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Abstract

A numerical approach to solving the problem of electromagnetic (EM) scat-
tering on a single scatterer is studied. The problem involves calculating
the total EM field in arbitrary observation points when a planar EM wave is
scattered. The method considered is a surface integral equation (SIE) formu-
lation involving the use of a dyadic Green’s function. A theoretical derivation
of the magnetic field integral equation and the electric field integral equation
from Maxwell’s equations are shown. The Method of Weighted Residuals
(MWR) and Kirchhoff’s Approximation (KA) with their respective domains
of application are studied as ways of estimating the surface current densities.

A parallelized implementation of the SIE method including both the KA
and the MWR is written using the FORTRAN language. The implemen-
tation is applied in three concrete versions of the scattering problem, all
involving a spherical perfectly conducting scatterer, namely λ � ρ, λ = ρ
and λ � ρ, where λ and ρ denote respectively the wavelength of the incoming
EM wave and the radius of the scatterer. The problems are divided into two
separate solution categories, separated by whether or not the KA is assumed
valid. A recursive discretization algorithm was found to be superior to a
Delaunay triangulation algorithm due to less spread in element shape and
area. The produced results fitted well considering the interference pattern
and symmetry requirements with relative errors in the order of magnitude
10−5 and less. The case of having large wavelength compared to the radius
was also compared with Rayleigh scattering theory considering the far field
dependence on wavelength, scattering angle and distance from the scatterer.
This resulted in relative errors of 2.1% and less.

The main advantage of the SIE method is only requiring the surface of
the scatterer to be discretized thus saving computational time and memory
compared to methods requiring discretization of volume. The method is also
capable of producing accurate results for observation points arbitrary close
to the scatterer surface. A brief discussion on how the program may be
modified in order to extend its capabilities is also included.
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Sammendrag

En numerisk metode for løsning av det elektromagnetiske (EM) spredningsprob-
lemet med ett enkelt spredningsobjekt er studert. Problemet innebærer å
beregne det totale EM feltet i konkrete observasjonspunkter n̊ar den inkom-
mende EM bølgen er en planbølge. Metoden som er studert er en formulering
basert p̊a et sett overflateintegrallikninger (OIL) som innebærer utnyttelsen
av en dyadisk Greens funksjon. En teoretisk utledning av integrallikningen
for det elektriske feltet og integrallikningen for det magnetiske feltet er vist.
Metoden for Vektede Residualer (MVR) og Kirchhoffs Approksimasjon (KA)
med deres respektive bruksomr̊ader er studert som måter å estimere de tenkte
overflatestrømtetthetene.

En parallellisert implementasjon av OIL-metoden inkludert b̊ade KA og
MVR er skrevet i programmeringsspr̊aket FORTRAN. Implementasjonen er
anvendt p̊a tre konkrete versjoner av spredningsproblemet hvor alle innebær-
er et perfekt ledende spredningsobjekt, λ � ρ, λ = ρ og λ � ρ, hvor λ og
ρ representerer henholdsvis bølgelengden til den inkommende EM bølgen og
radien til spredningsobjektet. Problemene er delt inn i to løsningskategorier
avhengig av om KA er gyldig. En rekursiv diskretiseringsalgoritme viste
seg å være overlegen en Delaunay trianguleringsalgoritme grunnet mindre
spredning i elementform og areal. Resultatene passet bra med forventnin-
gene n̊ar det gjaldt interferensmønster og symmetrikrav, med relative feil
av størrelsesorden 10−5 og mindre. I tilfellet hvor bølgelengden var stor i
forhold til radien ble resultatene ogs̊a sammenlignet med Rayleigh teori for
fjernfeltsavhengigheten i bølgelengde, spredningsvinkel og avstand fra spred-
ningsobjektet. Dette resulterte i relative feil p̊a 2.1% og mindre.

Hovedfordelen til OIL-metoden er at kun overflaten til spredningsobjektet
må diskretiseres, hvilket reduserer behov for minne og prosessortid i forhold
til metoder som krever diskretisering av volum. Metoden er ogs̊a i stand til å
produsere nøyaktige resultater for observasjonspunkter vilk̊arlig nær spred-
ningsobjektet. En kort diskusjon rundt hvordan programmet kan modifiseres
for å utvide dets bruksomr̊ader er ogs̊a inkludert.
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Chapter 1

Background and Introduction

1.1 Motivation

The theory behind scattering of electromagnetic (EM) waves explains some
beautiful and mysterious natural phenomena, as for instance why the sunset
looks red and the sky above looks blue. How EM waves interact with its sur-
roundings is essential knowledge for a wide variety of professions. The radar
engineer, optician, camera designer, solar cell researcher and so on all need
to have fundamental knowledge of the behaviour of EM waves. Especially
when it comes to sensing and detection being able to create accurate models
for the process of EM scattering is very useful.

The area of nanotechnology has seen great progress during the last decades.
Experimental techniques have made it possible to fabricate and characterize
particles at nano scale. One of the interesting effects discovered is called Lo-
calized Surface Plasmon Resonance (LSPR), which is collective oscillations of
the sea of electrons at the surface of a nanoparticle. This effect was found in
1978 to be the explanation for the huge cross section observed in Raman scat-
tering from a pyridine adsorbed silver electrode, see Ref. [1]. This has led to
the technique called surface-enhanced Raman spectroscopy. The technique
utilizes the great magnification of the EM field close to a nanoparticle due
to LSPR at the resonance wavelengths. Because of the large amplification of
the field the method is so sensitive it may even detect single molecules.

Experimental breakthroughs as the one mentioned have urged for im-
provements also in the theoretical methods and solving Maxwell’s equations
for scattering problems has found new interest. Analytical solutions are
known for a few simple geometrical shapes of the scatterer, for example the
Mie solution for a spherical scatterer, see Ref. [2]. However, for more complex
shapes numerical methods are needed. Especially with the advancement in
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CHAPTER 1. BACKGROUND AND INTRODUCTION

computer technology the numerical techniques is becoming increasingly pow-
erful. As technology advances the need for accurate numerical methods is
growing.

Today there are several different methods for modelling scattering prob-
lems numerically. They can be divided into two main groups; volume meth-
ods and surface methods. The latter includes surface integral equation (SIE)
methods which only require discretization of the surface of the scatterer, as
oppose to volume methods where the scatterer volume or in some methods all
space needs to be discretized. SIE methods thus save computational time and
memory. One particular SIE formulation is therefore the chosen method for
this project. The aim of this thesis is to present the derivation and numerical
solution of one set of SIEs derived from Maxwell’s equations with the ability
to reproduce the LSPR of a metal nanosphere, which lately has become the
primary validity criterion for the numerical methods for nanostructure scat-
tering problems. Presenting a program implemented from scratch capable
of solving special cases of the EM scattering problem is a second aim of the
thesis.

The theory is presented in Chapter 2. Furthermore, Chapters 3 and
4 presents respectively the numerical implementation and the results with
corresponding discussion. The appendices cover some of the most important
concepts applied in the main text and also include the complete program
code written in FORTRAN.

1.2 The Electromagnetic Scattering Problem

This section presents the geometry of the problem and the assumptions re-
garding the materials.

1.2.1 Scattering Geometry

The geometry of the EM scattering problem is illustrated in Fig. 1.1. The
space is divided into two regions, with V1 and V2 denoting the volumes of
each region respectively. Region 2 is bounded by the surface S on the outside.
Region 1 is bounded by the surface S on the inside and by the surface Sinf

on the outside. The latter is stretched out to infinity. The vectors n̂1 and
n̂2 are the outward directed unit normal vectors to the boundary surfaces.
Therefore, at the surface, S, the relationship, n̂1 = −n̂2, is satisfied.

The source of the scattered field is an incident EM wave, Einc and Hinc.
It is assumed that region 2 is non-emitting, so all incident EM waves orig-
inates from region 1. Given the scattering material properties, namely the

2



1.2. THE ELECTROMAGNETIC SCATTERING PROBLEM

permittivity, ε, and permeability, µ, and the incident EM field, Einc and Hinc,
the problem consists of finding the resulting EM field, E and H, everywhere
in both regions.

In Fig. 1.1 the combined effect of the scattering material and the incident
EM wave is absorbed into the electric and magnetic surface current densities,
denoted as J and M respectively. These are imaginary currents inducing the
same electric and magnetic fields as the actual physical system would gen-
erate. Thus, the problem is essentially transformed into finding the surface
current densities, J and M.

Fig. 1.1: Geometry of the problem:

Figure 1.1: Geometry of the scattering problem considered. (From Ref. [3]).

1.2.2 Assumptions for the Scattering Material

Each region is occupied by a material satisfying the following set of proper-
ties. First, the materials are assumed homogeneous, that is the permittivity,
ε, and the permeability, µ, are independent of position, r, within the same
region. Next, linearity is assumed,

Di(k, ω) =
∑

j

εij(k, ω)Ej(k, ω), j, i ∈ {x, y, z}, (1.1)

where k and ω denote respectively the wave vector and angular frequency
of an EM wave travelling through the material. Furthermore, Di(k, ω) and
Ej(k, ω) are the component of the electric displacement in the direction i and
the electric field in the direction j respectively. Moreover, εij(k, ω) denotes
the permittivity tensor. Next, it is assumed that locality is satisfied, meaning
the permittivity tensor, εij, is independent of the wave vector, k, which

3



CHAPTER 1. BACKGROUND AND INTRODUCTION

implies that the displacement, D(r, ω), is only dependent on the electric
field, E(r, ω), at position r. Also assumed is the materials being isotropic,
which transforms the permittivity tensor, εij, to a scalar, ε. The materials are
thus assumed to be linear, isotropic, local and dispersive, giving the following
relation between the electric field, E, and the displacement, D in the space
and frequency domain,

D(r, ω) = ε(ω)E(r, ω). (1.2)

The same assumptions are made considering the permeability, µ, giving the
following relation between the magnetic flux density, B, and the magnetic
field, H, in the space and frequency domain,

B(r, ω) = µ(ω)H(r, ω). (1.3)

Note that the transformation from the time domain to the frequency domain
is accomplished through the Fourier transform, see appendix A for details.

4



Chapter 2

Theoretical Derivation of the

SIE Method

This section includes the derivation of the formulas needed to perform the
numerical calculation of the EM field by the SIE method.

2.1 Maxwell’s Equations

Maxwell’s equations are the foundation for solving all EM problems. The
first equation is Gauss’ law,

∇ · D(r, t) = ρf (r, t) , (Gauss’ law), (2.1)

where D is the electric displacement field and ρf is the density of the free
charge. The next equation is Faraday’s law,

∇× E(r, t) = −
∂B(r, t)

∂t
, (Faraday’s law), (2.2)

where E is the electric field and B is the magnetic flux density. Then, there
is the equation for the divergence of the magnetic flux density,

∇ · B(r, t) = 0. (2.3)

The fourth equation is Amperes law,

∇× H(r, t) = j(r, t) +
∂D(r, t)

∂t
, (Ampere’s law), (2.4)

where H is the magnetic field and j is the free current density.
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CHAPTER 2. THEORETICAL DERIVATION OF THE SIE METHOD

When having the linear relations between the fields in Maxwell’s equations
in the frequency domain given by Eqs. (1.2) and (1.3) a transformation of
Maxwell’s equations to the frequency domain is useful. Using the definition
from Eq. (A-1) and the property given by Eq. (A-5) gives the following
result for Maxwell’s equations in the frequency domain,

∇ · D(r, ω) = ρf(r, ω), (2.5)

∇×E(r, ω) = iωB(r, ω), (2.6)

∇ · B(r, ω) = 0, (2.7)

∇× H(r, ω) = j(r, ω) − iωD(r, ω). (2.8)

2.2 Derivation of the Relation Between Einc,

E, J and M

The first objective is to find an equation relating the electric field, E(r) in
all locations, r, to the incoming electric field Einc(r). The starting point of
the derivation is Eq. (2.6), Faraday’s law in the frequency domain. Applying
the curl operator on both sides of the equation gives,

∇×∇×E(r, ω) = iω∇× B(r, ω). (2.9)

Inserting relation (1.3) into the right-hand side of this equation gives,

∇×∇× E(r, ω) = iωµ(ω)∇× H(r, ω). (2.10)

Using Ampere’s law, Eq.(2.8), on the right-hand side of Eq. (2.10) now leads
to

∇×∇× E(r, ω) = iωµ(ω)j(r, ω) + µ(ω)ω2D(r, ω). (2.11)

Now, Equation (1.2) can be used to obtain an equation in the electric field
only. The equation must be satisfied at all locations in both regions. An
index i ∈ {1, 2} may be added indicating the region considered1,

∇×∇×Ei(r, ω) − k2
i Ei(r, ω) = iωµi(ω)j(r, ω), (2.12)

where ki = (εi(ω)µi(ω))1/2ω is the wavenumber of the EM field in region i.
Now we have a linear differential equation in position for the electric field.
The ω-dependence is from now on dropped in the notation for simplicity. In

1Note that when i is used as a factor in an expression it denotes the imaginary unit,

while used as a subscript it denotes the index of the region.
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2.2. DERIVATION OF THE RELATION BETWEEN EINC, E, J AND M

the further derivation the Green’s function is introduced. The basic idea of
the Green’s function is shown in appendix C.1. For Eq. (2.12) the Green’s
function is well known, see Ref. [3]. It takes the form of a dyadic function
of the position, r, with a source at the position, r′. The properties of a
dyadic tensor are given in appendix B. The equation containing the dyadic
Green’s function for equation (2.12) is analogous with the general definition
of a scalar Green’s function given in appendix C.1,

∇×∇× Ḡi(r, r
′) − k2

i Ḡi(r, r
′) = 1̄δ(r− r′), (2.13)

where 1̄ = δij(x̂i ⊗ x̂j) is the identity dyad (see appendix B.3.1 for the prop-
erties of the identity dyad) and δ(r− r′) is the three-dimensional Dirac delta
function. Multiplying this equation with Ei(r) from the left and equation
(2.12) with Ḡi(r, r

′) from the right and then subtracting the resulting equa-
tions leads to

∇×∇×Ei(r) · Ḡi(r, r
′) − k2

i Ei(r) · Ḡi(r, r
′)

− (Ei(r) · ∇ × ∇ × Ḡi(r, r
′) − k2

i Ei(r) · Ḡi(r, r
′))

= iωµij(r) · Ḡi(r, r
′) −Ei(r) · 1̄δ(r− r′).

(2.14)

The terms with k2
i Ei(r) · Ḡi(r, r

′) are cancelling. Using the property, Ei(r) ·
1̄ = Ei(r), therefore leads to

∇×∇× Ei(r) · Ḡi(r, r
′) − Ei(r) · ∇ × ∇ × Ḡi(r, r

′)

=iωµij(r) · Ḡi(r, r
′) − Ei(r)δ(r − r′).

(2.15)

By setting a = ∇, b = ∇ × Ei(r) and C̄ = Ḡi(r, r
′) the first term of this

equation may be converted by equation (B-23) to the following expression,

∇×∇× Ei(r) · Ḡi(r, r
′) = ∇ · (∇× Ei(r) × Ḡi(r, r

′)). (2.16)

In the same way, by using equation (B-23), the second term of equation (2.15)
may be converted to the following,

−Ei(r) · ∇ × ∇× Ḡi(r, r
′) = ∇ · (Ei(r) ×∇× Ḡi(r, r

′)), (2.17)

where a = Ei(r), b = ∇ and C̄ = ∇×Ḡi(r, r
′) was inserted into Eq. (B-23).

Inserting Eqs. (2.16) and (2.17) into Eq. (2.15) and integrating over the
whole volume of each region in unmarked coordinates, gives

∫

Vi

∇ · ([∇× Ei(r)] × Ḡi(r, r
′) + Ei(r) × [∇× Ḡi(r, r

′)]) d3r

=

∫

Vi

[

iωµij(r) · Ḡi(r, r
′) − Ei(r)δ(r− r′)

]

d3r.

(2.18)
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CHAPTER 2. THEORETICAL DERIVATION OF THE SIE METHOD

Applying the divergence theorem on the left-hand side gives

∫

Vi

∇ · ([∇× Ei(r)] × Ḡi(r, r
′) + Ei(r) × [∇× Ḡi(r, r

′)]) d3r

=

∫

∂Vi

n̂i · ([∇× Ei(r)] × Ḡi(r, r
′) + Ei(r) × [∇× Ḡi(r, r

′)]) d2r,

(2.19)

where ∂Vi is the boundary surface of region i and n̂i is the outward directed
normal vector of the boundary surface, ∂Vi. The first term on the right-hand
side of Eq. (2.18) may be transformed by Eqs. (B-33) and (C-8) in the
appendix, leading to

iωµi

∫

Vi

j(r) · Ḡi(r, r
′) d3r = iωµi

∫

Vi

Ḡi(r, r
′)T · j(r) d3r

= iωµi

∫

Vi

Ḡi(r
′, r) · j(r) d3r.

(2.20)

Comparing the last term of this equation with equation (C-3) from the ap-
pendix makes it clear that the term is of the same type as the unknown
variable of the original differential equation, which in this case is an elec-
tric field. The field must be a function of r′ as the Green’s function has a
source point at r, the source, j, is a function of r and the integral is over r.
Furthermore, the source term, iωµij(r), on the right-hand side of Eq. (2.12)
involves the free current density, meaning the current is ”put there” by the
one performing the experiment. One must therefore not confuse it with the
surface current densities, J and M, which are the imaginary sources of the
scattered EM field. With this distinction in mind it is clear that the elec-
tric field represented by the term of Eq. (2.20) is the incident electric field,
Einc

i (r′), of region i,

iωµi

∫

Vi

j(r) · Ḡi(r, r
′) d3r = Einc

i (r′). (2.21)

The second term on the right-hand side of Eq. (2.18) is easily identified as,
−Ei(r

′), when r′ ∈ Vi and 0 otherwise, by using the properties of the delta
function. Eq. (2.18) may therefore be written in the following way,

∫

∂Vi

n̂i · ([∇× Ei(r)] × Ḡi(r, r
′) + Ei(r) × [∇× Ḡi(r, r

′)]) d2r

= Einc
i (r′) −

{

Ei(r
′), r′ ∈ Vi

0 otherwise
.

(2.22)
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2.2. DERIVATION OF THE RELATION BETWEEN EINC, E, J AND M

The boundary surface, ∂V2, is simply the surface, S, in Fig. 1.1. The bound-
ary surface, ∂V1, on the other hand, consists of both S and Sinf . In the limit
where the surface, Sinf , approaches infinity the EM field approaches 0 at
the surface, reducing the border ∂V1 to S, but with opposite normal vector
compared to ∂V2, n̂1 = −n̂2.

Now, the first term of the integral in Eq. (2.22) may be converted by using
Eq. (B-23) in the following way,

n̂i · ([∇× Ei(r)] × Ḡi(r, r
′) = n̂i × [∇× Ei(r)] · Ḡi(r, r

′). (2.23)

Using Faraday’s law for the frequency domain, Eq. (2.6), together with Eq.
(1.3) connecting Bi(r) with Hi(r) and Eqs. (B-33) and (C-8) regarding the
transpose of the dyadic Green’s function gives

n̂i × [∇× Ei(r)] · Ḡi(r, r
′) = n̂i × [iωBi(r)] · Ḡi(r, r

′)

= iωḠi(r, r
′)T · [n̂i × Bi(r)]

= iωḠi(r, r
′)T · [n̂i × µiHi(r)]

= iωµiḠi(r
′, r) · [n̂i ×Hi(r)].

(2.24)

Likewise, by using Eqs. (B-23), (B-33) and (C-9) the second term of the
integral in Eq. (2.22) may be converted in the following way,

n̂i · (Ei(r) × [∇× Ḡi(r, r
′)]) = [n̂i ×Ei(r)] · [∇× Ḡi(r, r

′)]

= [∇× Ḡi(r, r
′)]T · [n̂i × Ei(r)]

= −[∇× Ḡi(r
′, r)] · [n̂i × Ei(r)].

(2.25)

Inserting these results into equation (2.22) and considering the case of the
equation where r′ ∈ Vi, gives

∫

S

iωµiḠi(r
′, r) · [n̂i ×Hi(r)]−[∇× Ḡi(r

′, r)] · [n̂i × Ei(r)] d
2r

= Einc
i (r′) − Ei(r

′).

(2.26)

Defining the electric surface current density, J(r) = n̂2 × Hi(r) and the
magnetic surface current density, M(r) = n̂1 × Ei(r) gives the following
equation for the case of i = 1,

∫

S

iωµ1Ḡ1(r
′, r) · [n̂1 × H1(r)] − [∇× Ḡ1(r

′, r)] · [n̂1 × E1(r)] d
2r

=

∫

S

iωµ1Ḡ1(r
′, r) · (−J(r)) − [∇× Ḡ1(r

′, r)] · M(r) d2r

= Einc
1 (r′) − E1(r

′).

(2.27)
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CHAPTER 2. THEORETICAL DERIVATION OF THE SIE METHOD

In the same way, the case of i = 2 gives
∫

S

iωµ2Ḡ2(r
′, r) · [n̂2 × H2(r)] − [∇× Ḡ2(r

′, r)] · [n̂2 × E2(r)] d
2r

=

∫

S

iωµ2Ḡ2(r
′, r) · J(r) − [∇× Ḡ2(r

′, r)] · (−M(r)) d2r

= Einc
2 (r′) − E2(r

′).

(2.28)

In the current scattering problem all incident EM waves originate from region
1, thus Einc

2 (r′) = 0. Therefore the case of i = 2 may be displayed in the
following way,

∫

S

−iωµ2Ḡ2(r
′, r) · J(r) − [∇× Ḡ2(r

′, r)] · M(r) d2r = E2(r). (2.29)

By swapping r with r′ and using −i = 1/i, both cases may therefore be
summed up in the following way,

∫

S

ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ × Ḡi(r, r
′)] · M(r′) d2r′

=

{

Einc
1 (r) − Ei(r), i = 1 , r ∈ V1

Ei(r), i = 2 , r ∈ V2

.

(2.30)

By rearranging the terms of this equation and using Eqs. (C-10) and (B-28)
transforming the second term in the integral the following expression for the
electric field, Ei(r), in any position in space is obtained,

Ei(r) =

{

−

+

}

∫

S

ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ · Ḡi(r, r
′)] ×M(r′) d2r′

+

{

Einc
1 (r), i = 1 , r ∈ V1

0, i = 2 , r ∈ V2

,

(2.31)

which corresponds to Eq. (35) in Ref. [3] without expanding the surface
current densities, J(r′) and M(r′). An analogous derivation starting with a
differential equation in the magnetic field only instead of Eq. (2.12) gives
the following expression for the magnetic field, Hi(r),

Hi(r) =

{

−

+

}

∫

S

ωεi

i
Ḡi(r, r

′) · M(r′) + [∇′ · Ḡi(r, r
′)] × J(r′) d2r′

+

{

Hinc
1 (r), i = 1 , r ∈ V1

0, i = 2 , r ∈ V2

,

(2.32)
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2.3. DERIVATION OF THE EFIE AND THE MFIE

It is convenient to make a full stop at this point and contemplate the
implications of Eqs. (2.31) and (2.32). The electric field at the position, r, is
now expressed as an integral containing the Green’s function and the surface
current densities, J and M. If the observation point is located in region 1 the
incoming electric field, Einc

1 (r), must also be added. The Green’s function
is well known and given in appendix C.2. So if the current densities are
known the electric field may be calculated by solving the surface integral
of Eq. (2.31) running over the surface of the scatterer. Correspondingly
the magnetic field may be calculated by solving the surface integral of Eq.
(2.32). This can be done accurately numerically if the integrand is ”behaving
properly”. This subject is further discussed in Section 3.4. Further more
Section 2.5 includes a neat trick for handling situations where the integrand
does not behave well.

The surface current densities, J and M, are however generally unknown.
Therefore the problem is now transformed into finding these surface current
densities. When found they may be inserted into the integral of Eqs. (2.31)
and (2.32) which in turn makes it possible to calculate the EM field. There are
several different procedures available for finding the surface current densities.
One of the possible ways is shown in Ref. [4]. In this paper the equation
for the magnetic field is evaluated at two points slightly above and slightly
below the boundary surface separating the two regions. These expressions
are summed and the cross product of the normal vector corresponding to
n̂2 with the result of the added terms is calculated. This leads to a pair
of coupled matrix equations which when solved gives the surface current
densities at the points of a 2D grid. The following two sections shows a
similar approach by deriving the electric field integral equation (EFIE) and
the magnetic field integral equation (MFIE) and finding an approximation
of the surface current densities by transforming the integral equations into
two matrix equation.

2.3 Derivation of the EFIE and the MFIE

In the derivation of Section 2.2 only the case of Eq. (2.22) where the ob-
servation point was located inside the considered region was applied. Now
the opposite case is considered, namely the observation point being located
outside the considered region making the second term on the right-hand side

11



CHAPTER 2. THEORETICAL DERIVATION OF THE SIE METHOD

of Eq. (2.22) zero. This transforms equation (2.30) to the following,
∫

S

ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ × Ḡi(r, r
′)] · M(r′) d2r′

=

{

Einc
1 (r), i = 1 , r ∈ V2

0, i = 2 , r ∈ V1

.

