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Abstract

This thesis presents four research papers in the field of condensed-matter theory. In
all four papers, large-scale Monte Carlo simulations are used to investigate phases and
phase transitions in two-component models of superconductors and superfluids with
multiple broken symmetries. In Article I, a U(1)×U(1) lattice London superconductor
with two different types of intercomponent interactions is investigated with focus on
understanding the phases and the phase transitions of the model. Particularly, this
model exhibits two different paired phases where proliferation of composite topological
defects plays an important role.

In Article II and III, a two-dimensional unconventional two-component Coulomb plasma
with two distinct Coulomb interactions is investigated. The plasma relates to inner
products of Ising-type quantum Hall states as well as to rotating two-component Bose-
Einstein condensates with an intercomponent Andreev-Bashkin drag interaction. We
investigate the phases and phase transitions of this plasma. Depending on the strength
of the attractive intercomponent interaction, the plasma can undergo a Berezinskii-
Kosterlitz-Thouless charge-unbinding transition. It can also undergo a two-dimensional
melting transition when there is a strong intracomponent repulsion for one of the com-
ponents. For the parameter values corresponding to the Ising-type quantum Hall states,
the plasma is in a screening phase. This can be used to demonstrate that Ising-type
quantum Hall states possess quasiparticles with exotic properties.

In Article IV, the noncompact CP1 model is investigated. This model is proposed as
a critical field theory of the continuous quantum phase transition between the Néel
state and the paramagnetic valence bond solid state in a quantum antiferromagnet.
The model exhibits a direct transition line between a fully ordered phase with broken
SU(2) symmetry and a fully disordered phase. By going to larger systems, we find that
the bicritical point, which terminates the direct transition line, has been overestimated
in earlier works. This may have important consequences for the determination of the
character of the phase transition along the direct transition line.
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fluctuating gauge field. A second type of coupling is the direct dissipationless drag
represented by a local intercomponent current-current coupling term in the free
energy functional. In this work, we present a study of the phase diagram of a
U(1) × U(1) superconductor which includes both of these interactions. We study
phase transitions and two types of competing paired phases which occur in this
general model: (i) a metallic superfluid phase (where there is order only in the
gauge invariant phase difference of the order parameters), (ii) a composite super-
conducting phase where there is order in the phase sum of the order parameters
which has many properties of a single-component superconductor but with a dou-
bled value of electric charge. We investigate the phase diagram with particular
focus on what we call “preemptive phase transitions.” These are phase transi-
tions unique to multicomponent condensates with competing topological objects. A
sudden proliferation of one kind of topological defects may come about due to a
fluctuating background of topological defects in other sectors of the theory. For
U(1) × U(1) theory with unequal bare stiffnesses where components are coupled
by a non-compact gauge field only, we study how this scenario leads to a merger of
two U(1) transitions into a single U(1)×U(1) discontinuous phase transition. We
also report a general form of vortex-vortex bare interaction potential and possible
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Utilizing large-scale Monte-Carlo simulations, we investigate an unconventional
two-component classical plasma in two dimensions which controls the behavior
of the norms and overlaps of the quantum-mechanical wave functions of Ising-
type quantum Hall states. The plasma differs fundamentally from that which is
associated with the two-dimensional XY model and Abelian fractional quantum
Hall states. We find that this unconventional plasma undergoes a Berezinskii-
Kosterlitz-Thouless phase transition from an insulator to a metal. The parameter
values corresponding to Ising-type quantum Hall states lie on the metallic side of
this transition. This result verifies the required properties of the unconventional
plasma used to demonstrate that Ising-type quantum Hall states possess quasipar-
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different two-dimensional Coulomb interactions. One species of particles in the
plasma carries charge of both types (Q1, Q2), while the other species carries only
charge of the second type (0,−Q2). We find signatures of a freezing transition at
Q2

1 � 140. Here, freezing means that the species with charge of both types will
form a Wigner crystal, whereas the species with charge of the second type also
shows signatures of being a Wigner crystal, due to the attractive inter-component
interaction of the second type. Moreover, there is also a Berezinskii-Kosterlitz-
Thouless phase transition at Q2

2 � 4, at which the two species of particles bind to
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form molecules that are neutral with respect to the second Coulomb interaction.
These two transitions appear to be independent of each other, giving a rectangular
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transition line becomes increasingly stronger first-order as a function of coupling
up to a bicritical point where the direct transition line splits into two separate
transition lines. The intermediate phase is a partially ordered phase in which a
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Chapter 1

Introduction

In very general terms, one may understand physics as the quest for observing and ana-
lyzing natural laws. In many cases, profound theoretical understanding can be obtained
by applying the language of mathematics to formulate physical quantities and the laws
they obey in a precise manner. The perhaps most successful physical theories are those
that are able to describe important properties in a wide range of physical system by using
simple and general notions. A worthy example of such a theory is the Landau-Ginzburg-
Wilson theory for phase transitions. This theory has the ability to describe phases and
phase transitions in a wide range of completely different and complex systems on the
basis of general symmetry arguments.

A specific class of materials for which the Landau-Ginzburg-Wilson theory has been
applied with great success, are strongly correlated materials. Among such materials are
the doped cuprates, which, at low temperatures, display the remarkable property of
high-temperature superconductivity. Since the discovery of this phenomenon in 1986,
these compounds have been studied intensively, and many physicists have been engaged
with exploring and understanding these materials. This is perhaps not only because
the possible range of applications would be enormous, if one should be able to achieve
room-temperature superconductivity, but also because a theoretical understanding of
these materials poses exciting and progressive challenges for theorists. Still, after 26
years of tremendous efforts, a theory for the microscopic mechanism responsible for this
phenomenon is yet to be established, and it remains one of the major unsolved problems
in physics. Despite the lack of scientific consensus regarding the microscopic mechanisms
in these materials, the Landau-Ginzburg-Wilson theory has been quite successful in de-
scribing important properties regarding the phases and phase transitions exhibited by
these materials. For instance, insight into the how these materials respond to an external
magnetic field, the role of vortices and understanding the mechanisms for destroying su-
perconductivity, can be obtained by applying Landau-Ginzburg-Wilson theory on these
systems.

Another class of materials, that in many ways can be regarded as rather different from
the doped cuprates, are Bose-Einstein condensates. Although they had been predicted
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2 Chapter 1. Introduction

for many years, a pure experimental realization was not achieved until 1995 when two
groups independently were able to create such condensates by using advanced cooling
techniques on trapped atomic clouds of alkali atoms. Bose-Einstein condensates are
found to exhibit the property of superfluidity. Also for these systems, the Ginzburg-
Landau-Wilson theory can be used with success.

In this thesis, we investigate three mathematical models that can be used to describe
two-component systems of superfluids and superconductors. In Article I, we investi-
gate a model of a two-component London superconductor with two different types of
intercomponent interactions. Articles II and III are concerned with an unconventional
two-component Coulomb plasma that relates to two-component rotating superfluids as
well as to fractional quantum Hall wave functions. In Article IV, a special model of a
two-component Ginzburg-Landau superconductor that relates to quantum phase transi-
tions in quantum antiferromagnets, is investigated.

This thesis consists of an introduction followed by four research articles. The introduc-
tory part is outlined as follows. Chapter 2 introduces a number of central concepts that
play an important role in the scientific work of this thesis. The bulk of the research in
this thesis is based on performing large-scale Monte Carlo simulations in order to inves-
tigate mathematical models. This method is outlined in Chapter 3. Chapter 4 gives a
basic introduction to the models studied in the research articles.

Throughout the thesis, natural units are used when convenient.



Chapter 2

Statistical mechanics and phase
transitions

In nature, macroscopic bodies of matter are formed by a large number of what one may
regard as elementary building blocks. On the most fundamental level, such building
blocks are elementary particles such as quarks, leptons or the gauge bosons. However,
for many situations, a more fruitful approach might be to consider larger structures,
such as atoms, molecules, cells or even larger particles, as elementary constituents.

In such a system, with a large number of constituents, it is practically impossible to
solve the equations of motion and find an exact solution. On the other hand, finding
the exact position and momentum of all particles is not interesting when studying a
macroscopic body of matter. One would rather like to investigate properties such as heat
capacity, pressure, volume or resistivity. Although such observables are ill-defined on the
microscopic level, they prove to be unbeatable when it comes to describing macroscopic
bulk properties in a precise manner. The framework that enables us to extract such
macroscopic quantities on the basis of the underlying microscopic structure, is provided
by the tools of statistical mechanics. This branch of physics deals with calculating
macroscopic observables by treating the microscopic particles in a statistical manner.
Hence, the laws that governs such macroscopic systems are fundamentally different from
the laws of mechanics in that they are statistical in nature.

When the number of particles is large, such systems exhibit new and, in some sense, un-
expected behavior [5]. They will form phases, between which there are phase transitions
where macroscopic properties change in an abrupt manner. In this context, there are
closely related and exiting phenomena such as spontaneous symmetry breaking, univer-
sality and topological defects. Understanding these concepts are crucial when it comes
to describing macroscopic bodies of matter in a precise and consistent manner.

This chapter is intended to give a reminder of these elementary concepts. My approach
will be from a classical point of view, and I will only consider systems in thermal equilib-
rium. Section 2.1 is a quick reminder of the canonical ensemble in statistical mechanics.

3
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In Sec. 2.2, a short description of first-order and continuous phase transitions is given. A
few of the most basic spin models are introduced in Sec. 2.3, and with reference to some
of these models a short description of spontaneous symmetry breaking, the Berezinskii-
Kosterlitz-Thouless transition and topological defects are given in Sec. 2.4. A short
reminder of mean-field theory and renormalization is given in Secs. 2.5 and 2.6 before
this chapter ends with the concept of duality and the duality transformation of the XY
model in Sec. 2.7. The main references that I have used in this chapter are Refs. [6–11].

2.1 Statistical mechanics

It can be derived from general considerations that for a system in a fixed volume V with
N particles and in thermal contact with a heat bath at temperature T ,1 the probability
p[Ψ] of being in state Ψ has an exponential dependence,

p[Ψ] =
1

Z e−βH[Ψ] . (2.1)

Here, β = 1/T is the inverse temperature and H is the classical Hamiltonian, which
gives the total energy of the system in the actual state. The normalizing factor Z is
called the partition function, and can be found by integrating over all states {Ψ},

Z =

∫
DΨe−βH[Ψ] . (2.2)

The thermal average 〈O〉 of any physical quantity O[Ψ] is then simply found by calcu-
lating the statistical mean value of O[Ψ] for the given probability distribution,

〈O〉 = 1

Z
∫

DΨO[Ψ] e−βH[Ψ] . (2.3)

The connection to thermodynamic quantities is made by identifying the Helmholtz free
energy F as

F = − 1

β
lnZ. (2.4)

To validate this expression, one may perform a partial differentiation with respect to β
on both sides of Eq. (2.4),

∂F

∂β
=

1

β2
lnZ − 1

β

∂

∂β
lnZ =

1

β

(
∂(βF )

∂β
− F

)
. (2.5)

At constant V and N , we have from thermodynamics that the internal energy U =
∂(βF )/∂β and the entropy S = β2∂F/∂β. Hence, Eq. (2.5) reproduces

F ≡ U − TS, (2.6)

1These are the environmental constraints that define the well-known canonical ensemble of statistical
mechanics. This is the relevant ensemble for the studies in this thesis. In other situations, other
ensembles, such as the microcanonical, the grand canonical or the NPT -ensemble, are used to explore
the properties of many-particle systems [12–14].
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which is the well-known definition of F from thermodynamics.

Now, essentially all well-known thermodynamic quantities may be expressed in terms of
the partition function. For instance, the internal energy is given by

U = − ∂

∂β
lnZ = 〈H〉, (2.7)

i.e., the internal energy is simply given as the thermal average over the energy of the
microstates. The heat capacity CV = −β2∂U/∂β is given by

CV = β2 ∂2

∂β2
lnZ = β2

〈
(H − 〈H〉)2

〉
, (2.8)

and thus can be recognized as proportional to the thermal variance (or the second central
moment) of the microstate energies. In some sense, one may consider calculating the
partition function as the ultimate goal in statistical mechanics, as all thermodynamic
quantities can be found when the partition function is known.

In Article I [1], this formalism is slightly complicated by the fact that the Hamiltonian of
the system has an explicit temperature dependence, H = H[β; Ψ]. Then, Eq. (2.4) and
the leftmost equality of Eqs. (2.7) and (2.8) are still valid, but the rightmost equality in
Eqs. (2.7) and (2.8) should be replaced by [1, 15]

U =

〈
∂(βH)

∂β

〉
, (2.9)

and

CV = β2

〈(
∂(βH)

∂β
−
〈
∂(βH)

∂β

〉)2

− ∂2(βH)

∂β2

〉
. (2.10)

In other cases, such as Articles II and III [2, 3], the action βH[Ψ] may have a more
general form βH[Ψ] → ∑

α βαHα[Ψ] with multiple couplings βα, to which the energies
Hα[Ψ] are associated. In such cases the generalized free energy in Eq. (2.4), can be
used to extract quantities similar to U and CV by differentiation in higher-dimensional
parameter space,

Uα = − ∂

∂βα
lnZ, (2.11)

CV,αγ = βαβγ
∂2

∂βα∂βγ
lnZ. (2.12)

2.2 Phase transitions

Loosely speaking, a phase transition should be regarded as some abrupt change in macro-
scopic properties of a many-particle system when some external parameter is varied.
Correspondingly, there is a change in the macroscopic state of the system. For example,
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in the case of solidification of H2O, more commonly known as freezing of water to ice,
that external parameter would be the temperature.2 When T > 0 ◦C, H2O is a liquid,
and when T < 0 ◦C, H2O forms a solid. At the point of transition, namely T = 0 ◦C,
there is an abrupt change in quantities such as the elastic modulus, internal energy and
the heat capacity of the system.

Furthermore, most phase transitions may be regarded as a transition between an ordered
state and a disordered state. This may be argued for, by a simple consideration of the
Helmholtz free energy F , as defined in Eq. (2.6). At equilibrium, the macroscopic state of
the system is determined by minimizing F . This may be done by minimizing the internal
energy U or by maximizing the entropy S. However, these two possibilities are in conflict
since small U normally corresponds to certain well-arranged microstates and thereby
small S. At high T , the TS term will dominate and F is minimized by maximizing S.
On the other hand, at low T , the U term will dominate, and F is minimized by reducing
U . Hence, in between these two regimes, there must be a transition point where the
elementary constituents of the system collectively change from disorder to order or vice
versa.

The perhaps most basic formulation of a phase transition, closely related to that above,
is that it corresponds to a nonanalytic point in the free energy as a function of external
parameters. In the vicinity of a phase transition, the free energy may be written as

f(β, . . . ) = fr(β, . . . ) + fs(β, . . . ), (2.13)

where f(β, . . . ) = F (β, . . . )/N is the intensive free energy, decomposed in its regular
part fr(β, . . . ) and its singular part fs(β, . . . ), and β, . . . are the external parameters
that the free energy may depend on. The singular part fs(β, . . . ) is only truly singular in
the thermodynamic limit, N → ∞. In fact, the concepts of phases and phase transitions
are well-defined only in this limit.

2.2.1 Order parameter

For the purpose of describing phase transitions, the order parameter Q plays an impor-
tant role. This would be a quantity that incorporates the notion of order and disorder in
a quantitative manner. As such, the order parameter is a macroscopic quantity that for
most cases is zero in the disordered phase, nonzero in the ordered phase and nonanalytic
at the point of the phase transition βPT. A sketch of a typical order parameter in the
vicinity of a phase transition is given in Fig. 2.1. There is no general and flawless recipe
that can be used to establish which quantity to use as an order parameter, and the most
appropriate quantity will depend on the system in question. However, insight into the
symmetries of the Hamiltonian and knowledge of the order characteristics are needed to
identify the order parameter.

For later use, the difference between a local and a global order parameter should be

2To be precise, it is possible to solidify H2O by changing pressure as well, but here I stick to the most
familiar case.
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β

Q

βPT

Figure 2.1: A schematic plot of a typical order parameter. The point of the phase transition
is denoted βPT. At β < βPT (high-T phase), Q = 0 corresponding to the disordered phase.
At β > βPT (low-T phase), Q > 0 corresponding to the ordered phase. At βPT, Q is
nonanalytic.

mentioned. A local order parameter is an order parameter where thermal averages can
be calculated locally in space. Typically, such order parameters can be written as3

Q ∝
∫

ddr 〈Q(r)〉 , (2.14)

where d is the number of spatial dimensions in the system and Q(r) is a function of the
microscopic degrees of freedom at point r in space. The magnetization in Eq. (2.40)
is an example of a local order parameter. A global order parameter typically includes
spatial correlations,

Q ∼
∫

ddr

∫
ddr′ 〈Q(r)Q∗(r′)

〉
=

∫
ddr

∫
ddr′G(r, r′), (2.15)

where
G(r, r′) =

〈
Q(r)Q∗(r′)

〉
, (2.16)

is the two-point correlation function which measures the spatial correlation of quantity
Q between spatial coordinates r and r′. Note that thermal averages are not performed
locally in Eq. (2.15), and thus, a global order parameter does only make sense when
calculated for the whole system. The helicity modulus in Eq. (2.47) and the gauge mass
in Eq. (4.12) are examples of global order parameters.

The correlation function in Eq. (2.16) may be used to quantify ordered and disordered
phases. Under translational symmetry, we can write G(r, r′) = G(r′−r) → G(r), where
r now denotes the difference vector between the two spatial coordinates. Typically, when
|r| is large, the correlation function decays exponentially,

G(r) ∼ e−|r|/ξ, (2.17)

3For simplicity I write down a scalar order parameter. In some cases, it might be a complex number
or a vector quantity.
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β

Q

βcβ

Q

βPT

β < βc

β = βc

β > βc

Continuous

Q

f

0

β < βPT

β = βPT

β > βPT

First-order

Q

f

0

Figure 2.2: Schematic plots of the free energy f as a function of a local order parameter Q
for couplings β in the vicinity of a phase transition. The thermodynamic value of Q follows
the global minimum of f and is given as a function of β in the insets. The leftmost panel
shows the case of a first-order phase transition. As a function of β, the global minimum of f
has a discontinuous jump at β = βPT. The rightmost panel shows the case of a continuous
phase transition. As a function of β, the global minimum of f is continuous at β = βc.

where ξ is the correlation length. In disordered phases, G(r) decays exponentially to
zero. However, in the ordered phase the correlation function decays exponentially to a
nonzero value. This is so because of the long-range order throughout the system in that
phase.

2.2.2 First-order phase transitions

Phase transitions are classified according to certain properties related to the free energy.
Phase transitions that involve production of latent heat are called first-order phase tran-
sitions. Such transitions are associated with discontinuous jumps in certain quantities
that are first derivatives of the free energy.4 Examples of such are the internal energy,
which is the first derivative with respect to β, and local order parameters, which are
first-order derivatives of the free energy with respect to external fields. As such, the
ordered and the disordered phase coexist at the transition point. A schematic plot of
the typical behavior of the free energy and the associated behavior of the local order
parameter, in the vicinity of a first-order phase transition, is given in the leftmost panel
of Fig. 2.2. At small values of β, the system is in the disordered phase and Q = 0 as
given by the global minimum of f . With increasing β, a local minimum develops at
a nonzero value of Q, and, at the transition point β = βPT, it overtakes as the global
minimum of f . At βPT, there are two coexisting global minima at different values of
Q corresponding to the two coexisting phases, and consequently, the order parameter
is discontinuous. Well-known examples of phase transitions that involve production of
latent heat are three-dimensional (3D) melting transitions and vaporization transitions.

4The naming stems from the old (and now obsolete) Ehrenfest classification where phase transitions
were classified according to the lowest discontinuous derivative of the free energy.
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2.2.3 Continuous phase transitions

Transitions that are not first-order are generally classified as continuous. They do not
involve latent heat, and first derivatives of the free energy are continuous. In some sense,
continuous phase transitions may be viewed as a limiting case of first order transitions, in
the limit of vanishing difference in the order parameter value between the two coexisting
phases at the transition point. Hence, there is only one phase existing at the phase
transition and the local order parameter goes to zero continuously. A schematic plot of
the typical behavior of the free energy and the associated behavior of the local order
parameter, in the vicinity of a continuous phase transition, is given in the rightmost
panel of Fig. 2.2. At small values of β the system is in the disordered phase and the
global minimum of f is located at Q = 0. With increasing β, the global minimum will
start to move away from Q = 0 when β = βc,

5 in a continuous manner. There are
intriguing properties associated with continuous phase transitions in that they exhibit
critical phenomena and possess universal behavior. This will be detailed below.

Critical exponents

At a critical point, the system is found to be in a critical state. Here, it is impossible to
distinguish between order and disorder. The hallmark of this state is that fluctuations
propagate throughout the entire system, i.e., ξ → ∞ at the critical point. This removes
the exponential decay in the correlation function, leaving G(r) with a long-ranged power
law decay,

G(r) ∝ 1

|r|d−2+η
. (2.18)

Here, η is a critical exponent and zero external field is assumed. The system will exhibit
fluctuations with no intrinsic length scales and becomes scale-invariant. That means
that the critical state exhibits the same qualitative appearance, even when the system
is viewed on different length scales. It follows that the large-scale properties are not
sensitive to the microscopic details of the system. Rather, it turns out that such critical
properties are determined by the spatial dimension, the symmetry of the order parame-
ter, and the range of the interactions. Hence, the concept of universality follows, namely
that systems with the same spatial dimension and order parameter symmetry can dis-
play the same critical properties, irrespective of the microscopic descriptions. If so, these
systems are said to belong to the same universality class.

In addition to η, given in Eq. (2.18) above, there are a number of other critical exponents
that are associated with power law behavior in the vicinity of a critical point. Let
τ ≡ (β−βc)/β be the relative deviation from the critical point and let h be the strength
of the external field which couples to the local order parameter. The exponent α is then
defined by

CV ∼ |τ |−α , (2.19)

5In the case of a continuous phase transition, it is customary to name the location of the phase
transition point as a critical point denoted βc.
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when τ → 0± and h = 0. The local order parameter m = −∂f/∂h yields the exponent
β by

m ∼ τβ , (2.20)

when τ → 0+ and h = 0. The exponent δ is also found from m by

m ∼ |h|1/δ , (2.21)

at h → 0± and τ = 0. Furthermore, the order parameter susceptibility is given by

χ =
∂m

∂h
= −∂2f

∂h2
, (2.22)

and is related to critical exponent γ by

χ ∼ |τ |−γ , (2.23)

when τ → 0± and h = 0. The correlation length also diverges according to a power law
with exponent ν,

ξ ∼ |τ |−ν , (2.24)

when τ → 0± and h = 0.

These six exponents are in fact somewhat interdependent by that they satisfy four scaling
relations. These may be deduced on the basis of Widom’s homogeneity postulate [16],

fs(λ
aτ, λbh) = λfs(τ, h), (2.25)

where a and b are constants and λ is an arbitrary scaling factor. Eq. (2.25) is assumed
to be valid near the critical point (τ, h) = (0, 0). The choice λa = |τ |−1 yields

fs(τ, h) = |τ |1/aΦ±
(

h

|τ |b/a
)
, (2.26)

where Φ±(x) = fs(±1, x), and the choice λb = |h|−1 yields

fs(τ, h) = |h|1/b Ξ±
(

τ

|h|a/b
)
, (2.27)

where Ξ±(x) = fs(x,±1). Exponents α, β and γ are now introduced by differentiating
Eq. (2.26) to get CV , m and χ, and compare with Eqs. (2.19), (2.20) and (2.23).
Similarly, δ is introduced by differentiating Eq. (2.27) with respect to h to get m, and
comparing with Eq. (2.21). Now, a and b can be eliminated in favor of the critical
exponents

a =
1

2− α
, (2.28)

b =
δ

1 + δ
, (2.29)
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and two of the scaling relations are obtained,

α+ 2β + γ = 2, (2.30)

α+ β(δ + 1) = 2. (2.31)

The final two relations, can be derived from Kadanoff’s ansatz [17],

G (|r| , |τ |) = 1

|r|d−2+η
Ω
(
|r| |τ |(2−α)/d

)
, (2.32)

for the two-point correlation function close to a critical point. The function Ω(z) is a
function with properties

Ω(x) ∼
{

C, x 
 1,
xd−2+η e−x, x � 1,

(2.33)

where C is a constant. Comparing with Eq. (2.24) yields the hyperscaling relation,

νd = 2− α. (2.34)

By linear response theory, the susceptibility is related to the correlation function. In-
serting Eq. (2.32) yields

χ ∝
∫

ddrG (|r| , |τ |) ∝
∫

dr
Ω
(
r |τ |(2−α)/d

)
rη−1

= |τ |−(2−η)(2−α)/d
∫

dz
Ω(z)

zη−1
, (2.35)

where the substitution z = r |τ |(2−α)/d has been used. Invoking Eq. (2.34) and comparing
with Eq. (2.23) yields

(2− η)ν = γ. (2.36)

These four scaling relations reduce the number of independent critical exponents. Hence,
if two exponents are known, the four remaining exponents can be calculated by invoking
the scaling relations.6 In this context, it should also be mentioned that hyperscaling
may be violated in certain cases, e.g., when d > duc, where duc is the upper critical
dimension.7 Two different system belonging to the same universality class, will exhibit
the same critical exponents. Hence, establishing critical exponents is an important task
in order to properly characterize a continuous phase transition.

2.3 Basic models

At this point, it will be convenient to introduce a few of the most basic models around.
These models are not only introduced here for consistency. In fact, the more complicated

6This is not entirely true. If those two exponents happen to be α and ν, then the hyperscaling relation
is put out of action.

7The upper critical dimension denotes the lowest dimension for that mean-field theory predicts correct
critical properties. (See Sec. 2.5 for details on mean-field theory.) In most cases duc = 4.
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two-component models in this thesis can, in certain limits, be understood very well by
an effective mapping to some of these basic models.

Also, when investigating such a model, it is important to establish the symmetry that
characterizes the system. By symmetry, I mean a transformation of the microscopic
degrees of freedom that leaves the Hamiltonian invariant. More formally, if

H[ΛΨ] = H[Ψ], (2.37)

where the transformation Λ is a faithful representation of a symmetry group G, then
that Hamiltonian is said to have a G symmetry.

2.3.1 The Ising model

The Ising model is a spin model on a lattice that may be used to describe ferromagnetism
and antiferromagnetism. The spins si, where the index i ∈ {1, . . . , N} denotes the lattice
site and N is the number of spins, can only point in two directions, namely up or down.
In other words, the spins are of unit length |si| = 1 ∀ i, and are constrained to live in
one spin dimension such that the value of the spins must be +1 or −1. The Hamiltonian
reads8

H[J, h; {si}] = −J
∑
〈i,j〉

sisj − h

N∑
i=1

si, (2.38)

where J is the coupling constant, h is the external field, and 〈i, j〉 means that the
sum is over all nearest-neighbor pairs. With J > 0, the interactions are ferromagnetic
and neighboring spins will tend to point in the same direction, and with J < 0, the
interactions are antiferromagnetic and neighboring spins will tend to point in opposite
directions. In Fig. 2.3 is a typical low-temperature spin configuration in the case of
ferromagnetic interaction.

When applying the transformation si → −si ∀ i, corresponding to a global Z2 symmetry,
Eq. (2.38) yields

H[J, h; {−si}] = H[J,−h; {si}]. (2.39)

Hence, the Ising model in zero external field exhibits a Z2 symmetry. The Z2 symmetry
is a discrete symmetry. When h �= 0, the Z2 symmetry is explicitly broken.9

The order parameter for the Ising model in the ferromagnetic case is the magnetization

m =
1

N

〈
N∑
i=1

si

〉
. (2.40)

8For simplicity, I will restrict myself to the nearest-neighbor Ising model with a uniform coupling J .
The Ising model often appears in more general forms, with nonuniform coupling J → Jij (like for spin
glasses), and/or with long-ranged interactions, Jij �= 0 ∀ i, j �= i.

9Explicit symmetry breaking means that there is a term in the Hamiltonian (coupling to an external
field is a good example) that causes the symmetry to be destroyed.
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Figure 2.3: A typical zero-field spin configuration for the two-dimensional Ising model. The
spins are restricted to point either up or down. In this case the interaction is ferromagnetic,
so neighboring spins tend to point in the same direction.

In the antiferromagnetic case, the order parameter is the staggered magnetizationmstaggered.
For the case of a hypercubic lattice,10 the staggered magnetization is given by

mstaggered =
1

N

〈∑
i∈A

si −
∑
i∈B

si

〉
, (2.41)

where the hypercubic lattice is divided into two sublattices A and B, unambiguously
defined by that all i ∈ A have all nearest neighbors in sublattice B and vice versa.

In one spatial dimension, the Ising model was solved analytically by E. Ising in 1925.
He found that for h = 0, there is no phase transition at finite T .11 In two dimensions
(2D), the Ising model with h = 0 was solved by L. Onsager in 1944 [18]. In that case
there is a continuous phase transition at βc = ln(1 + 21/2)/(2J) that separates the
disordered phase, characterized by m = 0, from the ordered phase, characterized by
|m| > 0. For three and higher dimension, no exact analytic solution exists, but the Ising
model exhibits a continuous phase transition at finite T . The upper critical dimension
duc = 4 for the Ising model, so for d ≥ 4, mean-field theory is accurate.12 In addition
to the upper critical dimension, it is also customary to set the lower critical dimension
dlc which denotes the highest dimension for that there is no long-range order at finite
temperature. According to the details given above, it should be clear that dlc = 1 for
the Ising model.

10In the antiferromagnetic case, the ground state order and thus, the most appropriate form of the
order parameter, will depend on the lattice structure.

11In fact, the Ising model, the XY model in Sec. 2.3.2, and the Heisenberg model in Sec. 2.3.4 are all
special cases of the n-vector model, and in all such models, with nearest-neighbor interaction and with
free boundary conditions, there exists an exact solution for one dimension with no finite-temperature
phase transition.

12Actually, duc = 4 for all n-vector models with short-range interactions.
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Figure 2.4: A typical zero-field spin configuration for the 2D XY model. The spins can
point in any direction in the planar spin space. In this case the interaction is ferromagnetic,
so neighboring spins tend to point in the same direction.

2.3.2 The XY model

Increasing the number of spin dimensions to two yields the XY model. Now, the spins
are promoted to vectors si with unit length |si| = 1 ∀ i. The Hamiltonian is given by

H[J, h; {si}] = −J
∑
〈i,j〉

si · sj − h ·
N∑
i=1

si. (2.42)

The spins should be viewed as bound vectors that are capable of pointing from the origin
towards any point on the unit circle, and may thus be conveniently parametrized by the
angle θi ∈ (−π, π] with respect to the x-axis (in spin space), i.e., si = (cos θi, sin θi).
Hence, Eq. (2.42) can be written as

H[J, h; {θi}] = −J
∑
〈i,j〉

cos(θj − θi)− h

N∑
i=1

cos θi, (2.43)

where coordinate axes are chosen such that h = (h, 0). In Fig. 2.4, a snapshot of a
typical spin configuration for the XY model is given. In the case h = 0, the Hamiltonian
of the XY model is invariant with respect to the transformation θi → θi + ϕ ∀ i, where
ϕ ∈ R. This is a global U(1) symmetry. The U(1) symmetry is a continuous symmetry.
In an external field, h �= 0, the U(1) symmetry is explicitly broken.

The proper local order parameter for the XY model is the magnetization

m =
1

N

〈
N∑
i=1

si

〉
. (2.44)

Additionally, in zero external field, the helicity modulus Υ is often used as a global
order parameter for the XY model and similar models. This quantity is formally defined
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as the second derivative of the free energy with respect to an externally imposed and
infinitesimal twist δ of the phases θi across the system, [19, 20]

Υμ ≡ ∂2f(δ)

∂δ2μ

∣∣∣∣∣
δ=0

=
1

N

[〈
∂2H[{θ′i}]

∂δ2μ

〉

− β

〈(
∂H[{θ′i}]

∂δμ
−
〈
∂H[{θ′i}]

∂δμ

〉)2
〉]∣∣∣∣∣

δ=0

. (2.45)

Here, the phase twist corresponds to the transformation

θi → θ′i = θi − δ · ri ∀ i, (2.46)

where ri is the spatial coordinate of lattice site i, and μ denotes spatial direction. As-
suming a hypercubic lattice with lattice spacing a = 1, inserting Eq. (2.43) with h = 0
yields

Υμ =
J

N

⎧⎨
⎩
〈

N∑
i=1

cos(Δμθi)

〉
− Jβ

〈[
N∑
i=1

sin(Δμθi)

]2〉⎫⎬
⎭ , (2.47)

for the zero-field XY model. Here, Δμθi = θj − θi is a finite lattice difference where
j denotes the nearest neighbor to i along the positive μ-axis. Moreover, to obtain
Eq. (2.47), I have used that

∂f(δ)

∂δμ

∣∣∣∣∣
δ=0

= − J

N

〈
N∑
i=1

sin(Δμθi)

〉
= 0, (2.48)

due to the even symmetry of the Hamiltonian. The helicity modulus probes the free
energy cost associated with twisting the phase. Hence, Υμ = 0 in the disordered phase,
whereas Υμ > 0 in the ordered phase where the spins tend to align over large distances.

In 2D, the XY model exhibits the famous Berezinskii-Kosterlitz-Thouless transition.
This peculiar phase transition is detailed below in Sec. 2.4.2. In three and higher di-
mensions a continuous phase transition exists at finite T .

2.3.3 Clock models

Clock models are spin models on a lattice where unit-length spins can take q possible
discrete values uniformly distributed on the unit circle. Similar to the XY model, the
spins are parametrized by the angles θi, but the angles are restricted to only take the
values θ = 2πn/q where n ∈ {1, . . . , q}. In Fig. 2.5, the allowed discrete spin directions
for q ∈ {3, 4, 5, 8, 16} are shown. Omitting the external field, the Hamiltonian is given
by

H[J ; {θi}] = −J
∑
〈i,j〉

cos(θj − θi). (2.49)
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q = 16q = 8q = 5q = 4q = 3

Figure 2.5: Allowed spin directions for clock models with q ∈ {3, 4, 5, 8, 16}.

Figure 2.6: A typical zero-field spin configuration for the 2D Heisenberg model. The spins
can point in any direction in the 3D spin space. The gray-colored shadows correspond to
the spin projections onto the xy-plane. In this case the interaction is ferromagnetic, so
neighboring spins tend to point in the same direction.

Hence, the q = 2 clock model is identical to the Ising model.13 In the limit when q → ∞,
the clock model becomes the XY model. Actually, clock models with large values of q
approximate XY-like models accurately [21–23]. This can be exploited numerically by
simulating XY-like models approximately as clock models with many angles q, which is
computationally less demanding [12].

2.3.4 The Heisenberg model

For the Heisenberg model, the unit spins of the Ising and XY model are promoted to live
in three spin dimensions with unit length |si| = 1 ∀ i. Hence, the spins are bound vectors
that can point from the origin towards any point on the surface of the unit sphere. The
Hamiltonian reads

H[J, h; {si}] = −J
∑
〈i,j〉

si · sj − h ·
N∑
i=1

si. (2.50)

In Fig. 2.6 is a snapshot of a typical spin configuration for the 2D Heisenberg model.
When h = 0, the Hamiltonian is invariant under the transformation si → ±Gsi ∀ i,
where

G =

⎛
⎝ cosϕ sinϕ 0
− sinϕ cos θ cosϕ cos θ sin θ
sinϕ sin θ − cosϕ sin θ cos θ

⎞
⎠ , (2.51)

and where ϕ, θ ∈ R. I.e., the Heisenberg model exhibits O(3) symmetry.

13It can be shown that also the q = 4 clock model is identical to the Ising model with coupling J/2.
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As for the Ising and XY model, the magnetization, given in Eq. (2.44), is the proper
local order parameter. Contrary to the 2D XY model, the 2D Heisenberg model is in
the disordered phase with exponentially decaying correlations for all T > 0. For three
and higher dimensions, a continuous phase transition exists for T > 0.

2.4 Phase transitions revisited

2.4.1 Spontaneous symmetry breaking

An important concept that applies to the ordered side of many phase transitions, is
spontaneous symmetry breaking. That is, the observed thermodynamic averages do not
display the same symmetry properties as the Hamiltonian. For example, in the ordered
phase of the zero-field Ising model, the long-range order yields a nonzero magnetiza-
tion, either positive or negative, m = ± |m|, where |m| > 0. Hence, by invoking a Z2

transformation in Eq. (2.40),

m[{−si}] = −m[{si}] �= m[{si}], (2.52)

it is clear that the magnetization does not show the Z2 symmetry of the Hamiltonian
[see Eq. (2.39)]. Whether the magnetization is positive or negative can be thought of
as randomly determined by fluctuations as the system is cooled below βc. However,
when inside the ordered phase, the fluctuations have a finite correlation length, and
consequently, fluctuations are not capable of altering the magnetization globally for a
system in the thermodynamic limit.

At first sight, it might seem like there is an inconsistency here. The Z2 transformation
transforms the system into a microstate with exactly opposite magnetization,14 but at
the same time the Z2 symmetry ensures that the probability in Eq. (2.1) is invariant.
Hence, every microstate has a mirror state with equal weight, but opposite magneti-
zation, so the thermal average in Eq. (2.40) should sum up to zero. This is evidently
wrong in the ordered phase, and the solution is that the thermodynamic limit must be
taken properly. Indeed, for any nonzero h the fraction between the probability of being
in some state P [Ψ] and the probability of being in the mirror state P [Ψmirror], is, by
Eqs. (2.1) and (2.38),

P [Ψ]

P [Ψmirror]
= e2βhNs̄, (2.53)

where s̄ = (
∑

i si)/N for the state Ψ. Now, taking the limit N → ∞ yields

P [Ψ]

P [Ψmirror]
=

{ ∞, h > 0,
0, h < 0,

(2.54)

14To avoid confusion: When magnetization is mentioned in connection with microstates, I simply
mean the average spin value for that particular state, i.e., Eq. (2.40) without taking the thermal average
on the right-hand side.
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even when the limit h → 0± is taken afterward. Hence, when the thermodynamic limit
is carefully taken before h → 0± we find that the probability of state Ψ is not equal
the probability of state Ψmirror.

15 In fact, if P [Ψ] is nonzero, then P [Ψmirror] is zero.
This is called ergodicity breaking, namely that the system is prohibited from entering
certain regions in phase space. This exclusion is only possible because singularities are
introduced when the limit N → ∞ is taken. In contrast, for finite systems there are no
exclusions in phase space, and consequently, no spontaneous symmetry breaking. An
important lesson to be learned from this is that in the thermodynamic limit, the true
probability distribution is not necessarily given by the canonical probability distribution
in Eq. (2.1).

Spontaneous symmetry breaking occurs on the ordered side of most phase transitions,
but there are important exceptions. The Berezinskii-Kosterlitz-Thouless transition (see
Sec. 2.4.2) does not display this behavior. There is also no spontaneous symmetry
breaking in systems with a local symmetry [24].

2.4.2 The Berezinskii-Kosterlitz-Thouless transition

According to the theorem by Mermin and Wagner [25], continuous symmetries cannot be
spontaneously broken at finite temperature when the spatial dimension d ≤ 2, i.e., the
lower critical dimension for systems with continuous symmetry is dlc = 2. This theorem
applies to the 2D XY model where no such ordered state is found at low temperatures.
However, this does not mean that nothing happens at all. Instead, there is a rather
strange and unconventional phase transition occurring which is called the Berezinskii-
Kosterlitz-Thouless phase transition after its discoverers [26–28].

Since there is no low-temperature ordered phase with long-range order in this case,
m = 0 for all β < ∞. However, there is a low-temperature phase which is characterized
by a power law decay in the correlation function,

G(|r|) ∼ |r|−η(β) , (2.55)

where η(β) = (2πJβ)−1 is a coupling dependent exponent. Accordingly, the correla-
tion length ξ = ∞ throughout the low-temperature phase. Due to these extraordinary
properties, the entire low-temperature phase is denoted as a critical phase with quasi
long-range order. The transition point of the Berezinskii-Kosterlitz-Thouless (BKT)
transition βBKT is the lower endpoint of the critical phase, and for β < βBKT (high-
temperature phase) there are exponentially decaying correlations with a finite ξ. Ac-
cording to the classification scheme the BKT transition is a continuous transition. How-
ever, close to the transition point on the disordered side, the correlation length diverges
exponentially,

ξ ∼ econst./
√
βBKT−β , (2.56)

and not like the usual power law as for other continuous transitions. Since thermody-
namic divergences can be thought of as a consequence of the diverging correlation length,

15When h → 0± is taken before N → ∞ in Eq. (2.53), P [Ψ]/P [Ψmirror] = 1. Hence, the two ways of
taking these limits do not commute.
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the singular part of the free energy should scale as fs ∼ ξ−d close to a continuous phase
transition.16 Hence, the heat capacity exhibits an essential singularity,

CV ∼ e−const./
√
βBKT−β , (2.57)

for a BKT transition.

For obvious reasons, the magnetization does not work very well as an order parameter
for the BKT transition. As will be detailed below in Sec. 2.4.3, vortices play an essential
role in destroying the quasi long-range order at the BKT transition point, and it turns
out that this is captured by the helicity modulus Υμ. The onset of the critical phase
in the BKT transition is signaled by that Υμ has a discontinuous jump from zero to a
universal value [29, 30],

Υμ(β
+
BKT) =

2

πβBKT
. (2.58)

This discontinuity should not be confused with those of a first-order transition as the
helicity modulus is a stiffness measure and not a thermodynamic variable.

2.4.3 Topological defects

Topological defects are collective excitations that play an important role in many phase
transitions.17 These objects are nontrivial configurations that typically involve many
microscopic degrees of freedom and are stable against small perturbations. Generally,
they are found to have a disordered core surrounded by a large ordered or nearly ordered
regions. There is a relatively small energy cost associated with them compared to the
amount of entropy they produce. Thus, they play an important role in many phase
transitions as these objects proliferate and destroy order at long distances when the
temperature is such that the entropy they produce wins over the energy cost. Moreover,
these defects are nonlocal and depend on large-scale properties, such as symmetries
and spatial dimensionality. Well-known examples are domain walls and vortices in spin
systems, and dislocations and disclinations in solids.

Domain walls

All possible microstates of the Ising model can be divided into domains. Within a single
domain, all spins point in the same direction, and this can be used to identify all domains
in that particular state. These domains are separated by the topological defects of the
Ising model, namely domain points (d = 1), domain lines (d = 2), or domain walls
(d = 3), which separate regions of oppositely aligned spins. In Fig. 2.7, the domain lines

16This means that the BKT transition is an infinite order phase transition according to the obsolete
Ehrenfest classification scheme, as all orders of derivatives of the free energy are continuous at the phase
transition.

17Topological defects are also often called topological objects, topological excitations or topological
solitons.
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Figure 2.7: Domain lines in the 2D Ising spin configuration, given in Fig. 2.3.

for the spin configuration in Fig. 2.3 are shown explicitly. The phase transitions in the
zero-field Ising model are governed by proliferation of such topological defects.

Vortices

The topological defects of the XY model are vortices (d = 2) or vortex lines (d = 3).
Vortices are recognized by that the phase θ winds an integer number of times when
following a closed loop around the vortex. On a lattice this can be formulated as∑

{i,μ}∈C
Δμθi = 2πn, (2.59)

where the phase differences on all links that comprise a closed path C are summed in the
counterclockwise direction. The integer n is the number of times the phase winds when
traversing C, and whenever Δμθi is outside its primary interval, an integer number of
2π is added such that Δμθi ∈ [−π, π). By systematically calculating n for all plaquettes
in the system, one can map out the location of all vortices in the configuration, as
illustrated in Fig. 2.8.

In Fig. 2.8, the vortex excitation is a pair of vortices with opposite winding and not a
single vortex. As will be shown in the following, this is the relevant excitation for the
2D XY model. For a single vortex with n = 1, the average phase difference between two
neighboring spins at average distance r〈i,j〉 from the vortex core should approximately

be proportional to r−1〈i,j〉 since the number of links participating in the closed loop with
radius r〈i,j〉, is proportional to r〈i,j〉. Moreover, when r〈i,j〉 is large, the argument of the
cosine in Eq. (2.43) is small and well approximated by cosx ≈ 1 − x2/2. Hence, the
energy cost of introducing a single vortex into an ordered spin configuration is

Ev ∼
∑
〈i,j〉

1

r2〈i,j〉
∝
∫ R

r0

dr〈i,j〉
r〈i,j〉

= ln
R

r0
, (2.60)
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⊕
�

Figure 2.8: Vortices in the 2D XY spin configuration, given in Fig. 2.4. The sign ⊕ denotes
a vortex with n = 1 and the sign � denotes a vortex with n = −1.

where the sum is approximated by an integral where the lower cutoff r0 is on the scale of
the lattice spacing a, and the upper cutoff R is on the scale of the system size. Clearly,
the cost of introducing a single vortex into the system is by no means small, as it
diverges logarithmically with system size. On the other hand, for a pair of vortices with
opposite winding, the phase will not wind an integer number of times for a closed path
enclosing both vortices (see Fig. 2.8). Introducing r〈i,j〉 as the average distance from two
neighboring spins to the mean vortex position of a vortex pair separated by a distance
2rvp, for r〈i,j〉 � rvp, the phase differences will essentially be unaffected by introducing
the vortex pair. Hence, the integral in Eq. (2.60) will have an effective upper cutoff
∼ rvp, as the integrand is well approximated by zero above this radius. The energy cost
of introducing a vortex pair is thus finite with diverging system size,

Evp ∼ ln
rvp
r0

. (2.61)

Consequently, vortices that are bound in pairs of opposite windings are a much cheaper
excitation than a single vortex in the 2D XY model. Similarly, for the 3D XY model,
the relevant excitations are closed vortex loops instead of single vortex lines.

Although a single vortex has a logarithmically divergent energy, it also has a logarithmi-
cally divergent entropy Sv ∼ ln(R/r0). Hence, at large enough temperature, the entropy
will start to dominate the change in the free energy, when adding free vortices. This
is the point of the BKT transition. When β > βBKT, the vortices are bound in pairs
of opposite winding. At βBKT, the vortices unbind and the quasi long-range order is
destroyed. When β < βBKT, free vortices are abundant throughout the system and spin
correlations are short-ranged with an exponential decay. As such, the BKT transition
is best understood as a vortex-pair-unbinding transition. Correspondingly, in 3D the
mechanism for destroying the long-range order is proliferation of vortex loops.
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2.5 Mean-field theory

Solving many-body models exactly is in most cases impossible due to the complications
that arise with the interaction terms in the Hamiltonian. Mean-field theory (MFT) is
a scheme for solving such models approximately, by replacing all interactions between
a particle and the others with an effective external field. This can be done by approx-
imating all degrees of freedom of the other particles to have a fixed value, namely the
thermodynamic average. The benefit is that the complicated many-body problem can be
reduced to a simple one-body problem. The drawback is that fluctuations are ignored.

To demonstrate the method, I will calculate the partition function for the zero-field XY
model in the mean-field approximation. Eq. (2.42) can be rewritten as

H[J ; {si}] = −
N∑
i=1

si · h̃i, (2.62)

where h̃i is an effective external field given by summing over all the nearest neighbors
to si,

h̃i =
J

2

∑
j nn. i

sj . (2.63)

The next step is to replace the neighboring spin fields by the thermal average, sj → 〈sj〉
in Eq. (2.63). This is the mean-field approximation. In this way, h̃i will be a fixed value,
and the integrals in the partition function will decouple,

Z =

N∏
i=1

Zi. (2.64)

Here, Zi will be a single-spin partition function, given by

Zi =

∫ 2π

0
dθ eβsi·h̃i = 2πI0

(
β
∣∣∣h̃i

∣∣∣) , (2.65)

where I0(x) is the modified Bessel function of the first kind. Assuming uniform magneti-
zation, 〈si〉 = m ∀ i, one can obtain the magnetization selfconsistently by differentiation
of the partition function.

