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Abstract

In life cycle assessment (LCA), the same characterization factors are conventionally applied irrespective of

when the emissions occur (the same importance is given to emissions in the past, present, and future). When

the assessment is constrained by fixed timeframes, the appropriateness of this paradigm is questioned and the

temporal distribution of emissions becomes of relevance. One typical example is the accounting for biogenic

CO2 emissions and removals. This article proposes a methodology for assessing the climate impact of time-dis-
tributed CO2 fluxes using probability distributions. Three selected wood applications, such as fuel, nonstruc-

tural panels, and housing construction materials are assessed. In all the cases, CO2 sequestration in growing

trees is modeled with an appropriate forest growth function, whereas CO2 emissions from wood oxidation are

modeled with different probability distributions, such as the delta function, the uniform distribution, the expo-

nential distribution, and the chi-square distribution. The combination of these CO2 fluxes with the global car-

bon cycle provides the respective changes caused in CO2 atmospheric concentration and hence in the radiative

forcing. The latter is then used as basis for climate impact metrics. Results demonstrate the utility of using

emission and removal functions rather than single pulses, which generally overestimate the climate impact of
CO2 emissions, especially in presence of short time horizons. Characterization factors for biogenic CO2 are pro-

vided for selected combinations of biomass species, rotation periods, and probability distributions. The time

discrepancy between biogenic CO2 emissions and capture through regrowth results in a certain climate impact,

even for a system that is carbon neutral over time. For the oxidation rate of wooden products, the use of a

chi-square distribution appears the most reliable and appropriate option under a methodological perspective.

The feasibility of its adoption in LCA and emission accounting from harvested wood products deserves further

scientific considerations.

Keywords: bioenergy, biomass, distributed emissions, global warming, LCA

Received 30 September 2011 and accepted 27 October 2011

Introduction

Background

With the increasing acknowledgement of the threats

caused by global warming (GW) and the continuous

international efforts on reaching a post-Kyoto agree-

ment on greenhouse gas emission reduction (GHG),

there is a growing scientific, political, and economic

interest to ensure that we have robust and scientifically

sound methods to appropriately account for GHG

fluxes caused by human activities. Life cycle assessment

(LCA) is the dominant framework for the assessment of

environmental impacts, including GHGs, from produc-

tion systems. Even if the accounting procedures in LCA

may keep track of temporal distribution of emissions

from different processes (e.g., at different phases in a

product life cycle), the prevailing paradigm assumes

equal importance across time for all stressors. The

appropriateness of this assumption for specific cases

has resurfaced in last few years. In particular, tipping

point issues and commitment periods and targets

provide motivation for time-constrained assessment

approaches. Time boundaries are also implicit in the uti-

lization of the Global Warming Potential (GWP) index,

which has fixed time horizons (THs). Because of them,

the climate impact caused by an instantaneous single

pulse emission is different from the impact due to the

same magnitude released in a different year or at a

small rate over a certain number of years. In general,

the issues associated with the timing of emissions and

removals in LCA have been recognized in earlier stud-

ies (Azar & Sterner, 1996; Hellweg et al., 2003; Hofstet-

ter, 1996). In particular, Hellweg et al. (2003) explored

the possibility to use economic discounting in the con-
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text of LCA, arguing that temporal cutoffs are a special

case of discounting with a discount rate of zero for the

TH considered and of infinity thereafter (because emis-

sions occurring beyond the temporal cutoff are entirely

disregarded).

In recent years, the debate around timing of emis-

sions has been revitalized by the need to consistently

include in bioenergy LCA emissions from essentially

two sources: direct and indirect effects associated with

land-use change (LUC), and delayed emissions from

biomass storage in the anthroposphere or biosphere.

Concerning LUC emissions, they usually occur in the

first years after establishment of bioenergy systems,

and a straight-line amortization of these emissions over

a certain time period is traditionally applied. Examples

of this practice can be found both in primary research

studies (Cherubini & Ulgiati, 2010; Gnansonou et al.,

2008; Searchinger et al., 2008) and methodological stan-

dards or guidelines (EU, 2009; IPCC, 2003; PAS2050,

2008). Concerning delayed emissions due to carbon

storage, the majority of the papers assumes that CO2 is

released as a single pulse after a specific storage period

in the biosphere (Fearnside et al., 2000; Kirschbaum,

2003, 2006; Moura Costa & Wilson, 2000) or in the an-

throposphere (Clift & Brandão, 2008). Moura Costa &

Wilson (2000) calculate the time period over which

sequestered carbon should be stored to counteract the

radiative forcing (RF) effect of a CO2 emission. Kirsch-

baum, (2003, 2006) addresses the consequences for the

climate of storing carbon in vegetation, concluding that

permanent storage can lower atmospheric CO2 concen-

tration, whereas temporary storage can be beneficial

for climate impacts related to cumulative CO2, but can

be counterproductive if other metrics are considered.

Fearnside et al. (2000) quantify the benefits for the cli-

mate of delaying emissions, thanks to the proportional

shift of the impact beyond the selected TH. Clift &

Brandão (2008) follow this approach to assess the cred-

its from storing carbon in products.

Besides single pulse, some studies also considered

emissions as distributed over time. At first, these

papers were in the context of emissions from har-

vested wood products (HWP) in national GHG inven-

tories (Ford-Robertson, 2003; IPCC, 2006; Karjalainen

et al., 1994; Marland & Marland, 2003; Marland et al.,

2010; Pingoud & Wagner, 2006; Row & Phelps, 1996).

Karjalainen et al. (1994) propose the use of a logistic

curve to model the CO2 emission rate, Row & Phelps

(1996) use a three segment curve, and Ford-Robertson

(2003) compares the linear and exponential decay.