(2.33)

Using the same surface current densities for i = 1 and i = 2 in Eq. (2.33),
forces the following equations to be satisfied,

n̂2 × H1(r) = n̂2 ×H2(r) = −n̂1 × H2(r) = −n̂1 × H1(r), (2.34)

n̂1 × E1(r) = n̂1 ×E2(r) = −n̂1 × E2(r) = −n̂1 × E1(r). (2.35)

Equations (2.34) and (2.35) correspond to the following boundary conditions
for the EM field at the boundary surface, S,

n̂i × (H1(r) − H2(r)) = 0, (2.36)

n̂i × (E1(r) − E2(r)) = 0. (2.37)

The tangential component of the EM field is continuous across the boundary
surface, S. This continuity allows taking the limit of equation (2.33) as r → S
from both regions and evaluating the tangential component of the equation.
Transforming the second term of the integral by using Eqs. (C-10) and
(B-28) gives therefore the following equation for the tangential component
of Eq. (2.33) at the surface S,

(
∫

S

ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ · Ḡi(r, r
′)] × M(r′) d2r′

)

tan

=

{

(Einc
1 (r))tan, i = 1 , r ∈ S

0, i = 2 , r ∈ S
.

(2.38)

This equation is called the EFIE. Correspondingly, for the magnetic field one
may get the following equation (from Ref. [3]),

(
∫

S

ωεi

i
Ḡi(r, r

′) · M(r′) + [∇′ · Ḡi(r, r
′)] × J(r′) d2r′

)

tan

=

{

(Hinc
1 (r))tan, i = 1 , r ∈ S

0, i = 2 , r ∈ S
,

(2.39)

which is called the MFIE. These sets of equations may be solved in terms
of the surface current densities, J and M. One available method for finding
an approximation of the surface current densities is called the Method of
Weighted Residuals (MWR) and is presented in general form in Appendix
D.

12



2.4. USING THE MWR TO APPROXIMATE THE SURFACE
CURRENT DENSITIES

2.4 Using the MWR to Approximate the Sur-

face Current Densities

As mentioned in the end of Section 2.2 the surface current densities, J and
M, in Eqs. (2.31) and (2.32) are generally unknown and thus need to be
found before calculating the integral. The previous section derived a set of
integral equations in these unknown current densities. This section presents
how the MWR can be used for approximating the current densities based on
these derived integral equations. This method transforms the problem to a
matrix equation which may be solved easily by linear algebra libraries. The
transformation for a general linear operator equation is described in detail
in Appendix D.

Let us investigate this transformation when the EFIE, Eq. (2.38) is the
equation we want to solve for the unknown functions J and M. The first
step of the MWR is to approximate the boundary surface, S, by a discrete
mesh, Sd, of flat geometrical figures. The most common shapes used in this
respect are triangles or rectangles. Also possible is using a combination of
different shapes. The next step is to approximate the unknown functions as
linear combinations of N linearly independent basis functions as shown in
Eq. (D-10),

J(r) ≈
N
∑

n=1

αnfn(r), (2.40)

M(r) ≈
N
∑

n=1

βnfn(r), (2.41)

where α and β are the constant expansion coefficients and fn(r) denote the
n’th basis function. These basis functions may be chosen in different ways,
but the most common are using so called rooftop functions. These are func-
tions having non-zero value on two discretization elements sharing one com-
mon edge, see Figs. 2.1 and 2.2. Thus the number of basis functions, N ,
equals the number of edges, Ned, in the discretization.

13



CHAPTER 2. THEORETICAL DERIVATION OF THE SIE METHOD

Fig. 2.1: Triangular Rooftop Function:

Figure 2.1: Illustration of an RWG rooftop basis function (From Ref. [5]).

Fig. 2.2: Rectangular Rooftop Function:

Figure 2.2: Illustration of a rectangular rooftop basis function (From Ref.
[5]).

The basis functions shown in Figs. 2.1 and 2.2 are defined in the following
way (from Ref. [5]),

ftn(r) =







±
Ln

2A±
(r − p±), r ∈ T±

0, otherwise
, (2.42)

frn(r) =







±
Ln

2A±
(r − p±) · û±, r ∈ P±

0, otherwise
, (2.43)

where Ln denote the length of the common edge, T +, T−, P+ and P− denote
the two triangular elements and the two rectangular elements respectively.
Furthermore, Ax, where x ∈ {+,−}, denote the area of the respective ele-
ment. The remaining symbols may be understood by inspecting Figs. 2.1
and 2.2.

The next step consists of choosing the weighting functions. There are
several possibilities, each choice giving rise to a different sub type of the
MWR. The Collocation method, the Least square method and Galerkin’s
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CURRENT DENSITIES

method are some examples. Now, the final result of the MWR is given in
Eqs. (D-18)-(D-20) in Appendix D. By comparing Eq. (2.38) with Eq.
(D-1) it is clear that the function l(x) and the operator L corresponds to the
following,

l(x) → l(r) =

{

(Einc
1 (r))tan, i = 1, r ∈ S

0, i = 2, r ∈ S
(2.44)

Lφ(x) → L1φ1(r) + L2φ2(r)

=

(
∫

S

ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ · Ḡi(r, r
′)] × M(r′) d2r′

)

tan

, (2.45)

where φ1(r) = J(r) and φ2(r) = M(r). By inserting the current density
expansions of Eqs. (2.40) and (2.41) and letting the integral run over the
discretization mesh, Sd, one obtains,

L1φ1(r) + L2φ2(r) ≈

(

∫

Sd

ωµi

i
Ḡi(r, r

′) ·
N
∑

n=1

αnfn(r′)

− [∇′ · Ḡi(r, r
′)] ×

N
∑

n=1

βnfn(r′) d2r′

)

tan

=

N
∑

n=1

(
∫

Sd

ωµi

i
Ḡi(r, r

′) · αnfn(r
′)d2r′,

−

∫

Sd

[∇′ · Ḡi(r, r
′)] × βnfn(r

′) d2r′,

)

(2.46)

Note that both sides of Eq. (D-1) now represent complex vector functions.
Therefore, the residual, R, in Eq. (D-12) represents a complex vector func-
tion, R. If the weighting functions, wm, also are vector functions Eq. (D-13)
is rewritten as,

∫

Q

wm(x) · R(x) dx = 0 = [wm,R], m ∈ [1, N ], (2.47)

which defines the inner product of two vector functions on the domain, Q,
which here represents where we want to find the solution of Eq. (2.38),
namely the discretized boundary surface, Sd. It is now possible to identify
the matrix and vector elements of the transformed problem,

Av = b. (2.48)
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CHAPTER 2. THEORETICAL DERIVATION OF THE SIE METHOD

The unknown expansion coefficients, αn and βn, make up the vector, v, in
the following way,

v = [α1, α2, ... , αN , β1, β2, ... , βN ]. (2.49)

This divides the matrix elements, Amn, in two. The first N columns are
connected to the terms in Eq. (2.46) which include αn and the last N columns
are connected to the terms of Eq. (2.46) which include βn. There are also a
total of 2N equations in the linear system, N equations for each of the two
regions. Let the first N equations represent the equations for Region 1. We
may now split the matrix, A, into four sub matrices, D1, D2, K1 and K2,
where the superscript denotes the region, and the letter indicates whether
the element are among the first or the last N columns,

A =

[

D1 −K1

D2 −K2

]

. (2.50)

The matrix elements are given by Eq. (D-19),

Di
mn = [wm, Li

1fn] =
ωµi

i

∫

Sd

d2rwm ·

∫

Sd
n

d2r′Ḡi(r, r
′) · fn(r′), (2.51)

Ki
mn = [wm, Li

2fn] =

∫

Sd

d2rwm ·

∫

Sd
n

d2r′[∇′ · Ḡi(r, r
′)] × fn(r

′). (2.52)

Note that the inner integrals are over the surface of the n’th element pair,
for example in case of a triangular mesh we have, Sd

n = T +
n ∪ T−

n . This is
sufficient because the basis function fn is zero on all other elements. If we for
instance choose Galerkin’s Method of Weighted Residuals, which is briefly
described in Appendix D.3, we get the following weighting functions, wm,

wm = fm(r), m ∈ {1, 2, .., Ned} (Galerkin’s Method). (2.53)

By inserting these weighting functions into Eqs.(2.51) and (2.52) the outer
integral is reduced to run over the m’th pair of elements, Sd

m,

Di
mn = [fm, Li

1fn] =
ωµi

i

∫

Sd
m

d2r fm(r) ·

∫

Sd
n

d2r′Ḡi(r, r
′) · fn(r

′), (2.54)

Ki
mn = [fm, Li

2fn] =

∫

Sd
m

d2r fm(r) ·

∫

Sd
n

d2r′[∇′ · Ḡi(r, r
′)] × fn(r

′), (2.55)

which corresponds to Eqs. (20) and (21) in Ref. [3]. The elements of the
vector, b, are given by Eq. (D-20), where the known function, l, is given by
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Eq. (2.44). This gives the following vector elements, bm,

bm = [l,wm] =

{

∫

Sdd
2rwm(r) · (Einc

1 (r))tan, m ∈ {1, 2, .., Ned}

0, m ∈ {Ned + 1, Ned + 2, .., 2Ned}
.

(2.56)
If again Galerkin’s Method is applied the following expression is obtained,

bm = [l, fm] =

{

∫

Sd
m
d2r fm(r) · Einc

1 (r), m ∈ {1, 2, .., Ned}

0, m ∈ {Ned + 1, Ned + 2, .., 2Ned}
,

(2.57)
where the integral is reduced to cover only the surface of the m’th element
pair for the same reason as above. Note that the tangential component is
automatically the only contribution to the integral due to the dot product
operation and the fact that the basis functions, fm(r), are parallel to the
discretized boundary surface, Sd. Equation (2.57) corresponds to Eq. (23)
in Ref. [3].

Starting out with the MFIE instead gives by an analogous derivation a
similar linear system presented in Ref. [3]. Both the EFIE and the MFIE
leads to a set of 2N equations. Therefore either one of these equations
could in principle be chosen for approximating the total of 2N unknown
variables, {αn} and {βn}. This is however not always the case. At the
resonant frequencies of the cavity formed by the boundary surface, S, the
solutions are not unique, see Ref. [5]. This problem is approached by solving
a linear combination of the EFIE and the MFIE, resulting in one unique
solution. This is however not an issue for the problems studied in this thesis
where the unique solution may be found by solving either linear system.

Note also that the Green’s function and its gradient are singular for r = r′.
This makes the double integrals of this section for overlapping integration
domains, Sd

m and Sd
n, problematic numerically. This may be solved in the

same way as described in Section 2.5, splitting the integrands into analytical
terms and smooth numerically solvable terms. Another way which is applied
in the implementation is setting all Gaussian quadrature terms where r = r′

equal to zero, thereby actually calculating the Cauchy Principal Value. How
the integrals are converted into sums using the Gaussian quadrature method
is presented in Sections 3.4 and 3.5

17



CHAPTER 2. THEORETICAL DERIVATION OF THE SIE METHOD

2.5 Observation Point Close to the Scatterer

Surface

From Eqs. (3.4)-(3.7) in Section 3.2 it is clear that each element of the
Green’s function behaves qualitatively as one over the distance between the
observation point and the reference point cubed, Ḡi(r, r

′) ∼ 1
R3 . The integral

is a surface integral, and therefore blows up when the observation point,
r, approaches the surface of the scatterer. This problem is handled in a
neat way in Ref. [5]. The basic idea is to integrate the singular terms of
the Taylor expansion of the Green’s function analytically thereby leaving a
smoothened, numerically integrable integrand for arbitrary small distances,
R. In the following equation K denotes the integrand blowing up for small R.
Furthermore, A, denotes the terms separated out which may be integrated
analytically,

∫

D

K(r, r′) d2r′ =

∫

D

K(r, r′) − A(r, r′) + A(r, r′) d2r′

=

∫

D

K(r, r′) − A(r, r′) d2r′ +

∫

D

A(r, r′) d2r′.

(2.58)

The first integral of the last line of Eq. (2.58) is then possible to solve
accurately numerically while the second integral may be solved analytically.
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Chapter 3

Numerical Implementation

In order to solve an EM scattering problem with the method derived in Sec-
tion 2 the surface current densities J and M must be calculated and inserted
into equation (2.31) and/or (2.32). In most cases the integral equations
of Section 2.3 need to be solved numerically, but in some special cases the
surface current densities may be approximated without having to solve the
integral equations. This section deals specifically with two slightly different
case studies. The first case study belongs to the category of problems where
the surface current densities may be approximated in a simple way. The
second case study is identical to the first except for a crucial dimensional
assumption which is left out. This makes the problem more general and
the surface current densities must in this case be estimated numerically. A
numerical solution of the first case study was first implemented and tested
before moving on to the second. These implementations are presented in this
section along with general considerations which are important regarding the
numerical implementation.

3.1 The Case Studies

The case studies are both examples of the EM scattering problem shown in
Fig. 1.1. They are only slightly different from each other, but the difference
is crucial for the numerical implementation of the solution.

Case study one was chosen to have the following specifications:

1. Region 1 contains vacuum, ε1 = ε0 and µ1 = µ0.

2. Region 2, containing the scatterer, is a perfect conductor having spher-
ical shape with radius, ρ.
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3. The incoming EM wave is a plane wave with wavelength, λ � ρ.

Case study two was chosen to have the following specifications:

1. Region 1 contains vacuum, ε1 = ε0 and µ1 = µ0.

2. Region 2, containing the scatterer, is a perfect conductor having spher-
ical shape with radius, ρ.

3. The incoming EM wave is a plane wave with wavelength, λ.

The constants, ε0 and µ0, are the permittivity and permeability of vacuum,
respectively. In both cases the chosen task was to calculate the resulting
total electric field amplitude, |Ei(r)|, for a set of observation points, r ∈ O.

The first problem is more precisely identified as a special case of the sec-
ond problem, with the restriction of the wavelength being much smaller than
the radius of the spherical scatterer. This allows a simple ”short cut”, which
is described below, for estimating the surface current densities. Therefore
the first problem serves excellently as a way of testing the implementation
of the discretization and numerical integration parts of the program before
implementing the solution for the second problem involving setting up and
solving a linear system. The reason for separating them as two different
problems is to make it clear that they demand separate solution methods.
However, the main structure of the program implementations is common.
This is presented in more detail in Section 3.3.

As mentioned in the introduction the EM scattering problem involving a
spherical scatterer is useful for testing the SIE method for several reasons.
First, the solution must have certain symmetries which may give a quick
indication of the correctness of the results. The problem even has an an-
alytical solution which could further help in the assessment of the results.
The Rayleigh theory was applied in this respect. Furthermore, there are eas-
ily available discretization libraries online for creating the discretization of a
sphere.

The above specifications have some immediate implications. First, the
incoming EM wave is not attenuated during its travel through region 1.
Furthermore, the magnetic surface current density, M, is zero because of the
boundary condition given by Eq. (2.35) and the fact that the electric field
inside a perfect conductor is zero. Therefore, we already know the solution
in region 2.

Thus far the implications are the same for both problems. Specification
3 however introduces an important difference. In the case of problem two
there are no restrictions in the wavelength of the incoming plane wave. The
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solution therefore must include an implementation of the MWR presented in
Section 2.4. For case study one however, specification 3 implies that for the
incoming EM wave the boundary surface ”looks” approximately flat because
the wavelength is much smaller than the scatterer radius. One may when
the wavelength of the incoming EM wave is sufficiently small use Kirchhoff’s
Approximation (KA), also known as the tangent-plane method. This is the
above mentioned ”short cut” for estimating the surface current density, J, of
case study one. The approximation is given by the following equations,

E(r) ≈ 2Einc(r) , r ∈ S, (3.1)

H(r) ≈ 2Hinc(r) , r ∈ S, (3.2)

from Eq. 3 in Ref. [6]. The total EM field at the surface of the scatterer is
thus approximated as twice the size of the incoming field. In our case only
Eq. (3.2) is regarded valid because of the perfectly conducting scatterer and
is used directly to find J(r) by its definition,

J(r) = n̂2 × Hi(r),

≈ n̂2 × 2Hinc(r) , r ∈ Sd. (3.3)

3.2 The Green’s Function

Before being able to use the Green’s function we must calculate the double
derivate represented by the two ∇ operators in Eq. (C-7). This gives the
following expression for the elements of the Green’s tensor,

[Ḡi(r, r
′)]lm = Gi(r, r

′)[δlm + Z(l, m, R, ki)], (3.4)

where l and m are the index of the row and column respectively of the element
considered in the matrix representation of the tensor (see appendix B.1 for
details). The distance, |r − r′|, is denoted by R and Gi(r, r

′) is the scalar
Green’s function given by,

Gi(r, r
′) =

exp(ikiR)

4πR
. (3.5)

Moreover, the factor, Z(l, m, r, r′, ki), is given by the following expression,

Z(l, m, r, r′, ki) =















R

k2
i

(xl − x′
l)(xm − x′

m)α(R, ki), l 6= m

R

k2
i

[

(xl − x′
l)

2α(R, ki) +
1

R2
(ik −

1

R
)

]

, l = m
,

(3.6)
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where xl and x′
l is the l’th component of the observation point vector, r, and

the source point vector, r′, respectively. Furthermore, the factor, α(R, ki), is
given by,

α(R, ki) =
3

R5
−

3iki

R4
−

k2
i

R3
. (3.7)

3.3 Numerical Solution of the Case Studies

This section presents the structure of the program implemented to solve the
case studies of Section 3.1 and gives, together with Sections 3.4-3.6, a detailed
presentation of how the theory of Section 2 is converted into programmable
algorithms.

The main structure of the implemented numerical solution is shown in
Fig. 3.1. The first module, Discretization, performs the actual discretiza-
tion of the scattering structure and converts the data to a custom made
data structure. The choices made in this part of the program are the mesh
fineness of the discrete structure and which discretization algorithm to use.
More details on this module is presented in Section 3.6.1.

Thus far there are no differences in the two methods (except possibly the
chosen mesh fineness). But at this point the program flow is separated in
two distinct routes dependent on whether or not the KA is valid. If the KA
is valid the rightmost route of Fig. 3.1 is executed. This approximates the
current density, J, very quickly by the KA formula of Eq. (3.3). If however
the KA is not valid the program must follow the more time consuming left-
most route of Fig. 3.1. This involves estimating the expansion coefficients of
Eq. (2.40) by solving the linear system given by Eq. (2.48).

The remaining steps of the program are equal for the two different prob-
lems. When the surface current density, J, is estimated it may be inserted
into the integral of Eq. (2.31), for the case of i = 1, which then must be
calculated numerically. The electric field amplitude is then calculated by
taking the absolute value of the resulting complex vector E1(r) in all obser-
vation points, r. All the numerical calculation up to this point is performed
by the program written in the FORTRAN language. The program outputs
the electric field amplitude to a file which is imported to Matlab and used
for making a contour plot.
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Fig. 3.1: Flow diagram of the numerical implementation:

Figure 3.1: Flow diagram showing the two possible program routes dependent
on whether or not the KA is valid.

3.4 Numerical Solution of Case Study One

When the surface current densities, J and M are identified they are inserted
into Eq. (2.31) and/or (2.32). The elements of the Green’s function given by
Eqs. (3.4)-(3.7) are also inserted into the integral equation(s) which are then
solved numerically. In this thesis Eq. (2.31) is applied for the implemen-
tation. There are many methods for performing the numerical integration.
Irrespective of the method the first step is to chop up the integral of Eq.(2.31)
(alternatively the integral of Eq. (2.32)) into N pieces in the following way,

I(r) =

∫

S

ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ · Ḡi(r, r
′)] × M(r′) d2r′

=
N
∑

n=1

∫

Sn

ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ · Ḡi(r, r
′)] × M(r′) d2r′,

(3.8)

where Sn is the area of the curved surface of element n on the boundary
surface S. So far the expression is exact. No approximations have been
done. The integral is only split into N distinct parts. This is done by picking
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out a set of points on the surface, S, and connecting them by lines on the
surface giving rise to Nel = N elements of different geometrical shapes with
arbitrary numbers of corners and edges. It is important however (for this
particular integration method) to make sure all corners of a given element is
located on a common plane. If all elements have only three corners this is
trivially satisfied. The point is that the first approximation is to integrate
over the surface consisting of the plane connecting the corners. This surface
is bounded by the edges of the element. This new element surface is denoted
by Tn. The expression of Eq. (3.8) is therefore transformed to,

I(r) ≈
∑

n

∫

Tn

ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ · Ḡi(r, r
′)] × M(r′) d2r′. (3.9)

The elements are assumed to be so small that the integrand is changing
slowly on the surface of each element. Gaussian quadrature integration is a
method of approximating a definite integral by a weighted sum of function
values evaluated inside the integration domain. The method is exact for
polynomial integrands of up to a limiting degree dependent on the number
of evaluation points. Appendix E introduces Gaussian quadrature integration
and presents the formulas chosen for the implementation.

The basic rule is the better estimate of the shape of the integrand func-
tion wanted, the more evaluation points and computational time is needed.
The accuracy must be weighed against the computational time at hand. Also
the complexity of the implementation is a factor. Furthermore, the accuracy
can also be increased by increasing the number of elements in the discretiza-
tion. Therefore, a simple solution, which also may give high accuracy, is to
approximate the integral by the simplest shape possible, namely a constant.
This require only one evaluation of the integrand per element. The integral
is when applying this approximation converted to the following sum,

I(r) ≈
∑

n

[ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ · Ḡi(r, r
′)] ×M(r′)

]
∣

∣

∣

r′=rn

∫

Tn

d2r

=
∑

n

[ωµi

i
Ḡi(r, r

′) · J(r′) − [∇′ · Ḡi(r, r
′)] × M(r′)

]
∣

∣

∣

r′=rn

A(Tn),

(3.10)

where A(Tn) is the area of element n and rn is an arbitrary point inside
element n, often chosen to be the centroid of the geometrical figure.

Generally the derivation ∇′ · Ḡi(r, r
′) needs to be performed analytically

before the implementation. However, in the case studies, M = 0, so the
following equation is ready to be implemented,

IS(r) ≈
ωµi

i

∑

n

Ḡi(r, rn) · J(rn)A(Tn), (3.11)
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where IS denote the special version of the integral where M = 0, valid in both
case studies. The Green’s function, Ḡi(r, rn), is given by Eqs. (3.4)-(3.7).

Another slightly more complex alternative is choosing the 3-point Gaus-
sian quadrature integration formula from Ref. [7] which also is presented in
Appendix E. This formula introduces a new sum over the evaluation points
resulting in the following expression for the integral, IS(r),

IS(r) ≈
ωµi

i

∑

n

A(Tn)
1

3

3
∑

p=1

Ḡi(r, rn,p) · J(rn,p), (3.12)

where rn,p denote the p’th evaluation point of the n’th discretization element.
The advantage of this method compared to the 1-point formula is the reduced
number of elements required to get a good integral approximation. This is
especially useful when the memory demand increases rapidly with the number
of elements. This is however more relevant in the second case study and will
be further discussed in Section 3.5.

By taking the vector cross product of the normal vector, n̂2, with Eq.
(3.2) from the left one obtains the following surface current density, J,

J(rn,p) = 2Jinc(rn,p), rn,p ∈ {cn,p}, (3.13)

where {cn,p} represents the set of all evaluation points of the discretization.
Now, to sum up, the solution of the first case study for the electric field, E1,
in region 1 is given by the following expression,

E1(rj) = Einc(rj) − IS(rj), rj ∈ V1 (3.14)

where rj is an observation point in region 1, Einc(rj) denote the known in-
coming electric field at that point and the integral, IS, is given by Eqs. (3.11)
or (3.12), and (3.13).

3.5 Numerical Solution of Case Study Two

The wavelength of the incoming plane wave is now without restrictions. If the
wavelength, λ, is small compared with the radius, ρ, of the sphere the KA is
applicable and the solution given by Eq. (3.14) may be implemented directly.
However, this is generally not the case and the surface current densities, J

and M, must be estimated. This is done by calculating the matrix elements
of A and b in Eq. (2.48) and solving for the vector, v.

The discretization elements are for simplicity chosen as triangles and the
Rao-Wilton-Glisson (RWG) functions given by Eq. (2.42) are chosen as the
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set of basis functions. Note that in the case study the matrices, Ki, of Eq.
(2.50) are superfluous because M = 0 and thus all βn of Eq. (2.49) are known
to be zero. Thus, the system has got only N unknown variables, α1, α2, .., αN,
where N = Ned is the number of triangle edges in the discretization. There-
fore only N equations are needed for the linear system. The matrix, A, may
as a consequence be set equal to the matrix, D1, given by Eq. (2.54) and the
right-hand side of the linear system is given by the first Ned elements of Eq.
(2.57). This gives the following linear system,

D1v = b, (3.15)

consisting of Ned equations, one for each unknown variable, αn. Thus, in
order to estimate the current density, the elements D1

mn and bm must be
calculated by respectively the double integral of Eq. (2.54) and the single
integral of Eq. (2.57). These integrals may be calculated numerically by
either of the two methods applied in the previous section, namely the 1-
point and the 3-point Gaussian quadrature formula. The former method
approximates the elements of the matrix, D1, in the following way,

D1
mn =

ωµ1

i

∫

Sd
m

d2r fm(r) ·

∫

Sd
n

d2r′Ḡ1(r, r
′) · fn(r′)

≈
ωµ1

i

2
∑

t=1

A(T t
m)fm(rt

m) ·
2
∑

l=1

A(T l
n)Ḡ1(r

t
m, rl

n) · fn(rl
n), (3.16)

where A(x) denote the area of the triangle x. For each matrix element, D1
mn,

one must evaluate two basis functions, each function must be evaluated in
two different points, rj

i , which represents the centroid of the j’th element
of the i’th basis function. Figure 3.2 shows a section of the discretization
including a pair of non-overlapping basis functions, fm and fn together with
all the the four evaluation points necessary to calculate the matrix element,
D1

mn.
Instead applying the 3-point formula results in the following approxima-

tion,

D1
mn =

ωµ1

i

∫

Sd
m

d2r fm(r) ·

∫

Sd
n

d2r′Ḡ1(r, r
′) · fn(r′)

≈
ωµ1

i

2
∑

t=1

A(T t
m)

1

3

3
∑

p=1

fm(rt
m,p) (3.17)

·
2
∑

l=1

A(T l
n)

1

3

3
∑

q=1

Ḡ1(r
t
m,p, r

l
n,q) · fn(r

l
n,q),
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Fig. 3.2: A section of the discretization:

Figure 3.2: Illustration of the terms of Eq. (3.16). The basis function, fm, is
nonzero on the triangles T 1

m and T 2
m, correspondingly the basis function, fn

is nonzero on the triangles T 1
n and T 2

n . The points denoted by, ri
j, represent

respectively the centroid of triangle i of basis function j.

where rt
m,p denotes the p’th evaluation point of element t in the m’th dis-

cretization pair, where the m’th basis function is non-zero. The factor, 1
3
,

comes from the weighting constants in the Gaussian quadrature formula,
which for all three terms in this formula equals 1

3
. The situation is only

different from Fig. 3.2 in that each centroid point is substituted by three
evaluation points.