The strength of MFT is that predictions can be made by a rather straightforward and
simple analysis. In particular, in cases when it is safe to approximate all the interactions
of a particle by some average value, the MFT predictions are usually good. This is
typically outside the critical region and when the number of interactions of a particle is
large. The latter would be the case if the number of dimensions is large, or if there are
long-range interactions in the Hamiltonian. However, within the critical region when
d < duc, the MFT predictions are often erroneous, and other methods should be used to
obtain critical properties.
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2.6 Renormalization

The framework that for the last 40 years or so has proven to be tremendously successful
in the quest for describing and understanding critical properties in many-particle sys-
tems, is given by the renormalization group theory. The list of achievements obtained
by the renormalization group (RG) theory includes the ability to calculate critical expo-
nents, derivation of Widom’s homogeneity postulate [Eq. (2.25)] and Kadanoff’s ansatz
[Eq. (2.32)], and profound insight into the concept of universality. This is not the place
and time for a careful introduction to RG theory, so I will only mention a few of the
basic ideas in this respect and recommend Refs. [7–9, 31, 32] for an introduction to the
subject.

The basic idea of RG is to study how the Hamiltonian evolves under a RG transformation
R of the system. The RG transformation is a transformation under which the lengths
are scaled by a factor l > 1, followed by rescaling the microscopic degrees of freedom
such that the transformed Hamiltonian is similar to the original one, in terms of the
microscopic degrees of freedom. Under this transformation, which basically means to
consider the system at a larger scale, the set of couplings {K} in the Hamiltonian will
transform,

{K ′} = R{K}, (2.66)

and by repeating this step, the couplings will constantly change stepwise. The procedure
will constitute a RG flow of coupling values in coupling space. At a critical point, the
system is scale-invariant which means that the Hamiltonian is self-similar under R. I.e.,
the critical point corresponds to a fixed point in the RG flow,

{K∗} = R{K∗}. (2.67)

Moreover, as described in Sec. 2.2.3, the critical exponents are defined by the behavior of
certain quantities for couplings in the vicinity of the critical point. As such, the critical
exponents as well as other critical properties can be determined by analyzing the RG
flow in the vicinity of the corresponding fixed point.

2.7 Duality

An important subject when discussing many of the important models in statistical me-
chanics, is duality [33,34].18 The meaning of duality is that a mathematical transforma-
tion D can be performed, namely the duality transformation, such that the model can
be expressed by another set of microscopic variables, also called the dual model. Even
better, the new set of microscopic variables in the dual model are often directly related
to the topological excitations of the original model. Generally, for the dual model, the
temperature axis is inverted with respect to the original model, βdual ∝ β−1org. Hence,

18The concept of duality is also important in other fields of physics, as well, like field theory and
electromagnetism.
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the ordered state of the dual model corresponds to the disordered state of the original
model, and the order parameter of the dual model may thus be considered as a disorder
parameter from the point of view of the original model. Also, the dual model has the
property that the original model is restored, when subject to the transformation D,

D2Horg = DHdual = Horg. (2.68)

Historically, in the field of statistical mechanics, the duality transformation was first
applied by Kramers and Wannier in 1941 [35, 36], where they showed that the 2D Ising
model is self-dual, namely that the dual model of the 2D Ising model also is a 2D Ising
model, but with an inverted temperature axis. As such, they were able to calculate
the critical temperature prior to Onsager’s exact solution in 1944 [18]. 30 years or so
later, the method was generalized to other lattices and interactions, and applied to other
models in the field (see Ref. [33] and references therein).

2.7.1 Duality transformation of the XY model

This derivation mostly follows Refs. [33,37]. The partition function for the zero-field XY
model, as given in Eq. (2.43), is written as

Z =

∫
D θ exp

[
β
∑
r,μ

cos(Δμθr)

]
, (2.69)

where J is absorbed, βJ → β, and where r (instead of i) denotes the lattice vertices
living in two or three spatial dimensions. The cosine is hard to handle analytically, so
it is customary to perform the following replacement,

eβ cosx →
∞∑

n=−∞
e−(β/2)(x−2πn)

2
, (2.70)

where n ∈ Z is introduced to enforce the periodic behavior of the cosine. This is the
so-called Villain approximation [38].19 Now, the partition function is written as

Z =

∫
D θ

∏
r,μ

∞∑
nr,μ=−∞

e−(β/2)(Δμθr−2πnr,μ)2 . (2.71)

By introducing another auxiliary field v ∈ R, the fields in the exponent can be decoupled
by a Hubbard-Stratonovich transformation [40],

e−βx
2/2 =

1√
2πβ

∫ ∞

−∞
dv e−v

2/(2β)+ivx, (2.72)

19Strictly speaking, Eq. (2.70) is not an approximation in a quantitative sense. However, it cor-
rectly represents the critical properties of the XY model [39]. Nonuniversal properties, e.g., the critical
temperature, are not conserved.
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such that

Z =

∫
D θ

∫
D v

∏
r,μ

∞∑
nr,μ=−∞

e−v
2
r,μ/(2β)+ivr,μ(Δμθr−2πnr,μ) . (2.73)

Here, and in the following, uninteresting constant factors will be discarded from the
partition function. Now, we are able to sum out the integer field n by invoking the
Poisson summation formula,

∞∑
n=−∞

e2πinv =

∞∑
w=−∞

δ(v − w), (2.74)

where n,w ∈ Z and v ∈ R. The resulting Z reads

Z =

∫
D θ

∏
r,μ

∞∑
wr,μ=−∞

e−w
2
r,μ/(2β)+iwr,μΔμθr . (2.75)

By neglecting surface terms, a partial summation yields∑
r

wr,μΔμθr = −
∑
r

θrΔμwr,μ, (2.76)

and consequently, the θ field can be integrated over by∫ π

−π
dθr exp(−iθr

∑
μ

Δμwr,μ) = 2πδΔ·wr ,0, (2.77)

where Δ ·wr =
∑

μΔμwr,μ. I.e., the θ integration yields the constraint
∑

μΔμwr,μ = 0
on the w field. This constraint is automatically satisfied if we choose
wr,μ =

∑
ν,λ εμνλΔνgr,λ (wr,μ =

∑
ν εμνΔνgr in 2D),20 where g ∈ Z is another aux-

iliary gauge field and εμνλ is the antisymmetric symbol. Note that by introducing the g
field in this way, the g field will live on the dual lattice, namely a lattice that is translated
half a lattice constant in all directions with respect to the original lattice. The partition
function is written as

Z =
∑
{g}

exp

⎡
⎣− 1

2β

∑
r,μ

⎛
⎝∑

ν,λ

εμνλΔνgr,λ

⎞
⎠

2⎤
⎦ . (2.78)

This equation is the dual model of the 3D XY model. (For the 2D XY model, let∑
ν,λ εμνλΔνgr,λ → Δμgr.)

As suggested in the beginning of this section, the variables g of the dual model are
directly related to the topological defects of the XY model, and we will continue to
rewrite Eq. (2.78) to show this explicitly. The vortices m ∈ Z, are introduced when
using the Poisson summation formula [Eq. (2.74)] to replace g by a new field h ∈ R,

Z =

∫
Dh

∑
{m}

exp

⎧⎨
⎩−

∑
r,μ

⎡
⎣ 1

2β

⎛
⎝∑

ν,λ

εμνλΔνhr,λ

⎞
⎠

2

− 2πimr,μhr,μ

⎤
⎦
⎫⎬
⎭ . (2.79)

20I will proceed with 3D notation.
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The next step is to Fourier transform the fields,

Z =

∫
Dh

∑
{m}

exp

[
−
∑
q,μ

(
1

2β

∑
ν,λ,ρ,σ

εμνλεμρσQq,νQ−q,ρhq,λh−q,σ

− πimq,μh−q,μ − πim−q,μhq,μ
)]

, (2.80)

where Qq,μ = 2i sin(qμ/2) exp(iqμ/2) is the Fourier space representation of the lattice
difference operator. We are free to choose gauge,

∑
μΔμhr,μ = 0, such that the first

term in the exponent is written as∑
μ,ν,λ,ρ,σ

εμνλεμρσQq,νQ−q,ρhq,λh−q,σ =
∑
ν,λ

Qq,νQ−q,νhq,λh−q,λ, (2.81)

when the relation
∑

μ εμνλεμρσ = δνρδλσ − δνσδλρ has been invoked. Moreover, we
complete the squares, such that the partition function reads

Z =

∫
Dh

∑
{m}

exp

[
−
∑
q,μ

(
h̃q,μ

∑
ν Qq,νQ−q,ν

2β
h̃−q,μ

+mq,μ
2π2β∑

ν Qq,νQ−q,ν
m−q,μ

)]
, (2.82)

where

h̃q,μ = hq,μ − 2πi
β∑

ν Qq,νQ−q,ν
mq,μ, (2.83)

is the shifted h field. The integration over the h field is Gaussian and the model finally
reads

Z =
∑
{m}

exp

(
−2π2β

∑
q,μ

mq,μVqm−q,μ

)
, (2.84)

where

Vq =
1∑

ν Qq,νQ−q,ν
. (2.85)

In 2D, the derivation from Eq. (2.78) and onwards, is similar to 3D but with only one
μ component for the g, h and m fields. Hence, the final model is similar as for 3D, but
with mq,μ → mq and no μ sum. Also, remember that the number of terms for the ν
sum is d dependent, ∑

ν

Qq,νQ−q,ν = 4

d∑
ν=1

sin2
(qv
2

)
. (2.86)

Transforming back to real space, the partition function in Eq. (2.84) reads

Z =
∑
{m}

exp

⎛
⎝−2π2β

∑
r,r′ 
=r,μ

mr,μV
′
r−r′mr′,μ

⎞
⎠ , (2.87)
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where

V ′r−r′ = Vr−r′ − V0 =
1

N

∑
q

e−iq(r−r′)−1

4
∑d

ν=1 sin
2(qv/2)

. (2.88)

Here, the infrared divergence in the sum of Eq. (2.84) has been regularized by subtracting
the divergent V0 from the potential [41, 42]. Since

∑
r,r′,μ

mr,μVr−r′mr′,μ =
∑

r,r′ 
=r,μ

mr,μV
′
r−r′mr′,μ + V0

∑
μ

(∑
r

mr,μ

)2

, (2.89)

this enforces the constraint
∑

r mr,μ = 0, as configurations with
∑

r mr,μ �= 0 will have
zero weight in the partition function.

The partition function in Eq. (2.87) describes a system of integer-valued vortex segments
(vortices in 2D) interacting with the long-range potential given in Eq. (2.88). This
potential is in fact a lattice Coulomb potential which decays ∼ 1/r in 3D and ∼ − ln r
in 2D. Note that the constraint

∑
r mr,μ = 0 corresponds to closed vortex loops in 3D

and to overall charge neutrality in 2D. For the 2D case, this mapping to the 2D neutral
Coulomb gas played an essential role to understand the role of vortices and to derive the
properties of the BKT transition [26–29].





Chapter 3

Monte Carlo simulations

Using the framework of statistical mechanics, the macroscopic properties of the models
we are investigating can be found by calculating the partition function in Eq. (2.2), or,
more precisely, the thermal averages in Eq. (2.3). Calculating a sum of terms does not
sound too difficult, but after a moment of consideration one would soon realize that the
number of constituents do not have to be very large before the number of terms will
be impossible to handle. Of course, there are analytical methods that can handle series
with many terms, but due to the complexity of the interactions, analytic solutions are
rare and have only been obtained in a few simple cases, for instance for the 2D zero-field
Ising model [18]. Also, approximation schemes such as mean-field theory or perturbation
series often fail to produce accurate predictions, especially in the interesting region close
to a phase transition. We thus have to rely on numerical computations. In the context
of statistical mechanics and phase transitions, a very successful method, and the tool of
our choice, is Monte Carlo simulation.

Monte Carlo1 may loosely refer to a class of methods that utilizes repeated random
sampling to calculate a mathematical or statistical problem. Such methods differ from
many other numerical methods in that they are stochastic and not deterministic. This
means that two or more repeated calculations will not yield the same result, but rather
differ in a stochastic manner. The stochastic nature of the calculation introduces random
errors in the results, but these errors can, in principle, be reduced by increasing the
number of samples obtained.

This chapter is intended to outline details of the Monte Carlo method that have been
used in this work. Sec. 3.1 will introduce the elementary building blocks leading up
to the Metropolis-Hastings algorithm. In Section 3.2, I will discuss a few important
issues that must be considered in order to produce a reliable and accurate outcome.
Sec. 3.3 is mainly devoted to the parallel tempering algorithm. Sec. 3.4 discusses the
reweighting technique, and the Secs. 3.5, 3.6 and 3.7 are devoted to how the output
from the simulations can be used to detect critical phenomena and phase transitions. For

1The method is named after the famous casino in Monaco.
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literature on Monte Carlo simulations in statistical mechanics, I would like to recommend
Refs. [12, 43, 44].

3.1 Simulating statistical mechanics

3.1.1 Monte Carlo integration

The main task in statistical mechanics is to calculate integrals as in Eq. (2.3). When
this is done by repeated random sampling, it is called Monte Carlo integration. The
basic theorem of Monte Carlo integration is that the integral I of a function f(x) over
a volume V can be well approximated by [45]

I =

∫
dV f(x) ≈ V f̄ , (3.1)

where f̄ is the arithmetic mean obtained by sampling f(x) in M randomly chosen points
xi, i ∈ {1, . . . ,M},

f̄ =
1

M

M∑
i=1

f(xi). (3.2)

The points xi must be chosen from a uniform probability distribution within V . Given
that these points are statistically independent, the one standard deviation error estimate
is

σI = V

√∑M
i=1

[
f(xi)− f̄

]2
M(M − 1)

. (3.3)

So, why should we bother to choose the points xi randomly instead of choosing xi in
a regular manner? The main reason for this is the curse of dimensionality. It can be
shown that the standard methods for numerical evaluation of integrals in a deterministic
fashion, produces systematic errors that typically scale ∼ M−s/d, whereM is the number
of evaluations of f(x), d is the number of dimensions to integrate over, and s is a number
∼ 1 that depends on the specific method at hand [44,46]. In any case, it should be clear
that d does not have to be very large before the Monte Carlo error scaling ∼ M−1/2 in
Eq. (3.3) clearly outperforms deterministic methods. Indeed, this would be the case for
the models of statistical mechanics where the number of degrees of freedom (i.e., d) is
very large.

3.1.2 Importance sampling

In many cases, the integrand f(x) may vary significantly within the volume that we
would like to integrate over. Clearly, one should expect the total estimate of I to improve
if the space where f(x) is large is allowed to be sampled more frequently compared with
the space where f(x) is small. This is the idea of importance sampling. A simple example
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x
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)
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Figure 3.1: Simple utilization of importance sampling for a one dimensional integral I =∫ b

a
dxf(x). By dividing the total interval [a, b) into subintervals [a, c) and [c, b), one can

improve the total estimate of I by sampling the interval [a, c) where f(x) is large more
frequently than the interval [c, b) where f(x) is small.

is given in Fig. 3.1. In this case, the total estimate of I can be improved by dividing the
total interval [a, b) into two subintervals, I =

∫ b
a dxf(x) =

∫ c
a dxf(x) +

∫ b
c dxf(x). The

corresponding Monte Carlo estimate is

I ≈ c− a

M1

M1∑
i=1

f(xi) +
b− c

M2

M2∑
i=1

f(yi), (3.4)

where samples xi, i ∈ {1, . . . ,M1} are taken from the interval [a, b) and samples yi, i ∈
{1, . . . ,M2} are taken from the interval [c, b). By selecting M1 and M2 such that M1/(c−
a) > M2/(b − c), the estimate for I will improve, since the part where f(x) is large, is
sampled more frequently.

More formally, the integral I may be rewritten

I =

∫
dV f(x) =

∫
dp(x)

f(x)

p(x)
, (3.5)

where dp(x) = p(x)dV . If we choose the points xi according to the probability distri-
bution p(x), the Monte Carlo estimate for I is given by

I ≈ V

M

M∑
i=1

f(xi)

p(xi)
, (3.6)

and the error estimate is found by substituting f(xi) → f(xi)/p(xi) in Eq. (3.3). By a
proper choice of p(xi), this error estimate can be significantly smaller than the original
error estimate.

In statistical mechanics, we are interested in calculating the expectation values given by
Eq. (2.3). If the states Ψi are selected randomly from a uniform probability distribution,
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the Monte Carlo estimate of 〈O〉 is

〈O〉 ≈
∑M

i=1O[Ψi] e
−βH[Ψi]∑M

i=1 e
−βH[Ψi]

. (3.7)

However, in the spirit of importance sampling, a much better choice would be to ran-
domly select Ψi according to the canonical probability distribution [Eq. (2.1)]. Then,
the most probable states will be sampled more frequently, and the Monte Carlo estimate
for 〈O〉 will take the convenient form

〈O〉 ≈ 1

M

M∑
i=1

O[Ψi]. (3.8)

3.1.3 Markov chains

What strategy should we use to find the states Ψi? We could try to generate states from
scratch by assigning values to all the degrees of freedom in a random fashion. However,
when the number of degrees of freedom is very large, it is practically impossible to
generate states from scratch, according to a nontrivial probability distribution. The
solution to this problem is to generate a Markov chain. This is a stochastic sequence
of states obtained by letting the microscopic degrees of freedom evolve dynamically
according to a prescribed set of rules. Such a sequence can be written

X1 → X2 → · · · → Xt−1 → Xt → Xt+1 → · · · → XT−1 → XT , (3.9)

where Xt is the state at time step t and T is the total number of steps in the sequence. To
avoid confusion, it is important to clarify that in this context, the time t, which usually
is called Monte Carlo time, bears no physical meaning. It is merely a convenient way to
describe the dynamics of the stochastic sequence. In order for this stochastic sequence to
be a proper Markov chain, it must obey the Markov property, namely that the transition
probability of moving from state Ψi at t to state Ψj at t+1, P(Xt = Ψi → Xt+1 = Ψj),
is independent of the history leading to state Ψi at t,

P(Xt = Ψi → Xt+1 = Ψj) = P(Xt+1 = Ψj |Xt = Ψi). (3.10)

Furthermore, it is convenient to choose the transition probabilities to be time indepen-
dent, i.e.,

P(Xt = Ψi → Xt+1 = Ψj) = P(Xt+n = Ψi → Xt+n+1 = Ψj) = P(Ψi → Ψj), (3.11)

where n ∈ Z. Also, the sequence must naturally obey the sum rule which is a mathe-
matical way of saying that the sequence must go somewhere,

∑
j

P(Ψi → Ψj) = 1. (3.12)
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Based on these three simple criteria, the probability of being in state Ψi at time t + 1,
p(Xt+1 = Ψi), clearly must be given by the so-called master equation,

p(Xt+1 = Ψi) =
∑
j

p(Xt = Ψj)P(Ψj → Ψi)

= p(Xt = Ψi)

⎡
⎣1−∑

j 
=i

P(Ψi → Ψj)

⎤
⎦+

∑
j 
=i

p(Xt = Ψj)P(Ψj → Ψi).

(3.13)

Now, for the Markov chain to be useful for our purposes, we would like to evolve the
Markov chain into some state of equilibrium where the sequence traverses phase space
according to the requested probability distribution, p(Xt = Ψi) = p(Xt+n = Ψi) = p(Ψi)
for all n ∈ Z. Inserting this in Eq. (3.13) yields the balance condition,∑

i

p(Ψi)P(Ψi → Ψj) =
∑
i

P(Ψj → Ψi)p(Ψj) = p(Ψj). (3.14)

In other words, the balance condition ensures that if the stochastic process reaches the
state of equilibrium, it will stay there. The Markov chain must also obey the ergodicity
condition, namely that it must be possible for the system to go from a state Ψi into any
other state Ψj within a finite number of time steps.2

It is possible to show that the stochastic process will evolve into the state of equilibrium
as a consequence of the conditions given above. The deviation from the equilibrium
probability distribution at time t can be calculated by

Dt =
∑
i

|p(Xt = Ψi)− p(Ψi)| . (3.15)

By invoking Eqs. (3.13) and (3.14), this deviation at time t+ 1 is given by

Dt+1 =
∑
i

∣∣∣∣∣∣
∑
j

p(Xt = Ψj)P(Ψj → Ψi)− p(Ψi)

∣∣∣∣∣∣
=
∑
i

∣∣∣∣∣∣
∑
j

[p(Xt = Ψj)− p(Ψj)]P(Ψj → Ψi)

∣∣∣∣∣∣ . (3.16)

Clearly, the absolute value of a sum must be smaller than or equal to summing the
absolute value of each term, and since the probability P(Ψj → Ψi) ≥ 0, we find that

Dt+1 ≤
∑
i,j

|p(Xt = Ψj)− p(Ψj)| P(Ψj → Ψi) = Dt, (3.17)

where Eq. (3.12) has been used. This means that after some initial time, the random
walk of the Markov chain in phase space will visit states according to the requested
probability distribution.

2This must be considered when the trial moves, taking the Markov chain from one state to the next,
are determined. In some cases (e.g., Article II and III [2, 3]), nonergodic trial moves may speed up
calculations. Such moves must be mixed with ergodic trial moves to make sure that the full Markov
chain obeys the ergodicity condition [47,48].



34 Chapter 3. Monte Carlo simulations

3.1.4 The Metropolis-Hastings algorithm

The celebrated Metropolis-Hastings algorithm is simply a convenient choice of the tran-
sition probability P(Ψi → Ψj) that obeys the conditions given above [49, 50]. It turns
out that it is convenient to construct transition probabilities that obey detailed balance,

p(Ψj)P(Ψj → Ψi) = p(Ψi)P(Ψi → Ψj). (3.18)

This condition ensures that the balance condition [Eq. (3.14)] is met termwise.3 The
transition probability is given by P(Ψi → Ψj) = Psel(Ψi → Ψj)Pacc(Ψi → Ψj), where
Psel(Ψi → Ψj) is the probability of proposing the update to Ψj , given state Ψi, and where
Pacc(Ψi → Ψj) is the probability of accepting that update. Here, the selection proba-
bility is chosen such that Psel(Ψi → Ψj) = Psel(Ψj → Ψi). Moreover, the acceptance
probability for the Metropolis-Hastings algorithm is chosen to be

Pacc(Ψi → Ψj) = min

{
1,

p(Ψj)

p(Ψi)

}
, (3.19)

where
p(Ψj)

p(Ψi)
= e−β(H[Ψj ]−H[Ψi]), (3.20)

in the case of the canonical probability distribution. By inspection, the choice in
Eq. (3.19) satisfies Eq. (3.18). The Metropolis algorithm can be described as follows:

1. Generate an initial state Ψi.

2. Propose a new state Ψj .

3. Calculate w = p(Ψj)/p(Ψi) = e−β(H[Ψj ]−H[Ψi]).

4. Generate a uniform random number r ∈ [0, 1].

5. If r ≤ w, assign Ψi to be the new state, Ψi = Ψj . Else, keep the old state, Ψi = Ψi.

6. Perform measurements on Ψi.

7. Repeat 1. → 6. until results have converged.

Step 2. involves a move that generates the new trial state. For the Metropolis-Hastings
algorithm, this is typically a local update that only involves a local transformation on a
single degree of freedom in the existing state. In the case of the Ising model, this would
be to flip a single spin, sr → −sr. For the XY model, one would typically rotate a
single spin to a random new direction, θr → θr,new, where θr,new ∈ (−π, π]. A Monte
Carlo sweep is then to sequentially (or randomly) traverse the system, proposing one

3Note that detailed balance puts stricter conditions on the transition probabilities than required by
the balance condition. Hence, it is possible to construct algorithms that obey the balance condition
without detailed balance [51, 52].
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local update for all (or a number of) degrees of freedom in the system.4 Usually, the
measurements are performed after an integer number of Monte Carlo sweeps. Hence, in
the scheme given above, it is common to repeat steps 1. → 5. a number of times before
proceeding to step 6.

3.2 Issues

3.2.1 Pseudorandom number generators

Random numbers play an essential role in Monte Carlo simulations. For the Metropolis-
Hastings algorithm detailed above, random numbers are used to determine if the pro-
posed state should be accepted (step 4. and 5.), and they are also often used in the
process of selecting the proposal (step 2.). In this context, the random numbers are
not truly random. They are generated by mathematical sequences and are completely
deterministic and reproducible. However, they may be used for our purposes because
the sequences produce numbers that are uncorrelated and with a distribution similar to
what one should expect for a sequence of true random numbers. In addition, since they
are deterministic, they are reproducible, given the same set of input, called seed. The
algorithm for constructing such a sequence is called a pseudorandom number generator
(PRNG).

Different PRNGs may differ in terms of how well and how long they reproduce the
properties of true random numbers. Over the years, there are examples of established
PRNGs that turned out to misbehave when carefully tested [53, 54]. In this work, we
have used the Mersenne Twister algorithm [55], which is considered to be a state-of-
the-art PRNG for Monte Carlo simulations. In parallel applications, the PRNG on each
CPU is seeded separately.

3.2.2 Boundary conditions

Due to inevitable limitations in computer resources, Monte Carlo simulations are always
restricted to be performed on finite systems. Hence, there is a (d − 1)-dimensional
boundary that must be accounted for. Boundary conditions (BCs) should be thought
of as restraints that applies to the degrees of freedom that are located on the boundary.
Since the relative importance of the boundary decreases when system size increases,
one should expect bulk properties calculated using different BCs to converge in the
thermodynamic limit. However, for finite systems, it is clear that the numerical results
can depend on the BCs, and in some cases, certain BCs can be more appropriate than

4Strictly speaking, a sequential updating scheme does not satisfy detailed balance. This can be
understood by noticing that the selection probabilities Psel(Ψi → Ψj) will vary within the sequence,
such that Psel(Ψi → Ψj) �= Psel(Ψj → Ψi). However, the balance condition will be satisfied every sweep.
See Refs. [51, 52].
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others [12]. Here, I will mention the BCs that applies to this work, namely periodic
boundary conditions (PBCs) and spherical boundary conditions.

Periodic boundary conditions

PBCs can most simply be thought of as wrapping the edges around such that the edge
with normal in the positive μ-direction will be in contact with the edge in the negative
μ-direction. In this way, particles along this edge will be neighbors to the particles along
the opposite edge. For example, in the 2D XY model with vertices r = (x, y) where
coordinates x, y ∈ {1, . . . , L}, the boundary conditions can be expressed θ(L+1,y) = θ(1,y),
θ(0,y) = θ(L,y), θ(x,L+1) = θ(x,1) and θ(x,0) = θ(x,L). Hence, a system with PBCs in d
dimensions is topologically equivalent to a (d+1)-dimensional torus. PBCs are useful in
order to simulate bulk properties, since all particles are surrounded as for bulk particles,
and this will effectively eliminate spurious boundary effects. PBCs are, by far, the most
commonly used BCs for Monte Carlo simulations in statistical mechanics. However,
there are issues with PBCs. A system with PBCs is not rotationally symmetric. Also,
treating long-range interactions imposes additional complications [12,56–58]. PBCs are
used in Articles I and IV [1,4].

Spherical boundary conditions

In Articles II and III [2,3], the Monte Carlo simulations are performed with particles that
live on a 2D surface and that in principle are not constrained to live on the vertices of
a lattice.5 In addition, the particles interact with logarithmically decaying long-ranged
interactions. For such systems, a viable alternative is spherical boundary conditions
(SBCs), namely to let the particles live on the surface of a sphere [12, 14, 63–66]. Sim-
ilar to PBCs, this is a clever way of avoiding boundary effects, but contrary to PBCs,
this is done without introducing the complications that are associated with long-range
interactions in systems with PBCs. Also, rotational symmetry is conserved.

There are also a few issues with SBCs. Although the SBCs are rather simple to imple-
ment, the computational cost for long-range interactions scales as ∼ N2, where N is the
number of particles. Secondly, the curvature of the spherical surface will introduce lattice
defects. Specifically, in the case of finding the ground state of Coulomb charges on the
spherical surface (Thompson’s problem), there must be at least 12 disclination defects
in the triangular lattice, due to Euler’s theorem. In addition, numerical works suggest
that there are additional defects, in terms of dislocations and disclinations [66,67]. Com-
pared with a plane where the ground state would be a triangular Wigner crystal with no
defects [68], the defects on the spherical surface will hamper calculations of translational
and orientational order in phases where such should be expected.

5Of course, such particles can be constrained to live on a lattice, but this can introduce numerical
artifacts, e.g., pinning [59–62].
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Figure 3.2: Time series of the energy H for the 500 initial Monte Carlo sweeps of a zero-
field 3D XY model at βJ = 0.55 with L = 16. Results are presented for both ordered and
disorder start configurations in order to compare equilibration.

3.2.3 Equilibration

Initially, one must choose a start configuration that will constitute the initial step in the
Markov chain. Typically, this is a state where all degrees of freedom are set to a random
value, or oppositely, a state that is completely ordered. As outlined in Sec. 3.1.3, the
Markov chain must then perform a number of steps before the sequence converges to the
equilibrium probability distribution. This part of the simulation is called equilibration
or thermalization, and it is important to ensure that the system is equilibrated before
computing thermal averages.6 This can be done by observing how all the quantities
evolve with Monte Carlo time, ensuring that all observables have converged to fluctuating
around a constant mean value. In Fig. 3.2, a plot of the initial measurements of a
quantity under equilibration is given. As suggested in the figure, in cases when it may
be difficult to determine when the system is well equilibrated, comparing the convergence
of both disordered (hot) and ordered (cold) starts is useful. Other approaches may be
to compute temporal averages over a limited number of samples to look for convergence,
or to calculate averages over larger parts of the time series, systematically removing the
initial samples until total average converges. Typically, the time it takes to equilibrate
the system increases with system size and near phase transitions.

3.2.4 Error estimates

Unfortunately, generating samples by the means of a Markov chain has a major draw-
back. Consecutive measurements in Monte Carlo time tend to be highly correlated.
Although the random walk in the configuration space obeys the Markov property, that
walk projected down on the space of a given observable will generally not obey the
Markov property and may thus have a memory that goes far beyond the previous step.
For Monte Carlo estimates as given in Eq. (3.8), the proper error estimate that takes

6Actually, under certain conditions, this early dynamic evolution of the system towards equilibrium,
can be used to investigate critical phenomena and phase transitions. This is called short-time critical
dynamics [69, 70].
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correlations into account is given by

σ〈O〉 =

√√√√ 1 + 2τauto
M(M − 1)

M∑
i=1

(O[Ψi]− 〈O〉)2, (3.21)

where τauto is the autocorrelation time measured in units of Monte Carlo time between
consecutive measurements. The autocorrelation time can be found by considering the
normalized autocorrelation function,

φt =
1

〈O2〉 − 〈O〉2
(

1

M − t

M−t∑
i=1

OiOi+t − 〈O〉2
)
, (3.22)

where Oi = O[Ψi], given that the samples are ordered in Monte Carlo time. For large t,
an exponential decay with τauto as the characteristic time scale is expected for φt,

φt ∼ e−t/τauto . (3.23)

Hence, an estimate of τauto can be found by summing over φt,

τauto ≈
∑
t

φt. (3.24)

Jackknife error estimates

A very practical way to estimate errors is given by the Jackknife method [71,72]. Consider
a dataset of M time-ordered measurements, and divide it into K bins such that there
are M/K samples in every bin. I.e., Oi, i ∈ {1, . . . ,M} → Ob,j , b ∈ {1, . . . ,K}, j ∈
{1, . . . ,M/K}. The number of bins should not be too large. This is to make sure that
the number of samples in every bin is much larger than τauto, such that the bins can
be treated as statistically independent of each other. From these bins, the Jackknife
variables Ob, b ∈ {1, . . . ,K} are calculated by

Ob =
K

M(K − 1)

K∑
b′=1
b′ �=b

M/K∑
j=1

Ob′,j . (3.25)

Note that Ob is not the average over all samples in bin b. Rather, it is the average over all
samples except those in bin b. This is illustrated in Fig. 3.3. The Jackknife variables can
be used to estimate the average and error of function f(〈O〉). The Jackknife estimator
for the average is given by

f(〈O〉) ≈ 1

K

K∑
b=1

f (Ob) , (3.26)

and the Jackknife estimator for the error is given by

σf(〈O〉) ≈

√√√√K − 1

K

K∑
b=1

(
f (Ob)− 1

K

K∑
b′=1

f (Ob′)

)2

. (3.27)
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Figure 3.3: Example of the Jackknife method. The timeseries has been divided into
K = 10 bins that are considered to be statistically independent. The Jackknife variable O3

is calculated as the average over all bins except for bin number 3.

A major advantage by using the Jackknife method is that it can be used to estimate
averages and errors in cases where f(〈O〉) may be a brutally nonlinear function, or in
cases with multiple, possibly correlated, observables, f = f(〈O1〉, 〈O2〉, . . . ).

3.2.5 Critical slowing down

Close to the critical point, the autocorrelation time can be very large. Specifically,

τauto ∼ ξz ∼ |τ |−νz , (3.28)

where z is the dynamic critical exponent. The autocorrelation time will therefore diverge
in the critical limit, when τ → 0. This is called critical slowing down and it poses a
major challenge that must be dealt with, in order to obtain reliable results near the
critical point of continuous phase transitions. In certain spin models, cluster algorithms
which make use of global updates in an efficient way, are capable of dealing with this
problem [73,74].

3.2.6 Exponential tunneling time

First-order transitions are characterized by coexisting phases that are separated by a
region with a higher free energy (see Fig. 2.2). At the phase transition, it can be shown
that this barrier will lead to an exponentially increased tunneling and autocorrelation
time [75],

τauto ∼ eL
d−1

, (3.29)

as a function of linear system size L given that the samples are obtained by local updates
according to the canonical probability distribution. In such cases, the system size does
not have to be very large before true equilibrium sampling is very difficult. This problem
can be alleviated by certain extended ensemble methods (see Sec. 3.3).

3.3 Generalized ensemble simulations

From a naive point of view, the canonical probability distribution may be seen as the
ultimate choice of distribution to obtain configurations from, as it guarantees that all
states that are sampled have equal weights and thus contribute on an equal footing
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when thermodynamic averages are calculated [see Eq. (3.8)]. However, since subsequent
samples are correlated, this may be a too simple-minded attitude. If the autocorrelation
time is large, every new sample will essentially be a copy of the previous sample and only
limited new information is gained per update. Hence, numerous steps are needed in order
to obtain a good estimate of thermodynamic averages by Eq. (3.8). This is typically
the case when states with a high probability, according to the canonical probability
distribution, have very different configurations such that numerous local updates are
needed to obtain an accurate sampling of the actual states in phase space. For instance,
this is the problem in the case of scale-invariant fluctuations, i.e., critical slowing down.
We may also have the case when the high-probability states are separated by energy
barriers in phase space, as illustrated in Fig. 3.4. In this case, the random walk from a
region of high-probability states to the next, is highly unlikely as it involves local updates
with a very small probability to be accepted. This is the case for first-order transitions
and for systems with rough energy landscapes.

In certain cases these problems can be dealt with by cluster algorithms [73,74]. Shortly
speaking, cluster algorithms can be viewed as an efficient way of proposing nonlocal up-
dates that effectively allow the Markov chain to traverse phase space in a rapid manner.
However, there are a lot of models where efficient implementations of cluster algorithms
are missing. Also, there may be technical issues that may be in disfavor for the cluster
algorithms.

Another option is the generalized ensemble methods. These methods allow for a rapid
movement in phase space by accessing states that are highly improbable according to
the canonical probability distribution. This is done either by going to different couplings
or by sampling states from a different probability distribution. In Fig. 3.4, a schematic
figure is given, that in a qualitative manner illustrates the random walks generated by
the ordinary Metropolis-Hastings algorithm, the cluster algorithms and the generalized
ensemble methods. Among the generalized ensemble methods are the multicanonical
algorithm [75, 76], simulated tempering [77, 78], parallel tempering [79–81], the Wang-
Landau algorithm [82, 83] and the optimized ensemble technique [84]. Here, we will
pay particular attention to the parallel tempering algorithm since that algorithm is
extensively used in this work.7

3.3.1 Parallel tempering

The basic idea of the parallel tempering algorithm8 [79–81] is to simulate multiple repli-
cas of the same system simultaneously at equally many values of the coupling. The
replicas are allowed to perform a random walk in coupling space by occasionally propos-
ing updates where replicas at different couplings are allowed to exchange.9 Consequently,

7It should be mentioned that for Article IV [4], the Wang-Landau algorithm was implemented and
carefully tested. However, the results in that paper were obtained with the parallel tempering algorithm,
as it was found to outperform Wang-Landau for large calculations running on many CPUs.

8Also called the replica-exchange method.
9Typically, one performs an integer number of Monte Carlo sweeps with the ordinary Metropolis-

Hastings algorithm before a parallel tempering move is proposed.
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Metropolis-Hastings

Cluster

Generalized ensemble

Figure 3.4: Schematic figure of random walks in phase space performed by a Metropolis-
Hastings algorithm with local updates, a cluster algorithm and a generalized ensemble
method. Blue-shaded regions correspond to regions with high-probability states accord-
ing to the canonical probability distribution. The random walk of the Metropolis-Hastings
algorithm is easily trapped within a single region. The random walk of the cluster algorithms
may jump between regions by nonlocal updates. The random walk of the generalized en-
semble methods can traverse barriers in phase space by accessing states that are improbable
from the point of view of the canonical probability distribution.
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Figure 3.5: Plot of the random walk of replicas for couplings βi, i ∈ 1, 2, 3, 4 as a function
of Monte Carlo time t for a Monte Carlo simulation with the parallel tempering algorithm.

they will occasionally visit higher temperatures where disordered states are more easily
accessible. This will improve the mobility in phase space such that a representative se-
lection of states can be obtained, also at lower temperatures. An example of the random
walk of replicas in coupling space, is given in Fig. 3.5. Typical applications for this
algorithm are systems that have rough energy landscapes.

Consider a system with an extended ensemble of C replicas Ψm of the same system
associated with C different couplings βm. The probability distribution for this extended
ensemble is given by

p (Ψ1, β1; . . . ; Ψm, βm; . . . ; ΨC , βC) =

C∏
m=1

p (Ψm, βm) , (3.30)

where p (Ψm, βm) is the probability distribution for state Ψm at coupling βm. We now
define P(Ψa, βa; Ψb, βb) as the transition probability of exchanging the configuration at
βa with the configuration at βb. The detailed balance condition reads

p (. . . ; Ψa, βa; . . . ; Ψb, βb; . . . )P(Ψa, βa; Ψb, βb)

= p (. . . ; Ψb, βa; . . . ; Ψa, βb; . . . )P(Ψb, βa; Ψa, βb). (3.31)

We can choose selection probabilities such that Psel(Ψa, βa; Ψb, βb) = Psel(Ψb, βa; Ψa, βb).
Then, inserting Eq. (3.30) in Eq. (3.31) yields

Pacc(Ψa, βa; Ψb, βb)

Pacc(Ψb, βa; Ψa, βb)
=

p (Ψb, βa) p (Ψa, βb)

p (Ψa, βa) p (Ψb, βb)
= eΔ, (3.32)

where
Δ = βa (H[βa; Ψa]−H[βa; Ψb])− βb (H[βb; Ψa]−H[βb; Ψb]) . (3.33)

We have assumed the canonical probability distribution in the rightmost equality of
Eq. (3.32) and we allow for an explicit coupling dependence in the Hamiltonian, as in
Article I [1]. With no explicit coupling dependence, Δ = (βa−βb)(H[Ψa]−H[Ψb]). The
acceptance probability for the parallel tempering move is chosen to be

Pacc(Ψa, βa; Ψb, βb) = min

{
1,

p (Ψb, βa) p (Ψa, βb)

p (Ψa, βa) p (Ψb, βb)

}
= min

{
1, eΔ

}
. (3.34)
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Optimal choice of couplings

It turns out that the performance of the parallel tempering algorithm is sensitive to the
distribution of couplings and the number of replicas in the simulation. First of all, in
order to enjoy the benefits of parallel tempering, one must ensure that the lowest coupling
value β1 is properly within the disordered phase such that the random walk can traverse
energy barriers in phase space. The acceptance rate for the parallel tempering update is
essentially given by the amount of overlap in the distribution of visited energies (energy
histograms). Hence, the distance between couplings should not be too large. On the
other hand, the couplings should not be too closely spaced either, because that means a
lot more moves must be performed in order to traverse the coupling range.

In this work, I have used two different schemes for determining the couplings, given
that the two ends of the coupling range are set. In Ref. [85], Hukushima presents an
iterative procedure to determine the couplings that is based on the criterion that ac-
ceptance rates for the parallel tempering move to the nearest neighbor coupling should
be equal for all couplings. This iterative procedure requires knowledge of the internal
energy U(β), and thus, an initial and short Monte Carlo simulation must be performed
to obtain U(β) approximately. The other scheme, presented in Ref. [86], is based on
an assumption that the optimal distribution of couplings is obtained by minimizing the
round-trip times that the replicas use to traverse the range of couplings. For this ap-
proach, initial simulations are performed to measure the diffusion of replicas in coupling
space such that the couplings can be reallocated towards the bottlenecks by an itera-
tive feedback procedure. Compared with the method above (Ref. [85]), this iterative
feedback procedure will allocate more resources at the bottlenecks and thus yields a
temperature dependent acceptance rate that peaks in regions with small diffusivity. The
drawback of this method is that the initial runs to collect round-trip data may require
such a large computational effort that it sometimes is practically impossible to use this
method. Hence, in this work, I have used a method that collects round-trip data by
measuring first-passage-times [87]. This method will, similar to Ref. [86], minimize the
round-trip times, but at a lower initialization cost.

In Article I [1], the method by Hukushima was used, whereas in Articles III and IV [3,4],
I mostly found the couplings by measuring first-passage-times. In cases with very narrow
bottlenecks, one should find couplings by minimizing round-trip-times. Otherwise, both
methods work fine.

It should be mentioned that, compared with the ordinary Metropolis-Hastings algo-
rithm, there are not many drawbacks by adding the parallel tempering algorithm. It is
relatively easy to implement, it can easily be applied for parallel computations, and the
extra computational cost of the parallel tempering update is in most cases negligible.
However, in cases when parallel tempering means simulations over a much larger num-
ber of couplings than necessary, parallel tempering may be a waste of computational
resources. Also, as described above, parallel tempering may add a nonnegligible amount
of extra Monte Carlo sweeps in order to initialize the couplings. In addition, one should
be aware that with parallel tempering, results obtained at different couplings will be
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somewhat correlated.

3.4 Reweighting

A Monte Carlo simulation can be said to provide information on which states that
are probable for a specific value of the coupling β. Normally, we do not store all the
information of all degrees of freedom in every state, but certain important observables,
like the internal energy, magnetization or information on topological defects are stored
in organized time series where each row corresponds to a sampled state and each column
corresponds to a given observable. However, this information is not restricted to that
specific coupling alone. Clearly, according to the probability distribution [Eq. (2.1)],
the probability for a given state should not change too much if we only change the
coupling by a small amount. Reweighting is a set of techniques that enables us to make
use of the samples obtained at one coupling in order to calculate observables at nearby
couplings, simply by changing the Boltzmann weight according to the change in the
coupling value [88,89].

3.4.1 Single-histogram reweighting

Consider a Monte Carlo simulation at coupling value β1 where measurement of energy
H[Ψi], i ∈ {1, . . . ,M}, and the observable O[Ψi], i ∈ {1, . . . ,M}, are stored in time series
during the simulations.10 The thermal average of observable O[Ψ] at a nearby coupling
β2 can be rewritten as

〈O〉β2 =

∫ DΨO[Ψ] e−β2H[Ψ]

Zβ2

=

∫ DΨO[Ψ] e−(β2−β1)H[Ψ] e−β1H[Ψ]∫ DΨe−(β2−β1)H[Ψ] e−β1H[Ψ]

=
〈O[Ψ] e−(β2−β1)H[Ψ]〉β1

〈e−(β2−β1)H[Ψ]〉β1

. (3.35)

I.e., the thermal average of O[Ψ] at β2 can be found, simply by calculating the thermal
average of the two observables, O[Ψ] exp{− (β2 − β1)H[Ψ]} and exp{− (β2 − β1)H[Ψ]}
at β1. Hence, by Eq. (3.8), the Monte Carlo estimate of O[Ψ] at β2 is given by

〈O〉β2 ≈
∑

iO[Ψi] e
−(β2−β1)H[Ψi]∑

i e
−(β2−β1)H[Ψi]

. (3.36)

In Fig. 3.6, an example of the heat capacity obtained by single-histogram reweighting
is given. Notice that errors increase at couplings far away from the simulated coupling.
When β2 − β1 is large, significant contributions to the thermal average at β2 will come
from states that are insufficiently sampled at β1, and consequently, the reweighting
technique breaks down. Reweighting is only reliable for couplings that have a large
overlap in the energy histograms with the simulated coupling.

10Here, we assume that the states are found by drawing from the canonical probability distribution
and that the action is on the usual and simple form, βH[Ψ].
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Figure 3.6: Results for the specific heat cV as a function of coupling β. All data points,
except the one at β = 0.46, are obtained by reweighting of data from the Monte Carlo
simulation at β = 0.46.

3.4.2 Multi-histogram reweighting

The reweighting method outlined above can be improved by combining time series of
data obtained from simulations at multiple different couplings. Consider a number of
R simulations that have been performed at couplings βj , j ∈ {1, . . . , R}, and that each
of these simulations measure energy Hj [Ψi], i ∈ {1, . . . ,Mj}, and observable Oj [Ψi], i ∈
{1, . . . ,Mj}. It can be showed [89,90] that the Monte Carlo estimate of observable O[Ψ]
at reweighted temperature β is given by

〈O〉β ≈
R∑

j=1

Mj∑
i=1

Oj [Ψi]g
−1
j e−βHj [Ψi]−Fβ∑R

k=1Mkg
−1
k e−βkHj [Ψi]+Fβk

, (3.37)

where gj = 1 + 2τauto,j and Fβ is a free-energy-like parameter given by

e−Fβ =
R∑

j=1

Mj∑
i=1

g−1
j e−βHj [Ψi]∑R

k=1Mkg
−1
k e−βkHj [Ψi]+Fβk

. (3.38)

All the values Fβj
, j ∈ {1, . . . , R} can be found selfconsistently by solving the set of

nonlinear equations found by Fβ → Fβj
∀ j in Eq. (3.38). This set of equations can

be solved numerically. In Fig. 3.7, an example of results obtained by multi-histogram
reweighting is presented. Taking advantage of statistics obtained through multiple simu-
lations has significant impact on the final result, as seen by smoother curves and smaller
error bars. However, one must ensure that there is a large overlap between neighboring
energy histograms. Also, in the case of parallel tempering, there is not so much to be
gained from multi-histogram reweighting since the states sampled at a given coupling
are correlated with those that are sampled at neighboring couplings.
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Figure 3.7: Results for the specific heat cV as a function of coupling β. Results ob-
tained by multi-histogram reweighting and results obtained directly from the simulations
are compared.

