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OPERATOR SPLITTING FOR

THE BENJAMIN–ONO EQUATION

R. DUTTA, H. HOLDEN, U. KOLEY, AND N. H. RISEBRO

Abstract. In this paper we analyze operator splitting for the Benjamin–Ono
equation, ut = uux + Huxx, where H denotes the Hilbert transform. If the
initial data are sufficiently regular, we show the convergence of both Godunov
and Strang splitting.

1. Introduction

In this article, we are concerned with operator splitting for the Benjamin–Ono
equation. The Benjamin–Ono equation models the evolution of weakly nonlinear
internal long waves. It has been derived by Benjamin [4] and Ono [19] as an ap-
proximate model for long unidirectional waves at the interface of a two-layer system
of incompressible inviscid fluids, one being infinitely deep. In non-dimensional vari-
ables, the initial value problem associated with the Benjamin–Ono equation reads

(1.1)

{
ut = uux +Huxx, x ∈ R, 0 ≤ t ≤ T,

u|t=0 = u0,

where H denotes the Hilbert transform defined by the principle value integral

Hu(x) := P.V.
1

π

∫

R

u(x− y)

y
dy.

The Benjamin–Ono equation is, at least formally, completely integrable [3] and thus
possesses an infinite number of conservation laws. For example, the momentum and
the energy, given by

M(u) :=

∫
u2 dx, and E(u) :=

1

2

∫ ∣∣∣D1/2
x u

∣∣∣
2

dx+
1

6

∫
u3 dx,

are conserved for solutions of (1.1).
We also consider the corresponding 2L-periodic problem

(1.2)

{
ut = uux +Hperuxx, 0 ≤ t ≤ T,

u|t=0 = u0,
x ∈ T,
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where T = R/2LZ, u0 is 2L periodic and the periodic Hilbert transform is defined
by the principle value integral

Hperu(x) = P.V.
1

2L

∫ L

−L

cot(
π

2L
y)u(x− y) dy.

The initial value problem (1.1) has been extensively studied in recent years. Well-
posedness of (1.1) in Hs(R) for s > 3 was proved by Iorio [13] by using purely
hyperbolic energy methods. Then, Ponce [20] derived a local smoothing effect
associated to the dispersive part of the equation, which combined with compactness
methods, enabled him to prove well-posedness also for s = 3.

By combining a complex version of the Cole–Hopf transform with Strichartz
estimates, Tao [21] was able to show well-posedness of the Cauchy problem (1.1)
in H1(R). This well-posedness was extended to Hs(R) for s > 1 by Burq and
Planchon [5] and for s ≥ 0 by Ionescu and Kenig [12].

In the periodic setting, Molinet [18] proved global well-posedness in Hs(T) for
s ≥ 1/2. Furthermore, he was able to improve the global well-posedness results to
L2(T) in [17].

We employ operator splitting, i.e., the construction of an approximate solution
by concatenating the solutions of the separate problems

(1.3) vt = Hvxx

and

(1.4) wt = wwx.

More precisely, the operator splitting method is built up as follows [8]: Consider a
general partial differential equation

(1.5) ut = C(u), u|t=0 = u0,

where C(u) is a differential operator. Furthermore, assume C(u) can be written as
a sum of more elementary operators, say

C(u) = A(u) +B(u).

For a positive and small time step ∆t we discretize the time with n steps such
that tn = n∆t < T . Instead of solving equation (1.5) directly, we solve the two
subequations

vt = A(v), and wt = B(w),

for each time step, and concatenate the solutions. The simplest form for an operator
splitting solution of (1.5) is formed solving the first subequation using the solution
from the second subequation as initial data when solving at each time step. Writing
out this procedure gives

(1.6) un+1 = Π∆t(un) = Φ∆t
A ◦ Φ∆t

B (un) = [Φ∆t
A ◦ Φ∆t

B ]n(u0),

where un is the operator splitting solution at time tn, thus un ≈ u( · , tn), and
Φt

A(v0) and Φt
B(w0) are the exact solution operators of the above subequations at

time t with initial data v0 and w0, respectively. This is the well-known Godunov
splitting method.

Other and more sophisticated methods for forming an operator splitting solution
of (1.5) are created by solving the two subequations for different split step sizes,
and composing the solution operators in a more complicated way. By solving one
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of the subequations for half the step size composed with the solution of the other
subequation for a full time step, we obtain the Strang splitting method, which is
given as

(1.7) un+1 = Ψ∆t(un) = Φ
∆t/2
A ◦ Φ∆t

B ◦ Φ
∆t/2
A (un) = [Φ

∆t/2
A ◦ Φ∆t

B ◦ Φ
∆t/2
A ]n(u0).

For t ∈ [tn, tn+1) define u∆t(t) by

u∆t(t) = Πt−tn(un),

in case of Godunov splitting and by

u∆t(t) = Ψt−tn(un),

in case of Strang splitting.
In our case A and B are given by

A(u) = H(uxx), and B(u) = uux.

Our main results are that the operator splitting schemes converge in L2 with a
rate O(∆t) for the Godunov splitting, and at a rate of O(∆t2) for the Strang split-
ting. However, we mention that our method requires a well-posedness theory for
the full Benjamin–Ono equation, and cannot be used as a constructive existence
theorem. The approach applied here has successfully been applied to a plethora of
other equations including the Korteweg–de Vries (KdV) equation, the Schrödinger–
Poisson, the cubic nonlinear Schrödinger equation, the viscous Burgers’ equation,
the Benney–Lin equation, the Kawahara equation, as well as the active scalar equa-
tion [9, 16, 10, 11, 6, 7]. However, we stress that each equation requires its own
estimates and individual treatment. In the present case both the Hilbert transform
and the rather restricted well-posedness of the Benjamin–Ono equation pose new
technical challenges.

