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1 Introduction 

 

In this thesis, we have used the Monte Carlo (MC) method for semiconductor device 

simulation to simulate an avalanche photodiode (APD). A diode is a rectifying device 

which allows current to pass in one direction while current in the opposite direction is 

blocked. The APD is a highly sensitive photo-detector which relies on the 

photoelectric effect; a photon excites an electron into the conduction band, an 

external reverse bias accelerates the electron, and the APD then exploits the 

physical process of impact ionization to generate an avalanche of carriers. This gives 

rise to a current pulse which is large enough to be detectable in the electrical circuit 

surrounding the diode. APDs are increasingly important for technological 

applications; they are used as detecting components of LIDARs, which are used for 

optical remote sensing, and for scintillation detectors, which measure ionizing 

radiation.  

The APD and the pn-diode are both relatively simple two-terminal devices in which 

the pn-junction constitutes the main building block. Simple components like these 

have traditionally been analysed using drift-diffusion or hydrodynamic models. 

Particle simulation techniques have not, to any great extent, been employed for this 

task.  

A particular challenge when using MC methods is the calculation of the small terminal 

currents that occur in APD’s. The superparticle picture must be, at least in part, 

replaced by a real electron-hole picture in a rather large device. To achieve this, 

photogenerated and impact ionization generated carriers are treated as a 

perturbation upon a background “frozen field”, generated by the superparticles 

already present in the reverse biased APD. The resulting perturbation in terminal 

currents was calculated by the Shockley-Ramo (S-R) theorem. To that end, a brief 

survey of the literature on that subject was carried out. The lack of a consistent 

notation for the quantities involved makes reading of the various derivations found in 

the literature difficult and time-consuming. New proposed “generalizations” of the 

theorem continue to appear, so this situation goes on. In addition, misconceptions 

about the range of applicability of the theorem have flourished. A couple of authors 



4 
 

have tried to tidy up the literature, which has been very helpful for the present work. 

We shall introduce a unified notation and derive the theorem in those particular ways 

we have found useful for displaying its limits of applicability, and then study some 

analytically solvable examples that further clarify the implications of the theorem. 

Finally, some tests with this method on a simulated APD have been carried out, using 

an existing Monte Carlo-program, and the results are discussed.      
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2 Innledning 

 

I denne masteroppgaven har vi benyttet Monte Carlo (MC) metoden for simulering av 

halvledere til å simulere en avalanche fotodiode (APD). En diode fungerer som en 

likeretter som tillater strømledning i en retning, men blokkerer strøm i motsatt retning. 

En APD er en høy-sensitiv fotodetektor som bygger på den fotoelektriske effekten; et 

foton eksiterer et elektron inn i ledningsbåndet, deretter akselereres elektronet av en 

ekstern revers forspenning, hvorpå APD-komponenten dermed utnytter det fysiske 

fenomenet støtionisering til å generere et skred av ladningsbærere. Dette gir opphav 

til en strømpuls som er stor nok til å være målbar i en omkringliggende elektrisk 

krets. APD-er blir i stor grad viktigere og viktigere for teknologiske bruksområder; de 

er anvendt som deteksjonskomponenter i LIDAR-teknologier, som benyttes i optisk 

fjernmåling, og scintilleringsdetektorer, som måler ioniserende stråling.  

En APD og en pn-diode er begge relativt enkle to-terminalskomponenter, hvorav pn-

overgangen utgjør hoveddelen av komponenten. Simple komponenter som disse har 

tradisjonelt blitt analysert med hjelp av drift-diffusjon eller hydrodynamiske modeller. 

Teknikker for partikkelsimulering har ikke i noen stor grad blitt anvendt på dette 

området tidligere. 

En spesiell utfordring ved å benytte MC metoder til dette er beregningen av den 

svake terminalstrømmen som forekommer i APD-er. Teknikken som benytter 

superpartikler må, i hvert fall delvis, erstattes av en reell elektron-hull modell i en 

relativt stor komponent. For å oppnå dette, behandles fotogenererte ladningsbærere 

som en perturbasjon over et statisk «frosset felt» (“frozen field”) i bakgrunnen som er 

generert av superpartiklene allerede tilstede i den revers forspente APD-en. Den 

resulterende perturbasjonen i terminalstrømmene blir beregnet av Shockley-Ramo’s 

(S-R) teorem.  

Til dette formålet har en kort litteraturstudie på feltet blitt gjennomført. Mangelen på 

en konsistent notasjon for de involverte begreper og størrelser gjør lesing av 

forskjellige utledninger unødvendig vanskelig og tidkrevende. Nye foreslåtte 

«generaliseringer» av teoremet fortsetter å dukke opp, så denne situasjonen pågår 

fremdeles. Videre har det også vært flere misforståelser i dette fagfeltet knyttet til 

hvilke områder dette teoremet kan anvendes på.  
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I nyere tid har noen artikkelforfattere prøvd å rydde opp i litteraturen, noe som har 

vært svært nyttig for nyere arbeid i feltet. Vi introduserer en konsistent notasjon, og 

utleder teoremet slik at dets bruksområder og begrensninger kommer klarere fram. 

Deretter vil vi studere noen analytisk løsbare eksempelproblemer som videre klargjør 

følgene av dette teoremet. Til slutt har vi også utført tester med denne metoden på 

en simulert APD ved hjelp av et eksisterende Monte Carlo-program som har vært 

utviklet i tidligere studentarbeider, og resultatene blir diskutert. 
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3 On The Basics of Semiconductors 
 

This chapter gives a short introduction to the some of the topics of solid state physics 

which are needed for modelling semiconductor crystals. The aim is to present an 

introduction to semiconductors and some terms used frequently, and go into how the 

theory is used in a Monte Carlo particle simulator. First, the properties of 

semiconductors in general are briefly summed up in 3.1. Later, we will go over a few 

properties of CdxHg1-x Te in section 3.2.  

 

 

3.1 Semiconductor Materials 

 

Solid state materials are usually categorised as metals, semiconductors or insulators 

based on the electrical conductivity of the material. Metals have the highest 

conductivity, insulators have the lowest, and semiconductors comprise a vast range 

of materials in between. The key point in semiconductors is that the same material 

can show properties of varying conductivity. This is a crucial element in all 

electronics, as neither insulators nor metals can show the same degree of versatility 

of the conductivity based on externally controllable factors, like temperature, 

introduced external fields, doping, and so forth. At very low temperature, the 

electrons are bound in the valence band, leaving the conduction band mostly void of 

any carriers, both holes and electrons. This state leaves the semiconductor as an 

insulator, whereas at room temperature, the electrons are thermally excited into the 

conduction band, making the material conductive.  

As mentioned, the key point is that the conductivity is more or less easily controlled 

and regulated by the user. This can either be done reversibly in real-time via external 

electrical fields or via temperature changing, or permanently, with mixing in impurities 

into the material. 

Most, if not all, semiconductors are comprised of atoms of one or more types, 

arranged in a periodic lattice in the form of a crystal. The earlier mentioned doping of 
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the material, or introduction of impurities, can greatly alter the conductivity, and thus 

the electronic properties of the material.  

To envision this, imagine a lattice of carbon, or silicone atoms. Both have 4 valence 

electrons, and form a perfect periodic lattice. Now, substitute a select few of these 

with Arsenic or Phosphorus, both with five electrons in the valence band each. Four 

of these electrons will be bound to the neighbouring lattice atoms, fitting in nicely with 

covalent bonds to the adjacent four atoms. This will make the last electron bind 

loosely to the substituted atom, and thus could be easily excited into the conduction 

band (Kittel 1976 (2005)). The atom left behind is considered an ionized impurity, but 

still contribute positively to the conductivity of the lattice.  

Atoms with one or more surplus electrons compared to the surrounding lattice are 

called donors, while the opposite case, of atoms lacking electrons compared to the 

lattice are called acceptors. Doping with donors makes the semiconductor an n-type 

semiconductor, and doping with acceptors yields a p-type semiconductor. In this 

thesis both n- and p-type materials will be considered. The material is assumed to be 

fully ionised at room temperature, thus the density of conduction band electrons is set 

equal to the density of donors and likewise the hole density is assumed equal to the 

acceptor density. 

 

 

3.2 CdxHg1-xTe 

 

CdxHg1-xTe, abbreviated CMT, is a compound ternary alloy semiconductor 

crystallized in the zinc blende lattice structure. It is composed of the semimetal HgTe 

and the semiconductor CdTe, x  denotes the mole fraction of Hg in the alloy. CMT 

has a direct band gap which increases approximately linearly with x  until reaching 

the band gap of CdTe which is 1.5 eV at room temperature. The band gap is also 

temperature dependent, an experimentally obtained formula for the band gap which 

is valid up to 500T   K has been produced in articles (J. P. Laurenti 1990), and is 

given below: 
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Here, 
0 ·(1 ) 1.6060.303 0.132 ·(1 )g x x xE x      and 

gE are given in eV, and T in K. 

The variable band gap and the high absorption coefficient make CMT a very useful 

material for various applications. It can be tuned to absorb wavelengths in the interval 

0.7 — 25 µm, thus covering most of the infrared region of the electromagnetic 

spectrum. CMT is an important material for the industry of infrared detectors and 

photodiodes, and especially useful for fabricating highly sensitive avalanche 

photodiodes, later in the text referred to as APDs.  

The simulations mentioned and referred to in this thesis are done with an alloy 

fraction of 0.28x   and, unless otherwise stated, at 77 K. These conditions 

correspond to a band gap gE  = 0.2 eV. 

The different doping densities used in this thesis are: 

 17 32,5 10 cm in the n+ region, the right corner. 

 14 35 10 cm  in the i region, the right side of the depletion region. 

 16 31 10 cm  in the p region, the left side of the depletion region. 

 17 31,95 10 cm  in the p+ region, the left corner. 

 

 

  



10 
 

 
 

 

Capacitor with dielectric material between 
electrodes, for illustration purposes 
enclosed in a «black box». 

Setup of electrodes with different 
geometry. 

3.3 On Displacement Currents and Similarity to Capacitors 

 

We will start by going deeper into how our device component behaves, and try to 

understand it by comparing it to a capacitor. The basic principles apply to both types 

of devices, the concept of displacement fields – and currents.   

 

 

 

 

 

 

 

 

 

 

Assume there is a voltage difference 0V  over the two ends, and that the dotted line 

represents a “black box” covering the capacitor. The current coming in at the left end 

and exiting at the right end will at time 0t   be measured to be the same as it would 

have been if the capacitor had not been there at all, i.e. short-circuited. The current 

will rapidly decline, however, proportional to te , similar to what can be expected from 

a regular capacitor.  

The reader might ask why this introduction is in place here. The simple answer is, 

some of the effects observed in the device are similar to what can be observed in a 

capacitor. This is especially true for the displacement current. As mentioned in the 

introduction, a single photon of appropriate energy arriving onto the APD device will 

excite an electron and produce a measurable current pulse. This current pulse, 

however, is measurable before the electron and hole avalanches even reach the 

Figure 3-1. Depicted above is a simplified capacitor, “filled” with a dielectric 
material between the electrodes. The left one is also presented with a 
virtual “black box” for understanding the concept of displacement currents 
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contact edges. This is the displacement current mentioned above. In chapter 4, some 

calculations around this are performed, clarifying this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A photogenerated electron/hole-pair is at time 0t  somewhere in the middle of the 

device. Due to the external reverse bias field, which is considered static for the 

duration of the simulations, they start to separate, with the hole moving left, towards 

the conductor with the lowest potential, while the electron is moving right, towards the 

higher potential conductor. This process generates in total four different currents, 

which will be considered independently in later chapters. 

 The displacement current induced in the LEFT electrode from the 

HOLE. 

 The displacement current in the LEFT electrode from the ELECTRON. 

 The displacement current in the RIGHT electrode from the HOLE. 

 The displacement current in the RIGHT electrode from the 

ELECTRON.  

 

  

 
Represents highly doped areas, to provide near ohmic connection to 
surroundings. 

 Represents normally doped areas, to function as a semiconductor. 

Figure 3-2. An illustration further clarifying the similarities 

between the device in question and a traditional capacitor. This is 

the typical design for an APD device. The area between the two 

dotted lines indicates the depletion region. 
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4 Calculating Currents 

 

4.1 Induced Electrode Currents – Basic Observations 

 

The purpose of this chapter is to find a systematic way of calculating the current 

going into and out of metallic electrode leads due to the movement of charged 

particles in the vicinity of the electrodes and electrode leads. We shall use the 

electrostatic equations to form a quasi-static, time dependent approximation. The 

ambition is not to include currents induced by magnetic fields, nor to calculate the 

current density or charge distribution on the electrodes themselves. We are only 

interested in the total current passing through the electrode leads. 

We begin this chapter by re-deriving a method described in two essential original 

papers, Ramo (Ramo 1939) and Shockley (Shockley 1938). The method described in 

these two papers was at the time motivated by a growing need for calculating 

transient and high frequency electrode currents in vacuum tubes. During a transient, 

it was observed that an anode current began to flow long before any electrons could 

have passed through the vacuum from the cathode to the anode. In other words, the 

anode current could not be calculated by simply counting the number of electrons 

travelling inside the device and arriving at the anode per unit time.  