3.5 Finite-size scaling

Although we most often are interested in the thermodynamic limit, we are restricted to
finite system sizes for the numerical calculations. In many cases this is not a problem.
Specifically, when the correlation length ξ is small compared to the linear system size
L, the system can be considered to contain many similar and uncorrelated regions that
essentially produce the same physics. Increasing the system size will only increase the
number of these regions, but intensive quantities will approximately stay constant, and
hence, the physics in the thermodynamic limit can easily be extracted.11 However, when
the condition ξ 	 L is not valid, there may be large finite-size effects. Typically, intensive
quantities that are expected to be singular or discontinuous, are often rather smooth but
may change significantly with increasing system size. At first sight, this may seem like
a confusing mess, but one should rather be joyful. Most often such behavior means
that there is an interesting phase transition around. Also, by treating these effects in a
systematic manner, one can investigate many important properties of the actual phase
transition. This is the art of finite-size scaling.

These finite-size effects are understood as a consequence of the limit imposed on the
correlation length by the finite system size. When approaching a critical phase transition,
the correlation length ξ should diverge as |τ |−ν , but for a finite system it will eventually
stop growing when ξ ∼ L. Hence, quantities that should be singular for a continuous
phase transition will not diverge but rather saturate within a critical region of size
|τ | ∼ L−1/ν . Returning to Widom’s homogeneity postulate in Eq. (2.25) with h = 0 and
λ = L(2−α)/ν as the arbitrary scaling factor, the scaling of the singular part of the free
energy with respect to L is given by

fs(τ) = L−(2−α)/νfs(L
1/ντ). (3.39)

Taking the second derivative of fs(τ) with respect to the coupling yields

cV ∼ Lα/νC(L1/ντ), (3.40)

11These considerations are neglecting surface effects that may not be negligible for small systems.
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where C(x) is a scaling function that is analytic in x. Relations as in Eq. (3.40) highlight
the possibilities given by finite-size scaling. Simply by calculating cV at the critical point
for different values of L by Monte Carlo simulations, one can extract information on the
values of the critical exponents. Finite-size relations for other thermodynamic quantities
are derived in a similar fashion to that above. The magnetization has the scaling form
given by

m ∼ L−β/νM(L1/ντ), (3.41)

where M(x) is the scaling function, and the susceptibility scales according to

χ ∼ Lγ/νK(L1/ντ), (3.42)

where K(x) is the scaling function.

It should be noted that in general, there are subdominant corrections to the finite-
size scaling forms [47, 91–93]. In some cases, and in particular for small systems, such
corrections may complicate the scaling analysis. Also, for finite sizes, the true critical
point is generally not located at the peaks of thermodynamic quantities. The coupling
corresponding to such a peak is called the pseudocritical coupling and scales as

βc(L) ≈ βc + CL−1/ν , (3.43)

where C is a constant. In principle, calculating the thermodynamic quantities at βc(L)
or at βc should approximately yield the same scaling results, but in some cases the finite-
size corrections to scaling may differ. Also, to calculate quantities at βc requires that
one is able to find βc with high precision.

In certain cases, it might be difficult to extract exponents by Eq. (3.40), particularly
when α is small or negative. In Refs. [94,95] it was found that the third central moment
of the microstate energies,

M3 =
β3

L3

〈
(H − 〈H〉)3

〉
, (3.44)

can be used to extract α and ν rather precisely. The scaling of M3, which is the third
derivative of fs(τ) with respect to the coupling, is given by

M3 ∼ L(1+α)/νC′(L1/ντ), (3.45)

where C′(x) is the scaling function. This quantity typically exhibits an antisymmetric
curve with respect to the pseudocritical point. It has a negative peak for β < βc(L) and
a positive peak for β > βc(L). The peak-to-peak difference in the M3 value scales as

(ΔM3)height ∼ L(1+α)/ν , (3.46)

and, by Eq. (3.43), the difference in the coupling values scales as

(ΔM3)width ∼ L−1/ν . (3.47)

Note that M3 provides independent measurements of both α and ν, and may thus serve
as a check of hyperscaling. Also, the corrections to finite-size scaling for M3 are small
compared with cV .
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Figure 3.8: Results of the specific heat cV and the Binder cumulant U4 as functions of
coupling β for the 3D XY model. The system sizes used are L ∈ {12, 16, 20, 24}. The inset
in the right panel zooms in on the crossings of the Binder cumulants. Note that the crossings
of the Binder cumulants yield a more precise determination of βc than the pseudocritical
coupling of the specific heat. High-precision calculations for the 3D XY model find the
critical coupling to be βc = 0.454 16(1) [98, 99].

A quantity that often is capable of finding the critical coupling with high precision is
the Binder cumulant [96, 97],

U4 =
D + 2

2

(
1− D

D + 2

〈m̄4〉
〈m̄2〉2

)
, (3.48)

where m̄ = (1/N)
∑

r sr is the magnetization of a given microstate,12 and D is the
number of components in m̄. At the critical point, the leading order L dependence of
the ratio 〈m̄4〉/〈m̄2〉2 factors out and consequently, U4 will, to the leading order, have
a size-independent universal value at the critical point [93]. This means that U4 curves
obtained for different system sizes will intersect close to the critical point and a finite-
size analysis of these crossings will in most cases converge very rapidly to βc. This is
exemplified in Fig. 3.8. The crossings of the Binder cumulants in the right panel converge
more rapidly to βc compared with the peak of the specific heat in the left panel.

Besides using M3, an alternative way to determine ν is to calculate the logarithmic
derivative of the second power of the magnetization [91],

∂

∂β
ln〈m̄2〉 = 〈m̄2H〉

〈m̄2〉 − 〈H〉. (3.49)

This quantity scales ∼ L1/ν . Since the logarithmic derivative exhibits a peak similar
to the specific heat, it is possible to find ν by measuring the logarithmic derivative at
the pseudocritical coupling without having to determine βc by an analysis of the Binder
crossings.

12I.e., the thermal averaged magnetization m in Eq. (3.41), is related to m̄ by m = 〈|m̄|〉.
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3.6 Detecting first-order transitions

The method outlined above aims at detecting and describing continuous phase transi-
tions. If the phase transition under investigation exhibits true power law scaling with
critical exponents that are mutually consistent and that can be related to a specific uni-
versality class, it is usually taken as evidence for a continuous phase transition. For a
first-order transition, there is no diverging correlation length at the transition point. In-
deed, in the case of a weak first-order transition, the correlation length may be large close
to the phase transition, and consequently, the physical quantities that we can extract
from the simulation may look very similar to what one would expect for a continuous
transition. However, the true nature of the first-order transition will eventually be re-
vealed if systems with L � ξ, where ξ is the correlation length at the transition point,
are within reach numerically.

3.6.1 Lee-Kosterlitz method

The method suggested by Lee and Kosterlitz [100, 101] aims at verifying first-order
transitions by looking for the existence of a free energy barrier and latent heat. Close to
a first-order transition, the energy histograms obtained from a Monte Carlo simulation
will exhibit a bimodal shape given that L is large enough. These two peaks correspond
to the two coexisting phases of a first-order transition. The exact point of the phase
transition can be located under the condition that the two peaks must be of equal height.
One can easily get there by the reweighting methods described in Sec. 3.4. This will
produce histograms qualitatively similar to that in Fig. 3.9. Following Lee and Kosterlitz,
any histogram of the energies H obtained at coupling β by measuring M samples, is
given by

N (H;β) = M
Ω(H) e−βH

Z(β)
, (3.50)

where Ω(H) is the number of states with energy H and Z(β) is the partition function.
If we now define the quantity A(H;β) = − ln [N (H;β)] /β, we find that this must be a
free-energy-like quantity since

A(H;β) =
1

β
ln

[
Z(β)

M

]
+H − 1

β
ln [Ω(H)] = F (H) + const. (3.51)

At the point of a first-order phase transition βPT, the free energy barrier separating the
two phases is given by considering the free energy difference between the local minimum
and the two peaks in the energy histogram,

ΔF =
1

β
ln

[Nmax(H)

Nmin(H)

]
=

1

β
ln

[
Pmax(H/L3)

Pmin(H/L3)

]
, (3.52)

where P (H/L3) ∝ N (H) is the normalized energy histogram measured exactly at βPT.
For a first-order transition, ΔF corresponds to the tension associated with the domain
walls separating the two coexisting phases at the transition point. Hence, the finite-size
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Figure 3.9: Example of an energy histogram with a bimodal distribution. P (H/L3) is the
normalized energy histogram, and H/L3 in the intensive internal energy. The free energy
barrier ΔF is given by the peak value Pmax(H/L3) and the value of intermediate minimum
Pmin(H/L3). The difference in energy between the two peaks equals the latent heat ΔH.
This histogram is taken from Fig. 5 in Article I [1].

scaling of the free energy barrier is ΔF ∼ Ld−1. In addition, one should also measure
the intensive energy difference between the two peaks in the energy histogram, denoted
by ΔH/L3 in Fig. 3.9. This difference is the latent heat released when going from the
ordered to the disordered phase, and should scale ∼ const. with increasing L to ensure
that it does not vanish in the thermodynamic limit.

As a final remark, note that observing a bimodal energy distribution is not sufficient
evidence for a first-order transition. In the literature, there are examples of such in
cases where the transition is not first-order [13, 102–104]. For a first-order transition,
one must also ensure that proper first-order scaling is obeyed over a sufficiently large
range of sizes.

3.6.2 Other methods

For a first-order transition there is no true critical behavior with scale invariance and
critical exponents. However, finite-size scaling can still be used to verify the existence of
a first-order transition, as thermodynamic quantities at the transition point will have a
characteristic size-dependence that can easily be deduced. For a heuristic derivation of
the scaling of the specific heat, one can approximate the probability distribution of the
energy to be a sum of two Gaussians that are centered at H1 and H2, respectively. In
that case, 〈H〉 = (H1 +H2)/2 and 〈(H − 〈H〉)2〉 = (H1 −H2)

2/4 + const. The specific
heat is given by

cV =
β2

Ld

〈
(H − 〈H〉)2

〉
∼ β2Ld

4

(
H1

Ld
− H2

Ld

)2

. (3.53)

I.e., the leading order size-dependence of the specific heat is cV ∼ Ld for a first-order
transition. This can be shown in a more rigorous manner [12, 105]. In fact, first-order
transitions exhibit finite-size scaling with effective exponents α = 1 and ν = 1/d [106,
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Figure 3.10: Results for the helicity modulus and the fourth-order modulus around the
BKT transition in the zero-field 2D XY model. Left panel: The helicity modulus Υ =
(Υx + Υy)/2 as a function of coupling β. The helicity modulus converges slowly towards
a discontinuous jump at βBKT in the thermodynamic limit. Right panel: The fourth-order
modulus Υ4 = (Υ4,x + Υ4,y)/2 as a function of coupling β. The negative dip converges
towards a finite value at βBKT in the thermodynamic limit. The value of the BKT transition
point is βBKT = 1.120(1) [109,110].

107]. It is thus feasible to perform finite-size scaling also in the case of first-order
transitions to check if the effective exponents of first-order transitions are obtained.

Another method that can be used to check if a transition is first-order, is to study the
Binder cumulant. For a first-order transition, this quantity exhibits a diverging negative
dip, when the transition point is approached from the disordered side [97,104,108].

3.7 Detecting the Berezinskii-Kosterlitz-Thouless transition

As described in Sec. 2.4.2, the BKT transition can be recognized by the universal jump in
the helicity modulus Υμ at the lower endpoint of the critical phase [Eq. (2.58)]. However,
the discontinuous jump may not be easily recognized from simulations due to large finite-
size effects. In the left panel of Fig. 3.10, a plot of the helicity modulus for the 2D XY
model is given. The convergence towards a discontinuous jump at βBKT is very slow.
In this work, we have essentially used two different methods to verify the existence and
determining the critical point of BKT transitions. A short description is given below.

3.7.1 Weber-Minnhagen method

Since Υμ is defined as the second derivative of the free energy density with respect to a
phase twist with scaling ∼ L−1, the scaling of Υμ with system size is given by Υμ ∝ L2−d.
In two dimensions, when 2− d = 0, one must include logarithmic corrections in order to
get an accurate description of the finite-size scaling. Weber and Minnhagen found that
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the finite-size scaling given by [111]

Υμ(L) ≈ Υμ(∞)

(
1 +

1

2 lnL+ C

)
, (3.54)

is obeyed very well as βBKT is approached from above. Here, Υμ(∞) is the value of the
helicity modulus in the thermodynamic limit and C is a constant. Hence, a good fit to
Eq. (3.54) should be obtained at βBKT for a BKT transition. This can be used to verify
the BKT nature of a phase transition. A more detailed description of this method is
given in Appendix C of Article II [2].

3.7.2 Fourth-order modulus

Another method, suggested by Minnhagen and Kim in Ref. [112], can verify the existence
of the discontinuous jump in the helicity modulus. This can be done by calculating the
fourth-order derivative of the free energy, namely the fourth-order modulus,

Υ4,μ ≡ 1

L4

∂4F (δ)

∂δ4μ

∣∣∣∣∣
δ=0

=
1

L4

[ 〈
∂4H

〉− 4β
〈(
∂3H − 〈

∂3H
〉 )(

∂H − 〈∂H〉 )〉

− 3βL4

〈(
Υ̃μ −

〈
Υ̃μ

〉)2
〉
+ 2β3

〈
(∂H − 〈∂H〉)4

〉]∣∣∣∣∣
δ=0

, (3.55)

where

∂pH =
∂pH[{θ′

i}]
∂δpμ

, (3.56)

is short-hand notation, and

Υ̃μ =
1

L2

[
∂2H − β (∂H − 〈∂H〉)2

]
, (3.57)

is the thermally fluctuating helicity modulus in two dimensions.13 In the right panel of
Fig. 3.10, a plot of the fourth-order modulus for the 2D XY model is given.

In order to show how Υ4,μ can be used as evidence of the discontinuous jump in the
helicity modulus, one must consider the stability of the free energy with respect to the
dimensionless (or global) phase twist Δ̃μ = Lδμ. A Taylor expansion of the free energy
in low orders of Δ̃μ yields

F (Δ̃μ)− F (0) = Υμ

Δ̃2
μ

2
+ Υ4,μ

Δ̃4
μ

4!
+O(Δ̃6

μ), (3.58)

where odd-order derivatives vanish under the condition that the change in the free energy
must be invariant under the transformation Δ̃μ → −Δ̃μ [113]. In order to maintain
the stability of the system, the change in the free energy must be greater or equal to
zero. For small Δ̃μ, the second-order term will always dominate the higher-order terms

13I.e., Υμ = 〈Υ̃μ〉|δ=0
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and consequently, Υμ must also be greater or equal to zero. But if Υμ is zero, then
the fourth-order term may play a role. Specifically, if Υ4,μ turns out to be finite and
negative at βBKT in the thermodynamic limit, then Υμ cannot go continuously to zero.
Hence, investigations of the fourth-order modulus can be used to verify the discontinuous
jump of the helicity modulus for a BKT-transition. In the right panel of Fig. 3.10, the
fourth-order modulus is found to exhibit a negative dip that can be associated with the
transition point. To ensure that this dip does not vanish with increasing system size,
one can simulate different system sizes and extrapolate the results to the thermodynamic
limit.





Chapter 4

Effective models of superfluids
and superconductors

Superconductivity and superfluidity are phenomena that occur in certain materials at low
temperatures. Superconductivity means that there is exactly zero electrical resistance
in the material and that magnetic fields are expelled from the bulk of the material.
Superfluidity means that the material is a fluid with zero viscosity.

All the models that have been investigated in this work may be considered to be effective
models that can describe two-component superfluids and superconductors under certain
conditions. This chapter intends to outline these models from a phenomenological point
of view. In Sec. 4.1, the famous Ginzburg-Landau theory for superconductors is intro-
duced. In Sec. 4.2, the London model for strong type-II superconductors is presented and
Sec. 4.3 is devoted to a short description of superfluids. Before proceeding to discuss the
two-component models that constitute the bulk of this work, in Sec. 4.4, the realization
of continuum models on a lattice is explained. Sec. 4.5 introduces two-component super-
fluids interacting via an Andreev-Bashkin drag interaction. The next section (Sec. 4.6)
is devoted to the Moore-Read plasma, which is an unconventional Coulomb plasma that
is related to two-component rotating superfluids as well as certain fractional quantum
Hall states. In Sec. 4.7, we discuss the two-component London superconductor where
the components interact via a minimal coupling to the same noncompact gauge field.
Then, in Sec. 4.8, a two-component London superconductor model with both Andreev-
Bashkin and gauge field interaction is discussed, before this chapter ends in Sec. 4.9 with
a specific model of a two-component superconductor, which is related to the concept of
deconfined quantum criticality.
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4.1 Ginzburg-Landau theory

4.1.1 Landau theory

In 1937, L. Landau presented a mathematical description of a phase transition from an
ordered to a disordered phase [6]. This description is phenomenological in the sense
that it is based on symmetry considerations and pays no respect to microscopic details.
Landau postulated that in the neighborhood of a phase transition, the free energy can
be expanded in powers of a small order parameter M ,1

F (β,M) = F (β, 0) +
αt

2
M2 +

u

4!
M4 + . . . , (4.1)

where α, u > 0 are free parameters and t = (βMFT − β)/β, where βMFT is the critical
coupling as predicted by mean-field theory. The expansion in Eq. (4.1) should only
include terms allowed by symmetry. For instance, in this example, we have assumed
that F (β,M) = F (β,−M) and hence, odd-order terms are not allowed by symmetry.
In an external field h, this symmetry is explicitly broken, and a linear term −hM must
be included.

4.1.2 Ginzburg-Landau theory

Landau theory is a mean-field theory and its predictions are often incorrect within the
critical region. As described in Sec. 2.5, the reason for this is that the fluctuations
are ignored. Hence, a natural improvement is Ginzburg-Landau theory which allow
fluctuations by introducing a spatially varying order parameter m(r),

H[m] =

∫
ddr

{
g

2
[∇m(r)]2 +

αt

2
m2(r) +

u

4!
m4(r) + . . .

}
, (4.2)

where g is a free parameter. The spatial fluctuations cost free energy and this is ac-
counted for by including the simplest possible gradient term that is consistent with the
symmetries of the system.

4.1.3 Ginzburg-Landau theory for superconductors

The Ginzburg-Landau theory for superconductors was put forward by V. L. Ginzburg
and L. Landau in 1950 [114]. This is a Ginzburg-Landau theory that describes a charged
condensate with a local complex order parameter ψ(r) = |ψ(r)| eiθ(r) that couples mini-
mally with strength e to the electromagnetic gauge field A(r). The effective Hamiltonian

1For simplicity, here I use a scalar order parameter.
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reads

H[ψ,A] =

∫
ddr

{
g

2
|[∇− ieA(r)]ψ(r)|2 + αt

2
|ψ(r)|2 + u

4!
|ψ(r)|4

+
1

2
[∇×A(r)]2

}
. (4.3)

The amplitude of the order parameter represents the local density of superconducting
electrons, |ψ(r)|2 = ns(r). After the microscopic BCS theory in 1957 [115], and subse-
quently, Gorkov’s derivation of the Ginzburg-Landau model from the BCS theory [116],
it was understood that ns(r) should be interpreted as the local density of Cooper pairs.

The model in Eq. (4.3) is invariant under the transformation,

ψ(r) → ψ(r) eiϕ(r),

A(r) → A(r) +
1

e
∇ϕ(r), (4.4)

where ϕ(r) is an arbitrary real-valued function. This is called a local U(1) symmetry or
a U(1) gauge symmetry. According to Elitzur’s theorem [24], there is no spontaneous
symmetry breaking of local symmetries. Hence, there is no local order parameter asso-
ciated with the phase transition in this model. Rather, in gauge theories like Eq. (4.3),
the onset of the superconducting phase is associated with dynamic generation of effective
gauge field mass mA and screening of the magnetic field B(r) = ∇×A(r). This is the
Anderson-Higgs mechanism in superconductors [117, 118]. The gauge field mass mA is
zero in the normal phase and nonzero in the Meissner (Higgs) phase, and it can be used
as a global order parameter for the superconducting phase transition.

It can be shown [37, 119] that there are two important length scales in this model. The
magnetic penetration depth, given by

λ =

√
u

3!ge2α|t| , (4.5)

is the characteristic length for screening a magnetic field, and the coherence length, given
by

ξ =

√
g

α|t| , (4.6)

is the correlation length of the variation of |ψ(r)|. Both Eqs. (4.5) and (4.6) are given
at the mean-field level. The ratio κ = λ/ξ is called the Ginzburg-Landau parameter. For
small values of the Ginzburg-Landau parameter κ < κtri,

2 the phase transition in the
Ginzburg-Landau model is first-order [120]. For κ > κtri, the transition is continuous
[121]. By mean-field theory, one can calculate that κtri = 1/

√
2. However, in Ref. [122],

the value of this point was found to be κtri = 0.76(4)/
√
2. In that work, it was also

argued that the exact same point separates type-I and type-II superconductors.3

2The point where a continuous phase transition changes to a first-order phase transition is called a
tricritical point.

3Superconductors can be classified as type I or type II according to how they respond to an applied
magnetic field. Type I superconductors cannot be penetrated by a weak magnetic field (this is the
Meissner effect), whereas for type II superconductors, magnetic flux can penetrate the bulk of the
superconductor in terms of vortices.
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|ψ(r)|
B(r)

2ξ

2λ

r

Figure 4.1: Schematic illustration of an Abrikosov vortex core cross section. The de-
cay of the magnetic field B(r) and the decay of the order parameter amplitude |ψ(r)| are
determined by the characteristic lengths λ and ξ, respectively.

Vortices of the Ginzburg-Landau model

The Ginzburg-Landau model for superconductors exhibits vortices, or more precisely,
Abrikosov flux tubes as topological defects [123].4 In Fig. 4.1, a schematic illustration of
the core of an Abrikosov vortex is given. At the core of the vortex, the amplitude |ψ(r)|
decays to zero with characteristic length ξ. In this way the gradient term of Eq. (4.3)
will not diverge with ∇θ(r) at the core of the vortex. Moreover, the circulating current
around the vortex core will allow a magnetic field B(r), that decays with characteristic
length λ, to penetrate the bulk of the superconductor. Because of the nonzero magnetic
flux associated with the vortex, we can think of the vortex as a region in the normal
phase surrounded by bulk in the superconducting phase. It can be shown [37] that the
magnetic flux Φ carried by a vortex is quantized,

Φ =

∮
C
dl ·A(r) =

2πn

e
. (4.7)

Here, C is a closed contour within the superconducting bulk and n ∈ Z.

Gauge mass

The gauge mass mA can be extracted from correlators that are associated with the gauge
field [126–128]. Consider the correlator of the magnetic field,

GB(r′ − r) =
〈
B(r) ·B(r′)

〉
. (4.8)

The Fourier transform is given by

GB(q) = 〈B(−q) ·B(q)〉 . (4.9)

In the Meissner phase, the magnetic flux will not fluctuate on large scales and conse-
quently, GB(q → 0) = 0. In the normal phase, the magnetic flux will proliferate such

4In the particle physics community, these magnetic flux tubes are called Nielsen-Olesen vortices [124].
They may also be called Abrikosov-Nielsen-Olesen vortices [125].
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that GB(q → 0) > 0. Hence, GB(q) can be used as an order parameter5 of the super-
conducting phase transition [4,125,126]. This correlator will have the general form given
by

GB(q) ∝ q2

q2 +Σ(q)
, (4.10)

where the self-energy Σ(q) can be written as [127]

Σ(q) = m2
A + C|q|2−η +O(|q|δ). (4.11)

Here, C is a constant, η is a critical exponent and δ > 2− η. By Eqs. (4.10) and (4.11),
it is easy to see that the gauge mass can be determined by

m2
A ∝ lim

q→0

q2

GB(q)
. (4.12)

4.2 The London approximation

In the London approximation, the amplitude of the superconducting order parameter
field is assumed to be uniform and constant,

ψ(r) = |ψ(r)| eiθ(r) ≈ |ψ0| eiθ(r) . (4.13)

When inserted in Eq. (4.3), the effective model for superconductors in the London ap-
proximation reads

H[θ,A] =

∫
ddr

{
g|ψ0|2

2
[∇θ(r)− eA(r)]2 +

1

2
[∇×A(r)]2

}
, (4.14)

where uninteresting constant terms have been discarded.6 Eq. (4.14) exhibits a U(1)
gauge symmetry [Eq. (4.4)]. The energy cost of introducing a single vortex in the
London superconductor can be shown to be given by [37]

Ev ∼ ln
λ

ξ
. (4.15)

I.e., the energy cost of introducing a single vortex in a London superconductor is finite
with diverging system size.

The London approximation is regarded to be a good approximation when κ is large,
that is, for strong type-II superconductors. In Fig. 4.1, this would correspond to the
case where λ is much larger than ξ. Hence, it should be clear that |ψ(r)| can be well
approximated to be spatially constant except for a cutoff near the vortex core. Although
the London model here is presented as an approximation of the Ginzburg-Landau model,

5To be more precise, I should have called it a disorder parameter as it is zero in the ordered phase
and nonzero in the normal phase.

6For continuum models, one must introduce an ultraviolet cutoff at vortex cores in order to avoid an
infinite energy cost associated with vortices.
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it is an adequate approximation for many properties of type-II superconductors and is
in fact valid for a broader temperature range than the Ginzburg-Landau model.

In a classic paper by Dasgupta and Halperin, the London superconductor was found to
undergo a continuous transition of the inverted 3D XY universality class [129]. This
superconductor to normal phase transition is governed by proliferation of vortex loops
with quantized flux [130, 131]. I.e., on the superconducting side of the transition (when
β > βc), vortex loops are confined and unable to destroy the superconductivity, whereas
at βc, the line tension of the vortex loops vanishes such that the vortex loops unbind
and destroy superconductivity.

4.2.1 Effective Hamiltonian in terms of vortices

The London superconductor model in Eq. (4.14) can be written in terms of interacting
vortex loops.7 The partition function of the London superconductor is written

Z =

∫
D θ

∫
DA e−S , (4.16)

where

S =
β

2

∫
d3r

{
g|ψ0|2 [∇θ(r)− eA(r)]2 + [∇×A(r)]2

}
. (4.17)

We choose the gauge ∇ ·A(r) = 0 and Fourier transform Eq. (4.17) to find

S =
β

2

∫
d3q

{
g|ψ0|2U(q)U(−q)− m2

0

e
[U(q)A(−q) +U(−q)A(q)]

+ (q2 +m2
0)A(q)A(−q)

}
, (4.18)

where U(q) is the Fourier transform of U(r) = ∇θ(r) andm2
0 ≡ g|ψ0|2e2. By completing

the squares of the gauge field with Ã(q) = A(q)− [(m2
0/e)/(q

2+m2
0)]U(q) as the shifted

gauge field, the integration over the gauge field can be performed. The resulting partition
function is written

Z =

∫
D θ exp

[
−βg|ψ0|2

2

∫
d3q

q2

q2 +m2
0

U(q)U(−q)

]
. (4.19)

The phase gradient U(r) can be decomposed into a longitudinal and a transverse part,
U(r) = [U(r)]L+[U(r)]T . The longitudinal component corresponds to the curl-free spin
waves, i.e., ∇× [U(r)]L = 0. The transverse component corresponds to the divergence-
free vortex defects, i.e., ∇ · [U(r)]T = 0. It is well known that it is the vortices and not
the spin waves that play an important role at the critical point, and for this purpose, we
can disregard the longitudinal part of the phase gradient [37]. The vortices are found
by taking the curl of the phase gradient,

∇×U(r) = ∇× [U(r)]T = 2πm(r), (4.20)

7Here, we assume three spatial dimensions, d = 3.
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where m(r) is the integer-valued vortex field. Also, note that ∇·m(r) = 0 by Eq. (4.20).
Taking the curl on both sides of Eq. (4.20) followed by a Fourier transformation yields

[U(q)]T = 2πi
q ×m(q)

q2
. (4.21)

Finally, by inserting Eq. (4.21) in Eq. (4.19), we arrive at the vortex formulation of the
London superconductor,

Z =

∫
Dm exp

[
−2π2βg|ψ0|2

∫
d3q

1

q2 +m2
0

m(q)m(−q)

]
. (4.22)

Note that the potential V (q) = g|ψ0|2/(q2 +m2
0) is the screened Yukawa potential. I.e.,

the bare interaction of the charged vortices in the London superconductor is screened
by the gauge field. The quantity m0 can be interpreted as the bare mass and m−10

is the bare screening length of the vortex interactions. The Yukawa potential decays
exponentially, V (r) ∼ e−m0r /r. In the limit e = 0, the potential decays with a power
law, V (r) ∼ 1/r. This means that the charged vortex interactions are short-ranged with
an exponential decay, whereas neutral vortex interactions are long-ranged with a 1/r
decay (cf. Sec. 2.7.1).

In this context, it should also be mentioned that in the case of a London superconductor,
the gauge mass mA can be found by calculating vortex correlators [1, 128, 132, 133]. In
Article I [1], the normal to superconductor phase transition was monitored by finding
mA in this way.

4.3 Superfluids

The property of superfluidity can be found to occur in Bose-Einstein condensates (BECs).
A BEC is a state of matter where a macroscopic fraction of bosons occupy the ground
state of the system. For a thorough introduction to BECs and superfluidity, Refs. [134,
135] can be recommended. These are also the main references for this section.

The BEC is usually described by the Gross-Pitaevskii energy expression,

H[ψ] =

∫
ddr

[
1

2m
|∇ψ(r)|2 + V (r) |ψ(r)|2 + U0

2
|ψ(r)|4

]
, (4.23)

where m is the boson mass, V (r) is the external trapping potential, U0 is the effective
interaction parameter and ψ(r) = |ψ(r)| eiθ(r) is the complex condensate wave function.
The velocity of the condensate is given by

v(r) =
ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)

2mi|ψ(r)|2 =
∇θ(r)

m
. (4.24)

It can be showed that the BEC is a superfluid if the condensate velocity is smaller than
some limit vc = minp ε(p)/p, where ε(p) is the excitation energy of the fluid and p is
the momentum. The limit vc is referred to as the Landau critical velocity.
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The condensate can accommodate topological defects in terms of vortices. Vortices are
located at singular points in the phase field θ(r). According to Eq. (4.24), ∇×v(r) = 0
for all regular points of θ(r), and hence, the superfluid is irrotational. However at points
where θ(r) is singular, the curl of the velocity field is nonzero and the circulation is given
by ∮

C
dl · v(r) = 2πq

m
, (4.25)

where q ∈ Z denotes the total vortex charge within the contour C. This is the Onsager-
Feynman quantization theorem, and it expresses that the circulation in the superfluid is
quantized. Eq. (4.25) is the superfluid counterpart of the magnetic flux quantization in
superconductors [Eq. (4.7)].

In the London limit, |ψ(r)| = n1/2, where n is the density of the condensate, the Hamil-
tonian of the superfluid condensate in Eq. (4.23) is given by the continuum XY model,

H[θ] =
n

2m

∫
ddr [∇θ(r)]2 , (4.26)

where uninteresting constant terms have been discarded. Vortices in superfluid 4He are
considered to be adequately described by this model [39]. The London limit is also called
the hydrodynamic limit.

4.3.1 Rotating superfluids

When a superfluid is subject to rotation, the response is rather remarkable. Quantized
vortices will form, and they will be arranged in a pattern similar to the triangular
Abrikosov lattice of strong type-II superconductors [136, 137]. Such vortex arrays are
widely studied, and they appear in different contexts such as the interior of neutron
stars [138], trapped Bose-Einstein condensates [137] and rotating superfluid 4He [139].

In a rotating frame, the Gross-Pitaevskii energy expression is written as

H[ψ] =

∫
ddr

{
1

2m
|[∇− im(Ω× r)]ψ(r)|2 +

[
V (r)− m

2
(Ω× r)2

]
|ψ(r)|2

+
U0

2
|ψ(r)|4

}
, (4.27)

where Ω is the angular velocity. Invoking the London approximation |ψ(r)| = n1/2 and
disregarding constant terms in the Hamiltonian, the model reads

H[θ] =
n

2m

∫
ddr [∇θ(r)−m(Ω× r)]2 . (4.28)

This is the frustrated XY model. The frustration is given by the rotation term m(Ω×
r), which essentially makes certain nonzero variations of the phase field energetically
favorable. This leads to a number of rotationally induced vortices in the condensate,

nv =
2mΩ

2π
, (4.29)
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where nv is the number of vortices per unit area in the plane perpendicular to Ω. The
model [Eq. (4.28)] is considered to be valid when the purpose is to study the vortices of a
slowly rotating superfluid. In this case the average vortex separation is much larger than
the healing length ξ, which is the coherence length associated with depletion of |ψ(r)|
near the vortex core. In Refs. [140, 141], the frustrated XY model with an inhomoge-
neous density was used to model vortex matter in trapped Bose-Einstein condensates.
For rapidly rotating vortices, the density of vortices will increase and the vortices will
eventually start to overlap. In this case, the London approximation is not longer valid
and other models must be used [142,143].

Notice the similarity between Eq. (4.28) and the London superconductor in Eq. (4.14).
When gauge field fluctuations in the London superconductor can be neglected such that
the Maxwell term can be disregarded, the model in Eq. (4.28) describes a superconductor
in an external magnetic field with eA(r) = m(Ω× r). I.e., the angular velocity Ω plays
the same role in a superfluid as an external magnetic field Bext in a type-II supercon-
ductor. In extreme type-II superconductors, gauge field fluctuations can, in many cases,
be ignored, and hence, the model in Eq. (4.28) has been widely used to describe vortex
matter in extreme type-II superconductors [144–148]. At low temperatures, the vortices
of this model are arranged in a triangular Abrikosov lattice. Upon heating, there is a
first-order melting transition of the vortex lattice into an incoherent vortex liquid. Note
that this in clearly different from the nonfrustrated case where there is a continuous
transition with proliferation of vortex loops.

4.4 Lattice regularization

The models that were introduced in Chapter 2 were naturally defined on a lattice, but the
models in this chapter have been formulated as continuum models. In order to perform
numerical simulations, continuum models must be converted to a lattice formulation that
is suitable for computational purposes. Additionally, lattice formulations are convenient
in that they naturally provide the ultraviolet cutoff needed for introducing vortices in
certain models.

In general, there is no unique way to discretize a continuum model. However, it is
required that the continuum model must be recovered in the limit of zero lattice spacing.
Also, symmetries must be preserved. Here, we will restrict ourselves to 3D cubic lattices
with size L3 and with uniform lattice constants aμ = a ∀ μ ∈ {x, y, z}. Scalar fields are
then defined on the vertices r ∈ {aix̂+ ajŷ + akẑ | i, j, k ∈ {1, . . . , L}} of the lattice,

ψ(r) → ψr. (4.30)

Derivatives are replaced by lattice differences,

∂ψ(r)

∂rμ
→ ψr+aμ̂ − ψr

a
=

Δμψr

a
, (4.31)
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The gauge-invariant gradients that appear in the Ginzburg-Landau model and the Gross-
Pitaevskii in a rotating frame are replaced by the gauge-invariant lattice difference,[

∂

∂rμ
− ieAμ(r)

]
ψ(r) → 1

a

(
ψr+aμ̂ e−ieaAμ,r −ψr

)
, (4.32)

where the gauge field Aμ,r lives on the link (r, r + aμ̂) and is given by the line integral

Aμ,r =

∫ r+aμ̂

r
dlAμ(r). (4.33)

The Maxwell term is replaced by a plaquette sum,

[∇×A(r)]μ → 1

a

∑
ν,λ

εμνλΔνAλ,r. (4.34)

Finally, the integral is replaced by a lattice sum,∫
d3r → a3

∑
r

. (4.35)

With the abovementioned discretization scheme, the lattice Ginzburg-Landau model
reads

H[ψ,A] = a3
∑
r

[
− g

a2

∑
μ

|ψr+aμ̂||ψr| cos (Δμθr − eaAμ,r) +

(
3g

a2
+

αt

2

)
|ψr|2

+
u

4!
|ψr|4 + 1

2a2

∑
μ

⎛
⎝∑

ν,λ

εμνλΔνAλ,r

⎞
⎠

2 ]
. (4.36)

The lattice London superconductor model is found by taking the London limit in Eq. (4.36),8

H[θ,A] =
∑
μ,r

⎡
⎣−g|ψ0|2 cos (Δμθr − eAμ,r) +

1

2

⎛
⎝∑

ν,λ

εμνλΔνAλ,r

⎞
⎠

2⎤
⎦ , (4.37)

and the lattice version of the rotating superfluid model in the London limit [Eq. (4.28)]
reads

H[θ] = − n

m

∑
μ,r

cos [Δμθr −m(Ω× r)μ] . (4.38)

Naively, it looks like the vortices have disappeared in Eqs. (4.36), (4.37) and (4.38), as
summing a closed loop of lattice differences trivially is zero due to the single-valuedness of
θ. However, the vortices are reintroduced by demanding that the gauge-invariant phase
difference is within its primary interval, Δμθr − eaAμ,r ∈ [−π, π) (see also Sec. 2.4.3)
[149].

8We discard uninteresting constant terms in the Hamiltonian, and the lattice constant is set to a = 1.
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4.5 Two-component superfluids with an Andreev-Bashkin in-
teraction

Quite generally, one can have multicomponent systems, i.e., mixtures with several dis-
tinguishable species of particles. Here, we consider a mixture of two independently
conserved components that are in the superfluid state. The two components can inter-
act via a nondissipative drag term, in certain contexts also called the Andreev-Bashkin
effect. In the hydrodynamic limit, the effective Hamiltonian of such a mixture can be
written as

H[θ1, θ2] =
1

2

∫
ddr

{ ∑
j=1,2

mjnj

[∇θj(r)

mj

]2

−√
m1m2nd

[∇θ1(r)

m1
− ∇θ2(r)

m2

]2}
, (4.39)

where mj , nj and θj(r) is the mass, density and phase field of component j ∈ {1, 2}
and nd is the effective density of one component that is being dragged by the superfluid
velocity of the other component. Note that in order to maintain stability of the system
described by Eq. (4.39), the drag density must satisfy the relation

nd <
n1n2

n1

√
m1
m2

+ n2

√
m2
m1

. (4.40)

The model in Eq. (4.39) is invariant under the transformation θj(r) → θj(r) + ϕj ∀ j ∈
{1, 2} where ϕj ∈ R. I.e., the model exhibits a U(1)×U(1) symmetry.

The Andreev-Bashkin interaction first appeared in the context of 4He-3He mixtures
[150, 151]. It also appears in the context of neutron stars [152–154], spatially separated
electronic superconductors [155] and in mixtures of BECs on optical lattices [156–158].
The Andreev-Bashkin term has been derived from a microscopic model in Ref. [159].

4.5.1 Paired phases and composite vortices

The model in Eq. (4.39) can be rewritten as

H[θ1, θ2] =
1

2

∫
ddr

{ ∑
j=1,2

(mjnj −√
m1m2nd)

[∇θj(r)

mj

]2

+ 2
√
m1m2nd

[∇θ1(r)

m1

]
·
[∇θ2(r)

m2

]}
. (4.41)

Due to the last term, it will be energetically favorable for the two components to flow
in opposite directions (counter-flow) if nd is positive. If nd is negative,9 it will be

9To avoid confusion, a negative nd does not mean that there is a negative density. It only means that
the effects of the drag change direction.
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Co-flow Counter-flow

(1,0) (1,0)(0,1) (0,-1)

(1,-1)(1,1)

Figure 4.2: Schematic illustration of the formation of composite vortices. The arrows
indicate the direction of the superfluid flow (and not the phase angle). Individual vortices
and the superfluid flow of component 1 and component 2 are given by red and blue colors,
respectively. The topological charge of the vortices is given by (q1, q2).

energetically favorable to flow in the same direction (co-flow). Consequently, it will be
energetically favorable for vortices to appear in composite structures, and when the cores
of two vortices of different species overlap, we call that structure a composite vortex. In
Fig. 4.2, a schematic illustration of the formation of a co-directed and a counter-directed
composite vortex is given. For a general two-component composite vortex, we may
denote the topological charge by (q1, q2) where qj ∈ Z ∀ j ∈ {1, 2} denotes the number
of phase windings around the vortex core when following the phase angle of component
j. Individual vortices in each of the two components are then denoted by (1, 0) and
(0, 1). In most cases, the relevant composite vortices to consider will be co-directed
vortices (1, 1) or counter-directed vortices (1,−1). However, in certain cases [158, 160],
composite vortices with even higher topological charge may be relevant.

Given that the strength of the Andreev-Bashkin interaction is large enough, systems
governed by Eq. (4.41) can have so-called paired phases [156–158,160]. These are phases
where the order is associated with a certain linear combination of the phases and with
a background of proliferated composite vortices [160]. For instance, in the case when
m1 = m2 = m, it will be energetically cheaper to proliferate composite counter-directed
vortices (1,−1) instead of individual ones, given that nd is large enough. The system
then undergoes a phase transition from the ordered state, with fully broken U(1)×U(1)
symmetry, into a paired phase with a broken U(1) symmetry associated with the phase
sum.
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4.5.2 Preemptive vortex loop proliferation

As described above, in an interacting two-component superfluid, there are different kinds
of vortices, both individual and composite, that can destroy order in the system. From
the point of view of the ordered phase, these can be thought of as competing to proliferate
and disorder the system. The kind of vortex that is associated with the smallest phase
stiffness will proliferate first. Now, when this kind of vortex has proliferated, the effective
model for the remaining order in the system must account for the nontrivial background
of proliferated vortex loops that will renormalize the phase stiffness of the remaining
kinds of confined vortices. This can be done by separation of variables [160,161]. In this
context, separation of variables is to rewrite the original model in order to separate out
the linear phase combination that is unaffected by the proliferated vortex tangle.10 The
remaining phase stiffness associated with the kinds of vortices that compete to destroy
the remaining order of the system, can be found by considering the prefactor of this term.
If the initial vortex loop proliferation renormalizes the remaining phase stiffness such that
proliferation of another kind of vortex promptly follows to destroy the remaining order
in the system, we say that the phase transition is preemptive [160]. In other words,
the preemptive transition should be understood as a direct transition from the ordered
phase to the normal phase occurring due to interactions between competing vortices that
renormalize the phase stiffness. Numerical results show that phase transitions governed
by preemptive vortex loop proliferation may have a first-order character [160,162,163].

4.5.3 Generalized helicity modulus

With two components in the system, one must generalize the helicity modulus [Eq. (2.45)]
to account for the stiffness associated with twisting linear combinations of phases. The
phase twist in Eq. (2.46) can be generalized to [1, 160]

θj(r) → θ′j(r) = θj(r)− ajδ · r, (4.42)

where j ∈ {1, 2} denotes the component and aj is a real number associated with the
phase twist in component j. For instance, choosing a2 = −a1 will correspond to the
phase twist that measure the stiffness associated with (1,−1) vortices. In Article I [1],
the lattice Hamiltonian can be written on the general form

H[θ1, θ2] =
∑
μ,r

H (Δμθ1,r,Δμθ2,r) . (4.43)

By calculating the right hand side of Eq. (2.45) with the twist given in Eq. (4.42) (see
also Ref. [160]), the generalized helicity modulus can be written on the compact form

Υμ,(a1,a2) = a21Υμ,11 + 2a1a2Υμ,12 + a22Υμ,22, (4.44)

10In the example above, when (1,−1) vortices proliferate, the phase gradient combination ∇θ1 +∇θ2
is unaffected.
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where

Υμ,jk =
1

Ld

[〈∑
r

∂j∂kH
〉

− β

〈(∑
r

∂jH−
〈∑

r

∂jH
〉)(∑

r

∂kH−
〈∑

r

∂kH
〉)〉]

, (4.45)

and where

∂jH =
∂H (Δμθ1,r,Δμθ2,r)

∂Δμθj,r
, (4.46)

is short-hand notation. The quantities Υμ,11 and Υμ,22 correspond to the helicity mod-
ulus of the two single components and Υμ,12 can be interpreted as a renormalized drag
coefficient [160].

4.6 Unconventional Coulomb plasmas

In Articles II and III [2,3], we study a 2D two-component classical Coulomb plasma that
is related to rotating two-component superfluids with an Andreev-Bashkin interaction
(see Sec. 4.6.1). This plasma also relates to fractional quantum Hall wave functions
[164]. We call this plasma unconventional as the particles interact through two different
Coulomb interactions. For reasons to be discussed in Sec. 4.6.2, we also call it the
Moore-Read plasma. The canonical partition function of this plasma can be written as

Z =

∫ (
N∏
i=1

d2zi

)(
N∏
a=1

d2wa

)
e−S[z,w],

S[z,w] =−Q2
2

N∑
a<b=1

ln |wa −wb| − (Q2
1 +Q2

2)
N∑

i<j=1

ln |zi − zj |

+Q2
2

N∑
a,i=1

ln |wa − zi|+ VBG[z], (4.47)

where wa are the position vectors of the particles of the first component and zi are
the position vectors of the particles of the second component. There are N particles
of each component. The particles can be thought of as carrying two charges each that
interact logarithmically by two different channels. The w particles carry zero charge in
the first channel and charge −Q2 in the second channel, whereas the z particles carry
charge Q1 in the first channel and charge Q2 in the second channel. Moreover, charges
in the first channel do not interact with charges in the second channel. From this, it
should be clear that two z particles will interact repulsively with strength Q2

1+Q2
2, where

the Q2
1 term comes from the charges interacting in channel 1 and the Q2

2 term comes
from the charges interacting in channel 2. Two w particles will interact repulsively with
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Figure 4.3: Graphical overview of the intracomponent and the intercomponent interactions
in the Moore-Read plasma. The interaction between w particles is repulsive with strength
Q2

2, as shown in (a). The interaction between w and z particles is attractive with strength
Q2

2, as shown in (b). The interaction between z particles, shown in (c), is repulsive with
strength Q2

1 +Q2
2.

strength Q2
2 coming from the charges interacting in channel 2. There is no contribution

from channel 1 as the value of the charge in this channel is zero. A w particle and a z
particle will interact attractively with strength Q2

2 as the two particles carry charges with
opposite signs but with same strength in channel 2. Here, there is also no contribution
from channel 1 as the w particle carry zero charge in this channel. We must also add a
short-range hard-core repulsion to regularize the attractive interactions between w and
z particles [2]. The intracomponent and intercomponent interactions are summarized in
Fig. 4.3. The term VBG[z] in Eq. (4.47) accounts for the interactions with the neutralizing
background that must be included to ensure neutrality in channel 1.

