yield signifi-

cantly improved convergence.

From Eq. (14a) it follows that changing the angles of incidence and/or the polarization of

the incident light changes only the right hand side of the equation system to be solved. Hence,
an advantage of using LU decomposition (over iterative solvers) is that the additional time

required to solve the system for several right hand sides is negligible, since the overall majority

of time is spent factorizing the matrix. Conversely, the time spent using an iterative solver (like

BiCGStab) will scale linearly with the number of right hand sides. For these reasons, we have

chosen to use an LU-based solver.

Table 1: Walltime spent to solve the RRE for various values of Nx on a shared-memory ma-

chine with two six-core 2.4 GHz AMD Opteron processors. Included are total time (ttot), time
to setup the coefficient matrix of the equation system (tLHS) and the time to solve the equation
system (tsolve). Also included is the memory required to store the coefficient matrix of the linear
equation system for each run (MLHS). The time to set up the right hand side of the linear equa-

tion system is negligible compared to the left hand side, and have therefore not been included

here.

Nx tLHS(s) tLU(s) ttot(s) MLHS(GB)
199 10 58 69 1.8

239 28 171 200 3.8

279 56 429 486 7.0

319 97 946 1,045 12.0

369 154 1,916 2,074 19.2

399 266 3,625 3,895 29.4

6.3. GPU implementation

Currently, performing simulations like those presented in this paper on a single desktop com-

puter is prohibitively time consuming due to inadequate floating point performance. However,

the increasing availability of powerful graphics processing units (GPUs) has the potential to

provide computing power comparable to that of a powerful parallel machine, but at a fraction

of the cost. As the most time-consuming step in our simulations is the LU decomposition of the

system matrix (see Table 1), this is where efforts should be made to optimize the code. With this

in mind, the simulation code was adapted to (optionally) employ version 1.0 of the MAGMA

library [57] for GPU-based LU decomposition. Performance was compared between a regular

supercomputing service and a GPGPU (General Purpose GPU) testbed. On the regular service,

the code was running on a single compute node containing two AMD 2.3 GHz 16-core proces-

sors and 32 GB of main memory. On the GPGPU testbed, the hardware consisted of a single

Nvidia Fermi C2050 processor with 3 GB of dedicated memory and 32 GB of main system

memory. For these two computer systems, the initial performance tests indicated that the LU

decomposition took comparable time on the two architectures for a system of size Nq = 100
(the difference was less than 10%). The time using the GPGPU testbed included the transfer



of the system matrix to and from the Fermi card and the decomposition of the matrix. Even

though these results are preliminary, it demonstrates that there is a possibility of performing

simulations like those reported in this study without having to resort to costly supercomputing

resources. Instead, even with limited financial means, they may be performed on single desktop

computers with a state-of-the-art GPU.

7. Conclusion

We have introduced a formalism for performing non-perturbative, purely numerical, solutions

of the reduced Rayleigh equation for the reflection of light from two-dimensional penetrable

rough surfaces, characterized by a complex dielectric function ε(ω).
As an example, we have used this formalism to carry out simulations of the scattering of p- or

s-polarized light from two-dimensional randomly rough dielectric and metallic surfaces charac-

terized by isotropic or anisotropic Gaussian and cylindrical power spectra. From the scattering

amplitudes, obtained by solving the reduced Rayleigh equation, we calculate the mean differ-

ential reflection coefficients, and we calculate the full angular distribution of the scattered light,

with polarization information. For the scattering of light from weakly rough metal surfaces, the

mean differential reflection coefficient shows a well-defined peak in the retro-reflection direc-

tion (the enhanced backscattering phenomenon). From previous experimental and theoretical

work, this is to be expected for such scattering systems. Moreover, the obtained angular dis-

tributions of the intensity of the scattered light show the symmetry properties found for strongly

rough surfaces in recent studies using other simulation methods.

For the purpose of evaluating the accuracy of our simulation results, we used the conserva-

tion of energy for a corresponding non-absorbing scattering system. This is a required, but not

sufficient, condition for the correctness of the numerical simulations. By this method, we found

that within the validity of the reduced Rayleigh equation our code produces reliable results, at

least for the parameters assumed in this study. In particular, for a rough non-absorbing metal

surface of the parameters used in this study, energy was conserved to within 0.03%, or better.
This testifies to the accuracy of the approach and a satisfactory discretization. Moreover, we

also performed simulations of the scattered intensity for systems where the rms roughness of

the surface was systematically increased from zero with the other parameters kept unchanged.

It was found that energy conservation was well satisfied (for the parameters assumed) when the

ratio of rms roughness (δ ) to correlation length (a), satisfied δ/a � 0.12.
We believe that the results of this paper provide an important addition to the collection of

available methods for the numerical simulation of the scattering of light from rough surfaces.

The developed approach can be applied to a wide range of scattering systems, including clean

and multilayered scattering systems, that are relevant for numerous applications. The memory

requirements, while not insignificant, are still smaller than for the surface integral method by

about an order of magnitude. Hence, the current method can be applied to systems which were

previously outside the reach of numerical simulations.
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Abstract. The Rayleigh hypothesis is the assumption that the field in the region above
(below) a rough surface can be expressed as a weighted sum of upwards (downwards) propagating
scattered (transmitted) modes, and that these expressions can be used to satisfy the boundary
conditions on the fields at the surface. This hypothesis is expected to be valid for surfaces of
sufficiently small slopes. For one-dimensional sinusoidal surfaces, the region of validity is known
analytically, while for randomly rough surfaces in one and two dimensions, the limits of validity
of the Rayleigh hypothesis are not known. In this paper, we perform a numerical study of the
validity of the Rayleigh hypothesis for two-dimensionally rough metal and perfectly conducting
surfaces by considering the conservation of energy. It is found for a perfect electric conductor
(PEC) that the region of validity is defined by the ratio of the root-mean-square roughness, δ,
over the correlation length, a, being less than about 0.2, while for silver we find δ/a<∼ 0.08 for
an incident wavelength λ = 457.9 nm. Limitations in our simulations made us unable to check
the Rayleigh hypothesis for roughness where δ >∼ 0.13λ.

1. Introduction
Randomly rough surfaces are abundant in nature and such structures may influence surface
processes and phenomena in numerous ways. Lord Rayleigh is credited for being the first to
study how wave scattering from surfaces is influenced by their roughness. In particular, at the
end of the 19th century, he studied how waves are scattered by sinusoidal surfaces [1,2]. To this
end, he assumed that the fields in the surface region, defined as the spatial region between the
maximum and minimum point of the surface, can be written in a form similar to the asymptotic
fields. This means that the reflected (transmitted) fields can be expressed as a weighted sum of
upward (downward) propagating plane waves [see Eq. (4) and Ref. 3 for details].

This way of writing the fields in the surface region is an approximation which is expected to
be valid if the surface structures have sufficiently small local slopes. Today this approximation is
known as the Rayleigh hypothesis in honor of its inventor [1–4], and most perturbation theoretical
treatments of the scattering problem can be constructed based on the assumption that the
Rayleigh hypothesis is valid [3]. Moreover, by applying the Rayleigh hypothesis and imposing
the boundary conditions satisfied by the fields at the surface, the so-called reduced Rayleigh
equation for reflection (transmission) can be derived from the resulting coupled set of integral
equations after eliminating the transmission (reflection) amplitudes [3,5]. The reduced Rayleigh
equation, which contains either the unknown reflection or transmission amplitudes, has recently
been solved by direct numerical means to produce non-perturbative results [3, 6–8].



To take full advantage of an approximation, it is imperative to know its region of validity.
About 75 years after its introduction, it was proven mathematically that the Rayleigh hypothesis
for a sinusoidal surface1, i.e., a surface which deviates from its mean by x3 = ζ0 sin(Λx1), is
formally valid if ζ0Λ ≤ 0.448 [9, 10]. However, for a randomly rough surface, the precise region
of validity is still not formally known. For rough surfaces that are constant along one direction
in the mean plane, i.e., their height can be written as x3 = ζ(x1), there have been attempts to
use direct numerical solution of the one-dimensional reduced Rayleigh equation to evaluate the
validity of the Rayleigh hypothesis [11].

To the best of our knowledge, no attempt at a numerical study of the validity of the Rayleigh
hypothesis has been reported in the literature for surfaces that are randomly rough along both
directions of the mean plane. The lack of such a study in the literature is probably due to the
significant computational cost. The purpose of this paper is to fill this gap in the literature
by reporting some preliminary results for the validity of the Rayleigh hypothesis applied to
electromagnetic wave scattering from two-dimensional randomly rough metal and perfectly
conducting surfaces. Since this problem has no known analytic solution, we approach it by using
a purely numerical solution of the reduced Rayleigh equation, which was recently implemented
and tested [7].

