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Abstract
Material models has been developed for anionic and/or cationic hydrogels,
with a simulation framework implemented in MATLAB and the finite ele-
ment software ABAQUS. The geometry of the simulations is a hemispheroidal
hydrogel, divided into a core with a shell, covalently attached to an optical
fiber. The material models have been used to estimate the chemical param-
eters of poly-acrylamide hydrogels containing anionic or cationic monomer
groups. Simulations comparing free and constrained swelling has been con-
ducted in order to determine the effect of the geometrical constriction to the
optical fiber. Constrained hydrogel swelling featuring shells with different
properties than the core was also investigated.

The aim of the study was to validate the material models and examine
the effects of geometrical constrictions together with shell-impregnation. The
anionic material model was shown to reproduce experimental swelling data,
while the cationic material model only reproduced the data for ionic strength
greater than 100 mM. Restricting the hydrogel to an optical fiber resulted in
decreased change in volume and an increase in the axial swelling. The model
was able to reproduce reported reduction in the swelling for an impregnated
anionic hydrogel by using a neutral shell in the simulations, but failed to
recreate the shape of the swelling curve. With the reduction of swelling as a
basis, a new method for estimating thin-layer properties has been developed.
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Sammendrag
Materialmodeller har blitt utviklet for anioniske og/eller kationiske hydro-
geler, med et simuleringsrammeverk implementert i MATLAB og finite ele-
ment simuleringspakken ABAQUS. Geometrien brukt i simuleringene er en
halvkule av hydrogel, delt inn i en kjerne med et skall, kjemisk fastbundet til
en optisk fiber. Materialmodellene har blitt brukt til å estimere de kjemiske
parametrene til poly-acrylamide hydrogeler som inneholder enten anioniske
eller kationiske monomergrupper. Simuleringer som sammenligner fri og ge-
ometrisk begrenset svelling har blitt gjennomført for å fastslå effekten av
fastlimingen. Geometrisk begrenset hydrogelsvelling der det ble tatt hensyn
til et nøytralt skall ble også undersøkt.

Målet med studien var å validere materialmodellene og undersøke effek-
ten av geometriske begrensninger og impregnering av hydrogeler. Den an-
ioniske materialmodellen viste seg å reprodusere eksperimentelle svelledata,
mens den kationiske materialmodellen kun reproduserte dara for ionestyrke
større enn 100 mM. Fastlimingen av en hydrogel til en optisk fiber viste seg å
redusere volumendringene mens den aksielle svellingen økte. Modellen repro-
duserte rapportert reduksjon i svelling for en impregnert anionisk hydrogel
ved å simulere et nøytralt skall utenpå kjernen, men kunne ikke gjenskape
formen på svellekurven. Med utgangspunkt i svellereduksjonen er det blitt
utviklet en ny metode for Ã¥ estimere egenskapene til tynne lag.
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1 Introduction
A hydrogel is a network of covalently cross-linked polymer chains that ab-
sorbs the solvent molecules it is being immersed in. Since the swelling can
be affected by external factors like pH, ion strength and the concentration
of certain molecules, the application of hydrogels are numerous. In [1] it has
been suggested to use hydrogels as microvalves able to open and close depend-
ing on the chemical conditions in the solution. A hydrogel transducer sys-
tem has been developed at Norwegian University of Science and Technology,
based on an interferometric readout platform developed by Invivosense[2][3].
The transducer system has a capability of measuring hydrogel swelling with
nanometer resolution.

There are systematical differences in the chemically predicted and the ex-
perimentally evident defining parameters of the polymerized hydrogels [4][5].
The gel parameters will thus have to estimated by the means of mathematical
models. Further challenges with parameter estimation arises when impreg-
nating a hydrogel with a thin layer with different properties. The basis of a
chemical estimate can be even more restricted. The defining parameters of
the coating can be measured using several methods[6], or it can be estimated
by fitting experimental swelling data with simulation results.

The swelling behavior changes when the hydrogel is under geometrical
constrictions, and the swelling can only be solved analytically for a few spe-
cial cases. By using finite element simulations, estimates can still be done
for arbitrary geometries and constrictions[1][7]. In the transducer setup in
[2][3][8], the hydrogel is covalently attached to an optical fiber and thus re-
stricted along that interface.