Marland & Marland (2003) and Pingoud & Wagner

(2006) model the changes in stocks of wood products

using differential equations to describe the rates of

production and oxidation with first-order exponential

decay. The IPCC (2006) Guidelines1 recommend the

adoption of a first order decay for the oxidation of

wood products based on their half-life, at the same

time acknowledging that this is not the only possible

assumption (IPCC, 2006). Marland et al. (2010) insight-

fully propose the use of a distributed approach to

account for carbon in wood products. In addition to

the debate around HWP, time-distributed emissions

have been increasingly investigated within a pure

LCA context as well (Cherubini et al., 2011; Kendall

et al., 2009; Levasseur et al., 2010; Müller-Wenk &

Brandão, 2010; O’Hare et al., 2009). Kendall et al.

(2009) elaborate a time correction factor to be applied

to emissions from LUC treated as a single pulse amor-

tized over time. O’Hare et al. (2009) develop alterna-

tives to simple discounting and summing of GWPs

over the life cycle after straight-line amortization of

emissions. Levasseur et al. (2010) investigate the chal-

lenges in harmonizing the TH used in GWP and the

time boundaries of the analysis: the climate impact of

an emission at year 50 is considered for 100 years in

GWP, that is, from year 50 to 150, even if the analysis

has a time boundary of 100 years. They overcome this

issue making the TH for the integral in GWP flexible,

so to get dynamic characterization factors for each

year of the assessment period. Müller-Wenk & Bran-

dão (2010) assume that LUC emissions occur as a

pulse, but sequestration for restoring the ecosystem

occurs over several years, so that the lifetime of bio-

genic CO2 in the air is directly proportional to the

ecosystem relaxation time. While developing character-

ization factors for the climate impact of CO2 emissions

from biomass combustion, Cherubini et al. (2011) focus

on the interaction between biogenic CO2 emissions

and the global carbon cycle, modeling the carbon sink

created by biomass regrowth as a dynamic CO2

removal flux from the atmosphere.

Aims and objectives

Greenhouse gas balances of bioenergy systems generally

follow the standard conventions regarding no-prefer-

ence for time (zero discount rate) in LCA, and therefore,

they usually bypass the temporal issue of time discrep-

ancy between CO2 emissions (through combustion or

oxidation) and removals (through vegetation growth).

This results in implicitly adopting the common conven-

1The IPCC 1996 guidelines suggested the default assumption
that in a given year, there is no net change in the carbon stored
in the pool of HWP. The rationale for this was the assumption
that the oxidation rate is equal to the production rate, on an
annual basis. This is mathematically equivalent to assuming
that all the carbon is released to the atmosphere soon after har-
vesting as a single pulse.
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tion of the carbon and climate neutrality of bioenergy.

In the recent years, this convention has been criticized

by an increasing number of studies (Cherubini et al.,

2011; Johnson, 2009; Möllersten & Grönkvist, 2007; Reil-

ly & Asadoorian, 2007; Searchinger, 2010; Searchinger

et al., 2009). Neglecting the distribution over time of

CO2 fluxes is appropriate if the analysis has an infinite

time frame, but is questioned when specific time bound-

aries are set. The international debate on climate mitiga-

tion policies and agreements make extensive use of

time-related targets. Tipping point concerns have

strengthened demand for short-term targets. This also

has some implications for LCA practices related to

GHG and climate impacts. As the questions posed by

policy makers change, the tools and metrics to answer

them might also need some adaptations.

In this article, we aim at providing more insights into

the modeling of time-distributed CO2 fluxes and their

climate impacts, investigating options to assess delayed

and distributed emissions from biogenic sources with

different metrics. In theory, estimating the rate of CO2

fluxes to and from the atmosphere can be based on sta-

tistical data on production and fate of all organic prod-

ucts, but this implies a considerable accounting effort.

This article proposes a simpler approach, showing a

methodology where relatively simple mathematical

methods are used to model time-distributed CO2 flows

and their climate effects. Different probability distribu-

tions are used to model the oxidation rate of three bio-

mass products (wood as fuel, nonstructural panels, and

housing construction material), whereas the Schnute

function (parameterized with the default values from

IPCC for boreal forest) is used to model CO2 sequestra-

tion through biomass regrowth. In the next section, the

methodology to account for the change in CO2 atmo-

spheric concentration caused by time-distributed fluxes

is presented. Then, each distribution is described and

applied to the selected wood applications. The resulting

CO2 atmospheric profiles are used to calculate the

respective changes in RF, and then the corresponding

climate impacts are quantified and discussed using dif-

ferent metrics. The focus here is placed on CO2 fluxes

from biomass systems, which are a perfect example of

distributed emissions (through combustion or oxida-

tion) and removals (i.e., sequestration from biomass

growth), but the same methodology can be successfully

applied to other types of emissions or resources.

Methods

Dynamics of atmospheric CO2 concentration

All types of CO2 emissions and removals cause a perturbation

to the CO2 atmospheric concentration, thereby causing a

climate impact. The change in atmospheric CO2 concentration

can be modeled by means of the impulse response function

(IRF), which describes the perturbation of a dynamic system

caused by some external change. Among the existing IRFs, the

IRF from the Bern CC model is here used to predict the atmo-

spheric decay of anthropogenic CO2. This function represents

the fraction of CO2 remaining in the atmosphere after a single

pulse emission depending on the interactions between the

atmosphere, the oceans, and the terrestrial biosphere (Joos

et al., 1996, 2001). This IRF y(t) has the following analytic form

(Forster et al., 2007):

y tð Þ ¼ A0 þ
X3
i¼1

Aie
�t=bi ; ð1Þ

where A0 = 0.217, A1 = 0.259, A2 = 0.338, A3 = 0.186,

b1 = 172.9, b2 = 18.51, b3 = 1.186. The profile of this curve is

shown as a benchmark in the Results section. The amplitude

A0 represents the asymptotic airborne fraction of CO2 which

remains in the atmosphere because of the equilibrium response

of the ocean–atmosphere system. The amplitudes Ai may be

interpreted as the relative capacity of the other sinks, which are

filled up by the atmospheric input at rates characterized by the

relaxation time scales bi.