For scattering from non-absorbing metallic substrates in vacuum, one must require that the
power incident upon the rough metal surface equals the power reflected from it, since no energy
can be transmitted through the metal. Hence, by numerically studying the conservation of
energy in the scattering process over the surface roughness parameter space, one may indirectly
get information about the validity of the Rayleigh hypothesis which underlies the simulation
approach being used. It should be stressed that the conservation of energy is a necessary,
but not sufficient condition for correct results. Hence, the region of validity of the Rayleigh
hypothesis for the systems we study here may in fact be even more restricted than what we
report.

This paper is organized as follows: In Section 2, we define the geometry and some conventions
used throughout the paper. Next, in Section 3, we describe the asymptotic field expansions, and
write down the reduced Rayleigh equation for reflection from a perfectly conducting substrate, as
well as the expression we will use to evaluate the conservation of energy, and we briefly describe
how we proceed to solve the reduced Rayleigh equation. In Section 4, we present our results.
We also include a discussion of these results, and what they can tell us about the limits on the
validity of the Rayleigh hypothesis, as well as some discussion of other potentially limiting steps
in our approach. Finally, we present some concluding remarks and some thoughts about further
work in Section 5.

2. Scattering geometry
The system we study consists of vacuum (ε1 = 1) in the region x3 > ζ

(
x‖
)
, where x‖ = (x1, x2, 0)

and a perfect electric conductor (PEC) or a metal in the region x3 < ζ
(
x‖
)
. The surface profile

function ζ
(
x‖
)
is assumed to be a single-valued function of x‖ that is differentiable with respect

to x1 and x2, and constitutes a zero-mean, stationary, isotropic, Gaussian random process defined
by 〈

ζ(x‖)ζ(x′‖)
〉
= δ2W

(∣∣∣x‖ − x′‖
∣∣∣) . (1)

Here the angular brackets denote an average over the ensemble of realizations of the surface
profile function. In writing Eq. (1), we have defined the root-mean-square height of the surface,

δ =
〈
ζ2(x‖)

〉1/2
, and W (x‖ − x′‖) is the height-height auto-correlation function of the surface,

1 The coordinate system used is defined in Fig. 1.
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Figure 1. (Color online) A sketch of the scattering geometry assumed in this work. The figure
also shows the coordinate system used, angles of incidence (θ0, φ0) and scattering (θs, φs), and
the corresponding lateral wavevectors k‖ and q‖, respectively.

normalized so that W (0) = 1 [3]. The correlation functions that will be considered in this work
is isotropic and of the Gaussian form, given by

W
(∣∣x‖∣∣) =exp

(
−x2‖/a

2
)
, (2)

where a denotes the lateral correlation length.

3. Scattering theory
The electric field in the vacuum

[
x3 > ζ

(
x‖
)]

is the sum of an incident field and a scattered
field, E(x; t) = [E(x|ω)inc +E(x|ω)sc] exp (−iωt), where

E(x|ω)inc =
{
c

ω

[
k̂‖α1(k‖) + x̂3k‖

]
Bp(k‖) +

(
x̂3 × k̂‖

)
Bs(k‖)

}
exp

(
ik‖ · x‖ − iα1(k‖)x3

)
E(x|ω)sc =

∫
d2q‖
(2π)2

{
c

ω

[
q̂‖α1(q‖)− x̂3q‖

]
Ap(q‖) +

(
x̂3 × q̂‖

)
As(q‖)

}
(3)

× exp
(
iq‖ · x‖ + iα1(q‖)x3

)
.

Here the subscripts p and s denote the p-polarized and s-polarized components of these fields
with respect to the local planes of incidence and scattering. The expressions in front of the
amplitudes Ap and Bp are the unit polarization vectors for p polarized light, and similarly the
expressions in front of the amplitudes As and Bs are the unit polarization vectors for s polarized
light. A caret over a vector indicates that it is a unit vector. The third component of the wave
vector q in vacuum, α1(q‖), is given by

α1(q‖) =
[(ω

c

)2 − q2‖

]1/2
, Reα1(q‖, ω) > 0, Imα1(q‖, ω) > 0. (4)



We assume that a linear relation exists between the amplitudes Aα(q‖) and Bβ(k‖) (α, β = p, s),
which we write as

Aα(q‖) =
∑
β

Rαβ(q‖|k‖)Bβ(k‖).

It can be shown that the scattering amplitudes, organized into the following 2× 2 matrix

R(q‖|x‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
, (5)

satisfy the matrix integral equation [12]

∫
d2q‖
(2π)2

M+(p‖|q‖)R(q‖|k‖) = −M−(p‖|k‖). (6a)

This equation is known as the reduced Rayleigh equation since it is an equation for the scattered
field in the medium of incidence only. The elements of the matrices M± for a perfect electric
conductor take the form

M±(p‖|q‖) =I(±α1(q‖)|p‖ − q‖)

⎛
⎝ ± c

ω

p‖q‖−(ω/c)2 p̂‖·q̂‖
α1(q‖)

[p̂‖ × q̂‖]3

±ω
c

[p̂‖×q̂‖]3
α1(q‖)

p̂‖ · q̂‖

⎞
⎠ , (6b)

where

I
(
γ|Q‖

)
=

∫
d2x‖ exp

(
−iQ‖ · x‖

)
exp

[−iγζ
(
x‖
)]

. (6c)

For a penetrable metal or dielectric surface, the corresponding matrix elements are given
explicitly in Ref. 7, and will not be repeated here.

3.1. Mean Differential Reflection Coefficient
The solution of the reduced Rayleigh equation determines the scattering amplitudes Rαβ(q‖|k‖),
where α and β signify the polarization of the reflected and incident light, respectively. When
the incident field is known, this quantity completely specifies the scattered field in the region
above the maximum point of the surface. However, Rαβ(q‖|k‖) is not directly measurable in
experiments. A more useful quantity is the mean differential reflection coefficient (DRC), which
is defined as the fraction of the time-averaged incident power which is scattered by the surface
into the solid angle dΩs about the scattering direction q defined by the angles of scattering
(θs, φs) (see Fig. 1). The mean DRC is defined as [13]

〈
∂Rαβ

∂Ωs

〉
=

1

L2

ω2

4π2c2
cos2 θs
cos θ0

〈∣∣∣Rαβ(q‖|k‖)
∣∣∣2〉 , (7)

where L2 is the area of the plane x3 = 0 covered by the rough surface, and θ0 is the angle of
incidence (see Fig. 1).



3.2. Conservation of Energy
To test whether the Rayleigh hypothesis is fulfilled, we use the conservation of energy as a
criterion. Considering a perfectly conducting substrate, all the incident power must be reflected,
and we can check whether our calculations conserve energy from the reflected field alone. The
fraction of the time-averaged incident power in the form of light of polarization β, scattered by
the surface into light of polarization α, is given by the integral of the corresponding mean DRC
over the upper hemisphere:

Uαβ =

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
. (8)

If the substrate is non-absorbing, and the incident light has polarization β, one should have

Uβ =
∑
α

Uαβ = 1, (9)

since energy is conserved in the scattering process. To improve statistics, we define the quantity

U =
Up + Us

2
, (10)

which we calculate by separately calculating both Up and Us for each surface realisation, and
taking their average. This is the quantity we will use when testing the validity of the Rayleigh
hypothesis.

While the conservation of energy is a necessary, but not sufficient, condition for correct results,
we have previously made successful direct comparisons of results obtained by the numerical
solution of the reduced Rayleigh equation for weakly rough surfaces against both experimental
data, and simulation results obtained by the rigorous surface integral method [14–16]. We are
thus confident that our approach works well for weakly rough surfaces. Furthermore, if we hold
the transverse correlation length of the surface roughness fixed, while increasing the rms height
of the surface, we typically see that at some point, U starts increasing past 1. While U > 1 is
clearly unphysical, and thus evidence that the technique is not working, U = 1 is not by itself
proof that the results are correct (for a non-absorbing substrate). Still, our comparisons with
both experimental data and other numerical data indicate that the conservation of energy is a
useful guide to the validity of our approach.

Thus, in this paper we use U ≈ 1 as a criterion for when our approach is valid when considering
a perfect electric conductor, and U <∼ 1 when considering a penetrable metal. Note that this
criterion does not directly test the Rayleigh hypothesis, but rather our complete method for
solving the scattering problem, which among other things relies on the Rayleigh hypothesis.
There could be other reasons why our approach fails for strongly rough surfaces, and this will
be discussed in more detail when considering our results.

3.3. Solving the reduced Rayleigh equation
To solve the reduced Rayleigh equation, we begin by numerically generating a realization of
the surface profile function on a grid of N2

x points within a square region of the x1x2 plane of
edge L, so that the in-plane sampling interval is Δx = L/Nx. A two-dimensional version of the
filtering method used in Refs. [7,16,17] is used to generate the surface realizations from a given
correlation function.