In the present study, a material model for cationic hydrogels has been
developed and used together with the anionic material model in [1]. A simu-
lation setup for the geometry in [2][3][8] has been implemented in combina-
tion with the material models. The simulation model supports the division
of the hydrogel into a core and a shell with a different set of parameters.
The simulation has been validated for both material models, and the effects
of hydrogel impregnation was investigated. The latter was used to develop
a method for estimating the crosslink density of an impregnation layer, by
generating contour plots relating the crosslink density and the thickness of
the layer and comparing an equicontour with experimental data.
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2 Theory

2.1 Continuum mechanics

The mathematics of this section is based on [9], while the symbols referred
to are listed in table 1. The deformation gradient is defined as the change in
true coordinates related to the reference system:

F =
∂x
∂X

. (2.1.1)

Figure 1 shows the transition from the initial dry state, through the
swollen, stress free state to the swollen, deformed state of the hydrogel. The
propagation from a state to another can be represented by multiplication
with the deformation gradient of the transition:

Kd → K0 : dr0 = F0 drd (2.1.2)

K0 → K : dr = F dr0. (2.1.3)

Kd → K : dr = Ftot drd. (2.1.4)

Table 1: Parameter definitions of section 2.1. For specific indices, see
figure 1.

X Lagrangian coordinates; Reference coordinates
x Eulerian coordinates; Field of deformation
r Position vector
dr Line element
F Deformation gradient
C Greens deformation tensor. Right deformation tensor
B Left deformation tensor
I1 First principal invariant of C
Ī1 Modified first principal invariant of C
J Jacobian. Third principal invariant of F
λi Principal stretch for the ortogonal directions 1, 2 and 3
λ0 Uniform principal stretch for the reference state.
s Tensor of nominal stress
σ Stress tensor

Combining (2.1.2) with (2.1.3) gives the expression
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Figure 1: State diagram showing how the line elements and deformation
gradients are related to the different states K, where the indices d and 0
indicate dry state and reference state respectively. For the current state
there is no index. The total deformation gradient Ftot is decomposed into
a component F0, making the system undergo homogeneous swelling, and
a component F deforming the reference state to the current state.

Kd → K0 → K : dr = FF0 drd, (2.1.5)

which is equivalent to (2.1.4). This yields a relation between the defor-
mation gradients,

Ftot = F0F, (2.1.6)

showing that the deformation gradients can be combined by multiplica-
tion in order to represent the transition through several states. The left and
right deformation tensors are given by

B = FFT (2.1.7)

and
C = FTF. (2.1.8)

respectively. Two principal invariants of the deformation gradient are
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I1 = tr (B) = tr (C) = λ21 + λ22 + λ23 (2.1.9)

and

J = detF = λ1λ2λ3. (2.1.10)

They are both scalar with unit 1 and independent of the choice of reference
coordinates. The Jacobian of the reference state is given by

J0 = detF0 = λ30. (2.1.11)

The Jacobians represent the change in volume due to a transition. The
Jacobian for the total transition Kd → K can be found through the deter-
minant of (2.1.6),

detFtot = detF0 · detF, (2.1.12)

and inserting (2.1.10-2.1.11):

detFtot = J0J. (2.1.13)

The right deformation tensor for the same transition is given by

Ctot = FT
totFtot. (2.1.14)

Inserting (2.1.6) and (2.1.8) into (2.1.14) yields

Ctot = FT
0CF0 = λ01TCλ01 = λ0

2C, (2.1.15)

since F0 describes a state of homogeneous swelling and thus is a diagonal
matrix with all its eigenvalues equal to λ0. This leads to an expression of the
total first invariant of the system given by

I1,tot = tr(λ0
2C) = λ0

2I1 = λ20(λ
2
1 + λ22 + λ23). (2.1.16)

The second Piola-Kirchhoff stress tensor is defined as

S ≡ 2
∂U

∂C
= 2

∂U

∂I1
1 + 2

∂U

∂J

∂J

∂C
, (2.1.17)

where U is the free energy density function, to be investigated in the next
section. The following relation holds:

∂J

∂C
=

1

2
JC−1. (2.1.18)

The Cauchy stress tensor is defined as
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σ ≡ 1

J
FsFT. (2.1.19)