The time-distributed emissions and removals of CO2 follow

this decay, and the analytical combination of these fluxes with

the IRF for anthropogenic CO2 provides the corresponding

change in CO2 atmospheric concentration. In mathematical

terms, this is implemented with a convolution between the

emission and removal functions with the CO2 decay from the

air:

f tð Þ ¼
Z t

0

C0e t0ð Þ � C�
0g t0ð Þ� �

y t� t0ð Þdt0 ð2Þ

where t′ is the integration variable from the time since har-

vest, t is the time dimension, C0 is the intensity of the emis-

sion (here a unit pulse is assumed, so C0 = 1), C�
0 is the

intensity of the removal (a carbon neutral system is modeled,

so C0 ¼ C�
0 ¼ 1), e(t′) is the emission function, g(t′) is the CO2

removal rate from the atmosphere (due to biomass regrowth),

and y(t) is the IRF from the carbon cycle climate model. This

equation integrates the dynamics of the biomass system

within the global carbon cycle to get the resulting CO2 atmo-

spheric profile. Further physical implications and interactions

of the biomass system with the global CO2 fluxes and sinks

can be found in more specific papers (Cherubini et al., 2011;

Sitch et al., 2003; Strassmann et al., 2008). Following Eqn (2),

we can write:

f tð Þ ¼
Z t

0

e t0ð Þy t� t0ð Þdt0 �
Z t

0

g t0ð Þy t� t0ð Þdt0: ð3Þ

The first part of the integral represents the atmospheric

CO2 concentration response to distributed CO2 emissions,

whereas the second integral considers distributed CO2 remo-

vals due to biomass regrowth, here modeled as a negative

emission. Solutions are computed via numerical approxi-

mations.
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Distributed CO2 removal

In this article, we consider that biomass comes from a plantation

kept under continuous rotation. This means that once biomass

resources are harvested and converted into products, the same

species are replanted and they start sequestering CO2 from the

atmosphere, sometimes before the harvested carbon is oxidized.

In this article, the Schnute model (a comprehensive growth

model with statistically stable parameters; Schnute, 1981) is

used to reproduce the sequestration of atmospheric CO2 in the

growing forest, following common practice in forest modeling

(Feng, 1997; Yuancai et al., 1997; Zhao-gang & Feng-ri, 2003).

The growth model can be expressed by the following function:

G tð Þ ¼ aþ bect
� �d

; ð4Þ

where

a ¼ yb1 þ
yb2=y

b
1

� �
1� e�a T2�T1ð Þ ; ð5Þ

b ¼ eaT1 yb2 � yb1
� �

1� e�a T2�T1ð Þ ð6Þ

c ¼ �a and d ¼ 1

b
; ð7Þ

The variable t is the time dimension, T1 and T2 are the initial

and final age of the interval, y1 and y2 are the corresponding

values of the function at T1 and T2, a is the constant accelera-

tion in growth rate, and b is the incremental acceleration in

growth rate. Equation (4) represents the cumulative growth.

The annual growth rate needed for Eqn (3) is given by its

derivative:

g tð Þ ¼ dbcect aþ bect
� �d�1

: ð8Þ

The IPCC default factors for managed and native coniferous

boreal forest (with average above ground carbon stock of 40

and 50 t C ha�1, respectively) are used to customize this

growth curve. Additional conditions and details about the defi-

nition of the other parameters for this function can be found in

a recent paper (Cherubini et al., 2011), together with the result-

ing curve profile.

Distributed CO2 emissions

In this section, we investigate the use of probability distribu-

tions to model the oxidation rate of C over time. We assume

specific mean lifetimes (τ) for the three selected wood uses:

2 years for fuel (Marland et al., 2010), 30 years for nonstructur-

al panels (IPCC, 2003),2 and 150 years for housing construction

material (Skog, 2008).3 The following probability distributions

are modeled: a delta dirac function (simply called delta func-

tion), used to simulate a single pulse emission; a uniform dis-

tribution, where the emission is equally spread over a certain

number of years; an exponential distribution, based on a first-

order decay; a chi-square distribution, where the emissions are

distributed around the expected lifetime. All these distributions

are normalized, so that their emission intensity is always equal

to one (in mathematical terms: the integral of all the curves

from zero to infinity is one). Figure 1 shows the profiles of

these distributions for wood use as fuel and Fig. 2 for wood as

nonstructural panels (distributions for wood as housing con-

struction material are not shown because the curves are similar

to those in Fig. 2, but translated over t to model the mean life-

time at 150 years). The analytical derivations and logical impli-

cations of these functions are explained hereinafter.

Delta function d(t)We use the delta function to model CO2

emissions occurring at a specific point in time as a single pulse.

The use of this function is a common practice in the literature,

both for emissions occurring at t = 0 or after a certain number

of years if a storage period in the anthroposphere or biosphere

is considered (Kirschbaum, 2003, 2006; Pingoud & Wagner,

2006). The delta function is a generalized function that it is zero

for all values of the parameter but a single point, when all the

carbon is oxidized to the atmosphere. We assume that this

point corresponds to the expected lifetime, τ, except when

wood is used as fuel (for which we assume τ = 0, so to better

reproduce mainstream practice in LCA). This function, which

can be formally defined as a distribution, has the following

analytical form:

d t; sð Þ ¼ 1 t ¼ s
0 t 6¼ s

�
; ð9Þ

and its integral over time is by definition constrained to satisfy

the identity (i.e., equal to one). The delta function is then

included in Eqn (3) in place of e(t′) to get the biogenic CO2

decay corresponding to this emission profile:

f tð Þ ¼
Z t

0

d t0; sð Þy t� t0ð Þdt0 �
Z t

0

g t0ð Þy t� t0ð Þdt0: ð10Þ

Thanks to the sifting property of the delta function (Brace-

well, 1999), we have:Z
d t0; sð Þy t� t0ð Þdt0 ¼ y t� sð Þ: ð11Þ

So that Eqn (6) can be written as follows:

fðtÞ ¼ �R s
0g t0ð Þy t� t0ð Þdt0; for 0� t\s (a)

yðt� sÞ � R t
sg t0ð Þy t� t0ð Þdt0; for t� s (b)

(
; ð12Þ

where y(t � τ) represents the onward decay of the pulse emis-

sion from t = τ ahead. The term (12a) describes the change in2Table 3a.1.3 of the IPCC Good Practice and Guidance reports a
default value of 20 years for the half-life (t1/2) of nonstructural
panels, like particle board. The mean lifetime is calculated
using the formula τ = t1/2/ln(2), and corresponds to 28.85
(rounded to 30).