The next step is to evaluate the integrals I(γ|Q‖) defined in Eq. (6c). These integrals
are so-called Fourier integrals and care should be taken when evaluating them due to the
oscillating integrands [18]. Using direct numerical integration routines for their evaluation will
typically result in inaccurate results. Instead, a (fast) Fourier transform technique with end



point corrections may be adapted for their evaluation (the details of the method is outlined in
Ref. [18]). However, these calculations are time consuming. In solving for R(q‖|k‖), we will
discretize both p‖, q‖ and k‖, and I(γ|Q‖) must be evaluated for all relevant combinations of
the arguments γ = ±α1(p‖) and Q‖ = p‖ − q‖ and Q‖ = p‖ − k‖. For the calculations used
to generate the results presented in this paper, this would amount to evaluating I(γ|Q‖) on the

order of 109 times per surface realization.
A computationally more efficient way of evaluating I(γ|Q‖) is to assume that the exponential

function exp
[−iγζ(x‖)

]
, present in the definition of I(γ|Q‖), can be expanded in powers of its

argument, and then evaluating the resulting expression term-by-term by employing the Fourier
transform. This gives

I(γ|Q‖) =
∞∑
n=0

(−iγ)n

n!
ζ̃(n)(Q‖), (11a)

where ζ̃(n)(Q‖) denotes the Fourier transform of the nth power of the surface profile function,
i.e.,

ζ̃(n)(Q‖) =
∫

d2x‖ζn(x‖) exp
(
−iQ‖ · x‖

)
. (11b)

In practice, the sum in Eq. (11a) will be truncated at a finite value of n. The Fourier transforms
are calculated using a fast Fourier transform (FFT) algorithm.

The primary advantage of using Eqs. (11) for calculating I(γ|Q‖) is that the rewrite in
Eq. (11a) moves γ outside the integral, and calculating the integral in Eq. (11b) by FFT gives
us the value of the integral as a function of Q‖. By using the proper discretization, we can
make sure that the values of Q‖ resolved by the FFT are precisely those we need when setting
up a linear equation system to solve for Rαβ(q‖|k‖). This alternative way of evaluating the
I-integrals results in a significant reduction in computational time. The same method has
previously been applied successfully to the numerical solution of the one-dimensional reduced
Rayleigh equation [6, 19,20].

It should be noted that the Taylor expansion used to arrive at Eq. (11a) requires
∣∣γζ(x‖)∣∣ 	 1

to converge reasonably fast. Even though the series expansion of the exponential function is
always convergent in theory, this procedure might not be numerically stable for large values
of

∣∣γζ(x‖)∣∣, in particular due to the oscillatory nature of the series when Re γζ(x‖) < 0.
Thus, limited numerical precision means that using the expansion presented in Eq. (11a) places
additional constraints on the amplitude of the surface roughness which may be more restrictive
than those introduced by the Rayleigh hypothesis. In particular, the Rayleigh hypothesis places
a constraint on the maximum slope of the surface roughness, while the numerical procedure
used to evaluate the I-integrals, needed to solve the reduced Rayleigh equation, also limits the
amplitude of the surface roughness. Hence, surfaces exist for which the Rayleigh hypothesis is
satisfied, but the above expansion method will not converge numerically, and the much more
time-consuming approach of Ref. 18 will have to be applied.

Finally, in evaluating the integral in Eq. (6a) over q‖, the integration limits were truncated

to the circular region defined by
(
q21 + q22

)1/2 ≤ Q/2. The Nyquist sampling theorem requires
that |q1| and |q2| be smaller than Qc = π/Δx [21, p. 605]. The components of the vector p‖−q‖
entering I(γ|p‖ − q‖) lie in the interval [−Q,Q], so we have chosen Q = Qc. A quadratic grid
with grid constant Δq = 2π/L was constructed within the circular region of the q1q2 plane

where
(
q21 + q22

)1/2 ≤ Q/2. The integral over this region in Eq. (6a) was carried out by a two-
dimensional version of the extended midpoint method [21, p. 161] and the values of Rαβ(q‖|k‖)
were calculated for values of q‖ on the grid for a given value of k‖ (or equivalently, a given angle
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Figure 2. Contour plot of ΔU ≡ U − 1, i.e., the deviation from unity of the fraction incident
power reflected from randomly rough surfaces on perfectly conducting substrates. The surface
roughness is characterized by the correlation function given in Eq. (2), with the correlation
length, a, given on the horizontal axis and the rms height of the surface, δ, on the vertical axis.
The slope of the diagonal dashed line is given by δ/a = 0.2.

of incidence), which was also a point on the grid. The resulting matrix equations were solved
by LU decomposition and back substitution [21, page 48]. In this way we obtain Rαβ(q‖|k‖),
from which the mean DRC can be calculated [see Eq. (7)]. For a more detailed description of
how we solve the reduced Rayleigh equation, we refer the interested reader to Ref. 7.
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Figure 3. Contour plot of U , the fraction of incident power reflected from randomly rough
surfaces on silver substrates. The incident wavelength is 457.9 nm, which corresponds to a
dielectric constant of ε2 = −7.5+0.24i. The surface roughness is characterized by the correlation
function given in Eq. (2), with the correlation length, a, given on the horizontal axis and the rms
height, δ, on the vertical axis. The white area in the bottom right corner represents parameters
for which we have no data, but where we are confident the value of U is the same as in the
surrounding region. The white area in the upper left represents values of U greater than 1.1.
The slope of the diagonal dashed line is given by δ/a = 0.08.

4. Results
The direct numerical solution method of the reduced Rayleigh equation from Sec. 3 has been used
to calculate the scattering amplitudes Rαβ(q‖|k‖) for randomly rough surfaces of edges L × L,
where L = 15λ. The surface profile function ζ(x‖) was discretized to Nx × Nx points, with
Nx = 319, and the roughness was characterized by the height-height autocorrelation function
given by Eq. (2). The sum in Eq. (11a) was truncated at n = 20. Solving the reduced Rayleigh
equation for one surface realization with these parameters takes approximately 17 minutes on
a machine with two six-core AMD Opteron 2.1 GHz processors. The majority (around 90%) of
this time is spent performing the LU-decomposition of the linear equation system.

The first set of results we present is for a perfectly conducting substrate. For this system,
Fig. 2 depicts a contour plot of ΔU ≡ U − 1, i.e., the deviation from unity of the fraction of
reflected power, as a function of the transverse correlation length, a, and the rms height, δ, of
the rough surface. The contours are defined by −10−2 < ΔU < −10−4, −10−4 < ΔU < 10−4,
10−4 < ΔU < 10−2, and 10−2 < ΔU . The results of Fig. 2 were obtained from calculations



on a grid of points in parameter space defined by δ ∈ [0.02λ, 0.18λ] and a ∈ [0.1λ, 2.0λ] with
spacing Δδ = 0.01λ and Δa = 0.1λ. For each pair of surface parameters (a, δ), we calculated
the fraction of reflected power, U , and averaged the solution over 20 surface realizations. This
was found to be sufficient to get convergent results, at least for the surface type and parameters
considered in this work.

In the wave scattering from a perfectly conducting substrate, one should formally always
have U ≡ 1 independent of the level of surface roughness. However, in numerical calculations
this condition may, or may not, be satisfied. The latter case may indicate that the numerical
method is being applied outside its range of validity, and that the results cannot be trusted.
From Fig. 2 we find that for weakly rough surfaces U deviates from 1 by less than 10−4, and that
the boundary between the regions defined by |ΔU| < 10−4 and |ΔU| > 10−4 is approximately
given by δ = 0.2a (indicated by the diagonal dashed line in Fig. 2) for sufficiently small δ/λ.

For a Gaussian correlation function, which was used to produce the results of Fig. 2, the
rms slope of the surface is given by

√
2δ/a [22]. Thus, the limit of the validity of the Rayleigh

hypothesis being given by a linear relationship between δ and a is consistent with the local
slope of the surface being the critical parameter. Since the Rayleigh hypothesis is a small slope
approximation, our finding is not unexpected [4]. Hence, for perfectly conducting substrates, we
find the Rayleigh hypothesis to be valid for surfaces of rms slope less than about 0.28.

The Rayleigh hypothesis is not expected to introduce any additional restrictions, for example
on the amplitude of the rough surface. However, from Fig. 2 we observe that regardless of the
correlation length, U deviates from 1 when δ ≥ 0.13. Since this is not an expected consequence
of the Rayleigh hypothesis, one may wonder about the cause of this behaviour.

As was discussed in Sec. 3.3, with increasing amplitudes of ζ
(
x‖
)
, we no longer expect

to be able to accurately calculate the integrals I(γ|Q‖). Preliminary tests indicate that this
problem can be alleviated somewhat by increasing the order up to which the sum in Eq. (11a)
is carried out, but at some point limited numerical precision, leading to numerical cancellations,
becomes an issue. Hence, we concluded that the upper finite roughness level for which U starts
deviating significantly from 1 is not a consequence of the Rayleigh hypothesis. Rather, it is
a numerical artifact of how the integrals encoding the surface roughness are calculated. We
speculate that using an alternative way of calculating I(γ|Q‖) which is not based on a series
expansion may resolve this issue, but at the cost of significantly increased computational time.
A more promising approach might be to employ software libraries which allow calculations to be
carried out with arbitrary precision. Tests we have performed, as well as the results of Ref. 11,
indicate that higher precision allows the accurate calculation of the integrals I(γ|Q‖), though
again this comes with a price in terms of computational time.

