ADDENDUM TO "THE KOLMOGOROV-RIESZ COMPACTNESS THEOREM" (EXPO. MATH. 28:385-394 (2010))

HARALD HANCHE-OLSEN AND HELGE HOLDEN

ABSTRACT. We show how to improve on Theorem 10 in [3], describing when subsets in $W^{1,p}(\mathbb{R}^n)$ are totally bounded subsets of $L^q(\mathbb{R}^n)$ for p < n and $p \leq q < p^*$. This improvement was first shown in [1] in the context of Morrey–Sobolov spaces.

We show the following improvement of Theorem 10 in [3]:

Theorem. Assume $1 \le p < n$ and $p \le q < p^*$, where

$$\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n},$$

and let \mathcal{F} be a bounded subset of $W^{1,p}(\mathbb{R}^n)$. Assume that for every $\epsilon > 0$ there exists some R so that, for every $f \in \mathcal{F}$,

(1)
$$\int_{|x|>R} |f(x)|^p \, dx < \epsilon^p.$$

Then \mathcal{F} is a totally bounded subset of $L^q(\mathbb{R}^n)$.

Remark 1. The improvement over the original consists of replacing

$$\int_{|x|>R} \left(|f(x)|^p + |\nabla f(x)|_p^p \right) dx < \epsilon^p$$

by the weaker inequality (1). (Here $|\cdot|_p$ is the l^p norm on \mathbb{R}^n .)

Remark 2. The improvement we prove here was first shown in the more complicated setting of Morrey–Sobolev spaces in [1]. Here we present a direct argument in the setting of [3].

Proof. The Sobolev embedding theorem states that $W^{1,p}(\mathbb{R}^n) \subset L^q(\mathbb{R}^n)$ and that the inclusion map is bounded. Thus \mathcal{F} is a bounded subset of $L^q(\mathbb{R}^n)$.

We will need the Gagliardo–Nirenberg–Sobolev inequality, which states that there is a constant C (only dependent on p and n) such that

$$\|f\|_{p^*} \le C \|\nabla f\|_p$$

for all $f \in C_c^1(\mathbb{R}^n)$. For a proof, see, e.g., [2, Sect. 5.6.1, p. 263]. This inequality extends to any $f \in W^{1,p}(\mathbb{R})$: Let $f_n \in C_c^1(\mathbb{R})$ converge to f in $W^{1,p}(\mathbb{R})$. Then the inequality implies that (f_n) is Cauchy in $L^{p^*}(\mathbb{R})$, so it has a limit, which must be f itself, since some subsequence converges pointwise. The continuity of the norms finishes the argument.

The above inequality and the interpolation inequality $||f||_q \leq ||f||_p^{\theta} ||f||_{p^*}^{1-\theta}$ where

$$\frac{1}{q} = \frac{\theta}{p} + \frac{1-\theta}{p^*} \qquad (0 < \theta \le 1)$$

²⁰¹⁰ Mathematics Subject Classification. Primary: 46E30, 46E35; Secondary: 46N20.

Key words and phrases. Kolmogorov-Riesz' theorem.

Supported in part by the Research Council of Norway.

yield

$$||f||_q \le C^{1-\theta} ||f||_p^{\theta} ||\nabla f||_p^{1-\theta}.$$

Now let $\epsilon > 0$, and pick R as in the statement of the theorem. Let $\phi \in C_c^{\infty}(\mathbb{R}^n)$ be a function with $0 \le \phi \le 1$ and $|\nabla \phi|_p \le 1$ satisfying $\phi(x) = 1$ when $|x| \le R$. Then $\phi \mathcal{F} = \{\phi f \colon f \in \mathcal{F}\}$ is bounded in $W^{1,p}(\mathbb{R}^n)$, and by [3, Theorem 10] (or

Then $\phi \mathcal{F} = \{\phi f \colon f \in \mathcal{F}\}$ is bounded in $W^{1,p}(\mathbb{R}^n)$, and by [3, Theorem 10] (or the usual Rellich–Kondrachov theorem on a ball of radius R + 2), $\phi \mathcal{F}$ is totally bounded in $L^q(\mathbb{R}^n)$.

We find that every $f \in \mathcal{F}$ is uniformly approximated in the L^q norm by ϕf :

$$\begin{split} \|f - \phi f\|_q &\leq C^{1-\theta} \| (1-\phi) f\|_p^{\theta} \| \nabla ((1-\phi) f) \|_p^{1-\theta} \\ &\leq C^{1-\theta} \epsilon^{\theta} \| (1-\phi) \nabla f - f \nabla \phi \|_p^{1-\theta} \\ &\leq C^{1-\theta} \epsilon^{\theta} \left(\| (1-\phi) \nabla f\|_p + \| f \nabla \phi \|_p \right)^{1-\theta} \\ &\leq \left(C 2^{1-1/p} \| f\|_{1,p} \right)^{1-\theta} \epsilon^{\theta} \\ &\leq M \epsilon^{\theta} \end{split}$$

where the constant M depends only on n, p, q, and \mathcal{F} . In the next to last line, we used Jensen's inequality on the form $u + v \leq 2^{1-1/p}(u^p + v^p)^{1/p}$ when $u, v \geq 0$, together with the definition of the $W^{1,p}$ norm.

Thus every member of \mathcal{F} lies within a distance $M\epsilon^{\theta}$ of $\phi\mathcal{F}$ in L^q norm. Since $\phi\mathcal{F}$ is totally bounded and $M\epsilon^{\theta}$ can be made arbitrarily small, it follows that \mathcal{F} is totally bounded.

References

- M. Dosso, I. Fofana, and M. Sanogo. On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals. Ann. Polon. Math. 108 (2013) 133–153.
- [2] L. C. Evans. *Partial Differential Equations*. American Mathematical Society, Providence 2010, 2nd ed.
- [3] H. Hanche-Olsen and H. Holden. The Kolmogorov-Riesz compactness theorem. Expo. Math. 28 (2010) 385–394.

(Hanche-Olsen)

DEPARTMENT OF MATHEMATICAL SCIENCES, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOL-OGY, NO-7491 TRONDHEIM, NORWAY

E-mail address: hanche@math.ntnu.no *URL*: www.math.ntnu.no/~hanche

(Holden)

DEPARTMENT OF MATHEMATICAL SCIENCES, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOL-OGY, NO-7491 TRONDHEIM, NORWAY

E-mail address: holden@math.ntnu.no *URL*: www.math.ntnu.no/~holden

 $\mathbf{2}$