3Skog estimates a half-life of solid wood for single-family hous-
ing of 105 years in 2010, which corresponds to a mean lifetime
of 151.5 years (rounded to 150 years).
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CO2 atmospheric concentration for the time period before the

pulse emission, where the CO2 sequestration from biomass

regrowth is the only flux, whereas (12b) describes the decay

after the pulse emission (with the remaining part of the growth).

Uniform distribution υ(t)Rather than as a single pulse, emis-

sions can be distributed over time. For instance, LUC emissions

are frequently linearly amortized over a certain timeframe,

implicitly assuming that each year has an equal share of CO2

emissions. This practice, which can also be applied to wood

products, is here modeled with a uniform distribution, where

the amortization occurs over a period equal to two times the

mean lifetime of the products:

t tð Þ ¼ 1
2s 0\t\2s
0 otherwise.

�
ð13Þ

This function is then included as e(t′) in Eqn (3).

Exponential distribution e(t)The exponential distribution is

currently the dominant approach to model CO2 emissions from

wood products, as recommended by the IPCC guidelines for

national GHG inventories. This is a first-order decay model,

that is, the oxidation rate is proportional to the size of the pool

(here assumed to be one, representing the carbon in a single

product), which has the following expression:

Fig. 2 Comparison of the probability distributions used to model the CO2 emission rate for wood use as nonstructural panels.

Fig. 1 Comparison of the probability distributions used to model the CO2 emission rate for wood use as fuel.
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e tð Þ ¼ e �t=sð Þ: ð14Þ

The C oxidation rate, to be included in Eqn (3) as e(t′), is the

first derivative of this equation. The adoption of this probabil-

ity distribution means that the largest rate of oxidation occurs

in the first years after production, and then gradually decreases

over time, up to asymptotically approaching zero. Such an oxi-

dation rate can be appropriate for few products only, because,

in general, it is most likely that a particular product is oxidized

at various times, but with the highest probability near its

expected lifetime. Even wood used as fuel does not usually

decay within the first year after harvest, because most of it is

seasoned over several months to lower its water content so to

increase its energy density and combustion efficiency. In the

next paragraph, a more realistic oxidation rate is introduced.

Chi-square distribution v2(t)A recent paper suggested the use

of a gamma distribution to model the oxidation rate of wooden

products (Marland et al., 2010). The gamma distribution, lar-

gely adopted for expected lifetime in probability theory and

statistics, has two parameters that are used to customize the

distribution to the specific case: a scale parameter b and a

shape parameter a. Since no simple closed form expressions

exist for the cumulative distribution function (Tadikamalla,

1978), these parameters can be estimated via numerical

approximation using at least two data points, such as the

expected lifetime and another point of the decay (e.g., the year

when 95% of the biomass is oxidized). Due to the absence of

extensive data on decay rates of wooden products besides

expected lifetimes, this distribution has limitations for being

routinely applied in LCA. To overcome this issue, a special

case of the gamma distribution is considered in this article.

When a = k/2 and b = 2, where k is a positive integer, the chi-

square distribution with k degrees of freedom is obtained. This

distribution is of course less flexible than the gamma distribu-

tion, because it has a single variable parameter, but is suffi-

ciently appropriate to model the oxidation rate of wooden

products using their expected lifetime. In this article, we esti-

mate k assuming that the year of maximum oxidation rate (e.

g., the peak of the distribution) occurs in correspondence of

the mean lifetime τ, knowing that the mode of the distribution

is equal to max[k � 2, 0]. For the wood products considered in

this analysis, k is equal to τ + 2, that is, 4, 32, and 152 for wood

as fuel, nonstructural panels, and housing construction mate-

rial, respectively.

The chi-square distribution can be analytically expressed in

terms of the gamma function, with t � 0:

v2 t; kð Þ ¼ 1

2k=2C k=2ð Þ t
ððk=2Þ�1Þeð�t=2Þ; ð15Þ

where t is the time dimension and Γ(k/2) is the gamma func-

tion, defined as:

C k=2ð Þ ¼
Z 1

0

xk=2�1e�xdx: ð16Þ

Equation (15) can be included in Eqn (3) as e(t′) to model the

resulting effect in atmospheric CO2 concentration.

Climate metrics

Two main types of climate metrics can be identified, in relation

to the treatment of time (Peters et al., 2011): absolute metrics,

which compare the climate impact caused by different emis-

sions over time (e.g., change in CO2 atmospheric concentration,

instantaneous and cumulative RF, instantaneous and cumula-

tive temperature change), and normalized metrics, which quan-

tify the climate impact relative to a reference gas (e.g., GWP).

In the LCA community, the latter are dominating.

Marginal changes in atmospheric CO2 concentration are

computed using the following equation:

DCO2 ¼ hCO2 fðtÞ; ð17Þ

with

hCO2
¼ 106 ppmv=MWCO2

mair=MWair

ppmv

kg

� �
; ð18Þ

where MWCO2 is the molecular weight of CO2 (44 kg kmol�1),

mair is the mass of the atmosphere (5.14 9 10�14 kg), and

MWair is the molecular weight of air (28.97 kg kmol�1). Results

are calculated assuming a constant background CO2 atmo-

spheric concentration (conservative estimate).