The second set of results that will be presented is for a silver substrate. Here the wavelength
of the incident light was assumed to be 457.9 nm, for which the dielectric function of silver is
ε2 = −7.5 + 0.24i. In Fig. 3, we present the dependence over parameter space of U , i.e., the
fraction of the incident power reflected from randomly rough silver surfaces. Since the silver
substrate is absorbing, U will now in general be less than 1, but U > 1 still represents an
unphysical situation. Again, the values of the rms height, δ, and transverse correlation length,
a, were varied, ranging from 0.02 to 0.18λ in 0.01λ increments for δ, and from 0.1λ to 2.9λ
in 0.1λ increments for a. For each pair of values, (a, δ), we calculated U , and averaged the
solution over 10 surface realizations. The white area in the upper left corner of Fig. 3 represents
values where U > 1.1. The large white area in the bottom right corner of Fig. 3 represents
surface parameters for which we did not perform any calculations. This was done to reduce
computational time, since we are rather confident that for these parameters we will find U < 1.

For a silver substrate, the region of validity of the Rayleigh hypothesis is less pronounced
than for the same geometry but with a perfectly conduction substrate. Unlike in a perfect
conductor, light can penetrate into the silver and so-called surface modes can be excited.



Changing roughness allows light to couple more or less strongly into intermediate surface modes
before being scattered back into the vacuum, and the coupling to surface modes is not only
dependent on the amplitude of the surface, but also on the length scale of the surface structures.

Still, with these physical differences between a perfectly conducting and a silver substrate, we
observe by comparing Figs. 2 and 3 that the structure of the region of validity of the Rayleigh
hypothesis appears roughly similar. For a silver substrate, it follows from an inspection of Fig. 3
that the region of validity is defined by the intersection between the following two regions: (i)
δ <∼ 0.08a corresponding to a critical rms slope of 0.11; and (ii) δ <∼ 0.13λ. Note that the critical
rms slope is less for a silver (0.11) than a PEC substrate (0.28), while the second region is the
same for the same two substrates.

5. Conclusions
We have presented preliminary results for the numerical investigation of the validity of the
Rayleigh hypothesis obtained by studying the fraction of power reflected from rough surfaces.
In this way it is found that the Rayleigh hypothesis is valid for perfectly conducting substrates
when δ <∼ 0.2a and for silver substrates when δ <∼ 0.08a, where δ denotes the rms height and a the
correlation length of the surfaces roughness. These regions correspond to critical rms slopes of
0.28 (PEC) and 0.11 (silver), respectively. Both regions are bounded upwards by an rms height
of approximately δ ≈ 0.13λ. We argue that this is not an inherent limitation of the Rayleigh
hypothesis, which is a small-slope approximation, not a small-amplitude approximation, but
rather a consequence of the way we calculate the integrals I(γ|Q‖) [see Eq. (11)] present in the
reduced Rayleigh equation. It may be possible to get around this limitation by using increased
numerical precision, or another algorithm for calculating I(γ|Q‖), but at the cost of increased
computational time.
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We investigate numerically multiple light scattering phenomena for two-dimensional randomly rough metallic
surfaces, where surface plasmon polaritons mediate several surface scattering effects. The scattering problem is
solved by numerical solution of the reduced Rayleigh equation for reflection. The multiple scattering phenomena
of enhanced backscattering and enhanced forward scattering are observed in the same system, and their presence
is due to the excitation of surface plasmon polaritons. The numerical results discussed are qualitatively different
from previous results for one-dimensionally rough surfaces, as one-dimensional surfaces have a limited influence
on the polarization of light.

OCIS codes: (290.1483) BSDF, BRDF, and BTDF; (290.4210) Multiple scattering; (290.5825)
Scattering theory; (290.5880) Scattering, rough surfaces.

1. Introduction
A hot topic in the electronics and photonics community
is plasmonics, due to the prediction that surface plas-
mon polaritons (SPPs) can carry information faster and
with less energy loss than electronic circuits [1]. Sur-
face plasmon polaritons can have a penetration depth
in metal on the order of 10 nm, i.e., two orders of mag-
nitude smaller than the wavelength of visible light in
vacuum. This means that plasmonics allows light to be
concentrated and manipulated by structures well below
the diffraction limit from classical optics.
Surface plasmon polariton excitation is also being in-

vestigated as a way to improve the performance of pho-
tovoltaic devices. For thin solar cells, with a thickness
on the order of 1 μm, the path length of light travel-
ling through the cell is insufficient to absorb more than
a small fraction of the incident energy. By converting
light into SPPs which can propagate along the dielectric-
metal interface at the back of the photovoltaic cell, it is
possible to absorb a larger fraction of the incident en-
ergy [2].
Since SPPs propagate along the interface of a metal,

they are sensitive to conditions on the surface, making
SPPs well suited for sensor applications. Such devices
are often called surface plasmon resonance (SPR) sen-
sors, and can be used for, e.g., microarray analysis of
proteins [3] or DNA [4].
At a flat interface, incident light cannot couple to

SPPs due to momentum mismatch. By manipulating

∗ paul.anton.letnes@gmail.com
† tor.nordam@gmail.com
‡ Ingve.Simonsen@ntnu.no

the surface roughness, however, it is possible to con-
trol the coupling of incident light into SPPs. In this
paper, we consider light reflected from randomly rough
surfaces with particular statistical properties, and study
the multiple scattering phenomena which arise due to
SPPs. Several multiple scattering phenomena have been
predicted theoretically and/or confirmed experimentally.
For example, enhanced backscattering was predicted by
McGurn et al. [5] and later confirmed experimentally by
West and O’Donnell [6]. The enhanced backscattering
phenomenon is a double scattering phenomenon, caused
by constructive interference between a wave scattered
(at least) twice by the surface, and its time-reversed
partner. The excitation of SPPs is usually involved in
this process. For weak (low rms) surface roughness, scat-
tering processes are usually dominated by single scat-
tering, which may mask higher order scattering contri-
butions. Hence, West and O’Donnell designed a sur-
face whose roughness had a power spectrum which sup-
presses single scattering in a certain angular interval, al-
lowing multiple scattering effects to be seen more clearly
[6]. The surface in question had a surface profile func-
tion dependent on only one of the axes in the surface
plane; colloquially, we refer to such surfaces as “one-
dimensional”. This power spectrum is now known as
the West–O’Donnell spectrum or the rectangular spec-
trum.

Enhanced forward scattering was first predicted the-
oretically by O’Donnell [7], who termed it the enhanced
specular peak phenomenon[8]. O’Donnell investigated
the scattering of light from surfaces with weak, one-
dimensional roughness by the use of perturbation the-
ory, and reported an enhancement in the specular di-
rection of the intensity of the light scattered diffusely
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by the rough surface. To lowest order in the surface
profile function, this phenomenon appears as an eight-
order contribution to the intensity within small ampli-
tude perturbation theory, and for one-dimensional sur-
face roughness it is caused by constructive interference
between counterpropagating SPPs; see Fig. 10 of Ref. 7.
To confirm these findings, O’Donnell and Méndez subse-
quently studied surface scattering from one-dimensional
surfaces by direct solution of the one-dimensional re-
duced Rayleigh equation [9]. Their findings were later
confirmed by Simonsen [10] who also performed a de-
tailed numerical study of this phenomenon, focusing on
the competition between how light couples into and out
from SPPs, and how one SPP can couple to another
counterpropagating SPP.

Up till now, the enhanced forward scattering phe-
nomenon has not been studied for two-dimensional
randomly rough surfaces neither by perturbation the-
ory nor by computer simulations. Moreover, only a
few numerical studies of enhanced backscattering have
appeared in the literature for two-dimensional rough-
ness. In this paper, we investigate light scattering
from two-dimensionally rough surfaces by means of large
scale computer simulations, with a focus on phenomena
caused by the excitation and interference of SPPs. In
particular, we are interested in the enhanced backscat-
tering phenomenon and the less studied phenomenon of
forward scattering enhancement. The understanding of
such phenomena could be useful for the understanding
and controlling light-plasmon coupling in plasmonic cir-
cuits. Furthermore, two-dimensional surface roughness
leads to significant polarization effects that cannot be
taken into account in a one-dimensional model.

This paper is organized as follows. In Sec. 2, we dis-
cuss the relevant theory, including how the statistical
properties of the surface roughness decide which scat-
tering processes are allowed. Section 3 presents results
from numerical simulations, exhibiting enhanced for-
ward scattering and enhanced backscattering. Finally,
concluding remarks are presented in Sec. 4.