The rest of the paper is organized as follows: In Section 2, we collect well-
posedness results for (1.1) and state results for operator splitting schemes. Sec-
tions 3 and 4 present the proof of the main results for Godunov and Strang splitting,
respectively.

2. Operator splitting

The upcoming analysis relies heavily on local well-posedness of (1.1) in Hs in
the following sense: For a given time T , there exists an R > 0 such for all u0 ∈ Hs

with ‖u0‖Hs ≤ R, there exists a unique strong solution u ∈ C([0, T ], Hs) of (1.1)
with initial data u0, and the dependence on the initial data is locally Lipschitz
continuous; i.e., there is a constant K = K(R, T ) < ∞ such that for two solutions
ũ and u corresponding to initial data ũ0 and u0, respectively, in the Hs ball of
radius R, we have

(2.1) ‖ũ(t)− u(t)‖Hs ≤ K‖ũ0 − u0‖Hs for 0 ≤ t ≤ T.

Observe that this requirement says that the map taking initial data to solution
is Lipschitz continuous. Unfortunately, for the Benjamin–Ono equation, (2.1) is
valid only for s = 0. In fact, in [14] it is remarked that the solution map is not
uniformly continuous from Hs to Hs for any s > 0, because of the derivative in
the nonlinearity and the relatively weak smoothing effects of the linear part of the
equation. Note, however, that the construction in [14] does not prohibit the solution
map from being uniformly continuous or Lipschitz continuous in a weaker topology
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such as L2. For the Benjamin–Ono equation we have the following result [21, Thm.
1.1] and [1, Thm. 5.3.1]:

Theorem 2.1. Let u0 ∈ Hs(R) with s > 3
2 . Corresponding to the initial data u0

with ‖u0‖Hs ≤ R, there exists a unique solution u of (1.1) with initial data u0, that
is, u(0) = u0, such that

u ∈ Ck(R+;H
s−2k(R)),

for all k ∈ N with s− 2k ≥ −1. Furthermore, for another solution ũ(t) with initial
data ũ0 ∈ Hs(R) such that ‖ũ0‖Hs ≤ R, we find

‖ũ(t)− u(t)‖L2 ≤ K(R, T )‖ũ0 − u0‖L2 , for 0 ≤ t ≤ T.

A similar result holds for the periodic case: [18, Thm. 1.1]:

Theorem 2.2. For all u0 ∈ Hs(T) with s ≥ 1
2 and for all T > 0, there exists a

solution u of the Benjamin–Ono equation (1.2) satisfying

u ∈ C ([0, T ];Hs(T)) .

Moreover, u ∈ Cb(R, L
2(T)) and the map u0 7→ u is continuous from Hs into

C ([0, T ];Hs(T)) and Lipschitz on every bounded set from Hs
0 into C ([0, T ];Hs

0(T)).
Here Hs

0(T) denotes the closed subset of Hs(T) with mean zero.

For Godunov splitting, we consider solutions bounded by

(2.2) ‖u(t)‖H5/2 ≤ ρ < R for 0 ≤ t ≤ T,

in particular, u0 ∈ H5/2. We show the following result.

Theorem 2.3 (First-order convergence in L2). Let u be the unique solution of
(1.1), and assume that u satisfies (2.2). Define the Godunov approximation u∆t by
(1.6). Then for any T > 0 there is a ∆t > 0 such that for ∆t ≤ ∆t and t ≤ T , we
have

‖u∆t(t)− u(tn)‖L2 ≤ C1∆t.

Here, ∆t and C1 only depend on ‖u0‖H5/2 , ρ, and T .

Regarding Strang splitting, we consider solutions bounded by

(2.3) ‖u(t)‖H9/2 ≤ ρ < R for 0 ≤ t ≤ T.

In this case, we assume that u0 ∈ H9/2. Then we show the following result.

Theorem 2.4 (Second-order convergence in L2). Let u be the unique solution of
(1.1), and assume that u satisfies (2.3). Define the Strang approximation u∆t by
(1.7). Then there is a ∆t > 0 such that for ∆t ≤ ∆t and t ≤ T , we have

‖u∆t(t)− u(t)‖L2 ≤ C2∆t2.

Here, ∆t and C2 only depend on ‖u0‖H9/2 , ρ, and T .

Since the exact solution operator for Burgers’ equation eventually will produce
discontinuities independently of the smoothness of the initial data, the initial value
problem for Burgers’ equation is not well posed in any Sobolev space with positive
exponent. However, if the initial values are smooth, discontinuities will not be
created instantaneously, and if you know that the solution is smooth, it is actually
smoother than you think. The precise result reads as follows.
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Lemma 2.5. Let r ≥ r0 > 3/2. Then following results hold:
(i) If ‖Φt

B(u0)‖Hr0 ≤ α for 0 ≤ t ≤ ∆t, then ‖Φt
B(u0)‖Hr ≤ eCαt‖u0‖Hr for

0 ≤ t ≤ ∆t, where the constant C is independent of u0 and ∆t.
(ii) If ‖u0‖Hr0 ≤ M , then there exists a time t̄(M) > 0 such that ‖Φt

B(u0)‖Hr0 ≤
C(M) for 0 ≤ t ≤ t̄(M).

Proof. For any number r ∈ R, let Hr(R) be the Sobolev space consisting of all
tempered distributions f such that

‖f‖r =

(∫

R

〈ξ〉
2r
|f̂(ξ)|2 dξ

)1/2

< ∞,

with 〈ξ〉 = (1+|ξ|2)1/2 and f̂(ξ) = F(f)(ξ) =
∫
R
eiξxf(x) dx is the Fourier transform

of f . Furthermore, we define an integral operator Λr on tempered distributions by

Λr(f) = F−1(〈ξ〉
r
f̂),

where F−1 denotes the inverse Fourier transform. Since the inverse Fourier trans-
formation preserves the L2 norm, it is evident that ‖Λr(f)‖L2 = ‖f‖Hr . More-
over, it is easy to see that Λr is linear, and commutes with the derivative, i.e.,
Λr(f)x = Λr(fx).