This 3-point formula is a very useful alternative to the 1-point formula
for this particular double integral. The reason is mainly connected to the
size of the resulting matrix, D1. The number of matrix elements increases
with the number of discretization edges, Ned, as N2

ed. Even though the time
to calculate each matrix element increases, the number of required integrals
to calculate and most importantly the memory need decrease significantly.
This is important because the single most limiting factor in this case study
regarding the tools for solving the problem is probably the large amount of
memory needed, especially when the wavelength becomes small compared to
the radius. Also noting the fact that the algorithm solving the linear system
needs a number of operations in the order of N3

ed underlines the fact that
there is a lot to gain by using for instance the 3-point formula instead of the
simpler 1-point formula.

The elements on the right-hand side of Eq. (3.15) may be calculated
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using the same integration methods as above. The 1-point formula gives,

bm =

∫

Sd
m

d2r fm(r) · Einc
1 (r)

≈
2
∑

t=1

A(T t
m)fm(rt

m) · Einc
1 (rt

m),

(3.18)

where each element, bm, demands integrating over only one pair of triangles,
T 1

m and T 2
m. This integration method involves evaluating the integrand in

two points for each basis function, fm. The chosen points are the triangle
centroids, r1

m and r2
m. Using instead the 3-point formula gives,

bm =

∫

Sd
m

d2r fm(r) · Einc
1 (r)

≈
2
∑

t=1

A(T t
m)

1

3

3
∑

p=1

fm(rt
m,p) · E

inc
1 (rt

m,p),

(3.19)

where rt
m,p again refers to the p’th evaluation point of element t in the m’th

discretization pair.
After having found these matrix elements the linear system of Eq. (3.15)

must be solved. This is done by using the LAPACK library, see Ref. [8].
The rest of the solution is identical to the first case study solution. When
the current density, J is estimated it may be inserted into the integral of Eq.
(3.14) which now may be solved numerically giving the electric field, E1(r).

3.6 Implementation

A program for calculating the EM field of the scattering problem is imple-
mented in FORTRAN code and shown in appendix G. The implementation
is divided into the following parts:

1. The discretization algorithm creating Nel discrete elements based on
the boundary surface, S. The open source library stripack and a recur-
sive algorithm implemented from scratch were used to create triangular
discretizations, see Ref. [9] and [10] for details.

2. The FORTRAN module disc mod.f90 containing routines related to
the discretization algorithm, e.g. routines for running a discretization
algorithm and then transforming the output into the custom made data
structure. The module is included in appendix G.1.
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3. The FORTRAN module calc mod omp.f90 containing routines related
to the calculation part of the program. The module is included in
appendix G.2.

4. The FORTRAN file J calc.f90 containing the first part of the main
program. It includes setting the parameters of the problem and the
calculation of the surface current density in all discretization elements.
The program writes the resulting surface current density to the file
J data. The program code is included in appendix G.3.

5. The FORTRAN file E calc omp.f90 containing the second part of the
main program. The program gets the current density data from the
file J data and uses it to calculate the electric field amplitude by Eq.
(3.14) at the observation points set in the beginning of the file. One
may choose between calculating the total and the scattered electric field
amplitude. The program code is included in appendix G.4.

6. The shell script run prog.sh containing the commands for compiling
the above mentioned group of files. The script is included in appendix
G.5.

The most computationally demanding parts of the program was parallelized
by using the OPENMP library, see Ref. [11]. More specifically this includes
the calculation of the matrix elements of Eq. (3.12) in the file E calc omp.f90

and Eqs. (3.17) and (3.19) in the file calc mod omp.f90, all equations apply-
ing the 3-point Gaussian quadrature formula.

3.6.1 Discretization

There are many discretization algorithms available as open source code on
the internet. The output data of such algorithms may come in many different
variations concerning number of discretization elements, corners per element
etc. Also when designing a program from scratch decisions of this kind
may be changed during the implementation process. Therefore it may be
very practical to implement a custom made data structure being as general
as possible. In this way the only modification to the code needed when
using a new discretization algorithm is the interface which fills the custom
made data structure with the output of the discretization algorithm. In
addition a custom data structure may always be modified to be compatible
with new features wanted in the program which may appear later in the
process. The custom made data structure created for the purpose of solving
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the case studies is presented in Table 3.1 and it is implemented in the file
disc mod.f90 given in appendix G.1.

Subvariable
Derived type Type Name Dimension [(dim1,dim2,...)]

Point real point (3)
Element integer nr of corners (1)

integer corners (nr of corners)
Pair integer corners (2)

integer elements (2)
Structure Element elements (:)

Pair neighbors (:)
Point points (:)
Point midpoints (:)
Point quadpoints (:)

Table 3.1: Table showing the data structure used to store the discretization.
The main derived type is Structure containing three arrays of the type Point,
one array of the type Element and one array of the type Pair.

As shown by Table 3.1 the whole discretization is stored in a derived type
called Structure. This includes five arrays, three of which contain variables
of the derived type Point, and one array for each of the types Element and
Pair. A Point simply represents a point in 3D space, an Element represents
an element of the discretization and a Pair represents a pair of elements
sharing one edge. The points array, the midpoints array and the quadpoints

array contains all discretization corner points, all element centroids and all
Gaussian quadrature evaluation points respectively. The elements array con-
tain all discretization elements. Each element is identified by its number of
corners, nr of corners, and its corner points, corners, containing the indexes
of the corner points stored in the array points in the Structure type. The
neighbours array contain all element pairs sharing one edge. A pair is iden-
tified by the two element indexes, elements, referring to the array elements

of the Structure type and a pair of point indexes, corners, referring to the
points array of the Structure type.

The disc mod module furthermore contains the following routines/functions:

- stripack convert, generating a discretization using the stripack library
and converting the output into the custom made data structure.

- recursive triangulation, generating a discretization using the recursive
method presented in Appendix F.
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- recursive split, splits each element into four smaller triangles.

- point in list, checks whether a list of integers contains a specific number.

- area, calculating the area of a single element of the discretization.

- find midpoints, finding the centroids of all elements in the discretiza-
tion.

- find neighbours, finding all pairs of elements in the discretization shar-
ing one edge.

- common 2, checking whether two arrays containing integers share two
common elements.

- normalize, normalizes a real vector.

- area dist, calculates the distribution of areas for a given discretization.

When implementing the discretization for the surface of the scatterer in the
case studies the open source library, STRIPACK, from Ref. [9] and the
recursive algorithm from Ref. [10], was applied. The STRIPACK library
includes the routine trplot for displaying the discretized sphere. The result
when the number of discretization points was set to 1000 is shown in Fig.
3.3 below. The source code in the file stripack prb.f90, from Ref. [9], was
used for the specific purpose of generating the figure. Figure 3.4 from Ref.
[10] shows the corresponding result for the recursive discretization algorithm
when the number of points is set to 1026. A clear difference is lower spread
in shape and area of the triangles in the recursive discretization.

Discretization mesh fineness

An important consideration when creating the discretization is the total num-
ber of elements or equivalently the total number of discretization points. Too
many points will result in too high computational time without a significant
increase in accuracy, but too few points will give poor accuracy or ultimately
a completely wrong solution. In the first case study the wavelength, λ, of
the incoming wave must be small compared to the radius of the sphere in
order for the KA to be valid. At the same time the wavelength must be large
compared to the size of the elements in order to keep the approximation of
constant integrand made in in Eq. (3.10) valid. Both requirements pushes
the maximum size of the elements down and thus the minimum number of
elements up. The following analysis gives a rough estimate of the minimum
required number of elements in order for the computation to be accurate.
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Fig. 3.3: Discretized Sphere:

Figure 3.3: The result of discretizing a sphere using the Delaunay triangu-
lation algorithm of the STRIPACK library from Ref. [9]. The number of
discretization points is set to 1000.

Fig. 3.4: Discretized Sphere:

Figure 3.4: The result of discretizing a sphere using the recursive discretiza-
tion algorithm. The source of the figure is Ref. [10]. The number of dis-
cretization points is 1026.

When the number of elements, Nel, is large the following approximation
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is valid for the area, A∆, of a triangular element,

A∆ ≈
4πρ2

Nel

, (3.20)

where ρ is the radius of the sphere. The dominant factor regarding how
fast the integrands of Eqs. (3.11), (3.12) and (3.16)-(3.19) are oscillating
is the wavelength, λ, of the incoming EM wave. Let L denote the average
length of an edge of a triangular element in the discretization. If the number
of elements is large the area, A∆, of a triangle is approximately L2/2 on
average. We may for simplicity introduce the radius-to-wavelength ratio, a,
and lambda-to-edge length ratio, b,

a =
ρ

λ
, (3.21)

b =
λ

L
. (3.22)

Inserting the above relations into Eq.(3.20) gives the following approxima-
tion,

A∆ ≈
4π(aλ)2

Nel

≈
L2

2
=

λ2

2b2
. (3.23)

Simplifying Eq. (3.23) and accounting for nep ≥ 1 uniformly distributed
evaluation points per element results in the following estimate for the number
of elements given by the ratios, a and b,

Nel ≈
8

nep

π(ab)2. (3.24)

Kirchhoff’s approximation and the integration method introduces minimum
thresholds for a and b respectively in order to be valid; a ≥ amin and b ≥ bmin.
This results in the following rough threshold approximation for the minimum
required number of elements, Nel,

Nel &
8

nep

π(aminbmin)
2. (3.25)

It is normal to use the values amin = 10 and bmin = 8 respectively for the
KA and the 1-point Gaussian quadrature formula. If the 3-point Gaussian
quadrature formula is applied instead the number of elements, Nel, may as-
sumingly be reduced by a factor of nep = 3 giving the equivalent accuracy.
When applying the MWR there is no longer a minimum limit concerning
the ratio, a. It is important however to keep in mind that a is a problem
parameter, while b is a solution parameter. Thus for a given problem only b
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may be adjusted to meet the requirements concerning accuracy. Also impor-
tant to underline is the assumption of large Nel. If the ratio, a, is very small
giving too few elements, Nel, Eq. (3.25) obviously breaks down because the
discretization mesh does no longer look like a sphere.

3.6.2 Calculation Module, Main Program and Shell

Script

Some functions useful for the calculation part of the program is collected in
the module calculation mod omp.f90. It includes the following routines/functions:

- dot prod c, calculating the dot product of two complex vectors.

- dot prod r, calculating the dot product of two real vectors.

- G, calculating the value of the Green’s function.

- fn, calculating the function value of the n’th RWG basis function at a
given point.

- norm vec c, calculating the complex normal vector (zero imaginary
part) of a discretization element pointing outwards from the origin.

- cross c, calculating the cross product of two complex vectors.

- cross r, calculating the cross product of two real vectors.

- J gen, calculating the current densities by the MWR using 1-point
Gaussian quadrature integration.

- J gen quad, calculating the current densities by the MWR using paral-
lelized 3-point Gaussian quadrature integration.

The main program is split in two and contained in the files J calc.f90 and
E calc.f90. The former file is where to control most of the parameters of the
problem and the solution. This is the part of the program which finds an
approximation for the current density on the discretized surface and prints
the data to file. Furthermore the J calc.f90 file contains code for printing
information about the generated discretization to file or screen (controlled
by the shell script). The following list shows all the parameters which is set
in the file J calc.f90 :

- n, the number of discretization points.
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- disc number, the discretization method used. The possible values are
1 and 2 representing respectively the Delaunay discretization method
and the recursive discretization method.

- KA, the solution method applied. The possible values are 1 and 0
referring respectively to the KA and the MWR.

- quad order, the order of the Gaussian quadrature method. The possible
values are 1 and 3 representing respectively the 1-point and the 3-point
quadrature formula.

- lambda, the wavelength of the incoming EM wave units of R. The radius
of the sphere, ρ, is equal to 1.

- E inc hat, the polarization direction of the incoming EM wave.

- k hat, the traveling direction of the incoming EM wave.

The file E calc.f90 is where the set of observation points, which is stored in
the array r list, are chosen and the calculation of the resulting electric field is
performed. Also whether the total or the scattered field should be calculated
is controlled in this part of the program. This separation of the main program
is practical because finding the electric field in two or more different sets of
observation points but with the same set of problem parameters only demand
finding the current density once. Thus when the first part is run once the
current density data written to file may be used by the second program to
find the solution in different sets of observation points without needing to
find the current densities for every new set of observation points.

All the source files are wrapped together by the shell script run prog.sh

which prints the output of the first main program to the file output J (or
possibly to the screen). Parts of this output file is shown in appendix G.6
for one specific set of problem and solution parameters.

3.7 Testing the Implementation

It is highly recommended to test each new component of the program imme-
diately after it is written in order to minimize the amount of time spent on
debugging. Before proceeding to the next step of solving a more general case
of the EM scattering problem, where the KA is not valid, it was important
to make sure that the code produced satisfactory results for the simpler case
where the KA was valid. This section covers some of the most important
testing procedures performed and presents the most important test results.
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3.7.1 Testing the Discretization

The routines written in connection with the discretization is collected in the
disc mod module. Two discretization algorithms are used by the program.
One is created by a library imported from the external source given in Ref.
[9] as described in Section 3.6.1. The source was evaluated as reliable and
nothing indicated that the library contained errors. It was however checked
that the output of the program was correct. The stripack library includes
several useful routines in this respect. The routine trlprt prints a list of the
triangles with coordinates of the corners of each triangle in the discretization
and trplot makes a PostScript image of the discretized sphere. Therefore by
varying the number of points in the discretization and using these routines to
investigate the output one may check if the program creates a discretization
satisfying the needs.

Another testing procedure for the discretization part of the program is
checking the correctness of the conversion of the output data from the stri-
pack library routines into the custom made data structure. A series of write

and print statements was written in the first part of the main program (see
appendix G.3) in order to check if the conversion was done correctly. These
routines prints the most vital information regarding the discretization and is
also excellent for testing the recursive discretization, which is implemented
from scratch, filling the custom made data structure directly.

3.7.2 Testing the Calculation Module Subroutines

Most of the code contained in the calc mod omp module (see appendix G.2)
are simple functions trivially tested by creating a series of test cases, for ex-
ample the dot and cross product functions. Two functions demanding some-
what more sophisticated testing was the area function and the norm vec c

function. The first one was tested by summing the areas of all elements. The
fact that this sum converged towards the theoretical limit, Asphere = 4πρ2, for
increasing number of discretization points strongly indicated that the func-
tion was correct. The latter was tested by comparing with the centroids of
the triangles which shall be close to the normal vectors when the elements
are small and the scattering object is a unit sphere. The tests showed good
correspondence.

More complex was testing the implementation of the Green’s function
contained in the function called G. This function was taken through a thor-
ough testing procedure in order to be as certain as possible of its correctness.
First a script was written using an oscillating electric dipole in vacuum as
testing case. The geometry is shown in Fig. 3.5. The dipole moment, p, is
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located at the origin and oriented along the z-axis.

Fig. 3.5: Coordinate system for a single oscillating dipole:

Figure 3.5: Geometry of the oscillating dipole radiation testing case. Spher-
ical coordinates are used with the oscillating dipole located at r = 0 and
aligned in the positive z-direction. (From Ref. [12]).

Now, the resulting electric field components are given by the following equa-
tions from Ref. [12],

Er =
|p| cos θ

4πε

exp(ikr)

r
k2

[

2

k2r2
−

2i

kr

]

, (3.26)

Eθ =
|p| sin θ

4πε

exp(ikr)

r
k2

[

1

k2r2
−

i

kr
− 1

]

, (3.27)

Eφ =0, (3.28)

where p, k and ε denote respectively the dipole moment of the oscillating
dipole, the wavenumber for EM waves in the medium and the permittivity
of the medium. Furthermore, r, θ and φ denote the spherical coordinates of
the observation point as shown in Fig. 3.5. The electric field is also given in
the Green’s function formalism by the following equation from Ref. [12],

E(r) = ω2µḠ(r, r′) · p, (3.29)

where ω, µ and Ḡ(r, r′) denote respectively the dipole oscillation frequency,
the permeability of the medium and the Green’s tensor. It is clear that each
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column of the Green’s tensor specifies the electric field of a dipole oriented
along each of the three axis. Therefore when the dipole is oriented along
the z-axis only the elements of the third column contributes to the resulting
electric field and are thus the only elements which may be tested with this
geometry.

In order to test the elements in the first or second columns the dipole
must be aligned respectively with the x-axis and the y-axis. This have the
consequence that Eqs. (3.26)-(3.28) must be adapted because of the changed
direction of the dipole moment, p. This is simply a matter of transformation
of the coordinates. This is simplest accomplished through Cartesian coordi-
nates. For instance, say we want to calculate the electric field in the position
r = ax̂, where a is an arbitrary real number, and the dipole moment is ori-
ented in the x-direction, p = px̂. The solution to this problem is identical
to the solution of the problem of finding the electric field at the position,
r = aẑ, when the dipole orientation is along the z-axis, p = pẑ. Now, the so-
lution to this problem is given by Eqs. (3.26)-(3.28). Generally if Ez(x, y, z)
is the electric field as a function of the Cartesian coordinates when the dipole
moment is aligned with the z-axis, the transformation formulas are given by
the following equations,

Ex(x, y, z) =Ez(−z, y, x) (3.30)

Ey(x, y, z) =Ez(x,−z, y) (3.31)

where Ei(x, y, z) denotes the electric field in position (x,y,z) when the dipole
is aligned with the i-axis and i ∈ {x, y, z}.

Now, the main point is that if the two ways of calculating the electric
field gives comparable results for a range of different observation points us-
ing all three alignment setups for the dipole moment it strongly indicates
that Eqs. (3.4)-(3.7) and their numerical implementation through the func-
tion G in calc mod omp is correct. The following is an example output from
a test where the observation point was set to r=(1.0,2.0,3.0) and the dipole
moment, p, points in the z-direction. The lines 29-34 shows very good corre-
spondence between the Cartesian components of the electric field calculated
by the two different methods. This result was representative for all the tests
done with this method.

1 dipole direction: 0.0000000 0.0000000 1.0000000

2 phi: 1.1071488 theta: 0.64052230 r: 3.7416575

3 obs: 0.99999988 2.0000000 3.0000002

4

5 Greens Dyad:

6 i j Re(G_ij) Im(G_ij)

7 1 1 (-1.27916243E-02,-1.41639151E-02)
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8 1 2 ( 5.94545971E-04, 3.35851870E-03)

9 1 3 ( 8.91818898E-04, 5.03777806E-03)

10 2 1 ( 5.94545971E-04, 3.35851870E-03)

11 2 2 (-1.18998038E-02,-9.12613608E-03)

12 2 3 ( 1.78363826E-03, 1.00755580E-02)

13 3 1 ( 8.91818898E-04, 5.03777806E-03)

14 3 2 ( 1.78363826E-03, 1.00755580E-02)

15 3 3 (-1.04134390E-02,-7.29835127E-04)

16

17 E_r (-1.61900710E+09, 1.39038438E+09)

18 E_t ( 1.76932070E+09, 2.14163533E+09)

19

20 E_r2 (-1.61900698E+09, 1.39038362E+09)

21 E_t2 ( 1.76932006E+09, 2.14163520E+09)

22 E_p2 ( 48.000000 , 192.00000 )

23

24 Comparing the absolute values:

25 E_abs1: 3.50306304E+09

26 E_abs2: 3.50306227E+09

27

28 Comparing the complex cartesian field components:

29 E_x1 ( 2.01724992E+08, 1.13951898E+09)

30 E_x2 ( 2.01724688E+08, 1.13951859E+09)

31 E_y1 ( 4.03450048E+08, 2.27903795E+09)

32 E_y2 ( 4.03449504E+08, 2.27903770E+09)

33 E_z1 (-2.35546496E+09,-1.65084288E+08)

34 E_z2 (-2.35546445E+09,-1.65084832E+08)

Another test regarding the implementation of the Green’s function which was
performed was the attempt to reproduce Fig. 8.3 in Chapter 8.3 of Ref. [12]
by the Green’s function formalism of Eq. (3.29). The results are presented in
Fig. 3.6. It shows good correspondence between the two methods and further
supports the claim of a correct implementation of the Green’s function.

3.7.3 Testing the Implementation of the MWR

Even though the main motivation for the testing procedures was to make sure
that the program parts involved in solving the first case study was working
the tests regarding the routines written for the MWR implementation is
included in this section for completeness. The main components of the MWR
are the function, fn, calculating the value of a basis function at a specific point
and the function, J gen, calculating the integrals of Eqs. (3.16) and (3.18),
solving the linear system of Eq. (3.15) and calculating the current density
by inserting the result into Eq. (2.40). The former function may be quickly
tested by checking if the function output is normal to the normal vector of
the element. A more conclusive test is to choose a set of random pair of
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Fig. 3.6: Asymptotic behaviour of the electric field by the two methods:

Figure 3.6: Comparison of the asymptotic bahavior of the transverse and
longitudinal electric field components calculated using Eqs. (3.26) and (3.27)
(left column) and by the Green’s function formalism of Eq. (3.29) (right
column). As can be seen from the analytic formulas the asymptotes are
(kr)−1 and (kr)−3 for the transverse field and (kr)−2 and (kr)−3 for the
longitudinal field. This is a reproduction of Fig. 8.3 in Ref. [12] for both
methods.

elements and go through the result after each line of code to check if the
algorithm behaves correctly. A similar approach is possible for the double
integral algorithm of the J gen and J gen quad functions, namely picking out
random elements of the matrix and checking the calculation line by line. The
linear system solver from the LAPACK library may be tested by calculating
the average absolute difference,

D =
1

Ned

Ned
∑

m=1

∣

∣

∣

∑Ned

n=1 D1
mnαn − bm

∣

∣

∣

|bm|
. (3.32)

The result was typically in the order of magnitude, D ∼ 10−5 − 10−6, which
is around the expected with the applied single precision and clearly indicates
a correct solution of the linear system.
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3.7.4 Testing the Scattering Calculation

The last part is the main program split between the J calc.f90 file and the
E calc omp file. The vital components to check in this part of the code are
the constants used, the observation point list and the integration algorithm.
The first two is simply tested by printing out the data being used by the
program. The latter may first be tested by simple test cases, for example
setting all current densities to zero and checking if the resulting electric field
in all observation points is equal to the incoming field. A more rigorous line
by line approach as described above is a natural follow up.

3.7.5 Testing the Complete Program and the Conclu-

sion to the Tests

After testing all the different parts of the code separately it is possible to
start testing the complete program as a whole. This is done by selecting the
parameters involved and choosing a set of observation points before running
the full program. The results of these simulations are presented and discussed
in Section 4 applying the testing criteria presented in Section 3.8. One of
the main motivations for the testing procedures presented in the current
section was to assure that the program parts involved in solving the first case
study was working well before implementing the solution of the more complex
second case study. The test results and the final electric field amplitude plots
combined led to the conclusion that the program was working correctly and
was ready to be extended to solving the more general second case study.

3.8 Evaluating the Final Results

This section presents a set of criteria which may be used to evaluate the
correctness of the final results for the EM field. One of the reasons for
choosing a sphere as the shape of the scatterer was because theoretical results
are available for the scattering problem with a scatterer of this shape. It
however proved to be difficult to find theoretical results directly comparable
with the output of the program written. Therefore other testing criteria with
the ability to shed light on the correctness of the numerical results was found
instead. It is however important to note that these criteria are necessary, but
not sufficient to positively conclude regarding the correctness of the results.
That is, they may disprove but not prove the correctness. They may however
give a strong indication whether the results are good or not.
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3.8.1 Interference Pattern

One of the most fundamental facts when it comes to EM waves is that they
follow the superposition principle because of the linearity of Maxwell’s equa-
tions. This means that when an observation point receives EM waves from
different sources simultaneously the net effect is a superposition of all in-
dividual source contributions. This leads at some positions to constructive
interference, where the net effect is a greater amplitude than each of the
individual contributions. At other positions destructive interference is the
net result meaning the contributions cancel each other out. This is indeed
exploited by the Green’s function formalism by splitting the scatterer into
a finite number of imaginary surface current density sources all contributing
to the resulting field at the observation point. Therefore it is expected that
the resulting field around the scatterer forms an interference pattern.