2. Theory

The system under study consists of a metallic substrate
in vacuum [Fig. 1(a)]. We assume that the vacuum-
metal interface has a randomly rough structure, and the
metal is characterized by a complex dielectric function
ε2(ω). The vacuum dielectric constant is ε1 ≡ 1. The
height of the surface is given by the single-valued func-
tion x3 = ζ(x‖), where x‖ = (x1, x2, 0) is the lateral
component of the position vector, x. We assume that
ζ(x‖) is at least once differentiable with respect to x1

and x2. The angles of incidence (θ0, φ0) and scattering
(θs, φs) are defined positive according to the convention
given in Fig. 1(b).

In this paper, we will consider randomly rough sur-
faces where ζ(x‖) constitutes a stationary random pro-

k

θ0 θs

kspp

q

Vacuum (ε1 ≡ 1)

Substrate (silver, ε2)

x3

x1

(a) System sketch, seen in the x1x3 plane.

x1

x2

x3

q

k

q‖

k‖

φs

φ0

θs
θ0

(b) Definition of wave vectors and polar angles.

Fig. 1. (Color online) Sketches of the system under study
(surface roughness not shown). (a) The light of wave vec-
tor k incident on the surface causes scattering into various
propagating modes (of wave vector q) and the excitation of
surface plasmon polaritons (kspp). In this study, we assume
ε1(ω) ≡ 1, and ε2(ω) is taken from Ref. 11. (b) Definition
of the lateral wave vectors (k‖ and q‖) as well as the polar
angles of incidence and scattering.

cess defined by 〈
ζ(x‖)

〉
= 0, (1a)〈

ζ(x‖)ζ(x′
‖)
〉
= δ2W (x‖ − x′

‖), (1b)

where the angle brackets denote an average over an en-
semble of surface realizations. In writing Eq. (1) we
have defined the root-mean-square height of the sur-

face, δ =
〈
ζ2(x‖)

〉1/2
, and W (x‖ − x′

‖) denotes the

height-height auto-correlation function of the surface,
normalized so that W (0) = 1 [12]. In the discussion
below, and when generating realizations of the surface
profile function, it is more convenient to work with the
power spectrum of the surface, rather than using the
auto-correlation function directly. The power spectrum,
g(k‖), of the surface profile function is defined by

g(k‖) =
∫
d2x‖ W (x‖) exp

(−ik‖ · x‖
)
, (2)
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where k‖ = (k1, k2, 0) is the lateral component of the
wave vector, k. The power spectra that will be con-
sidered in this work are of the cylindrical form, where

g(k‖) = γ1g1(k‖) + γ2g2(k‖) (3a)

and gi (i = 1, 2) are given by [13]

gi(k‖) =
4π

k2+ − k2−
θ
(
k‖ − k

(i)
−
)
θ
(
k
(i)
+ − k‖

)
. (3b)

In Eq. (3a), γ1 and γ2 are real constants defined such
that γ1, γ2 ≥ 0 and γ1 + γ2 = 1. Furthermore,
k‖ =

∣∣k‖
∣∣, θ(·) denotes the Heaviside unit step func-

tion, and k
(i)
± are wavenumber cutoff parameters, with

k
(1)
− < k

(1)
+ < k

(2)
− < k

(2)
+ . The Heaviside step func-

tions in Eq. (3b) cause each of the gi’s to have a cylin-

drical shape: gi is zero for k‖ < k
(i)
− , a positive con-

stant for k
(i)
− ≤ k‖ < k

(i)
+ , and zero for k‖ ≥ k

(i)
+ .

The constants γi determine the relative amplitudes of

the outer and inner cylindrical parts of the power spec-
trum. The power spectrum described by Eq. (3) is a two-
dimensional generalization of the one used by O’Donnell
and Méndez [9] and Simonsen [10] in their previous nu-
merical investigations of enhanced forward scattering
from one-dimensional randomly rough surfaces.
We note that the power spectrum used by West and

O’Donnell [6] in their experimental confirmation of en-
hanced backscattering is a one-dimensional special case
of Eq. (3), with γ1 = 1 and γ2 = 0 (or vice versa).

2.A. The reduced Rayleigh equation
The electric field in the vacuum above the surface[
x3 > max ζ

(
x‖
)]

can be expressed as the sum of an
incident field and a scattered field,

E(x|t) =
[
E(0)(x|ω) +E(s)(x|ω)

]
exp (−iωt) , (4)

where ω is the angular frequency of the incident (and
scattered) light. The superscripts (0) and (s) on the
electric field vectors indicate the incident and scattered
field, respectively. Furthermore,

E(0)(x|ω) =
{
− c

ω

[
k̂‖α1(k‖) + x̂3k‖

]
E(0)
p (k‖) +

(
x̂3 × k̂‖

)
E(0)
s (k‖)

}
exp

[
ik‖ · x‖ − iα1(k‖)x3

]
, (5a)

E(s)(x|ω) =
∫

d2q‖
(2π)2

{
c

ω

[
q̂‖α1(q‖)− x̂3q‖

] E(s)
p (q‖) +

(
x̂3 × q̂‖

) E(s)
s (q‖)

}
exp

[
iq‖ · x‖ + iα1(q‖)x3

]
, (5b)

where E(0)
α (q‖) and E(s)

β (k‖), with α, β = p, s, are the
amplitudes of the α-polarized and β-polarized compo-
nents of these fields with respect to the local planes of
incidence and scattering, respectively. The wave vector
of the incident light is k, which is of length |k| = ω/c,
where c is the speed of light in vacuum. The expressions
in front of the field amplitudes are the unit polarization
vectors. The wave vector of the scattered light, q, has
lateral component q‖ = (q1, q2, 0), and is related to the
angles of scattering as indicated by Fig. 1(b). A caret
over a vector indicates that it is a unit vector. Finally,
the functions αi(q‖), i = 1, 2 are defined by

αi(q‖) =
[
εi

(ω
c

)2

− q2‖

]1/2
,

Reαi(q‖) > 0, Imαi(q‖) > 0.

(6)

A linear relation is assumed to exist between the am-
plitudes E(s)

α (q‖) and E(0)
β (k‖) (α, β = p, s), which

we express in terms of the scattering amplitudes
Rαβ(q‖|k‖) [14]:

E(s)
α (q‖) =

∑
β=p,s

Rαβ(q‖|k‖)E(0)
β (k‖).

In order to obtain an equation for the scattering am-
plitudes, we first write down an expression for the trans-
mitted field, E(t)(x|ω), which is valid in the region
x3 < min ζ(x‖) below the surface. We then assume the
Rayleigh hypothesis, which states that for a sufficiently
smooth surface,

∣∣∇ζ(x‖)
∣∣ 	 1, these asymptotic expres-

sions for the fields are valid also in the surface roughness
region [min ζ(x‖) < x3 < max ζ(x‖)] [15, 16], and can be
used to fulfill the boundary conditions satisfied by the
electric and magnetic fields at the surface x3 = ζ(x‖).
From the resulting set of coupled matrix integral equa-
tions, it is possible to eliminate the amplitudes of the
transmitted (reflected) field so that a single matrix in-
tegral equation results for the amplitudes correspond-
ing to the field above (below) the surface. The result-
ing equation is known as the reduced Rayleigh equation
for reflection (transmission). For details regarding the
derivation of the reduced Rayleigh equation, we refer to
Refs. 14 and 17.

If the scattering amplitudes are organized as the 2×2
matrix

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
, (7)
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the reduced Rayleigh equation for reflection from a two-
dimensional surface can be written in the form [13, 17,
18]

∫
d2q‖
(2π)2

I
(
α2(p‖)− α1(q‖)|p‖ − q‖

)
α2(p‖)− α1(q‖)

M+(p‖|q‖)R(q‖|k‖) = −I
(
α2(p‖) + α1(k‖)|p‖ − k‖

)
α2(p‖) + α1(k‖)

M−(p‖|k‖), (8a)

where

I(γ|Q‖) =
∫

d2x‖ exp
[−iγζ(x‖)

]
exp

(−iQ‖ · x‖
)
, (8b)

and

M±(p‖|q‖) =

(
p‖q‖ ± α2(p‖)p̂‖ · q̂‖α1(q‖) −ω

c α2(p‖)
[
p̂‖ × q̂‖

]
3

±ω
c

[
p̂‖ × q̂‖

]
3
α1(q‖) ω2

c2 p̂‖ · q̂‖

)
. (8c)

The integral in Eq. (8b) is evaluated by expanding the
exponential exp

[−iγζ(x‖)
]
in powers of its argument,

and integrating the resulting series term-by-term by the
fast Fourier transform (FFT). In practice, the sum is
truncated at a finite order sufficient to give convergent
results (n = 20 was used in this work). The integration
domain used for the integral in Eq. (8a) is truncated
to cover the circular region q‖ ≤ Q/2, and the inte-
gration was converted to a finite sum over this domain
by a two-dimensional version of the standard mid-point
quadrature scheme. From this sum, we can obtain a lin-
ear system of equations (one for each value of p‖), which
can be solved to find Rαβ(q‖|k‖).