Let u be a solution of Burgers’ equation. Then Λr(ut) = Λr(uux). Taking the
standard L2 inner product, denoted 〈 · , · 〉L2 , with Λru yields

1

2

d

dt
‖Λru‖

2
L2 = 〈Λru,Λrut〉L2 = 〈Λru,Λruux〉L2

= 〈Λru, uΛrux〉L2 + 〈Λru,Λruux − uΛrux〉L2 .

The first term of the above expression can be estimated as follows

|〈Λru, uΛrux〉L2 | =
∣∣∣
∫

R

u(Λru)x(Λ
ru)dx

∣∣∣ =
∣∣∣
1

2

∫

R

ux(Λ
ru)2dx

∣∣∣

≤ ‖ux‖L∞ ‖Λru‖
2
L2 ≤ C ‖u‖Hr0 ‖u‖

2
Hr ,

where we have used the Sobolev inequality

‖ux‖L∞ ≤ C ‖ux‖Hr0−1 ≤ C ‖u‖Hr0 ,

which holds since r0 − 1 > 1/2. The second term can be estimated by the Cauchy–
Schwarz inequality, i.e.,

|〈Λru,Λruux − uΛrux〉L2 | ≤ ‖Λru‖L2 ‖Λ
ruux − uΛrux‖L2 .

To proceed further, we need the following inequalites which can be readily verified
using the mean value theorem: For r > 1, and any ξ and η,

∣∣∣(1 + ξ2)r/2 − (1 + η2)r/2
∣∣∣ ≤ C |ξ − η|

[
(1 + (ξ − η)2)

r−1

2 + (1 + η2)
r−1

2

]
,(2.4a)

|η| ≤
(
1 + η2

)1/2
,(2.4b)

where C is a constant. At this point, we also recall Young’s inequality for convolu-
tions

‖u ∗ v‖L2 ≤ ‖u‖L1 ‖v‖L2 .

With the above inequalities, we calculate

‖Λruux − uΛrux‖L2
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=
(∫

R

(∫

R

(
(1 + ξ2)r/2 − (1 + η2)r/2

)
û(ξ − η)ûx(η)dη

)2

dξ
)1/2

≤ C
(∫

R

(∫

R

[
(1 + (ξ − η)2)

r−1

2 + (1 + η2)
r−1

2

]
|ξ − η| |û(ξ − η)ûx(η)| dη

)2

dξ
)1/2

≤ C
(∫

R

(∫

R

[
1 + (ξ − η)

r−1

2

]
|ξ − η| |û(ξ − η)ûx(η)| dη

)2

dξ
)1/2

+ C
(∫

R

(∫

R

[
1 + η

r−1

2

]
|ûx(ξ − η)| |ηû(η)| dη

)2

dξ
)1/2

≤ C
(∫

R

(∫

R

[
1 + (ξ − η)

r
2

]
|û(ξ − η)| |ûx(η)| dη

)2

dξ
)1/2

+ C
(∫

R

(∫

R

[
1 + η

r
2

]
|û(η)| |ûx(ξ − η)| dη

)2

dξ
)1/2

≤ C ‖ûx‖L1

∥∥(1 + ξ2)rû(ξ)
∥∥
L2

.

For the first factor, observe that

‖ûx‖L1 =

∫

R

|ûx(ξ)| dξ =

∫

R

|ξ| |û(ξ)| dξ

≤
(∫

R

(
1 + ξ2

)r0
|û(ξ)|

2
dξ
)1/2(∫

R

ξ2

(1 + ξ2)r0
dξ
)1/2

= Cr0 ‖u‖Hr0 , for r0 > 3/2.

Thus, combining the above estimates, we obtain

|〈Λru,Λruux − uΛrux〉L2 | ≤ C ‖u‖Hr0 ‖u‖
2
Hr .

Therefore

d

dt
‖u‖

2
Hr ≤ C ‖u‖Hr0 ‖u‖

2
Hr(2.5)

which proves the first part (i) of the Lemma 2.5. Observe that, we can also use
r0 = r in (2.5), which implies

d

dt
‖u‖Hr ≤ C ‖u‖2Hr .(2.6)

The second part (ii) of Lemma 2.5 follows by comparing (2.6) with the majorizing
differential equation y′ = Cy2. �

3. Godunov splitting

In the previous subsection, we have presented several results which now will
prove useful. In what follows, we first estimate the local error for the Godunov
splitting, before we use this estimate to find a bound for the global error.

We start by a general perturbation result. We write etAv = Φt
A(v) to indicate

the linearity of the flow of A. We start from the variation-of-constants formula [15,
Thm. 4.2.4] for u(t) = Φt

A+B(u0),

(3.1) u(t) = etAu0 +

∫ t

0

e(t−s)AB(u(s)) ds,
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which is just the formula φ(t) − φ(0) =
∫ t

0
φ̇(s) ds for φ(s) = e(t−s)Au(s). Further-

more, we have1

(3.2) B(u(s)) = B(esAu0) +

∫ s

0

dB(e(s−σ)Au(σ))[e(s−σ)AB(u(σ))] dσ,

which is nothing but the formula B(ϕ(s)) − B(ϕ(0)) =
∫ s

0 dB(ϕ(σ))[ϕ̇(σ)] dσ for

ϕ(σ) = e(s−σ)Au(σ). We insert (3.2) into (3.1) with t = ∆t to obtain

(3.3) u(∆t) = e∆tAu0 +

∫ ∆t

0

e(∆t−s)AB(esAu0) ds+ e1

with

(3.4) e1 =

∫ ∆t

0

∫ s

0

e(∆t−s)AdB(e(s−σ)Au(σ))[e(s−σ)AB(u(σ))] dσ ds.