The resulting field will be presented in the shape of contour plots of
the electric field amplitude. This naturally doubles the spatial frequency as
the negative peaks are turned into positive ones. When observing the EM
field in a plane the observed spatial frequency can never exceed the highest
spatial frequency component of the individual contributions. Basic trigono-
metric identities reveal that a superposition of sinusoidal waves can never
have higher frequency than the highest frequency among the components.
Therefore it is expected that the highest spatial frequency of the calculated
electric field amplitude is maximum twice the spatial frequency of the incom-
ing EM wave due to the absolute value operation. Thus if the incoming wave
has a wavelength of, λ, the smallest peak-to-peak distance in the interference
pattern shown by the field amplitude is expected to be dλ

min = λ/2.
Figure 3.7 shows a typical solution of the EM scattering problem. It

pictures a contour plot of the EM wave intensity scattered by a metal cylinder
in vacuum. The intensity, I , of an EM wave in vacuum is proportional to
the square of the electric field amplitude, see Ref. [13],

I ≡
1

2
cε0E

2
0 , (3.33)

where E0 denote the amplitude of the electric field. Thus the above discus-
sion regarding interference and spatial frequency is still valid. Figure 3.7
shows exactly as predicted an interference pattern with no spatial frequency
components higher than twice the incoming spatial frequency. The region
where the highest spatial frequency components appear is directly in front
the cylinder. Here, one may count roughly ten peaks in the intensity over a
range equal to the cylinder radius, Rc, resulting in a peak-to-peak distance,

d ≈
Rc

10
=

5λ

10
=

λ

2
= dλ

min (3.34)
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which is just as expected for the highest spatial frequency component of the
intensity plot. Even though Fig. 3.7 involves a cylinder as scattering object
the situation is very similar to what is studied in this thesis. It is expected
that the interference pattern should closely resemble the presented plot and
the highest spatial frequency components of the amplitude plot should never
exceed the discussed limit of twice the spatial frequency of the incoming
wave.

Fig. 3.7: Contour plot of scattered EM wave intensity from cylinder:

Figure 3.7: Contour plot from Ref. [14] of the intensity of the EM wave
scattered by a metal [ε(ω) = −17] cylinder placed in vacuum. The incoming
wave approaches the cylinder from the top of the figure. The width of the
incoming beam is w = 15λ and the radius of the cylinder is Rc = 5λ, when
λ denote the wavelength of the incoming EM wave.

3.8.2 Symmetries

The scattering problem investigated through the two case studies has got
some symmetries which gives information about what to expect from the
solution. The fact that the incoming wave is a linearly polarized planar
EM wave and the scatterer has got a spherical shape implies some testable
symmetries in the solution plots.

Figure 3.8 shows the three dimensional geometry of the problem when
having a spherical scatterer. The center of the sphere is located at the origin
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and the cross section planes through the center with normal vectors aligned
with each of the three basis vectors of the space is shown. The wave vector,
k, is chosen to point in the positive x-direction. Now the polarization vector
of the incoming EM wave must be perpendicular to the wave vector and
must therefore have zero x-component. Two possible alternatives are shown
in Fig. 3.8, namely Einc = Einc

a along the positive z-direction and Einc = Einc
b

along the negative y-direction.

Fig. 3.8: Scattering Geometry when having Spherical Scatterer:

Figure 3.8: Geometry of the scattering problem with spherical scatterer and
planar incoming EM wave. Two possible polarization vectors, Einc

a and Einc
b ,

are shown.

If either of these alternatives are chosen for the polarization vector there
arise a couple of symmetries in the solution. As the incoming EM wave and

the scattering object in both these alternatives has mirror symmetry with
the planes z = 0 and y = 0 as symmetry axes, the solution must also have
both these symmetries in both the mentioned setups. Note however that even
though the scatterer has mirror symmetry with the plane x = 0 as symmetry
axis, the incoming EM wave do not because the wave vector, k, points in
the positive x-direction. Therefore the solution does not need to have this
symmetry.

Another testable symmetry in the solution involves calculating the so-
lution in the plane z = 0 for the case of Einc = Einc

a and then calculating
the solution in the plane y = 0 for the case of Einc = Einc

b . These two so-
lutions should be equal because the scatterer has rotational symmetry with
the direction of the wave vector as symmetry axis. Testing this symmetry
will effectively be a test of the discretization applied. It checks if the dis-
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cretization mesh ”looks” equal upon rotation when using a given wavelength.
This is naturally wavelength dependent as a smaller wavelength require more
discretization elements in order to get a sphere which ”looks” symmetrical
upon rotation.

3.8.3 Energy Conservation

Energy can neither be created nor disappear only converted into other forms.
The energy of an isolated system must therefore remain constant. This is
one of the fundamental conservation laws in physics. The total amount of
energy is conserved in all known physical processes.

Let our system be contained inside an imaginary boundary surface sur-
rounding the scatterer. The system is not isolated due to the continuous
transportation of energy by the EM waves moving through the system. How-
ever, since the scatterer is perfectly conducting no energy is absorbed inside
the system. This means that all energy entering the system must also exit.
Furthermore, since the incoming EM wave has a constant amplitude and
direction the energy flux entering through the system surface must also be
constant when averaged in time. Since no energy is neither created nor
absorbed inside the system this must also be the case regarding the total
amount of energy inside the system. Therefore the time averaged energy flux
leaving the system must equal the time averaged energy flux entering the
system. This may also be expressed through Poynting’s theorem, see Ref.
[13],

dW

dt
= −

dUem

dt
−

∮

Sb

S · n̂ d2r, (3.35)

where n̂ is a unit normal vector on the boundary surface. The first term
of Eq. (3.35) represents the amount of work done by the EM field per time
unit acting on the charges inside the boundary surface, Sb. The second term
represents the change per time unit of the amount of energy stored in the
EM field inside the boundary surface. The last term represents the energy
flow across the boundary surface per time unit, where the vector quantity,
S, called Poynting’s vector is given by,

S =
1

µ0

(E × B). (3.36)

By using Faraday’s law, Eq. (2.2), and electric and magnetic fields, E =
E0 cos(k · r − ωt) and B = B0 cos(k · r − ωt), it is simple to show the
following relation between electric and magnetic field amplitudes in a plane

45



CHAPTER 3. NUMERICAL IMPLEMENTATION

wave moving through vacuum,

B0 =
k

ω
(k̂ × E0) =

k̂× E0

c
(3.37)

where k̂ denote a unit vector in the traveling direction of the EM wave.
Inserting this relation into Eq. (3.36) leads to,

S =
1

µ0

(E0 ×
k̂ × E0

c
) cos2(k · r − ωt)

=
1

µ0c
|E0|

2 cos2(k · r − ωt)k̂

. (3.38)

This expression shows that the energy flux per time unit fluctuates with
time, however time averaging this quantity, remembering that a squared
cosine averages to 1

2
and ε0µ0 = c2, gives the following constant expression,

〈S〉t =
1

2µ0c
|E0|

2 =
1

2
cε0|E0|

2k̂ = I k̂, (3.39)

which identifies the intensity, I , of the EM wave from Eq. (3.33) as the
amplitude of the time averaged Poynting vector.

Now, the first two terms of Eq. (3.35) time averages to zero because no
work is done by the fields and no energy is absorbed inside the boundary
surface. This leads to the following simplification,

∮

Sb

〈S〉t · n̂d2r = 0, (3.40)

which states the above mentioned equivalence in the average incoming and
outgoing energy flux per time unit.

This is very convenient, because the average energy flux entering the sys-
tem per time unit may be easily calculated, since we control the parameters
of the incoming wave. This must as we now know equal the average amount
of energy carried by the scattered EM field continuously leaving through the
boundary surface of the system per time unit. Equations (3.39) and (3.40)
shows that this amount may be calculated by evaluating the scattered elec-
tric field amplitude at all points at the boundary surface of the system. This
gives therefore a direct way of testing whether the calculated solution of the
scattering problem satisfies the law of energy conservation.

The simplest way of performing this test is by choosing a spherical bound-
ary surface centered at the center of the scatterer with radius ρS larger that
the radius, ρ, of the scatterer. The situation is illustrated in Fig. 3.9 below.
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Fig. 3.9: Geometry of Energy Conservation test:

Figure 3.9: Illustration of the geometry of the test regarding energy conser-
vation.

It is convenient to separate between Poynting’s vector for the incoming
EM wave, Sinc, and Poynting’s vector for the scattered EM wave, Ssca. The
time averaged incoming amount of energy per unit time, denoted Fin, is now
given by,

Fin =

∫

S+
b

〈Sinc〉 · n̂d2r =

∫

Si

〈Sinc〉 · n̂d2r =

∫

Si

I inc d2r, (3.41)

where S+
b is the hemisphere of the system boundary surface which is hit

from the outside by the incoming plane wave and I inc is the intensity of the
incoming EM wave, also known as the irradiance. The integration domain,
Si, of the right-hand side integral is a circle in front of the boundary surface
of the system with the same radius, ρS . This projection makes the unit wave
vector, k̂, parallel to the new surface normal, n̂. The simplification is possible
because the dot product operation corresponds to projecting the integration
domain, S+

b , on to a plane normal to the wave vector, k, which gives exactly
the surface, Si.

The average amount of energy leaving the system per time unit, denoted
Fout, may similarly be expressed in the following way,

Fout =

∮

Sb

〈Ssca〉 · n̂d2r =

∮

Sb

I sca k̂sca · n̂ d2r, (3.42)

where I sca and k̂sca denote respectively the intensity and wave vector direction
of the scattered EM wave. There are two possible approaches of calculating
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this integral. One alternative is to calculated both the scattered electric
field and the scattered magnetic field at evaluation points throughout the
boundary surface Sb and using Eq. (3.37) to calculate the traveling direction
of the scattered EM field, k̂sca. Another alternative is to extend the radius
of the boundary surface, Sb, and using the approximation, k̂sca ≈ r̂. All the
non-radial terms of the wave vector of the scattered EM wave must vanish
far from the scatterer because all the scattered waves move undisturbed in a
straight line through the vacuum of space after leaving the scatterer surface.
Far from the sphere the scatterer looks like a point and the wave vector must
approach the limit of being parallel with a line originating in the center of
this ”point”. This line and thus the asymptotic direction of the wave vector
is aligned with the radial unit vector r̂.

After having calculated both the average energy transported into and out
of the system per time unit, Fin and Fout, the test is simply to check if they
are equal, satisfying the requirement set by the law of energy conservation.

3.8.4 Rayleigh Scattering

If the wavelength of the incoming EM wave is much larger than the radius of
the sphere, λ � ρ, an approximation called Rayleigh Scattering is valid. This
approximation simplifies the equations leading to the following wavelength,
distance and scattering angle dependence of the scattered intensity, from Eq.
(11) in Ref. [15],

I sca ∼
I inc
r + I inc

l cos2 θ

|r|2λ4
, (3.43)

where I inc
r and I inc

l denote the incoming intensity of the field component po-
larized perpendicular and parallel to the scattering plane respectively, where
the scattering plane contains the incoming and observed scattered EM waves.
Furthermore, λ denotes the wavelength of the incoming EM wave, |r| denotes
the distance to the scatterer and θ denotes the angle with the incoming wave
vector.

Equation (3.43) implies a fast decreasing scattered intensity with increas-
ing wavelength. This is the explanation for the red sunset and blue sky
mentioned in the introduction. The short wavelengths, observed as blue
light, are scattered away in a significantly greater extent than the longer
wavelengths, observed as red light. Thus the light rays from the sun having
to travel through longer distances of atmosphere are observed as red and the
sky primarily consisting of scattered sunlight is observed as blue. (Purple
light consists of even smaller wavelengths, but the sunlight contain less en-
ergy at these wavelengths and the human eye is less sensitive for light in this
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part of the spectrum. The sky therefore looks blue instead of purple.)
A second implication of Eq. (3.43) is the introduction of a new symmetry

plane for the scattered field. The expression is symmetrical around π/2 and
3π/2, thus implying that there should be no difference between the forward
and backward scattering patterns. The plane x = 0 in Fig. 3.8 is thus the
third case of mirror symmetry in the solution plot of the scattered field.

3.8.5 Error Functions

When comparing different sets of data a function is needed to quantify the
difference. The following function is a much used alternative,

Err1
x,y =

√

√

√

√

1

N

N
∑

i=1

[

x(i)− y(i)

x(i)

]2

, (3.44)

which is called the Root Mean Square (RMS) value of the relative difference,
where x and y are sets of N data points. If the data set, x, approaches or
equals zero for some i the function is numerically unstable or not defined
at all, so a second alternative is needed. A possible alternative numerically
stable for data sets, x and y, where the data set x has a nonzero mean is the
following,

Err2
x,y =

√

1
N

∑N
i=1 [x(i)− y(i)]2

1
N

∑N
i=1 x(i)

. (3.45)
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Chapter 4

Results and Discussion

This section presents the results of the numerical calculations of the electric
field amplitude for a set of three separate problems. The three problems
have the following wavelength to scatterer radius relations, λ � ρ, λ ≈ ρ
and λ � ρ. All three are examples of the second case study, but only the
first one may be regarded an example of the first case study and is thus
the only problem solved by the method involving the KA. The other two
problems are solved by the MWR. The results for each of the three problems
are presented in separate sections and evaluated according to the evaluation
criteria presented in Section 3.8. Evaluation regarding conservation of energy
was left out because of limited time.

First is a section included discussing the two discretization methods and
an important difference between them found during the production of calcu-
lation results. The input parameters for each calculation is listed in Section
3.6.2. Common for all figures generated (except for the figures of Section
4.1) is quad order = 3, disc type = 2 and k hat = [1 0 0] = x̂. This implies
the use of the 3-point Gaussian integration formula, the recursive triangu-
lation method and an incoming wave heading in the positive x-direction.
The remaining input parameters, n, KA, lambda, and E inc hat are denoted

respectively, Np, KA, λ and Ê
inc

.

4.1 The Discretization Methods

Early in the process of producing calculation results the STRIPACK library
was used for generating the discretization. The numerical calculations pro-
duced some reasonable results with the KA for the problem involving small
wavelength as shown in Fig. 4.1.
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Fig. 4.1: Contour plot using STRIPACK discretization:

Figure 4.1: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane z = 0. The input parameters were set to the

following values, Np = 80500, KA = true, λ = 0.1ρ, Ê
inc

= ẑ, k hat = [1 0 0],
quad order = 1, disc type = 1.

Without going into details the plots generated in the KA domain by using
the STRIPACK discretization did not seem flawed with respect to symme-
try and interference pattern considerations. However, this was completely
different when applying it to the MWR, which involves considerably less
discretization points. One example is shown in Fig. 4.2.

It shows no symmetry at all around the plane x = 0, which it definitely
should according to the argument given in Section 3.8.2. The number of
elements was above the critical limit from Eq. (3.25), which gives,

Nel & 8π(abmin)
2 = 8π82 ≈ 1609, (4.1)

where the ratio, a =
ρ

λ
= 1, was inserted. The actual number of points

used, Nel = 9996 (= 2(Np − 2) found empirically), was definitely above the
critical limit. So there had to be another explanation. After having gone
through all the testing procedures presented in Section 3.7 the problem was
most probably not caused by a programming error.
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Fig. 4.2: Contour plot using STRIPACK discretization:

Figure 4.2: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane z = 0. The input parameters were set to the

following values, Np = 5000, KA = false, λ = 1.0ρ, Ê
inc

= ẑ, k hat = [1 0 0],
quad order = 1, disc type = 1.

After contemplating some possible causes the discretization came up as
a possible source of the trouble. In fact, just by looking at Fig. 3.3 it is
clear that the shape and size of each element is varying considerably. A
deeper analysis revealed exactly how much the element areas varied for the
STRIPACK discretization method compared to the recursive triangulation
method. The area distributions for Np = 4098 is shown in Fig. 4.3. The
mean, standard deviation and maximum of the two distributions are shown
in Table 4.1. The shape and area of the recursive discretization is clearly
varying much less.

The maximum area of the STRIPACK discretization is actually more
than ten times larger than the mean area. This means that the spatial
sampling rate for the numerical integrals no longer fulfills the requirements
of Eq. (3.25) on the whole surface when having more than a tenth of the
critical number of elements. For the recursive discretization the maximum
area is less than twice the size of the mean area. The number of required
elements in order for the numerical integration to be correct is therefore
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Fig. 4.3: Area distribution of the two discretization methods:

Figure 4.3: Normalized area distribution for the Delaunay method from the
STRIPACK discretization library and the recursive method for number of
discretization points, Np = 4098, corresponding to the number of elements,
Nel = 8192.

Area data Recursive Stripack
mean 1.5328 · 10−3 1.5313 · 10−3

standard deviation 3.7164 · 10−4 1.6568 · 10−3

maximum 2.5322 · 10−3 1.6900 · 10−2

Table 4.1: Table of area data for the elements of the two discretization meth-
ods for Np = 4098 and ρ = 1. The expected element area for Nel equally

sized elements on the surface is Aexp =
4π

8192
= 1.53398.

significantly higher for the STRIPACK discretization than for the recursive
discretization method. So when instead applying the recursive discretization
method the predicted symmetries reappeared in the results even when using
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less discretization points as shown by Section 4.3. For this reason the recur-
sive discretization method was applied in the generation of all the numerical
results presented in the following text.

4.2 Results for λ � ρ

The first problem studied involved the wavelength set to, λ = 0.1ρ. The KA
is valid in this case, therefore all results in this section is generated with the
input parameter, KA = true, following the right-most route in Fig. 3.1.

Fig. 4.4: Contour plot of relative electric field amplitude:

Figure 4.4: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane z = 0. The input parameters were set to the

following values, Np = 65538, KA = true, λ = 0.1ρ and Ê
inc

= ẑ.

Figure 4.4 and 4.5 shows as expected an interference pattern around the
scatterer very similar to the one present in Fig. 3.7. The biggest difference is
probably in the shadow region behind the scatterer where the sphere produces
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Fig. 4.5: Contour plot of relative electric field amplitude:

Figure 4.5: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane y = 0. The input parameters were set to the

following values, Np = 65538, KA = true, λ = 0.1ρ and Ê
inc

= ẑ.

a strong focusing effect. This is at least not in conflict with the intuitive
expectation when remembering that the cylinder is infinitely long in one of
the dimensions, while the spherical shape allows the EM wave to bend around
the scatterer in both the directions perpendicular to k. Whether or not this
effect is supported by theory or, even better, by physical experiments needs
further investigation.

The shortest peak-to-peak ratios are seen to be located in the region just
in front of the sphere. Here, it is possible in both figures to count twenty
peaks in a distance corresponding to ten times the wavelength, λ. This gives
a peak-to-peak distance of,

d =
10λ

20
=

λ

2
= dλ

min, (4.2)
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which is exactly the expected minimum theoretical peak-to-peak distance.
Figures 4.4 and 4.5 in addition to Fig 4.6 indicates the expected mirror

symmetries presented in Section 3.8.2 with the planes, y = 0 and z = 0,
as symmetry planes. These symmetries are more accurately displayed by
the Figs. 4.7 and 4.8. The mirror symmetry around θ = π in the figures
translates to having the expected mirror symmetries with y = 0 and z = 0
as symmetry planes.

Fig. 4.6: Contour plot of relative electric field amplitude:

Figure 4.6: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane x = 2. The input parameters were set to the

following values, Np = 65538, KA = true, λ = 0.1ρ and Ê
inc

= ẑ.
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Fig. 4.7: Mirror symmetry about the plane y = 0:

Figure 4.7: Plot of the relative electric field amplitude, |E(r)|/|E(r)inc|,
around a circle with radius, ρcircle = 1.5ρ, in the plane z = 0 centered at
the origin, where θ = 0 represents the point [x, y, z] = [1, 0, 0]. The RMS
of the relative error was found to be, Err1 = 2.80 · 10−5. The input parame-
ters were set to the following values, Np = 65538, KA = true, λ = 0.1ρ and

Ê
inc

= ẑ.
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Fig. 4.8: Mirror symmetry about the plane z = 0:

Figure 4.8: Plot of the relative electric field amplitude, |E(r)|/|E(r)inc|,
around a circle with radius, ρcircle = 1.5ρ, in the plane, y = 0, centered
at the origin, where θ = 0 represents the point [x, y, z] = [1, 0, 0]. The
RMS of the relative error was found to be, Err1 = 1.03 · 10−5. The input pa-
rameters were set to the following values, Np = 65538, KA = true, λ = 0.1ρ

and Ê
inc

= ẑ.
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In order to test the quality of the discretization the polarization direction
and the plane containing the observation points was rotated π/2 radians
without rotating the discretization mesh. This tests if the discretized sphere
”looks” different upon rotation when the sensing wavelength is set to, λ =
0.1ρ. The contour plot of the relative electric field amplitude in the plane
y = 0 with polarization direction, Ê = −ŷ is shown in Fig. 4.9. Qualitatively
it looks identical to the contour plot of Fig. 4.4, as expected. The values
on a circle in the plane, z = 0, when having a ẑ polarized incoming wave
is quantitatively compared with the values on a circle in the plane, y = 0,
having a (−ŷ) polarized incoming wave in Fig.4.10

Fig. 4.9: Contour plot of relative electric field amplitude:

Figure 4.9: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane y = 0. The input parameters were set to the

following values, Np = 65538, KA = true, λ = 0.1ρ and Ê
inc

= −ŷ.
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Fig. 4.10: Symmetry upon rotation around incoming wave vector axis:

Figure 4.10: Plot of the relative electric field amplitude, |E(r)|/|E(r)inc|,
around a circle with radius, ρcircle = 1.5ρ, in the planes z = 0 and y = 0,
centered at the origin. The starting point, θ = 0, represents for both circles
the point [x, y, z] = [1, 0, 0].The polarization of the incoming EM wave
was set to respectively ẑ and −ŷ. The other input parameters were set to
the following values, Np = 65538, KA = true and λ = 0.1ρ. The RMS of the
relative error was found to be, Err1 = 9.95 · 10−5.
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4.3 Results for λ = ρ

The second problem studied involved the wavelength set equal to the radius
of the scatterer, λ = 1.0ρ. The KA is not valid in this case, therefore all
results in this section is generated with the input parameter, KA = false,
following the left-most route in Fig. 3.1 involving the MWR.

Fig. 4.11: Contour plot of relative electric field amplitude:

Figure 4.11: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane z = 0. The input parameters were set to the

following values, Np = 4098, KA = false, λ = 1.0ρ and Ê
inc

= ẑ.

Figure 4.11 and 4.12 shows, as the contour plots of the previous section,
an interference pattern around the scatterer similar to the one present in Fig.
3.7. The focusing effect seen in the previous section is however not present in
these figures, which also needs to be checked with established theory and/or
experimental results.

As in the previous section it is possible by visual inspection of Figs. 4.4
and 4.5 to find that the shortest peak-to-peak distances are again located
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Fig. 4.12: Contour plot of relative electric field amplitude:

Figure 4.12: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane y = 0. The input parameters were set to the

following values, Np = 4098, KA = false, λ = 1.0ρ and Ê
inc

= ẑ.

directly in front of the scatterer. Here, it is possible in both figures to count
six peaks in a distance corresponding to three times the wavelength, λ. This
gives a peak-to-peak distance of,

d =
3λ

6
=

λ

2
= dλ

min, (4.3)

which again is exactly the expected minimum theoretical peak-to-peak dis-
tance.

Figures 4.11, 4.12 and 4.13 indicates as in the previous section the ex-
pected mirror symmetries presented in Section 3.8.2 with the planes, y = 0
and z = 0, as symmetry planes. These symmetries are more accurately dis-
played by the Figs. 4.14 and 4.15. The mirror symmetry around θ = π in
the figures translates to having the mentioned symmetries.
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Fig. 4.13: Contour plot of relative electric field amplitude:

Figure 4.13: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane x = 2. The input parameters were set to the

following values, Np = 4098, KA = false, λ = 1.0ρ and Ê
inc

= ẑ.

The rotational symmetry test which checks if the sphere ”looks” the same
upon rotation when the sensing wavelength is set to, λ = 1.0ρ and the number
of discretization points is set to Np = 4098 is included below. Figures 4.16
and 4.17 corresponds to Figs. 4.9 and 4.10 of the previous section. The
symmetry displayed by the figures are maybe not that surprising when the
symmetry was present in the case of λ = 0.1ρ and Np = 65538. After all, Eq.
(3.25) states that decreasing the ratio a = ρ/λ by a factor, f = 10, allows for
a decrease in Nel and thus Np by a factor, f = 102 = 100. And the applied
decrease factor was only f = 65538/4098 ≈ 16.
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Fig. 4.14: Mirror symmetry about the plane y = 0:

Figure 4.14: Plot of the relative electric field amplitude, |E(r)|/|E(r)inc|,
around a circle with radius, ρcircle = 1.5ρ, in the plane z = 0 centered at the
origin, where θ = 0 represents the point [x, y, z] = [1, 0, 0]. The RMS of the
relative error was found to be, Err1 = 1.02 ·10−5 . The input parameters were

set to the following values, Np = 4098, KA = false, λ = 1.0ρ and Ê
inc

= ẑ.
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Fig. 4.15: Mirror symmetry about the plane z = 0:

Figure 4.15: Plot of the relative electric field amplitude, |E(r)|/|E(r)inc|,
around a circle with radius, ρcircle = 1.5ρ, in the plane, y = 0, centered at the
origin, where θ = 0 represents the point [x, y, z] = [1, 0, 0]. The RMS of the
relative error was found to be, Err1 = 9.49 ·10−6. The input parameters were

set to the following values, Np = 4098, KA = false, λ = 1.0ρ and Ê
inc

= ẑ.
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Fig. 4.16: Contour plot of relative electric field amplitude:

Figure 4.16: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane y = 0. The input parameters were set to the

following values, Np = 4098, KA = false, λ = 1.0ρ and Ê
inc

= −ŷ.
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Fig. 4.17: Symmetry upon rotation around incoming wave vector axis:

Figure 4.17: Plot of the relative electric field amplitude, |E(r)|/|E(r)inc|,
around a circle with radius, ρcircle = 1.5ρ, in the planes z = 0 and y = 0,
centered at the origin. The starting point, θ = 0, represents for both circles
the point [x, y, z] = [1, 0, 0].The polarization of the incoming EM wave
was set to respectively ẑ and −ŷ. The other input parameters were set to
the following values, Np = 4098, KA = false and λ = 1.0ρ. The RMS of the
relative error was found to be, Err1 = 1.04 · 10−4.
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4.4 Results for λ � ρ

The third problem studied involved the wavelength set equal to forty times
the radius of the scatterer, λ = 40.0ρ. The KA is not valid in this case,
therefore all results in this section are generated with the input parameter,
KA = false, following the left-most route in Fig. 3.1, involving the MWR.
This is a case where the numerical results are, in addition to the symmetry
and interference pattern considerations, comparable with the theory of the
Rayleigh approximation presented in Section 3.8.4.