For the simulations presented in this paper, we have
used numerically generated, discrete realizations of the
surface profile function. These realizations covered a
square area of size L×L in the x1x2 plane, determining
the integration limits in Eq. (8b). The surface realiza-
tions were discretized onto a quadratic, equidistant grid
of Nx ×Nx points. Each realization was generated by a
two-dimensional version of the Fourier filtering method
presented in, e.g., Refs. 19 and 20. For a detailed dis-
cussion of how one can proceed to solve the reduced
Rayleigh equation numerically, we refer to Ref. 21.

2.B. Mean differential reflection coefficient

When the incident field is known, the quantity
Rαβ(q‖|k‖) completely specifies the total electromag-
netic field in the region x3 > max ζ(x‖). However,
Rαβ(q‖|k‖) is not directly measurable in experiments. A
quantity well suited for experimental studies is the mean
differential reflection coefficient (MDRC), 〈∂Rαβ/∂Ωs〉,
which is defined as the time-averaged fraction of the in-
cident power scattered into the solid angle dΩs about
the scattering direction, q̂. The relationship between

Rαβ(q‖|k‖) and the MDRC can be written as [13]

〈
∂Rαβ

∂Ωs

〉
=

1

L2

ω2

4π2c2
cos2 θs
cos θ0

〈∣∣Rαβ(q‖|k‖)
∣∣2〉 . (9)

Since we are studying weakly rough surfaces, light scat-
tered coherently (specularly) by the rough surface will
dominate. However, some of the light incident on the
surface will also be scattered incoherently (diffusely) by
the rough surface. In theoretical and numerical studies,
it is advantageous to separate these two contributions.
By light scattered coherently by the surface, we mean

scattered light that is in phase from one surface real-
ization to the next, so that the intensity of light scat-
tered coherently (from β to α polarization) will be pro-

portional to
∣∣〈Rαβ(q‖|k‖)

〉∣∣2. The contribution to the
MDRC from the light that has been scattered incoher-
ently by the rough surface is defined as [13]

〈
∂Rαβ

∂Ωs

〉
incoh

=
1

L2

ω2

4π2c2
cos2 θs
cos θ0

×
[〈∣∣Rαβ(q‖|k‖)

∣∣2〉− ∣∣〈Rαβ(q‖|k‖)
〉∣∣2] . (10)

The contribution to the MDRC from the light scattered
coherently is therefore given by the difference between
Eqs. (9) and (10). We will see below that enhanced
backscattering and enhanced forward scattering are both
phenomena observed in the incoherent component of the
MDRC, even if in the case of enhanced forward scatter-
ing it is observed in the specular direction.
We also note that the quantity Rαβ(q‖|k‖) can be

used to construct the Mueller matrix for reflection from
a rough surface [22]. The Mueller matrix contains all
linear transformations of the polarization of light under-
going scattering from a rough surface, including polar-
ization and depolarization.
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2.C. Surface plasmon polaritons

Surface plasmon polaritons are electromagnetic modes
that are confined to dielectric-metal interfaces, where
the dielectric function of the cladding is positive and
the (real part of the) dielectric function of the substrate
is smaller than the negative of the dielectric function of
the cladding [23]. The dispersion relation of SPPs at a
flat vacuum-metal interface is [23]

kspp(ω) =
ω

c

(
ε2(ω)

ε2(ω) + 1

)1/2

(11)

where kspp(ω) is the length of the wave vector of the SPP
mode. For silver at wavelength λ = 457.9 nm (in vac-
uum), for which the dielectric function is ε2(ω) = −7.5+
0.24i [11], it follows that kspp = (1.074 + 0.003i)ω/c
(ω = 2πc/λ). The imaginary part of kspp can be in-
terpreted as an inverse decay length of the SPP mode,
whereas the real part corresponds to the wave number
of the mode.
Multiple scattering phenomena such as the enhanced

backscattering and enhanced forward scattering are, for
weakly rough surfaces, typically caused by the incident
light exciting SPPs that are subsequently scattered zero
or more times before coupling into a mode propagat-
ing away from the surface [12]. In particular, in one-
dimensional small-amplitude perturbation theory, the
lowest order contribution to the enhanced forward scat-
tering peak in the mean DRC has its origin in quadruple
scattering processes [7, Fig. 10].

2.D. Allowed and forbidden scattering processes

From small amplitude perturbation theory [12, 24], it
can be shown that a single scattering event from lat-
eral wave vector k‖ to q‖ is allowed only if the power
spectrum evaluated at the wave vector transfer ksc is
non-zero, i.e.,

g (ksc) > 0, ksc = q‖ − k‖. (12)

This condition holds for scattering between propagating
modes; between evanescent modes; and from propagat-
ing to evanescent modes, and vice versa. For isotropic
power spectra, such as those studied in this paper
[Eq. (3)], the requirement (12) simplifies to

g (|ksc|) > 0. (13)

To better understand the physical implications of
condition (13), and to facilitate our interpretation of
the simulation results presented later in this paper, we
present a visual model for discussing relevant scattering
processes in Fig. 2. Before starting the discussion, we
remind the reader that modes for which k‖ ≤ ω/c are
propagating in the vacuum, whereas for k‖ > ω/c, the
corresponding fields are evanescent, i.e., the field am-
plitudes decay exponentially along both directions per-
pendicular to the surface. Moreover, at the wavelength

λ = 457.9 nm, assumed in the simulations presented be-
low, the vacuum-silver interface supports surface plas-
mon polaritons of lateral wave vector kspp = 1.074ω/c
(see Sec. 2.C). For simplicity, we have neglected the
imaginary part of the wave number, as it is small com-
pared to its real part.
In passing, we note that the polarization state of light

can be modified at each scattering event, subject to the
requirement that SPPs are always p-polarized. We will,
however, not discuss polarization effects of single scat-
tering events in this section.
We will now discuss Fig. 2, which was produced un-

der the assumption that the surface power spectrum is
identical to that in Eq. (3), and characterized by the

values for k
(i)
± used in the later simulations (Sec. 3):

k
(1)
− = 0.782ω/c, k

(1)
+ = 1.366ω/c, k

(2)
− = 2.048ω/c, and

k
(2)
+ = 2.248ω/c. The annular regions, indicated by blue

shaded regions in Fig. 2, represent the nonzero parts of
the surface roughness power spectrum.
First, we consider the scattering process k‖ → q‖

[Fig. 2(a)] that corresponds to the lateral wave vector
(or momentum) transfer ksc. In Fig. 2(a) the incident
lateral wave vector, k‖, is placed so that it starts at
the origin of wave vector space, O; the same is done for
q‖. We superpose blue shaded regions representing the
power spectrum so that the center of the power spectrum
is located at the end of k‖. Thus, if ksc indicates a point
inside the blue shaded regions (the power spectrum), the
scattering process k‖ → q‖ is allowed. Moreover, at the
same time, if q‖ ≤ ω/c, the process k‖ → q‖ results in a
scattered mode that can propagate away from the sur-
face. On the assumption that both k‖ and q‖ are prop-
agating in vacuum, one realizes that k‖ [for the value of
k‖ used in Fig. 2(a)] can be converted into q‖ through
a single interaction with the surface roughness (single
scattering) only within a crescent-like region. This re-
gion is defined by the shaded blue region which resides
inside the circle q‖ = ω/c, indicated in black in Fig. 2(a).
Outside this crescent region, the scattering process is ei-
ther not allowed or q‖ > ω/c, meaning that the mode is
evanescent (non-propagating). When later studying the
full angular distribution of the scattered light (Fig. 3),
we will see that this observation is important.
We now turn to the possibility of exciting SPPs by the

incident light, a situation addressed in Fig. 2(b). The ex-
citation k‖ → kspp of SPPs is subject to the constraints
in Eq. (13). In particular, we have that the excitation of
a surface plasmon polariton by the incident field char-
acterized by k‖ is only allowed if

k
(1)
− <

∣∣kspp − k‖
∣∣ < k

(1)
+ (14)

or (less relevant for the parameters used in this study,
due to the large θ0 required)

k
(2)
− <

∣∣kspp − k‖
∣∣ < k

(2)
+ . (15)

Consequently, it is only possible (for the power spectrum
used in this study) to excite surface plasmon polaritons
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ω/c

k‖
q‖

ksc

O

(a) Scattering from wave vector k‖ into wave vector q‖. The
scattered mode is propagating, since |q‖| < ω/c, with ω/c

indicated by the black ring.

kspp

k‖
kspp

ksc

O

(b) Excitation of a surface plasmon polariton by incident light.
The surface plasmon polariton is not propagating in vacuum,
as kspp > ω/c. The parts of the black ring (of radius kspp)
which lie in the blue region represent legal SPP excitation

processes.

ω/c

ksc

q‖

O

kspp

(c) Scattering of a surface plasmon polariton into a bulk
propagating mode. Legal propagating modes are those for

which q‖ lies inside the blue region and q‖ < ω/c.

kspp

k
(2,1)
sc

k
(2)
spp

k
(3)
spp

k
(3,1)
sc

O

k
(1)
spp

(d) Scattering of a surface plasmon polariton (k
(1)
spp). Two

legal scattered modes (k
(2)
spp and k

(3)
spp) are shown. The black

ring indicates legal wave vectors for SPPs.