A capacitor represents another, more clear-cut case where counting electrons 

arriving at an electrode from the inside of the device does not properly describe the 

outside electrode current. If the capacitor has no leakage current, the current inside 

the device is always zero, even if there can be a substantial transient current to and 

from the electrodes during charging and discharging of the device. Since an ideal 

capacitor never has any internal device current, it perfectly illustrates that currents 

inside a device and currents in electrode leads outside the device can be very 

different.  

During charging of a capacitor, an outside voltage source draws electrons from one 

electrode plate, becoming positively charged, and forces them to pile up on the other 

plate, which becomes negatively charged. As electrons begin to pile up on the 

negative plate, they create an electric field inside the capacitor which gradually forces 

or displaces the remaining electrons on the positive plate away from that plate, 

making it more positively charged.  The “collaboration” between the outside voltage 
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source and the internal electric field creates a continuous flow of electrons in the 

leads.  However, the electron flow inside the capacitor is by no means continuous. In 

the ideal capacitor, the current in the electrode leads stops abruptly on the 

electrodes, and charge piles up. The density of such charge is described by the 

volume divergence D . According to Maxwell’s equations: 

t






D
H = j +  

which gives 

 
t

 
   


  


  


0

D
H j  

This means that the quantity 
t





D
j has no divergence which again means that a 

volume integral of this quantity is always zero. If the volume of integration contains 

one electrode of the capacitor and runs through the area between the electrode 

plates and through the lead of the contained electrode (where the field D is zero), we 

end up with 

Volume Surface

dv dA
t t

    
     
    

  0 =
D D

j j + n   

where the surface to be integrated over is the surface of the volume of integration, 

and n is the outward normal.  The main contribution of the surface integral will come 

from the cross-section of the lead where j ≠ 0 and D = 0, and from the area between 

the electrode plates where j = 0 and D ≠ 0. The above equation asserts that the 

divergence of the quantity 
t





D
j  is conserved, which means that if we interpret it as 

a “current” density, the total current entering the area between the electrode plates is 

the same as the total current exiting the lead. So, the quantity 
t





D
 between the 

electrode plates eventually becomes a transient, real current density j elsewhere, 

namely in the lead, and the surface-integrated sum of j and 
t





D
 is conserved.  
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In the general cases of a vacuum tube, a leaky capacitor, or a semiconductor device 

we will have a mixture of a real current j and a displacement current 
t





D
 inside the 

device. In the leads however, we will only have the real current j. In steady state DC 

cases, 0
t






D
, and we will only have the real current j.   

If we have a moving lump of electrons travelling the electrodes of a device, they will 

certainly contribute to 
t





D
. Other contributions to 

t





D
 many come from a time-

varying external voltage source, just as in the case of an ideal capacitor. This 

contribution can be calculated analytically or using a numerical Poisson solver, and 

represents the effect of charge carriers piling up at the electrodes. The contribution to 

the current in the leads from the real current j inside the device is found by counting 

the number of electrons in the lump arriving/leaving each electrode inside the device. 

Contributions from the electrons in the moving lump inside the device can perhaps 

best be illustrated by the concept of mirror charges or the method of images. We 

imagine that the alteration of the position of the lump alters the position of the 

corresponding mirror charges in the electrodes, giving rise to a transient current in 

the electrode leads. To comply with the voltage boundary conditions prescribed by a 

given external voltage source, the contribution from the method of images is 

assumed to obey the external voltage, so no additional voltage change is allowed. 

That is, the method of images procedure must be performed with all electrodes 

grounded.    

The Shockley-Ramo procedure can be applied in cases where the calculation of the 

total
t





D
by a Poisson solver is difficult or impractical. Although we have illustrated the 

effect of the internal lump of moving electrons by using the method of images, using 

the Shockley-Ramo theorem historically ended a period of extensive use of the 

method of images in vacuum tube theory. In fact, if we are only interested in knowing 

the currents in the electrode leads and not the total D, we shall see that we do not 

need to consider the method of images at all.  

So, in summary, the current due to carriers that never leaves the electrode or lead 

area and therefore does not enter the vacuum region is NOT calculated by the 

Shockley-Ramo theorem. Displacement current induced when charging or 
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discharging an ideal capacitor is a typical example.  In steady-state DC conditions 

this component of the lead current will be zero anyway. 

What is calculated, is the specific displacement current in the leads due to carriers 

moving between the electrodes inside the device.  

In a traditional calculation of the current in the leads with a full Poisson Solver, one 

would calculate the current in the leads by counting the number of carriers 

arriving/leaving the corresponding electrode and also add the total displacement 

current just outside the electrode, assuming that the displacement current adjacent to 

the electrode will turn into a real current inside the leads. Note that these calculations 

are performed over a surface area adjacent to the electrodes. Assuming that there is 

no displacement current allowed in the metallic electrodes or leads themselves, this 

sum will give the total, real electronic current in the leads. 

 

If the Shockley-Ramo theorem is used, however, the real particle current inside the 

device is the driving force for a corresponding internal displacement current. The 

calculation is not performed over a surface area adjacent to the electrode in question, 

but over the whole interior volume of the device. Furthermore, the explicit counting of 

carriers arriving/leaving an electrode is no longer required, which we shall see 

simplifies the calculations.  

 

In the Shockley-Ramo scheme, as long as a carrier is moving in the interior of the 

device, it creates an interior displacement current which turns into a real “evacuation” 

particle current in the surrounding electrodes. When the carrier arrives at an 

electrode and is collected by it, the current due to this carrier abruptly stops flowing, 

with the collected carrier filling in for the evacuated charge. Now this carrier is outside 

the realm of Shockley-Ramo analysis. The charge evacuated from the electrode is 

sometimes called the “induced charge”. One way to understand it is that the induced 

charge represents the continuation of the movement of the collected (stopped) carrier 

into the leads. For example, if we have a two-terminal device, and another carrier 

leaves the other electrode at exactly the same moment, the current will continue to 

flow in both electrodes and can be continued to be described by Shockley-Ramo 

analysis. In this case the carriers inside the leads behave as if they were placed on a 
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chain of pearls; when one interior carrier arrives at an electrode, it forces an exterior 

carrier to pop out from the other electrode and become the new interior carrier 

sustaining the Shockley-Ramo analysis. The external operating voltages of the 

Shockley-Ramo (S-R) analysis are assumed to be fixed (i.e. clamped) and 

superposition is assumed to hold. The S-R theorem will give the contribution from 

moving internal carriers with the external electrodes short-circuited. Charge build-up 

on the electrodes is allowed to balance the moving charges in the interior. Additional 

charge build-up on the electrodes gives the necessary contribution to satisfy the non-

zero external operating voltages. This contribution must be treated as an “Add-on” to 

the S-R analysis, for example by using the capacity coefficients of the device. 

If the flow of external electrons is obstructed by a resistance in the lead circuit, or if 

the external circuit is open, there will certainly be a voltage build-up at the electrodes. 

As an alternative to using the capacity coefficient approach, there are also later 

extensions of the S-R theorem that can deal with unclamped voltages on the 

electrodes. But this subject-matter is beyond the scope of this report. We have seen 

with pn diodes that internal carriers in equilibrium can create a built-in potential that 

affects and is only seen by the Poisson solver, but not by an external voltage clamp. 

Non-equilibrium contributions from photogenerated carriers can be seen both as 

exterior voltages and by the Poisson solver.  

 

Usually, the field from the extra photogenerated carriers at low-level irradiation will 

not notably influence total electric field in the device, so in those cases the movement 

of interior carriers is not affected, and the possible external voltage perturbations are 

neglected. In cases of high-level irradiation, these effects cannot be neglected, and 

the lack of self-consistency in our Ramo-Shockley analysis becomes apparent. 

Counting the internal photocarriers arriving at the electrodes can in those 

circumstances be helpful for assessing when non self-consistent approaches must be 

abandoned. In high-level irradiation cases one would also use the superparticle 

approach with the standard method of calculating the electrode currents by counting 

arriving carriers and calculating 
t





D
 . In any case, whatever the approach will be, we 

see that combining self-consistency and compliance with the actual electrical 

characteristics of the readout circuit outside the device can become an issue, 
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especially as these factors are related to what constraints the Poisson solver must 

obey. 

If the external voltage clamp varies with time, an additional internal displacement 

current contribution 
t





D
 with origin in the non-mirror, voltage producing charges on 

the electrodes is also introduced, just as in an ideal capacitor. 

If we study the articles of Shockley and Ramo, we see that only Shockley appears to 

have any concern for the limits of validity of the theorem and the other aspects that 

we have discussed in this section.  It is therefore appropriate to cite Shockley’s 

viewpoints here: 

“Before discussing what effect the moving charge has, we must introduce certain 

conventions as to what part of the total field is to be attributed to the charge and what 

part to other causes. It is most convenient to consider that all of the conductors are 

grounded and to examine the currents to them through the external circuit due to the 

motion of the charge. If the voltages on the conductors are varying, however, charges 

will be induced and currents will flow as dictated by the coefficients of capacity. In 

keeping with the superposition principle, the net current is found by adding the 

currents induced by the moving charge (or each moving charge if there are several) 

and the currents due to changing voltages. 

As was pointed out above, the current just calculated, although it is expressed in 

terms of fields produced by potentials on the electrodes, is that induced by the motion 

of the charge and does not include currents produced by changing potentials upon 

the conductors.) Since we have used a theorem of electrostatics in our theory, the 

results will not be valid if retardation effects are important within the volume 

throughout which the charges move; they will be valid, however, if these effects are 

small, even for large transit angles of the moving charges.” (Shockley 1938) 

This will be revisited and further discussed in section 4.3 with examples clearly 

illustrating the effects mentioned in this section.  
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4.2 Currents Induced by Electron Motion 

 

We begin this chapter by re-deriving a method for calculating currents due to internal 

electron motion described in two essential original papers, Shockley (1938) and 

Ramo (1939). 

 

Ramo’s Proof 

 

In 1939 Simon Ramo presented the following simple equation for the contribution of a 

moving electron in vacuum to the current in the lead of an electrode A, 

 Ai e E u  

Here Ai is the instantaneous current in the lead or wire with positive direction towards 

the electrode in question, e  is the elementary charge, u is the velocity of the electron, 

and E represents the local electric-field vector at the position of the electron produced 

by a 1 V “test” or “weighting” potential at the electrode, with all other electrodes 

grounded.  

In this text we shall opt for a slightly different notation to promote clarity and 

readability, while also making the equation more correct. The reader may observe 

that the dimensions for this expression clearly do not correlate. This is due to Ramo 

assuming a unit test/weighting potential, or simply, 1V  . 

Including the «missing» potential factor, which we shall refer to as W

AV , the equation 

would look like this 

W W

A AV i e E u , or 

W

A W

A

e
i

V




E u
 

Our notation differs from Ramos’ since we include two indices, whereas his article 

uses only one, the lower one. The upper index, in this case the W , denotes the 

“situation”, or case, with W being an abbreviation for ‘weighting’ associated with the 
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test case. The lower index, A , is the index for the location of each particle or 

conductor. Thus, W

AV means the potential in the test case on electrode A . W

eV similarly 

represents a potential in the test case, at the position of the electron, wherever that 

may be. Aiming for a higher level of generality, we shall use a general “source” 

charge q instead of only electron charge. Therefore, 

WW
q

A AW W

A A

qe
i i

V V


   

E uE u
 

where we have also added the location where the weighting field W
E is to be 

evaluated. Another important point worth reminding ourselves is that the whole 

process is viewed as linear, i.e. note the linear relation between W
E and W

AV . This in 

turn means that one can find the effect of particles and fields by considering each 

simple case. Whereas the index W (meaning ‘weighting’) is interpreted as the case in 

which other conductors than A  are electrically grounded, the calculated current 

contribution Ai  is for the “normal”, grounded case, and therefore appears without an 

upper index.  

Technically, the current contribution Ai is one which we can calculate with all 

electrodes grounded, including electrode A. It is actually the mirror current 

contribution discussed earlier, appearing by virtue of the superposition principle as an 

independent component adding to the total electrode current, valid also when all 

voltage sources are re-set back to their actual values. The normal case and the test 

case for Ramo’s analysis are depicted in Figs. 4-1 and 4-2, respectively. In the 

normal case, all electrodes are grounded and the “source” charge carrier is present, 

but it is surrounded by an infinitesimal metallic sphere which is just an aid for the 

proof of the theorem.  
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In the weighted case, the electrode A for which we want to calculate the current is 

raised to the test or weighting potential W

AV  and the source charge carrier is removed, 

but the tiny metallic sphere is still present.  

Before discussing the effect and influence of the sphere, it might be important to 

point out that the potential qV actually denotes the potential at the sphere surface, not 

at the charge q . Therefore, we can also set  q sV V  , with “s” denoting “sphere”. 

As we have seen from the discussion of the capacity coefficients, there is a linear 

relation between charges at the given conductors and voltages at the conductors. 

Therefore, in the test case, there is a linear relation between W

qE  and W

AV so that the 

actual W

AV value used becomes irrelevant. One might even be tempted to re-state the 

B

A
C

D

0q 

0V 

0V 

0V 

0V 

2 0V 

2 0V u

Ai

Bi

Ci

Di

qV V

Figure 4-1. Ramo’s model in the normal case. Letters A-D represents 

different conductors. All conductors are grounded, except for the small 

metallic sphere surrounding the free charge q . Compare with the 

“weighting” case, Figure 4-2. 
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relation and view the test voltages and fields as a small perturbation upon a 

background of actual electrode voltages and actual fields, i.e., 

 

W

q

A W

A

q
i

V

 
 



E u
 

Typically, one would do this in situations where the material in the interior of the 

device is not simply a passive linear medium or vacuum. In principle, all space 

charge in the interior should be removed when doing the evaluation of the current. 