The function f(t) is also the basis for the estimation of the

resulting impact on GW through the concept of RF. The latter

is the perturbation of the earth energy balance at the top of the

atmosphere by a climate change mechanism. The time evolu-

tion of a change in radiative forcing, DRF, from 1 kg of emis-

sion at time zero is proportional to the atmospheric decay of

the gas. This is the instantaneous RF equal to:

DRF ¼ aCO2 fðtÞ; ð19Þ

where aCO2
is the radiative efficiency of CO2 per kg of emission

(1.81 9 10�15 W m�2 kg�1), assumed to be constant over time

(Forster et al., 2007). The absolute global warming potential

(AGWP) is given by the integral of DRF from zero up to a spe-

cific TH (either 20, 100, or 500 years). This value is compared

with that of anthropogenic CO2 in the GWP index. For the par-

ticular case of CO2 emissions from biomass, we use the recently

introduced notation GWPbio (Cherubini et al., 2011):

GWPbio ¼ AGWPbioCO2

AGWPCO2

¼
R TH
0 aCO2

fðtÞdtR TH
0 aCO2

yðtÞdt
: ð20Þ

Instead of considering only a pulse emission, we elaborate

GWPbio indices for emission distributed over time using the

selected probability distributions.

One common criticism about GWP relates to the fact that,

despite its name, it does not purport to represent the impact of

gaseous emissions on surface temperature. In this article, we

explore the possibility to use another indicator for GW, the glo-

bal temperature change potential (GTP), which is gaining

increasing interest in the research community (Boucher & Red-

dy, 2008; Fuglestvedt et al., 2010; Shine et al., 2005). This metric

is a step further down in the cause and effect chain of the

potential climate effect of emissions, and hence more relevant
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than GWP, and provides the surface temperature change at a

particular time in the future. The AGTP is defined as the global

change in surface temperature at a TH induced by 1 kg of

emission and has a unit of K kg�1. It is computed here as a

convolution of an impulse temperature response function dT(t)

with the time profile of the change in RF. The function dT(t) is
the climate response in terms of global surface temperature

change and is estimated from an IRF to RF:

dT tð Þ ¼
X2
i

ci
di
e
�t=di

; ð21Þ

where c1 = 0.631 and c2 = 0.429 in K(W m�2)�1 and d1 = 8.4

and d2 = 409.5 in years. This function was derived from more

than 1000 simulated years of an experiment with the HadCM3

climate model (Boucher & Reddy, 2008). The climate responds

with a short time scale d1 and a longer time scale d2, and the

equilibrium climate sensitivity, as the sum of the ci coefficients,

is 1.06 K (W m�2)�1. This function is used to estimate the glo-

bal surface temperature change at a TH from a given RF pro-

file:

AGTP ¼
Z TH

0

DRFðtÞdTðTH� tÞdt: ð22Þ

The GTP is finally presented as the ratio between the AGTP

for a given species to that of CO2:

GTP ¼ AGTPbioCO2

AGTPCO2

¼
R TH
0 DRFbioCO2

ðtÞdTðTH� tÞdtR TH
0 DRFCO2 ðtÞdTðTH� tÞdt

: ð23Þ

Results

Absolute metrics

The first tier results from our modeling efforts are the

curves portraying the outcomes of the absolute metrics:

changes in atmospheric CO2 concentration (proportional

to the instantaneous RF), cumulative (or integrated,

AGWP) RF, and instantaneous and integrated change in

surface temperature.

Figure 3 shows the perturbation response functions

(PRFs) obtained for the different wood uses (constant

background atmospheric CO2 concentration is assumed

and the value at year zero is set equal to zero). These

curves are obtained by combining the global carbon

cycle model with the different probability distributions

introduced above (used to model the oxidation rate of

the three selected wood applications) and the Schnute

function that simulates the CO2 sequestration from

growing trees. The graph compares the profiles of atmo-

spheric CO2 concentration when the delta function

(d-PRF), the uniform distribution (υ-PRF), the exponen-

tial distribution (e-PRF), and the chi-squared distribu-

tion (v-PRF) are used to model CO2 oxidation rates. The

atmospheric decay of anthropogenic CO2, emitted as a

single pulse at t = 0, is also shown for comparison in

Fig. 3a. The latter is appropriate for biogenic CO2 in

case of biomass combustion soon after harvest and

deforestation (i.e., no biomass regrowth). The profiles of

the curves in Fig. 3a show differences for the first dec-

ade after harvest, and then follow a similar trend. The

d-PRF is the case in which forest wood is directly used

for bioenergy and all the CO2 is released as a single

pulse at t = 0. It shows a profile similar to anthropo-

genic CO2 in the early years, and then accelerates its

decay trend when the sequestration rate from growing

trees increases. Even if a C neutral system is modeled

here (the same quantity C0 of CO2 is emitted and

removed), the effect of this biogenic CO2 emission on

atmospheric concentration is evident, and the biomass

system is not climate neutral.

When other emission functions are used, the intensity

of the pulse is distributed over time and the maximum

value of the resulting PRF is lower, because a fraction of

the CO2 emitted at time t � 1 has already decayed at

time t. The larger the distribution of the emission over

time, the smaller the maximum value of the respective

PRF is. In the long run, all the curves asymptotically

tend to zero. At first sight, the presence of negative val-

ues, especially for the d-PRF, may appear inconsistent,

because the amount of CO2 in the atmosphere is lower

than the level before the emission, even if a carbon neu-

tral system is modeled. There is a physical interpreta-

tion for this effect (Cherubini et al., 2011). Soon after the

emission, when the biomass growth rate is still slow, a

significant fraction of the CO2 originally released is

quickly stored in the ocean upper layer. The following

transport of this C to the deep ocean layers is slower,

and when the uptake by the onsite biomass regrowth

increases, the C initially stored in the ocean upper layer

will be released back to the atmosphere at a low rate to

compensate the initial over-absorption (out-gassing). In

the long term, the airborne fraction of CO2 approaches

zero.

Figure 3b shows the profiles of the atmospheric CO2

concentration when the different distributions are used

to model the oxidation rate of wood used as nonstruc-

tural panels. Here, the differences among the curves are

more pronounced. The d-PRF starts with a sequestration

and then emission at t = 30 years as a single pulse, the

v-PRF goes below zero in the first two decades because

emissions are distributed around t = 30 years and the

other PRFs are based on functions where emissions are

distributed over time starting from year zero. Because

of that, they do not turn to negative values soon after

t = 0, as the d-PRF and v-PRF. The υ-PRF reaches a con-

stant value until a clear inflection point at t = 60 years,

when the emission function goes to zero, and so does
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Fig. 3 Marginal changes in CO2 atmospheric concentrations when wood is used as (a) fuel (τ = 2), (b) nonstructural panel (τ = 30),

and (c) housing material (τ = 150) according to different emission functions.
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the PRF. After approximately 100 years, the curves

show similar profiles.