4.6.1 Mapping to a Coulomb plasma

As detailed in Sec. 2.7.1, the 2D XYmodel can be written in terms of vortices (or charges)
interacting logaritmically with distance. Here, we will show that a two-component ro-
tating Bose-Einstein condensate with an Andreev-Bashkin interaction can be mapped
onto the unconventional Coulomb plasma described above. Generalizing Eq. (4.28) for
two components, and including the Andreev-Bashkin interaction yields a model that can
be written as

Z =

∫
D θ1

∫
D θ2 e

−βH[θ1,θ2], (4.48)
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H[θ1, θ2] =
1

2

∫
d2r

{ ∑
j=1,2

mjnj

[∇θj(r)

mj
−Θ(r)

]2

−√
m1m2nd

[∇θ1(r)

m1
− ∇θ2(r)

m2

]2}
, (4.49)

where Θ(r) = Ω×r with Ω = Ωẑ. In 3D, this model has been investigated in Refs. [165,
166]. The Hamiltonian in Eq. (4.49) can be rewritten on the form

H[θ1, θ2] =
1

2

∫
d2r

∑
j,k=1,2

[∇θj(r)−mjΘ(r)]Rjk [∇θk(r)−mkΘ(r)] , (4.50)

where

R =

⎛
⎝ n1

m1
− 1

m1

√
m2
m1

nd
nd√
m1m2

nd√
m1m2

n2
m2

− 1
m2

√
m1
m2

nd

⎞
⎠ . (4.51)

Similar to that described in Sec. 4.2.1, the phase gradient can be decomposed into a
longitudinal and a transverse part, and we disregard the longitudinal spin wave part of
the phase gradient. Moreover, the vortices are found by taking the curl of the phase
gradient such that

∇× [∇θj(r)−mjΘ(r)] = 2π
[
lj(r)− mj

π
Ω
]
ẑ, (4.52)

where lj(r) is the integer-valued vortex field of component j. Taking the curl on both
sides of Eq. (4.52) followed by a Fourier transformation yields

U j(q) = 2πi
q × [

lj(q)− (2π)2fjδ(q)
]
ẑ

q2
, (4.53)

where U j(q) is the Fourier transform of U j(r) = [∇θj(r)]T −mjΘ(r) and fj = mjΩ/π
is the number density of rotationally induced vortices in component j [see Eq. (4.29)].
By Fourier transforming the Hamiltonian in Eq. (4.50) and inserting Eq. (4.53), the
model is written

Z =

∫
D l1

∫
D l2 e

−βH[l1,l2],

H[l1, l2] =
1

2

∫
d2q

∑
j,k=1,2

[
lj(q)− (2π)2fjδ(q)

] Rjk

q2
[
lk(−q)− (2π)2fkδ(−q)

]
. (4.54)

Transforming the Hamiltonian back to real space yields

H[l1, l2] =
1

2

∫
d2r

∫
d2r′ ∑

j,k=1,2

[lj(r)− fj ]Rjk

[
lk(r

′)− fk
]
V (r′ − r), (4.55)

where

V (r′ − r) =

∫
d2q

1

q2
eiq·(r′−r) = −2π ln

∣∣r′ − r
∣∣ . (4.56)
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In order to obtain a model with a fixed number of vortices, similar to Eq. (4.47), one
must neglect the effect of thermally induced vortex pairs by using

lj(r) =

Nj∑
a=1

δ(r − rj,a), (4.57)

where Nj is the number of rotationally induced vortices of component j. By inserting
Eq. (4.57) in Eq. (4.55) and writing out the component sums, the Hamiltonian is written

H[r1, r2] = −2π

[
R11

N1∑
a<b=1

ln |r1,a − r1,b|+R12

N1∑
a=1

N2∑
b=1

ln |r1,a − r2,b|

+R22

N2∑
a<b=1

ln |r2,a − r2,b| − (R11f1 +R12f2)

N1∑
a=1

I(r1,a)

− (R12f1 +R22f2)

N2∑
a=1

I(r2,a)

]
, (4.58)

where

I(rj,a) =

∫
d2r ln |r − rj,a| . (4.59)

The Moore-Read plasma in Eq. (4.47) is a special case of Eq. (4.58) for specific values
of m1, m2, n1, n2 and nd. To obtain equally many rotationally induced vortices, we
must choose m1 = m2 = m such that f1 = f2 = f . Moreover, by absorbing the factor
2πβ/m in the density coefficients (n1, n2 and nd), the Moore-Read plasma is recovered
by R11 = Q2

2, R12 = −Q2
2 and R22 = Q2

1+Q2
2 (i.e., r1 = w and r2 = z). This means that

the Moore-Read plasma corresponds to a two-component rotating BEC with coefficients

n1 = 0,

n2 = Q2
1,

nd = −Q2
2. (4.60)

We also identify the term VBG[z] = fQ2
1

∑N
a=1 I(za) as the interaction between the z

particles and a negative uniform background with charge density fQ1 in channel 1 and
zero charge density in channel 2.

4.6.2 Relation to fractional quantum Hall states

In effective 2D electron systems subjected to low temperatures and strong magnetic
fields, the Hall conductivity σ shows quantized plateaus, σ = νe2/h, where e is the
elementary charge and h is Planck’s constant. For the fractional quantum Hall effect,
the filling factor ν takes on quantized values, ν = p/q, where p, q ∈ Z with no common
factors.

Theoretical understanding of the fractional quantum Hall effect can be achieved by
proposing trial wave functions with fractionally charged quasiparticles. This was first
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done by Robert B. Laughlin in 1983 [167, 168], proposing the so-called Laughlin trial
wave functions, which explains the ν = 1/q fractional quantum Hall states.11 The
squared norm of these trial wave functions maps to the partition function of a 2D one-
component Coulomb plasma. This is a plasma of N identical particles with charge Q,
and is a special case of the Moore-Read plasma presented in Eq. (4.47) above, in the limit
Q2

2 = 0. Recently, Bonderson, Gurarie and Nayak showed that the so-called Ising-type
quantum Hall states can be mapped to classical Coulomb plasmas [164]. In particular,
the squared norm of the Moore-Read trial wave functions maps to the unconventional
plasma, given in Eq. (4.47). By referring to screening properties of the classical plasmas,
one can verify the existence of quasiparticles in the actual quantum Hall states [164].

4.6.3 Two-dimensional melting

In Article III [3], the Moore-Read plasma is studied under conditions where the particles
crystallize into a solid structure. This section is a brief reminder of solids and melting
in two dimensions.

In opposition to the familiar case of three dimensional solids, a solid in two dimensions
does not exhibit long-range translational order. At finite temperatures, the long-range
translational order is destroyed by long-wavelength fluctuations as stated by the Mermin-
Wagner theorem [25, 169]. Instead there is quasi long-range translational order with
a power law decay in the translational correlation function. Although the 2D solid
does not exhibit long-range translational order, it does exhibit long-range orientational
order [170]. The orientational correlations decay exponentially to a nonzero value.12

Upon heating, a solid undergoes a melting transition into an incoherent liquid with
exponentially decaying correlations for both translational and orientational order. The
melting of 2D solids is theoretically considered by the so-called Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) theory [173–176]. According to the KTHNY theory,
the 2D solid first melts into a hexatic liquid with short-range translational order and
quasi long-range orientational order. The transition is a BKT-like transition where the
quasi long-range translational order is destroyed by unbinding of dislocation defects.
The hexatic liquid will display the quasi long-range orientational order until a higher
transition temperature is reached. At this point the quasi long-range orientational order
is destroyed by unbinding of disclinations in a BKT phase transition, and the system
will turn into an isotropic vortex liquid with short-range orientational order.

However, in opposition to the KTHNY theory, the 2D solid may melt directly into a
liquid by a premature unbinding of disclinations. This was pointed out already from the
very beginning by Halperin and Nelson [173]. It has turned out to be a difficult task to
investigate the nature of 2D melting. The KTHNY scenario has been confirmed in some

11In 1998, Laughlin was jointly awarded the Nobel prize in physics for this work.
12It should also be mentioned that there are studies that argue for the absence of a finite-temperature

solid phase in the 2D one-component plasma [65, 66, 171, 172]. This issue has been addressed in Article
III [3], and we find that these claims are false.
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cases [177–182], whereas other works find that the transition is first-order [63,183,184].
This has lead to an understanding that the nature of 2D melting is not universal, but
dependent on specific properties in the system.

4.6.4 Brief summary of Article II and III

The Moore-Read plasma has two well-known limiting cases. In the case when Q2
2 = 0,

only the interactions in channel 1 are retained, and we have the 2D one-component
plasma. Early Monte Carlo simulations of this model found that it undergoes a weak
first-order melting transition at Q2

1 ≈ 140 [63,183–185]. In the other case, when Q2
1 = 0,

only the interactions in channel 2 are retained, and we have the 2D two-component
neutral Coulomb plasma. This plasma played a very important role for the under-
standing of the BKT-transition, and is well-studied, both theoretically and numeri-
cally [14, 27, 28, 41, 42, 186–188]. At low density, this plasma undergoes a BKT charge-
unbinding transition at Q2

2 = 4.

For reasons given in Sec. 3.2.2 and in the spirit of Refs. [14,63], the simulations in both
Articles II and III are performed with spherical boundary conditions. Due to the hard-
core repulsion associated with the particles, there is a finite density of particles, given
by the packing fraction η ∝ Ns/A, where s is the area occupied by a single particle
and A is the surface area of the entire system. The physics of plasmas that undergo a
charge-unbinding transition is dependent on the density [14, 42, 186].13 In this work we
studied the plasma for a few different values of small density. The screening properties
were investigated by measuring a generalized inverse dielectric constant that accounts for
charges interacting in two different channels. The inverse dielectric constant is analogous
to the helicity modulus in 2D XY-like models [30,189,190], and the methods outlined in
Sec. 3.7 can be used to investigate the charge-unbinding transition in the Moore-Read
plasma.

In Article II [2], we investigate the Moore-Read plasma in the case when the value of Q1

is 0 and 2. When Q1 = 0, the simulations can be thought of as a reference for the Q1 = 2
case, as the Moore-Read plasma is reduced to the 2D two-component neutral Coulomb
plasma in this case. When Q1 = 2, we find that the Moore-Read plasma undergoes a
BKT charge-unbinding transition. The critical coupling of this transition is Q2

2,c ≈ 4
in the low-density limit. For the densities that were investigated, the critical coupling
increased with higher density in accordance with the Q1 = 0 case. When Q2

2 < Q2
2,c the

w and z particles should be considered as free and capable of screening test particles.
When Q2

2 > Q2
2,c the w and z particles are bounded in pairs due to the attractive

interaction in channel 2, and consequently, they are incapable of screening test charges
interacting in channel 2. This means that in the case of Q2

2 = 3, that is, the important
parameter value for the Ising-type quantum Hall states, the plasma is screening. This
result verifies that Ising-type quantum Hall states can possess quasiparticles with exotic

13Results from simulations of the 2D two-component neutral Coulomb plasma show that the critical
coupling increases with higher density. When density is large, the phase transition changes from a BKT
transition to a first-order transition.
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properties.

In Article III [2], the focus is on large values of Q2
1. In order to detect the 2D solid

phase, an azimuthally averaged structure factor that is appropriate for the spherical
geometry is measured. The results show that there is a solid phase in the Moore-Read
plasma for large values of Q2

1. Here, this means that the z particles freeze due to the
strong interactions in channel 1. In addition, we observe that the w particles also exhibit
signatures of being in a solid state. This can be attributed to the attractive interactions
between w and z particles in channel 2, which means that the w particles tend to be
co-centered with the z particles. This phenomenon is also observed for values of Q2

2 < 4
when the w and z particles are considered to be on the metallic side of the charge-
unbinding transition. We find this phenomenon to be analogous to the modulated vortex
liquid in a two-component rotating Bose-Einstein condensate, reported in Ref. [166].

4.7 Two-component London superconductors

The London superconductor model of a two-component charged condensate with inde-
pendently conserved components is given by

H[θ1, θ2,A] =

∫
ddr

⎧⎨
⎩
∑
j=1,2

ρj
2
[∇θj(r)− ejA(r)]2 +

1

2
[∇×A(r)]2

⎫⎬
⎭ , (4.61)

where ρj ≡ g|ψj,0|2 is the bare stiffness and ej is the charge coupling of component j.
The two components interact in an indirect manner as they both are coupled to the
same fluctuating gauge field.

4.7.1 Charged and neutral modes

By separation of variables, it is possible to rewrite the model in Eq. (4.61) as [128,191,192]

H[θ1, θ2,A] =
1

2

∫
ddr

{
ρ1ρ2
m2

0

[e2∇θ1(r)− e1∇θ2(r)]
2 + [∇×A(r)]2

+
1

m2
0

[
e1ρ1∇θ1(r) + e2ρ2∇θ2(r)−m2

0A(r)
]2}

, (4.62)

wherem2
0 ≡ ρ1e

2
1+ρ2e

2
2. The first term identifies the neutral mode, which does not couple

to the gauge field, whereas the last term identifies the charged mode, characterized by its
coupling to the gauge field. Note that the neutral mode identifies a linear combination of
the phases that is gauge-invariant. Eq. (4.62) is invariant under the global transformation

e2θ1(r)− e1θ2(r) → e2θ1(r)− e1θ2(r) + ϕ, (4.63)
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where ϕ ∈ R. It is also invariant under the local gauge transformation

e1ρ1θ1(r) + e2ρ2θ2(r) → e1ρ1θ1(r) + e2ρ2θ2(r) + χ(r),

A(r) → A(r) +
1

m2
0

∇χ(r), (4.64)

where χ(r) is an arbitrary real-valued function. I.e., the symmetries of the two-component
London superconductor are a global U(1) symmetry associated with the phase combi-
nation of the neutral mode and a local U(1) gauge symmetry associated with the phase
combination of the charged mode.

As for the one-component London superconductor, we can investigate the vortex inter-
actions by rewriting the model in terms of vortex elements [1, 128]. In 3D, the result
is

Z =

∫
Dm1

∫
Dm2 exp

⎡
⎣−2π2β

∫
d3q

∑
j,k=1,2

mj(q)Vjk(q
2)mk(−q)

⎤
⎦ , (4.65)

where mj(q) is the Fourier transform of the integer-valued vortex field of component j
and Vjk(q

2) is the vortex interaction potential, given by

Vjk(q
2) =

ρjδjk − ejρjekρk/m
2
0

q2
+

ejρjekρk/m
2
0

q2 +m2
0

. (4.66)

The first term is a long-ranged Coulomb potential, while the second term is a screened
Yukawa potential with m0 as the inverse bare screening length. This means that the
magnetic flux tubes of the two-component London superconductor have a rather complex
interaction with both long-ranged and short-ranged contributions. Compared with the
one-component London superconductor in Eq. (4.22), the gauge field is no longer fully
capable of screening the vortex interactions such that there is a nonzero Coulomb term
left in the potential. Note that at short distances compared with the bare screening
length (q2 � m2

0), the contributions from the gauge field in Eq. (4.66) effectively cancel
out. I.e., vortices separated by a distance much shorter than the bare screening length
will interact similar to a decoupled two-component neutral condensate. However, for
vortices outside the bare screening length, the effects of the gauge field will modify the
interactions and, in particular, mediate intercomponent vortex interactions.

Similar to the two-component superfluid with Andreev-Bashkin interactions, the two-
component London superconductor may exhibit composite vortices and paired phases
[163]. Specifically, in the case when the charge coupling e1 = e2 = e is large, the
composite (1, 1) vortices can be mapped to an ordinary flux tube of a one-component
London superconductor with finite energy per unit length. Starting in the ordered
phase, the system will undergo a phase transition with proliferation of (1, 1) vortices
that will disorder the charged sector of the model. However, since these vortices are
incapable of disordering the neutral sector, the order associated with the first term of
Eq. (4.62) is retained. The resulting phase is a superfluid paired phase where the global
U(1) symmetry associated with the neutral mode is broken. This phase is often called
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a metallic superfluid [128, 193]. With an external magnetic field, this model has been
extensively studied in the context of liquid metallic hydrogen [128, 191, 193–196]. Also,
it appears as an effective model of easy-plane quantum antiferromagnets [163,197–199].

4.7.2 Brief summary of main results

In Sec. IV of Article I [1],14 the two-component London superconductor was investi-
gated in the case where e1 = e2 = e. In particular, we focused on the case with stiffness
disparity, ρ1 �= ρ2. When disparity is large, there are two clearly separated phase transi-
tions that can be understood by proliferation of individual topological defects [(1, 0) and
(0, 1)] (see also Refs. [128, 133]). When disparity is small we find a region of competing
topological defects that is characterized by a merger of transition lines. Hence, there is a
direct transition from the ordered state to the normal state, and we find clear signatures
of a first-order transition along this line also in the case when ρ1 �= ρ2. When the charge
e increases, the region with a direct transition line extends into the region with larger
and larger disparity. I.e., for fixed stiffnesses that are not too different, there will be
a merger of transition lines with increasing charge. However, at even higher charges,
the direct transition line will eventually split into two transition lines with a metallic
superfluid phase sandwiched in between. The transition from the ordered phase into the
metallic superfluid phase, can be understood in terms of proliferation of composite (1, 1)
vortices that effectively can be mapped onto a one-component superconductor with ef-
fective stiffness ρ′ = ρ1+ρ2. The metallic superfluid state is destroyed by proliferation of
individual (1, 0) and (0, 1) vortices that effectively can be mapped onto a one-component
superfluid with effective stiffness ρ′ = ρ1ρ2/(ρ1 + ρ2).

4.8 Two-component London superconductors with an Andreev-
Bashkin interaction

The main objective of Article I [1], is to study a two-component London superconductor
with an additional Andreev-Bashkin drag term in three dimensions. The model can be
written as

H[θ1, θ2,A] =
1

2

∫
d3r

{ ∑
j=1,2

ρj [∇θj(r)− ejA(r)]2 + [∇×A(r)]2

− ρd [∇θ1(r)− e1A(r)−∇θ2(r) + e2A(r)]2
}
, (4.67)

where ρj is the bare stiffness of component j and ρd is the strength of the Andreev-
Bashkin interaction. In this system, the two components can interact both via the
gauge field and via the dissipationless drag term. As for the two-component London

14In the context of Article I, the results of the two-component London superconductor appear as a
special case of the more involved model discussed below in Sec. 4.8.
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Figure 4.4: Schematic illustration of the intercomponent interaction V12(r) of the Andreev-
Bashkin coupled two-component London superconductor. For this example, the coefficients
ρ1 = ρ2 = 1.0, e1 = e2 = 1.0 and ρd = 0.2 were used.

superconductor, this model can be rewritten in a form that explicitly identifies the
charged and neutral modes,

H[θ1, θ2,A] =
1

2

∫
ddr

{
ρ1ρ2 − ρ2(ρ1 + ρ2)

m2
0

[e2∇θ1(r)− e1∇θ2(r)]
2 + [∇×A(r)]2

+
1

m2
0

[
ejRj1∇θ1(r) + ejRj2∇θ2(r)−m2

0A(r)
]2}

, (4.68)

where

R =

(
ρ1 − ρd ρd

ρd ρ2 − ρd

)
, (4.69)

and
m2

0 ≡ (ρ1 − ρd)e
2
1 + (ρ2 − ρd)e

2
2 + 2ρde1e2. (4.70)

In Eq. (4.68), sum over repeated component indices is assumed. This model exhibits
a global U(1) symmetry associated with the phase combination of the neutral mode
and a local U(1) gauge symmetry associated with the phase combination of the charged
mode. In terms of vortex elements, the model can be written as given in Eq. (4.65) with
interaction potential

Vjk(q
2) =

Rjk − elemRljRmk/m
2
0

q2
+

elemRljRmk/m
2
0

q2 +m2
0

, (4.71)

The intercomponent interaction, given by V12(q
2), will include a Coulomb contribution

from the Andreev-Bashkin drag, and both a Coulomb and a Yukawa term from the gauge
field mediated interactions. At short vortex separations, the contribution from the drag
will dominate. However, at large separations, the gauge field and drag will compete on
an equal footing. In Fig. 4.4, a schematic plot that illustrates this competition is given.
Observe that the drag and the gauge field interactions individually yield a monotonically
decaying interaction potential. However, their combined efforts can lead to an interesting
nonmonotonic decay.

It is not straightforward to convert the continuum formulation of the current-current
interaction into a discrete formulation appropriate for numerical simulations. However,
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as pointed out in Ref. [160], the continuum physics is adequately reproduced by using
the Villain model [see Eq. (2.70)] [38, 39]. The lattice formulation of Eq. (4.67) thus
reads

H[θ1, θ2,A;β] = − 1

β

∑
μ,r

ln

⎛
⎝ ∑

n1,μ,r

∑
n2,μ,r

e−S

⎞
⎠ , (4.72)

where

S =
β

2

⎡
⎣ρ1u21,μ,r + ρ2u

2
2,μ,r − ρd(u1,μ,r − u2,r,μ)

2 +

⎛
⎝∑

ν,λ

εμνλΔνAλ,r

⎞
⎠

2⎤
⎦ , (4.73)

uj,μ,r = Δμθj,r − ejAμ,r − 2πnj,μ,r, (4.74)

and nj,μ,r ∈ Z ∀ j, μ, r.

4.8.1 Brief summary of main results

In Sec. V A of Article I [1], we investigate the model in Eq. (4.73) in the case of equal
stiffnesses ρ1 = ρ2 = ρ = 1 and with equal charges e1 = e2 = e. We also restrict ourselves
to positive ρd. In this case, the contributions to the intercomponent interactions from
the gauge field and the drag term are of opposite signs, see Fig. 4.4. In particular,
we map out the phase diagram as a function of ρd and e, and find that the model
exhibits two competing paired phases. When e is large and ρd is small, we find a
metallic superfluid phase associated with order in the neutral sector of Eq. (4.68). This
phase can be entered from the ordered phase by proliferation of (1, 1) vortices that will
destroy the superconductivity in the system. The transition is similar to the phase
transition of an ordinary one-component superconductor with effective stiffness ρ′ = 2ρ.
The metallic superfluid phase is destroyed by proliferation of individual (1, 0) and (0, 1)
vortices that effectively can be mapped onto a one-component superfluid with effective
stiffness ρ′ = (ρ − 2ρd)/2. For high values of ρd, we find a paired superconducting
phase that can be associated with order in the charged sector of Eq. (4.68). The phase
can be reached by proliferation of composite (1,−1) vortices that will destroy the order
associated with the neutral sector of the model. These vortex excitations can effectively
be mapped onto a one-component superfluid with renormalized stiffness ρ′ = 2(ρ−2ρd).
The paired superconducting phase is destroyed by proliferation of individual (1, 0) and
(0, 1) vortices that effectively can be mapped onto a one-component superconductor with
doubled electric charge e′ = 2e and effective stiffness ρ′ = ρ/2. The effective doubling
of the electric charge occurs because the order of the paired phase is associated with
the phase sum, i.e., only co-directed electrical current is dissipationless in this phase. In
accordance with previous works [160, 163], we find a first-order transition of the direct
transition line in regions that can be associated with strong competition between different
topological defects.
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4.9 Two-component Ginzburg-Landau superconductors

The Ginzburg-Landau theory for superconductors, described in Sec. 4.1.3 for a one-
component superconductor, can be generalized to two components. For a two-component
charged condensate that is minimally coupled to the same electromagnetic gauge field,
the Ginzburg-Landau model can be written as15

H[ψ1, ψ2,A] =

∫
ddr

( ∑
j=1,2

{gj
2
|[∇− iejA(r)]ψj(r)|2 + αj

2
|ψj(r)|2 + uj

4!
|ψj(r)|4

}

+
2u12
4!

|ψ1(r)|2 |ψ2(r)|2 + γ

2
[ψ∗1(r)ψ2(r) + ψ1(r)ψ

∗
2(r)]

+
1

2
[∇×A(r)]2

)
. (4.75)

In the following, we will investigate the special case of Eq. (4.75) that exhibits an SU(2)
symmetry. By appropriate choices of the free parameters, Eq. (4.75) can be written as

H[Ψ,A] =

∫
ddr

{
1

2
|[∇− ieA(r)]Ψ(r)|2 + α

2
|Ψ(r)|2 + u

4!
|Ψ(r)|4

+
1

2
[∇×A(r)]2

}
, (4.76)

where Ψ†(r) = (ψ∗1(r), ψ∗2(r)). Eq. (4.76) is invariant under the SU(2) transformation,

Ψ(r) → UΨ(r), (4.77)

where U is a 2× 2 unitary matrix with |U | = 1.

4.9.1 Relation to deconfined quantum criticality

There has been considerable interest in models similar to Eq. (4.76), particularly since
they appear as effective models of quantum antiferromagnets and are related to the con-
cept of deconfined quantum criticality (DQC). The quantum Hamiltonian of Heisenberg
spin S = 1/2 operators Ŝi on a 2D square lattice is given by

H = J
∑
〈i,j〉

Ŝi · Ŝj + . . . , (4.78)

where the sum is over all nearest-neighbor pairs and J > 0 is the antiferromagnetic
nearest-neighbor coupling. Here, . . . describes additional terms that can be added and
possibly change the ground state of the system. In the case when no additional terms

15Additional terms, e.g., an Andreev-Bashkin term [200], can be added under appropriate circum-
stances.
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VBSNéel

)−= 1√
2
(

Figure 4.5: Schematic figure of two possible ground states for the Heisenberg quantum
antiferromagnet. To the left is the Néel ground state with long-range antiferromagnetic
order. To the right is the paramagnetic VBS ground state with broken discrete translational
symmetry.

are added, the ground state is the Néel state with long-range antiferromagnetic or-
der. However, when additional terms are added, the system can undergo a quantum
phase transition into other states such as the paramagnetic valence bond solid (VBS).
In Fig. 4.5, a schematic illustration of these two different ground states is presented. The
Néel ground state breaks spin rotation symmetry whereas the VBS ground state breaks
discrete translational symmetry.

According to the usual Landau-Ginzburg-Wilson (LGW) theory of phase transitions, it
is not possible to have a generic continuous phase transition between two phases with
different broken symmetries. The phase transition must either be first-order, or there
should be a region of coexistence. Thus, a continuous transition can only be obtained
by fine tuning to a multicritical point. However, numerical and experimental studies
suggested that LGW predictions were wrong in certain cases [201–203]. In 2004, the
DQC scenario was introduced by Senthil and coworkers [197, 198, 204]. They showed
that near continuous quantum phase transitions, the LGW theory is invalidated by
subtle quantum interference effects, and that certain quantum phase transitions, such
as the Néel-VBS transition above, are continuous.

In Refs. [197–199, 204], it was proposed that the effective field theory of the Néel-VBS
transition at the critical point is the so-called noncompact CP1 (NCCP1) model. This
is a model with two complex matter fields with SU(2) symmetry that are minimally
coupled to the same noncompact U(1) gauge field. The model can be written as

Z =

∫
DΨ

∫
DA e−βH[Ψ,A],

H[Ψ,A] =
1

2

∑
μ,r

⎡
⎣−(Ψ†

rΨr+μ̂ e−ieAμ,r +c.c.
)
+

⎛
⎝∑

ν,λ

εμνλΔνAλ,r

⎞
⎠

2⎤
⎦ , (4.79)

where matter fields must obey the CP1 constraint, |Ψr| = 1. Note that this model pre-
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Figure 4.6: Phase diagram of the NCCP1 model from the simulations in Ref. [4]. SU(2)
phase: Fully ordered phase with spontaneously broken O(3) symmetry and massive gauge
field (superconductor). O(3) phase: Spontaneously broken O(3) and massless gauge field.
Normal phase: Restored O(3) symmetry and massless gauge field.

cisely is the lattice realization of the two-component SU(2) superconductor in Eq. (4.76),
when subject to the CP1 constraint. This model has been studied by Motrunich and
Vishwanath in Ref. [125] and by Kuklov et al. in Ref. [205]. In this model, there is a lo-
cal U(1) gauge symmetry and a global O(3) symmetry that is associated with the gauge
neutral vector field given by nr = Ψ†

rσΨr. Here, σ = (σx, σy, σz) is a vector where the
components are the Pauli matrices. The phase diagram of the model is found to exhibit
three distinct phases, see Fig. 4.6. In particular, there is a paired phase when e is large,
analogous to the metallic superfluid phase in the two-component London superconduc-
tor. The Néel-VBS transition corresponds to a direct transition from the SU(2) phase
to the normal phase in Fig. 4.6.

Initially, this model was studied in the case where the SU(2) symmetry is broken down
to a U(1)×U(1) symmetry [140,163,199].16 However, contrary to what the DQC theory
predicts, it was established that the phase transition along the entire direct transition
line is first-order [140, 163]. In the studies of the full NCCP1 model, Motrunich and
Vishwanath find a continuous transition along the direct transition line for small values
of e, in accordance with the DQC scenario [125]. On the other hand, in the work by
Kuklov et al., it was found that the direct transition line is a first-order transition [205].
In Article IV [4], we perform an additional investigation of the NCCP1 model accessing
larger system sizes than what has been done previously.

16This corresponds to the two-component London superconductor in Eq. (4.61) in the case ρ1 = ρ2.
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4.9.2 Brief summary of main results

In this work, we pay particular attention to the region in the vicinity of the bicritical
point, which is the point where the direct transition line between the SU(2) phase and
the normal phase splits. By simulating larger systems, we find that the bicritical point
has been overestimated in earlier works. In particular, we estimate the bicritical point
ebc to be below e = 3.8 (Ref. [125] estimate ebc ≈ 4.0 and Ref. [205] estimate ebc ≈ 4.4).
This means that a significant portion of the direct transition line that in Refs. [125,205]
was found to be a first-order transition, really is two separate transitions. In addition,
we find that for sizes smaller than what is required to resolve two separate transitions,
there are strong thermal signatures similar to what one would expect for a weak first-
order transition. This means that one may mistakenly conclude to have a first-order
transition in cases where the direct transition line is splitted. This could also be the
case for e < 3.8 where no direct evidence of splitting are found for the system sizes that
was simulated in this work. In this region, we find clear signatures of a weak first-order
transition with a bimodal structure developing in the energy histograms. However, the
signatures are too weak to confirm that proper first-order scaling is obeyed (see Sec. 3.6).

Similar to Refs. [125, 205], we have also measured flowgrams in order to investigate the
character of the phase transition along the direct transition line. For a tricritical point
one should expect to see a clear separatrix in the flowgrams, but this was not obtained.
Still, for e < 3.0, the flowgrams seem to saturate for the system sizes available, which is
consistent with interpreting the transition as continuous. However, the convergence is
very slow, such that one cannot exclude divergent behavior at larger system sizes. We
thus perform a curve collapse analysis [163, 205, 206]. By rescaling system sizes with
a coupling dependent scaling function, an adequate collapse is obtained for all values
of e ∈ [0.5, 3.6]. This means that we are able to collapse flowgrams for all couplings
along the direct transition line up the region where we find signatures of a first-order
transition. This is consistent with Refs. [205, 206]. However, with an adequate good
collapse, we mean that we are able to collapse the flowgrams such that the curves are
collapsing on the master curve for large systems. We note that for e > 1.5, there are
many datapoints, corresponding to sizes L � 20, that systematically falls below the
master curve. This can be interpreted as finite-size effects associated with small system
sizes, but since these effects are not seen for e < 2.0, we are not certain that these are
finite-size effects. Consequently, we cannot draw firm conclusions regarding the nature
of the phase transition along the direct transition line as we find that larger systems
must be studied to confirm that a good collapse can be obtained.
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[201] P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, J. Phys.: Condens. Matter 13,
R723 (2001).

[202] G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

[203] A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89,
247201 (2002).

[204] S. Sachdev, Quantum phases and phase transitions of Mott insulators, in Lec-
ture Notes in Physics: Quantum magnetism, edited by U. Schollwock, J. Richter,
D. J. J. Farnell, and R. A. Bishop, Springer, Berlin, 2004.

[205] A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B. V. Svistunov, and M. Troyer,
Phys. Rev. Lett. 101, 050405 (2008).

[206] A. B. Kuklov, M. Matsumoto, N. V. Prokof’ev, B. V. Svistunov, and M. Troyer,
Comment on “Comparative study of Higgs transition in one-component and two-
component lattice superconductor models”, arXiv:0805.2578v1 [cond-mat.stat-
mech], 2008.





Article I

Phase transitions in a three dimensional U(1)× U(1) lattice London
superconductor: Metallic superfluid and charge-4e superconducting states

Physical Review B 82, 134511 (2010)





Phase transitions in a three dimensional U(1)ÃU(1) lattice London superconductor:
Metallic superfluid and charge-4e superconducting states

Egil V. Herland,1 Egor Babaev,2,3 and Asle Sudbø1

1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Department of Theoretical Physics, The Royal Institute of Technology, 10691 Stockholm, Sweden

3Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
�Received 14 June 2010; published 8 October 2010�

We consider a three dimensional lattice U�1��U�1� and �U�1��N superconductors in the London limit with
individually conserved condensates. The U�1��U�1� problem, generically, has two types of intercomponent
interactions of different characters. First, the condensates are interacting via a minimal coupling to the same
fluctuating gauge field. A second type of coupling is the direct dissipationless drag represented by a local
intercomponent current-current coupling term in the free-energy functional. In this work, we present a study of
the phase diagram of a U�1��U�1� superconductor which includes both of these interactions. We study phase
transitions and two types of competing paired phases which occur in this general model: �i� a metallic super-
fluid phase �where there is order only in the gauge-invariant phase difference of the order parameters�, �ii� a
composite superconducting phase where there is order in the phase sum of the order parameters which has
many properties of a single-component superconductor but with a doubled value of electric charge. We inves-
tigate the phase diagram with particular focus on what we call “preemptive phase transitions.” These are phase
transitions unique to multicomponent condensates with competing topological objects. A sudden proliferation
of one kind of topological defects may come about due to a fluctuating background of topological defects in
other sectors of the theory. For U�1��U�1� theory with unequal bare stiffnesses where components are
coupled by a noncompact gauge field only, we study how this scenario leads to a merger of two U�1�
transitions into a single U�1��U�1� discontinuous phase transition. We also report a general form of vortex-
vortex bare interaction potential and possible phase transitions in an N-component London superconductor
with individually conserved condensates.
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I. INTRODUCTION

Phase diagrams and critical phenomena in superfluids and
superconductors with U�1� symmetry are well understood
theoretically and well investigated numerically. The under-
standing is largely based on identifying and describing the
behavior of proliferating topological defects. In two dimen-
sions, a transition from a superfluid to a normal state can be
described as unbinding of vortex-antivortex pairs, which dis-
orders the superfluid phase yielding a Berezinskii-Kosterlitz-
Thouless transition into a normal state.1 In three dimensions,
the topological defects of U�1� theory are vortex loops, pro-
liferation of which yields a continuous phase transition in the
three dimensional �3D� xy universality class in the case of
superfluids �with global U�1� symmetry�, or inverted 3Dxy
in the case of superconductors �with local U�1�
symmetry�.2–4 However, it was recently found that in inter-
acting mixtures of U�1� symmetric condensates the situation
changes principally, yielding much more complex physics,
different phase diagrams and transitions. Many aspects of the
phase transitions in systems with several interacting compo-
nents are still poorly understood and debated.

The main important new aspect arising in an interacting
mixture is connected with the fact that, as reviewed below,
under certain quite generic conditions the vortices with high
topological charge �or bound states of vortices� acquire cru-
cial importance for various aspects in the physics of these
systems. This is in contrast to single-component systems
where only the lowest-topological-charge defects �i.e., only

vortices with 2� phase winding� are important. The com-
plexity arising from the relevance of topological defects with
high topological charge include formation of what is called
“metallic superfluid phases,” in context of electrically
charged systems, or “paired phases,” in context of electri-
cally neutral systems. In these states no conventional real-
space pairing takes places. However, there is order only in
the sum or difference of the phases of the condensate with
phases being individually disordered.5–10 Moreover, it also
results in a complicated and still poorly understood nature of
the phase transitions from a fully symmetric state to a state
with all symmetries broken,10–13 when there is a competition
between proliferating low- and high-order topological de-
fects. This is again a phenomenon which has no counterpart
in single-component systems. Various aspects of related ef-
fects were also studied in different models with a compact
gauge field and with SU�2� symmetry.14

Recently, it has been found that two kinds of intercompo-
nent interactions lead to the distinct mixture-specific phe-
nomena mentioned above. Namely, in a mixture of charged
condensates, the intercomponent interaction is represented
by the coupling between the charged complex scalar matter
fields mediated by a fluctuating gauge field.5,7–10,15 On the
other hand, in the case of an electrically neutral condensate
mixture, some related �but at the same time principally dif-
ferent� effects can be produced by a strong dissipationless
drag �current-current interaction6,13,16 which in some physi-
cal situations is also called Andreev-Bashkin interaction�.17

The intercomponent couplings by gauge field and the dissi-
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pationless drag have so far only been studied separately,
while in a generic U�1��U�1� system, terms leading to both
of these effects are allowed by symmetry. Thus, generically
the phase diagram and critical phenomena in a U�1��U�1�
system is a problem with two coupling constants. The inter-
play between them has, to our knowledge, not been investi-
gated so far.

In this work, we report a quantitative study of a generic
U�1��U�1� London superconductor which has both kinds of
intercomponent coupling �gauge field and current-current
drag�. This includes, in particular, the situations where these
two different kinds of intercomponent couplings compete
with each other.

This paper is organized as follows. In Sec. II, the general
model we consider is introduced, and the neutral and charged
modes and the vortex representation of the general model,
obtained by a duality transformation, are identified. Section
III is devoted to the numerical methods we employ in this
study. The results obtained in the special case with no inter-
component dissipationless drag, is presented in Sec. IV, fol-
lowed by the results of the general model with competing
gauge field and Andreev-Bashkin interactions in Sec. V. In
Sec. VI, we discuss the general N-component case, before
we arrive to the conclusions in Sec. VII. We also present
analytical details presenting the duality transform for a gen-
eral N-component model in Appendix A and a derivation of
the expression for the gauge-field correlator in Appendix B.

II. MODEL

We study a generic two-component London supercon-
ductor. In the London limit, one neglects the fluctuations of
the density fields ��1,2� of the complex scalar functions � j
= �� j�ei�j describing two superconducting components �i.e.,
setting ��1,2��const�. Fluctuations of the phases � j, and the
gauge field A are allowed. The compact support of the phase
variables �i� ��0,2�	� implies that phase fluctuations lead to
vortex excitations, capable of destroying superconductivity/
superfluidity, in this system. The London limit is an adequate
approximation for many properties of strongly type-II super-
conductors, and in fact transcends the validity of the
Ginzburg-Landau theory. The free-energy density of this sys-
tem can be written as

F = 

j=1,2

� j

2
��� j − ejA�2 +

�� � A�2

2

−
�d

2
���1 − e1A − ��2 + e2A�2, �1�

where � j physically represent the bare phase stiffnesses of
the problem. In addition to the intercomponent coupling be-
tween the two charged condensates via a fluctuating gauge
field A, we include a direct intercomponent dissipationless
current-current interaction with strength �d, which has the
form17

Fdrag = �d���1 − e1A� · ���2 − e2A� . �2�

It is a part of the last term in Eq. �1�. The particle currents of
both species then depend on the common vector potential

and superfluid velocities of both condensates �i.e., particles
belonging to one condensate can be carried by superfluid
velocity of the other�,

j1 = ��1 − �d����1 − e1A� + �d���2 − e2A� , �3�

j2 = ��2 − �d����2 − e2A� + �d���1 − e1A� . �4�

For generality, we allow for unequal charges ej in the two
components of the system, examples of the systems with
oppositely charged condensates are given below. Note that
the drag term implies that there is a stability criterion that
must be applied to the system. If �d exceeds a critical limit,
to be determined below, the spectrum of the system will be
unbounded from below and hence the theory will be ill de-
fined. The bare stiffness coefficients � j must be positive, � j
�0, on simple physical grounds.

The physical model in Eq. �1� is discussed in the context
of the projected quantum ordered states of hydrogen or its
isotopes at high compression7–9,15,18,19 where the different
fields correspond to condensates formed by electrons, pro-
tons, or deuterons. A similar model appears in some models
of neutron stars interior where the two fields represent pro-
tonic and 	− hyperon Cooper pairs.20 Moreover, the model
with equal phase stiffnesses �1=�2 and charges e1=e2, ap-
pears as an effective model in the theories of easy-plane
quantum antiferromagnets.21,22 Related models were also
studied in various contexts in low dimensions.5,23

The model has topological excitations which are vortices
with 2�nj, nj = 
1, 
2, . . . phase winding in the phase of
component j. We denote vortices by the pair of integers
�n1 ,n2� characterizing phase windings of the vortex in ques-
tion. Thus, vortices with phase winding in only one compo-
nent are denoted �1,0� or �0,1�. The model also possesses
composite vortices where both integers associated with the
phase windings �around or nearly around the same core� in
the two species are nonzero. In this paper, we will only con-
sider the composite vortices �1,1� and �1,−1� which have
codirected and counterdirected phase windings in the two
components, respectively. However, composite vortices with
higher topological charges, such as �1,n2� or �n1 ,1�, may be
relevant under certain conditions.13,24

A. Charged and neutral modes

By separation of variables,9,19,25 we may rewrite the
model in Eq. �1� in a form where the composite charged and
neutral modes are explicitly identified,

F =
1

2
��1�2 − �d��1 + �2�

m0
2 �e2 � �1 − e1 � �2�2

+
1

m0
2 �ejRj1 � �1 + ejRj2 � �2 − m0

2A�2 + �� � A�2� ,

�5�

where the coefficients are given by

R = �1 − �d �d

�d �2 − �d
� �6�

and
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m0
2 = ��1 − �d�e1

2 + ��2 − �d�e2
2 + 2�de1e2. �7�

Throughout the paper, there is an implicit sum over repeated
component indices. The coefficient m0 should not be con-
fused with the mass of the components. These are included
in � j, whereas m0 determines the inverse bare screening
length of the screened interactions in the system, details will
be given in Sec. II C. The first term of Eq. �5� is identified as
the neutral mode that does not couple to the vector potential.
The second term is the charged mode, characterized by its
coupling to the vector potential.

From Eq. �5�, it is seen that for stability of the system �in
the sense that the free-energy functional should be bounded
from below� the coefficient of the first term should be posi-
tive. It is readily shown that the criterion for this is that

�d �
�1�2

�1 + �2
. �8�

Note that this criterion is identical to the one derived in Ref.
13 and does not depend on charge. Actually, there are no
restrictions on the value of the electric charge e to obtain a
well-defined theory.

Note that in Eq. �1�, the phases of the two components do
not represent gauge-invariant quantities. However, when the
model is rewritten on the form in Eq. �5�, observe that the
neutral mode identifies a linear combination of the phase
gradients that is a gauge-invariant quantity decoupled from
the vector potential A, ��e2�1−e1�2�. Thus, the U�1�
�U�1� symmetry of the model may be interpreted as pos-
sessing a “composite” electrically neutral �or “global”� U�1�
symmetry associated with the phase combination of the neu-
tral mode, and a composite U�1� gauge symmetry which is
coupled to vector potential A and thus is associated with the
charged mode. Importantly, the identification of the charged
and a neutral mode does not imply that the modes are decou-
pled because both modes depend on phases �i which are
constrained to have 2�� integer phase windings.

B. Case �d=0, e1=e2=e

We briefly review the physics of a two-component U�1�
�U�1� superconductor with individually conserved conden-
sates, coupled only by the gauge field, i.e., in the absence of
Andreev-Bashkin �i.e., mixed-gradient� terms. In the London
limit the free energy may be read off from Eq. �5�,

F =
1

2

�1�2

�1 + �2
����1 − �2��2

+
1

2

��1 � �1 + �2 � �2 − e��1 + �2�A�2

�1 + �2
+

1

2
�� � A�2.

�9�

The important new physics arising in the model, Eq. �9�,
compared to single-component GL model is that the lowest-
order topological defects with a 2� phase winding only in
one phase �i have a logarithmically diverging energy per unit
length due to a neutral supercurrent while vortices where
both phases have 2� winding have finite energy per unit
length.19,26 Under certain conditions vortices where both

phases wind, i.e., �1,1�, can proliferate without triggering a
proliferation of the simplest vortices �1,0� and �0,1�.

Consider now a composite �1,1� vortex. Such an excita-
tion, if vortices in two components share the same core, has
nontrivial contribution to the following terms in the free en-
ergy, Eq. �9�:

F�1,1�
eff =

1

2

��1 � �1 + �2 � �2 − e��1 + �2�A�2

�1 + �2
+

1

2
�� � A�2.

�10�

If the �1,1� vortex has phase windings around a common
core, it can be mapped onto a vortex in a single-component
superconductor. Then, by increasing electric charge one can
make the energy cost of a vortex per unit length in a lattice
London superconductor arbitrarily small �because the vortex
energy depends logarithmically on the penetration depth
which is in turn a function of electric charge�. Thus, in a
lattice London superconductor the critical temperature of
proliferation of the vortices can be arbitrary small if the
value of the electric charge is sufficiently large. Therefore, in
the two-component model, Eq. �9�, one may, by increasing
the value of electric charge, proliferate �1,1� vortices without
proliferating individual vortices �1,0� or �0,1�. The latter two
produce a phase gradient in the gauge-invariant phase differ-
ence �1−�2. This features a stiffness which is not renormal-
ized by the proliferation of the �1,1� vortices.

Since the �1,1� vortices do not have a topological charge
in the phase difference, they cannot disorder the first term in
Eq. �9�, but they disorder the charged sector represented by
the second term. The resulting state therefore features long-
range ordering in the phase difference and can be character-
ized by �ei��1−�2�	�0 while �ei�1	=0, �ei�2	=0, and there is
no Meissner effect. The free energy for the resulting phase is
given by the following term �i.e., it has only broken global
U�1� symmetry� while the stiffness of the charged U�1�
mode is renormalized to zero by proliferated composite vor-
tices,

F�1,−1�
eff =

1

2

�1�2

�1 + �2
����1 − �2��2. �11�

The proliferation of composite defects resulting into this
state was shown to arise in two-dimensional �2D� systems at
any finite temperatures.5 In three dimensions, this phase can
be induced by a magnetic field via melting of a composite
vortex lattice.7,8 An analogous phase was also found in a
three dimensional lattice superconductor arising without ap-
plied external field from fluctuations if the value of the elec-
tric charge is very large.10 Since there is no Meissner effect
in the resulting phase, but at the same time there is a broken
neutral U�1� symmetry, the term metallic superfluid �MSF�
was coined for it.7 Also related phases are sometimes called
“paired phases.”10 The latter term is motivated by the fact
that in such situations the �quasi� long-range order is retained
only in some linear combination of phases while individual
phases are disordered. Importantly it should not be confused
with the conventional “real-space” pairing of bosons.
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Case �1=�2

Consider the case where �1=�2. At high values of the
electric charge e, the model was shown to feature a MSF
phase without applied field.10 This implies that at large e the
system undergoes two phase transitions when the tempera-
ture is increased. The first transition is from a state with
broken U�1��U�1� symmetry into the MSF with broken
U�1� symmetry, driven by a proliferation of composite �1,1�
vortices. The second transition is one where the remaining
broken U�1� symmetry is restored by proliferation of indi-
vidual vortices, resulting in a normal state. At low values of
e, one cannot separate characteristic temperatures of the pro-
liferation of composite and individual vortices and thus, the
model should have only one phase transition from broken
U�1��U�1� to a normal state. In the case �1=�2, the latter
phase transition was conjectured to be a continuous phase
transition in a novel universality class in the work of Ref. 12.
However, subsequent works show that the phase transition is
first order,10,11 see also Ref. 14. Moreover, the analysis per-
formed in Ref. 10 indicates that the U�1��U�1� to a normal-
state transition is first order for any values of electric charge
in the �1=�2 model. Note that the standard theories of vortex
loop proliferation yield a second-order transition.2,3 An
analysis of a simpler two-component model �with no gauge-
field coupling but with direct current-current coupling�
which, like the model, Eq. �9�, also features low-energy com-
posite vortices, provides some evidence that the first-order
transition takes place whenever a restoration of the U�1�
�U�1� broken symmetry is driven by proliferation of com-
peting tangles of different kinds of vortices,13 e.g., tangles of
�1,0�, �0,1� vortices and a tangle of �1,1� vortices. The term
“preemptive vortex-loop proliferation transition” was coined
for this scenario.13 Note that in a charged U�1��U�1� theory
for arbitrary values of electric charge one cannot rule out in
a simple way that composite vortices participate in a compe-
tition with the individual vortices in the symmetry-
restoration transition since composite vortices have finite en-
ergy per unit length.

C. Dual model

We will now perform a duality transformation that re-
duces the model in Eq. �1� to a theory of interacting vortex
loops of two species. These are the topological objects which
drive the phase transition between the normal state and a
state with broken symmetries in the systems we consider.
When the phases and gauge field are fluctuating the statisti-
cal sum of the London two-component superconductor with
intercomponent drag can be represented as follows:

Z =� D�1� D�2� DAe−S,

S =
�

2
� d3r��� � A�r��2

+ ��� j�r� − ejA�r��Rjk���k�r� − ekA�r��� , �12�

where � is the inverse temperature.