When inserting (2.1.17-2.1.18) into (2.1.19), and recognizing (2.1.7), σ
can be expressed as

σ =
2

J

∂U

∂I1
B +

∂U

∂J
1. (2.1.20)

I1 can also be expressed by the modified first invariant:

I1 = J2/3Ī1. (2.1.21)

Combining (2.1.16) and (2.1.21) yields:

I1,tot = λ0
2I1 = (J0J)2/3Ī1. (2.1.22)

2.2 Polymer network elasticity

The behavior of a swollen polymer network and the different free energy den-
sity functions arising from the different swelling phenomena will be outlined
in this section. The parameters used are given in tables 2 and 3. It is first
necessary to establish some relations regarding the chemical potential of the
free species in figure 2 and the different ways to express their concentra-
tions. The chemical potential for the different mobile species, indicated by
the subscript, is given by [1][10]:

µ+ = kBT ln

(
c̄+

cref+

)
(2.2.1)

µ− = kBT ln

(
c̄−

cref−

)
(2.2.2)

µH+ = kBT ln

(
c̄H+

crefH+

)
. (2.2.3)

The chemical potential for the solvent is given by:

µS = −kBTvS
∑
α 6=S

c̄α. (2.2.4)

The relation between the nominal and true concentration is

Cα = cα detFtot, (2.2.5)
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while the relation between the volumetric and molar concentration is

cα = NA[α]. (2.2.6)

The condition of molecular incompressibility can be written as

1 + vSCS = detFtot = J0J (2.2.7)

where 1 represents the dry network and vSCS the solvent. For vSCS � 1
(2.2.7) reduces to

vSCS ' J0J. (2.2.8)

In an anionic polymer network the following reaction takes place

AH ⇀↽ A− +H+ (2.2.9)

yielding negatively charged monomer groups upon dissociation. This can
be expressed in terms of the acid dissociation constant, Ka:

Kan
a =

[H+][A−]

[AH]
. (2.2.10)

The total number of ionizable monomer groups is conserved through the
relation

CAH(X) + CA−(X) =
f

v
. (2.2.11)

For a cationic polymer network the following reaction takes place

A+H2O ⇀↽ AH+ +OH− (2.2.12)

and it can be rewritten as

Table 2: Various parameters described in terms of species, α, shown in
figure 2. .

[α] Molar concentration
Cα Nominal volumetric concentration inside the network
cα True concentration inside the network
c̄α Concentration in the external solution
crefα Reference concentration
nα Number of species in the polymer network
n̄α Number of species in the external solution
µα Chemical potential of species

6



Table 3: Various parameters used in section 2.2.

kB J K−1 Boltzmann constant
NA mol−1 Avogadro’s number
T K Temperature
f 1 Fraction of monomers with ionizable group
v m3 Volume per monomer
vS m3 Volume per solvent molecule
V0 m3 Polymer network volume
∆S J K−1 Entropy
∆H J Enthalpy
∆F J Free energy
U J m−3 Free energy density function
N m−3 Network crosslink density
χ 1 Flory-Huggins parameter
φN 1 Polymer volume fraction
φS 1 Solvent volume fraction
γα,δ J M−1 Molar heat of association/dissociation

AH+ ⇀↽ A+H+, (2.2.13)

yielding positively charged monomer groups upon association. Expressed
through Ka (2.2.13) takes the form

Kcat
a =

[H+][A]

[AH+]
. (2.2.14)

The conservation of ionizable groups in the cationic network will be

CA(X) + CAH+(X) =
f

v
. (2.2.15)

The free energy of the system is given by

∆F = ∆H − T∆S. (2.2.16)

The free energy density function, or strain energy density function, is
given by

U =
∆F

V0
. (2.2.17)

7



2.2.1 Stretching of the network

When the network swells, the total contribution to the entropy due to stretch-
ing the monomer chains, is given by [11]:

∆Sstr = −1

2
NkB[l21 + l22 + l23 − 3− 2 ln(l1l2l3)] (2.2.18)

where the entropy is relative to the unswollen, or dry, network with unit
volume. With li = λ0λi, this becomes

∆Sstr = −1

2
NkB[λ20(λ

2
1 + λ22 + λ23)− 3− 2 ln(λ30λ1λ2λ3)]. (2.2.19)

Recalling the relations (2.1.13) and (2.1.9) this can be expressed as

∆Sstr = −1

2
NkB[λ20I1 − 3− 2 ln(J0J)]

= −1

2
NkBJ0[

1

λ0
I1 −

3

J0
− 2

J0
ln(J0J)].