Figure 3c shows the results obtained by modeling the

oxidation rate of wood for housing construction materi-

als with different distributions. In this case, the differ-

ences among the curves are largely distributed over

time, suggesting that the influence of the emission func-

tion on the results increases with the mean lifetime of

the products. All the PRFs have negative values for a

relatively long timeframe and the d-PRF reaches the

lowest negative values, because it has no emissions until

year 150, where all the CO2 is released as a single pulse.

During this time period, the sequestration of CO2

through biomass regrowth is the only perturbation of

the system. The v-PRF has a profile similar to d-PRF for

the first years, because it assumes emissions distributed

around the year of maximum oxidation rate, so that

emissions are very limited in the first years. The υ-PRF
has a small fraction of emissions over 300 years (two

times the mean lifetime), where it has a clear inflection

point, after which the CO2 atmospheric fraction asymp-

totically tend to be zero as the other curves. The e-PRF
is characterized by the largest rate of emissions in the

first years, so that this emission of CO2 partially offset

the CO2 sequestered by growing trees occurring in the

first 100 years. This is the reason for the smaller values

of this function while negative.

Figure 4 shows the cumulative or integrated radiative

forcing (AGWP), of the three wood uses for the differ-

ent probability distributions. The AGWP of a pulse of

anthropogenic CO2 released at t = 0 is shown for com-

parison. While the AGWP from a pulse emission of

anthropogenic CO2 gradually increases over time

because of the nonzero asymptotic value of the decay

(see Eqn 1), all the AGWPs of biogenic CO2 tend toward

a similar constant value within a specific timeframe. As

for the previous cases, the influence of the type of prob-

ability distribution used is small for the case of wood as

fuel (Fig. 4a) and as nonstructural panel (Fig. 4b), while

it is more relevant for longer biomass storage periods

(Fig. 4c). In the latter case, AGWPs are largely negative,

meaning that a total cooling effect occurs.

Changes caused in surface temperature are shown in

Fig. 5, only limited to the case in which the oxidation

rate of the wooden products is modeled with the chi-

square distribution. Again, the effect caused by a pulse

emission of anthropogenic CO2 at year zero is shown as

a benchmark. Figure 5a shows the instantaneous surface

temperature change, whereas Fig. 5b shows the cumula-

tive effect. Results are in line with the other outcomes,

highlighting the large long-term benefit for the climate

of CO2 emissions from biomass rather than fossil and

the relatively long storage periods needed to have a

total cooling effect when boreal forest biomass is used.

Normalized metrics

Rather than showing climate impacts as a function of

time, LCA studies traditionally report the final out-

comes using normalized metrics like the GWP. Results

for the three most common THs of 20, 100, and

500 years are shown in Table 1. The use of the GWPbio

index is identical to the other GWP equivalency factors:

it is a characterization factor to be multiplied by the

total CO2 emissions from biomass oxidation (or total

CO2 sequestered in biomass) to get their relative contri-

bution to GW in terms of kg CO2-eq. The values are

always smaller than one. Values close to one mean that

the release of a unit of biogenic CO2 has the same

climate impact (in terms of cumulative emissions for the

GWPbio and surface temperature change potential for

GTP) of a single unit pulse emission of anthropogenic

CO2 at year 0. When the index is smaller than zero,

there is a net cooling effect.

Results show the importance of the probability distri-

butions used to model emissions and the TH consid-

ered. When wood is used as fuel, the results for the

delta function represent the climate impact of CO2 from

direct combustion for bioenergy, which is not zero

because of the time discrepancy between emissions and

removals. The use of other distributions leads to smaller

values, meaning that the more distributed the intensity

of emission over time, the lower the climate impact is.

In general, the chi-square distribution shows the lowest

values. For long THs, the influence of the emission func-

tion is reduced. The delta function and the chi-square

distribution show similar figures, except for the case of

wood used as fuel. The uniform and exponential distri-

bution have the highest values for TH = 20 for long

storage periods, because they simulate emissions from

the beginning. Of particular interest are the results

when wood is used as housing construction material.

For TH = 20 and 100, the delta function is the only func-

tion that does not have any emissions (which occur at

t = 150), only sequestration of CO2 from regrowth dur-

ing the first 100 years. This points out an important

aspect: the value of GWPbio with TH = 100 is �0.57,

and not �1.00, as it would be expected, since up to

100 years there is only the sequestration of CO2 in

growing trees and no emissions from carbon oxidation.

This means that the climate impact of CO2 fluxes cannot

be estimated by simply summing up the flows to and

from the atmosphere to get either a positive or a nega-

tive net balance (as traditionally done in LCA), but the

time profile of emissions is of capital importance in

presence of a TH. A physical interpretation of this

aspect is also possible: the removal of CO2 from the air

changes the concentration gradient between the atmo-

sphere and the other carbon sinks, the oceans, and the
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Fig. 4 Cumulative radiative forcing (or absolute global warming potential, AGWP) when wood is used as (a) fuel (τ = 2), (b) non-

structural panel (τ = 30), and (c) housing material (τ = 150) according to different emission functions.
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terrestrial biosphere, and thereby reduces their subse-

quent inherent rate of CO2 removal from the atmo-

sphere. Some CO2 is hence released from the other

sinks, especially the oceans, to the atmosphere, so to

compensate for the change in the concentration gradient

and tend to a new equilibrium. This effect has been

already observed in other papers as well (Kirschbaum,

2003, 2006).

The values of GTPs differ slightly from those of

GWPbio, since they give more weight to the RF that

comes later in the time period. In particular, it appears

that the use of the GWP index for short-term mitigation

targets significantly overestimate the effective climate

impact in terms of surface temperature change of bio-

genic CO2 emissions, while it is the opposite for longer

TH.