We now choose the gauge � ·A�r�=0 and Fourier trans-
form the action. The action is then written as

S =
�

2
� d3q�Ã�q��q2 + m0

2�Ã�− q� + U j�q�

�Rjk −
elemRljRmk

q2 + m0
2 �Uk�− q�� , �13�

where the Fourier transform of �� j�r� is denoted by U j�q�.
Moreover we have completed the squares of the gauge field

with Ã�q�=A�q�−ejRjkUk�q� / �q2+m0
2� as the shifted gauge

field. By integration of the shifted gauge field, the model is
written as

Z =� D�1� D�2e−S,

S =
�

2
� d3qU j�q�Rjk −

elemRljRmk

q2 + m0
2 �Uk�− q� �14�

with the phases as the only remaining fluctuating quantities.
The phase gradient can be decomposed into a longitudinal
and a transverse part, U j�q�= �U j�q��L+ �U j�q��T, where the
longitudinal component corresponds to regular smooth phase
fluctuations with zero curl, i.e., “spin waves.” Hence, the
longitudinal part is curl free, q� �U j�q��L=0 and the trans-
verse part is divergence free, q · �U j�q��T=0 and thus it is
associated with quantized vortices. One can introduce the
field m j�q� which is the Fourier transform of the integer-
valued vortex field for component j,

iq � �U j�q��T = 2�m j�q�, j = 1,2. �15�

Note that this relation yields the constraint q ·m j�q�=0, i.e.,
the thermal vortex excitations in the theory are closed loops
as required by the single valuedness of the order parameter in
an infinite system. In the following, we will disregard the
longitudinal phase fluctuations since the physics at the criti-
cal points in this system is governed by the vortex excita-
tions and not the spin waves. The latter are known to be
innocuous and incapable of destroying long-range order in
three dimensional systems. By Eq. �15�, the transverse phase
gradient is explicitly written as

�U j�q��T = 2�i
q � m j�q�

q2 , j = 1,2, �16�

and thus, we finally express the statistical sum via vortex
fields,

Z = 

m1



m2

e−S,

S = 2��2� d3qm j�q�Vjk�q2�mk�− q� . �17�

Here, the summation over the vortex fields m j�q� is con-
strained by q ·m j�q�=0, such that the integer-valued real-
space vortex fields m j�r� form closed loops only. The vortex-
vortex interactions are given by
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Vjk�q2� =
1

q2Rjk −
elemRljRmk

q2 + m0
2 � ⇔ V�q2� =�

�1 − �d −
�ejRj1�2

m0
2

q2 +

�ejRj1�2

m0
2

q2 + m0
2

�d −
ejekRj1Rk2

m0
2

q2 +

ejekRj1Rk2

m0
2

q2 + m0
2

�d −
ejekRj1Rk2

m0
2

q2 +

ejekRj1Rk2

m0
2

q2 + m0
2

�2 − �d −
�ejRj2�2

m0
2

q2 +

�ejRj2�2

m0
2

q2 + m0
2

� . �18�

Here, we have used the identity

�U j�q��T · �Uk�− q��T =
�2��2

q2 m j�q� · mk�− q� , �19�

found by Eq. �16�. We may now interpret m0, given by Eq.
�7�, as the inverse bare screening length that sets the scale of
the Yukawa interactions in the system.

We remind the reader briefly of what is known for the
one-component case, i.e., �2=0, �d=0, e2=0, �1=��0, e1
=e�0 in Eq. �18�. Then, we have V11= ��−e2�2 / �q2

+m0
2�� /q2 with m0

2=�e2. Thus, V11=� / �q2+m0
2� is a screened

interaction between the vortices, mediated by the fluctuating
gauge field. This is drastically different from the multicom-
ponent case, where one fluctuating gauge field is incapable
of fully screening interactions between vortex excitations in
all condensate fields.5,8,9

The interactions between vortex elements in the system
are generally seen to include two parts: A long-range Cou-
lomb interaction with no intrinsic length scale that decays as
1 /r and a short-range Yukawa interaction with an exponen-
tial decay. Note that in the index representation of Eq. �18�,
the first term, Rjk /q2 will dominate the second term,
elemRljRmk / �q2�q2+m0

2���q−4, at short distances when q2 is
large, because the Yukawa and Coulomb part of the second
term will cancel each other. Effectively, at short distances,
the vortices will interact as if the gauge field does not fluc-
tuate. On the other hand, at large distances, when q2 is small,
the Coulomb part of the second term will dominate its
Yukawa counterpart and the second term will be of the same
order as the first term �q−2. Thus, the 1 /r contributions from
the gauge-field mediated interactions between vortices sets in
when intervortex separation becomes larger than the charac-
teristic distance m0

−1. Also note that by decreasing the gauge-
field coupling constant e, m0

−1 grows and so does the distance
where the effects of the gauge field are negligible. In particu-
lar, when �d=0 in Eq. �18� �this corresponds to the work in
Refs. 5 and 9�, we have the case that the interactions between
elementary vortices of different species tend to cancel out at
short intervortex separations, whereas there will be interac-
tions at large intervortex separations that are mediated by the
gauge field.

In the general model with the mixed-gradient terms con-
sidered here �i.e., with �d�0�, there is in addition un-
screened 1 /r interaction between vortices belonging to dif-
ferent condensates which is mediated by the direct Andreev-
Bashkin drag. Thus, contrary to the �d=0 case, there will be

unscreened Coulomb interactions at all length scales.
Observe that in the limit, e1=e2=0, Eq. �18� eliminates

Yukawa-type interaction potential and resulting to only long-
range interactions V�q2�=R /q2 like in a two-component su-
perfluid with Andreev-Bashkin effect, see Ref. 13. Observe
also that in contrast to the neutral model in Ref. 13, in the
above case when e1,2�0 one always has a bound state of
vortices which has finite energy per unit length, as discussed
in Sec. II B.

Thus, the vortex-vortex interaction matrix shows that add-
ing the mixed-gradient Andreev-Bashkin-type drag term to a
superconductor, where components interact only via a fluc-
tuating gauge field, might significantly alter the physics of
fluctuations as a consequence of a substantial change in the
interactions between topological excitations.

Finally, in the spirit of Sec. II A, we may rewrite the
action in Eq. �17� in a form where the charged and the neu-
tral modes are explicitly identified,

S = 2��2� d3q��1�2 − �d��1 + �2�
m0

2 �e2m1�q� − e1m2�q��

�
1

q2 �e2m1�− q� − e1m2�− q�� +
1

m0
2 �ejRj1m1�q�

+ ejRj2m2�q��
1

q2 + m0
2 �ekRk1m1�− q� + ekRk2m2�− q��� .

�20�

Note that the vortex fields in the neutral sector interacts by
an unscreened Coulomb interaction only while the vortex
fields in the charged sector interacts by a screened Coulomb
�Yukawa� interaction. From this it follows that the corre-
sponding propagators are given by ��e2m1�q�
−e1m2�q�� · �e2m1�−q�−e1m2�−q��	�q2 and ��ejRj1m1�q�
+ejRj2m2�q�� · �ejRj1m1�−q�+ejRj2m2�−q��	�q2+ m̃0

2. Here,
m̃0 is the effective dynamically generated gauge mass that is
nonzero in the low-temperature phase and vanishes at the
charged critical point. Moreover, there is also a neutral criti-
cal point associated with ordering the neutral sector of Eq.
�20� with a corresponding nonanalytic variation in the tem-
perature dependence of the coefficient of the q2 term.

Note that for any value of �d, the interactions of the vor-
tex fields in the neutral sector are independent of any varia-
tion in the charges e1 and e2 provided that the ratio e2 /e1 is
kept fixed, as readily seen by inspection of Eq. �20�. On the
other hand, the interactions in the charged sector depends on
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the value of the charge in the Yukawa factor 1 / �q2+m0
2�.

Given the very different form of intervortex interactions
produced by the gauge-field coupling and by the Andreev-
Bashkin drag, the interesting case when these interactions
compete with each other cannot be mapped onto the previ-
ously studied regimes of systems interacting only by gauge
field or only by intercomponent drag. Investigating the phys-
ics arising from this competition is the main objective in this
paper.

III. DETAILS OF THE MONTE CARLO SIMULATIONS

Large-scale Monte Carlo �MC� simulations were per-
formed in order to explore the phases and phase transitions
of the model, Eq. �1�. We discretize space into a three dimen-
sional cubic lattice of size L�L�L with lattice spacing a
=1. The phases are defined on the vertices of the lattice,
� j�r�→�r,j and the phase gradient is a finite difference of the
phase at two neighboring lattice points, �� j�r�→��r,j
=�r+�̂,j −�r,j. The gauge field is associated with the links
between the lattice points, A�r�→Ar,. Moreover, the curl
of the gauge field yields a plaquette sum ���A�r��

→
�������Ar,�. Here, ��� is the Levi-Civita symbol. The
compact phases �r,j have to be 2� periodic. This is accom-
modated by the Villain approximation of the effective
Hamiltonian,27 which also yields a faithful lattice represen-
tation of the direct current-current interaction �i.e., drag�
term.13 Our effective lattice model thus reads

Z = �
0

2�

D�1�
0

2�

D�2�
−�

�

DAe−�H��1,�2,A;��,

H��1,�2,A;�� = 

r,

− �−1 ln� 

nr,,1



nr,,2

e−S� , �21�

where the local Villain action is

S =
�

2 ��1ur,,1
2 + �2ur,,2

2 − �d�ur,,1 − ur,,2�2

+ 

��

�����Ar,��2� . �22�

Here, ur,,j =��r,j −ejAr,−2�nr,,j is a one-component Vil-
lain argument. The sum over the integer-valued fields, nr,,j,
is from −� to � ensures 2� periodicity of the Hamiltonian
with respect to the gauge-invariant phase difference.

All Monte Carlo simulations start with an initialization of
the system, either disordered, when all phases and gauge
fields are chosen at random, or ordered, when phases and
gauge fields are chosen constant throughout the system. Sub-
sequently, a sufficiently large number of sweeps is performed
in order to thermalize the system. As a valuable check on the
simulations, the calculated quantities should be invariant
with respect to the initialization procedure. A Monte Carlo
sweep includes local updating of all five fluctuating field
variables �compact phases �r,j � ��0,2�	� and the noncompact
gauge field Ar,� at all lattice sites in the system, according to
the Metropolis-Hastings algorithm.28 There is no gauge fix-
ing involved, as summation over gauge equivalent configu-

rations will cancel out when calculating thermal averages of
gauge-invariant quantities. Moreover, periodic boundary
conditions are applied in all simulations.

In most cases, we also apply the so-called parallel tem-
pering algorithm,29 allowing a global swap of configurations
between neighboring couplings, after the local updating is
finished. The explicit temperature dependence in the Hamil-
tonian of the Villain model30 must be considered when cal-
culating the probability of exchanging configurations be-
tween two coupling values �, ��, which is

WPT = �1, if � � 0,

e−�, if � � 0,
� �23�

where �=���H�X ;���−H�X� ;����−��H�X ;��−H�X� ;���,
and X, X� are the configurations at �, �� initially. To increase
the performance of the parallel tempering algorithm, the set
of coupling values was selected according to the initializa-
tion procedure in Ref. 31, to yield approximately the same
acceptance rate for the parallel tempering move throughout
the entire range of coupling values in the simulation. By
introducing the parallel tempering algorithm, the quality of
the statistical output was substantially improved by reducing
the autocorrelation time at critical points by 1–2 orders of
magnitude compared with conventional Monte Carlo simula-
tions with local updates only. Even in regions of the phase
diagram where coupling intervals were too large for configu-
rations to access all coupling values within a reasonable
amount of MC sweeps, which is required to take full advan-
tage of the parallel tempering method,29 an improvement of
the statistical output was achieved.

A. Specific heat

We measure the specific heat per site Cv by the energy
fluctuations,

CvL3

�2 = ��H − �H	�2	 , �24�

where the brackets denote thermal average with respect to
the partition function in Eq. �21�. In fact, this expression is
not quite right for the Villain model because of the explicit
temperature dependence in the Hamiltonian.30 Generally, the
specific heat is given by L3Cv=−�2�U / ����, where the in-
ternal energy is given by U=−� ln Z / ����.32 Thus, the spe-
cific heat is written as

CvL3

�2 = � ���H�
��

− � ���H�
��

��2

−
�2��H�

��2 � . �25�

We expect no extra singular behavior due to the temperature
dependence in the Villain Hamiltonian, so the singular be-
havior in Eq. �25� should also be captured in the energy
fluctuations of Eq. �24�. Thus, we expect Eq. �24� to repro-
duce the correct critical behavior of the heat capacity, as was
the case in Ref. 33. In practice, both equations were used,
and the results were identical with respect to critical behav-
ior. In the analysis of the Monte Carlo simulations, the criti-
cal temperature of the phase transitions was determined by
locating the anomaly of the heat capacity, and the same criti-
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cal temperature was found with both equations.

B. Helicity modulus

The helicity modulus is a global measure of phase coher-
ence in a superfluid �i.e., decoupled from gauge field� order
parameter. It measures the energy cost associated with an
infinitesimal twist � in the phase of an order parameter
across the system. In order to obtain the correct energy cost
with respect to composite phase combinations such as, e.g.,
phase difference, we must perform a general twist in a linear
combination of the order parameter phases,

�r,j → �r,j� = �r,j − aj� · r , �26�

where aj now is a real number associated with the phase
twist in component j. By selecting a1, a2, we may measure
the phase coherence of any linear combination, a1�1+a2�2,
in order parameter space. That is, if we want to measure the
helicity modulus of the neutral mode associated with the
phase difference we must impose a twist in the phase differ-
ence, i.e., a1=1, a2=−1. In general, the helicity modulus is
given by the second derivative of the free energy with re-
spect to the infinitesimal twist,

�,�a1,a2� =� 1

L3

�2F����
��

2 �
�=0

=
1

L3��� �2H����
��

2 �
− �� �H����

��

− � �H����
��

��2���
�=0

,

�27�

where the notation �� simply means that all phase variables
are replaced according to Eq. �26�. In our case, with an iso-
tropic system, we expect the helicity modulus to yield direc-
tionally independent results within statistical errors. For
more details on the helicity modulus in the special case of
the Villain model, we refer to Refs. 13 and 33.

C. Gauge mass

To capture the properties of the gauge field A, we study
the gauge-field correlator �AqA−q	, explicitly given for the
lattice model,

�AqA−q	 =
2

���Qq�2 + m0
2��1 +

2��2Gc,q

�Qq�2��Qq�2 + m0
2�� ,

�28�

where �Qq�2 is the Fourier representation of the discrete
Laplace operator, given by �Qq�2=
�2 sin�q /2��2, with
q=2�n /L, n� �1, . . . ,L� and

Gc,q = �ejelRjkRlmmq,k · m−q,m	 , �29�

is the correlation function of the linear combination of vortex
fields that corresponds to the charged sector of Eq. �20�. Here
mq,j is the lattice model vortex field of component j in Fou-
rier space. The details of the derivation are given in Appen-
dix B. In particular, we will use this quantity to extract the
order parameter for the normal fluid-superconductor phase

transition, i.e., the dynamically generated gauge-field mass
or Higgs mass. The effective gauge mass mA is extracted
from the gauge-field correlator by8,9,34

mA
2 = lim

q=0

2

��AqA−q	
. �30�

This quantity is employed as order parameter of the super-
conducting phase. Note that the dynamic creation of mass at
Tc and the onset of the Meissner phase, the manifestation of
the Higgs mechanism in London superconductors, is gov-
erned entirely by the long-distance behavior of the vortex
correlator of the charged mode, cf. Eqs. �28� and �29�. In the
ordered phase, where vortex loops are confined,
limq→0�mk�q�mm�−q�	�q2, such that limq→0�A�q�A�−q�	
�const, rendering the gauge field massive. When vortex
loops proliferate, limq→0�mk�q�mm�−q�	=const�0, such
that limq→0�A�q�A�−q�	�1 /q2, rendering the gauge field
massless.

In the Monte Carlo simulations, the vortex fields of both
species are extracted from the phase and gauge-field distri-
butions by considering the plaquette sum of the gauge-
invariant phase difference,



��

���������r,j − ejAr,�� = 2�mr,,j , �31�

where the left-hand side is the plaquette sum of the gauge-
invariant phase difference, ��r,j −ejAr, and mr,,j is the
real-space vortex field. The gauge-invariant phase difference
must be kept in the primary interval for each link in the
plaquette sum in order to accommodate vortices in the lattice
model. Now, by Fourier transformation of the vortex field,
Gc,q is calculated, and to find the gauge mass, curve fitting of
the quantity 2 / ���AqA−q	� is performed for small q values in
order to extract the q→0 limit.

IV. MONTE CARLO RESULTS, �d=0, e1=e2=e

Here we present the simulation results for the case dis-
cussed in Sec. II B. In this section we consider in general
unequal stiffnesses �1��2 in the regime where �d=0.

Figure 1 shows the simulation results varying the stiffness
�2, when the other stiffness �1 is set to unity. Results are
obtained for six different values of the electric charge, and
we focus on the regimes where there is a strong competition
between proliferating topological defects. We locate the criti-
cal inverse temperature of the charged and the neutral critical
point by locating the anomaly of the heat capacity associated
with the phase transition. The charged critical point is asso-
ciated with the point where the Meissner effect sets in, evi-
dent by onset of the effective gauge mass mA, whereas the
neutral critical point is associated with the onset of the order
in the gauge-invariant phase difference with a corresponding
nonzero value of the associated helicity modulus �,�1,−1�.

A. Topological excitations

Consider now the case when the neutral critical line is
situated above the charged critical line, that is, when going
from phase I �U�1��U�1� broken symmetry� to phase III
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�broken U�1� charged symmetry� across the neutral phase
transition line in Fig. 1. This phase transition is driven either
by proliferation of �0,1� or �1,0� vortices. The composite
�1,1� vortices do not couple to the neutral sector of Eq. �9�
and can thus never be responsible for destroying the order in
the neutral sector. The other composite topological excitation
�1,−1� is, by inspection of Eq. �9�, seen to have neither
energetic nor entropic advantage over individual vortices.
Because the vortices �1,0�, �0,1� cost the same amount of
energy in the neutral sector, but the vortex with lowest stiff-
ness � j costs less energy in the charged sector, the neutral
critical line must be associated with proliferation of indi-

vidual vortices of the component with the smallest value of
the bare stiffness � j, when going from phase I to phase III.
Outside the region where there is a strong competition be-
tween different kinds of vortex excitations, this phase transi-
tion is found to be of second order in the 3Dxy universality
class.9 When the individual vortices proliferate, the corre-
sponding stiffness is renormalized to zero and the remaining
condensate will be a charged condensate with order in the
remaining component. Thus, the remaining condensate will,
at a higher temperature, have a phase transition similar to
that of the following one-component superconductor,
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FIG. 1. �Color online� The phase diagram in the ��2 ,�� plane for the model in Eq. �9� at six increasing values of the electric charge e
when �1=1. Blue x markers �� � connected with dashed lines are charged critical points and red squares ��� connected with dotted lines are
the neutral critical points. When these critical points are merged, it is shown by filled squares ��� in violet connected with solid lines.
Moreover, with lines in silver color, we present critical points of one-component superconductors with e as denoted in panel. The horizontal
line is the critical line when �=�1=1, and the plus markers �+� are the critical points when �=�2. For these reference lines, the dashed and
dotted line type correspond to charged and neutral critical points, as above. The inset in panel �b� is a magnification of the region where the
lines merge. Phases are denoted by roman numbers. I. Ordered phase with spontaneously broken U�1��U�1� symmetry, mA�0,
�,�1,−1��0. II. Spontaneously broken global U�1� symmetry, with restored U�1� gauge symmetry, mA=0, �,�1,−1��0. III. Spontaneously
broken U�1� gauge symmetry, with restored global U�1� symmetry, mA�0, �,�1,−1�=0. IV. Normal phase with fully restored U�1�
�U�1� symmetry, mA=0, �,�1,−1�=0. The system size considered is 323. Except for inset, error bars are smaller than marker size and thus
omitted from diagram.
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FIII→IV
eff =

� j

2
��� j − eA�2 +

�� � A�2

2
, �32�

where j now is the index of the component with largest stiff-
ness � j.

This is verified in Fig. 1 by observing that the charged
critical line between III and IV asymptotically approaches
the one-component reference lines away from the region of
competition between different kinds of topological excita-
tions. This phase transition is second order and in the univer-
sality class of the inverted 3Dxy transition.9

When there is a transition from phase I �U�1��U�1� bro-
ken symmetry� to phase II �broken U�1� neutral symmetry�
in panels �e� and �f� of Fig. 1, the charged critical point is
situated at a lower temperature than the neutral critical point.
In this case the topological defects responsible for the phase
transition are �1,1� vortices, because the other possible vor-
tices will destroy order in the neutral sector of Eq. �9�, and
thus are not proliferating at this transition line. As discussed
in Sec. II B, the �1,1� vortices proliferating from an ordered
background may be mapped onto a single-component super-
conductor with effective stiffness �neglecting the internal
structure of the vortices� ��=�1+�2,

FI→II
eff =

�1 + �2

2
��� − eA�2 +

�� � A�2

2
. �33�

In Fig. 2 we show results when bare component stiffnesses � j
are kept fixed and electric charge e is varied. In panel �a�, we
also present a one-component reference line corresponding
to the phase transition of the superconductor in Eq. �33�.
Indeed, away from the splitting point, the transition from I to
II approaches this reference line. Note that the mapping in
Eq. �33� yields a one-component superconductor with stiff-
ness �1+�2 that always is stiffer than the two reference lines
in Fig. 1 �which are one-component superconductors with
stiffness �1 and �2�. Thus, the charged transition line between
phase I and phase II is always lower than the reference lines

in Fig. 1. Phase II in Figs. 1 and 2 is the metallic superfluid
phase �i.e., exhibiting order only in the gauge-invariant phase
difference� discussed in Sec. II B and the effective free en-
ergy in the remaining superfluid condensate is given in Eq.
�11�. The cheapest topological defects that proliferate at
higher temperatures and destroy the remaining composite or-
der in this phase, are individual vortices. Hence, away from
the region of competing topological defects �i.e., away from
the splitting point�, the transition line from phase II to phase
IV should be similar to a one-component superfluid with
effective stiffness ��=�1�2 / ��1+�2�,

FII→IV
eff =

�1�2

2��1 + �2�
����2. �34�

Note that in both panels of Fig. 2, the neutral transition line
between II and IV is found to be asymptotically independent
of e, thus approaching a constant value asymptotically far
away from the region of competition with different vortices,
as Eq. �34� suggests. Moreover, Eq. �34� predicts the value
�=�c��1+�2� / ��1�2� of the actual line, which corresponds
well with the results in the figure. Here, �c�0.334 is the
critical point of the one-component superfluid �e=0� when
�=1.

Note that vortices on the form �n1 ,n2� with nj �1, nk�j
�1 can, by inspection of Eq. �9�, be shown to always be
energetically unfavorable compared with other topological
excitations in this model. Such higher-order vortices are thus
not relevant when �d=0 and e1=e2=e.

B. Gauge-field fluctuation driven merger of the phase
transitions in case of unequal bare stiffnesses

We next discuss the evolution of the phase diagrams in
Figs. 1 and 2 when e is varied. When charge increases, the
energy of the composite �1,1� vortices �which have no topo-
logical charge in the neutral sector�, as well as the energy
associated with charged currents of individual vortices de-
crease. This leads to a formation of a region in the phase
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FIG. 2. �Color online� The phase diagram in the �� ,e� plane for the two-component 3D London model, Eq. �9�, with �1=1 and for two
different values of �2. In the left diagram �2=�1=�=1 whereas �2=1.15 in the right diagram, i.e., there is a moderate disparity. Markers and
line types are the same as in Fig. 1, i.e., blue x markers �� � connected with dashed lines are charged critical points, red squares ���
connected with dotted lines are neutral critical points, filled squares ��� in violet connected with solid lines are merged transitions. The
silvered plus markers �+� in the left diagram is a one-component reference line of a superconductor with bare stiffness 2� and charge e.
Roman numbers denote the different phases as given in the caption of Fig. 1. Note that these diagrams are 2D cross sections of a 3D phase
diagram in �� ,�2 ,e� space perpendicular to the cross sections in Fig. 1. The lattice size is 323. Errors are smaller than marker size and thus
omitted from diagram.
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diagram which is characterized by a merger of the two U�1�
transitions in the case of unequal bare stiffnesses of the two
condensates. Thus, even in the case of unequal stiffnesses,
when the coupling to a fluctuating noncompact gauge field is
sufficiently strong, there appears a phase transition directly
from the ordered phase with spontaneously broken U�1�
�U�1� symmetry to the fully disordered normal phase. See
also discussions of transition mergers caused by other kinds
of couplings in Refs. 13, 14, and 35. Panel �b� of Fig. 2
clearly illustrates this behavior. In this panel, the value of
bare stiffness disparity is fixed when e increases. For low
values of e there are two phase transitions: at lower tempera-
ture individual vortices with lower stiffness proliferate while
at higher temperature a proliferation of individual vortices of
stiffer condensate takes place. However, when e increases,
the two lines approach each other and merge at e�1.3.

The line merger is a consequence of the fact that at a
substantially large electric charge, the bare energy of an in-
dividual vortex in a broken U�1��U�1� phase is dominated
by the neutral mode. Because a proliferation of less energeti-
cally expensive individual defects destroys the neutral mode,
this eliminates the bare long-range logarithmic interaction
between vortices in the stiffer condensate, leading to a dra-
matic decrease in their bare line tension and thus to their
preemptive proliferation. On the other hand in a range of
parameters a proliferation of composite �1,1� vortices can
trigger proliferation of individual vortices again leading to a
“preemptive” restoration of the full U�1��U�1� symmetry
via a single phase transition. When electric charge is in-
creased further, then eventually at a certain point in the in-
terval e� �1.75, . . . ,1.875� the �1,1� vortices become much
less energetically expensive than other excitations and can
proliferate at low temperatures without triggering a prolifera-
tion of individual vortices. Then the metallic superfluid
phase �II� emerges as discussed in Sec. II B.

C. Order of the phase transition associated with
the merged lines

Let us now characterize the phase transition along the
merged lines of Figs. 1 and 2. In Ref. 10, using the j-current
model the transition line from U�1��U�1� to fully symmet-
ric state in the case of equal stiffnesses presented in panel �a�
of Fig. 2, was found to be a first-order transition. We obtain
consistent results in our Villain-model based simulations.

Furthermore in Fig. 3, we report the simulation results
associated with the merged line in a case when bare stiff-
nesses are not equal. We find a first-order transition along the
merged line in our case when there is a disparity of the bare
phase stiffnesses. This shows that the first-order phase tran-
sition in a U�1��U�1� noncompact gauge theory is not re-
lated to the specific degeneracy of the model with equal stiff-
nesses �1=�2 but appears to be related to the case when there
are several competing or composite topological defects.

V. MONTE CARLO SIMULATION, GENERAL MODEL
WITH BOTH GAUGE FIELD AND DISSIPATIONLESS

DRAG INTERACTIONS

Next, we present results from Monte Carlo simulations
when both drag and gauge-field mediated interactions are
included.

A. Competing gauge field and drag interactions in the
case �1=�2=1

In Fig. 4, we present results for the case when the bare
component stiffnesses are equal �1=�2=�=1, and the gauge
field couplings are equal, e1=e2=e. We vary the inverse tem-
perature � and the bare drag coefficient �d and map out the
phase diagram in the �� ,��d� plane for a number of different
values of e. We consider positive �d only. In this specific
case, the charged and neutral modes in Eq. �5� are written as

F =
1

2
�� − 2�d

2
���1 − ��2�2 +

�

2
���1 + ��2 − 2eA�2

+ �� � A�2� . �35�

Here, we have the interesting situation where drag and
gauge-field mediated intercomponent long-range vortex in-
teractions are found to be of opposite signs, see Eq. �18�.
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FIG. 3. �Color online� �a� Histograms for the probability distri-
bution of the internal energy per site U /L3 at ��0.487 when pa-
rameters are �1=1, �2=1.05, and e=1.5. This is the merged transi-
tion point found in Fig. 1 at ��2 ,��= �1.05,0.487� in panel �c�. A
double-peak structure develops when L increases. �b� Upper panel
shows that the finite-size scaling of the latent heat per site �U /L3

approaches a finite value when L increases. This is the distance
between the peaks in �a�. The lower panel shows the finite-size
scaling of the difference in the free energy, �F
= �1 /��ln�Pmax / Pmin� taken between the double-peak value Pmax

and the value of the minimum in between Pmin of the histograms in
�a�. For a first-order phase transition, �F�Ld−1 �Ref. 36�.
Ferrenberg-Swendsen reweighting was used to obtain histograms
with similar height peaks �Ref. 37�.
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Thus, the drag coupling �d�0, when significantly strong,
favors formation of the �1,−1� composite vortices �via a
mechanism similar to that in Ref. 13�. On the other hand, the
gauge-field coupling favors the formation of �1,1� bound
states of individual vortices when e1 and e2 are of the same
sign. This competition is studied in Fig. 4. Its most striking
consequence is that it leads to the existence of four phases: at
strong drag there is a superconducting phase where a neutral
mode is destroyed by the proliferated �1,−1� vortices �phase
V�. At strong electric charge there is a superfluid phase with
proliferated �1,1� vortices �phase II�.

We next consider these phases more closely. The results in
Fig. 4 show that the phase V appears when �1,−1� vortices
proliferate and thus there is no longer a broken symmetry in
the neutral sector of Eq. �35�. Note that when we are well
above the region of competing topological defects in Fig. 4,
then, by neglecting the internal vortex structure, we may
approximate the �1,−1� vortices to map onto vortices in a
one-component superfluid with stiffness ��=2��−2�d�,

FI→V
eff = �� − 2�d�����2. �36�

This effective limiting model is e independent. Indeed this
physics manifests itself in the fact that in Fig. 4, the actual
transition is seen to approach asymptotically the reference
line ��d= ��−�c /2� /2.

In Sec. IV, the superconducting phase III, which similarly
to phase V exhibits charged order and neutral disorder, was
created from the fully ordered phase by proliferation of in-
dividual vortices when we increased disparity in the bare
stiffness of the two components. Here, phase V is created by
proliferation of composite vortices and the coupling constant
responsible for creating the phase is �d. Consequently, the
remaining order is now in the gauge-invariant phase differ-
ence of the charged mode, given by second and third terms in
Eq. �35�. On the other hand, phase III exhibits order in the
component with largest bare stiffness. Note also that in the
U�1��U�1� �phase I� state with equal stiffnesses the �1,0�,
�0,1� vortices carry half of the magnetic flux quanta.19 It can
be seen from Eq. �35� that in the phase V �1,0�, �0,1� vortices
become equivalent and no longer have logarithmic diver-
gence of internal energy per unit length due to absence of a
neutral mode. That is, they become similar to Abrikosov vor-
tices, but carry only a half quantum of magnetic flux. This
phenomenon is related to the fractionalization of superfluid
velocity quantum in the metallic superfluid state.18 From Eq.
�35� it also follows that the individual vortices behave as
vortices in a one-component superconductor with effective
stiffness ��=� /2 and double effective charge e�=2e,

FV→IV
eff =

�

4
��� − 2eA�2 +

�� � A�2

2
. �37�

In Fig. 4, the transition from the phase V to the normal phase
IV is indeed found to tend asymptotically to a phase transi-
tion one would predict from the model, Eq. �37�. For this
model, the transition line is found to be vertical, in accor-
dance with the drag independent stiffness in Eq. �37�. Note
that when e increases, the critical temperature of the vortex
loop proliferation is decreased and the vertical line moves to
the right in Fig. 4.

Next, the phase II may be investigated in a similar way as
the phase V above. Phase II appears when �1,1� vortices
proliferate. As discussed in Sec. IV, the remaining order is in
the neutral sector of Eq. �5� and the transition to the normal
state is governed by proliferation of individual vortices that
asymptotically behave as a one-component superfluid with
effective stiffness ��= ��−2�d� /2,

FII→IV
eff =

� − 2�d

4
����2. �38�

The phase transition of this condensate will follow the line
��d= ��−2�c� /2. Indeed, this is the case for e=3 in Fig. 4
away from the region with competing topological defects.

Similarly to Sec. IV we find evidence of a first-order tran-
sition when lines are merged and e�0, as seen in Fig. 5.
When only drag or gauge field is included in a two-
component system, first-order transitions may emerge.10,11,13
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FIG. 4. �Color online� Phase diagram in the �� ,��d� plane with
competing gauge-field and drag interactions. Results are given for
five different values of the charge e1=e2=e. The bare component
stiffnesses are equal, �1=�2=1, and the system size considered is
323. The gray-shaded area is the prohibited region by the stability
condition, Eq. �8�. Line type corresponds to character of phase tran-
sition as in Fig. 1, that is, charged lines are dashed, neutral lines are
dotted, and merged transition lines are solid. Except for this, lines
are guide to the eyes, only. The inset in the figure shows the sche-
matic structure of the phases in the diagram for all cases with e
�0. Roman numbers denote phases. Phases I, II, and IV are the
same as given in the caption of Fig. 1, whereas V is, similar to
phase III in Fig. 1, a phase with spontaneously broken U�1� gauge
symmetry, and restored global U�1� symmetry, mA�0, �,�1,−1�
=0. However, in V the broken U�1� gauge symmetry is associated
with composite phase sum, whereas in phase III of Fig. 1, it is
associated with the phase of the single ordered component. For the
given ranges of the phase diagram, II is only found for e=2.25 and
e=3 and V is not found for e=3. When e=0, all phase transitions
are neutral and phase II and V are associated with broken global
U�1� symmetry in the phase difference and phase sum, respectively
�Ref. 13�. The results for e=0 are here simulated with a fluctuating
gauge field and coincide �as they should� with the equal stiffnesses
results in Ref. 13 with no fluctuating gauge field.
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Our results show that the first-order character of this phase-
transition line persists also in the case where both of the
interactions are present and competing.

B. Regime where gauge field and drag interactions both favor
formation of similar paired phase

In Fig. 6 we present the phase diagram in the case when
�1=�2=�=1 and e1=−e2=e=1. The separation in neutral
and charged modes is now,

F =
1

2
�� − 2�d

2
���1 − ��2 − 2eA�2 + �� � A�2

+
�

2
���1 + ��2�2� . �39�

The motivation for investigating this particular case is found
in the off-diagonal elements of the matrix in Eq. �18� where
the interactions originating with the gauge field will act in

unison with the bare drag interactions upon switching the
sign of the electric charge in one of the components �in con-
trast to the situation considered in the previous section�.

Consider the simulation results shown in Fig. 6. For com-
parison, we include the results when there is no gauge-field
coupling, e1=e2=0, and when gauge-field coupling competes
with the drag interaction, e1=e2=1. First notice that the
paired phase which appears when charges are opposite, is the
metallic superfluid phase �VI� which now is associated with
spontaneously broken global U�1� symmetry in the phase
sum �and not the phase difference as in Figs. 1, 2, and 4�.
Positive drag will favor �1,−1� vortices as before. However,
because of the change in sign of one of the charges, the
�1,−1� vortices are now associated with the charged sector
of Eq. �39�. The �1,1� vortices are associated with the neutral
mode, and thus the neutral critical point is determined by the
onset of the associated helicity modulus �,�1,1�. The gauge
field renders the �1,−1� vortices the topological objects with
lowest excitation energy. When they proliferate the super-
conducting sector is destroyed. Asymptotically, the associ-
ated phase-transition line is therefore expected to follow the
behavior of a one-component superconductor with ��=2��
−2�d� and effective charge e,

FI→VI
eff = �� − 2�d���� − eA�2 +

�� � A�2

2
. �40�

The remaining condensate will have superfluidity destroyed
via proliferation of individual vortices which asymptotically
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FIG. 5. �Color online� �a� Histograms for the probability distri-
bution of the internal energy per site U /L3 at the critical point when
parameters are �1=�2=�=1, e1=e2=e=1, and �d=0.4. This is a
merged transition point at �� ,��d�= �0.948,0.379� along the critical
line for e=1 in Fig. 4. A pronounced double-peak structure is found
to develop when L increases. �b� Upper panel shows the finite-size
scaling of the latent heat per site �U /L3. This is the distance be-
tween the peaks in �a�. The lower panel shows the finite-size scaling
of the difference in the free energy, �F= �1 /��ln�Pmax / Pmin� taken
between the double-peak value Pmax and the value of the minimum
in between Pmin of the histograms in �a�. For a first-order phase
transition, �F�Ld−1 �Ref. 36�. Ferrenberg-Swendsen reweighting
was used to obtain histograms with peaks of similar height �Ref.
37�.
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FIG. 6. �Color online� Phase diagram in the �� ,��d� plane of
the general model when �1=�2=1 for the case of different charges
e1=−e2=1. These are the black x markers �� � and the line type
denotes charged, neutral, and merged critical lines by dashed, dot-
ted, and solid lines as in Figs. 1, 2, and 4. Roman numbers denote
the phases of this particular case, e1=−e2=1. I. Ordered phase with
spontaneously broken U�1��U�1� symmetry, mA�0, �,�1,1��0.
IV. Normal phase with fully restored U�1��U�1� symmetry, mA
=0, �,�1,1�=0. VI. Spontaneously broken global U�1� symmetry,
with restored U�1� gauge symmetry, mA=0, �,�1,1��0. For com-
parison, the results of the two cases e1=e2=0, 1, from Fig. 4, are
presented. The phases for these two cases follow from the inset and
caption of Fig. 4. The lines are guide to the eyes. The system size
considered is 323. The uncertainties in the position of the phase-
transition lines are smaller than the marker size and are omitted
from the diagram.
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can be mapped onto a one-component superfluid with stiff-
ness ��=� /2,

FVI→IV
eff =

�

4
����2. �41�

This is exactly the same behavior as expected when e=0,
which is also confirmed by simulations in Fig. 6. Note that
there is neither �d nor e dependence of this line.

Figure 6 also shows that when gauge field and drag act in
unison it amounts to a small increase in the region of paired
phase compared to the case when there is only drag interac-
tion. However when interactions compete there is a stronger
effect of the suppression of the corresponding paired phase.
Also note that the cases e1=−e2=1 and e1=e2=1 coincide
when �d=0. This is readily inferred from Eq. �1�, when �d
=0, one model can be mapped onto another by change in
sign of charges ej accompanied by a sign change in one of
the phases �� j.

VI. N-COMPONENT CASE

In the case of N-charged components, the �U�1��N model
can be written as �see Appendix A for notation�

F = 

j=1,. . .,N

� j

2
��� j − ejA�2 +

�� � A�2

2

− 

j,k=1,. . .,N

�d,jk

2
��� j − ejA − ��k + ekA�2. �42�

In the N-component case the phase structure becomes more
complex than in the two-component case. In the simplest
case of different stiffnesses and weak coupling, there can
take place a vortex proliferation in individual fields. That
reduces the symmetry to the �U�1��N−1. On the other hand, in
the case when the gauge-field coupling is dominant there can
take place a proliferation of one-flux-quanta composite vor-
tices while individual vortices remain confined. Consider the
case of all equal charges. Then, in the N-component model
such a vortex has the phase winding ���1=2� ,��2
=2� , . . . ,��N=2��. When charge is sufficiently large, such
a composite object can proliferate while the other kind of
�fractional flux� vortices remain confined. The resulting state
has broken global symmetries associated with all the combi-
nations of the gauge-invariant phase differences �� j −�k�.
This is the N-component analog of the metallic superfluid
state which has no Meissner effect because of restored sym-
metry in the charged sector.

On the other hand, by varying the intercomponent drag
strength along with the charge strength one can make differ-
ent topological excitations the energetically cheapest objects
�such as, e.g., ���1=2�M1 ,��2=2�M2 , . . . ,��N=2�MN�,
with any integers MN=0, 
1, 
2, . . ., etc.�. This also can be
seen from the intervortex interactions derived in Appendix
A. Proliferation of such objects reduces broken �U�1��N sym-
metry down to broken symmetries associated with various
weighted combinations of phases such as �L1�1+L2�2+L3�3
+¯�. Consider, for example, the case where all kinds of
“two-vortex” bound states proliferate, i.e., when the drag

coupling makes the following objects energetically cheapest
to excite, ���1=2� ,��2=−2� ,��3=0 , . . . ,��N=0�,
���1=0 ,��2=2� ,��3=−2� ,��4=0 , . . . ,��N=0� , . . ., ���1
=0 , . . . ,��N−2=0,��N−1=2� ,��N=−2��. When these kind
of topological defects �with two opposite phase windings in
different phases� proliferate, the only remaining broken sym-
metry is associated with the sum of all phases ��1+�2+ ¯
+�N� yielding the effective model,

1

2
�eff����1 + �2 + ¯ + �N� − NeA�2 +

1

2
�� � A�2, �43�

the prefactor N in front of the vector potential A means that
this is a “charge-Ne” superconductor, i.e., in this state only
codirected electrical current of all components is dissipation-
less.

VII. CONCLUSION

We have considered a three dimensional lattice supercon-
ductor model in the London limit with two and N individu-
ally conserved condensates. These condensates interact with
each other by two mechanisms. The first is a dissipationless
Andreev-Bashkin drag term representing a current-current
interaction. The second is a fluctuating gauge field. Intercom-
ponent Josephson coupling is absent on symmetry grounds.
Such models are relevant in a number of physical circum-
stances ranging from the theories of the quantum ordered
states of metallic hydrogen, models of neutron stars, and
were earlier suggested as effective models describing
valence-bond solid to Neel quantum phase transition in the
proposed theories of deconfined quantum criticality.

In the U�1��U�1� case when there is no intercomponent
drag, �d=0, and component charges are equal, e1=e2=e and
there is a disparity of the bare component stiffnesses, we find
that a sufficiently strong coupling to a noncompact gauge
field causes a merger of phase-transition lines. This yields a
direct transition from broken U�1��U�1� to normal state
even when the bare component stiffnesses are unequal. When
the charge e is increased, the merger occurs for a higher
disparity of stiffnesses. However, a further increase in the
coupling beyond a certain critical strength results in a new
splitting of the transition line. This yields a metallic super-
fluid phase. The merger of the U�1� transition lines is asso-
ciated with a competition between different kinds of topo-
logical defects where proliferation of one type of vortices
triggers a preemptive proliferation of another. The result is a
much more complex picture of the behavior of topological
defects in the phase transition than in single-component U�1�
models. The second splitting is due to the fact that increased
coupling to the noncompact gauge field decreases the free
energy per unit length of a bound state of topological defects.
The bound state in question �a composite vortex� has a topo-
logical charge only in the charged sector of the model. This
in turn results in increased suppression of the critical stiff-
ness associated with the charged sector of the theory, which
eventually undergoes a symmetry-restoring phase transition
before the neutral sector.

We find that also when the bare stiffnesses are unequal,
the merged phase transition is first order in character. Note
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that previously first-order transitions were reported in the
U�1��U�1� gauge theory with degenerate stiffnesses,10,11

U�1��U�1� models with a compact gauge field, as well as to
phase transitions in the SU�2� model with noncompact Abe-
lian gauge field.14

In the main part of the paper, we have performed a study
of the phase diagram of the generic U�1��U�1� lattice Lon-
don gauge model featuring both gauge field and direct non-
dissipative drag interactions. We have obtained, through
large-scale Monte Carlo simulations, its phase diagram as a
function of these two generic coupling constants.

For the case where the bare component stiffnesses and
charges are equal, �1=�2=1 and e1=e2=e, we find the for-
mation of two different paired phases as a result of a com-
petition between gauge-field and intercomponent drag cou-
plings. High values of drag produce a composite
superconducting phase associated with a broken local U�1�
gauge symmetry in the phase sum. There, the theory effec-
tively features a doubled electric charge compared with
U�1��U�1� phase, cf. Eq. �37�. At high values of e, the
gauge-field coupling wins over the drag coupling, yielding a
paired superfluid phase �the metallic superfluid� associated
with the order in the gauge-invariant phase difference. In
between these two different phases, there is a region with a
direct transition from broken U�1��U�1� to normal state,
part of which exhibits clear-cut signatures of a first-order
transition, cf. the transition line connecting regions II and V
in Fig. 4.

For comparison, we reported a quantitative study of the
situation where gauge-field mediated intercomponent inter-
actions and intercomponent drag both favor metallic super-
fluid phase. In the final part of the paper we discussed the
physics of states with composite symmetry breakdowns in
the N-component London superconductor.

ACKNOWLEDGMENTS

We acknowledge useful discussions with I. B. Sperstad
and E. B. Stiansen. E.V.H. thanks NTNU for financial sup-
port. E.B. was supported by Knut and Alice Wallenberg
Foundation through the Royal Swedish Academy of Sci-
ences, Swedish Research Council and by the National Sci-
ence Foundation CAREER Award No. DMR-0955902. A.S.
was supported by the Norwegian Research Council under
Grant No. 167498/V30 �STORFORSK�. E.B. and A.S. ac-
knowledge the hospitality of the Aspen Center for Physics,
where part of this work was done.

APPENDIX A: VORTEX INTERACTION IN THE
N-COMPONENT MODEL

In the case of arbitrary number of components N the ac-
tion has the form

Z =� D�1 ¯� D�N� DAe−S,

S =
�

2
� d3r��� � A�r��2 + ��� j�r� − ejA�r��Rjk

����k�r� − ekA�r��� . �A1�

The matrix Rjk is in general given by

Rjk = � j − 

l

�d,jl�� jk + �d,jk, �A2�

where �d,jk is the drag coefficient between components j and
k, obviously, �d,jk=�d,kj and �d,jk=0 when j=k. Following
exactly the same procedure as in the case N=2, we arrive at
the N-component action,

S =
�

2
� d3q�U j�q�Rjk −

elemRljRmk

q2 + m0
2 �Uk�− q� + Ã�q��q2

+ m0
2�Ã�− q�� , �A3�

where the Fourier transform of �� j�r� is denoted by U j�q�
and

m0
2 = ejRjkek. �A4�

This expression is seen to reproduce the case N=2 given in
Eq. �7�. The gauge field is integrated out and the dualization
now follows the same path as previously, yielding

Z = 

m1

¯ 

mN

e−S,

S = 2��2� d3qm j�q�Vjk�q2�mk�− q� , �A5�

where the vortex interactions are given by

Vjk�q2� =
1

q2Rjk −
elemRljRmk

q2 + m0
2 � =

Rjk −
elemRljRmk

m0
2

q2

+

elemRljRmk

m0
2

q2 + m0
2 . �A6�

This is seen to be on precisely the same form as Eq. �18� for
the case N=2. Following Appendix B in Ref. 9, a dualization
of the corresponding two-component lattice model in Eq.
�21� may be performed to yield the exact same result as in
Eqs. �A5� and �A6� where the vortex fields now are defined
on the vertices of the Fourier space dual lattice and q2

→ �Qq�2.