In the contour plots of this section the scatterer is located in the center
of the figure, but only one of the points inside the sphere (having the value
of zero) is included, namely at the origin, because of the resolution distance
of 2ρ = λ/20 between each point in the plot. This is sufficient for showing
the field amplitude pattern around the sphere on a scale comparable with
the wavelength but insufficient for showing the pattern close to the sphere,
that is the near field behaviour.

Figure 4.18 shows the interference pattern around the sphere for λ =
40.0ρ. It is not meaningful to compare the pattern of this figure to the Fig.
3.7, because of the huge difference in radius-to-wavelength ratio. However
the prediction concerning minimum peak-to-peak distance should still hold.
And indeed by counting peaks on a range of four wavelengths directly in front
of the sphere the number adds up to eight peaks. This gives a peak-to-peak
distance of,

d =
4λ

8
=

λ

2
= dλ

min, (4.4)

which again is exactly the expected minimum theoretical peak-to-peak dis-
tance.

The mirror symmetries around y = 0 and z = 0 in the total field ampli-
tude are displayed by the Figs. 4.19 and 4.20. The mirror symmetry around
θ = π in the figures translates as in the previous sections to having the
mentioned mirror symmetry planes.
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Fig. 4.18: Contour plot of relative electric field amplitude:

Figure 4.18: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane z = 0. The input parameters were set to the

following values, Np = 4098, KA = false, λ = 40.0ρ and Ê
inc

= ẑ.
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Fig. 4.19: Mirror symmetry about the plane y = 0:

Figure 4.19: Plot of the relative electric field amplitude, |E(r)|/|E(r)inc|,
around a circle with radius, ρcircle = 40.0ρ = λ, in the plane z = 0 centered at
the origin, where θ = 0 represents the point [x, y, z] = [1, 0, 0]. The RMS of
the relative error was found to be, Err1 = 1.88 · 10−7. The input parameters
were set to the following values, Np = 4098, KA = false, λ = 40.0ρ and

Ê
inc

= ẑ.
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Fig. 4.20: Mirror symmetry about the plane z = 0:

Figure 4.20: Plot of the relative electric field amplitude, |E(r)|/|E(r)inc|,
around a circle with radius, ρcircle = 40.0ρ = λ, in the plane, y = 0, centered
at the origin, where θ = 0 represents the point [x, y, z] = [1, 0, 0]. The RMS
of the relative error was found to be, Err1 = 1.68·10−7 . The input parameters
were set to the following values, Np = 4098, KA = false, λ = 40.0ρ and

Ê
inc

= ẑ.
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Figures 4.21 and 4.22 shows the scattered electric far field amplitude
relative to the incoming electric field amplitude. They correspond well with
the theory of Section 3.8.4 with circles of equal value in the plane z = 0
and clearly reduced amplitude in the directions normal to the incoming wave
vector, k in the plane y = 0. This is quantitatively displayed by Figs. 4.23
and 4.24. They show good correspondence with Eq. 3.43. In Fig. 4.23 the
intensity component, I inc

l , is zero leaving only the constant term, while in
Fig. 4.24 the intensity component, I inc

r , is zero leaving only the cos2 θ term.
Figure 4.25 shows the calculated wavelength dependence of the scattered

intensity. Regression analysis gave afit = 0.01578 and bfit = −4.037 as the
best fit to the graph, afitλ

bfit. This differs from the theoretical exponent by,

btheory − bfit

btheory

=
−4 − (−4.037)

4.0
= 0.925%. (4.5)

Figure 4.26 shows how the scattered intensity depends on the distance from
the scatterer and compares the numerical result with the Rayleigh scattering
theory. The calculated intensity plot was off the theoretical curve by 0.34%,
when applying the error formula of Eq. (3.44).
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Fig. 4.21: Contour plot of relative electric field amplitude:

Figure 4.21: Contour plot of the relative scattered electric field amplitude,
|Esca(r)|/|E(r)inc|, in the plane z = 0. The input parameters were set to the

following values, Np = 4098, KA = false, λ = 40.0ρ and Ê
inc

= ẑ.
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Fig. 4.22: Contour plot of relative electric field amplitude:

Figure 4.22: Contour plot of the relative scattered electric field amplitude,
|Esca(r)|/|E(r)inc|, in the plane y = 0. The input parameters were set to the

following values, Np = 4098, KA = false, λ = 40.0ρ and Ê
inc

= ẑ.
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Fig. 4.23: Angular dependence of scattered intensity at z = 0:

Figure 4.23: Plot of the squared relative scattered electric field amplitude
, |Esca(r)|2/|E(r)inc|2, around a circle with radius, ρcircle = 200.0ρ = 5λ, in
the plane, y = 0, centered at the origin, where θ = 0 represents the point
[x, y, z] = [1, 0, 0]. The theoretical reference from Eq. (3.43) is plotted with
c = 6.511 · 10−11. The relative error was found to be, Err1 = 1.23 · 10−2. The
input parameters were set to the following values, Np = 4098, KA = false,

λ = 40.0ρ and Ê
inc

= ẑ.
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Fig. 4.24: Angular dependence of scattered intensity at y = 0:

Figure 4.24: Plot of the squared relative scattered electric field amplitude,
|Esca(r)|2/|E(r)inc|2, around a circle with radius, ρcircle = 200.0ρ = 5λ, in
the plane, y = 0, centered at the origin, where θ = 0 represents the point
[x, y, z] = [1, 0, 0]. The theoretical reference from Eq. (3.43) is plotted with
c = 6.511 · 10−11. The relative error was found to be, Err2 = 2.10 · 10−2. The
input parameters were set to the following values, Np = 4098, KA = false,

λ = 40.0ρ and Ê
inc

= ẑ.
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Fig. 4.25: Wavelength dependence of the intensity:

Figure 4.25: Plot of the squared relative scattered electric field amplitude,
|Esca(r)|2/|E(r)inc|2, in the point, [x, y, z] = [−100.0ρ, 0.0, 0.0] for a range
of different wavelengths, λ. A graph proportional to the theoretical λ−4

dependence and proportionality constant, c = 0.0135621216, is also included.
The relative error was found to be, Err1 = 1.78 · 10−2. The input parameters

were set to the following values, Np = 258, KA = false and Ê
inc

= ẑ.
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Fig. 4.26: Wavelength dependence of the intensity:

Figure 4.26: Plot of the squared relative scattered electric field amplitude,
|Esca(r)|2/|E(r)inc|2, for a range of different distances from the scatterer, |r|.
A graph proportional to the theoretical |r|−2 dependence and proportionality
constant, c = 1.643 · 10−9, is also included. The relative error was found to
be, Err1 = 3.4 · 10−3. The input parameters were set to the following values,

Np = 4098, λ = 40.0ρ, KA = false and Ê
inc

= ẑ.
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4.5 The MWR for Smaller Wavelengths

Ideally the results when using the MWR and the KA should be equal when
applied to the same scattering problem and the wavelength is much smaller
than the radius. This is however not easy to test thoroughly without ac-
cess to the necessary equipment, namely a computer with enough memory.
The problem is that the test must be performed in the domain of the KA
requiring a lot of discretization elements which implies a huge matrix to be
solved in the MWR taking up large amounts of memory. One way of solving
this memory problem is to implement a Gaussian quadrature formula with
more evaluation points per discretization element. This reduces the required
number of elements and thus the number of matrix elements and the amount
memory.

With the 3-point formula and the recursive discretization algorithm the
case of λ = ρ/3 is close to the wavelength limit solvable by the implemented
MWR with the equipment at hand. This gives the contour plot shown in
Fig. 4.27 of the relative electric field. A positive sign is the observable
focusing effect in the forward scattered field, which is a distinctive feature of
the contour plots generated by the KA in Section 4.2.

This subject was not pursued further due to limited time.
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Fig. 4.27: Contour plot of electric field amplitude using the MWR at a case
of small wavelength:

Figure 4.27: Contour plot of the relative electric field amplitude,
|E(r)|/|E(r)inc|, in the plane z = 0. The input parameters were set to the

following values, Np = 4098, KA = false, λ = ρ/3 and Ê
inc

= ẑ.
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4.6 Further Work

Both the implementation and the results produced are thoroughly tested
through the testing procedures and evaluation of the results. But even
though these tests show good agreement with the necessary requirements
they are not conclusive. There are a series of other testable criteria. Testing
the requirement of energy conservation as presented in Section 3.8.3 should
certainly be of high priority. Moreover, testing how well the results fit with
Mie theory would also be highly desirable, for instance by calculating the
scattering cross section and comparing it with the theoretical predictions.

After testing the program against theoretical criteria there are many ways
of improving the capabilities of the program. A simple, but powerful way of
increasing the scope of the program mentioned in the previous section is to
implement higher orders of the Gaussian quadrature method. This would re-
duce the required amount of memory allowing cases of shorter wavelengths.
To increase the speed the recursive discretization method could be paral-
lelized and also writing/reading the discretization to/from file could save
some time.

A topic briefly touch upon in the thesis is the possibility of calculating
the EM field close to the scatterer. Implementing the trick of splitting the
numerical integrals into numerically solvable nonsingular terms and analyti-
cally solvable terms would increase the range of possible observation points to
arbitrarily close to the scatterer. Another improvement would be to make the
program capable of solving the scattering problem without the assumption
of a perfectly conducting scatterer. This would involve having M 6= 0, dou-
bling the number of unknowns. Making the program capable of reproducing
LSPR effects could be a future goal.
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Conclusion

Accurate numerical methods for calculating how an EM wave is scattered by
an object has got important applications for instance in particle detection
and material fabrication within the area of nanotechnology. Therefore there
are many different available methods today and methods are continuously
being developed and improved upon to meet the need for increased accuracy
and flexibility. The main advantages of the SIE method studied in this
thesis are having relatively low demands in computational time and memory
compared with volume methods and the possibility of calculating the solution
arbitrarily close to the scatterer. It involves the exploitation of a dyadic
Green’s function.

The method transforms the scattering problem into finding the imaginary
electric and magnetic current densities, J and M, which induces the same
physical effect as the scattering material. When these current densities are
identified, by for instance the MWR or the KA, they are inserted into a
definite integral. This integral over the boundary surface of the scatterer
must be calculated numerically.

A FORTRAN program capable of solving the EM scattering problem
for the special case of a perfectly conducting sphere is presented. It was
designed as flexible as possible involving a custom data structure storing the
discretization. This proved handy when extending the program to handle
Gaussian quadrature formulas of multiple evaluation points and when the
need for a new discretization algorithm appeared. The most time consuming
parts of the program was parallelized using the OpenMP library significantly
reducing the time consumption of the program.

The program was tested on the EM scattering problem involving a per-
fectly conducting spherical scatterer in vacuum. Both the KA and the MWR
are implemented allowing a wide range of radius-to-wavelength ratios. Re-
sults for the cases of λ � ρ, λ = ρ and λ � ρ was produced and analyzed
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according to interference pattern and symmetry considerations and in the
latter case the results were compared with Rayleigh theory. All criteria was
met with small relative errors. The symmetry considerations gave relative
errors in the order of magnitude 10−4 − 10−7. Some of the results were not
significantly higher than expected only as a consequence of applying single
precision. The results for the case of having long wavelength also corre-
sponded well with the Rayleigh theory giving relative errors of 2.1% and
less. A finer discretization mesh and observation points further away from
the scatterer would probably result in even smaller errors.

The testing procedures and evaluation criteria analyzed strongly indi-
cates that the program is capable of producing good results with both imple-
mented methods for the tested cases of the EM scattering problem. There
are however other testable criteria, as conservation of energy and Mie theory
predictions, which could further strengthen or falsify this hypothesis. Im-
provements in the code, as higher Gaussian quadrature order, solving the
case of a non-perfectly conducting scatterer involving M 6= 0 and analyt-
ical solution of the singular integral terms in the Taylor expansion of the
integrand, could further increase the capabilities of the program.
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Appendix A

Fourier Transform

A.1 Definition

When a function U(r, t) is piecewise continuous on every finite interval and
absolutely integrable on the t-axis the following transformation, called the
Fourier transform in the time domain, is allowed,

Ũ(r, ω) = F{U(r, t)} =

∫ ∞

−∞

dtU(r, t)eiωt. (A-1)

The inverse transformation is then given by,

U(r, t) = F−1{Ũ(r, ω)} =

∫ ∞

−∞

dω

2π
Ũ(r, ω)e−iωt. (A-2)

A.2 Fourier Transform of Time Derivative

Definition (A-2) gives,

∂

∂t
U(r, t) =

∂

∂t

∫ ∞

−∞

dω

2π
Ũ(r, ω)e−iωt =

∫ ∞

−∞

dω

2π
(−iω)Ũ(r, ω)e−iωt, (A-3)

which can be written as

∂

∂t
U(r, t) = F−1{(−iω)Ũ(r, ω)}. (A-4)

Performing the Fourier transform, (A-1), on both sides of Eq. (A-4) now gives
the following expression for the Fourier transform of the time derivative of a
function,

F{
∂

∂t
U(r, t)} = F{F−1{(−iω)Ũ(r, ω)}} = −iωŨ(r, ω). (A-5)
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Appendix B

Dyadic Tensor

This section introduces the dyadic tensor, its most relevant properties for the
current thesis and a useful simplified notation convention.

B.1 Definition

A dyadic tensor, T̄, is a tensor of order two, which is defined by the sum

T̄ =
N
∑

i=1

N
∑

j=1

Tij(x̂i ⊗ x̂j), (B-1)

where N is the dimension of the space, x̂i is the unit basis vector in the
i’th direction and ⊗, denote the tensor product. By representing the tensor
product, x̂i⊗ x̂j, by a basis matrix where the only non-zero element is in row
i and column j with the value 1, the dyad T̄ with dimension, N=3, may be
displayed in the following way,

T̄ =T11





1 0 0
0 0 0
0 0 0



+ T12





0 1 0
0 0 0
0 0 0



+ ... + T33





0 0 0
0 0 0
0 0 1





=





T11 T13 T13

T21 T22 T23

T31 T32 T33



 .

(B-2)

B.2 Notation

The sum (B-1) is often written in index form as

T̄ = Tij(x̂i ⊗ x̂j), (B-3)

omitting the summation symbols.
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B.3 Properties

This section presents important dyadic tensor properties.

B.3.1 Basic Identities

One may define operators acting on two arguments, where one argument is
a vector and the other is a dyadic tensor. The two most important of these
operators are analogous with the vector cross product, ×, and the vector dot
product, ·, denoted with the same symbols, however acting on different type
of arguments. These operators are defined in the following way by the well
known vector operators (see Ref. [16]),

x̂i · (x̂j ⊗ x̂k) = (x̂i · x̂j)x̂k (B-4)

(x̂i ⊗ x̂j) · x̂k = x̂i(x̂j · x̂k) (B-5)

x̂i × (x̂j ⊗ x̂k) = (x̂i × x̂j) ⊗ x̂k (B-6)

(x̂i ⊗ x̂j) × x̂k = x̂i ⊗ (x̂j × x̂k) (B-7)

(x̂i ⊗ x̂j) · (x̂k ⊗ x̂l) = (x̂j · x̂k)(x̂i ⊗ x̂l), (B-8)

where x̂i, x̂j, x̂k and x̂l are arbitrary unit vectors in three dimensions.

B.3.2 Derivations of Vector-Dyad Operation Results

When the identities of the previous section are established for arbitrary unit
vectors it is possible to derive expressions for the elements of c = b · Ā,
d = Ā · b, C̄ = b× Ā, D̄ = Ā× b, and Ē = Ā · B̄, where Ā, B̄, C̄, D̄ and
Ē are dyads and b, c and d are vectors.

Starting with c = b · Ā, we have in index notation,

c = cix̂i = bjx̂j · Akl(x̂k ⊗ x̂l), (B-9)

where x̂i, x̂j, x̂k and x̂l are unit basis vectors in three dimensions. Collecting
the scalars, bj and Akl, using property (B-4) and recognizing the relation,
(x̂j · x̂k) = δjk, when xj and x̂k are unit basis vectors gives,

c = Aklbjx̂j · (x̂k ⊗ x̂l) = Aklbj(x̂j · x̂k)x̂l

= Aklbj(δjk)x̂l = Ajlbjx̂l = cix̂i.
(B-10)

The last equality implies l = i, leading to

c = cix̂i = Ajibjx̂i, (B-11)
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showing that the result of taking the dot product analogue of a vector, b,
with a tensor, Ā from the left, is a new vector, c, where the i’th component
is the dot product of a vector consisting of the elements of the i’th column
of the tensor Ā with the vector, b.

Performing the corresponding analysis for the operation of multiplying a
vector, b, with a dyad, Ā from the right, d = Ā · b, by the dot product
analogue gives

d = dix̂i = Ā · b = Akl(x̂k ⊗ x̂l) · bjx̂j

= Aklbj(x̂l · x̂j)x̂k = Aklbjδljx̂k

= Aijbjx̂i,

(B-12)

where property (B-5) was used in the derivation. The result shows that
taking the dot product analogue of a vector, b, with a dyad, Ā from the
right, results in a new vector, d, where the i’th component is the dot product
of a vector consisting of the elements of the i’th row of the tensor Ā with
the vector, b.

The derivation for the cross product analogue, C̄ = b × Ā, is similar.
Using property (B-6) gives,

C̄ = Cij(x̂i ⊗ x̂j) = bkx̂k × Alm(x̂l ⊗ x̂m)

= Almbkx̂k × (x̂l ⊗ x̂m) = Almbk(x̂k × x̂l) ⊗ x̂m

= Almbkεnkl(x̂n ⊗ x̂m),

(B-13)

where εnkl is the Levi-Civita tensor of order three, which contains the follow-
ing values,

εnkl =











+1, if {n, k, l} = {1, 2, 3}, {3, 1, 2} or {2, 3, 1}

−1, if {n, k, l} = {3, 2, 1}, {2, 1, 3} or {1, 3, 2}

0, otherwise

. (B-14)

Again, comparing the first and last line of equation (B-13) shows that n = i
and m = j giving

C̄ = Cij(x̂i ⊗ x̂j) = εiklbkAlj(x̂i ⊗ x̂j). (B-15)

A vector, v = vix̂i, where the vector elements, vi, are given by vi = εiklakbl,
represents the cross product of the vector, a = aix̂i, with the vector, b = bix̂i,
v = a × b. With this in mind, equation (B-15) clearly shows that the cross
product of a vector, b, with a dyad, Ā, from the left results in a new dyad, C̄,
where the elements of the j’th column in C̄ are identical to the elements of
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the cross product of the vector, b with a vector containing the same elements
as the jth column of the dyad Ā.

Furthermore, the cross product analogue of a vector, b, with a dyad, Ā,
from the right results in a new dyad D̄ = Ā × b, given by,

D̄ = Dij(x̂i ⊗ x̂j) = Alm(x̂l ⊗ x̂m) × bkx̂k

= Almbk(x̂l ⊗ x̂m) × x̂k = Almbkx̂l ⊗ (x̂m × x̂k)

= Almbkεnmk(x̂l ⊗ x̂n) = εjmkAimbk(x̂i ⊗ x̂j),

(B-16)

where Eq. (B-7) was used in the second line. The relations, l = i and n = j,
was found by comparing line 1 with the first expression of line 3. With
the above mentioned element representation of the vector cross product in
mind, Eq. (B-16) clearly shows that the cross product of a vector, b, with a
dyad Ā, from the right, results in a new dyad, D̄, where the elements of the
i’th row in D̄ are identical to the elements of the cross product of a vector
containing the same elements as the i’th row of the dyad Ā with the vector, b.

Finally, the dot product of a dyad, Ā, with another dyad, B̄, results in
a new dyad Ē. Its elements may be expressed in the following way,

Ē = Eij(x̂i ⊗ x̂j) = Akl(x̂k ⊗ x̂l) · Bmn(x̂m ⊗ x̂n)

= AklBmn(x̂k ⊗ x̂l) · (x̂m ⊗ x̂n) = AklBmn(x̂l · x̂m)(x̂k ⊗ x̂n)

= AklBmnδlm(x̂k ⊗ x̂n) = AklBln(x̂k ⊗ x̂n)

= AilBlj(x̂i ⊗ x̂j).

(B-17)

Element Eij of the resulting tensor is therefore identical to the result of a dot
product of a vector, a, containing the same elements as the i’th row of the
dyad Ā, with a vector b, containing the same elements as the j’th column
of the dyad, B̄. In matrix representation, the result therefore corresponds to
regular matrix multiplication.

B.3.3 The Identity Dyad

The identity dyad, denoted as 1̄, is given by

1̄ = δij(x̂i ⊗ x̂j), (B-18)

where δij is the Kroenecker-delta. It satisfies the following properties

1̄ · T̄ = T̄, (B-19)

T̄ · 1̄ = T̄, (B-20)
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1̄ · a = a, (B-21)

a · 1̄ = a, (B-22)

where T̄ is any dyad and a is any vector. These properties are easily verified
by inserting the definition (B-18) into each of the four properties listed and
using the results from the previous section.

B.3.4 A Useful Relationship

This section seeks to prove the following relationship,

(a× b) · C̄ = a · (b× C̄) = −b · (a× C̄), (B-23)

where a and b are vectors and C̄ is a dyadic tensor.

The first term of equation (B-23) may be written out in index notation as

(a× b) · C̄ = (aix̂i × bjx̂j) · Ckl(x̂k ⊗ x̂l)

= aibjCkl(x̂i × x̂j) · (x̂k ⊗ x̂l)

= aibjCklεmij x̂m · (x̂k ⊗ x̂l)

= aibjCklεmij(x̂m · x̂k)x̂l

= aibjCklεmijδmkx̂l

= aibjCklεkij x̂l,

(B-24)

where equation (B-4) and the orthogonality of the basis vectors were used.
The next term can similarly be written as

a · (b × C̄) = aix̂i · (bjx̂j ×Ckl(x̂k ⊗ x̂l))

= aibjCklx̂i · (x̂j × (x̂k ⊗ x̂l))

= aibjCklx̂i · ((x̂j × x̂k) ⊗ x̂l)

= aibjCklεmjkx̂i · (x̂m ⊗ x̂l)

= aibjCklεmjk(x̂i · x̂m)x̂l

= aibjCklεmjkδimx̂l

= aibjCklεijkx̂l,

(B-25)
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where the equations (B-4) and (B-6) and the orthogonality of the basis vec-
tors were used. Finally, the last term may be written as

−b · (a× C̄) = −bjx̂j · (aix̂i ×Ckl(x̂k ⊗ x̂l))

= −aibjCklx̂j · (x̂i × (x̂k ⊗ x̂l))

= −aibjCklx̂j · ((x̂i × x̂k) ⊗ x̂l)

= −aibjCklεmikx̂j · (x̂m ⊗ x̂l)

= −aibjCklεmik(x̂j · x̂m)x̂l

= −aibjCklεmikδjmx̂l

= −aibjCklεjikx̂l,

(B-26)

where the same equations as above were used. From the definition of the
Levi-Civita symbol in appendix B.3.2 it is clear that the following property
is satisfied,

εijk = εjki = εkij = −εikj = −εkji = −εjik. (B-27)

The fact that the first, third and sixth term of this equation are equal proves
equation (B-23). Q.E.D.

B.3.5 A Second Useful Relationship

In this section the following relation regarding a dyad, B̄, and two vectors,
a and c, is shown to be correct,

(a× B̄) · c = a × (B̄ · c). (B-28)

The expression on the left-hand side may be written in index notation in the
following way,

(a× B̄) · c = (aix̂i × Bjk(x̂j ⊗ x̂k)) · clx̂l

= aiBjkcl(x̂i × (x̂j ⊗ x̂k)) · x̂l

= aiBjkcl((x̂i × x̂j) ⊗ x̂k) · x̂l

= aiBjkclεnij(x̂n ⊗ x̂k) · x̂l

= aiBjkclεnijδklx̂n

= aiBjkckεnijx̂n.