But there could be situations with a background current of little interest and a small-

signal current caused by extra carriers which was highly interesting. Then a 

“linearization” upon this background would seem profitable. The response of the 

medium together with the internal background carriers could be nonlinear, but might 

well be approximated by a linear relation if the small-signal response indeed was a 

small perturbation. When the internal background carriers in the medium consist of 

stationary space charge, we see that the S-R theorem tends to dismiss their direct 

influence on the current because of their vanishing carrier velocity. Nevertheless, a 

more indirect influence could persist. With background internal carriers, background 

currents, background electrode carriers and electrode voltages at their actual values, 

the task of evaluating the perturbative small-signal response can eventually fail 

because the interaction between carriers or currents of interest and carriers or 

currents of “no interest” was not properly accounted for.      

From the above discussion we can conclude that the internal particle velocity u is an 

all-important quantity with quite a direct influence on terminal currents. In the context 

of the Shockley-Ramo theorem, it is often viewed as “God-given” i.e. the trajectory of 

the particle is known. This is a convenient approximation for small-signal analysis, 

where the field contribution from a small group of internal signal electrons can be 

considered negligible when compared to a dominating “background” contribution from 

e.g. the electrode voltages. The key to the simplification offered by the S-R theorem 

clearly lies herein, for this allows a reasonably simple computation of the electrode 

currents without the need for a fully self-consistent solution of the total electric field.   
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If there are many signal electrons, a small signal analysis will not be sufficient, as the 

path of a given signal electron will be affected by the other signal electrons. This 

does not lead to a breakdown of the S-R theorem per se, it only signalizes that u

should be calculated self-consistently according to the total electric field. So, in 

conclusion, lack of self-consistency in the total electric field governing umanifests 

itself in u  only, since the total electric field does not explicitly appear in the S-R 

theorem. Indeed, a self-consistent calculation of u  can take away the utility of the S-

R theorem to such a degree that a full calculation of 
t





D
j would indeed be 

preferable. 

Before we proceed, it is appropriate to remind the reader that a metallic equipotential 

sphere of neutral initial charge will not influence the outside electric field stemming 

from any enclosed internal charge(s). This is due to the fact that an enclosed charge, 

for example an electron in the following illustration 4-3, will polarize the enclosing 

sphere, creating a lack of electrons along the inner surface, while creating a surplus 

Figure 4-2. Ramo’s model in the weighting case. Similar situation 

as depicted in Fig. 4-1, but with conductor A raised to the 

weighting voltage W

AV and the source charge carrier removed. 
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of electrons on the outer surface. This will, in turn, create a field directed inwards. 

The small sphere can always be centred on the electron so that the symmetry of the 

outside electric field is still maintained identical to what it would be without the 

sphere. 

 

 

 

 

 

 

 

 

 

 

 

An infinitesimal equipotential metallic sphere will also not influence the contribution 

from the charges on the electrode conductors when the sphere is empty, since it can 

be made arbitrarily small. Therefore, in summary, the contribution from the electron 

and the contribution from the charge on the electrodes are not affected by the 

presence of the infinitesimal metallic sphere. 

Now we shall proceed to prove the S-R theorem following the original approach of 

Simon Ramo. We first remind ourselves of some mathematical relations, 

·dA d   A n A s

 
dv dA   A A n

 
V E  

 

e

 




















 


 

















totalQ e

 

e

1 2E E

1E 2E

total i

i

Q q

Figure 4-3. Depicting the phenomena mentioned above, regarding the 

effect of an initially neutral metallic sphere enclosing a charge – the 

outside electric field will be equivalent to what it would have been 

without the sphere. 
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and, above all, Green’s 2’nd Theorem (for a proof, see the Appendices): 

2 2

21 12 1 2 2 1( ) ( )V dv VV V V V V V dA         n n  

with v representing the integration volume. A lower-case v  is used, not to confuse it 

with the potentials V , which are arbitrary potentials present in the same geometry. 

The latter may be taken to mean potentials in the normal case and the test case, 

respectively. 

Furthermore, n  is the outward normal vector of unit length at the surface of the 

integration volume. Ramo uses a special integration volume stretching out to infinity, 

but excluding the conductor surfaces as well as the surface of the tiny metallic 

sphere. So the surface integral does NOT include the metallic surfaces of the 

conductors; the integral is actually over the outside borders of the vacuum adjacent 

to the electrodes. The integration volume is therefore a Swiss cheese-like structure 

with the outward normal vector npointing into the electrodes and also directly 

towards the centre of the small equipotential sphere, see Fig. 4-4. 

 

Now, apply Green's Theorem as stated above. The volume integral becomes zero, 

since 2 0V   and 2 0WV   over the integration volume, which is in fact void of 

charges. Therefore we must have 

0 ( )W WV V V V dA      n n  

Remember, we are not integrating over the interior of the sphere where the electron 

actually is located. Any point charge would represent an infinite charge density at that 

point, 2V  .  It is important to note that the sphere is of zero initial charge, and 

again, that the surface of the Swiss cheese cavity surrounding the sphere is NOT a 

part of the sphere surface. Note also that the sphere surface can be charged even if 

the total sphere charge is zero.  

 



25 
 

 

 

 

 

 

 

If we ignore the integration at infinity, which we shall discuss later, the integral over 

the surface on the LH side of Greens Theorem can be split into three parts: 

1. The integral over surfaces enclosing all conductors except A and the 

sphere:  

 

This integral is 0 since 0WV V   over the grounded conductors, for obvious 

reasons. 

2. Over the surface enclosing A :  

 

  

 

 

 

 

 

 

 

 

n

u

n

Figure 4-4. Ramo’s volume of integration using Greens theorem. The 

integral is over a “Swiss cheese”-like structure, i.e. a body with holes, 

where the holes are to be filled with electrodes. Note that it continues 

to infinity. The grey area indicates the volume integrated over. 
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The expression ( )W WV VV V  n  reduces to 0( )WW W

A AV V VV V     n n since 

on A  we must have 
A

W WV V in the test case, where the only field present is the field 

created by the potential on A , and since V on A  is zero for the normal case when A

and all other electrodes are grounded. This results in a contribution W

A VV dA  n  

from A , which, of course, is largest from the side of A  that is closest to the other 

electrodes, where V will be larger.  

 

3. Over the surface enclosing the sphere, noting that n points into the sphere: 

 

q

W W

q q qV dA V dV AV    n n

 

0

1
0,W

q qV q V     

with the latter term becoming zero because integrating W

qV  over this surface gives 

0 , since we also must have 

WW V E  

and 

0 0

1 1W dA q D n  

giving 

0

1
0W dA  D n  

for the test case when the charge is removed and there is no charge present within 

the sphere. 

 

The calculation from 2) is now  
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0

( )W W

A
A

AV
Q

VdAV    
 

  
 

 n , 

taking the special direction of n into account. Here AQ  is the charge on electrode A  in 

the normal case when one electron is present between the electrodes and all 

electrodes have the same potential, defined to be zero. As we have already 

elaborated upon earlier, setting the voltages on all electrodes equal (to zero) is the 

same as removing (short circuiting the leads of) a voltage source, just as when 

finding the contribution of different sources in linear circuit analysis by the 

superposition principle. A simple set of such “test cases” - setting various voltage 

sources in the circuit in turn to 1 V or 0 V defines their individual contributions. During 

the application of voltage sources the current sources are removed, leaving their 

leads open, or equivalently in our case, removing the whole interior of the device so 

that no current can pass. Finding the contribution of a single moving charge inside a 

device closely corresponds to selectively restoring the interior of the device particle 

by particle back to a normal conducting state, still with short circuited electrodes 

eliminating the voltage sources. Here the movement of the interior charges is fixed, 

just as the current through an ideal current source. Thus, we have considered both 

voltage source and current source aspects when analysing the device, in the form of 

external voltage sources and internal particle current sources. 

The analysis of the contribution from the test voltages can usually be done 

analytically or with a numerical Poisson solver.  What is then solved is the Laplace 

equation, since the interior charges are removed.  Historically, the analysis of the 

contribution from the charges inside the device has been done with the method of 

images. AQ
 
is nothing more than the mirror charge of the internal charges in the 

device, mirroring themselves in the different electrodes. As an internal point charge 

moves, the amount of mirror charge on different electrodes varies, as we have 

illustrated earlier. When the electrodes are short circuited, the mirror charges can 

pass freely from electrode to electrode, creating just the transient electrode currents 

which we want to calculate.  

A word of caution is in place here, however. Diodes and transistors are the aim of this 

study, and they are inherently non-linear circuit elements, only the small signal 

response is linear. They are also very far from ideal current or voltage sources in 
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other respects, as they also show responses that can be capacitive, resistive or 

inductive. 

A valid question that often arises in conjunction with the S-R theorem is often put 

forward: “Is there really a charge on A  when all conductors are grounded? What 

charge is there on the other conductors then, and what about the integral over them 

in 1?” After our discussion so far we can truly state that: 1)Yes, there is also charge 

on Aand the others, but not on the sphere. 2) The surface integral nevertheless 

becomes 0 because 0V   and 0WV   over the integral in point 1. These questions 

are obviously also related to the integral at infinity. Ramo makes no comment about 

this integral, tacitly assuming it is zero. In the original paper by Shockley however, 

there is a metallic electrode surface enclosing the whole integration region. No 

comment is made about this, but by taking an integral of the electric field inside the 

metal we realize that this guarantees the sum of charges inside the integration region 

to always become zero. In other words, the charge and the mirror charges will sum 

up to zero. This is also a very common situation for a device. All the charge is 

gathered from regions close to the device. But as we shall see later, this is not an 

actual prerequisite for the theorem, because the surface integral at infinity vanishes 

even if there is some charge at infinity, provided that the charge close to the device is 

sufficiently well localized.   

Since the volume integral in Green's theorem is zero, we are left with only two non-

zero contributions from the integral over the surfaces on the right-hand (RH) side of 

Green's theorem. The equation therefore simplifies to 

0 0

0 ,W W

q
A

A

Q q
V V    

The first term is accounting for the contribution over the surface enclosing A , and the 

second term is over the surface enclosing the sphere.  

This equation might seem counterintuitive at first, because the last term with W

qV is 

related to the test case with the charge q removed, yet q is still present in the same 

term. But we must remember that the reason for this is that there are two different 

situations (and thus two scalar fields V ) in the same geometry used in our 

calculations with Green’s theorem. Each term consists of a product of both situations. 
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Two situations intertwined like this is what leads to the reciprocity found in these 

equations. 

Our equation can also be rewritten as 

q

A

W

W

A

V
Q q

V
  . 

In these equations, AQ  is the induced mirror charge on electrode A  caused by a 

charge q  at a position r  in an electrostatic setting. The only extra assumption in this 

respect is that the sphere is isolated and charge neutral. This assumption is not a 

contradiction, since the sphere is not an electrode, as it is not connected to anything. 

We note that there was no such assumption on charge neutrality of the electrodes. In 

fact, one may view the finite charge q at r as if it has been taken from the electrodes 

in the first place, therefore they are not charge neutral. 

The charge AQ , which is a result of the charge q  being present, should be 

independent of the chosen weighting voltage W

AV on the electrode A . This will be the 

case if the problem is linear, so that the potential at the sphere's surface (with q  

removed), W

qV , is proportional to the weighting voltage W

AV with a factor of a 

proportionality constant only dependent on the geometry of the problem. We 

discussed this in the context of the capacity coefficients earlier. 

As can be recalled from electromagnetism, if we now decide to displace the charge q , 

a corresponding displacement of the mirror charge at the electrode A  towards the 

other electrodes must take place. Thus, the moving electron will contribute to a 

certain current into electrode A . 

This amount is equal to  

W

A q W

A qW W

A A

VdQ q q
i

dt V t V

 
    

 

r
E u

r
, 

where u  is the velocity of the electron. This finalizes the proof of the result provided 

by Ramo in his article. We saw that the contribution from the surfaces of the 

integration region was the decisive and crucial element in the proof.  
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Shockley’s Proof 

 

In the Shockley proof, on the other hand, the decisive element is the contribution 

from the volume of the integration region, with no contribution from the surfaces. The 

reason behind this difference is that Shockley chose a different integration region, 

and a different approach to the charge outside of the electrodes, see Figs 4-5 and 4-

6.  

Instead of a point charge enclosed by a metallic, uncharged sphere, Shockley uses a 

metallic sphere which can either have a charge q in the normal case or be without 

charge in the test case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-5. This is the layout for Shockley’s method, in 

the normal case. 
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Shockley’s integration region, see  7, includes all the conductors, so that the surface 

of the integration region is at infinity, where the potential tends to zero, along with the 

charge density. The surface then consists of WV V  and WV V  terms, and since we 

can consider our device to consist of localized charge, these terms will at most go as 

2 3

1 1 1

4 4r rr 
 . 

The first factor stems from the V  term, and the second factor is related to the

WV  E term. The above equation is to be integrated over an infinite size sphere 

surface 24 r , which gives 2

3

1 1
4

r r
r , which obviously tends to zero as r

increases. This simultaneously confirms that the outer surface at infinity in Ramo’s 

case also will not contribute. 