APPENDIX B: GAUGE-FIELD CORRELATOR

By adding source term and Fourier transformation of the
model in Eq. �A1�, the generating functional for deriving the
gauge-field correlator reads

ZJ =� D�1 ¯� D�N� DAe−S,
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SJ =
�

2
� d3q� 1

�
�J�q�A�− q� + A�q�J�− q�� + �U j�q�

− ejA�q��Rjk�Uk�− q� − ekA�− q�� + q2A�q�A�− q�� ,

�B1�

where J�q� are the electric currents that couples linearly to
the gauge field in the source terms. Sum over repeated indi-
ces is assumed. We now proceed similar to Sec. II C by
completing the squares of the gauge field and integrate out

the shifted gauge field Ã�q�=A�q�+ �J�q� /�
−ejRjkUk�q�� / �q2+m0

2� which yields

ZJ =� D�1 ¯� D�Ne−S,

SJ =
�

2
� d3q�−

J�q�J�− q�
�2�q2 + m0

2�

+
J�q�ejRjkUk�− q� + ejRjkUk�q�J�− q�

��q2 + m0
2�

+ U j�q�Rjk −
elemRljRmk

q2 + m0
2 �Uk�− q�� . �B2�

We now employ the constraint � ·J�r�=0, i.e., the electrical
currents are divergence free, such that components parallel to
q are unphysical. Thus, the physical components of J�q� in
the first term of Eq. �B2� are projected out with the trans-
verse projection operator,

PT,� = �� −
qq�

q2 . �B3�

As discussed in Sec. II C, we disregard the longitudinal part
of U j�q� and introduce the Fourier transformed vortex fields
by Eq. �16�. Thus, the generating functional is written as

ZJ = 

m1

¯ 

mN

e−S0−S1,

S0 = 2��2� d3qm j�q�Vjk�q2�mk�− q� ,

S1 =� d3q� i�ejRjk���q�

q2�q2 + m0
2�

�m�,k�q�J�− q� − J�q�m�,k

��− q�� −
J�q�PT,�J��− q�

2��q2 + m0
2� � , �B4�

where Vjk�q2� is given by Eq. �A6� and ��� is the Levi-

Civita symbol. Note that there is an implicit sum over all
indices j, k, , �, and �.

The gauge-field correlators are derived the standard way
by functional derivation of the currents,

�A�q�A��− q�	 =
1

Z0
� �2ZJ

�J�− q��J��q�
�

J=0

= �� �2e−S1

�J�− q��J��q�
�

J=0
� , �B5�

where Z0=ZJ �J=0=
m1
¯
mN

e−S0 and the brackets denote
thermal average with respect to Z0. The functional derivation
is performed by expanding the exponential in series and keep
terms of O�J2�, the only terms that survives both derivation
and J=0, to yield

� �2e−S1

�J�− q��J��q�
�

J=0
=

4�2ejelRjkRlm�������

q4�q2 + m0
2�2

� q�q�m�,k�q�m�,m�− q�

+
PT,�

��q2 + m0
2�

. �B6�

The product ������� is evaluated by the determinant

������� = ��� �� ��

��� ��� ���

��� ��� ���
� , �B7�

to yield

�A�q�A��− q�	 =
PT,�

��q2 + m0
2�

+
4�2ejelRjkRlm

q2�q2 + m0
2�2

� �PT,�mk�q�mm�− q� − m�,k�q�m,m

��− q�	 , �B8�

when Eq. �B6� is inserted in Eq. �B5�. We now find the
gauge-field propagator by letting �→ in Eq. �B8� and sum-
ming over repeated indices, thus

�A�q�A�− q�	 =
4�2ejelRjkRlm�mk�q�mm�− q�	

q2�q2 + m0
2�2

+
2

��q2 + m0
2�

. �B9�

The gauge-field correlator of the two-component discrete
model in Eq. �21� is found similarly to Appendix C in Ref. 9
and the result is as given in Eq. �B9� with q2→ �Qq�2 and
vortex fields defined on the vertices of the Fourier space dual
lattice.
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I. INTRODUCTION

Key properties of physical systems can sometimes be
understood by mapping them to seemingly unrelated ones.
A powerful example of this was provided by Laughlin, who
observed that the squared norm of his ν = 1/M fractional
quantum Hall trial wave function

�(zi) =
N∏

i<j

(zi − zj )
M e−

1
4

∑N
i=1 |zi |2 (1)

(where zi = xi + iyi is a complex coordinate in the two-
dimensional plane) could be expressed as the Boltzmann
weight of a two-dimensional one-component plasma1:

‖�(zi)‖2 =
∫ N∏

i=1
d2zi |�(zi)|2 =

∫ N∏
i=1
d2zi e

−βV1(zi ), (2)

where

V1(zi) = −Q2
1

N∑
i<j

ln |zi − zj | + Q2
1

4M

N∑
i=1

|zi |2 (3)

and Q2
1/T = 2M . This mapping allows properties such as

quasiparticle charge and braiding statistics to be determined
by appealing to the known properties of a one-component
plasma.
Recently, a similar plasma mapping was established2

for Ising-type quantum Hall states, such as the Moore-
Read (MR),3 anti-Pfaffian,4,5 and Bonderson-Slingerland (BS)
hierarchy6 states, which are likely candidates to describe Hall
plateaus in the second Landau level, in particular at filling
fraction ν = 5/2 (Refs. 7–10). In this case, the mapping is to a
two-dimensional (2D) two-component plasma, where the two
species of particles, w and z, carry not only different values

of charge, but also interact through two different interactions,
both of the Coulomb form, so the potential energy is

V (zi ;wa) = V1(zi)+ V2(zi ;wa), (4)

V2(zi ;wa) = −Q2
2

N∑
i<j

ln |zi − zj | − Q2
2

N∑
a<b

ln |wa − wb|

+Q2
2

N∑
a,i

ln |zi − wa|, (5)

where Q2
2/T = 3. The z particles interact with each other

through the first Coulomb-like interaction, V1(zi), given in
Eq. (3) (and so does not depend on the wa coordinates).
Moreover, the z particles interact with each other and with
the w particles through the second Coulomb-like interaction,
through which the w particles also interact with each other,
according to V2(zi ;wa), given in Eq. (5). Note that V2(zi ;wa)
is the 2D Coulomb potential of the usual two-component
plasma (where the two species carry charge Q2 and −Q2,
respectively).
The z particles carry charge Q1 for the first interaction

and charge Q2 for the second interaction. The w particles
carry charge 0 for the first interaction and charge −Q2 for
the second interaction. For a plasma with N particles of each
species, neutrality is satisfied using a uniform background
density of type 1 charge, as in the second term in Eq. (3).
This unconventional plasma may be considered as an ordinary
neutral two-component gas with positive and negative charges
of magnitude Q2, where the positive charges are given an
additional charge of Q1 that is only felt by the other positive
charges and not the negative charges. An illustration of the
interactions between the two species in the system is shown in
Fig. 1.
We are thus led to consider a class of unconventional

plasmas parametrized by Q2
1/T and Q2

2/T . As mentioned

024520-11098-0121/2012/85(2)/024520(15) ©2012 American Physical Society
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FIG. 1. (Color online) Illustration of interactions between the
particles in the 2D system. The w particles only interact by the
second Coulomb-like interaction with charge −Q2, whereas the z

particles carry charge Q1 for the first Coulomb-like interaction and
Q2 for the second Coulomb-like interaction. Thus, the intraspecies
interaction among the w particles, shown in (a), and the interspecies
interaction between w and z particles, shown in (b), are given by
Q2 only, whereas the intraspecies interaction among the z particles,
shown in (c), are determined by Q1 in addition to Q2. Interactions
between the z particles and the neutralizing background are omitted
from the figure.

above, for MR Ising-type states with filling ν = 1/M , the
relevant values are Q2

1/T = 2M and Q2
2/T = 3. In this

plasma mapping, the zi particles in the plasma correspond
to the electrons in the MR wave functions and thewa particles
correspond to screening operators (fictitious particles). The
case Q1 = 0, Q2

2/T = 3 is relevant for the plasma mapping2

of 2D chiralp-wave superconductors.11 We note that whenever
Q1 = 0, our model is a special case of the well-known 2D
two-component plasma of equal and opposite charges.12–15

The screening properties of multicomponent 2D plasmas with
multiple Coulomb interactions of this kind are also important
for other physical systems, such as rotating multicomponent
Bose-Einstein condensates with interspecies current-current
(Andreev-Bashkin) interaction16,17 and some multicomponent
superconducting systems.18–20 In these systems the screening
properties and phase transitions determine superfluid and
rotational responses.
In this paper, we fix temperature to T = 1 and consider

the two most significant values of Q1, namely, Q1 = 0,2. We
investigate the screening and phase transition properties of
these plasmas as a function of varying Q2 by performing a
large-scale Monte Carlo simulation. Here a “screening phase”
means that the system has a screening length which is finite,
and exponentially decaying effective interactions. A system
with logarithmic effective interactions is one where screening
is defined to be absent. As a first check, we reproduce the
well-known result that, for Q1 = 0, there is a Berezinskii-
Kosterlitz-Thouless (BKT) phase transition atQ2

2 = Q2
2,c ≈ 4,

as expected for a 2D two-component plasmaof equal and oppo-
site charges. ForQ2

2 < Q2
2,c, the charges are unbound and the

plasma screens, but forQ2
2 > Q2

2,c, the charges are bound into

dipoles and the interaction is not screened. Thus, for Q2
2 = 3,

the value relevant to 2D chiral p-wave superconductors, the
plasma screens. For Q1 = 2, we again find a BKT phase
transition atQ2

2 = Q2
2,c ≈ 4,with a plasma screening phase for

Q2
2 < Q2

2,c. The first Coulomb-like interaction is deep within
its screening phase and appears to have a negligibly small
effect on the screening of the second interaction. In both cases,
the critical values Q2

2,c are obtained by a finite-size scaling
fit of the Monte Carlo data to the BKT form. Our findings
demonstrate that the unconventional plasma which occurs in
the mapping for both a chiral p-wave superconductor and the
Ising-type quantumHall states is clearly in the screening phase
(for both types of Coulomb interaction) and hence allows one
to discern the non-Abelian braiding properties of these states,
as explained in Ref. 2.
The outline of this paper is as follows. In the introductory

part of Sec. II, we present the model for the unconventional
plasma we will be studying in this paper. In Sec. II A,
we connect this to the Ising-type of quantum Hall states.
In Sec. II B, we explain its connection to two-component,
2D, Bose-Einstein condensates. In Sec. III A, we present a
formulation of the model on a sphere. In Sec. III B, we give
details of the Monte Carlo simulations, and in Sec. III C,
we present our results for the screening properties, as well
as our findings for the character of phase transition between
the dielectric nonscreening phase and the metallic screening
phase. In Sec. IV,we present our conclusions. Technical details
on the derivation of a generalized dielectric constant is given in
Appendix A . In Appendix B, we give a derivation of a relevant
higher-order response function that we use to characterize the
metal-insulator transition. InAppendixC,we present technical
details on the finite-size scaling we have used.

II. MODEL

The canonical partition function of the unconventional
plasma is written

Z =
∫ (

N∏
i=1
d2zi

) (
N∏

a=1
d2wa

)
e−V , (6)

where the potential energy V is given by the 2D Coulombic
interactions

V = Q2
2

N∑
a<b=1

vww(|wa − wb|)

+ (
Q2
1 + Q2

2

) N∑
i<j=1

vzz(|zi − zj |)

+Q2
2

N∑
a,i=1

vzw(|zi − wa|)+ Vz,BG. (7)

Similar to the study of the 2D two-component neutral Coulomb
gas,12–15,21 we introduce a short-range hard-core repulsion
between all charges in the system. Treating all charges as
hard disks with the same diameter d that limits the range of
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the hard-core repulsion, the interaction between charges of the
same species is

vzz(|r|) = vww(|r|) =
{ ∞, |r| � d,

− ln |r|, |r| > d,
(8)

and the interaction between charges of different species is

vzw(|r|) =
{ ∞, |r| � d,

ln |r|, |r| > d.
(9)

In Eq. (7), wa are position vectors for the particles of
component w, and zi are position vectors for the particles
of component z. To ensure neutrality, the term Vz,BG includes
the interaction of the Q1 charges of type 1 for the z particles
with a neutralizing background charge density. In Ref. 2, this
background is a uniform negatively charged 2D disk with
charge density qBG1 = −NQ1/A, whereN/A = 1/2πM , that
yields

Vz,BG = 1

2

N∑
i=1

|zi |2. (10)

The particle-background and the background-background
interaction also yields uninteresting constant terms, which are
disregarded in Eq. (7).
We note that whenQ1 = 0 we have the 2D two-component

neutral Coulomb plasma, which is well-studied both analyt-
ically and numerically.12–15,25–30 At low dipole density, this
system will undergo a BKT transition, which is a charge-
unbinding transition from a low-temperature state where
charges of opposite signs form tightly bound dipoles to a
high-temperature state in which a finite fraction of charges are
not bound in dipoles, but rather form a metallic state. In the
low-temperature phase, this Coulomb gas is an insulator and
the dielectric constant ε (see, for instance, Refs. 26, 31, and 32
and Appendix A for a formal definition of ε) is finite. In the
high-temperature phase, the existence of free charges yields
a conductive gas with an infinite value of ε. At the critical
temperature Tc, when tightly bound dipoles start to unbind,
there is a universal jump in the inverse dielectric constant
from a nonzero value in the insulating phase to zero in the
metallic phase,

ε−1 =
{
4Tc, T → T −

c ,

0, T → T +
c .

(11)

The screening properties that follow are that the Coulomb gas
is able to perfectly screen test charges in the metallic phase
when there are free charges in the system, whereas there is no
screening in the insulating dielectric phase. In this work, we
focus our attention on the low-dipole-density regime, so we
do not go into detail on the physics in the 2D two-component
neutral Coulomb gas at higher densities. However, we note
that when density is increased, the critical point of the BKT
transition is shifted toward lower temperatures.14,15,28,29

Another well-studied case is when Q2 = 0, for which
the model reduces to the 2D one-component plasma (for
the z particles only). Early numerical studies of this system
found a weak first-order melting transition at Q2

1/T ≈ 140
from a state where the charges form a triangular lattice with
quasi-long-range translational and long-range orientational

order to a fluid plasma state.33–36 These results were, in a
sense, contrasting with the defect-mediated melting theory of
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) that
predicts melting from a solid to a liquid via two BKT tran-
sitions and an intermediate hexatic phase with no translational
order and quasi-long-range orientational order.12,37–39 Other
studies of 2Dmelting point in favor of the KTHNY theory,40–43

suggesting that the nature of melting transition may depend on
details in the interatomic potential or that finite-size effects and
lack of equilibration might lead to erroneous conclusions in
earlier works. There are also studies that argue for the absence
of a phase transition to a low-temperature solid phase in the 2D
one-component plasmawith repulsive logarithmic interactions
because the crystalline state would be unstable to proliferation
of screened disclinations for any T > 0 (Refs. 44–47).

A. Ising-type quantum Hall states

The unconventional 2D two-component plasma studied
here is mapped to inner products of trial wave functions for the
MR quantum Hall states using conformal field theory (CFT)
methods, as explained in Ref. 2. In particular, this mapping
utilizes the Coulomb gas description of CFTs48,49 together
with a procedure for replacing holomorphic-antiholomorphic
pairs of contour integrals in screening charge operators for 2D
integrals.2,50

The MR states’ wave functions can be written as a product
of correlation functions of fields from the Ising and U(1)
CFTs. In particular, the MR ground-state wave function for
N electrons is

�(z1, . . . ,zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj )
M e−

1
4

∑N
i=1 |zi |2 ,

(12)

where the Pfaffian of an antisymmetric matrix A is given by

Pf(Ai,j ) ≡ 1

N !!

∑
σ∈SN

sgn(σ )
N/2∏
k=1

Aσ (2k−1),σ (2k). (13)

Here SN is the symmetric group, σ is one of the permutation
elements in SN , and sgn(σ ) is the signature of σ . The Pf( 1

zi−zj
)

portion of this wave function is produced from the correlation
function of ψ fields in the Ising CFT, while the Laughlin-type
portion

N∏
i<j

(zi − zj )
M e−

1
4

∑N
i=1 |zi |2 (14)

is produced from the correlation function of vertex operators
in the U(1) CFT.
The Laughlin-type portion of the MR wave functions can

be mapped to charges of type 1, similar to Laughlin’s plasma
mapping. The mentioned CFTmethods provide identities such
as ∣∣∣∣Pf

(
1

zi − zj

)∣∣∣∣
2

=
∫ N∏

a=1
d2wa

N∏
a<b

|wa − wb|3

×
N∏

i<j

|zi − zj |3
N∏
a,i

|wa − zi |−3, (15)
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which allow the Pfaffian portion of the MR wave functions to
be mapped to charges of type 2. This allows one to write the
norm of the MR ground-state wave function as the partition
function of the unconventional 2D two-component plasma of
Eq. (4),

‖�(z1, . . . ,zN )‖2 =
∫ N∏

i=1
d2zi |�(z1, . . . ,zN )|2

=
∫ N∏

a=1
d2wa

N∏
i=1
d2zi e

−V , (16)

with Q2
1 = 2M and Q2

2 = 3. More generally, one can also
construct a similar, but more complicated mapping between
inner products of wave functions of the MR states with
quasiparticles, as explained in Ref. 2. In this case, the
quasiparticles map to fixed “test” objects in the plasma that
carry electric charge of type 1 and can carry both electric
and magnetic charges of type 2 (and also changes the number
of screening operators, that is, w particles in the plasma, to
maintain neutrality). (The charges of types 1 and 2 carried by
the quasiparticles are typically some fractions of the charges
Q1 andQ2 carried by the z particles.)
Strictly speaking, the right-hand side of Eq. (15) is divergent

forQ2
2 = 3 (since the integrand diverges as |wa − zi |−3 as aw

particle approaches a z particle). It can be made well-defined
(and equal to the left-hand side) by replacing |wa − zi |−3
with |wa − zi |−α , evaluating the integrals for α < 2 and then
analytically continuingα to 3. On the other hand, we regularize
the divergences of Eq. (16) in this paper by using a hard-core
repulsion that forbids the particles from approaching each
other closer than a distance d, that is, replacing V in this
expression with that of Eq. (7). It should not matter how we
regularize the divergence in Eq. (16) as long as the probability
for z particles and w particles to sit right on top of each other
has measure zero. As we see in this paper, this is true for
Q2
2 < Q2

2,c ≈ 4, in which case the configurational entropy
to be gained by having z particles and w particles separate
overcomes the energy gained by having them on top of each
other. We refer to this as an “entropic barrier” for putting z

particles and w particles on top of each other. In contrast,
in Eq. (15), where only the wi’s are integrated over and the
zi coordinates are fixed, regularization by a simple hard-core
repulsion does not appear to be a suitable alternative to analytic
continuation. In this case, since the zi coordinates are fixed, the
entropic barrier is lower. Equivalently, there are fewer integrals
to compensate for the inverse powers. Thus, in Eq. (15), a
simple hard-core cutoff will not reproduce the left-hand side,
and onemust use the analytic continuation procedure described
above.

B. Two-component rotating Bose-Einstein condensate
in two dimensions

In a rotating frame, a Bose-Einstein condensate in the
London limit is described by the uniformly frustrated XY

model,

H = ρ

2

∫
d2r

[
∇θ (r)− m

h̄
�(r)

]2
, (17)

where ρ = h̄2n/m for a condensate with mass m, phase θ ,
density n, and �(r) = � × r where � = �ẑ is the angular
velocity of the rotation. In 3D, this model is frequently used
to describe the melting of vortex-line lattices in extreme
type II superconductors and superfluids.51–54 By a duality
transformation, the model in Eq. (17) can be rewritten in terms
of vortex fields l to yield55,56

H = 1

2

∫
d2q[l(q)− (2π )2f δ(q)]

ρ

q2

× [l(−q)− (2π )2f δ(−q)], (18)

where f = 2�/φo is the vortex number density and φ0 =
2πh̄/m is the fundamental quantum unit of vorticity. This is a
one-component 2D classical Coulomb plasma where charges
correspond to nonzero values in the vortex field l(r) and the
quantity f now plays the role as the neutralizing background
number density.
Extending to two components, a model for a rotating two-

component Bose-Einstein condensate with a generic Andreev-
Bashkin drag interaction57–59 reads

H = 1

2

∫
d2r

{ ∑
i=1,2

mini

(
h̄∇θi

mi

− �

)2

−√
m1m2nd

(
h̄∇θ1

m1
− h̄∇θ2

m2

)2 }
, (19)

where now m, n, and θ is given an index that denotes
the component and nd is the drag density. This model has
recently been studied in three dimensions.16,17 By a duality
transformation, we arrive at the following 2D Coulomb
plasma:

H = 1

2

∫
d2q[li(q)− (2π )2fiδ(q)]

Rij

q2

× [lj (−q)− (2π )2fjδ(−q)], (20)

where fi = 2�/φ0,i , φ0,i = 2πh̄/mi , li is the vortex field of
component i,

R = h̄2

⎛
⎝ 1

m1

(
n1 −

√
m2
m1

nd

)
1√

m1m2
nd

1√
m1m2

nd
1

m2

(
n2 −

√
m1
m2

nd

)
⎞
⎠, (21)

and an implicit sum over repeated component indices i, j is
assumed. By setting h̄ = mi = 1 such that f1 = f2 = f , and
absorbing a factor 2πβ in the density coefficients, we see
that the two-component Bose-Einstein condensate in Eq. (19)
with n1 = 0, n2 = Q2

1, and nd = −Q2
2 corresponds to the

unconventional two-component Coulomb plasma in Eq. (7).
Thus, the unconventional Coulomb plasma has a counterpart
in a two-component Bose-Einstein condensate with a negative
nondissipative drag interaction. However, note that in order
to preserve a fixed number of charges when going from the
plasma description in Eq. (7) to the phase description in
Eq. (19), we have to fix the number of vortices to only include
rotationally induced vortices. In principle, in theBECproblem,
the systemcan thermally excite vortex-antivortex pairs, but that
process can be substantially suppressed by going beyond the
phase-only model in Eq. (19) and introducing an additional
energy penalty associated with vortex cores.

024520-4



SCREENING PROPERTIES AND PHASE TRANSITIONS IN . . . PHYSICAL REVIEW B 85, 024520 (2012)

III. MONTE CARLO SIMULATIONS

A. Considerations for a spherical surface

Computer simulations of Coulomb interactions are gener-
ally difficult to perform due to the long-ranged nature of the
interaction. Several techniques have been presented to deal
with the complications that arise.60–62 We have performed
large-scale Monte Carlo simulations of the system described
in Eqs. (6) and (7) on a spherical surface. For other simulations
on a spherical surface, see Refs. 14, 34, 43–46, and 63. This
may seem like a brute-force approach since the workload of
the simulations scales as O(N2). However, the benefit is that
there are no boundaries, the implementation is relatively easy,
and there is no need to constrain the particles to move on a
lattice. However, onemust also be aware that simulation results
may differ due to effects induced by topology. For instance,
the triangular crystalline ground state of a 2D one-component
plasma will necessarily include a number of dislocations and
disclinations on a sphere. These defects are not present in the
ground state when the one-component plasma is located on
the plane.45,64

We consider a sphere with radius R, with origin defined as
the center of the sphere such that all particle position vectors
wa and zi are radial vectors with fixed magnitude R in three
dimensions. The distance between the particles is measured
along the chord14,63

|ri − rj | = 2R sin

(
ψij

2

)
, (22)

where

ψij = arccos(r̂i · r̂j ) (23)

is the chord angle between the two particles at ri and rj with
unit vectors r̂i and r̂j , respectively. We may now rewrite the
model in Eq. (7) on the surface of a unit sphere as

V = 1

2

[
Q2
2

N∑
a<b=1

ṽww(ŵa · ŵb)+ Q2
2

N∑
a,i=1

ṽzw(ẑi · ŵa)

+ (
Q2
1 + Q2

2

) N∑
i<j=1

ṽzz(ẑi · ẑj )

]
, (24)

with interactions given by

ṽzz(r̂i · r̂j ) = ṽww(r̂i · r̂j )

=
{ ∞, ψij � d/R,

− ln(1− r̂i · r̂j ), ψij > d/R,
(25)

and

ṽzw(r̂i · r̂j ) =
{ ∞, ψij � d/R,

ln(1− r̂i · r̂j ), ψij > d/R.
(26)

Note that the interaction Vz,BG in Eq. (7) between the
neutralizing background and the excess charge of type 1
becomes a constant term on the sphere, so we disregard it
in Eq. (24).
The dimensionless density of particles on the sphere is given

by the packing fraction η = Ns/A, where s = A sin2(d/4R)
is the area of a hard disk of diameter d on the sphere of area
A = 4πR2. In the simulation, we use a unit spherewithR = 1.

As explained in Appendix A, in order to account for
screening properties when particles interact by two interac-
tions simultaneously, we measure a general inverse dielectric
constant, ε−1

(a1,a2)
, given by

ε−1
(a1,a2)

= a21ε
−1
11 + 2a1a2ε−1

12 + a22ε
−1
22 , (27)

where

ε−1
μν = δμν − π

A
〈Mμ · Mν〉, (28)

is a type-specific inverse dielectric constant, a1 and a2 are
type-dependent weights for the contributions of the different
ε−1
μν (which are determined by the values of both types of
charge carried by the test particles for which screening is being
measured), and whereM1 andM2 are the dipole moments for
charges of type 1 and type 2, respectively, given by

M1 = Q1R

N∑
i=1

ẑi , (29)

M2 = Q2R

(
N∑

i=1
ẑi −

N∑
a=1

ŵa

)
. (30)

Note that the type 2 inverse dielectric constant, ε−1
22 , is

the same dielectric constant as was used when studying
the two-component neutral Coulomb plasma on a spherical
surface.14,63 In addition to measuring the screening properties,
the inverse dielectric constant may be used to identify the
existence of a BKT transition if it exhibits a universal
discontinuous jump at the critical point, according to Eq. (11).
In addition to the inverse dielectric constant, we also

measure the fourth-order modulus, γ (Refs. 65 and 66).
This quantity may be used to verify a discontinuous jump
in the inverse dielectric constant without making any a priori
assumptions regarding the character of the phase transition. As
explained in detail in Appendix B, a negative γ at the phase
transition in the thermodynamic limit implies that the inverse
dielectric constant jumps to zero discontinuously. As for the
inverse dielectric constant, we use a general fourth-order
modulus to account for the two interactions,

γ(a1,a2) =
2∑

μ,ν,ρ,σ=1
aμaνaρaσ γμνρσ , (31)

where

γμνρσ =
(

π

R2

)2
[〈MμMν〉〈MρMσ 〉

−3〈Mμ,zMν,zMρ,zMσ,z〉]. (32)

The explicit derivation of Eqs. (31) and (32) is given in
Appendix B .

B. Details of the Monte Carlo simulations

The Monte Carlo updating scheme consists of trial moves
for one or two particles at the same time, to a randomly chosen
new location on the surface of the sphere. The change in the
action Eq. (24) was calculated and the move was accepted or
rejected according to the Metropolis-Hastings algorithm.67,68

The trial moves were performed in three different ways. The
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firstwaywas tomove a single particle to a new random location
uniformly over the total surface. The second way was to move
a single particle to a new random location uniformly within
some short distance, adjusted to yield a high acceptance rate.
The last trial move was to move a nearest-neighbor pair of one
z particle and onew particle together, to a random new location
uniformly within some short distance, adjusted to yield a high
acceptance rate, and with a random new orientation. In order
to straightforwardly ensure detailed balance, we additionally
required the two particles to mutually be nearest neighbors in
both the old and the new configuration. To ensure ergodicity,
the pair move must be mixed with a number of single-particle
moves. All of these moves were found to be essential in order
to have fast thermalization as well as short autocorrelation
times for the cases considered here. Pseudorandom numbers
were generated by the Mersenne-Twister algorithm69 and the
sampled data were postprocessed using Ferrenberg-Swendsen
reweighting techniques.70,71

C. Results

Motivated by its relevance to the fractional quantum Hall
effect (in particular, the ν = 1/2 MR state), we focus on
analyzing the screening properties of this system at Q1 = 2
(M = 2)2. We also perform simulations in the neutral two-
component Coulomb gas case at Q1 = 0 (M = 0) in order to
provide a check on the numerics, as well as for comparison
with theQ1 = 2 case. Furthermore, the system is also studied
for a number of values of the packing fraction, η to extract the
screening properties in the low-density limit.
For the two cases of Q1 and the values of Q2 studied

below, the quantities ε−1
11 and ε−1

12 were found to be zero, within
statistical uncertainty and except for a small finite-size effect
when system size N was small. Thus, we focus on the results
for ε−1

22 as this was the only term in Eq. (27) that contributed
to the general inverse dielectric constant, ε−1

(a1,a2)
. This means

that screening properties of particles that interact with charges
of both types, are determined by the charges of type 2, only.
Note also that when ε−1

11 = 0, the unconventional Coulomb
plasma will screen test particles with charge of type 1,
only.
In Fig. 2, we plot ε−1

22 in the relevant range ofQ
2
2 when the

two-component neutral Coulomb gas (Q1 = 0) is known to
have a BKT transition. At small values ofQ2

2, the system is in
the screening phase where ε−1

22 ≈ 0. The reason for the ≈ sign
rather than an equal sign is that there is amainly size-dependent
offset from ε−1

22 = 0, because perfect screening is not possible
with a small number of charges. For largeQ2

2 there is a phase
in which charges of different components form tightly bound
dipoles and the Coulomb gas turns into an insulator where
ε−1
22 ≈ 1. Here there is a mainly density-dependent offset from

ε−1
22 = 1 because the polarizability of the system increases
with density, since the hard-core diameter d yields a minimum
distance between the charges in the dipoles. The plot in Fig. 2
indeed shows that the charge-unbinding transition is dependent
on the number of particles in the system, as well as the size of
the hard disk charges. When N increases, the onset of a finite
value in ε−1

22 moves to higher values of Q2
2. However, when

we reduce η, the value ofQ2
2 at onset of ε

−1
22 becomes smaller.

N = 200
N = 100
N = 50

η = 5 · 10−6η = 5 · 10−5η = 5 · 10−4

Q2
2

−1 2
2

4.543.532.521.51

1

0.8

0.6

0.4

0.2

FIG. 2. (Color online) Plot of the inverse dielectric constant ε−1
22

for the model in Eq. (7) withQ1 = 0 and 1 � Q2
2 � 4.8. Results are

presented for three different values of packing fraction η and three
different values of system size N .

Thus, this figure illustrates that understanding the behavior in
both limits N → ∞ as well as η → 0 is not straightforward.
In Fig. 3, results for the same case as in Fig. 2 are presented,

but with Q1 = 2. The results for Q1 = 0 and Q1 = 2 are
very similar, both qualitatively and quantitatively. Thus, the
screening properties with respect to charge of type 2 of
the unconventional Coulomb plasma when Q1 = 2 are very
similar to the well-studied two-component neutral Coulomb
gas.
To get a qualitative picture of the type 2 charge binding

of the unconventional plasma, three snapshots of the charge
configuration when Q1 = 2, η = 5× 10−4, and N = 200 is
given in Fig. 4. When Q2

2 = 1, deep into the screening phase
of the system (see Fig. 3), most charges are free and only
a small fraction of the charges may be said to form closely
bound dipoles. At Q2

2 = 3, which is the relevant value for the
Ising-type quantum Hall states, the system is closer to the

N = 200
N = 100
N = 50

η = 5 · 10−6η = 5 · 10−5η = 5 · 10−4

Q2
2

−1 2
2

4.543.532.521.51

1

0.8

0.6

0.4

0.2

FIG. 3. (Color online) Plot of the inverse dielectric constant ε−1
22

for the model in Eq. (7) withQ1 = 2 and 1 � Q2
2 � 4.8. Results are

presented for three different values of packing fraction η and three
different values of system size N .
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Q2
2 = 5

Q2
2 = 3

Q2
2 = 1

FIG. 4. (Color online) Snapshots of the charge configuration at
Q2
2 = 1,3,5whenQ1 = 2, η = 5× 10−4, andN = 200. Redmarkers

(solid circles) are w particles, while blue markers (open circles) are
z particles. The marker diameters are about 5 times larger than hard
disk diameter d .

unbinding transition and a larger fraction (though not all) of
the particles are bound in dipoles. AtQ2

2 = 5, deep in the type
2 insulating region, all particles form closely bound dipoles
and the ability to screen type 2 test charges is lost.
Although it is clear from Figs. 2 and 3 that there is a

transition between a screening phase and an insulating phase,
it is not easy to spot the transition point in the curves in these
figures, which look rather smooth. Therefore, we must make
some assumptions about the nature of the transition in order
to identify it.

Q1 = 2
Q1 = 0

η

Q
2 2
,c

0.0020.00150.0010.00050

5

4.8

4.6

4.4

4.2

4

3.8

FIG. 5. (Color online) The critical value of Q2
2 found by curve

fitting to Eq. (33) with two free parameters. Results are presented for
four values of the packing fraction η and for Q1 = 0 and Q1 = 2.
Fourteen system sizes in the range 20 � N � 2000 have been used.

For the case Q1 = 0, where the transition is known to be
a BKT transition, it is natural to follow a method that was
proposed in Ref. 72. At the BKT critical point, ε−1

22 scales
logarithmically with N for large N . It takes the following
finite-size scaling form:

ε−1
22 (N ) = ε−1

22 (∞)
[
1+ 1

ln(N )+ C

]
, (33)

where ε−1
22 (∞) is the value of ε−1

22 (N ) when N → ∞ and C

is an undetermined constant. Least-squares curve-fitting to
Eq. (33) may be performed for various sizes N with C and
ε−1
22 (∞) as free parameters at fixed values of Q2

2. The critical
point is then estimated as the value of Q2

2 which exhibits the
best fit to Eq. (33). Additionally, for a BKT transition, the
value of ε−1

22 (∞) obtained at the best fit, must correspond with
the universal jump condition, Q2

2,cε
−1
22 (∞) = 4 [cf. Eq. (11)].

Details of this procedure are given in Appendix C .
For Q1 = 2, motivated by the similarity between Figs. 2

and 3, we assume that the transition is also a BKT transition.
We again look for the Q2

2 value at which the system best fits
Eq. (33). Since we are able to find a value at which there is
a very good fit to this form, we conclude that our assumption
was justified.
In Fig. 5, we present results for the critical couplingQ2

2,c for
four different densities η = 0.0002,0.0005,0.001,0.002 for
Q1 = 0 and Q1 = 2. The results for Q1 = 0 reproduce the
main features of the two-component Coulomb gas, namely,
that Q2

2,c = 4 when density is low and that Q2
2,c increases

when density increases. These results also correspond well
with earlier results in Refs. 14 and 15. WhenQ1 = 2, we find
that the behavior of the critical temperature is very similar to
the Q1 = 0 case, within statistical uncertainty. In addition, in
Fig. 6, results for the corresponding value of the parameter
ε−1
22 (∞) at the critical point is presented. The values for
both Q1 = 0 and Q1 = 2 are close to the universal value of
Q2
2,cε

−1
22 (∞) = 4 for the BKT transition. Since the results for

Q1 = 0 (the standard Coulomb-plasma BKT-transition case)
and Q1 = 2 are essentially the same, we suggest that the
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Q1 = 2
Q1 = 0

η

Q
2 2
,c
−1 2
2
(∞

)

0.0020.00150.0010.00050
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4.2
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3.8
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FIG. 6. (Color online) The universal jump value determined by
curve fitting to Eq. (33) with two free parameters. Results are
presented for four values of the packing fraction η and for Q1 = 0
andQ1 = 2. Fourteen system sizes in the range 20 � N � 2000 have
been used.

charge-unbinding transition for the unconventional Coulomb
plasma indeed is a BKT transition in the sense that the type 2
inverse dielectric constant ε−1

22 exhibits logarithmic finite-size
scaling and a discontinuous jump with a universal value, as
predicted by the BKT renormalization equations.
As an additional verification of the discontinuous jump in

the BKT transition, we also study the fourth-order modulus
γ(a1,a2), presented in Eqs. (31) and (32). As for the general
inverse dielectric constant, we found that the only contributing
term in the sum of Eq. (31) is the term with all indices equal
to 2, γ2222. Illustrating the typical behavior of this quantity,
results for γ2222 for a number of sizes when η = 5× 10−4
andQ1 = 2 are presented in Fig. 7. Typically, γ2222 exhibits a
dip at a value of the coupling that can be associated with the
transition. As explained in Appendix B, a negative and finite
dip in the limit when N → ∞ signals the discontinuous jump
in ε−1

22 that is a characteristic feature of a BKT transition. To
this end, the size of the dip in γ2222 is plotted as a function

N = 800
N = 400
N = 200
N = 100
N = 50

Q2
2

γ
2
2
2
2

4.543.532.5

0

-5

-10

-15

-20

FIG. 7. (Color online) The fourth-order modulus γ2222 as a
function of coupling Q2

2 for five different system sizes N , when
Q1 = 2 and η = 5× 10−4.

0.010.0010.0001
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18

16

Q1 = 2
Q1 = 0

N−1

|γ 2
2
2
2
,m

in
|

0.0060.0050.0040.0030.0020.0010

18

16

14

12

10

8

6

4

2

0

FIG. 8. (Color online) The size of the dip in the fourth-order
modulus |γ2222,min| as a function of inverse system size N−1. The
packing fraction is η = 5× 10−4, and results forQ1 = 0 andQ1 = 2
are shown. The inset shows the results on a log-log scale. System
sizes in the range 60 � N � 10 000 are used.

of inverse system size N−1 in Fig. 8 in the case when η =
5× 10−4. The size of the dip |γ2222,min| decreases when N

increases toward the thermodynamic limit. However, assuming
power-law dependence of |γ2222,min|, the positive curvature in
the log-log plot indicates a nonzero value of |γ2222,min| when
N → ∞, verifying a discontinuous jump in ε−1

22 , as expected
for a BKT transition. Again, we find that the results forQ1 = 2
are very similar toQ1 = 0.
We also associate the coupling value of the minimum in the

dip in γ2222 with the critical point and the results are shown
in Fig. 9 in the case when η = 5× 10−4. Clearly, the position
of the dip moves toward higher values ofQ2

2 when the system
size increases. However, the evolution toward N−1 = 0 is too
slow to make a sharp determination ofQ2

2 in this limit, as also
noted before.65,66 With this method, we are not able to verify
thatQ2

2,c ≈ 4.4, as was found above in Fig. 5 for this density.

0.010.0010.0001

4

3

Q1 = 2
Q1 = 0

N−1

Q
2 2

0.0060.0050.0040.0030.0020.0010

4.5

4

3.5

FIG. 9. (Color online) The coupling value at the minimum of the
dip in the fourth-order modulus as a function of inverse system size
N−1. The packing fraction is η = 5× 10−4, and results for Q1 = 0
andQ1 = 2 are shown. The inset shows the results on a log-log scale.
System sizes in the size 60 � N � 10 000 are used.
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0.0020.00150.0010.00050
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4.2

4

3.8

FIG. 10. (Color online) The critical value of Q2
2 found by curve

fitting to Eq. (33) with one free parameter. Results are presented for
five values of the packing fraction η and for two values ofQ1.

By assuming a universal value of the discontinuous jump
for a BKT transition, we may determine the critical point of
the BKT transition using Eq. (33) with only one free parameter
as described in Appendix C . The results are given in Fig. 10.
The critical values ofQ2

2 are very similar to what was obtained
in Fig. 5, but are determined with greater accuracy. For both
cases, the critical point appears at higher Q2

2 when density
increases. However, Q2

2,c is systematically lower at Q1 = 2
compared toQ1 = 0.
For the range of small densities that we have investigated,

the Monte Carlo results for the unconventional Coulomb
plasma with Q1 = 2 are rather conclusive. This plasma un-
dergoes a charge-unbinding transition that should be regarded
as a BKT transition in the sense that the inverse dielectric
constant of type 2 exhibits the well-established signatures of
a BKT transition. Specifically, there is a density-dependent
critical point Q2

2,c that separates a phase where particles of
different species form bound pairs at high values of Q2

2 from
a phase where particles of different species are free at low
values of Q2

2. For test particles carrying type 2 charge, the
high-Q2

2 phase is unscreened, whereas the low-Q
2
2 phase is

screened.
The results presented so far show that the behavior when

Q1 = 0 and Q1 = 2 are quite similar. However, in the phase
with bounded dipoles, when charges of type 2 are not screened,
the cases Q1 = 0 and Q1 = 2 behave rather differently. We
first consider the case when Q1 = 0. When charges are
bound, this system consists of N dipoles that interact by
dipole-dipole interactions. Consequently, these dipoles tend to
form clusters with increased dipole strength, that is, higher
values of the coupling or the density.15,29 In Fig. 11, a
snapshot of a Q1 = 0 configuration with N = 200, Q2

2 = 7,
and η = 2× 10−3 is shown, where some dipoles are seen to
form clusters. In the case whenQ1 = 2, the type 2 interactions
are effectively reduced to dipole-dipole interactions, similar
to the Q1 = 0 case. However, the logarithmic interactions of
type 1 charges remain. Neglecting the weaker dipole-dipole
interactions among dipoles of type two, the dipoles now

Q1 = 2

Q1 = 0

FIG. 11. (Color online) Snapshots of the charge configuration at
Q1 = 0 andQ1 = 2 whenQ2

2 = 7, η = 2× 10−3, andN = 200. Red
markers (solid circles) arew particles and blue markers (open circles)
are z particles. The marker diameters are about 2.5 times larger than
hard disk diameter d .

essentially form elementary constituents with charge Q1

interacting logarithmically. Effectively, the two-component
unconventional plasma is reduced to a one-component plasma
where the particles carry charge of type 1 and a (neutral)
dipole of type 2. When Q1 = 2 this plasma is in the liquid
state; that is, the tightly bound dipoles do not form an ordered
state with a broken translational or orientational symmetry.
Also, the logarithmic interaction of type 1 charge will prevent
the dipoles from forming clusters. A snapshot of the state
with bounded dipoles when Q1 = 2 is shown in Fig. 11
and the qualitative difference from the case when Q1 = 0
is clearly seen. Quantitatively, this is seen by the behavior
of ε−1

22 , presented in Fig. 12. When Q1 = 0, dipole-dipole
interactions at short distances will reduce the fluctuations in
the dipole moment resulting in a weakly increasing ε−1

22 inside
the bounded phase. On the other hand, when Q1 = 2 the
logarithmic interaction of type 1 charge will keep the dipoles at
some distance from each other, thus the fluctuations of a dipole
are not much restricted by the surrounding dipoles. Moreover,
the strength of the dipoles increases with Q2

2 and a reduction
in ε−1

22 follows. The qualitative difference between the cases
Q1 = 0 andQ1 = 2 is an effect due to theminimum separation
of charges at finite density originating with the hard cores, and
it will vanish in the limit η → 0.
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FIG. 12. (Color online) Plot of the type 2 inverse dielectric
constant for Q1 = 0 and Q1 = 2 with N = 100, η = 5× 10−3 in
the range 3 � Q2

2 � 12.

IV. CONCLUSIONS

We have shown that the unconventional Coulomb plasma
analyzed in this paper, where particles can carry two distinct
types of Coulombic charge, will screen test particles with
charges of both types for the case most relevant for the plasma
analogy of Ising-type fractional quantum Hall states, that is,
when there is one species of particles that carry type 1 charge
Q1 = 2 (M = 2) and type 2 charge Q2 = √

3 and another
species of particles that carry only type 2 charge−Q2. For test
particles carrying both types of charge, screening will cease
to occur at Q2

2 = Q2
2,c ≈ 4 in the limit of small density, when

Q1 = 2. For higher values of Q2
2, the system will continue to

screen test particles that carry only type 1 charge, but will not
be able to screen test particles with type 2 charge.
One striking feature of these results is that Q2

2,c and the
critical behavior at this point hardly seem to depend on Q1

when density is small. This implies that the role of the type 1
interaction (which corresponds, in quantumHallwave function
language, to the Laughlin-Jastrow factor which accounts for
the filling fraction of the system) is simply to maintain the
zi particles in a liquid state. Since its critical point is very
far away, the type 1 interaction leads to a weak, smooth
dependence onQ1. The physics in the transition atQ2

2,c is then
dominated by the type 2 interaction. We therefore conjecture
that our results hold for all reasonable values of M , not only
M = 0 and 2, the cases which we have studied here, but also
M = 1 (which may be relevant to ultracold trapped bosons)
and larger values of M , possibly all the way up to or near
the critical value Mc ≈ 70, below which the one-component
plasma of Eq. (3) is in the metallic phase.33–36
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APPENDIX A: GENERALIZING THE INVERSE
DIELECTRIC CONSTANT FOR MULTIPLE

INTERACTIONS

In the unconventional plasma with two components that
interact with two different Coulomb-like interactions, we are
free to insert test particles that may interact with different
charge strength through both interactions simultaneously. Here
we generalize the inverse dielectric constant for such test
particles. For consistency, we also perform the derivation on
the surface of a sphere by expanding in spherical harmonics.
For a similar derivation, but with one interaction only and on
a planar geometry, see Refs. 31 and 32.
When an external test charge field is inserted in the system,

the free energy in the system will change according to the
effective interaction among the test charges,

�F [δq] =
∫
d�

∫
d�′ ∑

μ,ν

δqμ(θ,φ)U eff
μν (r̂ · r̂′)δqν(θ

′,φ′).

(A1)

Here the effective interaction between charges of typeμ and ν,
is assumed to be of the formU eff

μν = U eff
μν (r̂ · r̂′), δqμ(θ,φ) is the

test charge field for charges of type μ, and the integrations are
over the solid angle d�. To correctly model the test particles
as carrying charge of different types, we write

δqμ(θ,φ) = aμ δq ρ(θ,φ), (A2)

where aμ is a type-dependent factor that accounts for the
relative strength of charges of different types. For instance,
the choice (a1,a2) = (Q1/MQ2,1) = (

√
2/3M,1) describes

the test charges corresponding to quasiholes in the MR state,
as given in Eq. (125) in Ref. 2, which map to particles in the
plasma that carry charge Q1/2M = 1/

√
2M of type 1 and

chargeQ2/2 = √
3/2 of type 2. Moreover, in Eq. (A2) δq is a

common charge factor for all types such that aμ δq is the total
charge of type μ carried by a test particle (which means that
δq = √

3/2 in the example above), and ρ(θ,φ) is the density
field of the test particles.
It is now convenient to expand the interaction and density

fields in spherical harmonics. The test particle density field is
expanded by

ρ(θ,φ) =
∞∑
l=0

l∑
m=−l

ρm
l Ym

l (θ,φ), (A3)

where

Ym
l (θ,φ) =

√
(2l + 1)(l − m)!

4π (l + m)!
P m

l (cos θ ) e
imφ, (A4)
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and P m
l (x) are the associated Legendre polynomials. The

coefficients are given by

ρm
l =

∫
d�ρ(θ,φ)Ym∗

l (θ,φ). (A5)

The effective interaction is expanded by using the addition
theorem for spherical harmonics,

U eff
μν (r̂ · r̂′) =

∞∑
l=0

4π

2l + 1U eff
μν,l

l∑
m=−l

Y m∗
l (θ,φ)Ym

l (θ
′,φ′).

(A6)

Here U eff
μν,l are the Legendre coefficients of the interaction,

given by

U eff
μν,l = 2l + 1

2

∫ π

0
dθ sin θ U eff

μν (cos θ )Pl(cos θ ), (A7)

where Pl(x) is the Legendre polynomial of order l. Now
Eq. (A1) is written

�F [δq] = δq2
∞∑
l=0

4π

2l + 1
∑
μ,ν

aμU eff
μν,laν

l∑
m=−l

ρm∗
l ρm

l . (A8)

Hence, in the limit when the test charge field is infinitesimal,
δq → 0, we find that

∂2F [δq]

∂δq2

∣∣∣∣∣
δq=0

=
∞∑
l=0

8π

2l + 1
∑
μ,ν

aμU eff
μν,laν

l∑
m=−l

ρm∗
l ρm

l .