Table 2 shows some characterization factors (GWPbio

with TH = 100) for selected combinations of biomass

species, represented by the different rotation periods

(r = 1 year for annual crops and r = 100 years for boreal

forest), and wood uses, represented by the expected life-

times, when a chi-square distribution is used to model

the CO2 oxidation rate. These values include the CO2

sequestration from biomass regrowth, simply modeled

using a Gaussian distribution centered on the year

corresponding to half the rotation period. For short

Fig. 5 Instantaneous (a) and cumulative (b) surface temperature change caused by CO2 emissions from different wood uses (fuel,

nonstructural panels, and housing construction material), using the chi-square distribution to model the oxidation rate. Results for

emissions of anthropogenic CO2 from combustion of fossils are shown for comparison.
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biomass rotation periods, values are negative (revealing

a total cooling effect), whereas when the length of the

rotation increases, longer expected lifetimes of the prod-

ucts are needed to have characterization factors lower

than zero.

Discussion

Implications

The explicit modeling of CO2 fluxes with probability

distributions and their integration within the global

carbon cycle represents a flexible and consistent meth-

odology to assess the climate impact of the various bio-

mass and bioenergy systems (including direct

combustion, wood storage, afforestation, and others).

This type of dynamic analysis, adaptable to different

metrics, meets the target of policy makers for studies

where impacts from emissions should be assessed

within specific time boundaries.

In this article, we have provided examples where

wood is used for direct production of energy, as non-

structural panels or as housing construction material.

For each of them, probability distributions are used to

Table 1 GWPbio and GTP for three wood uses using different probability distributions as emission functions

GWPbio GTP

TH = 20 TH = 100 TH = 500 TH = 20 TH = 100 TH = 500

Wood as fuel

Delta function 0.96 0.43 0.07 0.97 0.49 0.09

Continuous distribution 0.87 0.41 0.07 0.84 0.46 0.08

Exponential distribution 0.87 0.40 0.07 0.84 0.46 0.08

Chi-square distribution 0.79 0.39 0.07 0.71 0.45 0.08

Wood as nonstructural panels

Delta function �0.04* 0.19 0.03 �0.03* 0.21 0.04

Continuous distribution 0.14* 0.18 0.03 0.11* 0.20 0.04

Exponential distribution 0.25* 0.18 0.03 0.20* 0.21 0.04

Chi-square distribution �0.04* 0.17 0.03 �0.03* 0.19 0.03

Wood as housing construction material

Delta function �0.04* �0.57a �0.15 �0.03* �0.51a �0.18

Continuous distribution �0.01* �0.34a �0.16 0.00* �0.29a �0.18

Exponential distribution 0.03* �0.26a �0.14 0.03* �0.23a �0.15

Chi-square distribution �0.04* �0.58a �0.16 �0.03* �0.51a �0.19

*TH shorter than τ.
GWP, global warming potential; GTP, global temperature change potential; TH, time horizon.

Table 2 Characterization factors (GWPbio with TH = 100) for selected biomass rotation periods and expected lifetimes of biomass

products in the anthroposphere or biosphere

Rotation period (years)

Expected lifetime τ (years)

2 4 6 10 15 20 30 50 70 100

1 �0.02 �0.04 �0.06 �0.09 �0.13 �0.17 �0.25 �0.43 �0.63 �0.93

4 �0.01 �0.03 �0.05 �0.08 �0.12 �0.16 �0.24 �0.42 �0.61 0.91

8 0.00 �0.01 �0.03 �0.06 �0.10 �0.14 �0.22 �0.40 �0.60 �0.90

12 0.02 0.00 �0.01 �0.05 �0.09 �0.13 �0.21 �0.38 �0.58 �0.88

16 0.03 0.02 0.00 �0.03 �0.07 �0.11 �0.19 �0.37 �0.56 �0.87

20 0.05 0.03 0.02 �0.01 �0.05 �0.09 �0.18 �0.35 �0.55 �0.85

40 0.13 0.12 0.10 0.07 0.03 �0.01 �0.09 �0.27 �0.47 �0.77

60 0.22 0.20 0.19 0.16 0.12 0.08 �0.01 �0.18 �0.38 �0.68

80 0.31 0.29 0.28 0.25 0.21 0.17 0.08 �0.09 �0.29 �0.59

100 0.39 0.38 0.36 0.33 0.29 0.25 0.17 �0.01 �0.20 �0.50

The oxidation rate of biomass products is modeled with a chi-square distribution, the sequestration through vegetation growth with a

Gaussian distribution.

GWP, global warming potential; TH, time horizon.
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model the CO2 oxidation rate of the products. When

biomass is directly used as fuel, the d function is appro-

priate for modeling CO2 emissions as a single pulse,

because the other functions lead to similar results

(except when TH = 20). When energy production is not

the primary use of the biomass, and its average lifetime

in the anthroposphere increases, modeling emissions as

occurring as a single pulse might not be appropriate

anymore, especially for short THs, and probability dis-

tributions should be used to better represent the oxida-

tion rate of the product. The choice of the probability

distribution should be consistent with empirical obser-

vations and logically correct. For instance, if a wood

product is going to be burnt after a certain number of

years, the use of a delta function is still correct because

it is the best representation of emissions from stationary

combustion. However, this condition is not common

and quite impractical. Once biomass is harvested, it is

sold to the market and the producers usually do not

have precise information about the end of life of the

product. So rather than a delta function, it is often better

to model emissions from biomass oxidation with time-

distributed functions, so to better take into account the

probability of product oxidation for each year. The use

of a uniform distribution is a first attempt toward this

direction, but it has the risk to be an excessive oversim-

plification. In fact, it is conceptually based on the amor-

tization of emissions over a specified, sometimes

arbitrary, timeframe, rounding the effect of CO2 on the

DRF. The use of an exponential distribution, as pro-

moted by the IPCC guidelines, implies that the product

has the largest oxidation rate in the first years after its

production. In general, the longer the expected lifetime

of the product, the less likely the oxidation rate follows

an exponential trend. The chi-square distribution repre-

sents an appropriate function to be used for this pur-

pose, because it considers that a particular product will

most likely be oxidized near its mean lifetime. Given

the limited availability of reliable data on the oxidation

rates of HWP besides mean lifetimes, the use of a chi-

square distribution rather than a gamma distribution is

introduced to simplify the modeling in LCA applica-

tions. If more specific data on decay rates will be pub-

licly available in the future, the utilization of a gamma

distribution becomes preferable, because of its larger

flexibility.