Fig. 2. (Color online) Four scattering processes important for understanding the results of this study. A detailed discussion of

the figure is found in the text. All subfigures 2(a)–(d) are drawn to correct and identical scale for the parameters k
(i)
± and ε2

used throughout this study. The blue annular regions indicate the non-zero parts of the power spectrum, i.e., the ranges of ksc

allowed by the power spectrum. The lengths of k‖ in Figs. 2(a) and (b) correspond to (θ0, φ0) = (27◦, 45◦).

for small (or very large) angles of incidence. The excita-
tion of a surface plasmon polariton is shown in Fig. 2(b).
The black ring indicates the length of the possible SPP
wave vectors. In the plane of incidence, surface plasmon

polaritons cannot be excited by the incident light for
angles of incidence θ0 > 17◦. For out of plane scatter-
ing, however, SPP excitation is allowed also for θ0 > 17◦.
This is qualitatively different from scattering from a one-
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dimensionally rough surface.

2.E. Enhanced backscattering

For weakly rough surfaces, the presence of the enhanced
backscattering phenomenon typically requires the ex-
citation of surface plasmon polaritons. For strongly
rough surfaces, on the other hand, it can take place
through multiple scattering between vacuum propagat-
ing modes [25, 26]. For the weakly rough surfaces dis-
cussed here, the SPP channel is by far the dominant
contribution to the backscattering enhancement. As
such, the presence of the enhanced backscattering phe-
nomenon for weakly rough surfaces requires first that in-
cident light can couple to SPPs, i.e., g

(∣∣kspp − k‖
∣∣) > 0,

as discussed in the previous paragraph. Second, the ex-
istence of enhanced backscattering requires that SPPs
can couple out into the anti-specular direction, i.e., that
g
(∣∣−k‖ − kspp

∣∣) > 0. This implies, with the power spec-
trum used here, that

k
(1)
− <

∣∣kspp + k‖
∣∣ < k

(1)
+ . (16)

Coupling from SPPs to vacuum propagating modes is
illustrated in Fig. 2(c). For the parameters used in this
study, the outer cylindrical part of the power spectrum
essentially does not contribute to the scattering process

kspp → k‖, as k
(2)
− ≈ ω/c+ kspp.

For one-dimensionally randomly rough surfaces [7, 10],
the scattered wave vectors are confined to the plane of in-
cidence, and all quantities in Eqs. (12)–(16) can be writ-
ten as scalars. Thus, there is a sharp and well-defined
angular cutoff for the excitation of surface plasmon po-
laritons in this case. For two-dimensionally rough sur-
faces, however, incident light can couple to SPPs which
do not propagate in the plane of incidence. This can
allow scattering processes which would be forbidden in
the one-dimensional case, and any limits derived using
the one-dimensional model will become “fuzzy” for two-
dimensional surfaces.

2.F. Enhanced forward scattering

For SPPs to contribute to enhanced forward scattering,
it is required that the power spectrum allows both the
excitation and counterpropagation of surface plasmon
polaritons, as well as coupling from SPPs to vacuum
propagating modes in the specular direction.

For the scattering of an SPP of wavevector k
(1)
spp to an

SPP of wavevector k
(2)
spp to be allowed, it is required that

g
(∣∣∣k(2)

spp − k
(1)
spp

∣∣∣) > 0. For the power spectrum used in

this study, this condition is fulfilled if

k
(1)
− <

∣∣∣k(2)
spp − k(1)

spp

∣∣∣ < k
(1)
+ , (17)

or

k
(2)
− <

∣∣∣k(2)
spp − k(1)

spp

∣∣∣ < k
(2)
+ . (18)

The counterpropagation requirement is the rationale for
adding the outer annulus to the power spectrum (3).
This annulus is narrow, and centered at k‖ = 2kspp,
meaning that it facilitates scattering where |ksc| ≈
2kspp, i.e., counterpropagation of SPPs. This corre-
sponds to the fulfillment of Eq. (18), and is illustrated

by the green vectors in Fig. 2(d) (k
(2)
spp and k

(2,1)
spp ).

We note that for two-dimensionally rough surfaces it
is possible for an SPP to be scattered out-of-plane by
the g1 part of the power spectrum. This can happen
when Eq. (17) is fulfilled, as shown in red in Fig. 2(d),

where the resulting lateral wave vector is denoted k
(3)
spp.

The principles discussed above are also valid for sys-
tems consisting of a metallic substrate on which a di-
electric thin film has been deposited, with a vacuum or
lossless dielectric cladding, where either interface of the
film is randomly rough [27]. The generalization to dif-
ferent power spectra should also be obvious. We note
that if the power spectrum of the randomly rough sur-
face is, e.g., Gaussian, the single scattering contribution
to the MDRC is typically dominant. In such cases, it
can be challenging to separate single scattering effects
from multiple scattering effects.

3. Results
In this section, we present results for the MDRC when
light is scattered from rough silver surfaces. For all
the results presented here, the (vacuum) wavelength of
the incident light was λ = 457.9 nm, and the dielec-
tric function of the Ag substrate at this wavelength is
ε2 = −7.5 + 0.24i. The vacuum dielectric function is
ε1 = 1. The rough surfaces were characterized by the
power spectrum (3), defined by the wavenumber parame-

ters: k
(1)
− = 0.782ω/c, k

(1)
+ = 1.366ω/c, k

(2)
− = 2.048ω/c,

and k
(2)
+ = 2.248ω/c. Furthermore, the amplitudes γi

were chosen such that γ2/γ1 = 0.75, which was found
in Ref. 10 to give a relatively strong enhanced forward
scattering effect. The rms surface roughness was taken
to be δ = 0.025λ; the edge of the square region covered
by the rough surface was L = 36λ; and this region was
discretized at a grid of Nx = 359 points along each of
the x1 and x2 directions.
As the Nyquist theorem [28] relates resolution in po-

sition space and wave vector space, the values of Nx

and L lead to the following numerical parameters: The
wavenumber cutoff in the integral in Eq. (8a) was Q/2 =
2.493ω/c; the resolution in q‖ was Δq = 0.0279ω/c; and
Nq = 180 values of q‖ were resolved along each of the q1
and q2 axes [21]. The results presented were obtained by
averaging the results over an ensemble of 10, 825 surface
realizations. Simulating the scattering from one surface
realization took approximately 17 minutes on a machine
with two six-core AMDOpteron 2.4 GHz processors, and
required about 12 GB of memory. For a discussion of the
details of how the calculations were performed, we refer
to Ref. 21.
In Fig. 3, we present the full angular distribution of

the MDRC, including polarization effects. Figure 3(a)–
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Fig. 3. (Color online) The full angular distribution of the
incoherent contribution to the MDRC, assuming the surface
properties stated in the text. The angles of incidence were
(θ0, φ0) = (12.5◦, 45◦). The subplots show scattering (b)
from p polarization to p polarization, (e) s → p, (c) p → s,
and (f) s → s. In (a), the incident light was p-polarized,
but the polarization of the scattered light was not recorded,
and in (d) the incident light was s-polarized. The enhanced
forward scattering peak is most easily seen in the p → p
configuration (b). The sharp circular edge, centered on k‖, is
caused by the suppression of single scattering due to the form
of the power spectrum; see discussion in Sec. 2.D, Eq. (3)
and Fig. 2(a).

(c) shows the MDRC for p-polarized incident light, and
in Fig. 3(d)–(f) the incident light was s-polarized. In the
upper row, the polarization of the scattered light was
not recorded; in the second row, only the p-polarized
component of the scattered light was recorded; and in
the third row, only the s-polarized component of the
scattered light was recorded. The full angular inten-
sity distribution displays important information, hidden
from the reader of in-plane or out-of-plane cuts of the
MDRC (e.g., Fig. 4). Notably, we observe that the in-
tensity distribution depends on which linear polariza-
tion is used to illuminate the surface, as well as which
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Fig. 4. (Color online) The in-plane (i.e., for φs = φ0) part
of the MDRC for light scattered from a rough silver surface
with rms roughness δ = 0.025λ. The angles of incidence were
(θ0, φ0) = (12.5◦, 45◦). The results were obtained by aver-
aging over 10, 825 surface realizations. The most prominent
enhanced forward scattering peak is in p → p polarization,
but a small contribution in s → p polarization can also be
seen. Enhanced backscattering is observed in all polarization
combinations.
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in the vicinity of θ0 ≈ 12◦. For polar angle of incidence
θ0 = 29.5◦, it is not possible to achieve enhanced forward
scattering through the in-plane SPP channel; hence, the peak
at θs = 29.5◦ has a different explanation.
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linear polarization is recorded in the (simulated) detec-
tor. Furthermore, the crescent regions of the MDRC of
high intensity show for which angles of scattering single
scattering is allowed, as per the theoretical discussion in
Sec. 2.D.
One of the significant differences between the light

scattering from one-dimensional and two-dimensional
rough surfaces is the absence of polarization effects in
the former case (assuming the plane of incidence to
be perpendicular to the grooves of the surface). No-
tably, for light scattering from rough two-dimensional
surfaces, the light scattered out-of-plane is significantly
cross-polarized.
The enhanced forward scattering phenomenon ex-

presses itself as a peak in the specular direction of the
intensity of the light scattered incoherently by the rough
surface. For this reason, in Figs. 4 and 5 we present the
incoherent component of the MDRC in the plane of in-
cidence (i.e., for φs = φ0).
Figure 4 shows the incoherent component of the

MDRC for θ0 = 12.5◦, for all combinations of incident
and scattered polarizations. Since SPPs can only be ex-
cited in p-polarization, it is reasonable to assume that
light scattered through the temporary creation of an
SPP will be predominantly p-polarized. When exam-
ining Fig. 4, we only observe enhanced forward scatter-
ing, i.e., a peak in the forward direction, for p → p and
s → p scattering. We also note that the enhanced for-
ward scattering peak is much more well-defined in p → p
than in s → p scattering. It is worth noting that for an-
gles θs > −34.4◦, in-plane single scattering of light is
forbidden due to the power spectrum used [Eq. (3) and
Fig. 2]. Consequently, the “edge” seen at the left hand
side of Fig. 4 is mainly caused by the single scattering
of light for angles θs ≤ −34.4◦.