(B-29)
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In the same way the expression on the right-hand side may be written in the
following way,

a × (B̄ · c) = aix̂i × (Bjk(x̂j ⊗ x̂k) · clx̂l)

= aiBjkclx̂i × ((x̂j ⊗ x̂k) · x̂l)

= aiBjkclx̂i × ((x̂j(x̂k · x̂l))

= aiBjkclx̂i × (x̂jδkl)

= aiBjkckx̂i × x̂j

= aiBjkckεnij x̂n.

(B-30)

In both derivations the basic identities of appendix B.3.1 were used. The
final expressions are identical thus proving Eq. (B-28).

B.3.6 The Transpose of a Dyadic Tensor

The transpose, Ā
T
, of a dyad, Ā = Aij(x̂i ⊗ x̂j), is defined as

Ā
T

= [Aij(x̂i ⊗ x̂j)]
T = Aji(x̂i ⊗ x̂j). (B-31)

Multiplying a vector, a, with the transpose of the dyad, Ā, from the left,
gives by using equation (B-11)

a · Ā
T

= aix̂i · Ajk(x̂k ⊗ x̂j) = Aijbjx̂i. (B-32)

Comparing this result with equation (B-12) makes it clear that the following
equation is satisfied,

a · Ā
T

= Ā · a. (B-33)
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Appendix C

Green’s Function

This section covers the general idea behind the Green’s function and the
properties of the specific Green’s function relevant for the main text.

C.1 General Idea of the Green’s Function

When having a linear differential equation given by

Lφ(r) = f(r), (C-1)

where L is a linear differential operator in three dimensions, one may define
a Green’s function, G(r, r′), satisfying

LG(r, r′) = δ(r− r′), (C-2)

where δ(r − r′) is the three-dimensional Dirac delta function with non-zero
contribution only at the point, r = r′. The solution of the differential equa-
tion (C-1) is then given by

φ(r) =

∫

G(r, r′)f(r′) d3r′, (C-3)

which is easily verified as a solution by inserting the expression into equation
(C-1),

Lφ(r) = L

∫

G(r, r′)f(r′) d3r′. (C-4)

The operator, L, may be moved inside the integral, where it operates only on
unmarked coordinates, r. Using the definition of the Green’s function (C-2)
then gives

Lφ(r) =

∫

δ(r − r′)f(r′) d3r′ = f(r) Q.E.D. (C-5)

95



APPENDIX C. GREEN’S FUNCTION

Knowing the Green’s function therefore gives a method for solving the dif-
ferential equation (C-1). The idea is that the Green’s function gives the
response of the system at r from a source located at r′, and summing up all
contributions gives the net result of the unknown function, φ(r).

C.2 Properties of the Relevant Green’s Func-

tion

The partial differential equation,

∇×∇× Ei(r) − k2
i Ei(r) = iωµij(r), (C-6)

has a well known dyadic Green’s function, Ḡi(r, r
′), (from Ref. [3]),

Ḡi(r, r
′) =

(

1̄ +
∇∇

k2
i

)

eiki|r−r
′|

4π|r − r′|
, (C-7)

where 1̄ = δij(x̂i⊗x̂j) is the identity dyad and the operator, ∇∇ = ∂
∂xi

∂
∂xj

(x̂i⊗

x̂j), is a dyadic differential operator. It may be shown that the following two
relations between the Green’s function, Ḡi(r, r

′), and its transposed is satis-
fied (from Ref. [3]),

Ḡi(r, r
′)T = Ḡi(r

′, r). (C-8)

That is, transposing the Green’s function corresponds to swapping the ob-
servation point with the source point. The next relation is the following,

[∇× Ḡi(r, r
′)]T = −∇× Ḡi(r

′, r). (C-9)

Furthermore, Eq. (28) in Ref. [3] gives the following relation,

∇× Ḡi(r, r
′) = [∇ · Ḡi(r, r

′)] × 1̄. (C-10)

The analogous cross product and dot product operations are defined in ap-
pendix B.3.2 and the transposing operator of a dyadic tensor is defined in
appendix B.3.6.
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Method of Weighted Residuals

The Method of Weighted Residuals is a numerical technique of solving a
linear operator equation by transformation to a matrix equation. The main
sources for this section were Ref. [17] and Ref. [18]. The basis of the method
is having the following linear operator equation,

Lφ(x) = l(x), x ∈ A ⊂ R
n, (D-1)

where φ is the unknown function which is to be determined, l is a known
function, L is a linear operator, A is some domain of x where we want a
solution to our problem and n is the number of dimensions x contains.

D.1 Linear Operator

The operator, L, in Eq. (D-1) may for instance be a differential or an in-
tegration operator. The linearity of the operator is expressed through the
following equations (from Ref. [19]),

L
∑

i

ξi(x) =
∑

i

Lξi(x), (D-2)

L[cξi(x)] = cLξi(x) (D-3)

where c is a constant and all the functions, ξi(x), are arbitrary and real
valued. Now, say we have the following two relations,

LφR(x) = lR(x), (D-4)

LφI(x) = lI(x), (D-5)

where φR, lR, φI and lI are all real valued functions. Multiplying Eq. (D-5)
with the imaginary unit, i, and adding the two equations leads to,

LφR(x) + iLφI(x) = lR(x) + ilI(x). (D-6)
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Using the linearity property of the operator, L, from Eq. (D-2) gives,

LφZ(x) = lZ(x), (D-7)

where φZ(x) = φR(x) + iLφI(x) and lZ(x) = lR(x)+ ilI(x). This shows that
the linearity property of the operator, L, allows the functions φ(x) and l(x)
in Eq. (D-1) to be complex valued. If we instead say we have N relations
of the kind in Eq. (D-1) and we multiply each relation with a different unit
basis vector, x̂i, of the space R

N and then add all the relations we get the
following equation,

Lφ1(x)x̂1 + Lφ2(x)x̂2 + ... + φN (x)x̂N = l1(x)x̂1 + l2(x)x̂2 + ... + lN(x)x̂N .
(D-8)

Again using the linearity property from Eq. (D-2) gives the following result,

Lφ(x) = l(x), (D-9)

where φ and l are vector functions in N dimensions. Thus even though real
valued functions are used for φ and l in the following text the linearity prop-
erty makes the results below valid also for complex vector functions.

D.2 Transformation to Matrix Equation

The MWR seeks to approximate the unknown function, φ(x), by a linear
combinations of N linearly independent basis functions, fn(x),

φ(x) ≈ Φ(x) =
N
∑

n=1

αnfn(x), (D-10)

where αn are constant expansion coefficients. The method defines a set of
N weighting functions, w1(x), w2(x), ..., wm(x), ..wN(x). It is appropriate to
define the residual, R, as the following,

R(x) = LΦ(x) − l(x). (D-11)

The residual, R(x), is nonzero if the approximation, Φ(x), is not equal to the
unknown function, φ(x). The MWR is based on forcing this residual to zero
in some average using the weighting functions above,

∫

A

wm(x)R(x) dx = 0, m ∈ [1, N ]. (D-12)
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There are several different ways of choosing these weighting functions, all
giving rise to sub types of the MWR. One of these ways is presented in
Appendix D.3. We may define the operation in Eq. (D-12) as the inner

product of wm and R and write it in the following equivalent form,
∫

A

wm(x)R(x) dx = [wm, R] = 0, m ∈ [1, N ]. (D-13)

By using Eqs. (D-10) and (D-13) Eq. (D-12) may be reformulated in the
following way,

∫

A

LΦ(x)wm(x) − l(x)wm(x) dx = 0, m ∈ [1, N ],

∫

A

(

L
N
∑

n=1

αnfn(x)

)

wm(x) − l(x)wm(x) dx = 0, m ∈ [1, N ]. (D-14)

The linearity property of Eq. (D-2) leads to the following equation,

∫

A

(

N
∑

n=1

αnLfn(x)

)

wm(x) dx =

∫

A

l(x)wm(x) dx, m ∈ [1, N ]. (D-15)

The summation operation and thus the constant expansion coefficients, αn,
may be pulled outside the integral giving,

N
∑

n=1

αn

∫

A

wm(x)Lfn(x) dx =

∫

A

l(x)wm(x) dx, m ∈ [1, N ]. (D-16)

Using the definition of the inner product from Eq. (D-13) leads to,

N
∑

n=1

αn[wm, Lfn] = [l, wm], m ∈ [1, N ]. (D-17)

This may be written as the following matrix equation,

Av = b, (D-18)

where each element, vn, of the unknown vector, v is equal to the coefficients,
αn, and we have the following known matrix elements, Amn, and vector
elements bm,

Amn = [wm, Lfn], (D-19)

bm = [l, wm]. (D-20)

This concludes the derivation from the integral equation of Eq. (D-1) to the
matrix equation of Eqs. (D-18)-(D-20).
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D.3 Galerkin’s Method of Weighted Residu-

als

Galerkin’s Method of Weighted Residuals is one of the sub types of the MWR.
In this method the weighting functions, wn, are defined as,

wn =
∂

∂αn
Φ(x). (D-21)

With the definition in Eq. (D-10) this leads to the fact that the weighting
functions are identical to the basis functions of the approximation, Φ(x),

wn = fn(x). (D-22)
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Gaussian Quadrature

Integration

Gaussian quadrature integration is a way of approximating the value of a
definite integral numerically. The method approximates the integral by a
weighted sum of function values evaluated at certain points within the in-
tegration domain. In one dimension the n-point weighted sum is exact for
polynomial integrands of order 2n-1.

E.1 General Gaussian Quadrature Formula

In one dimension the Gaussian quadrature method is given by the following
equation,

∫

L

f(x) dx ≈

n
∑

i=1

wif(xi), (E-1)

where n denote the number of points, xi, where the integrand, f , is evaluated
and wi denotes the i’th weighting constant. When extended to two dimen-
sional integrals the Gaussian quadrature method transforms to the following
equation given in Ref. [7],

∫

S

f(x) dS ≈ A

n
∑

i=1

wif(xi), (E-2)

where the domain area, A, is pulled out of the weighting constants, wi and
the variable, x, denote a point in the domain S. The approximation involves,
as in the one dimensional case, evaluating the function, f , at the n points
denoted by xi.
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E.2 Gaussian Quadrature Formulas for Tri-

angles

In Ref. [7] there are given several sets of weighting functions, wi, of different
order, n, and degree of precision, d. The degree of precision is the maximum
polynomial order of the integral for which the approximation is exact. The
evaluation points are given in so called area coordinates. The advantage
of this system is that the coordinates are independent of the shape of the
triangle, which is very useful when dealing with triangles of arbitrary shape.

A point, xi, inside a triangle, 4ABC , is defined in area coordinates by
the vectors from the origin to each of the corners of the triangle, rA, rB and
rC as,

xi = ξirA + ηirB + ζirC, (E-3)

where the coefficients (ξi, ηi, ζi) make out the area coordinates of the point,
xi. The coordinates may also be defined by the masses needed in each of
the triangle corners in order to make, xi, the center of mass. Note that this
definition opens for an infinite amount of coordinates, k(ξi, ηi, ζi), where k is
an arbitrary real number, all giving the same center of mass point, xi. The
former definition however identifies a unique set of coordinates for each point
on the triangle, where the sum always equals one,

ξi + ηi + ζi = 1. (E-4)

The 1-point Gaussian quadrature formula for a triangle is simply approxi-
mating the integrand as a constant. The constant value may be set to the
function value of an arbitrary point inside the integration domain, but nor-
mal is choosing the centroid as evaluation point. This point is given in area
coordinates as (1

3
, 1

3
, 1

3
).

Reference [7] gives formulas including three to thirteen evaluation points
and degree of precision from two to seven. The first formula is given by
the three evaluation points, (1

6
, 1

6
, 2

3
), (1

6
, 2

3
, 1

6
) and (2

3
, 1

6
, 1

6
). An illustration

of the latter is shown in Fig. E.1. The weighting constants are all equal,
w1 = w2 = w3 = 1

3
and the formula is exact for polynomials of up to second

degree.
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Fig. E.1: Area coordinates example:

Figure E.1: Illustration of the point, (mA, mB, mC) = (2
3
, 1

6
, 1

6
), given in area

coordinates.
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Appendix F

The Recursive Discretization

Algorithm

The implemented recursive discretization algorithm is a simple algorithm
producing a discretization with small spread in element volume and shape. It
basically starts off with six points on a unit sphere connected by twelve edges,
making out eight equilateral triangles. The basic idea is then to recursively
split each triangle into four smaller ones and normalizing the triangle corner
points to the unit sphere. After a few iterations the sphere is divided into
many small elements with corner points on the surface of the sphere.

F.1 Splitting the Triangular Elements

By managing the triangle splitting carefully the variance in shape and area
may be kept low. Figure F.1 below shows how one triangular element is
split into four smaller ones. Each new corner point is dividing the previous
triangle edges in half. If the original triangles are equilateral this creates four
new equilateral triangles, but the normalization operation placing the new
points on the sphere surface spoils this symmetry making the center triangle
slightly larger than the surrounding three. Thus the resulting elements are
not exactly equal in shape and size, but the differences are small compared to
for instance the STRIPACK triangulation algorithm from Ref. [9]. Another
important difference is the possible number of elements in the final discretized
sphere. The recursive algorithm allows for the number of elements to be 8, 32,
128, 512 etc., and no numbers in between these. The STRIPACK algorithm
however allows for practically any number of corner points.
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Fig. F.1: Triangle splitting:

A

B

C
d

e
f

Figure F.1: Illustration of the splitting of a triangle into four new ones in
the recursive discretization algorithm. The new corner points, d, e and f ,
are located at the midpoints of the edges, AB, BC and CA, respectively.
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Appendix G

Fortran Code

This section includes the FORTRAN code for the numerical part of the thesis.

G.1 Discretization Module

The file disc mod.f90 contains the following FORTRAN code.

1 module disc_mod

2 !USE calculation_mod !, only : vec_len

3 ! Module defining the discretization data structure and

4 ! subroutines for filling the structure with data using

5 ! different discretization algorithms.

6 implicit none

7

8 type :: Point

9 real :: point(3)

10 end type Point

11

12 type :: Element

13 integer :: nr_of_corners

14 integer, dimension(:), allocatable :: corners

15 end type Element

16

17 type :: Pair

18 integer :: corners(2)

19 integer :: elements(2)

20 end type Pair

21

22 type Structure

23 type(Point), dimension(:), allocatable :: points
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24 type(Element), dimension(:), allocatable :: elements

25 type(Pair), dimension(:), allocatable :: neighbours

26 type(Point), dimension(:), allocatable :: midpoints

27 type(Point), dimension(:,:), allocatable :: quadpoints

28 end type structure

29

30 contains

31

32 subroutine stripack_convert(struct, n)

33 ! Generates a triangulation discretization using

34 ! stripack and converts it to fit into the struct variable.

35 type(Structure) :: struct

36 integer :: n, i

37

38 ! variables for stripack discretization

39 integer ( kind = 4 ), parameter :: nrow = 9

40 real ( kind = 8 ) ds(n)

41 integer ( kind = 4 ) ier

42 real ( kind = 8 ) x(n)

43 real ( kind = 8 ) y(n)

44 real ( kind = 8 ) z(n)

45 real ( kind = 8 ) sc

46 integer ( kind = 4 ) list(6*n)

47 integer ( kind = 4 ) lptr(6*n)

48 integer ( kind = 4 ) lend(n)

49 integer ( kind = 4 ) iwk(2*n)

50 integer ( kind = 4 ) lnew

51 real ( kind = 8 ) rlat(n)

52 real ( kind = 8 ) rlon(n)

53 integer ( kind = 4 ) nt

54 integer ( kind = 4 ) ltri(nrow,2*n-4)

55

56 print *, ’Creating delaunay discretization with #points = ’, n

57

58 call random_number ( harvest = rlat(1:n) )

59 call random_number ( harvest = rlon(1:n) )

60

61 rlat(1:n) = ( ( 1.0D+00 - rlat(1:n) ) * ( -90.0D+00 ) &

62 + rlat(1:n) * 90.0D+00 )

63

64 rlon(1:n) = ( ( 1.0D+00 - rlon(1:n) ) * ( -180.0D+00 ) &

65 + rlon(1:n) * 180.0D+00 )

66 sc = atan ( 1.0D+00 ) / 45.0D+00
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67 x(1:n) = sc * rlon(1:n)

68 y(1:n) = sc * rlat(1:n)

69 call trans ( n, y, x, x, y, z )

70 call trmesh ( n, x, y, z, list, lptr, lend, lnew, iwk, iwk(n+1),&

71 ds, ier )

72 !do i=1,n

73 ! write (*,"(F10.5,F10.5,E15.5)"),x(i), y(i), z(i)

74 !end do

75 !call trprnt ( n, x, y, z, 0, nrow, nt, ltri)

76 call trlist ( n, list, lptr, lend, nrow, nt, ltri, ier )

77 !call trlprt ( n, x, y, z, 0, nrow, nt, ltri)

78 !do i=1,nt

79 ! write (*,"(4i4)"), i, ltri(1, i), ltri(2,i), ltri(3,i)

80 !end do

81

82 !Allocating and defining struct

83 allocate(struct%points(n))

84 do i=1,n

85 struct%points(i)%point=(/x(i), y(i), z(i)/)

86 end do

87 allocate(struct%elements(nt))

88 do i=1,nt

89 struct%elements(i)%nr_of_corners=3

90 allocate(struct%elements(i)%corners(struct%elements(i)&

91 %nr_of_corners))

92 struct%elements(i)%corners=(/ltri(1:struct%elements(i)&

93 %nr_of_corners, i)/)

94 end do

95

96 call find_neighbours(struct)

97 call find_midpoints(struct)

98 call find_quadpoints(struct)

99

100 end subroutine

101

102 subroutine recursive_triangulation(struct, n)

103 ! Creating symmetric triangular discretization recursively

104 ! n=6,18,58,258,1026, ...

105 type(Structure) :: struct

106 integer :: n, i, ne, np_curr, ne_curr, lim, split_num

107

108 print *, ’Creating discretization recursively with #points = ’, n

109
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110 allocate(struct%points(n))

111 struct%points(1)%point=(/ 1.0, 0.0, 0.0 /)

112 struct%points(2)%point=(/-1.0, 0.0, 0.0 /)

113 struct%points(3)%point=(/ 0.0, 1.0, 0.0 /)

114 struct%points(4)%point=(/ 0.0,-1.0, 0.0 /)

115 struct%points(5)%point=(/ 0.0, 0.0, 1.0 /)

116 struct%points(6)%point=(/ 0.0, 0.0,-1.0 /)

117

118 !ne=2*(n-2)

119 !split_num=1+int(log10((2+n)/8.0)/log10(4.0))

120 ne=2*(n-2) !int(8*4**(split_num-1))

121 !print *, split_num, ne

122 !read(*,*)

123

124 allocate(struct%elements(ne))

125 do i=1,ne

126 struct%elements(i)%nr_of_corners=3

127 allocate(struct%elements(i)%corners(3))

128 end do

129 struct%elements(1)%corners=(/ 1, 5, 3/)

130 struct%elements(2)%corners=(/ 3, 5, 2/)

131 struct%elements(3)%corners=(/ 2, 5, 4/)

132 struct%elements(4)%corners=(/ 4, 5, 1/)

133 struct%elements(5)%corners=(/ 1, 3, 6/)

134 struct%elements(6)%corners=(/ 3, 2, 6/)

135 struct%elements(7)%corners=(/ 2, 4, 6/)

136 struct%elements(8)%corners=(/ 4, 1, 6/)

137

138 np_curr=6

139 ne_curr=8

140

141 lim=int(log10(ne/6.0)/log10(4.0))

142 do i=1, lim

143 call recursive_split(struct, np_curr, ne_curr)

144 ne_curr=ne_curr*4

145 np_curr=(ne_curr/2)+2

146 end do

147

148 call find_neighbours(struct)

149 call find_midpoints(struct)

150 call find_quadpoints(struct)

151

152 end subroutine
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153

154 subroutine recursive_split(struct, n, ne)

155 integer :: n, ne, i, counter, &

156 ind_a, ind_b, ind_c

157 type(Structure) :: struct

158 type(Element), dimension(:), allocatable :: el_list

159 real :: a(3),b(3),c(3), &

160 v0(3), v1(3), v2(3)

161 logical :: lo(3)

162

163 allocate(el_list(4*ne))

164 counter=n+1

165

166 do i=1,ne

167 lo=(/ .false., .false., .false. /)

168 a=normalize(0.5*(struct%points(struct%elements(i)%corners(1))&

169 %point+struct%points(struct%elements(i)%corners(3))%point ))

170 b=normalize(0.5*(struct%points(struct%elements(i)%corners(1))&

171 %point+struct%points(struct%elements(i)%corners(2))%point ))

172 c=normalize(0.5*(struct%points(struct%elements(i)%corners(2))&

173 %point+struct%points(struct%elements(i)%corners(3))%point ))

174 ind_a=point_in_list(a,struct%points)

175 lo(1)=ind_a.eq. -1

176 if (lo(1))then ! a is not present in list

177 struct%points(counter)%point=a

178 ind_a=counter

179 counter=counter+1

180 end if

181

182 ind_b=point_in_list(b,struct%points)

183 lo(1)=ind_b.eq. -1

184 if (lo(1))then ! a is not present in list

185 struct%points(counter)%point=b

186 ind_b=counter

187 counter=counter+1

188 end if

189

190 ind_c=point_in_list(c,struct%points)

191 lo(1)=ind_c.eq. -1

192 if (lo(1))then ! a is not present in list

193 struct%points(counter)%point=c

194 ind_c=counter

195 counter=counter+1
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196 end if

197 struct%elements(ne+(i-1)*3+1)%corners=&

198 (/ struct%elements(i)%corners(1), ind_b, ind_a/)

199 struct%elements(ne+(i-1)*3+2)%corners=&

200 (/ ind_b, struct%elements(i)%corners(2), ind_c/)

201 struct%elements(ne+(i-1)*3+3)%corners=&

202 (/ ind_a, ind_c, struct%elements(i)%corners(3)/)

203 struct%elements(i)%corners=(/ ind_a, ind_b, ind_c /)

204 end do

205

206

207 end subroutine

208

209 function point_in_list(p, list)

210 ! Function returning the index of the point p in list

211 ! and returns -1 if it is not in the list

212 real

213 type(Point), dimension(:), allocatable :: list

214 integer

215 integer

216

217 point_in_list=-1

218 do i=1,size(list)

219 temp=list(i)%point-p

220 temp(1)=sqrt(temp(1)**2+temp(2)**2+temp(3)**2)

221 if (temp(1)<1e-30)then

222 point_in_list=i

223 return

224 end if

225 end do

226 return

227 end function

228

229 subroutine find_quadpoints(struct)

230 ! Subroutine finding 3 points in each element

231 ! for gauss quad integration and saving the

232 ! resulting points in struct%quadpoints

233 ! Compatible with only triangular elements

234 type(Structure) :: struct

235 integer :: m, ne

236

237 ne=size(struct%elements)

238 allocate(struct%quadpoints(ne, 3))
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239 do m=1,ne

240 struct%quadpoints(m,1)%point=(2.0/3.0) &

241 *struct%points(struct%elements(m)%corners(1))%point &

242 +(1.0/6.0)*struct%points(struct%elements(m)%corners(2))%point&

243 +(1.0/6.0)*struct%points(struct%elements(m)%corners(3))%point

244 struct%quadpoints(m,2)%point=(1.0/6.0) &

245 *struct%points(struct%elements(m)%corners(1))%point &

246 +(2.0/3.0)*struct%points(struct%elements(m)%corners(2))%point &

247 +(1.0/6.0)*struct%points(struct%elements(m)%corners(3))%point

248 struct%quadpoints(m,3)%point=(1.0/6.0) &

249 *struct%points(struct%elements(m)%corners(1))%point &

250 +(1.0/6.0)*struct%points(struct%elements(m)%corners(2))%point &

251 +(2.0/3.0)*struct%points(struct%elements(m)%corners(3))%point

252 end do

253 end subroutine

254

255 real function area(point_list)

256 ! Function calculating the area of an element consisting of the

257 ! points contained by point_list.

258 ! In present form only compatible with triangular elements,

259 ! but may be extended.

260 type(Point), dimension(:) :: point_list

261 real , dimension(3) :: v1, v2

262

263 if (size(point_list) .eq. 3)then

264 v1=point_list(2)%point-point_list(1)%point

265 v2=point_list(3)%point-point_list(1)%point

266 area=0.5*sqrt((v1(2)*v2(3)-v1(3)*v2(2))**2 &

267 +(v1(3)*v2(1)-v1(1)*v2(3))**2+(v1(1)*v2(2)-v1(2)*v2(1))**2)

268 return

269 else if (1 .eq. 0) then

270 print *, ’false!’

271 area=-999

272 return

273 endif

274 end function

275

276 subroutine find_midpoints(struct)

277 ! Subroutine finding all centroids of the elements in struct

278 ! and saving the resulting points in struct%midpoints.

279 ! Compatible with only triangular elements.

280 integer :: ne, i, j, corners

281 type(Structure) :: struct
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282 real :: v1(3),v2(3),v3(3), mid(3)

283

284 ne=size(struct%elements)

285 if (allocated(struct%midpoints))then

286 deallocate(struct%midpoints)

287 endif

288 allocate(struct%midpoints(ne))

289 do i=1,ne

290 v1=struct%points(struct%elements(i)%corners(1))%point

291 v2=struct%points(struct%elements(i)%corners(2))%point

292 v3=struct%points(struct%elements(i)%corners(3))%point

293 mid=(v1+v2+v3)/3.0

294 struct%midpoints(i)%point=mid

295 end do

296 end subroutine

297

298 subroutine find_neighbours(struct)

299 ! Subroutine finding all neighbours in struct and

300 ! saving the result in struct%neighbours.