(A9)

This derivative can also be calculated by inspection of the
partition function of the system perturbed with the external
test charge field. With F [δq] = − lnZ[δq] and a potential
energy on the form V [δq] = V0 + V1[δq], where V0 is the
potential energy of the unperturbed system and V1[δq] is the
contribution due to the test charge field, we find that

∂2F [δq]

∂δq2

∣∣∣∣∣
δq=0

=
〈

∂2V1[δq]

∂δq2

∣∣∣∣∣
δq=0

〉

−
〈(

∂V1[δq]

∂δq

∣∣∣∣
δq=0

)2〉
. (A10)

Here we have also used that ∂F [δq]/∂δq|δq=0 = 0, and
the brackets denote statistical average with respect to the
unperturbed system. The test charges δqμ(θ,φ) will interact
with each other as well as with the charge field qμ(θ,φ). As
for the test charge field, the charge field is expanded according
to Eq. (A3) to yield

V1[δq] =
∫
d�

∫
d�′ ∑

μ

[qμ(θ,φ)+ δqμ(θ,φ)]

×U (r̂ · r̂′)δqμ(θ
′,φ′)

=
∞∑
l=0

4π

2l + 1Ul

∑
μ

aμ

l∑
m=−l

δq ρm∗
l

(
qm

μ,l + aμδq ρm
l

)
,

(A11)

where U (r̂ · r̂′) is the bare interaction, expanded by Eq. (A6)
with coefficients Ul . Performing the derivatives in Eq. (A10)

yields

∂2F [δq]

∂δq2

∣∣∣∣∣
δq=0

=
∞∑
l=0

8π

2l + 1Ul

∑
μ,ν

aμδμνaν

l∑
m=−l

ρm∗
l ρm

l

−
∞∑
l=0

4π

2l + 1Ul

∞∑
l′=0

4π

2l′ + 1Ul′
∑
μ,ν

aμaν

×
l∑

m=−l

l′∑
m′=−l′

ρm∗
l ρm′

l′
〈
qm

μ,lq
m′∗
ν,l′

〉
. (A12)

We introduce the dielectric function εμν,l by

U eff
μν,l = ε−1

μν,lUl, (A13)

and by comparing Eqs. (A9) and (A12), the inverse dielectric
function is found to be

ε−1
μν,l = δμν −

(
l∑

m=−l

ρm∗
l ρm

l

)−1 ∞∑
l′=0

2π

2l′ + 1Ul′

×
l∑

m=−l

l′∑
m′=−l′

ρm∗
l ρm′

l′
〈
qm

μ,lq
m′∗
ν,l′

〉
. (A14)

Moreover, since the bare interaction is only dependent on
the distance between the charges, U = U (r̂ · r̂′), we have that
〈qm

μ,lq
m′∗
ν,l′ 〉 = 〈qm

μ,lq
m′∗
ν,l′ 〉δll′δmm′ , which yields

ε−1
μν,l = δμν −

(
l∑

m=−l

ρm∗
l ρm

l

)−1
2π

2l + 1Ul

×
l∑

m=−l

ρm∗
l ρm

l

〈
qm

μ,lq
m∗
ν,l

〉
. (A15)

Additionally, the property that the bare interaction is distance
dependent, only, yields an interactionUl that is independent of
m. Hence, the correlator 〈qm

μ,lq
m∗
ν,l 〉 must be m independent as

well, 〈qm
μ,lq

m∗
ν,l 〉 = 〈q0μ,lq

0
ν,l〉. The dielectric function thus reads

ε−1
μν,l = δμν − 2π

2l + 1Ul

〈
q0μ,lq

0
ν,l

〉
. (A16)

The dielectric constant εμν is now found in the long-
wavelength limit of the dielectric function. On a spherical
surface, this corresponds to setting l = 1 in the dielectric
function, that is, εμν = εμν,1. Thus, the dielectric constant is

ε−1
μν = δμν − 2π

3
U1

〈
q0μ,1q

0
ν,1

〉
. (A17)

So far, only a few assumptions are made regarding the
bare interaction U (r̂ · r̂′) and the charge field qμ(θ,φ). To
apply Eq. (A17) for the system under consideration in this
paper, we invoke U (r̂ · r̂′) = − ln(1− r̂ · r̂′) to find U1 = 3/2
by Eq. (A7). Moreover, the charge field is modeled as point
charges in a uniform background,

qμ(θ,φ) = qBGμ +
N∑

i=1
eμ,i

δ(θ − θi)δ(φ − φi)

sin θ
, (A18)

where qBGμ = −(∑i eμ,i)/(4π ) is the uniform background
ensuring charge neutrality for charges of type μ, eμ,i is the
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charge of type μ in particle i, and the sum is over all N

particles of the unperturbed system. Now, using Eq. (A5), the
actual coefficient of the charge field is found to be

q0μ,1 =
√
3

4π

Mμ,z

R
, (A19)

where Mμ = ∑N
i=1 eμ,i r̂i is the total dipole moment for

charges of type μ. Finally, by inserting these results in
Eq. (A17), the inverse dielectric constant is found to be

ε−1
μν = δμν − π

A
〈Mμ · Mν〉, (A20)

where 〈Mμ,zMν,z〉 = 〈Mμ · Mν〉/3 by assuming isotropy.
When there are test chargeswithmultiple interactions, there

are multiple contributions to the change in free energy as seen
in Eq. (A1). To account for all contributions to the increase in
free energy, we construct a generalized dielectric constant by

ε−1
(a1,a2,...)

=
∑
μ,ν

aμε−1
μν aν. (A21)

Notice that even though there is no bare interaction between
charges of different type, there may be nonzero cross terms
in Eq. (A1), as charges of different type are constrained to be
together within the same particle.

APPENDIX B: FOURTH-ORDER FREE
ENERGY DERIVATIVE

In Ref. 65 amethod of verifying the discontinuous character
of the BKT transition was introduced by examining a higher-
order term in the free energy expansion in the XY model
when the system is perturbed with an infinitesimal phase
twist. Similarly, in Ref. 66, the method was applied in a 2D
logarithmic plasma. Here we show that the same idea also
applies when we perturb a logarithmic Coulomb plasma on a
spherical surface with an infinitesimal test charge field with
multiple types of Coulomb interactions.
Consider a system with particles interacting with different

charges of multiple types, as previously described. We now
choose to perturb this system with a neutral distribution of
test charge of multiple types, which has the form δqμ(θ ) =
aμδq cos(θ ), that is, a similar test particle density field as given
in Eq. (A2) but with ρ01 = √

4π/3 being the only nonzero
coefficient in the spherical harmonics expansion. This is a
convenient choice because it corresponds to the most long-
waved nonuniform test charge configuration on the surface of
a sphere, and hence, the prefactor of the second-order term in
the free energy expansion will be proportional to the inverse
dielectric constant, as we see below.
The test charges yield a contribution to the potential energy

as given by the l = 1 and m = 0 term in Eq. (A11),

V1[δq] = 4π

3
U1

∑
μ

aμδq ρ01
(
q0μ,1 + aμδqρ01

)
. (B1)

We now consider how the system responds to the test
charges by a Taylor expansion of the free energy in the test
charge field around δq = 0,

�F [δq] = ∂F [δq]

∂δq

∣∣∣∣
δq=0

δq + ∂2F [δq]

∂δq2

∣∣∣∣
δq=0

δq2

2!

+ ∂3F [δq]

∂δq3

∣∣∣∣
δq=0

δq3

3!
+ ∂4F [δq]

∂δq4

∣∣∣∣
δq=0

δq4

4!
+ · · · .

(B2)

The change in the free energy �F [δq] must be invariant to
δqμ(θ ) → −δqμ(θ ), and hence, all odd-order derivatives in
Eq. (B2) are zero. From Appendix A [see Eqs. (A12), (A17),
and (A21)], the second-order free energy derivative is found
to be

∂2F [δq]

∂δq2

∣∣∣∣
δq=0

= 8π

3

(
ρ01

)2
U1ε

−1
(a1,a2,...)

. (B3)

The fourth-order derivative is

∂4F [δq]

∂δq4

∣∣∣∣
δq=0

= 3

〈(
∂V1[δq]

∂δq

∣∣∣∣
δq=0

)2〉2

−
〈(

∂V1[δq]

∂δq

∣∣∣∣
δq=0

)4〉

=
(
4π

3
ρ01U1

)4 ∑
μ,ν,ρ,σ

aμaνaρaσ

×[
3
〈
q0μ,1q

0
ν,1

〉〈
q0ρ,1q

0
σ,1

〉 − 〈
q0μ,1q

0
ν,1q

0
ρ,1q

0
σ,1

〉]
.

(B4)

where brackets denote a statistical average with respect to the
unperturbed action. Inserting Eqs. (B3) and (B4) in Eq. (B2)
yields

�F [δq] = 8π

3

(
ρ01

)2
U1

[
ε−1
(a1,a2,...)

δq2

2!
+ γ(a1,a2,...)

δq4

4!
+ · · ·

]
,

(B5)

where

γ(a1,a2,...) =
∑

μ,ν,ρ,σ

aμaνaρaσ γμνρσ , (B6)

and

γμνρσ =
(
4π

3
U1

)3 (
ρ01

)2
2

[
3
〈
q0μ,1q

0
ν,1

〉〈
q0ρ,1q

0
σ,1

〉
− 〈

q0μ,1q
0
ν,1q

0
ρ,1q

0
σ,1

〉]
. (B7)

Now, inserting ρ01 = √
4π/3 and assuming the charge field

in Eq. (A18) and a logarithmic bare interaction, U1 = 3/2,
yields

γμνρσ =
(

π

R2

)2
[〈MμMν〉〈MρMσ 〉−3〈Mμ,zMν,zMρ,zMσ,z〉],

(B8)

where 〈Mμ,zMν,z〉 = 〈Mμ · Mν〉/3 by assuming isotropy.

A. Stability argument

When δq = 0, the free energy of the system has a global
minimum, and hence the right-hand side of Eq. (B5) must
be greater than or equal to zero. Now, if γ(a1,a2,...) approaches
a nonzero negative value at the critical point in the thermo-
dynamical limit, the general inverse dielectric constant must
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simultaneously have a nonzero positive value for the ground
state to be stable. However, since ε−1

(a1,a2,...)
= 0 in the screening

phase, it follows that ε−1
(a1,a2,...)

must exhibit a discontinuous
jump at the critical point. Hence, investigation of γ(a1,a2,...)
may be used to verify a discontinuity in the inverse dielectric
constant, which is a necessary requirement for observing a
BKT transition.

APPENDIX C: THE FINITE-SIZE SCALING RELATION

The finite-size scaling relation of the BKT transition has
been used throughout this article to verify the universal jump in
ε−1
22 and to provide estimates for the critical couplingQ2

2,c. Here
some details to the curve fitting procedure and the goodness
of fit measure are presented.

1. Two free parameters

Least-squares curve fitting of the Monte Carlo results for
ε−1
22 to Eq. (33) may be performed with both ε−1

22 (∞) and C

as free parameters.28,30,72,73 If the transition is of the BKT
type, a good fit to Eq. (33) should be obtained at the critical
point. In addition, when ε−1

22 (∞) is free, no a priori assumption
on the value of the universal jump is made, thus a resulting
value of ε−1

22 (∞) that corresponds to the universal jump of
the BKT transition should be obtained. However, with two
free parameters, higher quality of the Monte Carlo statistics is
required to single out when they system is closely obeying the
behavior of Eq. (33).
We have employed the Marquardt-Levenberg algorithm

minimizing χ2 to the nonlinear fitting function in Eq. (33).
Specifically, χ2 is the sum of squared weighted residuals,

χ2 =
n∑

i=1

(
ε−1
22,Ni

− ε−1
22 (Ni)

σNi

)2
, (C1)

where n is the number of system sizes Ni , ε−1
22,Ni

is the

value of the inverse dielectric constant ε−1
22 obtained from

the Monte Carlo simulation at system size Ni , and σNi

is the corresponding error. For a good fit, we expect the
weight-normalized residuals, Yi = (ε−1

22,Ni
− ε−1

22 (Ni))/σNi
to

be Gaussian-distributed with mean μ(Yi) = 0 and variance
σ 2(Yi) = 1. Thus, to measure the goodness of the fit, we use
theAnderson-Darling test statisticA2 for the data set Yi to arise
from a normal distribution with μ(Yi) = 0 and σ 2(Yi) = 1:

A2 = −n − 1

n

n∑
i=1
(2i − 1){ln[�(Yi)]+ ln[�(Yn+1−i)]},

(C2)

where �(Y ) is the standard normal cumulative distribution
function and where the data set Yi is ordered from low to high
values. A smaller value of A2 essentially means a better fit
between the data and the fit function.
To illustrate the method, Monte Carlo results for ε−1

22 at
14 different system sizes and the corresponding curve-fit
according to Eq. (33) are given in Fig. 13 for three different
values of Q2

2. Here η = 2× 10−3 and Q1 = 0. Clearly, at
Q2
2 = 4.933, the fit between the data and the fit function is

better than for the two other cases. Moreover, in Fig. 14 the

Q2
2 = 5.049

Q2
2 = 4.933

Q2
2 = 4.850

N

− 1 2
2
(N

)

2000160012008004000

0.88

0.87

0.86

0.85

0.84

0.83

FIG. 13. (Color online) Plot of the size dependence in the inverse
dielectric constant ε−1

22 (N ) for 14 different system sizes in the range
20 � N � 2000 at three different values of the couplingQ2

2. The best
fit according to the fit function in Eq. (33) with two free parameters,
is given as the corresponding solid line in all three cases. The packing
fraction is η = 2× 10−3 andQ1 = 0.

corresponding results for the goodness of fit parameter as well
as the results for the parameter ε−1

22 (∞) as a function of Q2
2

are shown. Indeed, the minimum in A2 indicates a critical
region where the data seem to follow the logarithmic finite
size scaling of ε−1

22 given in Eq. (33). Also note that this region
coincides with a value of Q2

2ε
−1
22 (∞) close to the universal

jump value of 4. With the minimum of A2 as a measure of
the critical point and with error estimates obtained by the
jackknife method, we find thatQ2

2,c = 4.933± 0.012 and that
Q2
2,cε

−1
22 (∞) = 3.941± 0.023, less than 2% off the universal

number. The results in Figs. 5 and 6 are found by repeating
this procedure for different values of η andQ1.

Q2
2
−1
22 (∞)

A2

Q2
2

Q
2 2
− 1 2
2
(∞

)

A
2

4.2

4.1

4

3.9

3.8

3.7
5.0554.954.94.85

50

40

30

20

10

0

-10

FIG. 14. (Color online) Plot of the goodness of fit parameter A2

and the corresponding free parameter ε−1
2 (∞) obtained when curve

fitting to the critical finite-size relation given in Eq. (33). The results
are given as a function of Q2

2. System sizes N and η and Q1 are
the same as in Fig. 13. Error estimates are obtained by the jackknife
method.
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2. One free parameter

The procedure described in detail above with two free
parameters, may be performed with a fixed value of ε−1

22 (∞) =
4Q2

2,c and withC as the only free parameter. If the transition is
of the BKT type, a good fit to Eq. (33) should be obtained at the
critical point. This is a rather well-used method to determine
the critical point of a BKT transition.29,72,74,75 With only one
free parameter,Q2

2,c will be determined with greater accuracy
compared to the case when there are two free parameters.

3. Remarks

References 28 and 30 used χ2 as a goodness-of-fit parame-
ter.We also tried this, and the results for the critical coupling as
well as the corresponding parameter ε−1

22 (∞) were consistent

with A2 results within statistical uncertainty. However, we
found that error estimates were clearly underestimated with
χ2, probably due to overfitting.
The parameterC in the finite-size scaling relation [Eq. (33)]

is density dependent.76 Specifically, C increases when η

decreases. Hence, at the critical point, the finite-size scaling
slows down when η is lowered. Therefore, larger systems
N or better statistics are required to resolve the critical
scaling when η is small. In particular, curve fitting to
Eq. (33) was also performed for η = 5× 10−5 in addition
to the densities presented in Figs. 5 and 6. However, in
this case the statistics were not good enough to resolve a
clear minimum in A2. Also note that there are higher-order
corrections76 to Eq. (33) that are not taken into account in this
work.
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We study unconventional two-dimensional, two-component classical plasmas on a sphere, with
emphasis on detecting signatures of melting transitions. These plasmas, which are relevant to Ising-
type quantum Hall states, interact via two different two-dimensional Coulomb interactions. One
species of particles in the plasma carries charge of both types (Q1, Q2), while the other species carries
only charge of the second type (0,−Q2). We find signatures of a freezing transition at Q2

1 	 140.
Here, freezing means that the species with charge of both types will form a Wigner crystal, whereas
the species with charge of the second type also shows signatures of being a Wigner crystal, due to
the attractive inter-component interaction of the second type. Moreover, there is also a Berezinskii-
Kosterlitz-Thouless phase transition at Q2

2 	 4, at which the two species of particles bind to form
molecules that are neutral with respect to the second Coulomb interaction. These two transitions
appear to be independent of each other, giving a rectangular phase diagram. As a special case, this
sheds new light on the freezing transition of two-dimensional one-component plasmas (for which
Q2 = 0).

PACS numbers: 73.43.Cd, 74.20.De, 74.25.Uv

I. INTRODUCTION

Multi-component quantum condensates with novel
types of inter-component interactions are of consider-
able interest in contemporary physics. For example,
they are relevant to widely disparate systems, including
low-dimensional spin-1/2 quantum antiferromagnets1–3,
Bose-Einstein condensates4–6, multi-component/multi-
band superconductors7–9, and non-Abelian quantum Hall
states and topological superconductors10. These systems
have the remarkable property of possessing a mapping to
a classical multi-component plasma system with highly
unusual intra- and inter-component interactions. The
statistical properties of these associated unconventional
plasmas – especially their phase diagrams – have impor-
tant ramifications for the physics of their corresponding
systems10. The statistical physics of such systems has
only recently begun to be explored. In a previous paper,
we investigated the metal-insulator transition in a par-
ticular version of such a plasma11. In this paper, we will
extend these investigations to characterize the melting
transition of such a plasma from a Wigner crystal to a
liquid.

The canonical partition function of the unconven-
tional two-component plasma that we investigate is given
by10,11

Z =

∫ ( N∏
i=1

d2zi

)(
N∏

a=1

d2wa

)
e−V , (1)

where the potential energy

V = −Q2
2

N∑
a<b=1

ln |wa −wb|+Q2
2

N∑
a,i=1

ln |zi −wa|

− (Q2
1 +Q2

2)

N∑
i<j=1

ln |zi − zj |+ Vz,BG (2)

describes two species (components) of particles inter-
acting via two different types of two-dimensional (2D)
Coulomb interactions, which are logarithmic. Here, the
zi are coordinate vectors for theN particles of component
z, which carry charge Q1 of the first interaction (type 1)
and charge Q2 of the second interaction (type 2). Thewa

are coordinate vectors for the N particles of component
w, which carry no charge of type 1 and charge −Q2 of
type 2. The term Vz,BG describes the interaction of the z-
particles with a uniform density neutralizing background
charge.

This plasma is related10 to inner products of quantum-
mechanical trial wave functions of Ising-type quan-
tum Hall states, such as the Moore-Read Pfaffian12,
anti-Pfaffian13,14, and Bonderson-Slingerland hierarchy
states15. For the charge values relevant to these states,
the plasma was shown to be in its metallic liquid phase11,
which allows for the calculation of the braiding statistics
of quasiparticle excitations of these states10, confirming
their conjectured non-Abelian statistics. This plasma
is also related to rotating two-component Bose-Einstein
condensates (BECs) in two dimensions11.

While Ref. 11 focused on the cases Q1 = 0, 2, which are
particularly relevant for Ising-type quantum Hall states,



2

here we will investigate the plasma for large values of Q1.
In the limit in which Q2 = 0, the w-particles do not in-
teract, and the plasma thus reduces to the standard 2D
one-component Coulomb plasma (OCP). It is generally
believed that, at high values of Q1, the OCP will be in
a 2D solid state in which the charges form a triangu-
lar lattice with quasi-long-range translational and long-
range orientational order, as found in the simulations in
Refs. 16–19. [However, we note that some published
studies have claimed that there is no low-temperature
(high-Q1) crystalline state in the OCP, due to the prolif-
eration of screened disclinations21–24.]

If we assume that the generally-held view is cor-
rect (and we present evidence in this paper that it
is), so that there is a low-temperature crystalline state,
then the melting of this crystal can occur according
to either of two possible scenarios. One possibility
is the Kosterlitz-Thouless-Halperin-Nelson-Young the-
ory (KTHNY)25–28, according to which dislocation pairs
unbind at a Berezinskii-Kosterlitz-Thouless (BKT) like
transition. The system then enters a hexatic phase in
which there is no translational order, but there is quasi-
long-range orientational order. Then, there is a second
BKT transition at which disclination pairs unbind, orien-
tational order is lost, and the system enters an isotropic
liquid phase. The other possibility is a first-order melt-
ing transition at a lower temperature than the KTHNY-
theory predicts26. There have been considerable efforts
to investigate 2D melting, both experimentally and by
numerical simulations. Some studies have found KTHNY
transitions while others have found a weakly first-order
melting transition29–36. It appears that the nature of 2D
melting depends on details of the interatomic potential.
In the case of logarithmic interactions, most numerical
simulations find a first-order transition16–19.

Before proceeding to a description of our simulations,
we must mention that, in principle, there is one other
possibility: a Lifshitz transition from the liquid to a
striped or “microemulsion” phase and then later to a
Wigner crystal, as discussed by Kivelson and Spivak20.
Such a scenario must be considered when there is a linear
coupling between the order parameter and the uniform
density (i.e., between the order parameter at wavevec-
tor q and the density at wavevector −q) or, equivalently,
when the first derivative of the energy with respect to
the density is discontinuous at the transition. However,
in our case, the order parameter is the density at non-
zero wavevector, so no such linear coupling can occur.
Furthermore, the order parameter vanishes on both sides
of the transition since the crystalline phase is only quasi-
long-range ordered, so there would be no discontinuity
even if there were a linear coupling. However, even in sys-
tems to which the Kivelson-Spivak20 argument applies,
there are two scenarios, similar to the ones that we con-
sider: a direct first-order phase transition (which is per-
mitted for the case of logarithmic interactions) and a con-
tinuous transition via one or more intermediate phases.

II. MODEL AND SIMULATION

The system described in Eqs. (1) and (2) is studied
by the means of large-scale Monte Carlo simulations on
a sphere of radius R. In this geometry, the distance be-
tween two points r1 and r2 is taken to be the chord length

|r1 − r2| =
√
2R (1− r̂1 · r̂2) 1

2 , (3)

and the term Vz,BG is simply a uniform constant that
can be disregarded. Hence, the model in Eq. (2) may be
written in the form (up to constant terms)11,17,37,38

V =
1

2

[
Q2

2

N∑
a,i=1

ln(1− ẑi · ŵa)−Q2
2

N∑
a<b=1

ln(1− ŵa · ŵb)

− (Q2
1 +Q2

2)

N∑
i<j=1

ln(1− ẑi · ẑj)
]
. (4)

Here, ŵa, ẑi are the positions of the particles on the sur-
face of the unit sphere. Details of the derivation, as well
as on the technicalities of the Monte Carlo simulations,
are presented in Ref. 11. Moreover, to improve sampling
at high values of Q1, we used the parallel tempering al-
gorithm39,40, where the set of couplings was found by
measuring first-passage-times as described in Ref. 41.

In addition to the logarithmic interactions, we regu-
larize the attractive interactions by adding a short-range
hard-core repulsion such that particles are not permit-
ted to be closer than particle diameter d. Hence, there
is a nonzero dimensionless density η = 2Ns/A where
s = πd2/4 and A is the area of the system.

III. RESULTS FOR THE ONE-COMPONENT
PLASMA

Initially, we investigate the unconventional plasma in
the OCP limit, where Q2 = 0. This is motivated by the
fact that previous studies of OCP on the surface of a
sphere are not consistent. In Ref. 17, a freezing transi-
tion at Q2

1 � 140 was found by comparing the free en-
ergy of the solid and liquid state. However, in Ref. 23,
the absence of a finite-temperature crystalline state was
claimed and numerical evidence supporting this was pro-
vided, essentially by showing that the correlation length
for crystalline order was non-divergent, ξ ∝ Q1 for all
Q−1

1 > 0.
We measure the azimuthally averaged structure factor

modified for a spherical geometry, by17,23,42

S(q) = 1 + 2πnR2

∫ π

0

dθ [g(Rθ)− 1] sin θJ0(qRθ), (5)

where n is the number density, R is the radius of the
sphere on which the particles live, g(Rθ) is the pair dis-
tribution function with θ as the chord angle, J0(x) is a
zeroth order Bessel function, and q is the magnitude of
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Figure 1: (Color online) Correlation length ξ as a function of
Q1 for 8 different system sizes in the range 100 ≤ N ≤ 4800.
The inset is a plot of S(q) for the specific case when N = 3200
and Q1 =

√
120.

the Fourier space vector q. The inset of Fig. 1 shows a
plot of S(q). We assume that the correlation length ξ is
inversely proportional to the width of the first peak in
S(q), and may thus be determined by a Lorentzian fit.
The procedure is identical to that used in Ref. 23, and
the result is given in Fig. 1. For small values of Q1 our
results are similar to Fig. 2 in Ref. 23. However, when
Q1 ≈ 12, a value that corresponds well with the critical
coupling of the freezing transition, we find a kink devel-
oping with increasing N , that clearly violates ξ ∝ Q1.
This kink is not seen in Fig. 2 of Ref. 23. However, we
note that the markers of that figure exhibits large scat-
tering and that the authors did not consider larger values
of Q1.

A hallmark of a 2D solid is that translational correla-
tions have a power-law decay, 〈eiG(r−r′)〉 ∼ |r − r′|−ηG ,
where G is the reciprocal lattice vector, r, r′ are lattice
points in the 2D solid and ηG is a temperature dependent
exponent27,43. Now, by integrating over the Bragg peak
of a 2D solid44, the finite-size scaling of the first peak in
S(q) is given by

S(G) ∼ L1−ηG ∼ N (1−ηG)/2. (6)

Here, L ∝ N1/2 is the spatial linear extent of the system.
Fig. 2 shows the results for the maximum value of the first
peak in S(q) for a wide range of system sizes and for dif-
ferent values of Q2

1. As for ξ, we find that the peak value
also exhibits a kink at Q2

1 ≈ 140 that should be associ-
ated with an abrupt change in the translational correla-
tions in the plasma. Indeed, when studying the finite-size
behavior more closely in the lower panel of Fig. 2, the re-
sults show that when Q2

1 ≤ 130, S(G) ∼ const. when
N increases. This is the behavior expected in the liquid
phase, with exponentially decaying translational correla-
tions where S(G) ∼ ξ2. However, when Q2

1 ≥ 150, the
results clearly show that there is a positive slope that

S(G) ∼ N1/3
Q2

1 = 250
Q2

1 = 200
Q2

1 = 160
Q2
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Q2

1 = 140
Q2
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S
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)
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Figure 2: (Color online) Finite-size behavior of the peak value
of the structure factor, S(G), as a function of coupling Q2

1 and
size N . The upper panel shows S(G) as a function of Q2

1 for
eight different sizes in the range 100 ≤ N ≤ 4800. The lower
panel is a log-log plot of S(G) as a function of N for seven
fixed values of Q2

1. The dashed line is a reference line that
yields the expected finite-size behavior at the melting point
according to KTHNY theory. Lines are guide to the eyes.

develops with increasing N , thus confirming the finite-
size behavior of the 2D solid given in Eq. (6). When
Q2

1 = 140, it is hard to determine whether the system is
in the solid phase or not, suggesting that Q2

1 = 140 is
close to the melting point of the OCP. In Fig. 2, note
that at this point the height of the first-order peak in
S(q), S(G) ≈ 5, is consistent with the 2D freezing crite-
rion17,45.

A key prediction of the KTHNY theory is that ηG ≤
1/3 in the solid phase, where the limiting value of 1/3 is
reached at the critical point of melting from a triangu-
lar lattice to the hexatic phase19,27. As a result, in this
scenario, S(G) grows more rapidly with N than N1/3

for all Q2
1 greater than the critical value; S(G) grows

as N1/3 at the transition point; and S(G) saturates in
the liquid phase. Meanwhile, if the transition were first-
order, the limiting value of ηG would be smaller than
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1/3, so that S(G) would grow more rapidly than N1/3

at the transition point, i.e., the slowest possible growth
of S(G) in the crystalline phase would be faster than
N1/3. Consequently, we expect the slope of lnS(G) vs.
lnN to be steeper than 1/3 for all Q2

1 in the crystalline
phase or, by the results above, for all Q2

1 > 140. By
determining the slope of lnS(G) vs. lnN at Q2

1 ≈ 140,
we could then determine if the transition is of KTHNY
type or is first-order. However, as may be seen in Fig.
2, the slopes of lnS(G) vs. lnN in the putative crys-
talline phase are not steeper than 1/3 in our simulations.
However, the slopes steepen with increasing N , possibly
converging towards the expected behavior in the ther-
modynamic limit. Therefore, we are unable to determine
which type of transition occurs.

However, it is worth emphasizing that, for Q2
1 < 140,

S(G) appears to saturate to a finite value, as expected
in a liquid, while, for Q2

1 > 140, S(G) does not appear
to saturate, as expected in a crystal (although, as noted
above, it does not grow as rapidly as expected). There-
fore, the lower panel of Fig. 2 is also qualitatively consis-
tent with a crystalline phase of the 2D OCP, which melts
at Q2

1 ≈ 140. Taken together with Fig. 1 and the upper
panel of Fig. 2, this provides clear evidence in support of
to earlier studies16–19. Consequently, our results contra-
dict the claims made in Ref. 23 for the non-existence of a
crystalline phase. The discrepancy may be explained by
noting that the authors of Ref. 23 did not consider large
enough values of Q1 and suffer from poor statistics.

IV. RESULTS FOR AN UNCONVENTIONAL
TWO-COMPONENT PLASMA

We now turn our attention to the full model in Eq. (2),
i.e., when both Q1 and Q2 are nonzero. In particular, we
would like to investigate how the translational ordering
of both w and z particles is affected as we increase the
coupling constant in the second interaction-channel, Q2.
As for the OCP, we study translational correlations by
measuring the structure factors Sw(q), Sz(q) defined by
Eq. (5) with S(q), g(Rθ) → Sw/z(q), gw/z(Rθ). In addi-
tion, we also measure the inverse dielectric constant for
charges with interaction of type 2, given by

ε−1
22 = 1− πQ2

2R
2

A

〈(
N∑
i=1

ẑi −
N∑

a=1

ŵa

)2〉
. (7)

This quantity measures the screening properties for
charges interacting with Q2, and it signals the charge-
unbinding transition when z particles and w particles
unbind11.
In Fig. 3, results are given for the height of the first-

order peak in the structure factor for component z and
w, for the case when Q2

2 = 1. Apart from the fact that
the height of the peak in the structure factor is much
larger for the z particles than the w-particles, the size-
and Q2

1-dependence of the peaks are qualitatively very
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Figure 3: (Color online) Results from the Monte Carlo sim-
ulations when Q2

2 = 1 and η = 10−3. Panel (a) shows the
height of the first-order peak in the structure factor for the
z particles, Sz(G), as a function of the coupling Q2

1 for seven
different sizes in the range 100 ≤ N ≤ 3200. Panel (b) shows
the height of the first-order peak in the structure factor for
the w particles, Sw(G), as a function of the coupling Q2

1 for
seven different sizes in the range 100 ≤ N ≤ 3200. In order
to give an impression on how a typical structure factor looks
like, the insets of panel (a) and (b) show plots of Sz(q) and
Sw(q) for the specific case when N = 800, Q2

1 = 180 and
Q2

2 = 1.

similar for the two components. In particular, they both
exhibit a kink at Q2

1 ≈ 140, which should be associated
with melting of a 2D solid, similar to the OCP case in
the upper panel of Fig. 2. Specifically, when we extract
the finite-size behavior in the log-log plots in Fig. 4, we
find that both components exhibit S(G) ∼ const., con-
sistent with being in the liquid phase, when Q2

1 ≤ 130.
When Q2

1 ≥ 150, the results clearly show that there is a
power-law dependence on N , consistent with the finite-
size behavior of a 2D solid. These results are consistent
with the phase diagram in Fig. 5.

The inverse dielectric constant ε−1
22 is measured to be

zero to the left of the red line in Fig. 5. Thus, the w and z
particles are in a metallic state regardless of the change
in the structural properties when Q2

1 ≈ 140. This is
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Sz(G) ∝ N1/3
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Figure 4: (Color online) Log-log plots of the results in panel
(a) and (b) in Fig. 3. Both panels show the height of the
first-order peak in the structure factor as a function of size
N . In the lower panel, S′

w(G) is the height of the peak of
Sw(G) when we have subtracted the regular part in order to
properly extract the singular finite-size behavior of Sw(q) in a
log-log plot. The solid lines are reference lines that yield the
expected finite-size behavior at the melting point according
to KTHNY theory. Lines are guide to the eyes.

most salient with respect to the second type of Coulomb
interaction (which has an effective strength that is de-
termined by ε−1

22 ). In the liquid phase, it is clear that w
and z particles are in a metallic state. In the crystalline
phase, there are interstitials and vacancies in the crystal,
so that a finite fraction of w and z particles should be
considered as unbound particles that are able to screen
test particles interacting with charges of type 2, thereby
leading to ε−1

22 = 0. At larger values of Q2
2, there is

a transition at which w and z particles are bound into
molecules. For Q2

2 above this transition point, which is at
Q2

2,c ≈ 4, ε−1
22 has a non-zero value, as found in Ref. 11.

Although the w particles are able to screen the type 2
interaction when z particles form a Wigner crystal, their
translational correlations exhibit signatures of a 2D solid
(as seen in Fig 3), attributed to a higher probability of
the w particles to be co-centered with z particles due

Melting
Charge unbinding

IVIII

III

Q2
2

Q
2 1

6543210

200

150

100

50

0

Figure 5: (Color online) The phase diagram as a function
of Q2

1 and Q2
2. The dashed red line is the charge unbinding

transition, at which z and w particles become bound together
for at Q2

2 above this line. The dotted blue line is the melting
line of the Wigner crystal. In Phases I and II, the z particles
are in a liquid state; in Phases III and IV, the z particles
form a Wigner crystal. In Phases I and III, the w and z
particles are unbound; in Phases II and IV, they are bound
into molecules comprised of one z and one w particle. See the
text for details.

to the attractive inter-component interactions of type 2.
On average, a finite fraction of the w particles should
be considered as bound to the z particles, thus adapt-
ing to the 2D crystalline structure that is created by the
strong repulsive interactions among the z particles, when
Q2

1 > 140. The signatures of freezing of the w-particles
is thus an effect which is induced by the freezing of the
z-particles.

Hence, we can summarize the situation as follows, as
depicted in Fig. 5. In Phase I, the w and z particles are
unbound and are separately liquid. In Phase II, the w
and z particles are bound into molecules that are neutral
with respect to the second type of Coulomb interaction,
and these molecules form a liquid. In Phase III, the w and
z particles are unbound; the z particles form a Wigner
crystal while the w particles form a liquid, albeit one
with modulated density due to its interaction with the
Wigner crystal. In Phase IV, the w and z particles are
bound into molecules. and the molecules form a Wigner
crystalIn Appendix A, we explain the details of how the
transition lines were obtained.

We consider phase III to be a 2D counterpart of the sit-
uation that was reported for a three-dimensional system
in Ref. 6. In that work, the authors considered a two-
component rotating BEC with a negative dissipationless
Andreev-Bashkin drag46. They found that in this mix-
ture, a situation may arise where the component with
the smallest stiffness will be a modulated vortex liquid.
That is, the soft component breaks translational sym-
metry while exhibiting an unbroken symmetry in order
parameter space. The vortices of the soft component are
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likely to be co-centered with the vortices of the stiffest
component, and will thus adopt the spatial structure of
the latter. As shown in Ref. 11, the MR plasma corre-
sponds to a 2D two-component rotating BEC with neg-
ative drag, where the z component is stiffer than the w
component when Q2

1 > 0.

V. SUMMARY AND CONCLUSIONS

In summary, we have considered the melting of an
unconventional 2D two-component plasma on a sphere
with particles interacting in two different channels, which
may be viewed as an analogous plasma describing a non-
Abelian Ising-type quantum Hall state or a realization of
a two-component two-dimensional Bose-Einstein conden-
sate with inter-component non-dissipative drag. In the
limiting case where there are no interactions of type 2
(Q2 = 0), the system reverts back to a standard 2D one-
component plasma. Both for the one-component plasma
and the unconventional two-component plasma, we find
that the system freezes on a sphere for large enough inter-
particle interactions. For the two-component plasma, the
w component, which do not have strong intra-component
interactions, still shows signatures of being a 2D solid.
This is attributed to the attractive inter-component in-
teractions with the particles of the z component that
leads to a higher probability of the w particles to be co-
centered with z particles. We do not draw firm conclu-
sions on the nature of the melting transition. This is
because the results for the translational correlations are
not accurate enough to distinguish between a first-order
transition and the KTHNY scenario. It is also difficult
to examine the possible existence of a hexatic phase as
it is hard to measure the quasi-long-range orientational
order on the surface of a sphere.
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Appendix A: Determination of the transition lines

We now discuss the determination of the phase transi-
tion lines in Fig. 5 in more detail.

First, consider the line (red in Fig. 5) at which the z
and w particles unbind. In this work, we find the critical
point of the BKT transition by curve-fitting the inverse
dielectric constant to a logarithmic finite-size scaling rela-
tion with one free parameter (see Appendix C in Ref. 11).
This means that we assume that the transition is a BKT
transition as we use the BKT value of the universal jump
in the finite-size scaling relation. Thus, it is a slightly less
self-consistent approach than what was used in Ref. 11,
but still, one can regard this as a verification of the BKT
nature, as one should not expect a good fit to the scaling
relation if the transition is of a different nature.47

The curve-fitting was performed according to the de-
scription in Appendix C in Ref. 11 for sizes N = 70, 100,
150, 200, 300, and 500, for Q2

1 = 20, 100, and 160 and
for densities η = 0.001, 0.0004, and 0.0001. In Fig. 6,
the results for the transition point Q2

2,c as a function of η

and Q2
1 are given. We have also included the results for

Q2
2 = 0 and 2 from Ref. 11. In order to obtain a crude

estimate of the transition temperature in the low density
limit, we extrapolate to η = 0 by fitting the results for
finite η to a power law [Q2

2,c(η) = Q2
2,c+aηb, where Q2

2,c,
a, and b are free parameters]. The estimates we find are:

Q2
2,c = 4.016± 0.002 for Q2

1 = 0
Q2

2,c = 4.015± 0.004 for Q2
1 = 2

Q2
2,c = 4.013± 0.101 for Q2

1 = 20
Q2

2,c = 4.012± 0.060 for Q2
1 = 100

Q2
2,c = 3.963± 0.070 for Q2

1 = 160

(A1)

These values are plotted in the phase diagram in Fig. 5,
and we take the phase boundary to be the best fit straight
line running through them.

We now consider the Wigner crystal melting transi-
tion, depicted by the blue line in Fig. 5. This transition
is found by measuring the value of Q2

1 at which Sz(G)
attains its maximum second-derivative. (See Fig. 2 and
Fig. 3 in the paper for example.) In Fig. 7, we show
the estimates of the transition point Q2

1,c as a function

of inverse system size N−1 for Q2
2 = 0, 1, 3, and 5. The

transition points are estimated by averaging the results
for N ≥ 800, with errors determined by a bootstrap anal-
ysis. The estimates we find are:

Q2
1,c = 140.6± 1.5 for Q2

2 = 0
Q2

1,c = 140.3± 2.0 for Q2
2 = 1

Q2
1,c = 144.4± 4.9 for Q2

2 = 3
Q2

1,c = 142.6± 8.2 for Q2
2 = 5

(A2)

The phase diagram in Fig. 5 is obtained by using these
values, and we take the phase boundary to be the best
fit straight line running through them.



7

Q2
1 = 160

Q2
1 = 100
Q2

1 = 20
Q2

1 = 2
Q2

1 = 0

η

Q
2 2

0.0010.00050

4.4

4.2

4

Figure 6: (Color online) The transition point is determined
for η → 0 by extrapolating the Q2

2,c values obtained for non-
zero η, assuming a power-law dependence. Lines are guide to
the eyes.
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Figure 7: (Color online) The transition point Q2
1,c as a func-

tion of system size for Q2
2 = 0, 1, 3, and 5, estimated by

the maximum of the second derivative of Sz(G). See text for
details. Lines are guide to the eyes.
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We study the SU(2) symmetric noncompact CP1 model, with two charged matter fields coupled
minimally to a noncompact Abelian gauge field. This model is proposed to exhibit an unusual
continuous transition line within the so-called deconfined quantum critical point theory. Earlier
Monte Carlo studies of this model have found a weak first-order transition directly between a fully
ordered state where the SU(2) is broken, to a fully disordered one. According to earlier studies, the
transition line becomes increasingly stronger first-order as a function of coupling up to a bicritical
point where the direct transition line splits into two separate transition lines. The intermediate
phase is a partially ordered phase in which a global O(3) symmetry is broken, but where the Higgs
mass (which is non-zero in the fully ordered state) is zero. The intermediate phase may loosely
be described as an SU(2) analogue of a ”metallic superfluid”. By studying the phase transition at
values of the gauge field coupling close to what appears to be a splitting point of the transition
line, also considering carefully larger system sizes, we find that the value of the gauge field coupling
at which a bicritical point occurs, has been overestimated in previous works. Specifically, we find
that the phase transition which in a part of this region can be interpreted as a single first-order
line of phase-transitions when studying relatively small system, in actuality reveals itself as two
separate phase transitions when studying larger system sizes. This has important ramifications for
the determination of the character of the phase-transition line below the bicritical point, describing
a direct phase transition from a fully ordered state to a fully disordered state. We also perform a
flowgram analysis of the direct transition line with rescaling of the linear system size in order to
obtain a data collapse. However, due to large finite-size effects in the data collapse, we are not able
to draw firm conclusion on the nature of the transition.

PACS numbers:

I. INTRODUCTION

Over the last decade the concept of deconfined quan-
tum criticality (DQC) has been intensively debated in
the scientific community.1–18 The DQC scenario was sug-
gested to represent phase transitions that do not fit eas-
ily into the Landau-Ginzburg-Wilson (LGW) theory.1,2

In particular, the continuous quantum phase transition
from an antiferromagnetic Néel state into a paramag-
netic valence-bond solid (VBS) state, does not agree with
LGW theory according to which two phases with different
broken symmetries are separated by a first-order phase
transition.

Most recently, evidence for the DQC scenario was
claimed in studies of the so-called J-Q model,3 which
is a Heisenberg model with additional higher-order spin
interaction terms. Namely, it was suggested that high-
precision Quantum Monte Carlo simulations of this
model support a continuous Néel - VBS phase transition
in accordance with the DQC scenario.3–8

It was proposed that the critical field theory of a con-
tinuous Néel - VBS phase transition was the so called
noncompact CP1 model (NCCP1), with two SU(2) sym-
metric fields coupled to a noncompact U(1) gauge field
in three dimensions (3D).1,2,11 Initial efforts on study-
ing this effective model were focused on the special
case where the SU(2) symmetry was broken down to a
U(1)×U(1) symmetry, i.e., the easy-plane limit, claim-
ing a continuous phase transition.11 However, in Ref.

13, Kuklov et al. pointed out the existence of paired
phases in the U(1)×U(1) easy-plane action (for earlier
discussions of paired phases in different U(1)×U(1) sys-
tems, see Refs. 12,19–21). The same authors have sug-
gested, by referring to mean-field theory, that at least in
the vicinity of a paired state (in the parameter space of
the model), the direct phase transition from a symmet-
ric state to a state with broken U(1)×U(1) symmetry, is
first-order.13 Subsequent Monte-Carlo calculations have
reported a weakly first-order phase transition.13,14 Fur-
thermore, by using the so-called flowgram method intro-
duced in Ref. 13, the same authors suggested that the
direct phase transition from a symmetric state to a state
with broken U(1)×U(1) symmetry, is first-order for any
non-zero value of the coupling constant.

For the SU(2) symmetric case, initial simulations were
performed in Ref. 11. Here, a direct second order phase
transition was suggested, but system sizes were small. In
a subsequent paper,15 an extensive study of the model
was performed. In particular, for the direct transition
line, they found a second-order phase transition that, at
higher couplings to the gauge field, turned into a first-
order transition via a tricritical point. Objections to this
work were, however, raised in Ref. 16 (see also Ref. 22),
where it was argued that the direct transition line is first-
order. By using the flowgram method, it was claimed
that there is no tricritical point along the direct transition
line. Rather, the large-scale behavior at small couplings
to the gauge field was claimed to be the same as for
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higher couplings where they were able to find a first-
order transition by resolving a bimodal distribution in
the energy histograms.

The NCCP1 model is a special case of a charged two-
component Ginzburg-Landau model with a constraint on
the matter fields, namely |ψ1|2 + |ψ2|2 = 1. The easy-
plane limit of the NCCP1 model was also extensively
studied in the context of two-component superconductors
with independently conserved condensates.12,19–21,23–25

The weakness of the observed first-order phase transi-
tion, combined with the necessity of assessing the order
of the phase transitions also in the limit of vanishingly
small coupling strength, renders this problem computa-
tionally extremely demanding. In this work, we therefore
examine the phase diagram of the NCCP1 model at sub-
stantially larger systems sizes than what has been done
in the earlier works (Refs. 15 and 16). The new physics
which we find by performing the computations on larger
systems, concerns a narrow range of parameters where
there is a paired phase sandwiched between the symmet-
ric and fully broken state. We find that at small sys-
tem sizes, these two phase transitions give signatures of
a single first-order phase transition. Correspondingly, we
find that the bicritical point has been overestimated in
earlier works. Although we find bimodal distributions
and signatures of first-order transitions at smaller cou-
plings along the direct transition line, the above men-
tioned effect raises the question of whether considering
larger system sizes would transform signatures of a first-
order transition into two separate phase transitions from
a fully symmetric phase to fully symmetry-broken state
via an intermediate partially ordered state. This raises
the possibility that the NCCP1 model exhibits a com-
pletely ordered and disordered state that always is sepa-
rated by an intermediate paired phase. We cannot prove
or rule out this scenario. However, we provide an upper
estimate for a bicritical point which could shift further
for larger system sizes.

II. MODEL

The continuum NCCP1 model is written as

Z =

∫
DΨDΨ†DA e−βH , (1)

H =
1

2

∫
d
3
x
{
|[∇− ieA(x)]Ψ(x)|2 + [∇×A(x)]

2
}
,

(2)

where β is the inverse temperature and Ψ†(x) =
(ψ∗1(x), ψ

∗
2(x)) are two complex fields that are coupled to

a noncompact gauge field A(x) with charge e. The fields
ψc(x), c ∈ {1, 2}, obey the CP1 constraint, |Ψ(x)| = 1.

The model can be mapped onto a nonlinear O(3) σ
model coupled to massive vector fields.23 By introducing

the fields,

C(x) =
i

2

∑
c

[ψc(x)∇ψ∗c (x)− ψ∗c (x)∇ψc(x)]− eA(x),

(3)

n(x) = Ψ†(x)σΨ(x), (4)

where the components of σ are the Pauli matrices, the
NCCP1 model (1) can be rewritten as23

H =
1

8
[∇ · n(x)]2 + 1

2
[C(x)]

2

+
1

2e2

{
εμνλ

[
∂νCλ(x)

− 1

4
n(x) · ∂νn(x)× ∂λn(x)

]}2

, (5)

where sum over repeated indices is assumed. The model
represents an O(3) nonlinear σ model coupled to a mas-
sive vector field C(x). The latter represents a charged
mode, and its mass is the inverse magnetic field pene-
tration length. The model can undergo a Higgs tran-
sition without restoring any broken global symmetries.
In that case, the remaining broken global symmetry
is O(3). If one introduces an easy-plane anisotropy
for the vector field n(x), this would break the sym-
metry of the model to U(1)×U(1), and the separation
of variables yields a neutral and a charged mode, the
physics of which was intensively studied in connection
with superconductors.12,19–21,23–25 However, there is one
substantial difference in the case of an SU(2) symmetry.
The charged and neutral sectors are coupled through the
last term in Eq. (5). Another difference compared to
the U(1)×U(1) case is that in two dimensions, stable
singly quantized vortex lines do not exist in a type-II
SU(2) model (the same applies to vortex lines in three
dimensions).26 On the other hand, a type-I SU(2) model
has energetically stable counterparts of singly quantized
vortices. Since composite vortices are topological excita-
tions which lead to the occurrence of paired states in
U(1)×U(1) systems, this aspect makes the phase dia-
gram of SU(2) theory an especially interesting problem
to study.