(2.2.20)

Insertion of (2.2.20) and (2.2.16) with ∆H = 0 and V0 = 1 into (2.2.17)
thus gives the free energy of stretching per volume:

Ustr =
1

2
NkBTJ0[

1

λ0
I1 −

3

J0
− 2

J0
ln(J0J)]. (2.2.21)

2.2.2 Mixing of polymers and solvent

The entropy of mixing between two species is given by:

∆Smix = −kB[n1 lnφ1 + n2 lnφ2]. (2.2.22)

The entropy of mixing of an assembly of free monomers with solvent
molecules is shown[11] to satisfy (2.2.22):

∆SM = −kB[nS lnφS +N lnφN ]. (2.2.23)

The enthalpy of mixing for network and solvent is given by [12] as

∆HM = kBTnSφNχ. (2.2.24)

If χ > 0, same-same interactions between the molecules is preferred and
heat is required to mix, while heat is released by mixing if χ < 0. Inserting

8



(2.2.23) and (2.2.24) into (2.2.16) yields the free energy of mixing of network
and solvent:

∆FM = kBT [nS ln(1− φN) +N lnφN + nSφNχ] (2.2.25)

For a swollen network, nS � N . It then follows that

∆FM = kBTnS[ln(1− φN) + φNχ] (2.2.26)

and

nS = V0CS. (2.2.27)

The volume fraction of the network can be found through the condition
of molecular incompressibility (2.2.7):

φN =
1

1 + vSCS
=

1

J0J
(2.2.28)

Inserting (2.2.26) together with (2.2.27) and (2.2.28) into (2.2.17) gives
the free energy density of mixing of network and solvent:

Umix =
kBT

vs

[
(1− J0J) ln(1− 1

J0J
) + χ

(
1− 1

J0J

)]
. (2.2.29)

2.2.3 Mixing of the free ions

Free energy of mixing for the mobile ions is given by [13]:

Uion = kBT
∑
α 6=S

Cα

(
ln

Cα

vSCSc
ref
α

− 1

)
(2.2.30)

Inserting (2.2.5) and the approximation (2.2.8) into (2.2.30) gives the
following expression for the free energy of mixing for the mobile ions:

Uion = kBTJ0J
∑
α 6=S

cα

(
ln

cα

crefα
− 1

)
. (2.2.31)
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2.2.4 Dissociation and association equilibria

The change in entropy for the distribution of associated, α, and dissociated,
δ, ionizable groups is according to (2.2.22):

∆Sacid = −kBV0 · J0J

[
cα ln

(
cα

cα + cδ

)
+ cδ ln

(
cδ

cα + cδ

)]
(2.2.32)

and the enthalpy of association and dissociation is:

∆Hα,δ = J0J · γα,δcα,δ (2.2.33)

Uα,δ = −T∆Sacid + ∆Hα,δ (2.2.34)

Using (2.2.5), (2.2.35) and (2.2.36) can be expressed as

cAH + cA− =
f

vJ0J
(2.2.35)

cA + cAH+ =
f

vJ0J
. (2.2.36)

For anionic dissociation and cationic association, (2.2.34) can be ex-
pressed as

Udis = kBT ·J0J

[
cAH ln

(
cAH

cA− + cAH

)
+ cA− ln

(
cA−

cA− + cAH

)]
+J0J ·γdiscA−

(2.2.37)
and

Uas = kBT ·J0J

[
cAH+ ln

(
cAH+

cAH+ + cA

)
+ cA ln

(
cA

cAH+ + cA

)]
+J0J ·γasscAH+

(2.2.38)
respectively.