301 ! Compatible with arbitrary number of corners.

302 integer :: ne, i, j, d1,d2, nn, &

303 out_arr(2)

304 type(Pair), dimension(:), allocatable :: temp_neighbours

305 type(Structure) :: struct

306

307 nn=0

308 ne=size(struct%elements)

309 if (allocated(struct%neighbours))then

310 deallocate(struct%neighbours)

311 endif

312 allocate(struct%neighbours(3*ne/2))

313

314 allocate(temp_neighbours(3*ne/2))

315 do i=1,ne

316 do j=i+1,ne

317 d1=size(struct%elements(i)%corners)

318 d2=size(struct%elements(j)%corners)

319 out_arr=common_2(struct%elements(i)%corners, &

320 struct%elements(j)%corners, d1, d2 )

321 if ( out_arr(2) /= -1 )then

322 nn=nn+1

323 struct%neighbours(nn)%elements=(/ i,j /)

324 struct%neighbours(nn)%corners=(/out_arr(1:2)/)
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325 end if

326 end do

327 end do

328

329 end subroutine

330

331 function common_2(arr1, arr2, dim1, dim2)

332 ! function checking whether arr1 and arr2 have 2 common elements.

333 ! If true, the function returns the two common elements

334 ! If false, the function returns (-1, -1)

335 ! Compatible with arbitrary number of dimensions

336 integer :: dim1, dim2, i, j, n_equal, common_2(2), n_different

337 integer :: arr1(dim1), arr2(dim2)

338 common_2=(/-1,-1/)

339

340 n_equal=0

341 do i=1,dim1

342 n_different=0

343 do j=1,dim2

344 if (arr1(i) == arr2 (j))then

345 n_equal=n_equal+1

346 common_2(n_equal)=arr1(i)

347 endif

348 end do

349 end do

350 return

351

352 end function common_2

353

354

355 function normalize(v)

356 real :: v(3), normalize(3), l

357

358 l = sqrt(v(1)**2+v(2)**2+v(3)**2)

359 normalize(1:3)=v(1:3)/l

360 return

361 end function normalize

362

363 subroutine area_dist(struct, disc_type, area_list)

364 ! Subroutine generating the area distribution and

365 ! printing the result to the file ’area_dist’.

366 real, parameter :: pi=4.0*atan(1.0)

367 integer, parameter :: out_unit=20
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368 integer :: n, ne, disc_type, i, ints, &

369 indx

370 real :: exp_avg, mean, std_dev, &

371 area_list(:), delta, start,&

372 max_area

373 real, dimension(:), allocatable :: hist

374 type(Structure) :: struct

375

376 n=size(struct%points)

377 ne=size(struct%elements)

378

379 !exp_avg=sqrt(8*pi/ne)

380 exp_avg=4*pi/ne

381

382 mean=0.0

383 max_area=0.0

384 do i=1,ne

385 mean=mean+area_list(i)

386 end do

387 mean=mean/ne

388 std_dev=0.0

389 do i=1, ne

390 std_dev=std_dev+(area_list(i)-mean)**2

391 end do

392 std_dev=sqrt(std_dev/ne)

393

394 start=mean-3*std_dev

395 ints=int(ne/20)+1

396

397 allocate(hist(ints))

398 do i=1, ints

399 hist(i)=0.0

400 end do

401 delta=6*std_dev/ints

402

403 do i=1, ne

404 indx=int((area_list(i)-start)/delta)+1

405 if (indx<=ints .and. indx>0)then

406 hist(indx)=hist(indx)+1.0/ne

407 end if

408 if (area_list(i)>max_area)then

409 max_area=area_list(i)

410 end if
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411 end do

412

413 print *, ’mean:’, mean

414 print *, ’exp_avg:’, exp_avg

415 print *, ’std_dev:’, std_dev

416 print *, ’max_area’,max_area

417 print *, ’delta’, delta

418 print *, ’intervals:’, ints

419

420 ! Printing the resulting area-distribution to area_dist file

421 open(unit=out_unit,file="area_dist",action="write", &

422 status="replace")

423 write (out_unit, *) ’ne’, ne

424 write (out_unit, *) ’disc_type’, disc_type

425 write (out_unit, *) ’mean’, mean

426 write (out_unit, *) ’std_dev’, std_dev

427 write (out_unit, *) ’max_area’,max_area

428

429 do i=1,ints

430 if (start+delta*i>=0.0)then

431 !write (*, "(e10.2,e10.2)") start+delta*i, hist(i)

432 write (out_unit, "(e14.5,e14.5)") start+delta*i, hist(i)

433 end if

434 end do

435

436 close (out_unit)

437 end subroutine

438

439 end module

G.2 Calculation Module

The file calculation mod omp.f90 contains the following FORTRAN code.

1 module calculation_mod_omp

2 USE omp_lib

3 USE disc_mod

4 ! Module containing functions useful in the

5 ! calculation part of the program

6 implicit none

7

8 type :: Vector_c

9 complex :: vector(3)
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10 end type Vector_c

11

12 real, parameter :: pi=4.0*atan(1.0), c=299792458.0

13 complex, parameter :: im=(0.0, 1.0)

14

15 contains

16

17 function dot_prod_c(z1,z2)

18 ! Function returning the dot product of two

19 ! complex vectors z1 and z2

20 complex , dimension(:) :: z1,z2

21 complex :: dot_prod_c

22 integer :: i

23

24 if (size(z1)/=size(z2))then

25 print *, ’Error - not equal sized vectors’

26 return

27 else

28 dot_prod_c=(0.0, 0.0)

29 do i=1, size(z1)

30 dot_prod_c=dot_prod_c+z1(i)*z2(i)

31 end do

32 return

33 end if

34

35 end function

36

37 function dot_prod_r(r1,r2)

38 ! Function returning the dot product of

39 ! two complex vectors z1 and z2

40 real , dimension(:) :: r1,r2

41 real :: dot_prod_r

42 integer :: i

43

44 if (size(r1)/=size(r2))then

45 print *, ’Error - not equal sized vectors’

46 return

47 else

48 dot_prod_r=0.0

49 do i=1, size(r1)

50 dot_prod_r=dot_prod_r+r1(i)*r2(i)

51 end do

52 return
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53 end if

54

55 end function

56

57 function G(p1, p2, i, j, k)

58 ! Function returning the Greens tensor element i,j

59 ! when p1 is the observation point, p2 is the reference point

60 ! and k is the wavenumber

61

62 real, dimension(3) :: p1, p2, r_vec!, k_vec

63 real :: k, R, factor

64 integer :: i,j,m

65 complex :: G, alpha, Z

66

67 do m=1,3

68 r_vec(m)=p1(m)-p2(m)

69 end do

70 !k=sqrt(k_vec(1)**2+k_vec(2)**2+k_vec(3)**2)

71 R=sqrt( (p1(1)-p2(1))**2 + (p1(2)-p2(2))**2 + (p1(3)-p2(3))**2 )

72 alpha=( ( -k**2/(R**3) )-( 3*k*im/(R**4) )+( 3/(R**5) ) )

73

74 !print *, k*R/pi

75 !print *, cexp(im*dot_prod_r(k_vec, r_vec))

76 !print *, cexp(im*k*R)

77 !print *, k*R/dot_prod_r(k_vec, r_vec)

78

79 if (i .ne. j)then

80 factor=((p1(i)-p2(i))*(p1(j)-p2(j))/((k**2)*4.0*pi))

81 G=factor*exp(im*(k*R))*alpha

82 else

83 !new method

84 Z=(R/k**2)*(((p1(i)-p2(i))**2)*alpha+(im*k-(1.0/R))/(R**2))

85 G=exp(im*(k*R))*(1/(4*pi*R))*(1.0+Z)

86 end if

87 return

88 end function

89

90 function fn(r, struct, pair_n, area, ot)

91 ! Function returning the function value of the n’th

92 ! RWG basis function at the point r

93 ! struct is the discretization data structure,

94 ! pair_n is the pair of neighbouring elements

95 ! for the n’th basis function,
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96 ! area is the area of the element considered,

97 ! ot is 1 or 2 dependent on which

98 ! element in the pair in which the point r is located.

99 ! Works of course only for triangular elements

100 real :: r(3), fn(3), p(3), area, L, &

101 p1(3), p2(3), L_vec(3)

102 type(Pair) :: pair_n

103 type(Structure) :: struct

104 integer :: i, j, ot, pos_neg

105

106 ! Finds the corner (p+ or p- dependent on value of ot)

107 ! which is not common for the two elements in pair n

108 do i=1, 3

109 if (struct%elements(pair_n%elements(ot))%corners(i) &

110 /= pair_n%corners(1) &

111 .and. struct%elements(pair_n%elements(ot))%corners(i) &

112 /= pair_n%corners(2))then

113 p(1:3)=struct%points(struct%elements(pair_n%elements(ot))&

114 %corners(i))%point

115 end if

116 end do

117 p1(1:3)=struct%points(pair_n%corners(1))%point

118 p2(1:3)=struct%points(pair_n%corners(2))%point

119 L_vec(1:3)=p1-p2

120 L=sqrt(L_vec(1)**2+L_vec(2)**2+L_vec(3)**2)

121

122 ! creating pos_neg from ot: (1 or 2) -> (1 or -1)

123 pos_neg=-1*(((ot-1)*ot)-1)

124

125 !print *, ’r:’, r, ’p:’, p, r-p

126 fn=pos_neg*(r-p)*(L/(2*area))

127 return

128 end function

129

130 function norm_vec_c(p1, p2, p3, mid)

131 ! Function returning the complex normal vector

132 ! (zero imaginary part) of a discretization element

133 ! pointing outwards from origo when p1,p2,p3 are

134 ! corners of the element.

135 real :: p1(3), p2(3), p3(3), v1(3), v2(3), norm_vec_r(3), &

136 l, mid(3)

137 complex :: norm_vec_c(3)

138 integer :: i
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139 logical :: correct_way

140

141 v2(1:3)=p3(1:3)-p1(1:3)

142 v1(1:3)=p2(1:3)-p1(1:3)

143 norm_vec_r=cross_r(v1,v2)

144 l=sqrt(norm_vec_r(1)**2+norm_vec_r(2)**2+norm_vec_r(3)**2)

145 norm_vec_c(1:3)=(/ cmplx(norm_vec_r(1)),cmplx(norm_vec_r(2)),&

146 cmplx(norm_vec_r(3)) /)

147 norm_vec_c=norm_vec_c/l

148

149 correct_way=.true.

150 do i=1,3

151 if (mid(i)*norm_vec_r(i)<0)then

152 if ((norm_vec_r(i)>0.1 .or. norm_vec_r(i)<-0.1) )then

153 correct_way=.false.

154 print *,’wrong way:’, norm_vec_c, ’mid:’, mid

155 end if

156 end if

157 end do

158 if (correct_way.eqv. .false.)then

159 norm_vec_c=-1.0*norm_vec_c

160 end if

161

162 return

163 end function

164

165

166 function cross_c(v1,v2)

167 ! Function returning the cross product of

168 ! two complex vectors v1 and v2

169 complex, dimension(3) :: v1, v2, cross_c

170

171 cross_c(1)=v1(2)*v2(3)-v1(3)*v2(2)

172 cross_c(2)=v1(3)*v2(1)-v1(1)*v2(3)

173 cross_c(3)=v1(1)*v2(2)-v1(2)*v2(1)

174

175 return

176 end function

177

178 function cross_r(v1,v2)

179 ! Function returning the cross product of

180 ! two real vectors v1 and v2

181 real, dimension(3) :: v1, v2, cross_r
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182

183 cross_r(1)=v1(2)*v2(3)-v1(3)*v2(2)

184 cross_r(2)=v1(3)*v2(1)-v1(1)*v2(3)

185 cross_r(3)=v1(1)*v2(2)-v1(2)*v2(1)

186

187 return

188 end function

189

190 function J_gen(k, k_hat, struct, area_list, my, E_in)

191 ! Function calculating the surface current density, J,

192 ! by the Method of Weighted Residuals

193 ! k is the wave number, k_hat is the direction of the wave vector

194 ! struct is the discretization data structure,

195 ! area_list contains the area of all the elements,

196 ! my is the permeability of region 1,

197 ! E_inc contains the incoming E-field at r=/(0,0,0)/,

198 ! E_inc=E_inc_hat*E_inc_0*exp(k dot r)

199 integer :: t,l,m,n,s,q,dir,&

200 n_el, n_pairs, info

201 integer, dimension(:), allocatable :: ipiv

202 complex :: G_tensor(3,3), temp_c, &

203 f_c1(3), f_c2(3), &

204 f_c3(3), sum1(3), sum2, &

205 sum3

206 real :: k, f_r(3), my, E_in(3),&

207 k_hat(3), temp_r(3), &

208 least

209 real, dimension(:), allocatable :: area_list

210 complex, dimension(:,:), allocatable :: D_mat, D_mat_pre

211 real, dimension(:,:,:), allocatable :: f_mat

212 complex, dimension(:), allocatable :: b_vec, rs_vec

213 type(Vector_c) , dimension(:), allocatable :: J_gen, E_inc_list

214 type(Structure) :: struct

215

216 n_pairs=size(struct%neighbours)

217 n_el=size(struct%elements)

218 allocate(E_inc_list(n_el))

219 allocate(J_gen(n_el))

220 allocate(D_mat(n_pairs,n_pairs))

221 allocate(D_mat_pre(n_pairs,n_pairs))

222 allocate(f_mat(n_pairs,2,3))

223 allocate(b_vec(n_pairs))

224 allocate(ipiv(n_pairs))
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225

226 allocate(rs_vec(n_pairs))

227

228 do m=1,n_pairs

229 do t=1,2

230 f_mat(m,t,1:3)=fn(struct%midpoints(struct%neighbours(m)% &

231 elements(t))%point, struct, struct%neighbours(m), &

232 area_list(struct%neighbours(m)%elements(t)), t)

233 end do

234 end do

235

236 ! Calculating the incoming E-field, E_inc, at all centroids

237 do m=1,n_el

238 E_inc_list(m)%vector=E_in*exp(im*dot_prod_r(k*k_hat, &

239 struct%midpoints(m)%point))

240 end do

241

242 do m=1,n_pairs ! for all rows of the linear system

243 if (modulo(m,100).eq.0) then

244 print *, ’pair nr’, m, ’of total’, n_pairs

245 end if

246 do n=1,n_pairs ! for all columns of the linear system

247 sum2=(0.0,0.0)

248 do t=1,2 ! for both elements of the outer integral

249 sum1=(/ (0.0,0.0),(0.0,0.0),(0.0,0.0) /)

250 do l=1,2 ! for both elements of the inner integral

251 if (struct%neighbours(m)%elements(t) &

252 .ne.struct%neighbours(n)%elements(l))then

253 do dir=1,3 ! for all three spatial directions

254 do q=1,3

255 G_tensor(dir,q)=G(struct%midpoints &

256 (struct%neighbours(m)%elements(t))%point, &

257 struct%midpoints(struct%neighbours(n)%elements(l))&

258 %point, dir, q, k)

259 end do

260 end do

261 f_c1(1:3)=cmplx(f_mat(n,l,1:3))

262 do dir=1,3

263 temp_c=dot_prod_c(f_c1,G_tensor(dir,1:3))

264 sum1(dir)=sum1(dir)+area_list(struct%neighbours(n)&

265 %elements(l))*temp_c

266 end do

267 end if
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268 end do

269 f_c2(1:3)=cmplx(f_mat(m,t,1:3))!cmplx(f_r(1:3))

270 sum2=sum2+dot_prod_c(f_c2, sum1) &

271 *area_list(struct%neighbours(m)%elements(t))

272 end do

273 D_mat(m,n)=sum2

274 end do

275 sum3=(0.0,0.0)

276 do t=1,2

277 f_c3(1:3)=cmplx(f_mat(m,t,1:3))

278 sum3=sum3+dot_prod_c(f_c3, E_inc_list(struct%neighbours(m)&

279 %elements(t))%vector)*&

280 area_list(struct%neighbours(m)%elements(t))

281 end do

282 b_vec(m)=sum3

283 rs_vec(m)=sum3

284 end do

285

286 D_mat=D_mat*k*c*my/im

287 D_mat_pre=D_mat

288

289 D_mat(1,1:2)=(/ (2.0,0.0), (2.0,0.0)/)

290 D_mat(2,1:2)=(/ (3.0,0.0), (5.0,0.0)/)

291

292 D_mat_pre=D_mat

293

294 call CGESV(n_pairs, 1, D_mat, n_pairs, ipiv, b_vec, n_pairs, info)

295

296 temp_r(1)=0.0

297 temp_r(2)=0.0

298 do m=1, n_pairs

299 temp_c=(0.0,0.0)

300 do n=1, n_pairs

301 temp_c=temp_c+D_mat_pre(m,n)*b_vec(n)

302 end do

303 !print *, temp_c, rs_vec(m), abs(temp_c-rs_vec(m))

304 temp_r(1)=temp_r(1)+abs(temp_c-rs_vec(m))

305 temp_r(2)=temp_r(2)+abs(rs_vec(m))

306 !print *, abs(rs_vec(m))

307 end do

308

309 if (info .eq. 0)then

310 print *, ’Linear system solved successfully!’
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311 else

312 print *, ’An error occured while solving the linear system’

313 stop

314 end if

315

316 print *, ’avg error:’, temp_r(1)/temp_r(2)

317 !read(*,*)

318

319 ! Calculating the resulting current densities

320 ! in all element centroids

321 do n=1, n_el

322 J_gen(n)%vector=(/(0.0,0.0), (0.0,0.0), (0.0,0.0)/)

323 end do

324

325 do n=1,n_pairs

326 do t=1,2

327 J_gen(struct%neighbours(n)%elements(t))%vector= &

328 J_gen(struct%neighbours(n)%elements(t))%vector &

329 +b_vec(n)*f_mat(n,t,1:3)

330 end do

331 end do

332 return

333 end function

334

335 function J_gen_quad(k, k_hat, struct, area_list, my, E_in)

336 ! Function calculating the surface current density, J,

337 ! by the Method of Weighted Residuals using

338 ! the 3-point Gaussian quadrature formula

339 ! The function is parallelized

340 ! k is the wave number, k_hat is the direction of the wave vector

341 ! struct is the discretization data structure,

342 ! area_list contains the area of all the elements,

343 ! my is the permeability of region 1,

344 ! E_inc contains the incoming E-field at r=/(0,0,0)/,

345 ! E_inc=E_inc_hat*E_inc_0*exp(k dot r)

346 integer :: t,l,m,n,s,p,q, &

347 dir, n_el, n_pairs, &

348 info, counter

349 integer, dimension(:), allocatable :: ipiv

350 complex :: G_tensor(3,3), temp_c,&

351 f_c1(3), f_c2(3), &

352 f_c3(3), sum1(3), &

353 sum2, sum3, sum_q(3),&
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354 sum_p, sum_q2

355 real :: k, f_r(3), my, E_in(3),&

356 k_hat(3), temp_r(3),&

357 least,r_ob(3), r_ref(3)

358 real, dimension(:), allocatable :: area_list

359 complex, dimension(:,:), allocatable :: D_mat, D_mat_pre

360 real, dimension(:,:,:), allocatable :: f_mat2

361 real, dimension(:,:,:,:), allocatable :: f_mat

362 complex, dimension(:), allocatable :: b_vec, rs_vec

363 type(Vector_c) , dimension(:,:), allocatable :: E_inc_list

364 type(Vector_c) , dimension(:), allocatable :: J_gen_quad

365 type(Structure) :: struct

366

367 n_pairs=size(struct%neighbours)

368 n_el=size(struct%elements)

369 allocate(E_inc_list(n_el,3))

370 allocate(J_gen_quad(n_el*3))

371 allocate(D_mat(n_pairs,n_pairs))

372 allocate(D_mat_pre(n_pairs,n_pairs))

373 allocate(f_mat(n_pairs,2,3,3))

374 allocate(f_mat2(n_pairs,2,3))

375 allocate(b_vec(n_pairs))

376 allocate(ipiv(n_pairs))

377

378 allocate(rs_vec(n_pairs))

379

380 do m=1,n_pairs

381 do t=1,2

382 f_mat2(m,t,1:3)=fn(struct%midpoints(struct%neighbours(m)&

383 %elements(t))%point, struct, struct%neighbours(m), &

384 area_list(struct%neighbours(m)%elements(t)), t)

385 do q=1,3

386 f_mat(m,t,q,1:3)=fn(struct%quadpoints(struct%neighbours(m)&

387 %elements(t),q)%point, struct, struct%neighbours(m), &

388 area_list(struct%neighbours(m)%elements(t)), t)

389 end do

390 end do

391 end do

392

393 ! Calculating the incoming E-field, E_inc, at all quadrature points

394 do m=1,n_el

395 do q=1,3

396 E_inc_list(m,q)%vector= &
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397 E_in*exp(im*dot_prod_r(k*k_hat,struct%quadpoints(m,q)%point))

398 end do

399 end do

400

401 counter=0

402 !$omp parallel private ( m,n, t,p,l, q, dir, s, G_tensor) &

403 !$omp private ( sum2, sum_p, sum1, sum_q, r_ob ) &

404 !$omp private ( r_ref, temp_c, f_c1, f_c2, f_c3, sum_q2, sum3) &

405 !$omp shared ( n_pairs, area_list, struct, b_vec, rs_vec, D_mat)

406 !$omp do

407 do m=1,n_pairs ! for all rows of the linear system

408 counter=counter+1

409 if (modulo(counter,100).eq.0) then

410 print *, ’pair nr’, counter, ’of total’, n_pairs

411 end if

412 do n=1,n_pairs ! for all columns of the linear system

413 sum2=(0.0,0.0)

414 do t=1,2 ! for both elements of the outer integral

415 sum_p=(0.0,0.0)

416 do p=1,3

417 sum1=(/ (0.0,0.0),(0.0,0.0),(0.0,0.0) /)

418 do l=1,2 ! for both elements of the inner integral

419 sum_q=(/ (0.0,0.0),(0.0,0.0),(0.0,0.0) /)

420 do q=1,3

421 r_ob=struct%quadpoints(struct%neighbours(m)&

422 %elements(t),p)%point

423 r_ref=struct%quadpoints(struct%neighbours(n)&

424 %elements(l),q)%point

425 if (vec_len(r_ob-r_ref)>1e-15)then

426 do dir=1,3 ! for all three spatial directions

427 do s=1,3

428 G_tensor(dir,s)=G(r_ob, r_ref, dir, s, k)

429 end do

430 end do

431 f_c1(1:3)=cmplx(f_mat(n,l,q,1:3))

432 do dir=1,3

433 temp_c=dot_prod_c(f_c1,G_tensor(dir,1:3))

434 sum_q(dir)=sum_q(dir)+temp_c

435 end do

436 end if

437 end do !q

438 sum1(1:3)=sum1(1:3)+ &

439 area_list(struct%neighbours(n)%elements(l))*sum_q(1:3)
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440 end do !l

441 f_c2(1:3)=cmplx(f_mat(m,t,p,1:3))

442 sum_p=sum_p+dot_prod_c(sum1, f_c2)

443 end do !p

444 sum2=sum2+sum_p*(1.0/9.0)* &

445 area_list(struct%neighbours(m)%elements(t))

446 end do !t

447 D_mat(m,n)=sum2

448 end do

449 sum3=(0.0,0.0)

450 do t=1,2

451 sum_q2=(0.0,0.0)

452 do q=1,3

453 f_c3(1:3)=cmplx(f_mat(m,t,q,1:3))

454 sum_q2=sum_q2+dot_prod_c(f_c3, &

455 E_inc_list(struct%neighbours(m)%elements(t),q)%vector)

456 end do

457 sum3=sum3+sum_q2*(1.0/3.0)* &

458 area_list(struct%neighbours(m)%elements(t))

459 end do

460 b_vec(m)=sum3

461 rs_vec(m)=sum3

462 end do

463 !$omp end do

464 !$omp end parallel

465

466 D_mat=D_mat*k*c*my/im

467 D_mat_pre=D_mat

468

469 call CGESV(n_pairs, 1, D_mat, n_pairs, ipiv, b_vec, n_pairs, info)

470

471 temp_r(1)=0.0

472 temp_r(2)=0.0

473 do m=1, n_pairs

474 temp_c=(0.0,0.0)

475 do n=1, n_pairs

476 temp_c=temp_c+D_mat_pre(m,n)*b_vec(n)

477 end do

478 temp_r(1)=temp_r(1)+abs(temp_c-rs_vec(m))

479 temp_r(2)=temp_r(2)+abs(rs_vec(m))

480 end do

481

482 if (info .eq. 0)then
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483 print *, ’Linear system solved successfully!’

484 else

485 print *, ’An error occured while solving the linear system’

486 stop

487 end if

488

489 print *, ’avg rel error:’, temp_r(1)/temp_r(2)

490 !read(*,*)

491

492 ! Calculating the resulting current densities in all element points

493 do n=1, n_el

494 do q=1,3

495 J_gen_quad((n-1)*3+q)%vector &

496 =(/(0.0,0.0), (0.0,0.0), (0.0,0.0)/)

497 end do

498 end do

499

500 print *, ’J_gen initialized to 0’

501

502 do n=1,n_pairs

503 do t=1,2

504 do q=1,3

505 J_gen_quad((struct%neighbours(n)%elements(t)-1)*3+q)%vector &

506 =J_gen_quad((struct%neighbours(n)%elements(t)-1)*3+q)%vector &

507 +b_vec(n)*f_mat(n,t,q,1:3)

508 end do

509 end do

510 end do

511

512 print *, ’J_gen_quad calculated’

513 return

514 end function

515

516 function vec_len(v)

517 real :: v(3), vec_len

518 vec_len=sqrt(v(1)**2+v(2)**2+v(3)**2)

519 return

520 end function

521

522 end module calculation_mod_omp
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G.3 Main Program Part 1

The file J calc.f90 contains the following FORTRAN code.