 

B

A
C

D





0q 

u

W
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qV V

Ai
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AV V

0WV 

0WV 

0WV 

2 0WV 

2 0WV 

Figure 4-6. This is the layout for Shockley’s 

method, in the weighting case. Note that the 

weighting cases of Ramo and Shockley are very 

similar, except for the charged particle. 
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So, in this geometry, Green's second theorem reads 

all space

2 2( ) 0W WV V V V dV  
.

 

One might recall from quantum mechanics that this equation is nothing more than the 

statement of that the 2 operator (which in QM represents the kinetic energy 

operator) is Hermitian. 

From Poisson's equation, we know that 2

0

V





 , so the integral becomes simplified 

to  

( ) 0W WV dvV   , 
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i
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u
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Figure 4-7. Shockley’s volume of integration using Greens theorem. The grey 

area indicates the actual volume integrated over. 
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where W is the space charge for the test case (with the electron removed), and v the 

integration volume. 

 

Now, imagine that the charge representing the electron is distributed on the surface 

of the small metallic sphere, instead of inside the sphere as in Ramo's case. Here, 

the sphere itself is either charged or neutral. The neutral state represents the test-

situation with the electron removed, whereas the charged state mimics the presence 

of an electron.  

Using the fact that the potential on a metal conductor is constant, we thus obtain from 

volume integration the identity  

all conductors

( ) 0W

ii i

i

i

WV Q VQ


   

This is the starting point of Shockley's proof, and it is often called Green's 

Reciprocation Theorem. 

Following the Ramo-Shockley method with the test potential case and a normal 

“electron-present” case, it leaves us with 

0W W W

A q q qAV Q V q V Q    

,

W

q

A

A W

V
Q q

V


   

since 0W

qQ  , due to the fact that charge on the sphere is removed for the test case. 

As stated above, it is important to recall that the conducting enclosing sphere is never 

grounded, let alone electrically coupled to anything at all.  

This sums up Shockley’s argument, leading to the conclusion 

 

W

A q W

A qW W

A A

VdQ q q
i

dt V t V

 
    

 

r
E u

r
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4.3 Example Situation Using Shockley’s Method 

 

In this subchapter, a closer look at an example situation is performed, using 

Shockley’s method to calculate instantaneous current. In the setup below, we have 

two infinitely large conducting plates, separated by a distance d . Between them is a 

charged particle moving at an arbitrary speed towards plate number 2.  

 

Using the equation derived above in the most verbose form as starting point: 

 ( )· ·W

i

A

i W

q
I r

V
 vE  

iI is the instantaneous current at conductor 1 at any time. ( )i rE is the field 

experienced at point r from conductor 1. v is the velocity vector of the charge carrier 

moving, q  is its charge, and lastly, W

AV is the weighting potential the particle 

experiences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x  x d0x 

,
q

q

dx
x v
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

1 2

Figure 4-8. A depiction of Shockley’s method to calculate current in a 

relatively trivial, but relevant and instructive nonetheless, setup.  
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Also, keep in mind that we are working on two separate cases, so that by using the 

superposition principle we can determine the current on one electrode by ignoring the 

other completely. Thus, we will start by finding 1I . 

Common electromagnetics tells us that the field between two infinite plates separated 

by a distance of d , is constant and in our situation equal to  

/ .W W

i AV dE  

The sign for this equation might seem confusing, but stems from the fact that we 

have reversed the sign on V , since the particle is moving in the same direction of the 

E -field. The sign will be reversed for 
2I . 

Substituting for W

iE , we obtain: 

 1

W

A

W

A

q qv
v

V
I

d V d
    

By inspection, one can similarly obtain 

 2I
qv

d
   

since the only differences are the sign for V . 

Note that all of the above derivations are implicitly using the velocity xv v , meaning 

we are strictly looking at the part of the total velocity that is parallel to the field, and 

thus automatically normal to the plates in our geometry. 

If a carrier were to scatter in the vacuum between the plates, it would get an angle 

compared to the field, and thus the above derivations would need a slight 

modification, namely by multiplying a cos term to the total velocity, or just use 

vectors from the start, but only look at the component in the x-direction. So if the 

carrier were scattered by exactly 90 degrees, the current generated would drop to 

zero, as the velocity of the carrier suddenly would be 90 degrees, and thus normal, to 

the field. 
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4.4 Some Theoretical Results on Displacement Current 

 

For a moment, consider the charge that passes through this setup for one 

electron/hole pair generation.  

As a simple starting point, we will look at the current induced in a closed circuit 

between the two (infinitely large) conductor plates, separated by a distance of d  as 

mentioned above. This is the exact same scenario as figure 4-8. First, some simple 

starting formulas; it is known that  

 1 2 1 2,e e h hI I I I   
.
 

This equation states that, although the current induced in plates can be different for 

electrons and holes, the current from one charge carrier is the same on each 

conductor, only of opposite direction.  

 
1 2 1 2

tot e h

tot e e h h

I I I

I I I I I

 

    
 

The signs can be chosen arbitrarily, it depends on which direction the current is set to 

go. In this current calculations, we are assuming positive current towards the 

conductors, and the electron starting in position x, and then going right. The hole, 

also starting in the same position, is moving to the left, meaning that those signs are 

changed. The mere fact that currents are defined positive towards the conductor 

plates, mean that one of them will have to be negative to make them additive.  

Using the formulas for the current I , the equations obtained in the above subchapter, 

can be further used: 

 1 2,I I
qv qv

d d
   

Note that the signs are switched for the equations compared to the above 

subchapter. This is due to the geometry of the problem at hand, and since we 

defined. The current will, as can be seen by inspection, go from right to left, meaning 

from electrode 2 to electrode 1, in a closed circuit. As is known from 

electromagnetism 
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all carriers and conductors 0

i

tot tot i

T

Q I dt I dt    , 

meaning that the charge is obtained by looking at the current induced from the 

electron in conductor 1 and 2, and then the same for the hole. This means we have 

to sum the four integration terms. Luckily, our equation gets simplified to  

 
0 0

2 2
e hT

e e h h
t t

T

o

v q v q
Q dt dt

d d
     

Again, d is the distance between the plates, ,e hv v is the speed of the electron and 

hole respectively, ,e hq q represent the different charge on the electron and hole.  

e

e

d x
T

v




 

is the time it takes for an electron generated at an arbitrary position x  to reach plate 

2.  

h

h

x
T

v


 

is similarly, the time it takes for the hole to reach plate 1. This is assuming constant 

speed of the electrons, which might not necessarily be the case in reality, but it still 

illustrates the theory. Performing the integration on the left side yields 
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 
 

  

 

This may seem obvious when given some thought, but it has one interesting 

consequence. Again, this was done assuming a closed circuit between the two 

conductor plates. However, due to the symmetry of the electromagnetics involved, 

one can see that the half of the above determined charge, namely  
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 q e  

travels through one of the conductor plates from 0t   at generation up to the time 

the electron uses to hit plate 2, or the hole to hit plate 1, whichever takes longest.  

This is the core of displacement current mechanics. Imagine that an observer was to 

sit on plate 2, and that the electron hits plate 2 before the hole reaches plate 1. There 

would still be an observable current being generated at plate 2, generated by the 

hole somewhere in the middle moving away from plate 2. The observer would never 

see the hole, and yet it would affect the current in the conductor.  
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4.5 Mirror Charges and Capacity Coefficients 

 

The method of mirror charges was developed as an aid in solving problems that were 

deemed highly nontrivial to calculate purely analytical. For some problems, it is a very 

suitable approach, especially concerning charges in relation to very large (in 

comparison) conductor plates.  

 

 

 

 

 

 

 

 

 

 

In Figure 4-9 given above, a simple example setup is given for how a mirror charge 

can be used to simplify the problem. The charge q outside the conductor plate 

generates an electrical field around it, which forces the surface to have a nonzero 

surface charge density. This charge can be viewed as another carrier, of opposite 

charge. This obviously does not exist physically, not as a separate charge 

somewhere inside the material. The charge q is in reality smeared over the surface 

out to infinity, but the E-field at any point above the plate is completely identical to 

how it would be had the conductor plate not been present at all. The reader should 

note that this assumes a conducting plate, for any non-conducting material it would 

complicate things.  

 

 

 

 

q

q

  

Figure 4-9. A simple setup, with a conducting plate that is 

infinitely large in the x-direction, with a charge q placed some 

arbitrary distance d from the plate, thus the distance between 

the two charges is 2d. The charge given as q is its mirror 

charge. 
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In the above figure, 4-10, one can again clearly see the resemblance to a capacitor 

for our device. The physical charge is inside, and is moving towards one of the 

conductors. This induces a surface charge on the metal conductor edges, but an 

equivalent virtual mirror charge can be thought to exist outside the material. When 

the charge inside the device moves, so does the mirror charge. In reality, the charge 

is spread over the metallic conductor centred around on the position of the charge 

inside along the x-axis. Although not rigorously correct, it’s possible to get an intuitive 

understanding of the current generated with this method of mirror charge. Imagine 

the charge in the above illustration is moving left, and the mirror charge following. By 

the time the real charge has made its way to the other side of the device, so have the 

mirror charge. And to get there, the mirror charge has necessarily had to go through 

the circuit connecting the two conductors, thus driving a current. 

To move the real charge density on the conductors, represented by the virtual mirror 

charge, charge, and thus current, must have gone through the circuit in the transition 

from figure 4-10 too. 

 

 

 
Figure 4-10. This is a slightly alternate setup, similar to the 

capacitor setup mentioned in some above chapters. The dotted 

lines are the physical edge of the device, and the thick lines on 

the top are metallic connection points. The leads are also short-

circuited to make the example clearer. Here, the real physical 

charge is inside the material, and the charge induced on the 

metallic connection points can be represented by a mirror charge 

outside. 
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The method is usable for more complex geometries, but it will quickly involve 

advanced series operations, reducing the feasibility of an analytical solution, and due 

to the fact one often must set up an infinite number of mirror charger for more 

complex geometries. On a side note, Ramo himself said on using the method of 

mirror charges for such cases that is “lengthy and requires no little familiarity with 

methods of handling infinite series.”  

 

 

Another useful approach is to look at potential coefficients (Svaasand 1981), and 

capacity coefficients (Svaasand 1981). To introduce these, first let three point 

charges be placed in any arbitrary points in space. 

 

1 2 3

0 1 0 2 0 3

1 1 2 2 3 3

4 4 4

q q q
V

r r r

q q q

  

  

  

  

 

Alpha is, as can be easily determined by inspection, a function of the coordinates of 

the charges. This result is also valid if the charges were not, in fact, point charges, 

but the charges are given as a distribution over three distinct surfaces. The proof for 

this is along the lines of this: 

 1 2 3
1 2 3

0 1 0 2 0 34 4 4
dA dAV

r r
dA

r

  

  
      

 

,q v

i

C
 

i

D
 

,q v
 0I 

Figure 4-11. Same example as in figure 4-10, after the charge 
inside the device has moved across the depletion region. 
Technically, the current I is at any instant zero, but there have 
been nonzero current at some point in the transition. 
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conductor 1 conductor 2 c

1 1 1 2 2 2 3 3 3

onductor 3

dA dA dA           

 1 1 2 2 3 3V Q Q Q      

 

nQ  is the total charge on each of the conductors. The proof for the above statements 

goes along the lines of this:  

First, let us assume there is only one conductor present. Let the charge on this be 'Q

, with a surface distribution of ' . The ‘ mark is only present to avoid any ambiguity 

with the Q used in the previous paragraph. This charge on the conductor sets up a 

potential 'V . We now increase the charge 'Q  with a constant factor of k, '' 'Q kQ . 

The result of this will be that '' 'k  . This is necessarily true, since the old potential      

'V constant 1 ''V  on the surface, meaning the new one have to be too, or                      

''V  constant 2 ''V . Violating this boundary condition is not physically possible, due 

to the fact that the charge is accumulating on the surface evenly and continuously. If 

the '' 'k  , such an “impossible” potential would arise. 

Thus, this shows that any multiplying factors inside the integral can be taken outside 

of the integral and combined into the  factor, as the proof is valid for the other 

subscripts as well. 

These factors can be used to express the potential nV  on each conductor as a 

function of all the other conductors. That this can be done is clearly intuitively, but 

these capacity coefficients allow for much easier manipulation of the equations. 
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4.6 Connection between the Shockley-Ramo method and the fast 

multipole moment method 

 

In an earlier project work (Norum, 2009), the fast multipole moment method (FMM) 

was considered for use as a Poisson solver in a Monte Carlo setting. Hailed as the 

10’th most useful algorithm of all time, and as the most useful algorithm invented 

during the past two decades, it should show great promise for use in our context. The 

method was reviewed by Norum in his above thesis, and the conclusion was that 

although it was fast, there was a problem with accuracy. As far as the author is 

aware, only one MC program uses the FMM method, and that is the program written 

by Vasileska et al. (Vasileska et al. 2010). In this text the method is only treated very 

briefly, perhaps since it has not been much tested in the context of MC simulations. 

Solving for the potential in a 3D case, the speedup with respect to the fastest 

alternative methods was a factor of 2:20; the average speedup was a factor of 10. 

Since solving the Poisson equation is the dominant source of CPU consumption in 

full 3D simulations, this represents considerable savings. 