We next turn to results specifically for the Godunov splitting. The main tool for
proving Theorem 2.3 is a local error estimate.

Lemma 3.1. Assume that hypothesis (2.2) holds for the solution u(t) = Φt
A+B(u0)

of (1.1). If the initial data u0 is in H5/2, then the local error of the Godunov
splitting (1.6) is bounded in L2 by

‖Π∆t(u0)− Φ∆t
A+B(u0)‖L2 ≤ c1∆t2,

where c1 only depends on ‖u0‖H5/2 .

Proof. Set

u1 = Π∆t(u0) = e∆tA
(
Φ∆t

B (u0)
)
.

The first-order Taylor expansion with integral remainder term

(3.5) Φ∆t
B (v) = v +∆tB(v) + ∆t2

∫ 1

0

(1− θ)dB(Φθ∆t
B (v))[B(Φθ∆t

B (v))] dθ

︸ ︷︷ ︸
e2

is justified for any v ∈ H5/2 and for sufficiently small ∆t by Lemma 2.5. We
therefore obtain

u1 = e∆tAu0 +∆te∆tAB(u0) + e2.

Thus the error can be written

(3.6) u1 − u(∆t) = ∆t e∆tAB(u0)−

∫ ∆t

0

e(∆t−s)AB(esAu0) ds+ (e2 − e1),

and therefore the principal error term is just the quadrature error of the rectangle
rule applied to the integral over [0,∆t] of the function

(3.7) f(s) = e(∆t−s)AB(esAu0).

We express the quadrature error in first-order Peano form,

∆t f(0)−

∫ ∆t

0

f(s) ds = ∆t2
∫ 1

0

κ1(θ) f
′(θ∆t) dθ,

1Here we introduce the second-order Taylor expansion Ψ(f + g) = Ψ(f) + dΨ(f)[g] +
∫ 1
0 (1 −

α)d(2)Ψ(f + αg)[g]2dα for an operator Ψ, see [2, p. 29] for notation and proofs.
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where κ1 is the real-valued, bounded Peano kernel of the rectangle rule. Thus, the
L2-error after one step is bounded as

(3.8) ‖u1 − u(∆t)‖L2 ≤ (∆t)2
∫ 1

0

‖κ1(θ) f
′(θ∆t)‖L2 dθ + ‖(e2 − e1)‖L2 .

Next, we find that

f ′(s) = −e(∆t−s)A[A,B](esAu0)

(3.9)

[A,B](v) = dA(v)[B(v)] − dB(v)[Av]

= H [(vvx)xx]− vxH(vxx)− vH(vxxx)

= H(vvxxx) + 3H(vxvxx)− vxH(vxx)− vH(vxxx).

By Lemma 3.2 below, we obtain the commutator bound,

‖[A,B](v)‖L2 ≤ C ‖v‖
2
H5/2 .

Since etA preserves the Sobolev norms, we have

〈u,Huxx〉L2 = −〈Hu, uxx〉L2 = −〈(Hu)xx, u〉L2 = −〈Huxx, u〉L2,

implying that 〈u,Huxx〉L2 = 0. It follows

‖f ′(s)‖L2 ≤ C ‖u0‖
2
H5/2 ,

and hence the quadrature error is O(∆t2) in the L2-norm for u0 ∈ H5/2. The
L2-norm of the remainder term e2 − e1 is bounded by C∆t2 for u0 ∈ H5/2 for
sufficiently small ∆t (by using Lemma 2.5 (ii)). Specifically,

‖e1‖L2 ≤

∫ ∆t

0

∫ s

0

∥∥∥e(∆t−s)AdB(e(s−σ)Au(σ))[e(s−σ)AB(u(σ))]
∥∥∥
L2

dσ ds

≤

∫ ∆t

0

∫ s

0

∥∥∥
((

e(s−σ)Au(σ)
)(
e(s−σ)AB(u(σ))

))

x

∥∥∥
L2

dσ ds

≤ C

∫ ∆t

0

∫ s

0

‖u(σ)‖H1 ‖B(u(σ))‖H1 dσ ds

≤ C

∫ ∆t

0

∫ s

0

‖u(σ)‖H1 ‖u(σ)‖H1 ‖u(σ)‖H2 dσ ds

≤ C

∫ ∆t

0

∫ s

0

‖u(σ)‖3H2 dσ ds ≤ C∆t2R3,

and

‖e2‖L2 ≤ ∆t2
∫ 1

0

(1− θ)
∥∥e∆tAdB(Φθ∆t

B (u0))[B(Φθ∆t
B (u0))]

∥∥
L2

dθ

≤ ∆t2
∫ 1

0

∥∥∥
(
(Φθ∆t

B (u0))(B(Φθ∆t
B (u0)))

)

x

∥∥∥
L2

dθ

≤ ∆t2C

∫ 1

0

∥∥Φθ∆t
B (u0)

∥∥
H1

∥∥B(Φθ∆t
B (u0))

∥∥
H1

dθ

≤ ∆t2C

∫ 1

0

∥∥Φθ∆t
B (u0)

∥∥2

H1

∥∥Φθ∆t
B (u0)

∥∥
H2

dθ

≤ ∆t2C

∫ 1

0

∥∥Φθ∆t
B (u0)

∥∥3

H2
dθ ≤ C∆t2R3.
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This completes the proof. �

Lemma 3.2. If v ∈ H5/2(R) and [A,B](v) is given by (3.9), then

(3.10) ‖[A,B](v)‖L2 ≤ C ‖v‖H2 ‖v‖H5/2 ,

for some constant C.