1 program J_calc

2 ! Part 1 of the main program calculating the current density J

3 USE disc_mod

4 USE calculation_mod_omp

5 implicit none

6

7 ! Declaring program variables

8

9 ! Variables for the output data

10 integer, parameter :: out_unit=20, in_unit=2

11

12 ! Variables for the discretization

13 integer :: n, ne, i, nc, j, l, q, np, nx,ny,nz

14 type(Point) ,dimension(:), allocatable :: point_list

15 type(Structure) :: struct

16 real area_tot

17

18 ! Variables for the calculation

19 type(Point), dimension(:), allocatable :: r_list

20 type(Vector_c) , dimension(:), allocatable :: H_inc, J_list, &

21 E_res, E_inc

22 type(Vector_c) , dimension(3) :: G_tensor

23 complex :: temp_c, integral

24 complex, dimension(3) :: temp_c_vec

25 complex, dimension(3,3) :: Greens

26 real :: k, lambda, omega, H_inc_0, &

27 E_inc_0, temp_r

28 real , dimension(3) :: k_vec, H_inc_hat, E_inc_hat, &

29 k_hat, temp_r_vec

30 real, dimension(:), allocatable :: Area_list

31 integer :: M, temp_i, quad_order, &

32 disc_number

33 ! Constants:

34 real :: my_0, eps_0, y_min, y_max, &

35 z_min, z_max, x_min, x_max, de

36 logical :: KA

37

38 !---------------------------------------

39 !--------Input Parameters-(begin)-------

40 !---------------------------------------
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41

42 !print *, ’Choose number of discretization points:’

43 n=258 !(rec:6, 18, 66, 258, 1026, 4098, 16386, 65538, 262146, ...)

44

45 !print *,’Choose wavelength in units of sphere radius R:’

46 lambda=40.0

47

48 ! Print Choose polarization of incoming EM wave

49 E_inc_hat=(/ 0.0, 0.0, 1.0 /)

50

51 ! Choose direction of incoming wave

52 k_hat=(/ 1.0, 0.0, 0.0/)

53

54 ! Set quadrature order (1 or 3)

55 quad_order=3

56

57 ! Use KA

58 KA = .false.

59

60 ! Choose the discretization algorithm which fills struct with data

61 disc_number=2

62

63 !---------------------------------------

64 !--------Input Parameters-(end)-------

65 !---------------------------------------

66

67 !uncomment if parameters are instead included from input file

68 !include ’Run_circ03_J.par’

69

70 if (disc_number.eq.1)then

71 call stripack_convert(struct, n)

72 else if (disc_number.eq.2)then

73 call recursive_triangulation(struct, n)

74 end if

75

76 ne=size(struct%elements)

77

78 print *,’ ’

79 print *,’List of points:’

80 do i=1,5 !n

81 write (*,"(I5,F10.5,F10.5,F10.5)"), i,struct%points(i)%point(1:3)

82 end do

83
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84 print *, ’ ’

85 print *,’List of elements:’

86 do i=1,5 !ne

87 write (*,"(10i5)"), i, struct%elements(i)%corners(1:struct &

88 %elements(i)%nr_of_corners)

89 end do

90 print *, ’ ’

91

92 allocate(Area_list(ne))

93 ! Calculates area of the elements and fills Area_list with

94 ! the area of the corresponding element

95 area_tot=0.0

96 !print *,’Areas:’

97 do i=1,ne

98 nc=struct%elements(i)%nr_of_corners

99 allocate(point_list(nc))

100 do j=1,nc

101 point_list(j)=struct%points(struct%elements(i)%corners(j))

102 end do

103 temp_r=area(point_list)

104 area_tot=area_tot+temp_r

105 Area_list(i)=temp_r

106 deallocate(point_list)

107 end do

108

109 ! Uncomment if area distribution shall be calculated

110 !call area_dist(struct, disc_number, Area_list)

111 !read(*,*)

112

113 ! Prints neighbours:

114 print *, ’ ’

115 print *, ’Printing neighbour elements: ’

116 print *, ’pair nr: ’, ’ ’,’elements in pair:’, &

117 ’ ’,’common corners:’

118 do i=1, 5 !size(struct%neighbours)

119 print *, i, struct%neighbours(i)%elements(1:2), &

120 struct%neighbours(i)%corners(1:2)

121 end do

122

123 ! Prints midpoints

124 print *, ’ ’

125 print *, ’Printing midpoints: ’

126 print *, ’Element nr: ’, ’ ’,’Midpoint: ’
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127 do i=1,5 ! ne

128 write (*,"(I5,F12.7,F12.7,F12.7)"), &

129 i,struct%midpoints(i)%point(1:3)

130 end do

131

132 ! Outputs some information

133 print *, ’ ’

134 print *, ’Number of elements: ’, ne

135 print *, ’Total relative area: ’, area_tot/(16*atan(1.0))

136

137 ! Scattering Calculation

138

139 ! Defining the constants

140 my_0=4*pi*1E-7

141 eps_0=1.0/(my_0*c**2)

142

143 ! Defining Variables

144 E_inc_0=1.0

145 k=2.0*pi/lambda

146 omega=k*c

147 k_vec=k*k_hat

148 H_inc_hat=cross_r(k_hat, E_inc_hat)

149 H_inc_0=E_inc_0/(my_0*c)

150

151 ! Printing Variable information

152 write (*, "(a,i5)"), ’ disc_number: ’, disc_number

153 write (*, "(a,i8)"), ’ discretization points: ’, n

154 write (*, "(a,l4)"), ’ KA: ’, KA

155 write (*, "(a,e12.5)") ’ eps_0=’, eps_0

156 write (*, "(a,e12.5)") ’ my_0=’, my_0

157 write (*, "(a,f9.3)") ’ E_inc_0=’, E_inc_0

158 write (*, "(a,3f9.3)") ’ E_inc_hat=’, E_inc_hat

159 write (*, "(a,e12.5)") ’ H_inc_0=’, H_inc_0

160 write (*, "(a,3f9.3)") ’ H_inc_hat=’, H_inc_hat

161 write (*, "(a,e12.5)") ’ k = ’, k

162 write (*, "(a,3f9.3)") ’ k_hat=’, k_hat

163 write (*, "(a,f9.3, a)")’ lambda = ’, lambda, ’R’

164 write (*, "(a,e12.5)") ’ omega = ’, omega

165 write (*,*) ’ ’

166

167 allocate(J_list(quad_order*ne))

168 if ( KA .eqv. .true. )then

169 ! Calculating incoming H-field at scatterer surface (KA approx)
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170 ! using either 1-point or 3-point Gaussian quadrature method

171 if (quad_order.eq.1)then

172 allocate(H_inc(ne))

173 do i=1, ne

174 temp_r=dot_prod_r(k_vec,struct%midpoints(i)%point)

175 H_inc(i)%vector=H_inc_0*H_inc_hat*cexp(im*temp_r)

176 end do

177 else if (quad_order.eq.3)then

178 allocate(H_inc(3*ne))

179 do i=1,ne

180 do j=1,3

181 temp_r=dot_prod_r(k_vec,struct%quadpoints(i,j)%point)

182 H_inc((i-1)*3+j)%vector=H_inc_0*H_inc_hat*cexp(im*temp_r)

183 end do

184 end do

185 end if

186 ! Calculating el current density J_list at surface (KA approx)

187 do i=1, ne

188 temp_c_vec=norm_vec_c(struct%points(struct%elements(i) &

189 %corners(1))%point, &

190 struct%points(struct%elements(i)%corners(2))%point, &

191 struct%points(struct%elements(i)%corners(3))%point, &

192 struct%midpoints(i)%point )

193 do j=1,quad_order

194 J_list((i-1)*quad_order+j)%vector &

195 =2.0*cross_c(temp_c_vec, H_inc((i-1)*quad_order+j)%vector)

196 end do

197 end do

198 else

199 ! Calculating el curr density J_list at surface (linear system)

200 if (quad_order.eq.1)then

201 print *, ’Generating current densities by ’

202 print *, ’1st order gauss quadrature integrals...’

203 J_list=J_gen(k, k_hat, struct, Area_list, my_0, &

204 E_inc_hat*E_inc_0)

205 else if (quad_order.eq.3)then

206 print *, ’Generating current densities by ’

207 print *, ’3rd order gauss quadrature integrals...’

208 J_list=J_gen_quad(k, k_hat, struct, Area_list, my_0, &

209 E_inc_hat*E_inc_0)

210 else

211 print *,’Wrong quadrature order!’

212 end if
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213 end if

214

215 open (unit=out_unit,file=’J_data’, action="write",status="replace")

216 write (out_unit, *) n, ne, lambda, quad_order, &

217 disc_number, E_inc_0

218 write (out_unit, *) E_inc_hat, k_hat

219 do i=1, quad_order*ne

220 write (out_unit, *) J_list(i)%vector

221 end do

222 close(out_unit)

223 print *, ’Done writing current densities, J, to file.’

224

225 end program

G.4 Main Program Part 2

The file E calc omp.f90 contains the following FORTRAN code.

1 program E_calc

2 USE omp_lib

3 ! Program calculating the electric field at a set of

4 ! observation points based on the surface current

5 ! density, J, fetched from the file, ’J_data’.

6 USE disc_mod

7 USE calculation_mod_omp

8 implicit none

9

10 ! Declaring program parameters

11 integer, parameter :: out_unit=20, in_unit=2

12

13 ! Declaring program variables

14 integer :: i, M, nx, ny, nz, ne, n, j, &

15 l, nc, q, p, quad_order, &

16 disc_number, counter, p_t, &

17 ax1, ax2, circ_ax, tot_field

18 real :: y_min, y_max, x_min, x_max, &

19 z_min, z_max, omega, my_0, &

20 area_tot, temp_r, E_inc_0, &

21 E_inc_hat(3), lambda, &

22 k_vec(3), k_hat(3), k, de, &

23 circ_r

24 complex :: integral, sum_p

25 real, dimension(:), allocatable :: Area_list
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26 type(Vector_c) , dimension(3) :: G_tensor

27 type(Point), dimension(:), allocatable :: r_list

28 type(Structure) :: struct

29 type(Point) ,dimension(:), allocatable :: point_list

30 type(Vector_c) , dimension(:), allocatable :: J_list, &

31 J_list_quad, &

32 E_res, E_inc

33 character (len=40) :: file_J

34

35

36 file_J=’J_data’

37

38 ! Reading input parameteres from J_data file

39 open(unit=in_unit, file=trim(file_J))

40 read(in_unit, *) n, ne, lambda, quad_order, disc_number, E_inc_0

41 read(in_unit, *) E_inc_hat, k_hat

42 close(in_unit)

43

44 !----------------------------------------------

45 !--------Input Parameters-E_calc-(begin)-------

46 !----------------------------------------------

47

48 ! Choose type of observation point list

49 p_t=1 !(1: xy, 2:yz, 3:xz, 4: Circle, 5:Point)

50

51 x_min=-40.0

52 x_max=40.0

53 y_min=-40.0

54 y_max=40.0

55 z_min=0.0

56 z_max=0.0

57

58 ! Choose Resolution

59 de=0.1*lambda

60

61 ! Choose total or scattered field

62 tot_field=1.0 !(1 for total, 0 for scattered)

63

64 ! if p_t =4,5

65 ! Choose circle radius and plane

66 circ_r=40

67 circ_ax=2 !(1:xy, 2:xz, 3:yz)

68
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69 ! if p_t=5

70

71 !---------------------------------------

72 !--------Input Parameters-(end)-------

73 !---------------------------------------

74

75 !uncomment if parameters are included from input file

76 !include ’Run_circ03_E.par’

77

78

79

80 my_0=4*pi*1E-7

81 k=2.0*pi/lambda

82 omega=k*c

83 k_vec=k*k_hat

84

85 ! Choosing discretization algorithm which fills struct

86 if (disc_number.eq.1)then

87 call stripack_convert(struct, n)

88 else if (disc_number.eq.2)then

89 call recursive_triangulation(struct, n)

90 end if

91 ne=size(struct%elements)

92

93 ! Calculates area of the elements and fills Area_list with

94 ! the area of the corresponding element

95 allocate(Area_list(ne))

96 area_tot=0.0

97 do i=1,ne

98 nc=struct%elements(i)%nr_of_corners

99 allocate(point_list(nc))

100 do j=1,nc

101 point_list(j)=struct%points(struct%elements(i)%corners(j))

102 end do

103 temp_r=area(point_list)

104 area_tot=area_tot+temp_r

105 Area_list(i)=temp_r

106 deallocate(point_list)

107 end do

108

109 ! Reading current density data from J_data file

110 open(unit=in_unit, file=trim(file_J))

111 read(in_unit, *) !n, ne, lambda
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112 read(in_unit, *)

113 allocate(J_list(quad_order*ne))

114 do i=1,quad_order*ne

115 read(in_unit, *), J_list(i)%vector

116 end do

117 close(in_unit)

118

119 print *, ’Done reading J_data!’

120

121 ! Creating list of M observation points

122

123 nx=ceiling(1+(x_max-x_min)/de)

124 ny=ceiling(1+(y_max-y_min)/de)

125 nz=ceiling(1+(z_max-z_min)/de)

126

127 if (p_t < 4)then

128 print *,’nx,ny,nz:’, nx,ny,nz

129 M=nx*ny*nz

130 allocate(r_list(M))

131 end if

132

133 if (p_t .eq. 1)then ! xy-plot

134 ax1=1

135 ax2=2

136 do i=1,ny

137 do j=1,nx

138 r_list((i-1)*nx+j)%point= &

139 (/ x_min+de*(j-1), y_min+de*(i-1), z_min /)

140 end do

141 end do

142 else if (p_t .eq. 2)then ! yz-plot

143 ax1=2

144 ax2=3

145 do i=1,nz

146 do j=1,ny

147 r_list((i-1)*ny+j)%point=(/ x_min, y_min+de*(j-1), &

148 z_min+de*(i-1) /)

149 end do

150 end do

151 else if (p_t .eq. 3)then ! xz-plot

152 ax1=1

153 ax2=3

154 do i=1,nz
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155 do j=1,nx

156 r_list((i-1)*nx+j)%point=(/ x_min+de*(j-1), y_min, &

157 z_min+de*(i-1) /)

158 end do

159 end do

160 else if (p_t .eq. 4)then ! Circle

161 ! Creates a circle in the plane set in the input file

162 M=ceiling(2.0*pi*circ_r*200/lambda)

163 allocate(r_list(M))

164 if (circ_ax .eq. 1)then !xy

165 ax1=1

166 ax2=2

167 do i=1, M

168 r_list(i)%point=(/ circ_r*cos(2.0*pi*(i-1)/(M-1)), &

169 circ_r*sin(2.0*pi*(i-1)/(M-1)) , 0.0/)

170 end do

171 else if (circ_ax .eq. 2)then !xz

172 ax1=1

173 ax2=3

174 do i=1, M

175 r_list(i)%point=(/ circ_r*cos(2.0*pi*(i-1)/(M-1)), 0.0, &

176 circ_r*sin(2.0*pi*(i-1)/(M-1))/)

177 end do

178 else if (circ_ax .eq. 3)then !yz

179 ax1=2

180 ax2=3

181 do i=1, M

182 r_list(i)%point=(/ 0.0, circ_r*cos(2.0*pi*(i-1)/(M-1)), &

183 circ_r*sin(2.0*pi*(i-1)/(M-1)) /)

184 end do

185 end if

186 else if (p_t .eq. 5)then ! Single Point

187 M=1

188 allocate(r_list(M))

189 ax1=1

190 ax2=2

191 r_list(1)%point=(/ x_min, y_min, z_min /)

192 end if

193

194 print *, ’Total number of observation points:’, M

195 print *, ’Calculating E-field amplitude...’

196

197 ! Creating list of points on a straight line
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198 !M=2021

199 !allocate(r_list(M))

200 !do i=1,(M)

201 ! r_list(i)%point=(/ 5.0, 0.0, -0.2+(i-1)*0.01/)

202 !r_list(i+M/2)%point=(/ -1.99-(i-1)*0.01, 0.0, 0.0/)

203 !end do

204

205 ! Calculating incoming electric field E_inc at

206 ! all observation points in r_list

207 allocate(E_inc(M))

208 do i=1,(M)

209 temp_r=dot_prod_r(k_vec,r_list(i)%point)

210 E_inc(i)%vector=E_inc_0*E_inc_hat*exp(im*temp_r)

211 end do

212

213

214

215 ! Calculating Resulting Electric field, E_res,

216 ! in all observation points in r_list

217 ! Quad order = 3

218 if (quad_order.eq.3)then

219 allocate(E_res(M))

220 counter=0

221

222 !$omp parallel private ( i,l, j,p,q, G_tensor, sum_p, integral) &

223 ! !$omp reduction ( + : E_res(1)%vector(1)) ) &

224 !$omp shared ( Area_list, omega, my_0, r_list, ne, k, J_list) &

225 !$omp shared ( M, quad_order, E_res, counter, struct )

226

227 !$omp do

228 do i=1,M ! for all r

229 ! M must here be more than 100. Else: comment out

230 if (mod(counter,M/100).eq. 0 .and. counter .ne. 0)then

231 write (*, "(i5,a1)")int(ceiling(counter*100.0/M)),’%’

232 end if

233 if (r_list(i)%point(1)**2+r_list(i)%point(2)**2 &

234 +r_list(i)%point(3)**2>1.00)then

235 do l=1,3 !for each of the three directions

236 integral=(0.0,0.0)

237 do j=1,ne !for every element in the discretization

238 sum_p=(0.0,0.0)

239 do p=1,3 ! for each of the three evaluation points

240 do q=1,3
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241 G_tensor(l)%vector(q)= &

242 G(r_list(i)%point,struct%quadpoints(j,p)%point,l,q,k)

243 end do

244 sum_p=sum_p+dot_prod_c(G_tensor(l)%vector, &

245 J_list((j-1)*3+p)%vector)

246 end do

247 integral=integral+(1.0/3.0)*sum_p*Area_list(j)

248 end do

249 E_res(i)%vector(l)=(tot_field*E_inc(i)%vector(l) &

250 -(omega*my_0/im)*integral)/E_inc_0

251 end do

252 else

253 E_res(i)%vector=(/ (0.0, 0.0), (0.0,0.0), (0.0,0.0)/)

254 end if

255 counter=counter+1

256 end do

257 !$omp end do

258 !$omp end parallel

259 end if

260 if (quad_order.eq.1)then

261 ! Calculating Resulting Electric field, E_res, in all

262 ! observation points in r_list having when quad order = 1

263 allocate(E_res(M))

264 !allocate(point_list(3))

265 do i=1,M ! for alle r

266 ! M must here be more than 100. Else: comment out

267 if (mod(i,M/100).eq. 0)then

268 write (*, "(i5,a1)")int(ceiling(i*100.0/M)),’%’

269 end if

270 if (r_list(i)%point(1)**2+r_list(i)%point(2)**2 &

271 +r_list(i)%point(3)**2>1.00)then

272 do l=1,3 !for each of the three directions

273 integral=(0.0,0.0)

274 do j=1,ne !for every element in the discretization

275 do q=1,3

276 G_tensor(l)%vector(q)=G(r_list(i) &

277 %point,struct%midpoints(j)%point,l,q,k)

278 end do

279 integral=integral+dot_prod_c(G_tensor(l)%vector, &

280 J_list(j)%vector)*Area_list(j)

281 end do

282 E_res(i)%vector(l)=tot_field*E_inc(i)%vector(l) &

283 -(omega*my_0/im)*integral

141



APPENDIX G. FORTRAN CODE

284 end do

285 else

286 E_res(i)%vector=(/ (0.0, 0.0), (0.0,0.0), (0.0,0.0)/)

287 end if

288 end do

289 end if

290 print *, ’Done calculating electric field amplitude!’

291

292 ! Printing the resulting electric field

293 ! amplitude, |E|/|E_0|, to file

294 open (unit=out_unit,file="results_E.dat",action="write", &

295 status="replace")

296 write (out_unit, "(a, i3,a,i8)") ’Output type:’, p_t, ’, ne: ’, ne

297 write (out_unit, "(I7, f8.3, f9.2)") M, de, lambda

298 do i=1,M

299 !write (*, "(f8.2,f8.2,f9.4)") r_list(i)%point(ax1), &

300 !r_list(i)%point(ax2), sqrt(abs(E_res(i)%vector(1))**2 &

301 !+abs(E_res(i)%vector(2))**2+abs(E_res(i)%vector(3))**2)

302 write (out_unit, "(f8.2,f8.2,e14.7)") r_list(i)%point(ax1),&

303 r_list(i)%point(ax2), sqrt(abs(E_res(i)%vector(1))**2 &

304 +abs(E_res(i)%vector(2))**2+abs(E_res(i)%vector(3))**2)

305 end do

306 close (out_unit)

307

308

309 end program

310

311

312

G.5 Compiling the Code

The file run prog.sh contains the following shell script.

1 #!/bin/bash

2 clear

3 T="$(date +%s)"

4

5 MYFOLDER="/home/rune/Dokumenter/fordypningsprosjekt/program"

6

7 # Compiles the modules disc_mod and calculation_mod

8 gfortran -c "$MYFOLDER/disc_mod.f90"

9 gfortran -fopenmp -c "$MYFOLDER/calculation_mod_omp.f90"

142



G.6. OUTPUT FILE

10

11 # Compiles electrodyn.f90 by using disc_mod.o,

12 # calculation_mod.o and the library discret

13 gfortran -fopenmp "$MYFOLDER/J_calc.f90" \

14 "$MYFOLDER/disc_mod.o" "$MYFOLDER/calculation_mod_omp.o" \

15 -o J_calc -L/home/rune/Dokumenter/fordypningsprosjekt/lib/ \

16 -ldiscret -llapack -O3

17

18 #gfortran "$MYFOLDER/E_calc.f90" "$MYFOLDER/disc_mod.o" \

19 # "$MYFOLDER/calculation_mod.o" \

20 gfortran -fopenmp "$MYFOLDER/E_calc_omp.f90" \

21 "$MYFOLDER/disc_mod.o" "$MYFOLDER/calculation_mod_omp.o" \

22 -o E_calc -L/home/rune/Dokumenter/fordypningsprosjekt/lib/ \

23 -ldiscret -llapack -O3

24

25 #echo "electrodyn.f90 compiled, saved to electrodyn!"

26 echo "Running program..."

27

28 # Running program electrodyn

29 "$MYFOLDER/J_calc" > output_J

30

31 #running program E_calc

32 "$MYFOLDER/E_calc" #> output2

33

34 echo "Done running program!"

35 T="$(($(date +%s)-T))"

36 #echo "Time in seconds: ${T}"

37 printf " %02d:%02d:%02d\n" "$((T/3600%24))" "$((T/60%60))" "$((T%60))"

G.6 Output File

The file output J contains the following example of an output file from the
J calc program. (Only parts of the discretization data are printed to the
file.)

1 Creating discretization recursively with #points = 258

2

3 List of points:

4 1 1.00000 0.00000 0.00000

5 2 -1.00000 0.00000 0.00000

6 3 0.00000 1.00000 0.00000

7 4 0.00000 -1.00000 0.00000

8 5 0.00000 0.00000 1.00000
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9

10 List of elements:

11 1 67 68 69

12 2 70 71 72

13 3 73 74 75

14 4 76 77 78

15 5 79 80 81

16

17

18 Printing neighbour elements:

19 pair nr: elements in pair: common corners:

20 1 1 129 67 68

21 2 1 130 68 69

22 3 1 131 67 69

23 4 2 132 70 71

24 5 2 133 71 72

25

26 Printing midpoints:

27 Element nr: Midpoint:

28 1 0.5685353 0.5685353 0.5685353

29 2 -0.5685353 0.5685353 0.5685353

30 3 -0.5685353 -0.5685353 0.5685353

31 4 0.5685353 -0.5685353 0.5685353

32 5 0.5685353 0.5685353 -0.5685353

33

34 Number of elements: 512

35 Total relative area: 0.98741060

36 disc_number: 2

37 discretization points: 258

38 KA: F

39 eps_0= 0.88542E-11

40 my_0= 0.12566E-05

41 E_inc_0= 1.000

42 E_inc_hat= 0.000 0.000 1.000

43 H_inc_0= 0.26544E-02

44 H_inc_hat= 0.000 -1.000 0.000

45 k = 0.15708E+00

46 k_hat= 1.000 0.000 0.000

47 lambda = 40.000R

48 omega = 0.47091E+08

49

50 Generating current densities by

51 3rd order gauss quadrature integrals...
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52 pair nr 100 of total 768

53 pair nr 200 of total 768

54 pair nr 300 of total 768

55 pair nr 400 of total 768

56 pair nr 500 of total 768

57 pair nr 600 of total 768

58 pair nr 700 of total 768

59 Linear system solved successfully!

60 avg rel error: 1.55312464E-05

61 J_gen initialized to 0

62 J_gen_quad calculated

63 Done writing current densities, J, to file.
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