Using a grouping of charge sources and a multipole expansion, the method is well 

suited for calculating e.g. gravitational attraction problem in astronomy, but the 

fulfilment of awkward boundary conditions in electrostatics such as a constant 

voltage at the electrodes can be difficult. The solution here is to divide the problem 

into two, using superposition. The field contribution from charges inside the device is 

calculated by a multipole expansion and the method of images, demanding zero 

voltage and only mirror charge at the electrodes. The non-zero voltage boundary 

conditions are satisfied separately by assuming no contribution from charges inside 

the device using another form of 3 D Poisson solver. An obvious candidate for this 

solver is the Bi-conjugate gradient stabilized method (Bi:CG stab) which is the main 

alternative to the FMM method. If we have a simulation with a constant external 

voltage, the time consuming Bi:CG stab method would only have to be used once at 

the beginning of the simulation to satisfy the boundary conditions, and thereafter only 

the FMM method would be used.  

If the FMM method is chosen, the solver would consist of two parts, a Bi:CG stab 

solver and an FMM solver. If the FMM method is not chosen, the Bi:CG stab solver 

would perform the whole task of solving the Poisson equation.  
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Although the Shockley-Ramo method is not mentioned in Vasileska et al., we see 

that the lines of thinking leading up to the two methods are quite parallel. The 

difference is that when using the Shockley-Ramo theorem, we are not interested in 

finding the actual field contribution from the internal charges and currents. We 

already have the current if we can estimate the velocities of the charge carriers. This 

estimate of velocities is of course not fully self-consistent when we use the frozen-

field approximation. The action of the frozen internal charges is included in the 

determination of the velocities, but their field is frozen and the field of photogenerated 

carriers is neglected, and assumed to be small. If we add the full back action of the 

internal field on the internal charge carriers, we would have to use the method of 

images in a self-consistent way.  From the viewpoint of the Shockley-Ramo theorem 

then, we can argue that the FMM method is little more than adding the method of 

images to the S-R procedure, and we are immediately back into the setting of the 

1930’s using the method of images for calculation of both fields and currents. The 

“test” case in the Shockley-Ramo theorem could have been performed with e.g. the 

Bi:CG stab solver, and the method of images procedure with grounded electrodes 

corresponds to the “normal” case in the S-R method with grounded electrodes. A 

difference is of course that in the S-R scheme the respective electrodes are raised to 

the test potential one by one, so that the normal and test cases are intermixed, 

whereas in the FMM procedure the electrodes are set at their actual potential all at 

once and the field contribution is calculated by a Poisson solver, and then the second 

part with grounding of all the electrodes is performed and an extra use of the method 

of images is performed to obtain the total electric field. 

We see that the S-R method is excellent for calculation of small-signal response, 

where linearization, superposition and neglect of back-action of the mirror charge (or 

as in our case, the neglect of the photogenerated part of the mirror charge) is a good 

approximation. The FMM method shows how to make the calculation fully self-

consistent by adding the full back action of the mirror charge, but at the same time 

this takes us back to a method and an amount of labor similar to the pre S-R period 

in the 1930’s. With full self-consistency included, the S-R method can still be used as 

a part of the procedure and a way of thinking, but it is not actually needed in the 

calculations, since in this case every detail of the problem is already fully calculated 

anyway. 
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5 Subsequent Developments in Terminal Current Calculations 

 

5.1 Introduction 

 

During the decades that have passed since Shockley and Ramo presented their 

original results, some progress has been made and new applications have appeared. 

A short resume over these developments and alternative viewpoints on terminal 

current calculations are therefore in order. Sometimes used in computational 

electronics as a generalization of Kirchhoff’s current continuity law including an 

internal displacement current, original derivations of the S-R theorem assumed 

negligible magnetic and radiation effects (that is, they assumed quasi-electrostatics) 

and the application was to describe electron transport in vacuum tubes. 

Based on the proofs given earlier in this report it is perhaps not very difficult to accept 

that the theorem also will be valid in homogeneous linear dielectrics. It has 

subsequently been generalized to systems containing inhomogeneous linear 

dielectrics (Pellegrini, 1986; Kim et al., 1991).  

Perhaps the most common area of use for the S-R theorem today is in various 

particle accelerator detectors (Fabjan et al., 2004), in radiation detectors, and to a 

smaller degree in microwave detectors. During the last decade it has also found its 

way into biophysics, as some MC workers extended their computer programs and 

fields of interest towards atom transport in biological ion channels. Likewise, the 

theorem was recently a key tool in a MC analysis of an ion beam induced charge 

experiment on a Si diode structure (Olivero et al., 2011) which was based upon an 

earlier work that also discussed a suitable readout circuit (Vittone et al., 2000). 

Fairly sophisticated MC simulations of Si photodetectors were carried out over a 

decade ago (Dubaric et al., 2002, Nilsson et al., 2002).  

A useful update on analytical models of modern CMOS photodiodes can be found in 

the recent literature (Blanco-Filgueira et al., 2012). 

We shall not explore the use of the S-R theorem in calculations of noise (Pellegrini, 

1986) nor for studying the various effects of charge carrier trapping and 

recombination (Owens et al., 2006, Kim et al., 2011), as the former are beyond what 
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we had envisioned as the scope of this report and because the latter has not yet 

been fully integrated into our MC program.   

For an analytical example of treating a depletion layer with the S-R theorem, see the 

article of Djuric et al. (Djuric et al., 1984.). Analytic examples of induced currents due 

to sudden changes in permanent polarization or changes in dielectric constant were 

given by Neyts et al. (Neyts et al., 2007). A very important review of “mistakes in the 

past” with the S-R theorem was given by de Visschere (de Visschere, 1990), where 

special emphasis was placed on pn/pin detectors and on g-r noise in pn junctions, 

commenting also upon former reviews by Dabrowski (Dabrowski, 1987, 1989).      

Much of the literature deals with (mis)interpretations and generalizations of the S-R 

theorem.  As with other reciprocity theorems of electromagnetism, it fails for non-

linear materials. In such situations a linearization can be advocated, but this will 

usually not be without consequences for the accuracy of the result. Some of the 

“generalizations” are not even claimed to be generally valid, and only special cases 

are shown.   

We shall confine ourselves to a quasi-electrostatic version of the S-R theorem with 

clamped electrodes. Although often used, it has never become commonplace in MC 

simulations, and in a relatively recent book on general semiconductor device 

simulation (Vasileska et al., 2010) it is not mentioned at all.  
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5.2 Two Charge Carrier Ensembles - The “Frozen Field” Approach 

 

Initial mistakes in using the S-R theorem apparently occurred both for the basic, 

constant electrode voltage case and for the more complex constant charge case (i.e. 

induced voltage on an “isolated” electrode) (Cavalleri et al., 1963). For a long time 

there was a dispute on whether the theorem was valid in the presence of fixed space 

charge in the device, such as in a semiconductor diode with depletion regions. The 

space charge in a pn junction consists of the ionized donors and acceptors 

responsible for the doping. We discussed this matter earlier, and noted that 

according to the S-R theorem carriers at rest do not directly influence the terminal 

currents. As long as the total system is linear, stationary charge can also be treated 

by the theorem on the same footing as moving charge.  

 

Given the fact that the space charge is actually not totally fixed, but rather slightly 

polarizable, it would be tempting as a further refinement to consider the background 

space charge ensemble as a part of the material properties, i.e. by just introducing a 

modified dielectric constant. Although this issue of validity in presence of space 

charge was first discussed several decades ago (Cavalleri et al., 1971, Gunn, 1964)), 

it tends to resurface from time to time. An important point was re-emphasized a few 

years ago (Gatti et al., 2004), commenting upon another work on this subject that 

was going to be published at the time (Kotov, 2005). Gatti et al. treated stationary 

charge (polarization charge) that could react to the presence of free moving charge 

as described by a variable dielectric constant of the material. They went on to state 

that considering the space charge as part of the background is acceptable as long as 

the space charge is restricted from macroscopic movement, i.e. polarizable, but not 

free. In a fully depleted semiconductor this criterion would be automatically satisfied.  

 

The issue becomes more complicated in cases where there are other free moving 

charges in addition to the charges of interest. Regions of normal, doped 

semiconductor outside the depletion zones indeed contain carriers that are totally 

free to move. Hence there are two moving groups of particles, one group of little 

interest (the free background charges already present in reverse bias without 

photogeneration) and a group of interest (for example a photogenerated and impact 

ionization generated ensemble). The background bias ensemble could screen the 
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effect of the photogenerated ensemble in terms of induction of current on an 

electrode. It was concluded that: “In other words, the real velocity field of the particles 

is not known and should be calculated by means of a complete analysis of the 

device.” 

 

This is indeed the situation we would have in an MC APD simulation (Bertazzi et al. 

2010, Bellotti et al., 2011), where the carrier ensemble is divided into a background 

bias ensemble which provides a stationary, “frozen field” configuration in which the 

photo and impact ionization generated carriers move. At low irradiance levels we can 

describe the latter on a real electron and hole basis, and not as superparticles. In 

most cases the background ensemble electric field is directly fed into the MC 

simulation as a stationary electric field obtained from a Fermi-Poisson equation 

solver (Bertazzi et al. 2010). 

 

Without photogeneration, the free background charge usually does not carry any 

appreciable amount of current, and especially so if we include the dark current, which 

is due to thermal carrier generation in and near the depletion zone, into the ensemble 

of interest. Under photogeneration however, it could happen that some of the 

photocurrent was actually transferred from the photocarriers and onto the free 

background carriers. As far as the problem is the changed velocities of both 

photogenerated and background free carriers as a result of short range interactions, 

we know from experience that it is only in special rare cases that carrier-carrier 

interactions change the result of a MC simulation. Since in unipolar transport the 

crystal momentum generated within a particular, single type of carrier (either electron 

or hole) is conserved, it is just transferred to another carrier of the same type. And in 

fact, on both sides of the depletion layer the carrier transport is unipolar, either holes 

near the p contact or electrons near the n contact. 

 

In low irradiance cases where the photogenerated ensemble is a tiny perturbation 

upon a large free carrier background, it would be difficult to calculate the photocurrent 

with a full analysis involving MC methods, as Gatti et al. (Gatti et al., 2004) ideally 

suggest. Since MC simulations involve a lot of details about many individual particles, 

and the tiny photocurrent is produced by only a few photocarriers well below the 

resolution limit of a single superparticle, there are both superparticle resolution issues 
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and limitations due to the long simulation times needed for the photocarriers to be 

extracted from these usually large devices. 

 

Admittedly, the rudimentary “Frozen-Field” interaction between the two moving 

ensembles which we shall use in this report could have been improved. The effect of 

the photogenerated ensemble upon the background free charge should not have 

been restricted to a crude form of generation/recombination, but expanded to include 

more general carrier-carrier interactions and long-range electric field interactions, 

showing the effect of the photogenerated carriers upon the background free 

ensemble. But a method for this would have to be developed. It does not seem that 

the previously mentioned paper (Bellotti et al., 2011) included any such refinements. 

At high irradiation levels, both photogenerated and background carriers could have 

been treated self-consistently within the same superparticle ensemble, although the 

computations would be very time-consuming.  

 

Some possible keys to the ambitious goal of also including effects of the background 

carriers in the undepleted volume near the electrodes can be found in more recent 

papers (Heubrandtner et al., 1998, 2002a, 2002b), (Riegler 2002, 2004), building 

upon a special theory for a weakly conducting medium (Haus et al., 1989). 

 

Potentially useful extensions of the S-R theorem for unclamped or isolated electrodes 

can be found in an older work (Gatti et al., 1982). In this paper time dependent 

weighting potentials are used. By “time dependent” it is understood that the voltages 

at the electrodes are unclamped and free to change according to the physical laws 

governing the problem. 

 

All these papers mainly refer to particle physics detectors of various kinds, especially 

ionization chambers consisting of gases or liquids. These detectors have a wide 

application in X-ray and gamma-ray astronomy, nuclear spectroscopy and nuclear 

medicine. Remembering that all semiconductor detectors operate as solid-state 

ionization chambers, the physics of these devices is very similar, with carrier 

avalanches created by incident particles or photons, which are sensed by electrodes. 

We do not know if any of the new methods have yet been used to any significant 

extent for semiconductor detectors. The methods rely upon the assumption that as 
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we get closer to the contacts the material behaves more like a simple conductor with 

a finite resistivity in near equilibrium, so that the violent physics is restricted to other 

regions where MC simulation etc. is needed. Within our present use of the S-R 

theorem electrodes and leads actually constitute such a near equilibrium region, 

albeit with zero resistivity. 

 

A recent article (Hamel et al., 2008) takes on the issue of a non-linear S-R theorem 

for a material with non-linear dielectric constant, and the authors go about to justify 

the derivative form of the theorem which we mentioned earlier in this report. They 

introduce the concept of “local linearity” for small voltage increments around the 

actual operating voltages and claim to have shown that it is valid in a particular 

example for an n+p junction.  

 

An extended version for the full electrodynamic regime including radiation has also 

been derived (Yoder et al., 1996, 1997). Most of the latter article actually dealt with 

how to reduce uncertainties in the calculation of terminal currents in MC simulations, 

but the former article presented a collective, particle density S-R like approach, in 

contrast to the original corpuscular, or particle based approach of Shockley and 

Ramo. Some would say that a particle distribution averaged theorem would not really 

be a S-R theorem at all, and that the term “S-R” should be reserved for the 

corpuscular viewpoint only. Another question is whether, in a complicated case with 

radiation and retarded potentials, it is useful to even consider an S-R like theorem 

instead of doing an analysis on a more free basis. 