Furthermore, the probability distributions can be

parameterized in a way to account for the different

pathways a biomass product can have in the anthropo-

sphere prior to being oxidized, such as recycling or oxi-

dation under anaerobic conditions in landfills.

Concerning the modeling of CO2 removal from the

atmosphere by growing biomass after harvest, a single

negative pulse is appropriate for annual crops, but

becomes inadequate for biomass with a longer rotation

period. In these cases, more specific biomass growth

functions should be considered.

Limitations

Although the methodology to model the change in CO2

atmospheric concentration and RF caused by time-dis-

tributed fluxes is solid and robust, uncertainty and,

potentially, inaccuracy are brought on by the choice of

the metric to measure the impact on the climate. The

choice of the metric is a debated issue (Fuglestvedt

et al., 2003, 2010; IPCC, 2009; Shine et al., 2005). The

interpretation of results in Tables 1 and 2 should follow

the considerations that they are based on fixed time-

frames, from zero to TH, independently of when emis-

sions occur. When emissions are distributed over time,

especially if they are near or beyond the TH, these nor-

malized metrics have serious shortcomings, despite

their large use in the LCA community. Regarding the

cases analyzed in this work, this particularly applies for

temporal wood storage in products, where emissions

can overlap with the TH considered. As already noticed

by other authors (Melillo et al., 2009; Peters et al., 2011;

Schwietzke et al., 2011), in these cases absolute metrics

are preferable, because they portray the instantaneous

(Fig. 3) or integrated (Fig. 4) climate impact as a func-

tion of time. In the case of carbon storage, when looking

at instantaneous impacts, analysts and policy makers

are challenged by the proper evaluation of the short-

term cooling effect against a possible warming effect in

the later years, whereas integrated impacts provide

clearer indications on the dynamics of the total climate

effects (Fig. 4c clearly shows that the total contribution

is a cooling effect). The presence of a TH simultaneously

requires an accurate modeling of the CO2 fluxes occur-

ring before and a consideration of the potential impacts

occurring afterwards. Because the impacts after the TH

are entirely disregarded and not measured, caution

should be paid to those activities that simply move the

warming impact beyond the TH.

As an example of this issue, Fig. 5 shows the change

caused in the surface temperature of CO2 emissions

from the oxidation of the three investigated wood prod-

ucts when the chi-square distribution is used to model

the oxidation rate. This figure clearly shows that the

effect on surface temperature lasts for more than

150 years for wood use as fuel and nonstructural pan-

els, and ca. 500 years for wood as housing construction

material. The selection of a shorter TH would lead to

partial results: for example, if a TH of 100 years is cho-

sen, for τ = 2 years only the initial warming effect is

measured while the long-lasting cooling effect is missed,

whereas for τ = 150 years only a part of the cooling
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effect is covered and the following long-lasting warm-

ing contribution is completely ignored (it is the opposite

for integrated impact, Fig. 5b, where a substantial cool-

ing occurs after 100 years).

Net CO2 fluxes from biomass systems have varying

dynamics and several metrics can be used to assess the

impacts on climate, bearing different and sometimes

contrasting information. These issues should gather

increasing attention from LCA practitioners. As insight-

fully noticed by Peters et al. (2011), ‘a debate should be

open in the LCA community on the impact category

GW’, aiming at revisiting the emission metrics consid-

ered and the treatment of time in complex biomass and

bioenergy systems.

Finally, the results presented in Tables 1 and 2 should

not be over-interpreted. The objective here is to compare

different options at a methodological level, and before

deriving general conclusions about the suitability of one

wood option over the other, there are life cycle-based

considerations and specific local parameters to be con-

sidered. Aspects that can potentially overturn the

results are efficiency in biomass conversion processes,

number of rotations, selection of proper time and spatial

boundaries, LUCs, and other life cycle implications

(such as material and energy inputs for cultivation, har-

vesting, processing, and transport).

Final remarks

In presence of time boundaries, the climate impact of

biomass or bioenergy systems cannot be estimated

through a net balance of the CO2 fluxes to and from the

atmosphere, but it is to be computed using their tempo-

ral profiles and integrating the biomass system within

the global carbon cycle. This article elaborated a flexible

methodology, based on specific probability distribu-

tions, which is not restricted to CO2 emissions from bio-

mass but can be adapted to other stressors and energy

sources. Among the investigated functions, the chi-

square distribution emerges as a promising option that

can be adapted to describe the oxidation rates of all the

selected product classes, requiring only one parameter

(e.g., the mean lifetime) for its definition. The choice of

the metric with its TH is crucial for the climate assess-

ment of the system, and caution should be made when

interpreting results in cases where large perturbations

occur close to the end of the time window. For biomass

systems characterized by time-distributed emissions,

absolute metrics showing the variation of the climate

impact over time are preferable over more traditional

normalized metrics, such as GWP. Results vary depend-

ing on the TH, the probability distribution used to sim-

ulate emissions, and the type of biomass. In general, the

analysis showed that relatively long storage periods are

needed to get a total cooling effect when boreal forest

biomass is used. If wooden products are produced from

biomass having a shorter rotation period, this storage

period decreases. Thanks to its flexibility and consis-

tency, this methodology is highly suitable to be rou-

tinely applied in LCA case studies. As an extended

application, this approach warrants further research

investigation for a possible consideration in the account-

ing of emissions from HWP and in processing data by

emission inventory experts within the Kyoto protocol

and its successor.
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