By studying the θ0 dependence of 〈∂Rpp/∂Ωs〉
(Fig. 5), several effects caused by the shape of the power
spectrum can be observed. The positions of the “edges”
caused by the suppression of single scattering is directly
related to the power spectrum: To leading order in the
surface profile function, the intensity of single scatter-
ing is proportional to the power spectrum of the sur-
face [12, 24]. For the surface parameters assumed here,

single scattering is forbidden for
∣∣q‖ − k‖

∣∣ < k
(1)
− =

0.782ω/c. Thus, the cylindrical shape of the power spec-
trum leads to a region around k‖ into which less light is
scattered, as single scattering is suppressed here.
Also in Fig. 5, a sharp edge is observed for the case

of θ0 = 29.5◦, at θs ≈ −60◦. The location of this edge
is given by the outer edge of the inner cylinder of the

power spectrum, k
(1)
+ . Due to the the power spectrum

vanishing between the inner and outer cylinder [Eq. (3)],
single scattering is forbidden for θs < −60◦.

Of greater interest, and one of the main points of
this paper, are the peaks observed in the forward and
backward directions. The vertical dotted lines in Figs. 4
and 5 show the expected positions of the enhanced for-
ward scattering peaks, and we see that in each case,

these coincide with the observed peaks. The effect is
most pronounced for the polar angle of incidence around
θ0 ≈ 12◦. For angles of incidence above 17◦, it is not pos-
sible for surface plasmon polaritons to be excited in the
plane of incidence, since the power spectrum (3) is zero

for k‖ + kspp > k
(1)
+ for in-plane scattering [10]. Never-

theless, a peak in the incoherent part of the MDRC and
in the specular direction is visible for θ0 = 29.5◦. Our
interpretation is that the origin of this peak is the pres-
ence of the g2 part of the power spectrum; see Fig. 7(b)
and the corresponding discussion.
In accordance with previous work on light scattering

from two-dimensionally randomly rough surfaces [17–
19, 21, 22, 27], we observe enhanced backscattering
in Figs. 4 and 5. The enhanced backscattering peak
is located in the retro-reflection direction, θs = −θ0.
The effect is present in both co-polarized and cross-
polarized scattering. This is in contrast to the case
of one-dimensional surface roughness, where enhanced
backscattering can only be observed in the p → p polar-
ization configuration.
A complete scan of the angles of incidence for which

one observes enhanced backscattering and enhanced for-
ward scattering is presented in Fig. 6. In these figures,
the enhanced backscattering peak and the enhanced for-
ward scattering peak are shown as “ridges” in the color
map. As the ridges follow the ±θs directions very well,
we conclude that they indeed represent the phenomena
enhanced backscattering and enhanced forward scatter-
ing. For enhanced forward scattering, which is a quadru-
ple scattering effect, the peak is somewhat broader than
the enhanced backscattering peak, which is a double (or
higher order) scattering effect. Briefly put, the two-
dimensional nature of the rough surface allows for more
freedom in the choice of scattered wave vectors, leading
to a wider peak.
For comparison with the results shown in Fig. 5, we

have also performed simulations for the cases where
γ1 = 1, γ2 = 0 [Fig. 7(a)], or where γ1 = 0, γ2 = 1
[Fig. 7(b)]. In the former case, only the inner annulus
of the power spectrum is present, and in the latter case,
only the outer annulus is present. The other simulation
parameters were as follows. The edges of the simula-
tion domain in the x1x2 plane was L = 30λ, and was
discretized at Nx = 319 points along each of the lat-
eral axes. The dielectric function, the power spectrum

parameters k
(i)
± , and the rms surface roughness parame-

ters were the same as before. The parameters Nx and L
were reduced for these simulations in order to save com-
puter resources. This also leads to a different discrete
set of θs being resolved (cf. Fig. 5).
The results for γ1 = 1, γ2 = 0 are presented in

Fig. 7(a). In this case, incident light can couple to SPPs,
but it is not possible to couple from one SPP to an-
other SPP traveling in the opposite direction (counter-
propagation). Thus, enhanced backscattering, which to
lowest order is a double scattering process, is allowed.
Enhanced forward scattering, on the other hand, is a
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Fig. 6. (Color online) Contour plots of the incoherent, in-plane, and p → p part of the MDRC as a function of angle of incidence
(θ0) and scattering (θs). We assume φs = φ0 in these figures. (a) The enhanced backscattering peak is shown as a purple
“ridge” at θs = −θ0. (b) The enhanced forward scattering peak is shown as a purple “ridge” at θs = θ0. Note that the color
map has been truncated [cf. (a)] to show the peak more clearly.

quadruple scattering process, dependent on scattering
from SPPs to counterpropagating SPPs. Hence, there
is no enhanced forward scattering peak when γ2 = 0.
The shoulder visible in Fig. 7(a) does not move as θ0
increases, meaning that it is not related to the enhanced
forward scattering phenomenon, but is a result of the
shape of the power spectrum.

In Fig. 7(b), we show the results for γ1 = 0, γ2 = 1.
In this case, both single scattering and coupling from
incident light to SPPs are prohibited. Instead, incident
light will excite evanescent modes which are not reso-
nant modes of the surface. These may be scattered sev-
eral times before coupling out into vacuum propagating
modes. The width of the triangular structure seen in the
MDRC in Fig. 7(b) is determined by the width of the
outer annulus of the power spectrum.

In order to verify the correctness of the numerical re-
sults, the total reflected power normalized by the total
incident power was calculated. In all cases it was found
to be lower than 1, which is expected due to absorp-
tion. If one (artificially) assumes the substrate to be
lossless, the normalized reflected power should in prin-
ciple be identical to 1. For the surface parameters used
in this study, and with Im(ε2) = 0, the normalized total
reflected power was 1.000 ± 0.007 for all angles of inci-
dence. We stress that the conservation of energy is a
necessary, but not sufficient, criterion for the validity of
the simulation results [21].

4. Conclusion

In conclusion, we have studied, by a non-perturbative
numerical method, two phenomena observed in rough
surface scattering, namely enhanced forward scattering
and enhanced backscattering. These are both phenom-
ena observed in the diffuse (incoherent) part of the mean
differential reflection coefficient, and are caused by con-
structive interference between surface plasmon polari-
tons propagating along a vacuum-metal interface. In
particular, the observation of enhanced forward scatter-
ing has not previously been reported for systems con-
taining two-dimensionally rough surfaces. The two-
dimensional nature of the rough surface studied here
gives significantly more freedom in the allowed scatter-
ing channels when compared to one-dimensionally rough
surfaces, giving less sharp “cutoffs” caused by the power
spectrum.

A simple visual model for determining which scatter-
ing processes are allowed by two-dimensionally rough
surfaces has also been given (Fig. 2). This model can
be used to determine for which combinations of angles
of incidence and scattering enhanced backscattering and
enhanced forward scattering can be observed.

The enhanced forward and backward scattering phe-
nomena are dependent on the presence of surface guided
modes. Enhanced backscattering has already been ob-
served in a thin film system in both polarizations [27].
We expect that enhanced forward scattering can also be
observed in thin film systems for all polarization combi-
nations, as such structures support surface guided modes
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Fig. 7. (Color online) In plane p → p scattering for power spectra with (a) γ1 = 1, γ2 = 0 and (b) γ1 = 0, γ2 = 1. With
γ1 = 0, γ2 = 1, coupling into SPPs is suppressed. With γ1 = 1, γ2 = 0, coupling into SPPs is allowed, but not scattering from
an SPP to a counterpropagating SPP. This allows enhanced backscattering, but not enhanced forward scattering.

in both p and s polarizations. We leave this investiga-
tion to future work, as the required computational effort
is significant.
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