Proof. From (3.9) we have

[A,B](v) = g(v)x + 2H(vxvxx),

with

g(v) := H(vvxx)− vH(vxx).

First we show

‖g(v)x‖2 ≤ ‖vx‖2 ‖v‖H5/2 .

Recall that F denotes the Fourier transform. Thus

F(g(v))(ξ) = I(ξ)− II(ξ)

where

I(ξ) := F (vH(vxx)) (ξ) = −i

∫
v̂(ξ − η) v̂(η) sign (η) |η|2dη,

II(ξ) := F(H(vvxx))(ξ) = −i sign (ξ)

∫
v̂(ξ − η) v̂η |η|2dη.

Therefore for ξ > 0, we have

I(ξ) = −i

∫

η>0

v̂(ξ − η) v̂(η) |η|2dη + i

∫

η<0

v̂(ξ − η) v̂(η) |η|2dη,

II(ξ) = −i

∫

η>0

v̂(ξ − η) v̂(η) |η|2dη − i

∫

η<0

v̂(ξ − η) v̂(η) |η|2dη,

and for ξ < 0,

I(ξ) = −i

∫

η>0

v̂(ξ − η) v̂(η) |η|2dη + i

∫

η<0

v̂(ξ − η) v̂(η) |η|2dη,

II(ξ) = i

∫

η>0

v̂(ξ − η) v̂(η) |η|2dη + i

∫

η<0

v̂(ξ − η) v̂(η) |η|2dη.

This implies for ξ > 0,

F(g(v))(ξ) = I(ξ)− II(ξ) = 2i

∫

η<0

v̂(ξ − η) v̂(η) |η|2dη,

and for ξ < 0,

F(g(v))(ξ) = I(ξ)− II(ξ) = −2i

∫

η>0

v̂(ξ − η) v̂(η) |η|2dη.

Using Parseval’s relation, we obtain

‖g(v)x‖
2
2 = ‖F(g(v)x)‖

2
2 =

∫ ∞

0

|ξ|2|F(g(v))(ξ)|2dξ +

∫ 0

−∞

|ξ|2|F(g(v))(ξ)|2dξ

≤ 4

∫ ∞

0

|ξ|2
∣∣∣∣
∫

η<0

v̂(ξ − η)v̂(η)|η|2dη

∣∣∣∣
2

dξ

︸ ︷︷ ︸
A
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+ 4

∫ 0

−∞

|ξ|2
∣∣∣∣
∫

η>0

v̂(ξ − η)v̂(η)|η|2dη

∣∣∣∣
2

dξ

︸ ︷︷ ︸
B

.

Next we estimate A. Note that, for η < 0 and ξ > 0, we have

|η| ≤ |ξ − η|.

Using the above inequality we obtain

A ≤

∫ ∞

0

|ξ|2
(∫

η<0

|ξ − η||v̂(ξ − η)| |η| |v̂(η)|dη

)2

dξ.

Using the Cauchy–Schwarz inequality we find

A ≤

∫ ∞

0

|ξ|2
(∫

η<0

|ξ − η|2|v̂(ξ − η)|2dη

) (∫

η<0

|η|2 |v̂(η)|2dη

)
dξ

≤ ‖vx‖
2
2

∫ ∞

0

|ξ|2
∫

η<0

|ξ − η|2|v̂(ξ − η)|2dηdξ

︸ ︷︷ ︸
C

.

Next we estimate C. Using change of variables and integration by parts, we have

C =

∫ ∞

0

ξ2
(∫ ∞

ξ

y2|v̂(y)|2dy

)
dξ

=
1

3

∫ ∞

0

d

dξ
(ξ3)

(∫ ∞

ξ

y2|v̂(y)|2dy

)
dξ

= −
1

3

∫ ∞

0

ξ3
d

dξ

(∫ ∞

ξ

y2|v̂(y)|2dy

)
dξ

=
1

3

∫ ∞

0

|ξ|5|v̂(ξ)|2dξ ≤ ‖v‖2H5/2 .

Therefore we have

A ≤ ‖vx‖
2
2 ‖v‖

2
H5/2 .

A similar argument shows that

B ≤ ‖vx‖
2
2 ‖v‖

2
H5/2 .

Finally, we consider

‖H(vxvxx)‖2 = ‖vxvxx‖2 ≤ ‖vx‖∞ ‖vxx‖2

≤ C ‖vx‖H1 ‖v‖H2 ≤ C ‖v‖H2 ‖v‖H5/2 .

This completes the proof of the lemma. �

Proof of Theorem 2.3. The proof compares the error propagation with the exact
flow. In our approach the necessary regularity for estimating local errors by Lemma 3.1
is ensured by Lemma 2.5 (i), via the following induction argument.

We make the induction hypothesis that for k ≤ n− 1,

‖uk‖L2 ≤ R,

‖uk‖H5/2 ≤ e2cRk∆t‖u0‖H5/2 ≤ C0,

‖uk − u(tk)‖L2 ≤ γ∆t,
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where C0 = e2cRT ‖u0‖H5/2 with c from Lemma 2.5 (i), and γ = K(R, T )c1(C0)T
with K(R, T ) from the local Lipschitz bound (2.1) and c1(C0) is the constant of
Lemma 3.1 for starting values bounded by C0 in H5/2. We then show that the
above bounds also hold for k = n as long as n∆t ≤ T and ∆t is sufficiently small.

We denote, with Φt = Φt
A+B for brevity,

uk
n = Φ(n−k)∆t(uk),

which is the value at time tn of the exact solution of (1.1) starting with initial data
uk at time tk. Note that

un = un
n, u(tn) = u0

n.

We estimate

‖un − u(tn)‖L2 ≤

n−1∑

k=0

‖uk+1
n − uk

n‖L2

=
n−1∑

k=0

‖Φ(n−k−1)∆t(Π∆t(uk))− Φ(n−k−1)∆t(Φ∆t(uk))‖L2 .