 

 

5.3 Practical Consequences of Our Frozen-Field Model 

 

The use of a fixed charge carrier velocity based upon the electric field from the 

electrodes and the stationary background charges (i.e. a “frozen field”) ignores the 

contribution to the particle velocity from forces between the electron and hole clouds, 

from internal forces within the electron and hole clouds, and from forces due to the 

induced image charges in the electrodes upon the charge carriers. A recent study 

(Ettenauer, 2008), considers the consequences of neglecting these effects in a Ge 
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gamma ray tracking detector and concludes that this approximation was well justified. 

We would however like to add some comments on this problem for two irradiated 

textbook-type device structures which have been studied with the present MC 

program.  

 

 

 

 

 

Figure 5-1. n-type HgCdTe slab 

 

 

The first structure, Fig. 5-1, is an n-type HgCdTe slab with n+ contacts on both the 

RH and the LH side, with a positive potential on the RH side and a negative potential 

on the LH side, irradiated on a spot between the contacts. As the faster electrons are 

pushed towards the LH electrode and leave the device, a surplus of photogenerated 

holes are left inside the device. This cloud will act to slow down the escape of 

electrons through the RH contact, but also to inject more new electrons into the 

device from the LH contact, since background electrons already present near the LH 

contact will be drawn further into the device towards the cloud of remaining excess 

photogenerated holes. All these activities will be governed by the Poisson solver.  

When the radiation stops, the device must revert back to the equilibrium situation 

which existed before the radiation was applied and therefore to a field configuration 

corresponding to the frozen field. The details of how this happens depend on how 

strong the recombination process is. If there is no recombination, photogenerated 

electrons and holes must finally be pushed out of the device in an equal, total 

amount. In the limit of very strong recombination, photogenerated electron-hole pairs 
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recombine before any carrier can reach an electrode, and no carriers need to be 

injected or ejected.  

In the frozen field approximation as we shall apply it here, there is no Poisson solver 

that can correct and supervise this process and the events at the contacts. Carriers 

are ejected as soon as they reach their respective positive and negative electrodes 

because they represent an excess charge with respect to a former equilibrium 

situation. Background electrons are prevented from reacting to a remaining 

temporary positive excess charge in the device. 

 

 

Figure 5-2. pn diode. 

 

The second structure we shall consider is a pn diode in reverse bias, Fig. 5-2, with 

the hole electrode on the LH side and the electron electrode on the RH side. As the 

cloud of excess photogenerated holes are driven towards the hole electrode, they will 

push the background holes near the hole contact onto the electrode where they will 

exit the device and be neutralized by a corresponding current of incoming electrons 

from the hole electrode lead. The lead itself has zero capacitance and can therefore 

not store excess charge. Recombination within the device volume will of course 

diminish the pushing effect, but once the hole cloud is separated from the electron 

cloud and the holes find themselves on the p side there are very few electrons to 

recombine with. 

The pushing effect is of course associated with a displacement current and the 

accumulation of background holes near the p contact. A background hole is expelled 

from the device and a hole from the advancing photogenerated ensemble can fill in 
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the empty position. After some time, many photogenerated holes eventually also 

reach the p electrode themselves and are expelled from the device. To what extent 

the background free holes are pushed into the electrodes or to what extent 

photogenerated holes travel to the electrodes themselves cannot be determined 

unless a self-consistent approach is used, with both carrier types in one ensemble. 

Holes are in principle indistinguishable, so the question of which hole ensemble 

arrives first is not the key issue. The point which we would like to make is that with 

more carriers available, a self-consistent solution would tend to short-circuit the 

electric field on the path towards the hole electrode, and thereby reduce the internal 

displacement current. This reduction could be offset by an increased particle current 

transient, so that the resulting current pulse in the lead would be less influenced. 

There are also restrictions due to the finite amount of charge generated by the 

photon, and the free background charge must revert back to its original internal 

configuration if the irradiation is a short pulse. Thus the photogenerated charge is 

very much in control in this kind of device. 

Arguing that the current response in the lead would be faster if existing background 

charge near the hole contact was pushed into the contact, there is the immediate 

counterargument that the displacement current represented by the S-R theorem 

shows an instant relation already. Surely, in our frozen field approach, the movement 

of background holes towards the electrode clearly does not take place. As far as the 

interior hole particle current is concerned, the p electrode must “wait” for the 

photogenerated holes to physically arrive at the electrode. Therefore, the internal 

particle current pulse could be slightly delayed and diminished in our model, but this 

would not necessarily affect the total current response in the leads to the same 

degree. Neither could the time integral of the two currents be affected, as long as 

photocarriers avoid recombination or becoming trapped, this is determined by the 

total photogenerated charge.  

In an earlier example we saw that a charge q has not passed through all cross-

sections of the device and wires until the slow photogenerated hole had fully reached 

its hole electrode. Admittedly, the S-R theorem combined with the frozen field 

approximation successfully describes how the photogenerated hole cloud forces 

charge around in the exterior leads before these holes physically arrive at their 

electrode, forcing by means of an internal displacement current. Regarding the 
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physics at the electrodes, we have assumed that holes are immediately neutralized 

once they arrive, so there will not be additional accumulation of photocarriers due to 

poor contact. Should holes accumulate near the hole contact, a corresponding 

amount of neutralizing electrons accumulate on the hole electrode, by the principle of 

image charge. 

There will also be a small, real transient free background particle hole current in the 

device which also has an associated displacement current. Both of those are ignored, 

as well as a correction of the photogenerated hole velocities due to these changes in 

the background charge carrier configuration.  

 

We remember our result that the current into an electrode A is given by 
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An internal particle that moves a macroscopic distance from position 
0r to position r

simultaneously pushes a charge 
AQ (called the “induced charge”) away from 
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The particle current due to charge pushed away from electrode A  is a continuous 

function in time even though the interior particle current contribution from the charge 

q is a moving delta function spike. The electrode charge AQ  is a distributed surface 

charge. Since the sum of the particle current and the displacement current densities 

is divergence free, the spike in the interior particle current must be offset by a 

corresponding spike in the interior displacement current, which is provided by the 

delta function nature of the electric field from the point particle. 

Charge buildup on the electrodes is allowed in the S-R analysis because there is 

interior charge in the device. We see that the point charge q can be fully collected 

without electrode charge buildup if it has travelled from a position where the 

weighting potential is 0 and onto the electrode A . In other words, it will be collected 
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without electrode charge buildup if it has travelled from one electrode to another 

through the interior of the device. This is just another manifestation of Kirchhoff’s 

current law for the device as a whole. 

 

A charge that has been collected is to be considered as present but no longer 

moving. It just fills in the void in a stationary way, replacing the charge it has already 

evacuated from the electrode during the time it was moving towards that electrode. In 

the metallic leads, there are an abundance of electrons to convey in a continuous 

way this “evacuation current” created by one single internal charge carrier. The 

collected charge distributes itself on the surface of the collection electrode, becoming 

more and more focused as it comes closer. Mathematically, the S-R theorem only 

describes currents induced by moving internal carriers, but says nothing about the 

process of removing a carrier from an electrode surface or the collection of a carrier 

by an electrode. A view of an electron arriving at an electrode and travelling further 

into the leads without delay must be modified into a view where the arriving electron 

stops on the surface but pushes another electron into the lead. It is still the “string of 

pearls” analogy, but with one pearl tallied at a time. In other words, the internal 

electron can travel through all the internal cross-sections of the device, but it never 

actually passes through the electrode surface.  The charge pushed through all cross-

sections of the lead which we spoke of earlier is actually the evacuated charge 

corresponding to the charge of the stopped electron. All in all, it therefore seems that 

the corpuscular version of the S-R theorem blends very well in with our current MC 

simulation approach. 

All photogenerated charge carriers are supposed to recombine in order to restore the 

state of the device before the photon was absorbed. One may say that electrons and 

holes pushed out of the device “recombine through the contacts”. Remaining 

photocarriers in the device must effectively recombine with each other in order to 

restore the device to its original state. In practice, this net result is achieved by 

means of the background carriers. An isolated photocarrier already represents a local 

non-equilibrium situation. But there might not be another photocarrier nearby to 

recombine with. Therefore, the isolated photocarrier tends to recombine with a local 

background charge carrier, and “left over” photocarriers must remain within the 
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device as a substitute for the background photocarrier which was lost to 

recombination. As a consequence, in a frozen-field model where the interaction with 

the background carriers is not explicitly modelled, an electron photocarrier that 

recombines and is removed must be accompanied by the removal of a hole 

photocarrier. 

 

 

5.4 Lessons Learned From Particle Physics Detectors 

 

In detectors of the ionization type, an incident particle generates several pairs of 

charge carriers, such as electron-ion pairs in ionization chambers or electron-hole 

pairs in semiconductors. The number of pairs of charge carriers is proportional to the 

energy deposited in the detector volume. Electric fields in the detector volume move 

charge carriers around and cause a variation of the induced charge on the detector 

electrodes. The total induced charge is proportional to the number of charge carrier 

pairs, and therefore to the energy deposited in the detector volume. If so desired, 

pulse shaping circuitry can convert the output pulse so that its amplitude corresponds 

to the energy of the incident particle, as one of several possible readout modes.  

 

Resistive Plate Cambers (RPC’s) (Petrovici et al., 2002, Schuttauf et al., 2009) are 

basically constructed as a two-plate capacitor, with conducting or weakly conducting 

electrodes. Apart from being a central detector in particle physics experiments, they 

are also now considered for use in PET tomography, where electron-positron 

annihilation in the body creates signal photons of several hundreds of keV (Lippmann 

et al., 2009). Pertaining to the simple geometry of these devices, analytic models of 

the static electric field of a point charge in an infinite plane condenser (Jackson, 

1975) with one or 3 different layers have been presented (Heubrandtner et al., 

2002b) as well as considerations on the distribution of the charge on the electrodes 

(Samedov, 2009). The latter study was based on the method of images and 

conformal mapping, as the S-R theorem would only give a total charge and not the 

charge distribution. The need for knowing the actual field caused by the moving 

charges therefore still seems to reappear, especially as this need has been 
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suppressed in the past by extensive use of the S-R theorem which readily gives 

plausible results even with grossly approximated particle velocities. If many charge 

carriers are generated simultaneously, their actual velocities will be influenced by 

mutual interactions, represented by the fields of the individual charges.  

 

Based on experience with MC avalanche simulations, even analytic expressions for 

the time response function of RPC’s have been presented (Riegler 2009). Another 

particle physics detector deserving to be mentioned is the Wire Proportional 

Chamber (WPC) which has wire electrodes (Gruber et al. 2011).   

Many suggestions for making detectors sensitive or insensitive to the position where 

the incident photon hit have been put forward, and also suggestions for making 

detectors sensitive to just one photocarrier type. 

We realize that trapping of e.g. a hole will lead to a loss of electrode signal, and the 

remaining signal induced by the electron (the electron induced charge) will then come 

to depend on the position where the electron-hole pair was generated. In many cases 

this is an unwanted effect, because the induced charge will vary haphazardly with the 

point of photon impact and no spectroscopic information on the original photon 

energy can be retrieved. 

 

 

Figure 5-3. Frisch grid detector with weighting field for the electron electrode 
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By placing an additional, carrier penetrable and grounded internal grid electrode (Fig. 

5-3) vertically between the left and right hand electrodes of a two-terminal device, so 

that the internal grid electrode divides the detector volume in two sections, the 

signals on the right hand (RH) electrode can be manipulated. Suppose we restrict 

photogeneration to the area on the LH side of the grid. Lying close to the right hand 

electrode, the grid causes the weighting field of the RH electrode to be screened and 

compressed into a small area. Charge moving on the LH side of the grid will not be 

sensed at all on the RH electrode, because the RH electrode weighting field is zero in 

that region.  Then the signal on the RH electrode would sense only the electrons that 

have crossed the grid, and this signal will be fairly uniform for all electrons, and 

independent of whether the hole was trapped or if it completed its journey to the LH 

electrode. Also, the location of the initial electron-hole pair generation will not 

influence the signal. In other words, the detector becomes position insensitive and 

single carrier type sensitive. Since the RH electrode signal from the slow holes 

wandering towards the left electrode is obliterated, the otherwise slow response from 

the holes could be suppressed, whereas the rapid response from the electrons is 

kept. It is worth noting that the complete loss of signal from holes does not reduce the 

induced charge signal read out from the RH electrode for this three-terminal device, 

when compared to a conventional two-terminal device. As we have seen, it is the 

voltage difference in test potential over the electron path from grid to RH electrode (0 

to WV ) that matters, not the total distance travelled from the generation site. 

In semiconductors there are good reasons to suppress the hole signal, since the slow 

moving holes are prone to being trapped at defect sites, making the signal linger on 

for long periods (spectral tailing, (Owens et al., 2006)). This configuration of 

electrodes is called a Frisch grid detector after its inventor first had introduced it in 

the 1940’s to overcome slow drift and loss of ions in gas-filled ionization chambers 

(He, 2000, Gook et al., 2012).  