2.3 Inhomogeneous swelling

The mechanical work done by the forces of deformation is dependent on the
body force, Bi, and the traction force, Ti, along the surface of the hydrogel:

10



Wmech =

∫
Biδxi dV +

∫
Tiδxi dS. (2.3.1)

Even for inhomogeneous swelling it is assumed that volumes on a micro-
scopic level swell homogeneously. The total contribution to Helmholtz free
energy, A, of the gel is thus given by:

Agel =

∫
U dV, (2.3.2)

where U denotes the free energy density function. The change in free
energy in the external solution is given by

δAsol = µSδn̄S + µH+δn̄H+ + µ+δn̄+ + µ−δn̄−. (2.3.3)

The equilibrium conditions are found when the total variation of Helmholtz
free energy of the system is zero:

δA = δAgel + δAsol −Wmech

=

∫
δU dV + µSδn̄S + µH+δn̄H+ + µ+δn̄+ + µ−δn̄−

−
∫
Biδxi dV −

∫
Tiδxi dS = 0.

(2.3.4)

The negative ions, positive ions and solvent molecules don’t react chemi-
cally with the polymer network, and the total number of free species is thus
conserved. The balance of each species across the surface of the network can
be expressed as ∫

δC−(X) dV = −δn̄− (2.3.5)∫
δC+(X) dV = −δn̄+ (2.3.6)∫
δCS(X) dV = −δn̄S. (2.3.7)

The condition of electroneutrality must be fulfilled both inside and outside
the network. In the external solution, the condition can be expressed in terms
of the number of each mobile species:

n̄H+ + n̄+ = n̄−. (2.3.8)

11



To express this condition inside the network, together with the conserva-
tion of H+, the fixed charges and the properties of the ionizable monomers
in the gel must also be taken into account. The condition of electroneutrality
inside an anionic network can be expressed in terms of the concentration of
the different charged species present:

CH+(X) + C+(X) = CA−(X) + C−(X). (2.3.9)

The conservation of H+ within the anionic network and across its surface
can be expressed as∫

δCH+(X) dV −
∫
δCA−(X) dV = −δn̄H+ . (2.3.10)

Inserting (2.3.9) into (2.3.10) gives the following expression for the change
in protons in the external solution:

δn̄H+ =

∫
δC+(X) dV −

∫
δC−(X) dV = δn̄+ − δn̄− (2.3.11)

where the last step can be recognized in (2.3.5-2.3.6). (2.3.11) is in ac-
cordance with (2.3.8) and makes it possible to express (2.3.3) as

δAsol = µSδn̄S + (µ+ − µH+)δn̄+ + (µ− + µH+)δn̄−. (2.3.12)

The condition of electroneutrality will for the cationic network take the
form

CH+(X) + C+(X) + CAH+(X) = C−(X), (2.3.13)

while the conservation of H+ is expressed by∫
δCH+(X) dV +

∫
δCAH+(X) dV = −δn̄H+ . (2.3.14)

Inserting (2.3.13) into (2.3.14) will also yield (2.3.11) and thus (2.3.12).
The free energy density function can for both anionic and cationic gels be
written as a function of all the independent parameters:

U = U(F, C+, C−, CH+). (2.3.15)

By applying the chain rule on (2.3.2) considering the variables in (2.3.15)
and inserting it together with (2.3.12) into (2.3.4), a new expression for the
conversion of the Helmholtz free energy at equilibrium is found:
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δA =

∫ [
∂SiK
∂XK

+Bi

]
δxi dV

+

∫
[siKNK − Ti] δxi dS

+

∫ [
∂U
∂C+
− (µ+ − µH+)

]
δC+ dV

+

∫ [
∂U
∂C−
− (µ− + µH+)

]
δC− dV

+

∫
∂U

∂C
H+
δCH+ dV = 0

(2.3.16)

whereNK is the normal vector and the index form of the tensor of nominal
stress, siK , is given as

siK =
∂U

∂FiK
− µS
vS

(F−1iK )TJ0J. (2.3.17)

FiK is the index form of the deformation gradient. For (2.3.16) to hold,
each of its integral terms must also be equilibrated, and a couple of relations
can thus be identified. For the interior and the surface of the network,

− ∂siK
∂XK

= Bi (2.3.18)

and

siKNK = Ti (2.3.19)

must hold respectively. The conditions for ionic equilibrium can be iden-
tified as

∂U(F, C+, C−, CH+)

∂C+

= µ+ − µH+ (2.3.20)

∂U(F, C+, C−, CH+)