For k ≤ n− 2, we have ‖Π∆t(uk)‖L2 = ‖uk+1‖L2 ≤ R, and

‖Φ∆t(uk)‖L2 ≤ ‖Φ∆t(uk)− Φ∆t(u(tk))‖L2 + ‖Φ∆t(u(tk))‖L2

≤ K(R,∆t)‖uk − u(tk)‖L2 + ‖u(tk+1)‖L2

≤ K(R,∆t)γ∆t+ ρ,

cf. (2.2), which is bounded by R if ∆t is so small that

K(R,∆t)γ∆t ≤ R− ρ.

Using Theorem 2.1 and Lemma 3.1 we therefore have, for k ≤ n− 1 and n∆t ≤ T ,

‖Φ(n−k−1)∆t(Π∆t(uk))− Φ(n−k−1)∆t(Φ∆t(uk))‖L2

≤ K(R, T )‖Π∆t(uk)− Φ∆t(uk)‖L2

≤ K(R, T )c1(C0)∆t2,

where Π is the Godunov step operator defined in (1.6). With this estimate we
obtain, again noting n∆t ≤ T ,

‖un − u(tn)‖L2 ≤ nK(R, T )c1(C0)∆t2 ≤ γ∆t.

To prove the boundedness of un, we choose γ∆t ≤ R− ρ. Then we have

‖un‖L2 ≤ R.

Since ‖Φt
A(v)‖H5/2 ≤ ‖v‖H5/2 , the Lemma 2.5, for ∆t ≤ t(R),

‖un‖H5/2 = ‖Φ∆t
A ◦ Φ∆t

B (un−1)‖H5/2 ≤ e2cR∆t‖un−1‖H5/2 ≤ e2cRn∆t‖u0‖H5/2 .

Thus, the three necessary results hold by the induction argument, and this com-
pletes the proof of the theorem. �

Remark 3.3. To keep the presentation fairly short we have only provided details
in the full line case. However, we note that the same proofs apply mutatis mutandis
also in the periodic case.
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4. Strang splitting

To prove the correct convergence rate for Strang splitting, we use the same
framework as in the proof of the convergence rate for Godunov splitting. The
major difference between the proofs is that for Strang splitting we need to use the
higher-order midpoint rule, rather than the rectangle rule applied for the Godunov
splitting. In addition, a higher-order series expansion of the involved terms is also
necessary to obtain the results.

We only present the results in the full line case, and, as before, the same proofs
apply also in the periodic case. Note that our aim is to find the error between the
operator splitting solution and the exact (Taylor expanded) solution, and bound
it using numerical quadratures. The proof is longer due to the extra order in the
Taylor expansion.

Also for Strang splitting the proof is based on a local error estimate.

Lemma 4.1. Assume that the hypothesis (2.3) holds for the solution u(t) = Φt
A+B(u0)

of (1.1). If the initial data u0 is in H9/2, then the local error of the Strang splitting
(1.7) is bounded in L2 by

∥∥Ψ∆t(u0)− Φ∆t
A+B(u0)

∥∥
L2

≤ c2∆t3,

where c2 only depends on ‖u0‖H9/2 .

Proof. We follow [11] and use the second-order Taylor expansion

Φ∆t
B (v) = v +∆tB(v) + 1

2∆t2dB(v)[B(v)]

+ ∆t3
∫ 1

0

1
2 (1 − θ)2

(
d2B(Φθ∆t

B (v))[B(Φθ∆t
B (v)), B(Φθ∆t

B (v))]

+ dB(Φθ∆t
B (v))

[
dB(Φθ∆t

B (v))[B(Φθ∆t
B (v))]

])
dθ.

Henceforth we abbreviate the integral remainder term as

∆t3
∫ 1

0

1
2 (1− θ)2

(
d2B(B,B) + dB dB B

)(
Φθ∆t

B (v)
)
dθ.

Hence,

u1 = e∆tAu0 +∆te∆tA/2B
(
e∆tA/2u0

)
+ 1

2∆t2e∆tA/2dB
(
e∆tA/2u0

)
[B

(
e∆tA/2u0

)
]

+ ∆t3
∫ 1

0

1
2 (1− θ)2e∆tA/2

(
d2B(B,B) + dB dB B

)(
Φθ∆t

B (e∆tA/2u0)
)
dθ

= e∆tAu0 +∆te∆tA/2B
(
e∆tA/2u0

)
+ e2,

where e2 is given by

e2 := 1
2∆t2e∆tA/2dB

(
e∆tA/2u0

)
[B

(
e∆tA/2u0

)
]

(4.1)

+ ∆t3
∫ 1

0

1
2 (1− θ)2e∆tA/2

(
d2B(B,B) + dB dB B

)(
Φθ∆t

B (e∆tA/2u0)
)
dθ.

Recall (3.3) and (3.4), viz.

u(∆t) = e∆tAu0 +

∫ ∆t

0

e(∆t−s)AB(esAu0) ds+ e1
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where

e1 =

∫ ∆t

0

∫ s

0

e(∆t−s)AdB(e(s−σ)Au(σ))[e(s−σ)AB(u(σ))] dσ ds.

We express the integrand in e1 by a formula of the type (3.2) by using

G(u(σ)) = G(eσAu0) +

∫ σ

0

dG(e(σ−τ)Au(τ))[e(σ−τ)AB(u(τ))] dτ

with
G(v) = Gs,σ(v) = dB(e(s−σ)Av)[e(s−σ)A B(v)],

and

dG(v)[w] = d2B
(
e(s−σ)Av

)[
e(s−σ)Aw, e(s−σ)AB(v)

]

+ dB
(
e(s−σ)Av

)[
e(s−σ)AdB(v)[w]

]
.