Instead of placing a grounded grid as an internal electrode, an invention in the mid 

1990’s introduced two banks of coplanar, interlaced external strip electrodes to be 

placed vertically on the RH side to replace both the grid and the single RH electrode 

(He 1997, 2000). The strips are connected in an alternate, interlacing manner so that 

one of the banks is the readout electrode (say electrode 2) and the other bank is 

grounded and has a function that resembles the Frisch grid (electrode 3). Since the 
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readout electrode bank (electrode 2) always has a positive operating voltage and the 

other bank is grounded, electrons will always be headed towards one of the strips of 

the readout bank. Putting weighting potentials on electrodes 2 and 3 in order to 

calculate the difference in electrode currents 
2 3i i , we must actually calculate the 

difference between the weighting potentials on paths going from the LH electrode to 

the readout electrode strips. Far away from the RH side, the weighting potentials 

from the two banks will be similar, because there is a gradual “fanning out” of an 

individual electrode weighting potential with distance from the electrode. Closer to the 

electrodes, however, the individual weighting fields become very localized. Finding 

themselves on their preferred path close to the readout strip, electrons therefore only 

sense the weighting field of electrode bank 2. 

 

The difference in weighting potentials between the readout electrode bank 2 and 

electrode bank 3 will now be zero along the path of the electrons, until they approach 

the two banks of electrodes, where readout weighting potential suddenly rises to 2

WV

whereas the weighting potential from electrode 3 drops to zero. The function of this 

detector is therefore exactly like that of the Frisch grid detector, with the modification 

that a difference of weighting potentials replaces the former single RH electrode 

weighting potential, and a difference between two RH electrode bank signals 

replaces the former single RH electrode readout of the Frisch grid detector. CdZnTe 

is a very common semiconductor material used in these types of detectors. For more 

details, see the reviews of He (He, 2000) and Owens (Owens et al., 2006). 

 

Another intriguing feature in the review of He (He, 2000) is the derivation of the S-R 

theorem using an energy approach.  We do not especially advocate the energy 

approach here, because it does not represent a simpler path for proving the theorem. 

But admittedly, it is always useful to study the energy exchange under the conditions 

set by the theorem. Also, the article presents a clear view on the electrode 

configuration assumed in the proof. Some would presumably also appreciate a very 

insightful older presentation using energy methods (Gunn, 1964).  
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6 Results 

 

The program was used to run several simulations with lattice temperature set at 

T=77K, while varying reverse bias external fields. We focused on -8V and -18V 

reverse bias voltage. Based on the Shockley-Ramo method discussed in earlier 

chapters, the currents generated on the electrodes were calculated by the program, 

and stored in four different files measuring the total current generated by the 1) 

electrons on the left electrode, 2) electrons on the right electrode, 3) holes on the left 

electrode, and 4) holes on the right electrode. This data was fed into MatLab and 

used to generate the plots. 

This plot was generated using the quiver()-function in MatLab (with the MatLab arrow 

size parameter set to 2), based on the final E-field generated by the simulations. The 

final E-field files should be identical to the initial E-field and remain constant during 

the run, as when running an APD simulation the program shouldn’t run any bias field 

calculations.  

It is important to note that the quiver() function in MatLab performs an arbitrary initial 

scaling, so that these two plots for the different external field strengths is 

incommensurable as they are presented here. They must thusly be used merely to 

get a better picture of how the fields appear. The data behind the plots is, of course, 

unscaled, and can be used in further work. 
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6.1 Static “Frozen” Field 

 

Let us start by looking at the “frozen field” meaning the background field at 0t  .  

 

 

 

 

 

 

When running a simulation to generate a frozen field, in this thesis and earlier work, a 

simulation time of up to 200 ps has been used. The most transient period, however, 

is only up to around 50 ps. After that, there is very little effective current going, 

meaning the field is closing in on an equilibrium state. Running a simulation up to 100 

ps should be sufficient time to be confident the field is stable, based on work by C. 

Kirkemo (Kirkemo 2011). 

We have experimented with different sampling rates for the Shockley-Ramo 

calculated current, since it is of paramount importance in an actual application to 

know what sample frequency or bandwidth the output measuring device needs to 

have. 

Figure 6-1. This the static bias field for 08V, often referred to as “frozen 

field”. Note the clearly recognizable areas of higher doping, and the 

smooth field in the region between the conductors. Also note the small 

area in the upper right corner where the field is pointing away in all 

directions. 
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The purpose is also to determine which bias voltage is optimal to get a measurable 

current pulse output and minimize the number of “stuck” electrons. 

As can be seen the fields is very linear and “well-behaving” in middle area. The field 

for both voltage biases appear smooth outside of the highly doped contact zones, 

while the field there may seem discontinuous, or at least highly non-uniform. Notice 

again that this is a static field and a stable configuration, and not a transitive state. 

 

 

 

 

 

 

 

The graphs can indicate that it might be needed to run a simulation with more mesh 

points for the Poisson equation solver for a more precise image of the field. As of the 

moment of writing, the number of mesh points is 600 x 200. The downside of this is 

that a static higher number would severely affect performance of the program. Still, 

Figure 6-2. This the static bias field for 18V, often referred to as “frozen 

field”. Note the clearly recognizable areas of higher doping, and the 

smooth field in the region between the conductors. Also note the small 

area in the upper right corner where the field is pointing away in all 

directions. 
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some optimization might prove more efficient, either in the form of separating the 

Poisson solver for the frozen field calculation from the regular part of the program, 

since that is only needed to be performed once, or in the form of variable mesh, with 

higher point density in the highly doped corners.  

Furthermore, it appears that there are several “dead zones”, i.e. small spots that 

appear to experience a very low or close to zero E-field. This has, however, not 

proved to be a problem in practise, as we have very rarely observed any carriers 

ending up in these remote areas.   
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6.2 Carrier Positioning 

 

 

Figure 6-3. Position plot revealing the physical positions for the electrons 

(blue), and holes (red) at different time steps for the 08V field. 
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Figure 6-4. Position plot revealing the physical positions for the electrons 

(blue), and holes (red) at different time steps for the 18V field. 
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As later plots also will confirm, the particle multiplication can be seen from these 

position plots to be much higher when the bias voltage is increased. In both cases, 

the initial scenario is one electron/hole pair generated at time 0t  , but the higher 

field in from the 18V reverse bias in fig 6-4 compared to 8V in fig 6-3 accelerates the 

electrons further, giving them much more energy, thus allowing them to ionize other 

atoms they hit, releasing a “new” electron/hole pair, which begin to accelerate due to 

the bias field. This process is called impact ionization. Keep in mind that in the 

program, this impact ionization is modelled to only happen for electrons, not holes. It 

can happen that a hole initiates impact ionization, but the frequency of this is so low 

that the effect is negligible. We will get back to discussing more on this a bit later in 

this chapter. Thus, new holes and electrons can appear almost anywhere to the right 

of the initial electron/hole pair, while there never appear new electron/hole pairs to 

the left.  

Another very interesting effect observed, is the fact that in the higher voltage, the 

carriers tend to be unable to escape the “pocket” in the connector corners. This 

correlates to the small location found most prominently in the lower right area of the 

heavily doped corner for both voltages, and another slightly above and to the right 

where the field arrows all point away from that small spot. According to the advisor of 

this thesis work, Trond Brudevoll, this is within reason close enough to what might 

have been expected. Thus, it is not necessarily an obvious flaw of the program, that it 

generates such a volatile and non-uniform field within the conductor edges.  

There is still the problem of dealing with these “stuck” carriers. As can be seen further 

on in the results section, carriers that never exit the device contribute a significant 

amount of noise to the output signal. This is because the output current is generated 

by the movement of the carriers relative to the connector at the top edge. Even if the 

carriers are “stuck”, they are still randomly moving back and forth in the trapped 

region, meaning a significant seemingly random current is generated by this. This 

current could potentially be filtered away, as we are mainly interested in the initial 

pulse, but problems could arise due to the build-up of particles in the trapped regions, 

adversely affecting the conductivity and performance of the device.  
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6.3 Particle Numbers 

 

 

Figure 6-5. Total number of each type of carrier present inside the device with 08V 

reverse bias.  

 

Above and below are plots for the graphs of the number of each type of charge 

carrier present at any time in the device for respectively 8V and 18V. The graphs can 

both look misleading, in their respective ways. The integral over the two graphs is by 

definition zero, as the number of charges is symmetric. For every impact ionization 

event, both a hole and an electron are generated, so there is no way to generate a 

surplus of one type of carrier. The reason the integral over all the electrons and holes 

doesn’t match up here,  is due to the sampling rate. The electrons rush out so fast 

they are not even visible as a spike here. This also introduces another problem in a 

physical implementation of the APD; what is the required measuring frequency 

needed for any component or device that is supposed to measure this current pulse 

and the conducting edge of the APD?  
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Figure 6-6. Total number of each type of carrier present inside the device with 18V 

reverse bias. As above, both starts on 1, but due to the higher energies involved, the 

numbers quickly multiply.  

 

 

A disturbing observation for the 18V case is that it appears that close to no holes 

ever escape the APD, and the number of electrons (after the initial spike discussed 

above) only halves. Keep in mind that the simulation is of length 15 000 ps, or 15 

nanoseconds, which is very long in this environment and for a simulation of this type. 

As can be seen, the multiplication degree is much higher, but this side effect of the 

“stuck” carriers might make such a high voltage inefficient in practise.   
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6.4 Shockley-Ramo Calculated Currents for 8V 

 

Based on the numerical Shockley-Ramo solver these plots have been generated by 

the program. We have tried varying the sampling rate for the current calculation. The 

calculations are of course at every iteration pass, but only sampled, or written to file, 

with a certain rate. The most notable test sample rates was to sample every iteration 

(which is to say sample every femtosecond), and every 1 000 iterations, meaning 

every 1 000 fs, or every 1 ps.  

 

 

Figure 6-7. The current generated by holes on the left conductor edge. This is a 

different simulation, using only 600 ps length, as opposed to 1 500 ps which was 

used above, and sampled every fs, or every iteration pass. 

 

 

An interesting observation to be made from the simulations is that the amount of 

carriers being stuck at a given time is very variable. In general, there is more carriers 

getting stuck in the 18V reverse bias, and in most runs all carriers tend to leave the 

APD device with and 8V reverse bias.  



70 
 

In the below plot, the exact same run parameters have been used, excepting 

different sampling rate for the APD current, and longer duration of the whole 

simulation.  

 

 

Figure 6-8. The current generated by holes on the left conductor edge. This is the 

same simulation as has been mentioned in the previous subchapters, using 15 000 

ps total simulation length. This was also sampled  every 1 000 fs/1 ps/1 000 iteration. 

 

  

The initial burst is the main rush of photogenerated holes escaping the device while 

the latter parts after about 150 ps is dominated by stuck holes randomly moving in 

areas where they can be stuck, but slowly trickle out of those spots, and end up 

escaping. When the current hits zero, all carriers have escaped. It is not possible at 

temperatures above 0K to have zero current with any carriers still left inside the 

device. 

The electron plots are similar in nature, only the peak comes much faster than for 

holes, as holes to a higher much higher degree loose energy to optical phonons 
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(Kinch, Beck et al. 2004). With the effective electron mass down to 2·10~ 7 gE , where 

gE is the band gap in electron volts, the conductivity for electrons is very high, and 

allows for a rapid acceleration towards the end conductor. 

 

 

 

Figure 6-9. The current generated by electrons on the left conductor edge, for the 

600 ps length simulation, sampled every 1 fs. 

 

 

As predicted, this current is a significantly faster, and “spikier”. Whereas the hole 

avalanche takes between 100-150 ps, the electrons generate a shorter, but 

correspondingly higher current pulse, which appear to have a duration of between 

25-40 ps. Note that both these estimates for spike burst duration is highly dependent 

on device size. As the electrons accelerate at such a rapid rate, they can be 

assumed to travel at a constant rate, thus making the travel time in which the carriers 

are generating current, increase linearly with APD device size. 
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Holes have a generally lower tendency to get stuck with an 8V reverse bias, but this 

effect is as mentioned earlier inherently somewhat random. Due to the randomness 

involved, two simulations with the same parameters rarely yield the exact same 

result, usually they vary in the number of impact ionization events, and the time at 

which the respective carriers exit the device.  

As no relevant parameters were changed between the above and the below runs, yet 

they still yield significantly different results as to the end situation, it is not clear to the 

author any method of “helping” the carriers escape. Although, a way of testing this 

more thoroughly would be as already mentioned -  using a higher point density mesh 

grid, if nothing else at least to have a more clear picture of the E-field in the highly 

doped corner regions. 

 

 

Figure 6-10. LOG-plot of the current generated by electrons on the left conductor 

edge, for the 15 000 ps length simulation, sampled every 1000 fs. The plot is cut off 

at 1000, since it was zero. 
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An interesting detail to the graphs of the electrons is that they tend to have a positive 

peak at the end of the avalanche phase, which might suggest that a high number of 

electrons actually do get stuck for a short time, and/or are getting accelerated away 

from the corner region of the APD for a short time. Due to the limited resolution of the 

mesh it might be difficult to say for certain whether this is a physical plausible 

behaviour, or a consequence of the simulated electron hitting an unreasonable 

strong localized field accelerating it in the opposite direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11. For illustration purposes, two LOG-plots of the currents generated by 

holes and electrons with ejected carriers in the same plot for 8V reverse bias.  
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6.5 Shockley-Ramo Calculated Currents for 18V 

 

 

Figure 6-12. The current generated by holes on the left conductor edge, for the 600 

ps length simulation, sampled every 1 fs. Note the significantly increased noise. 