∂C−
= µ− + µH+ , (2.3.21)

while the protonic equilibrium is given as

∂U(F, C+, C−, CH+)

∂CH+

= 0. (2.3.22)
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2.4 Specific material model

The free energy density function of the gel is is assumed [12][1] to be the a
sum of different contributions. The network poroelastic contribution, U1, is
the sum of the free energy density of deformation and mixing of the entire
network

U1 = Ustr + Umix (2.4.1)

while the ionizable contribution, U2, is the sum of the free energy density
of electrostatic and dissociation/association contributions of the ionizable
monomer groups:

U2 = Uion + Udis,as. (2.4.2)

The free energy density function of the system is thus

U = U1 + U2. (2.4.3)

Recalling (2.2.21) gives the contribution from stretching of the network:

Ustr = kBT · J0
N

2
[

1

λ0
I1 −

3

J0
− 2

J0
ln(J0J)]. (2.4.4)

Setting vs = v in (2.2.29) gives the contribution from mixing of the net-
work:

Umix =
kBT · J0

v

[
(

1

J0
− J) ln(1− 1

J0J
) + χ

(
1− 1

J2
0J

)]
. (2.4.5)

Inserting for α in (2.2.31) gives the electrostatic contribution from the
ionizable groups:

Uion = kBT · J0J

[
cH+ ln

cH+

crefH+

+ c+ ln
c+

cref+

+c− ln
c−

cref−
− (cH+ + c+ + c−)

]
.

(2.4.6)

For anionic dissociation and cationic association, (2.2.37-2.2.38) can be
expressed as
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Udis = kBT · J0J


[
cAH ln

(
cAH

cA− + cAH

)

+cA− ln

(
cA−

cA− + cAH

)]
+

1

kBT
γdiscA−


(2.4.7)

and

Uas = kBT · J0J


[
cAH+ ln

(
cAH+

cAH+ + cA

)

+cA ln

(
cA

cAH+ + cA

)]
+

1

kBT
γascAH+


(2.4.8)

respectively. Combining (2.4.4) and (2.4.5) yields

U1 = Ustr + Umix =
kBT

v/J0

{
1

2
Nv

[
1

λ0
I1 −

3

J0
− 2

J0
log(J0J)

]

−

[
(J − 1

J0
) log(

J

J − 1
J0

) +
χ

J2
0J

] .

(2.4.9)

For both anionic and cationic networks, differentiation of U with respect
to C+ and C− and recalling (2.2.5) yields

δU

δC+

= kBT

ln

(
c+

cref+

)
− ln

(
cH+

crefH+

) (2.4.10)

δU

δC−
= kBT

ln

(
c−

cref−

)
+ ln

(
cH+

crefH+

) (2.4.11)

when treating γ as an unknown constant. The value of γ can be found
by solving (2.3.22) and will be shown below to differ between the two cases.
(2.4.10 - 2.4.11) can be compared with (2.3.20 - 2.3.21) and (2.2.1 - 2.2.3) to
give the Donnan equations,
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c+ = c̄+
cH+

c̄H+

(2.4.12)

c− = c̄−
c̄H+

cH+

, (2.4.13)

thus allowing the ion concentrations inside the network to be expressed
explicitly by cH+ and the known system parameters such as the external ion
concentrations. Solutions for cH+ must be evaluated separately for anionic
and cationic networks.

2.4.1 Anionic dissociation

Using (2.2.5), (2.3.9) can be expressed as

cA− = cH+ + c+ − c−, (2.4.14)

allowing (2.2.35) to be rewritten:

cAH =
f

vJ0J
− (cH+ + c+ − c−). (2.4.15)

Solving (2.3.22) gives the following expression:

crefH+e
− γdis
kBT =

cH+cA−

f
vJ0J
− cA−

. (2.4.16)

By recalling (2.2.6), the right side of (2.4.16) can be identified as the right
side of (2.2.10) multiplied by NA. (2.4.16) can thus be expressed as

cH+(cH+ + c+ − c−)
f

vJ0J
− (cH+ + c+ − c−)

= NAKa, (2.4.17)

where

NAKa = crefH+e
− γdis
kBT . (2.4.18)

An implicit expression for vcH+ can be found by inserting (2.4.12 -2.4.13)
into (2.4.17):

(
1 +

vc̄+
vc̄H+

)
(vcH+)3 +

(
1 +

vc̄+
vc̄H+

)
vNAKa(vcH+)2

−
[
f

J0J
vNAKa + vc̄H+vc̄−

]
(vcH+)− vNAKavc̄H+vc̄− = 0.