This implies

e1 =

∫ ∆t

0

∫ s

0

e(∆t−s)AdB
(
esAu0

)
[e(s−σ)AB

(
esAu0

)
] dσds(4.2)

+

∫ ∆t

0

∫ s

0

∫ σ

0

dGs,σ

(
e(σ−τ)Au(τ)

)[
e(σ−τ)AB(u(τ))

]
dτdσds.

We return to the error formula (3.6) and write the principal error term

∆t e∆tA/2B
(
e∆tA/2u0

)
−

∫ ∆t

0

e(∆t−s)AB(esAu0) ds

in second-order Peano form

∆tf(12∆t)−

∫ ∆t

0

f(s) ds = ∆t3
∫ 1

0

κ2(θ) f
′′(θ∆t) dθ

with the second-order Peano kernel κ2 of the midpoint rule and f is defined by
(3.7) with

f ′′(s) = e(∆t−s)A[A, [A,B]](esAu0).

By Lemma 4.2, proven below, we obtain the double commutator bound

‖[A, [A,B]](v)‖L2 ≤ C ‖v‖
2
H9/2 .

Thus, it follows that

‖f ′′(s)‖L2 ≤ C ‖u0‖
2
H9/2 .

Lemma 4.2. For v ∈ H9/2, we have

‖[A, [A,B]](v)‖L2 ≤ 2 ‖vx‖L2 ‖v‖H9/2 + C ‖v‖
2
H4 ,

for some constant C.

Proof of Lemma 4.2. The Lie double commutator is given by

[A, [A,B]](v) := [A,L](v) = dA(v)[L(v)] − dL(v)[Av],

where L is defined by

L(v) = [A,B](v) = g(v)x + 2H(vxvxx),

with

g(v) := H(vvxx)− vH(vxx).
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A direct computation shows that

dL(v)[w] =
(
H(vwxx + wvxx)−

(
vH(wxx) + wH(vxx)

))

x
+ 2H(vxwxx + wxvxx).

Using the Leibniz rule, we have the following identity
(
H(vw) − vH(w)

)
xx

= H(vxxw) +H(wxxv) + 2H(vxwx)

− vH(wxx)− vxxH(w)− 2vxH(wx).

Thus

dL(v)[w] =
(
H(vw) − vH(w)

)
xxx

+ E(v, w),

where

E(v, w) =
(
vxxH(w)− wH(vxx) + 2vxH(wx)

)
x
.

For w = A(v) = H(vxx), using the property H2 = −I, we obtain

H(vw) − vH(w) = H(vH(vxx))− vH2(vxx)

= H(vH(vxx)) + vvxx

= H(vH(vxx)−H(vvxx)) = −H(g(v)).

Thus,

dL(v)[A(v)] = −H
(
g(v)xxx

)
+ E(v,A(v)).

Again,

dA(v)[L(v)] = H
(
L(v)xx

)
= H

(
g(v)xxx

)
− 2

(
vxvxx

)
xx
.

Therefore,

[A, [A,B]](v) = 2H
(
g(v)xxx

)
+D(v)

where

D(v) = −E(v,A(v)) − 2
(
vxvxx

)
xx
.

Repeatedly using that ‖v‖L∞ ≤ ‖v‖H1 , we see that

‖D(v)‖2 ≤ C ‖v‖
2
H4 ,

for some numerical constant C. Next we claim that

(4.3) ‖g(v)xxx‖2 ≤ 2 ‖vx‖2 ‖v‖H9/2 .

Using the Parseval relation, we obtain

‖g(v)xxx‖
2
2 = ‖F(g(v)xxx)‖

2
2

=

∫ ∞

0

|ξ|6|F(g(v))(ξ)|2dξ +

∫ 0

−∞

|ξ|6|F(g(v))(ξ)|2dξ

≤ 4

∫ ∞

0

|ξ|6
∣∣∣∣
∫

η<0

v̂(ξ − η)v̂(η)|η|2dη

∣∣∣∣
2

dξ

︸ ︷︷ ︸
A

+ 4

∫ 0

−∞

|ξ|6
∣∣∣∣
∫

η>0

v̂(ξ − η)v̂(η)|η|2dη

∣∣∣∣
2

dξ

︸ ︷︷ ︸
B

.

Next we estimate A. Note that, for η < 0 and ξ > 0, we have

|η| ≤ |ξ − η|.
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Using the above inequality we obtain

A ≤

∫ ∞

0

|ξ|6
(∫

η<0

|ξ − η||v̂(ξ − η)| |η| |v̂(η)|dη

)2

dξ.

Using the Cauchy–Schwarz inequality we infer

A ≤

∫ ∞

0

|ξ|6
(∫

η<0

|ξ − η|2|v̂(ξ − η)|2dη

) (∫

η<0

|η|2 |v̂(η)|2dη

)
dξ

≤ ‖vx‖
2
2

∫ ∞

0

|ξ|6
∫

η<0

|ξ − η|2|v̂(ξ − η)|2dηdξ

︸ ︷︷ ︸
C

.

Next we estimate C. Using a change of variables and integration by parts, we have

C =

∫ ∞

0

ξ6
(∫ ∞

ξ

y2|v̂(y)|2dy

)
dξ

=
1

7

∫ ∞

0

d

dξ
(ξ7)

(∫ ∞

ξ

y2|v̂(y)|2dy

)
dξ

= −
1

7

∫ ∞

0

ξ7
d

dξ

(∫ ∞

ξ

y2|v̂(y)|2dy

)
dξ

=
1

7

∫ ∞

0

|ξ|9|v̂(ξ)|2dξ ≤ ‖v‖
2
H9/2 .