 

 

The peak is much clearer and sharper in the 18V reverse bias setup than in the 8V 

setup. The clearness is due to the stronger field, making the electrons less likely to 

stop and/or change direction away from the heavily doped corner and ultimately, the 

conducting edge of the APD device. On the other hand, the noise is much larger, 

which is due to the fact that more holes are getting stuck in the 18V reverse bias 

device. The reason why the “stuck” carriers generate such a noise current is 

explained in the above subchapters. 

The increased sharpness is due to the higher acceleration each carrier experiences, 

both hole and electron. The higher acceleration means that after every impact 

ionization event the newly generated carriers, along with the generating electron (we 

are still modelling this as impact ionization can only be initialized by electrons) is 

almost instantly accelerated to their drift speed. This leads to a significantly larger 
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proportion of the carriers reaching the doped corner than with using an 8V external 

field.  

It will be more noise simply because of the fact that the stronger field leads to higher 

kinetic energy, and thus speed for both types of carriers. Thus the stuck carriers also 

“bounce” more vigorously back and forth, leading directly to stronger currents, as the 

generated current is based on the speed of the respective carrier. 

 

 

Figure 6-13. The current generated by holes on the left conductor edge, for the 15 

000 ps length simulation, sampled every 1000 fs. Note the significantly increased 

noise. 

 

In the above graph, the general characteristic can be recognized fig 6-12, except the 

graph appears thinner. This is partly explained by the different scale on the x-axis, 

but mainly due to the reduced sampling rate. It is apparent that this sampling rate is 

good enough to capture the current generated from the holes. The electrons will 

prove slightly more different to detect, as will be discussed later on.  
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Also note the scale on the y-axis for the current. It is over 10 times higher than for 8V. 

This significantly increased current is due to the nonlinear scaling of carrier 

multiplication with increasing external field.  

The noise for the holes is stronger with 18V reverse bias field, approximately around 

double magnitude. 

 

Below is the corresponding plot for the 600 ps duration simulation for electrons. The 

very sharp peak in generated current is a consequence of the strong electric field. 

The noise is around the same order of magnitude as for the 8V field, contrasting the 

noise current level for holes, which is marginally higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-14. The current generated by electrons on the left conductor edge, for the 

600 ps length simulation, sampled every 1 fs. Note the significantly increased noise. 

 

In both the above plot and the below plot it is obvious that even though there are 

many carrier particles “stuck” in these few dead end regions that never escape, they 
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do not seem to disturb the functionality of the device, as the noise is random static 

which can be filtered away, either with a frequency filter, or a magnitude filter.  

The current peak might seem surprisingly low, compared to the one generated by the 

holes, but closer inspection of the hole data reveals that it is much more “spiky” in the 

avalanche phase than the electron graphs. The hole graphs are highly fluctuating, 

giving the impression of a thick line, while it in reality has an average closer to what 

can be expected, and closer to the electron-generated graphs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-15. The current generated by electrons on the left conductor edge, for the 

15 000 ps length simulation, sampled every 1000 fs. Note the static noise. 

 

 

The hole graphs are naturally more stretched out in time as compared to the electron 

graphs, for two reasons. Firstly they are moving slower, meaning that the time it will 

take the avalanche of holes to stop moving (whether by exiting the APD, or by getting 

“stuck”) will be longer. Secondly, due to the (reasonable) assumption in the code that 
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holes do not initialize impact ionisation events, all new carriers will be generated on 

the right side of the initial electron/hole pair. This means that all holes will have to 

travel longer than the initial one, and due to their relatively large effective mass their 

acceleration towards the left corner region will be significantly slower than that of the 

electrons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-16. For illustration purposes, two LOG-plots of the currents generated by 

holes and electrons with ejected carriers in the same plot for 18V reverse bias.  
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7 Discussion and Summary 

 

The Monte Carlo simulator which has been developed as a student project at FFI has 

during this work been made capable of modelling devices. A fast Poisson solver 

which relies on the successive overrelaxation method has been implemented and an 

impact ionisation model has been implemented in order to make the simulator 

capable of modelling APDs. 

During this work, two simple pn-junction devices has been simulated, a pn-diode and 

an APD. The device characteristics, including current-voltage characteristics and 

switching times have been obtained. For the APD, we have studied multiplication and 

noise and obtained the gain-voltage characteristics.  

We simulated simple devices in order to discuss a few problematic aspects of the 

Monte Carlo method which arise when simulating CMT pn-junctions. Within the 

framework of the Monte Carlo method, the dark current needs to be neglected for 

CMT APDs. We have pointed to the fact that the current impulse response may turn 

out inaccurate due to violation of the continuity equation in the surrounding circuit. 

Furthermore, we believe that the self-consistent solution of the transport equations 

and Poisson’s equation using the Monte Carlo method is well suited for studying 

large photo currents in APDs because the frozen field assumption is easily relaxed 

within the Monte Carlo framework.  

 

 

7.1 On the Nyquist Theorem and Sampling Rate 

 

If we look at the two above plots, we can see that any device measuring the output 

current of this APD will need to be remarkably quick. So much so, in fact, that it might 

be unfeasible to achieve such a high degree of precision and sampling rate. 

Nyquist’s Theorem states that we must have a measuring frequency of 

 2s ef f . 

ef  represents the frequency of the electron current pulse. For simplicity, define the 

avalanche current spike as our whole signal. Assume the whole signal takes 10 ps, 
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which is a decent estimate for the electron avalanche, just to get a proper feeling with 

the magnitudes involved. Since the frequency is given by 1/e ef T , this means 

1110ef  Hz or 100 GHz for the relevant signal. This means the Nyquist’s sampling 

frequency is  

 
11

2

2 10 hz

s e

s

f f

f



 
 

This is an immense requirement, at least 200 GHz, especially given that most 

ordinary computers these days have around 3-4 GHz processors.  

This frequency can and will be lowered if the APD were to increase in size. It was 

mentioned in chapter 0, but it is worth summarizing, that the electron travel time will 

increase linearly with the size of the device. As the APD we have simulated in this 

context measures 600 nm x 200 nm, this means that there are still some potential for 

increasing the dimensions without introducing other effects or errors.  

 

The corresponding frequency hf  for holes is much more lenient. The current pulse is 

now closer to 85 90hT   ps long.  

101/ 1.176 10h hf T   Hz, 

or 11.76 GHz. It is still very fast, but significantly slower than the electron burst.  

 

It should be noted that these numbers are the result of one photon generating the 

first electron/hole pair. In practise, it can be expected in any practical setup1 single 

photons are a rare occurrence, and it is highly likely that several will appear within a 

reasonably short amount of time, meaning that this pulse will be extended the more 

photons that are hitting the APD device. 

  

                                                      
1
 Except in a device specifically intended as a single photon detector, but then other devices might be more 

suited. 
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7.2 On the Frozen Field and Number of Mesh Points 

 

As has been mentioned in the Results chapter, the basis for the simulations of the 

APD and carrier transport within it, relies on a solver for the Poisson equation  

 2V   , 

given the charge density  . The PDE is then solved to yield a potential throughout 

the mesh point lattice, and this potential V is used to determine the field at any point. 

However, with strongly varying, or highly non-uniform potentials and thus, E-fields, 

and the number of mesh points too limited, there is a high risk of not calculating the 

correct field. In general, the more non-uniform the field is, the higher number of mesh 

points is needed. Note that the error in precision in the calculations, measured by the 

error estimate, is separate from errors introduced by a low number of mesh points. 

Assessing the quality of the field estimate and whether or not enough mesh points 

has been used in general is no easy task, and requires lengthy experience in the 

area. Thus, it is hard for the author to precisely pinpoint any weird behaviour to a 

potential low number of mesh points.  

There is also the option of doing a geometric smoothing of the raw field data to 

reduce the effect of erroneous values in a few mesh points. This is not technically 

providing any new information, but the method can be employed to simply smooth 

the graph. Naturally, this works best the more uniform the field is, as this lessens the 

chance of the method smoothing out spikes that are actually present, and is not a 

result of an error somewhere.  

Still, based on the appearance of the field, it appear it would be optimal to perform a 

more thorough calculation of the frozen field in both cases, using a higher number of 

mesh points only in the highly doped corner regions.  
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7.3 General Effects of Increased Reverse Bias Voltage 

 

 Increasing the reverse bias potential increases multiplication degree of the 

charge carriers. 

As explained earlier in the thesis, the stronger field allows the electrons to 

accumulate more kinetic energy, thus leading to a higher rate of impact ionization 

events. Keep in mind, in reality, this happens for holes too, but the rate at which hole-

initiated impact ionization occurs, is much rarer. Hole-initiated impact ionization is 

ignored completely in our simulation, and thus does not occur during simulations. 

Earlier work (Kirkemo 2011) also indicated this trend, although this was only done 

with reverse bias voltage up to -7V. In one simulation for -8V the multiplication was 

48. This means that 48 impact ionization events occurred. In a corresponding 

simulation for -18V reverse bias the multiplication was found to be 966. 

 Increasing the reverse bias potential increases peak magnitude, and reduces 

avalanche duration. 

This means that the avalanche current peak will become more compact and intense. 

Some consequences of this are that the signal might be easier to detect in equipment 

with low sensitivity, but also making it harder to detect a single photon, due to the 

duration of the signal decreases. If the APD device can be guaranteed to be fed a 

pack of photons, and cooling is of little concern, it appears a strong field is to be 

preferred, as that will make a signal stronger, while the fact that several it is several 

photons will increase the likelihood of detection due to several current peaks 

travelling. Using several photons has not been a focus of this thesis, but there might 

be issues with saturation  

Another possibility is the use on an integrator for the current, thus essentially 

focusing on total charge generated. This method will be unaffected by a potentially 

short duration of the signal.  

This is, of course, only valid up to a certain point, where the amount of electrons 

generated start having an effect on the frozen field, but that is beyond the scope of 

this thesis.  
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8 Appendices 

 

8.1 Proof of Green’s Reciprocation Theorem 

 

This theorem is central in Shockley’s proof for the Induced Electrode Currents, 

recited in chapter 4. In its full glory, the theorem states 

    ' ' ' '
sv

dV dA           

Here,   is charge density in a volume V,  is charge distribution over a surface s, 

and  is an electromagnetic potential function. The ‘ marks for two different non-

coexistent situations. Green’s Theorem is an excellent starting position: 

  2 2

v s
dV dA

n n

 
   

  
  

  
    

Start by substituting '  . Furthermore, we have these two equations linking   

and  with the derivatives. 

 2

0 0 0 an  / /d .
n n

   
 

   
 

 
 

 

which obviously also holds for the ‘ marked situation. Using these two equations, we 

get  

    ' ' ' ,'
v s

dV dA          

after we cancel out the 01 / -factors. 

Now we are almost done. In his work, Shockley uses a slightly modified version of 

this equation. Firstly, Shockley assumes no surface charge, 0, ' 0   , which 

basically renders the right hand side to 0.  

   0' '
v

dV     

Secondly, he is using a discrete model for the spatial charge distribution  , turning 

the left hand side integration into a summation, and the continuous   into iQ . 
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Tertiary and lastly, Shockley’s generic potential is replaced with an electronic 

potential iV .  

Then, the form of the GRT used by Shockley looks like this: 

  
all charges

' ' 0i i i iVQ V Q   

QED. 
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8.2 The FMM Method 

 

It is also worth mentioning the method of FMM, or fast multipole moment calculations. 

This is a method of calculating interaction potential between charges. It is an 

approximate solution to the N-body problem of interacting particles, less precise than 

its unaccelerated version, that of multipole moment. Let us first take a quick recap of 

the derivation of this method. 

We start with looking at a vector from a fixed reference point to a point in the system, 

called r . Then, let 
1r be the vector from the fixed reference starting point to the 

observation point 

 
2

2 2 2 2

1 1 1 2

1 1

2 cos 1 2 cos
r r

d r r rr r
r r

 
 

     
 

 

Taking the square root and inverting the expression gives us  

  
1/2

2

1

1
1 1

2
r

y
d

 


   

Here we also substituted 
1

r

r
   and cosy  . The key now to recognize this 

expression as the generating function of Legendre polynomials given below 

  
1/2

2

0

1 2 ( )i

i

i

y P y  





    

Substituting this back into the main equation for the inverse distance 1/d yield 

 
1 0

1
01 1

1 1 1
(cos (cos) ),

i

i

i ii
i i

r
P r P

d r r r
 


 

  
  

 
   

Thus proving that any physical potential that is proportional with 1/ d can be 

expressed as a multipole expansion.  

This method, however, has a runtime of 2( )O n , which means that the execution time 

of a program can escalate drastically as problem size increases. Thus, it is relevant  

to optimize this method to reduce execution time of such an algorithm. This is the 

FMM, or fast multipole method. This method revolves around separating between 
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local and distant interactions, and by greatly reducing the number of execution time 

to ( log )O N M M . N represents particle number, and M is the number of mesh 

points in problem and Is usually chosen to be smaller but proportional to N. This 

further simplifies to ( log )O N N , however the computational cost is often found in 

practise to be proportional to ( )O N . The algorithm uses some simplifications, and is 

very vulnerable to a highly varying or non-uniform electric field (technically, this 

sensitivity of the algorithm is bound to the Poisson solver used within). The impact on 

performance might be either in the form of significant increase in running time, or a 

corresponding decrease in precision of the final answer.  

The algorithm is fairly sophisticated, and any short reproduction besides what is 

already given here would likely not do it justice. For more information on this subject, 

refer to (D. Vasileska 2010). 
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