In the Monte Carlo simulations, we employ a lattice
realization of this model on a cubic lattice with size L3

and with lattice constant a = 1. The fields ψc(x) are
then defined on the vertices r ∈ {ix̂ + jŷ + kẑ|i, j, k ∈
{1, . . . , L}} of the lattice, ψc(x) → ψc,r. For the first
term in (2), we rescale the gauge field by e−1 and invoke
the gauge invariant lattice difference,[

∂

∂xμ

− ieAμ(x)

]
ψc(x) → ψc,r+μ̂ e−iAμ,r − ψc,r, (6)

where μ ∈ {x, y, z} and r + μ̂ denotes the nearest-
neighbor lattice point to vertex r in the μ-direction. The
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gauge field Aμ,r lives on the (r, r+ μ̂) links of the lattice.
For the Maxwell term we get

[∇×A(x)]μ → e−1
∑
ν,λ

εμνλΔνAλ,r, (7)

where Δν is the forward finite difference operator,
ΔνAλ,r ≡ Aλ,r+ν̂ − Aλ,r, and εμνλ is the Levi-Civita

symbol. In addition, by invoking the CP1 constraint and
discarding constant factors in the partition function Z,
we obtain the following lattice realization of the NCCP1

model:

Z =

∫
DA

∫ 1

0

Du

∫ 2π

0

Dθ1

∫ 2π

0

Dθ2 e−βH , (8)

H =
∑
r,μ

[
−√

ur
√
ur+μ̂ cos (Δμθ1,r −Aμ,r)

−√
1− ur

√
1− ur+μ̂ cos (Δμθ2,r −Aμ,r)

+
1

2e2

⎛
⎝∑

ν,λ

εμνλΔνAλ,r

⎞
⎠

2 ]
,

where ur = |ψ1,r|2 = 1 − |ψ2,r|2 and where |ψc,r| is the
amplitude and θc,r is the phase of the complex fields ψc,r.

III. DETAILS OF THE MONTE CARLO
SIMULATIONS

The Monte Carlo simulations are performed on a cu-
bic lattice with periodic boundary conditions in all di-
rections and with size L3 where L ∈ {8, . . . , 96}. For
most of the simulations, the parallel tempering (PT) al-
gorithm was employed.27–29 To be specific, we fix the
coupling e and simulate a number of replicas (typically
from 8 to 32 depending on the system size L and the
range of β values) in parallel at different values of β. A
Monte Carlo sweep consists of systematically traversing
all lattice points with local trial moves of all six field vari-
ables by the Metropolis-Hastings algorithm.30,31 For ur,
the proposed new values are found randomly within the
interval [0, 1], and for θc,r, the proposed new values are
found randomly within the interval [0, 2π〉. For the non-
compact gauge field, the proposed new values are found
within some limited increment (typically π/4) from the
old values. There is no gauge fixing involved in the simu-
lations. In addition to these local trial moves, the Monte
Carlo sweep also includes a PT trial move of swapping
replicas at neighboring β values.

All replicas are initially thermalized from a randomly
disordered or an ordered start configuration. Then, ini-
tial runs are performed in order to produce an optimal
distribution of couplings for the simulation. In some
cases, we found the set of couplings by measuring first-
passage-times as described by Nadler et al. in Ref. 32.
In this approach, the optimal set of couplings maximizes
the flow of replicas in parameter space, essentially by

shifting coupling values towards the bottlenecks.33 How-
ever, in cases with no severe bottleneck, we also used
the method proposed in Ref. 34. Here, the optimal set
of couplings is found by demanding that the acceptance
rates for swapping neighboring replicas are equal for all
couplings. Irrespective of how the set of couplings was
found, we always made sure that replicas were able to
traverse parameter space sufficiently many times during
production runs. The measurements were postprocessed
by multiple histogram reweighting.35 Random numbers
were generated by the Mersenne-Twister algorithm.36 Er-
rors were determined by the jackknife method.37

A. Monte-Carlo approach

As mentioned in the introduction, the NCCP1 model is
a difficult model on which to perform Monte Carlo com-
putations. In Ref. 16, the NCCP1 model was mapped
to a so-called J-current model, which allows simulations
based on the worm algorithm.38,39 (For the sake of com-
pleteness, and since they, to our knowledge, did not pub-
lish the details of their mapping, we present the deriva-
tion of this mapping in appendix A.) We tried this ap-
proach as well, but found it more demanding to work
with when considering lattice sizes above L ∼ 40, due to
the presence of long-range interactions. Our choice was
thus in the end to perform computations on the model in
the original NCCP1 formulation, using the PT algorithm
with which it is easy to grid-parallelize the lattice.

IV. OBSERVABLES AND FINITE-SIZE
SCALING

Perhaps the most familiar quantity that is used to ex-
plore phase transitions, is the specific heat Cv. The spe-
cific heat is given by the second moment of the action,

Cv =
β2

L3

〈
(H − 〈H〉)2

〉
, (9)

where brackets 〈. . . 〉 denote statistical averages. In most
cases, Cv exhibits a well-defined peak at the phase tran-
sition. For a continuous phase transition the correlation
length diverges with critical exponent ν as ξ ∼ |t|−ν

,
with t = (β− βc)/β being the deviation from the critical
coupling βc. The critical exponent α is defined by the
singular part of Cv, given by Cv ∼ |t|−α

. Then, in a
limited system of size L3, the finite-size scaling (FSS) of
the specific heat is given by

Cv ∼ C0 + C1L
α/ν , (10)

where C0 and C1 are non-universal coefficients. For a
first order transition, with two coexisting phases and no
diverging correlation length, there is no true critical be-
havior at the phase transition. Still, first-order transi-
tions exhibit well-behaved FSS with effective exponents,
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α = 1 and ν = 1/3.40,41 Hence, the peak of the specific
heat scales as

Cv ∼ L3, (11)

for a first-order transition. Distinguishing between con-
tinuous and first-order transitions is an important task
in this work. For that purpose, FSS of the specific heat
peak will play an important role.

We also investigate the third moment of the action
given by42,43

M3 =
β3

L3

〈
(H − 〈H〉)3

〉
. (12)

In the vicinity of the critical point, this quantity typically
features a minimum point and a maximum point [see for
instance the inset in panel (b) of Fig. 2]. The difference
in the M3 value of these two extrema scales as

(ΔM3)height ∼ L(1+α)/ν , (13)

and the difference in the coupling values scales as

(ΔM3)width ∼ L−1/ν , (14)

for a continuous phase transition. For a first-order tran-
sition, the FSS is

(ΔM3)height ∼ L6, (15)

and

(ΔM3)width ∼ L−3. (16)

As was mentioned above, one may construct a gauge
neutral field nr,

23 given by

nr = Ψ∗rσΨr, (17)

where the components of σ are the Pauli matrices. Cor-
respondingly, we may associate a magnetization,

M =
∑
r

nr. (18)

The order parameter 〈m〉, where m = M/L3, signals the
onset of order in the O(3) gauge neutral vector field nr,
and the critical point of this transition can be accurately
determined by a proper analysis of the finite-size cross-
ings of the associated Binder cumulant,44–46

U4 =
5

2
− 3〈M4〉

2〈M2〉2 . (19)

The finite-size crossings of the Binder cumulant are
known to converge rapidly towards the critical coupling
βc. Hence, βc can be accurately determined by a simple
extrapolation of the finite-size crossings to the thermo-
dynamic limit or by invoking scaling forms that account
for finite-size corrections.46,47

A number of quantities related to magnetization may
be used to extract critical exponents from the Monte
Carlo simulations. The magnetic susceptibility, given by

χ = L3β
〈
m2
〉
, (20)

when β < βc, scales as χ ∼ L2−η at β = βc. Hence,
we may determine the anomalous scaling dimension η by
FSS of χ measurements obtained at βc.
The exponent ν can, alternatively, be determined by

calculating the logarithmic derivative of the second power
of the magnetization,48

∂

∂β
ln
〈
m2
〉
=

〈
m2H

〉
〈m2〉 − 〈H〉 . (21)

The FSS of this quantity is ∂
∂β ln

〈
m2
〉 ∼ L1/ν . Since

the logarithmic derivative exhibits a peak that is associ-
ated with the critical point, it is possible to extract ν by
measuring the logarithmic derivative at the pseudocriti-
cal point, without an accurate determination of βc.
Similar to Ref. 15, we find the critical point of the

Higgs transition by measuring the dual stiffness

ρμμdual(q) =

〈∣∣∣∑r,ν,λ εμνλΔνAλ,r e
iqr
∣∣∣2

(2π)2L3

〉
, (22)

which is the Fourier space correlator of the magnetic field.
This order parameter for the Higgs transition is dual in
the sense that it is finite in the high-temperature phase
and zero in the low-temperature phase. As explained in
Ref. 15, this quantity is measured at the smallest avail-
able wavevector q �= 0. We chose to measure ρzzdual at
qmin = (2π/L, 0, 0). At the critical point, the quantity
Lρμμdual(qmin) is universal, such that the finite-size cross-
ings of Lρμμdual(qmin) can be used to estimate the critical
point of the Higgs transition. In addition, measuring the
coupling derivate of Lρμμdual(qmin) can be used to estimate
the correlation length exponent ν as

∂

∂β
Lρμμdual(qmin) ∼ L1/ν , (23)

at the critical point.

V. NUMERICAL RESULTS

A. Outline of the phase diagram

The phase diagram of the NCCP1 model is presented
in Fig. 1. For small values of β, there is a normal
phase that can be recognized by a disordered gauge neu-
tral vector field nr and a massless gauge field. Hence,
〈m〉 = 0 and ρμμdual(q) �= 0 in this phase. For large values
of e and higher values of β, there is a transition into a
phase that we label the O(3) phase. Here, the vector field
nr is ordered (the O(3) symmetry is spontaneously bro-
ken), 〈m〉 �= 0, whereas the gauge field remains massless,
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Figure 1: (Color online) Phase diagram of the NCCP1 model.
SU(2) phase: Fully ordered phase where the O(3) symme-
try is spontaneously broken, 〈m〉 �= 0, and the gauge field is
massive, ρμμdual(q) = 0. O(3) phase: O(3) symmetry is spon-
taneously broken, 〈m〉 �= 0, but the gauge field is massless,
ρμμdual(q) �= 0. Normal phase: O(3) symmetry is restored,
〈m〉 = 0, and the gauge field is massless, ρμμdual(q) �= 0. The di-
rect transition line from the SU(2) phase to the normal phase
is denoted by +-markers and a solid red line. The Higgs
transition line between the SU(2) phase and the O(3) phase
is denoted by ∗-markers and a dotted blue line. The transition
line between the O(3) phase and the normal phase is denoted
by ×-markers and a dashed green line. Lines are guide to the
eyes.

ρμμdual(q) �= 0. In the case of U(1) × U(1) symmetric su-
perconductors, this phase is sometimes denoted a metal-
lic superfluid or a paired phase, with long-range order
in the gauge neutral linear combination of the phases,
but not in the individual ones.12,13,19–21,25,49 From the
O(3) phase, by reducing the value of e, one enters an or-
dered phase that we label the SU(2) phase. Going into
this phase, the gauge field dynamically acquires a Higgs
mass and the system becomes a two-component super-
conductor. Note that the Higgs transition is related to a
local U(1) symmetry, and indeed, is not associated with
spontaneous symmetry breaking.50 (this aspect should
be kept in mind where we for brevity refer to the or-
dered state as “broken SU(2)” or “fully broken state”
to distinguish it from a paired state). The SU(2) phase
is recognized by measuring 〈m〉 �= 0 and ρμμdual(q) = 0.
At small values of e, the SU(2) phase may also be en-
tered directly from the normal phase. The nature of the
phase transition along this direct transition line is very
important and intensively debated due to the relevance
for the DQC scenario. We will return to this line in Secs.
VB and VC, but first, we will detail results for the two
separate transition lines.

1. O(3) line

In Refs. 16,51, the existence of an intermediate paired
phase, separating a fully ordered state from a fully disor-
dered one, was shown in the SU(2)-symmetric theory. As
immediately follows from the nonlinear σ model mapping
presented above, the transition line between the normal
phase and the O(3) phase could be a continuous transi-
tion in the O(3) universality class, at least in the limit
far from the bicritical point. As a step towards validat-
ing the numerics, we have considered this for the case
e = 6.0, and the FSS results are given in Fig. 2. A log-
log plot of the FSS of the peak height in ∂

∂β ln
〈
m2
〉
is

given in panel (a), and the measured peak heights fall
on a straight line for L ≥ 20. The best fit to the form
∂
∂β ln

〈
m2
〉 ∼ L1/ν yields ν = 0.715± 0.004. In panel

(b), we also measure (ΔM3)height, and this quantity ex-
hibits negligible finite-size corrections to scaling at least
for L ≥ 10. The best fit according to Eq. (13) yields
α = −0.117± 0.011, where the value of ν obtained above
was used. We should mention that in this case, it was
found that ν was most precisely determined by measur-
ing the peak height in ∂

∂β ln
〈
m2
〉
rather than measuring

(ΔM3)width. This follows since the maximum peak in M3

is not very sharp [see the inset of panel (b)], and hence,
the errors in (ΔM3)width were large. In order to deter-
mine η, the FSS of the magnetic susceptibility χ is given
in panel (c). Here, χ is measured at the critical coupling
βc = 2.7894± 0.0003, which was determined by curvefit-
ting the Binder crossings of L and L/2 to a fit function
that accounted for power-law finite-size corrections. The
best fit of χ(L) was determined for sizes L ∈ {12, . . . , 64}
to yield η = 0.024± 0.014. All the calculated exponents
above correspond well with the exponents of the O(3)
universality class.52,53

2. Inverted U(1) line

Investigations were also performed along the transi-
tion line between the O(3) phase and the SU(2) phase.
To check the universality class of this line, FSS results
of ∂/∂β[Lρzzdual(qmin)], obtained at the critical point with
e = 5.0, is given in Fig. 3. First, the critical coupling
was determined to be βc = 2.7347± 0.0005, by consider-
ing the crossings of Lρzzdual(qmin) [see the inset of Fig. 3].
Then, the correlation length exponent was estimated to
be ν = 0.664± 0.039. This value is consistent with inter-
preting this line as an inverted 3Dxy transition line.54

B. The region of the bicritical point

By utilizing the flowgram method, the authors of Ref.
16 argue that the true nature of the direct phase transi-
tion can most easily be revealed at large coupling to the
gauge field, just below the bicritical point above which
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Figure 2: FSS results for the transition between the normal
phase and the O(3) phase when e = 6.0. 13 system sizes L ∈
{8, . . . , 64} are used. In all panels, the solid straight line is the
best fit obtained for a fit function on the form aLb with two
free parameters a and b. Panel (a): Log-log plot of the maxi-
mum in the logarithmic derivative of the second power of the
magnetization (∂/∂β ln〈m2〉)β=βpc [see Eq. (21)] as a func-
tion of L. The best fit is obtained for sizes L ∈ {20, . . . , 64}.
The inset shows the measure of (∂/∂β ln〈m2〉)β=βpc in the
case when L = 40. Panel (b): Log-log plot of the third mo-
ment height difference (ΔM3)height as a function of L. The
best fit is obtained for sizes L ∈ {10, . . . , 64}. The inset shows
the measure (ΔM3)height in the case when L = 14. Panel (c):
Log-log plot of the magnetic susceptibility measured at the
critical coupling χβ=βc as a function of L. The best fit is ob-
tained for sizes L ∈ {12, . . . , 64}. The inset shows measuring
χβ=βc in the case when L = 40, and the arrowheads indicate
that χ is measured at the same fixed coupling βc for all sizes.
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Figure 3: Log-log plot of ∂
∂β

Lρzzdual(qmin) measured at the
critical point βc, as a function of system size L. The charge is
e = 5.0. Measurements are performed for 15 different system
sizes L ∈ {8, . . . , 64}. The derivative was found by calcu-
lating the differences of ρzzdual(qmin). The solid straight line
is the best fit obtained with a fit function on the form aLb

where a and b are two free parameters. The inset shows the
Lρzzdual(qmin) crossings for systems L and L/2 as a function of
L−1. These crossings were used to estimate the critical point,
βc = 2.7347± 0.0005. Errors in determining βc are taken into
account by also considering the sensitivity of ν with respect
to β when estimating the uncertainty in the exponent.

the paired phase is sandwiched in between the normal
phase and the ordered SU(2) phase. It is thus important
to be able to determine the bicritical point accurately.
For this purpose, we will focus on the region slightly
above the bicritical point and establish when two sep-
arate phase transitions are clearly resolved. In this way,
we can determine an upper limit of the bicritical point.

1. Monte Carlo results for e = 4.2. Signatures of splitting

In order to discern two separate but close-lying phase
transitions, we need to establish signatures that can be
taken as evidence for splitting. To this end, results are
presented for the case when e = 4.2, where we find un-
ambiguous evidence for two separate phase transitions.
Note that this was found to be a single first-order tran-
sition in Ref. 16 (e = 4.2 corresponds to g ≈ 1.88 in the
units of Ref. 16 whereas the bicritical point is found at
g ≈ 2.0 in that work). As we will see, going to larger
system sizes leads to a different conclusion as finite-size
effects will disguise the true nature of separate transitions
and make them appear as one.

In Fig. 4, results are presented for four different
observables obtained at 12 different system sizes, L ∈
{8, . . . , 56}, in a coupling range covering both phase tran-
sitions. In panel (a), results for the specific heat are
given. When system sizes are small, it is only possible
to resolve one peak in the specific heat. However, when



7

L = 40, it is possible to resolve a bump to the left of the
peak. The bump, which corresponds to the O(3) order-
ing phase transition, becomes more pronounced when L
increases. This behavior suggests that there are two tran-
sitions instead of one. Moreover, in the inset of panel (a)
we study the scaling of the peak in a log-log scale. When
L is small, there is a rather steep and slightly increasing
slope. However, at higher values of L there is a definite
change in the slope towards smaller values, correspond-
ing to a sudden slowing down in the growth of the peak.
This behavior should clearly be associated with resolving
separate transitions with increasing L.

In panel (b) of Fig. 4, results for the third moment of
the action are presented. When system sizes are small,
it is only possible to resolve a characteristic form cor-
responding to a single phase transition. However, at
L ≥ 40, a secondary form is developing to the left of
the original form, resolving the O(3) ordering transition.
When studying the scaling of the quantities (ΔM3)height
and (ΔM3)width in the insets of the panel, it is clear that
they both exhibit slope changes associated with resolving
both transitions.60

The Binder cumulant is given in panel (c) of Fig. 4,
and its crossings are given in the inset of the panel.
By considering the crossings with largest L, we find
that the critical point of the O(3) ordering transition is
βc = 2.347± 0.001, a value that corresponds well with
the leftmost transition point in panel (a) and (b). Note
that there is a non-monotonic behavior in the coupling
values of the Binder crossings. Hence, by studying small
systems only, one might be misled to overestimate the
critical point of the phase transition.

In panel (d) of Fig. 4, we show results for the quantity
Lρzzdual(qmin), and the corresponding crossings are given
in the inset. We estimate the critical point of the Higgs
transition to be βc = 2.353± 0.001 by a crude extrap-
olation to the thermodynamic limit. Hence, the critical
point of the Higgs transition is significantly different from
the critical point of the O(3) ordering transition.

The results in Fig. 4 show that it is of utmost impor-
tance to simulate large systems in regions where there
might be multiple phase transitions. If we discard data
points for L > 20, the crossings in panel (c) and (d)
seem to converge to the same coupling, and in panel (a)
and (b), we would only resolve a single phase transition
with rather strong thermal signatures. More formally,
since the size of the critical region scales as ∼ L−1/ν ,
there is some limiting size Llim = max{ξ1, ξ2}, where

ξi ∼ |(βc,1 − βc,2)/βc,i|−νi is the correlation length asso-
ciated with transition i when the deviation from the crit-
ical coupling equals the coupling difference between the
two transitions. If system sizes are smaller than Llim,
the critical point of one phase transition will be inside
the critical region of the other and/or vice versa. How-
ever, when L is larger than Llim, one should be able to
resolve two phase transition as the two critical regions
will not interfere. When one or both transitions are first-
order, the picture is somewhat different, but the main
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Figure 4: (Color online) Monte Carlo results for four different
quantities and 12 different system sizes obtained for a coupling
range covering two separate, but close-lying phase transitions.
The gauge field coupling e = 4.2. For clarity, the panels
only show results for L ∈ {16, 24, 32, 40, 48, 56}, but insets
include all 12 sizes, L ∈ {8, . . . , 56}. Panel (a) shows results
for the specific heat Cv, and the inset shows the scaling of the
peak Cv,max in a log-log scale. Panel (b) shows the results
for the third moment of the action M3, and the insets show
the scaling of (ΔM3)height and (ΔM3)width in a log-log scale.
Panel (c) shows the Binder cumulant U4, and the inset shows
the coupling βcross where the Binder curves cross as a function
of (L1L2)

−1/2 where L1 and L2 are the two actual sizes. Panel
(d) shows the quantity Lρzzdual(qmin) and the inset shows the
coupling where the curves cross. Lines are guide to the eyes.
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Figure 5: (Color online) Log-log plot of the value of the spe-
cific heat peak Cv,max as a function of system size L for seven
different values of e ∈ {3.0, . . . , 4.2}. The dotted line cor-
responds to the slope expected for a first-order transition,
according to Eq. (11). Lines are guide to the eyes.

point remains that large systems are needed to resolve
phase transitions that are close.

2. Monte Carlo results for e ∈ {3.0, . . . , 4.6}

We now turn our attention to the region with e < 4.2
to look for the signatures that we have established above.
Fig. 5 shows the FSS of the peak in the heat capacity
for e ∈ {3.0, . . . , 4.2}. The results show that there is a
definite change in the slope of the scaling of Cv,max, also
for e = 4.0 and 3.8. Note that this signature of splitting
appears at higher L when e is reduced, corresponding to
the coupling difference between the two transitions being
smaller. The slope of the dotted line in Fig. 5 is the slope
of a first-order transition [see Eq. (11)]. For all values of
e in Fig. 5, we find that for small and intermediate L the
slope is steep and increasing, and one might be tempted
to conclude that they all are first-order transitions. How-
ever, the change towards a smaller slope, that we find for
large L and e ∈ {3.8, 4.0, 4.2}, is clearly inconsistent with
a first-order phase transition.

In Fig. 6, we show the FSS of (ΔM3)height and
(ΔM3)width. Observe that the same signatures of split-
ting appears for e ∈ {3.8, 4.0} as found for e = 4.2
above, namely that the slope of (ΔM3)height changes to
a smaller value and the slope of (ΔM3)width changes to a
higher value. This is again inconsistent with the scaling
of a first-order transition. For a first-order transition the
slopes should converge towards the scaling for first-order
transitions, given in Eqs. (15) and (16) (see Ref. 14 for
an example).

To determine the critical points of the O(3) order-
ing transition and the Higgs transition, the finite size
crossings of U4 and Lρzzdual(qmin) are given in Fig. 7
for eight different values of e ∈ {3.2, . . . , 4.6}. For

(ΔM3)width ∝ L−3
e = 4.2
e = 4.0
e = 3.8
e = 3.6
e = 3.4
e = 3.2
e = 3.0

L

(Δ
M

3
) w

id
th

10010

10−2

10−3

(ΔM3)height ∝ L6
e = 4.2
e = 4.0
e = 3.8
e = 3.6
e = 3.4
e = 3.2
e = 3.0

(Δ
M

3
) h

ei
g
h
t

106

105

104

103

Figure 6: (Color online) Log-log plot of the FSS of the
height (upper panel) and the width (lower panel) of the
third moment of the action, for seven different values of
e ∈ {3.0, . . . , 4.2}. The dotted lines correspond to the slope
expected for a first-order transition, according to Eqs. (15)
and (16). Lines are guide to the eyes.

e ∈ {4.0, . . . , 4.6}, the U4 crossings and the Lρzzdual(qmin)
crossings clearly extrapolates to different couplings as ex-
pected for two separate transitions. Also note the corre-
sponding non-monotonic behavior for the Binder cross-
ings. When the coupling difference between the two
phase transitions decreases, larger systems are needed to
resolve this feature. For the sizes available, the cross-
ings seem to converge to the same coupling value for
e ∈ {3.2, . . . , 3.8}.
Based on the results in Figs. 5, 6 and 7, it should

be clear that there are two separate transitions when
e ≥ 4.0. Also, based on the scaling curves in Figs. 5,
6 it is also reasonable to conclude that e = 3.8 is above
the bicritical point, but that sizes are slightly too small
to observe the non-monotonic behavior for the Binder
crossings in Fig. 7. We thus estimate that the bicrit-
ical point must be below e = 3.8. Clearly, the system
sizes we are able to reach are too small to conclusively
determine if there are separate transitions for e ≤ 3.8.
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Figure 7: (Color online) Plots of the finite size crossings of
the Binder cumulant U4 [Eq. (19)], and the Lρzzdual(qmin) for
eight different values of e ∈ {3.2, . . . , 4.6}. The x-values are

given by (L1L2)
−1/2 where L1 and L2 are the two sizes that

form the crossing.

However, as a crude approach to determine the bicritical
point ebc, in Fig. 8, we show results for the coupling
difference between the two phase transitions Δβc as a
function of coupling e. To estimate when Δβc → 0, in
the lower panel, we show Δβc as a function of e− e∗ on
a log-log scale where e∗ is some trial value as labeled in
the key of the figure. If e∗ ≈ ebc, a straight line should
be expected. A positive curvature suggests that e∗ > ebc
and a negative curvature suggests that e∗ < ebc. Since
there is a clear positive curvature both for e = 3.8 and
e = 3.6, this suggests that ebc < 3.6. However, we should
mention that the results given in the lower panel of Fig.
8 essentially is an extrapolation of the difference Δβc

(which also in an extrapolation) in the upper panel to
find the point ebc where Δβc = 0. Hence, simulations
of even larger systems are needed to determine the exact
position of ebc with higher certainty.

Our estimates for the bicritical point is clearly different
compared with the results in Refs. 15 and 16. Our upper
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e∗ = 3.2
e∗ = 3.4
e∗ = 3.6
e∗ = 3.8

e− e∗
Δ
β
c

10.1
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4.64.44.243.83.63.4

0.03
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0

Figure 8: (Color online) Plot of the difference in the critical
coupling between the Higgs transition and the O(3) ordering
transition, Δβc. Δβc is determined by calculating the differ-
ence between the Lρzzdual(qmin) crossing and the U4 crossing,
and averaging over four of these differences with largest value
of (L1L2)

1/2 (i.e., the four leftmost data points from the pan-
els in Fig. 7). We only include results for e ≥ 4.0 where
the non-monotonic behavior of the Binder crossings can be
resolved. Upper panel: Δβc as a function of e. Lower panel:
Log-log plot of Δβc as a function of e−e∗ where e∗ is given in
the key. Positive curvature suggests that e∗ > ebc, negative
curvature suggests that e∗ < ebc and a straight line suggests
that e∗ ≈ ebc. Lines are guide to the eyes.

limit of ebc < 3.8 corresponds to Kbc > 0.151 in Ref. 15,
which means that a part of the line that was interpreted
as a direct first order transition in that work, in fact is
two separate transitions. Moreover, the upper limit of
ebc < 3.8 corresponds to gbc < 1.65 in Ref. 16 where the
bicritical point was estimated to g ≈ 2.0.

3. First-order signals

Although we are led to a different conclusion than
Refs. 15 and 16 at least for e ≥ 3.8, we find some
of the same thermal signatures. As mentioned above
(see Figs. 5 and 6), when systems are too small to re-
solve two phase transitions, the Monte Carlo results show
that the growth of Cv,max and (ΔM3)height is fast, al-
most as fast as one would expect for a first-order tran-
sition. Also when investigating the energy distributions
for e ∈ {3.4, 3.6, 3.8, 4.0} in Fig. 9, we find that the
histograms are broad, and for e ∈ {3.4, 3.6, 3.8} a very
weak bimodal structure can be seen for a few of the sizes.



10

L = 80
L = 64
L = 48
L = 32
L = 24e = 3.4

H/L3

P
(H

/L
3
)

-1.24-1.26-1.28

60

40

20

0

L = 80
L = 64
L = 48
L = 32
L = 24e = 3.6

H/L3

P
(H

/L
3
)

-1.28-1.3-1.32-1.34

40

20

0

L = 96
L = 80
L = 64
L = 48
L = 32
L = 24e = 3.8

H/L3

P
(H

/L
3
)

-1.34-1.36-1.38

60

40

20

0

L = 80
L = 64
L = 48
L = 32
L = 24e = 4.0

H/L3

P
(H

/L
3
)

-1.38-1.4-1.42-1.44

60

40

20

0

Figure 9: (Color online) Histograms of the probability distri-
bution of the energy per site H/L3, for e ∈ {3.4, 3.6, 3.8, 4.0}.
In every case the flattest (or most bimodal) energy histograms
were found by reweighting in the vicinity of the pseudocrit-
ical coupling corresponding to the peak of the specific heat,
Cv,max.

However, for the system sizes available, the bimodal sig-
natures are too weak to determine if the appropriate scal-
ing for first-order transition is obeyed.55,56 Also note that
for e ∈ {3.8, 4.0}, the width of the histograms decreases
and the bimodal structure disappears when L increases.
This is not consistent with being a single first-order tran-
sition.

Combining the results in Figs. 5, 6 and 9, it seems
that for couplings slightly above the bicritical point, there
are strong thermal signatures in terms of broad energy
distributions and rapidly increasing peaks in the specific
heat and the third moment of the action. However, when
system sizes are larger, we can explicitly see signatures of
splitting for e ≥ 3.8. We cannot exclude the possibility
that this may also be the case for some of the couplings
with e < 3.8. Indeed, the crude extrapolation in Fig. 8
suggests that e = 3.6 also is above the bicritical point.
If so, we should expect to see signatures of splitting for
system sizes larger than available in this work. On the
other hand, the strong thermal signatures we find for
e < 3.8 can also be consistent with a weak first-order
transition. In that case, we should expect to see that
proper first-order scaling is obeyed for larger system sizes.

In this work, we find that the strongest first-order-like
signatures were found at e = 3.4 and e = 3.6. Previous
works on smaller systems did not resolve bimodal struc-
ture at these couplings. For e < 3.4, we did not find any
bimodal structure in the energy histograms. Thus to as-
sess the nature of the phase transitions at these couplings
we have to resort to flowgram method.

C. Flowgram

In Ref. 13, the flowgram method was proposed as a
useful tool to distinguish between a weak first-order and
a continuous phase transition. In Fig. 10, we show re-
sults of a flowgram analysis of the quantity Lρzzdual(qmin)
along the O(3) ordering transition line. Specifically, the
quantity Lρzzdual(qmin) is measured at the critical point.
For this analysis, the critical point is defined to be at
the coupling where the Binder cumulant U4 = 0.775.
Hence, with this definition of the critical point, we will
follow the O(3) ordering transition line. As mentioned
above, Lρzzdual(qmin) is a universal quantity for a contin-
uous Higgs transition, whereas it will diverge ∼ L for a
first-order transition. In Fig. 10 we clearly see such di-
verging behavior when e ≥ 3.8 and the FSS is consistent
with Lρzzdual(qmin) ∼ L. In Refs. 15 and 22, this was in-
terpreted as a first-order transition. However, we would
like to stress that a diverging Lρzzdual(qmin) also is consis-
tent with being above the bicritical point, when following
the transition line of the O(3) ordering transition. Hence,
the results in Fig. 10 correspond well with there being
two closely separated phase transition for these values of
e, as was found in Figs. 4-8 above.

For e ∈ {3.4, 3.6}, the flowgram analysis also suggest
that Lρzzdual(qmin) diverges, but the FSS is weaker than
∼ L for the sizes available. This can be consistent with
being above the bicritical point, but it can also be con-
sistent with a first-order transition. For e ∈ {3.0, 3.2}, it
is hard to draw conclusions on the large-scale behavior
of the flowgram in Fig. 10. For e = 2.0 and e = 2.5 the
lines seem to converge slowly to a fixed value, at least for
the system sizes available. This is consistent with Ref.
15, namely that for these couplings the phase transition
is continuous.
By rescaling the linear system size L → C(g)L, where

g = e2/(4β) and where C(g) is a scaling function, the
authors of Ref. 22 were able to collapse the curves in
the flowgram onto the same master curve. The collapse
implies that the large-scale behavior is identical for all
couplings for which the curve collapses onto the master
curve. To this end, in Fig. 11 are the results if the
flowgram data in Fig. 10 when rescaled with the scaling
function C(g) = 8.2876g + 0.3689[exp(3.8127g) − 1].61

When observed with a coarse-grained view, the flowgram
curves seem to collapse onto the same master curve, at
least for e ≤ 3.6. However, a close inspection reveals that
there are large deviations for small systems.

We find it hard to draw firm conclusions based on Fig.
11. Clearly, there is an adequate collapse for e ≤ 3.6
and for large systems. This would lead to the conclusion
that all e ∈ [0.5, 3.6] have the same large-scale behavior.
However, we are concerned about the deviations that are
found for e > 1.5 and sizes L � 20. These points are im-
possible to collapse without destroying the good collapse
that is obtained for large systems. Hence, even larger sys-
tems are needed to be certain that the collapse is good.
If so, additional data points for larger systems should fall
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Figure 10: (Color online) Flowgram of Lρzzdual(qmin) along
the O(3) ordering transition line. In this analysis, the critical
point is fixed by U4 = 0.775. Then Lρzzdual(qmin) is measured
at this point and plotted as a function of system size L. The
results are given for 11 different values of e ∈ {2.0, . . . , 4.6}.
The upper panel shows results on a normal scale and the
inset zooms in on the results for e ∈ {2.0, . . . , 3.2}. The lower
panel shows the results on a log-log scale and the dotted line
correspond to FSS ∝ L. Lines are guide to the eyes.

on the master curve without making significant changes
in C(g). On the other hand, if additional data points
means that systematic changes has to be made in C(g)
in order to obtain a good collapse for large systems, and
with more data points that do not fall on the master
curve for small systems, one should be careful to draw
conclusions. In that case, there may be a tricritical point
within this region.

D. Results for e < 2.0

For e < 2.0 we obtain FSS curves (not shown here)
qualitatively similar to the results for e ≤ 3.6 in Figs. 5
and 6. I.e., for the system sizes available, the curves have
not converged to a proper straight line in a log-log plot, so
we have not performed a FSS analysis to extract critical
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Figure 11: (Color online) Rescaled flowgram of the data in
Fig. 10. For clarity, we have removed the curves for e >
3.6. These curves did clearly not collapse onto the master
curve. On the other side, we have included curves for e ∈
{0.5, 1.0, 1.5}. The system size L is rescaled by L → C(g)L
where C(g) = 8.2876g + 0.3689[exp(3.8127g) − 1] with g =
e2/(4β). The inset zooms in on the lower left corner of the
diagram. Lines are guide to the eyes.

exponents. In this sense, we do not have evidence for
a continuous transitions along this direct transition line.
On the other hand, we note that in this context such large
finite-size effects are not necessarily inconsistent with a
continuous transition.6

VI. SUMMARY AND DISCUSSION

In Sec. VB, we have performed a thorough investiga-
tion of the region around the bicritical point. We have
established that certain signatures should be taken as
direct evidence of two separate phase transition. Here,
these signatures are i) distinct changes in the FSS slope
of the specific heat and the third moment of the action
that are inconsistent with first-order scaling, and ii) the
crossings of the Binder cumulant and Lρzzdual(qmin) ex-
trapolates to different values in the thermodynamic limit.
We also observe that when the two transitions approach
each other, larger systems are needed to resolve these sig-
natures. For the system sizes we are able to reach, all of
these signatures can conclusively be observed for e ≥ 4.0.
In addition, we also observe distinct changes in the FSS
slopes for e = 3.8. Hence, the bicritical point must be
below e = 3.8. We also note that the crude extrapola-
tion in Fig. 8 suggests that the bicritical point may even
be below e = 3.6. However, we believe that larger sys-
tems must be studied before drawing firm conclusions for
these values of e. We would also like to emphasize that
for values of e ≥ 3.8 that conclusively show two closely
separated transitions at large sizes, one can, at smaller
sizes, observe strong thermal signatures, similar to what
one would expect for a weak first-order transition. This
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may explain why the observed transition in a part of this
region previously has been interpreted as weakly first-
order.

Similar to earlier investigations,15,16,57 there are strong
thermal signatures in this region that indicate the exis-
tence of first-order transitions. In particular, we observe
strong FSS of the specific heat and the third moment
of the action for all e values in the region of the bicriti-
cal point. Also, we observe broad energy histograms for
these values of e, and for e ∈ {3.4, 3.6, 3.8} there are
a few histograms that are slightly bimodal. There is a
strong mean-field argument suggesting that there must
be a first-order transition along the Higgs transition line
in the vicinity of the bicritical point.13,58 Hence, the most
obvious interpretation of the first-order signatures here is
that there is a first-order transition line for these values
of e. On the other hand, for slightly larger values of the
coupling, e ≥ 3.8, we find that the same strong signatures
weaken at large systems, and for e ≥ 4.0 we can explic-
itly observe two separate transitions. Since it is clear that
larger systems are needed to observe signatures of split-
ting when e is reduced, we cannot exclude the possibility
that the strong thermal signatures that we observe for
e < 3.8 are finite-size artifacts similar to those we observe
for e ≥ 3.8. To conclusively determine the existence of
a first-order transition for e < 3.8, larger systems should
be considered in order to reveal that proper first-order
scaling is well obeyed in energy histograms and scaling
plots.

As for the DQC scenario, we are not able to draw firm
conclusions. Our results are consistent with those of Ref.
16 in that we observe an adequate flowgram collapse
that connects the region of small couplings with a re-
gion where signatures of first-order transitions are found.
However, we also observe that there are large finite-size
effects in the data collapse and that proper FSS is yet
to be observed for the first-order transition. We thus
cannot exclude the possibility that there is a tricritical
point along the direct transition line, below which there
is a continuous transition with large finite size effects.
This appears to require systems sizes that are currently
beyond our reach.
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Appendix A: Mapping the NCCP1 model to a
J-current model

We start with the lattice formulation of the NCCP1

model,

Z =
∏
c,r

∫
dψc,r dψ

∗
c,r

∏
μ,r

∫
dAμ,r e−S , (A1)

S = St + Sg, (A2)

St ≡ −t
∑
c,μ,r

ψc,rψ
∗
c,r+μ̂ eiAμ,r + c.c., (A3)

Sg ≡ 1

8g

∑
μ,r

⎛
⎝∑

ν,λ

εμνλΔνAλ,r

⎞
⎠

2

, (A4)

|ψ1,r|2 + |ψ2,r|2 = 1 ∀r, (A5)

where we have introduced t ≡ β/2 and g ≡ e2/(4β) –
the same coupling constants as in Ref. 16. Writing the
complex fields on polar form,

ψc,r = ρc,r e
iθc,r , (A6)∫

dψc,r dψ
∗
c,r =

∫ 2π

0

dθc,r

∫ ∞

0

ρc,r dρc,r, (A7)

we note that the constraint (A5) becomes

ρ1,r
2 + ρ2,r

2 = 1, ∀r, (A8)

which describes the unit circle in the first quadrant of
the ρ1,rρ2,r-plane (since ρc,r ≥ 0). This means that we
can incorporate the constraint directly into the integral
by introducing the new field φ,

ρ1,r = cosφr, ρ2,r = sinφr (A9)

∏
c

∫ ∞

0

ρc,r dρc,r

∣∣∣∣∣∑
c ρc,r

2=1

=

∫ π
2

0

cosφr sinφr dφr,

(A10)

such that (A1), (A3) and (A5) can be replaced by

Z =
∏
r

∫ 2π

0

dθ1,r dθ2,r

∫ π
2

0

cosφr sinφr dφr

∏
μ,r

∫
dAμ,r e−S ,

(A11)

St = −t
∑
μ,r

[
cosφr cosφr+μ̂

(
ei(θ1,r−θ1,r+μ̂+Aμ,r) + c.c.

)

+ sinφr sinφr+μ̂

(
ei(θ2,r−θ2,r+μ̂+Aμ,r) + c.c.

)]
.

(A12)

Next, we focus on the the θ-dependent part of the in-
tegrand, namely exp(−St), aiming at replacing this field
with a J-current field. First we symmetrize (A12): As-
suming periodic boundary conditions and using that

Aμ,r−μ̂ = −A−μ,r, (A13)
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we get

St = − t

2

∑
κ,r

[
cosφr cosφr+κ̂

(
ei(θ1,r−θ1,r+κ̂+Aκ,r) + c.c.

)

+ sinφr sinφr+κ̂

(
ei(θ2,r−θ2,r+κ̂+Aκ,r) + c.c.

)]
, (A14)

where κ runs over negative as well as positive lattice di-
rections, κ ∈ {±x,±y,±z}. Then we split exp(−St) into
its individual factors and Taylor expand each of them:

e−St =
∏
κ,r

∞∑
k1,κ,r=0
l1,κ,r=0

∞∑
k2,κ,r=0
l2,κ,r=0[(

t
2 cosφr cosφr+κ̂

)k1,κ,r+l1,κ,r

k1,κ,r!l1,κ,r!
×

(
t
2 sinφr sinφr+κ̂

)k2,κ,r+l2,κ,r

k2,κ,r!l2,κ,r!
×

ei(k1,κ,r−l1,κ,r)(θ1,r−θ1,r+κ̂+Aκ,r)×

ei(k2,κ,r−l2,κ,r)(θ2,r−θ2,r+κ̂+Aκ,r)

]

(A15)

The factors of the product over the lattice and directions
in (A15) may be rearranged such that all the terms con-
taining θc,r are collected into one,

e−St =
∑
{k,l}

∏
c,r

eiθc,r
∑

κ(kc,κ,r−lc,κ,r−kc,κ,r−κ̂+lc,κ,r−κ̂)

× (Everything else). (A16)

Here {k, l} denotes the set of all possible Taylor expan-
sion index field configurations. Inserting this in the par-
tition function (A11), the θ-integrals may now be per-
formed. The result is Dirac delta functions (up to an
irrelevant scaling factor, which we ignore) at each lattice
point, revealing the (“J-current”) constraint∑

κ

kc,κ,r− lc,κ,r−kc,κ,r−κ̂+ lc,κ,r−κ̂ = 0, ∀c, r. (A17)

It is convenient to introduce the non-negative bond
subcurrents

Jc,κ,r ≡ kc,κ,r + lc,−κ,r+κ̂ ∈ N0, (A18)

as well as the total bond currents

Ic,κ,r ≡ Jc,κ,r − Jc,−κ,r+κ̂ ∈ Z. (A19)

Reordering the sum, the constraint (A17) then simplifies
to ∑

κ

Ic,κ,r = 0, ∀c, r; (A20)

the current conservation in each component at each lat-
tice site.

Getting rid of the θ-field we turn our attention to the
φ-field. The terms containing φr for a given r are on the
form

∫ π
2

0

dφr cos
1+2N1,r φr sin

1+2N2,r φr× (Everything else)

=
N1,r!N2,r!

2 (N1,r +N2,r + 1)
× (Everything else), (A21)

where, using (A18),(A19) and (A20),

Nc,r ≡ 1

2

∑
κ

kc,κ,r + lc,κ,r + kc,κ,r−κ̂ + lc,κ,r−κ̂

=
1

2

∑
κ

Jc,κ,r + Jc,−κ,r+κ̂

=
∑
κ

Jc,κ,r ∈ N0. (A22)

The Taylor expansion (A15) contains an index field
dependent factor as well,

∑
{k,l}

∏
c,κ,r

(
t
2

)kc,κ,r+lc,κ,r

kc,κ,r!lc,κ,r!
, (A23)

which we want to write as a function of the J-subcurrent
field instead. It is easy to see that

∏
c,κ,r

(
t

2

)kc,κ,r+lc,κ,r

=
∏
c,κ,r

(
t

2

)Jc,κ,r

(A24)

by reordering the terms in the product. Using the def-
inition (A18), as well as some standard combinatorial
results, we may rewrite the denominator part of (A23)
as

∑
{k,l}

∏
c,κ,r

1

kc,κ,r!lc,κ,r!
=
∑
{J}

∏
c,κ,r

Jc,κ,r∑
kc,κ,r=0

1

kc,κ,r!(Jc,κ,r − kc,κ,r)!

=
∑
{J}

∏
c,κ,r

1

Jc,κ,r!

Jc,κ,r∑
kc,κ,r=0

(
Jc,κ,r
kc,κ,r

)

=
∑
{J}

∏
c,κ,r

2Jc,κ,r

Jc,κ,r!
, (A25)

where {J} denotes the set of all possible subcurrent con-
figurations. (There is no problem in summing k away,
as it is an independent variable, and all other terms in
the partition function are exclusively J-dependent – as
we will see in a moment.) Inserting (A24) and (A25) into
(A23) gives

∑
{J}

∏
c,κ,r

tJc,κ,r

Jc,κ,r!
, (A26)

which is what we desired.
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Lastly, we want to integrate out the gauge field. The
gauge field dependent factors of (A15) are on the form

exp

[
i
∑
c,κ,r

Aκ,r (kc,κ,r − lc,κ,r)

]
= exp

[
i
∑
c,μ,r

Aμ,rIc,μ,r

]
.

(A27)
Note that the summation is over only positive directions
on the RHS. (The RHS is found by expanding and re-
ordering the sum in the exponent on the LHS and ap-
plying the identity (A13) and the bond current defini-
tion (A19).) Combining (A27) with exp(−Sg), the total
gauge field contribution to the partition function reads
(up to an irrelevant scaling factor)

∏
μ,r

∫
dAr exp

∑
μ,r

[
iAμ,r (I1,μ,r + I2,μ,r)

− (8g)−1

⎛
⎝∑

ν,λ

εμνλΔνAλ,r

⎞
⎠

2 ]

∝ exp

(
− g

2

∑
c,c′,
μ,r,r′

Ic,μ,rVr,r′Ic′,μ,r′

)
, (A28)

where we have applied the Coulomb gauge ΔμAμ,r = 0.
Vr,r′ is a long range potential given by by the inverse
Fourier transform

Vr,r′ ≡ F−1

⎧⎨
⎩
[∑

μ

sin2
(qμ
2

)]−1
⎫⎬
⎭ (r− r′) , (A29)

where qμ is the μ component of the Fourier space wave
vector q.

Combining everything, (A20), (A21), (A26), and
(A28), leaving out trivial scaling factors, we end up with

Z =
∑

{J|∑κ Iκ=0}

[∏
c,κ,r

tJc,κ,r

Jc,κ,r!

][∏
r

N1,r!N2,r!

(N1,r +N2,r + 1)

]
exp

(
− g

2

∑
c,c′,
μ,r,r′

Ic,μ,rVr,r′Ic′,μ,r′

)
, (A30)

which is a J-current formulation of the NCCP1 model.
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