Therefore we have

4A ≤ ‖vx‖
2
2 ‖v‖

2
H9/2 .

A similar argument shows that

4B ≤ ‖vx‖
2
2 ‖v‖

2
H9/2 .

This completes the proof of (4.3) and thereby of the lemma. �

Now for the difference of (4.1) and (4.2),

e2 − e1 = 1
2∆t2g(12∆t, 1

2∆t)−

∫ ∆t

0

∫ s

0

g(s, σ) dσ ds+ ẽ2 − ẽ1,

where

g(s, σ) = e(∆t−s)AdB(esAu0) [e
(s−σ)AB(eσAu0)],

ẽ1 =

∫ ∆t

0

∫ s

0

∫ σ

0

dGs,σ

(
e(σ−τ)Au(τ)

)
e(σ−τ)AB(u(τ)) dτdσds,

ẽ2 = ∆t3
∫ 1

0

1
2 (1− θ)2e∆tA/2

(
d2B(B,B) + dB dB B

)
(Φθ∆t

B (u0)) dθ.

To estimate the remainder terms ẽi, for i = 1, 2, we calculate

‖dGs,σ(v)w‖L2 ≤
∥∥∥d2B

(
e(s−σ)Av

)
[e(s−σ)AB(v), e(s−σ)Aw]

∥∥∥
L2

+
∥∥∥dB

(
e(s−σ)Av

)
[e(s−σ)AdB(v)[w]]

∥∥∥
L2

≤ C (‖B(v)‖H1 ‖w‖H1 + ‖v‖H1 ‖dB(v)[w]‖H1)

≤ C
(
‖v‖

2
H2 ‖w‖H1 + ‖v‖H1 ‖v‖H2 ‖w‖H2

)
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≤ C ‖v‖
2
H2 ‖w‖H2 ,

and
∥∥(d2B(B,B) + dB dB B

)
(v)

∥∥
L2

≤
∥∥d2B(B(v), B(v))

∥∥
L2

+ ‖dB(v)[dB(v)[B(v)]]‖L2

≤ C
(
‖B(v)‖

2
H1 + ‖v‖H1 ‖dB(v)[B(v)]‖H1

)

≤ C
(
‖v‖

4
H2 + ‖v‖

2
H2 ‖B(v)‖H2

)

≤ C ‖v‖
4
H3 .

Then, using Lemma 3.1, the remainder terms are bounded by

(4.4) ‖ẽ1‖L2 + ‖ẽ2‖L2 ≤ C∆t3 ‖u0‖
4
H3 .

The first two terms in e2−e1 are the quadrature error of a first-order two-dimensional
quadrature formula, which is bounded by

∥∥∥ 1
2∆t2g(12∆t, 1

2∆t)−

∫ ∆t

0

∫ s

0

g(s, σ) dσ ds
∥∥∥
L2

≤ C∆t3
(
max ‖∂g/∂s‖L2 +max ‖∂g/∂σ‖L2

)
,

where the maxima are taken over the triangle {(s, σ) : 0 ≤ σ ≤ s ≤ ∆t}. In order
to estimate the partial derivatives we write

g(s, σ) = e(∆t−s)AdB(v(s))w(s, σ),

where

v(s) = esAu0 and w(s, σ) = e(s−σ)AB(v(σ)).

With this notation

∂g

∂s
= e(∆t−s)A

(
−AdB(v(s))w(s, σ)) + d2B(Av(s), w(s, σ)) + dB(v(s))Aw(s, σ)

)

= e(∆t−s)A (−A(v(s)w(s, σ)) +Av(s)w(s, σ) + v(s)Aw(s, σ))x .

Now ∥∥∥∥
∂g

∂s

∥∥∥∥
L2

≤ ‖−A(v(s)w(s, σ)) + (Av(s))w(s, σ) + v(s)Aw(s, σ)‖H1

≤ ‖A(vw)‖H1 + ‖(Av)w‖H1 + ‖vAw‖H1

≤ C ‖v‖H3 ‖w‖H3 ≤ C ‖v‖
3
H4 ≤ C ‖u0‖

3
H4 .

For the other partial derivative, we get

∂g

∂σ
= e(∆t−s)AdB(v(s))

(
e(s−σ)A (−AB(v(s)) + dB(v(σ))Av(σ))

)
,

so that ∥∥∥∥
∂g

∂σ

∥∥∥∥
L2

≤ C ‖v(s)‖H1 ‖−AB(v(s)) + dB(v(σ))Av(σ)‖H1

≤ ‖v‖H1 ‖AB(v)‖H1 + ‖v‖H1 ‖dB(v)[Av]‖H1

≤ ‖vH1‖
(
‖(vvx)xx‖H1 + ‖v‖H2 ‖A(v)‖H2

)

≤ C ‖v‖
3
H4 .
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Therefore ∥∥∥∥
∂g

∂σ

∥∥∥∥
L2

≤ C ‖u0‖
3
H4 .

Thus

(4.5) ‖e2 − e1‖L2 ≤ C∆t3
(
‖u0‖

3
H4 + ‖u0‖

4
H3

)
≤ C∆t3,

which together with the bound for the quadrature error of the midpoint rule for f
yields the stated result. �

Proof of Theorem 2.4. We argue as in the proof of Theorem 2.3, but now assume
inductively that ‖uk − u(tk)‖L2 ≤ γ∆t2. With Ψ denoting the Strang step operator
defined in (1.7), we have

‖un − u(tn)‖L2 ≤

n−1∑

k=0

∥∥∥Φ(n−k−1)∆t(Ψ∆t(uk))− Φ(n−k−1)∆t(Φ∆t(uk))
∥∥∥
L2

≤

n−1∑

k=0

K(R, T )‖Ψ∆t(uk)− Φ∆t(uk)‖L2

≤

n−1∑

k=0

K(R, T )c2(C0)∆t3 ≤ K(R, T )c2(C0)T∆t2.

This completes the proof of Theorem 2.4. �
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