(2.4.19)
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This is a cubic equation with coefficients

a = 1 +
vc̄+
vc̄H+

(2.4.20)

b = a · vNAKa (2.4.21)

c = −
[
f

J0J
vNAKa + vc̄H+vc̄−

]
(2.4.22)

d = −vNAKa · vc̄H+ vc̄− (2.4.23)

and can be solved for vcH+ by applying the solution of the cubic equation
given in appendix A.1:

vcH+ =
3

√
q +

√
q2 − p3 +

3

√
q −

√
q2 − p3 − b

3a
(2.4.24)

where

p =
c

3a
−
(
b

3a

)2

(2.4.25)

q =
1

2

(
bc

3a2
− d

a

)
−
(
b

3a

)3

. (2.4.26)

It should be kept in mind that the term
√
q2 − p3 in (2.4.24) can be

complex. This will be discussed further in section 2.5. The non-poroelastic
contribution of the anionic strain energy density function takes the form

U2 = Uion + Udis. (2.4.27)

The anionic material model has been both documented and implemented
in [1] and will not be the focus of the present study. The non-poroelastic con-
tribution to the cationic material model will on the other hand be presented
below.

2.4.2 Cationic association

Using (2.2.5), (2.3.13) can be expressed as

cAH+ = c− − (cH+ + c+) (2.4.28)

allowing (2.2.36) to be rewritten:

cA =
f

vJ0J
+ (cH+ + c+ − c−). (2.4.29)
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Solving (2.3.22) gives the following expression:

crefH+e
γas
kBT =

cH+( f
vJ0J
− cAH+)

cAH+

. (2.4.30)

By recalling (2.2.6), the right side of (2.4.30) can be identified as the right
side of (2.2.14) multiplied by NA. Eq. (2.4.30) can thus be expressed as

cH+ [ f
vJ0J
− (c− − cH+ − c+)]

(c− − cH+ − c+)
= NAKa, (2.4.31)

where

NAKa = crefH+e
γas
kBT . (2.4.32)

(2.4.31) can, by inserting (2.4.12 -2.4.13), be rewritten:

(
1 +

vc̄+
vc̄H+

)
(vcH+)3 +

[
f

J0J
+ vNAKa

(
1 +

vc̄+
vc̄H+

)]
(vcH+)2

− vc̄H+ vc̄−(vcH+)− vNAKa · vc̄H+ vc̄− = 0.

(2.4.33)

This is a cubic equation with the following coefficients:

a = 1 +
vc̄+
vc̄H+

(2.4.34)

b =

[
f

J0J
+ vNAKa · a

]
(2.4.35)

c = −vc̄H+ vc̄− (2.4.36)

d = −vNAKa · vc̄H+ vc̄−. (2.4.37)

The solution will take the same form as for the anionic case and can be
found through (2.4.24-2.4.26). For cationic association the non-poroelastic
contribution takes the form

U2 = Uion + Uas. (2.4.38)

Inserting (2.4.12-2.4.13) into (2.4.6) and (2.4.8) yields
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Uion =kBTJ0J

cH+ ln

(
cH+

crefH+

)
+ c+ ln

 c̄+

cref+

(
c̄H+

crefH+

)−1
cH+

crefH+


+c− ln

 c̄−

cref−

c̄H+

crefH+

(
cH+

crefH+

)−1− cH+

(
1 +

c̄+
c̄H+

+
c̄H+ c̄−
c2H+

)
(2.4.39)

and

Uas = kBT · J0J

cAH+ ln

(
NAKa

crefH+

cAcH+

cAcH+

cAH+

cAH+ + cA

)

+ cA ln

(
cA

cAH+ + cA

)]

= kBT · J0J

cAH+ ln

(
NAKacAH+

cH+cA

)
+ cAH+ ln

(
cH+

crefH+

)

+ (cAH+ + cA) ln

(
cA

cAH+ + cA

)]
(2.4.40)

respectively. The right sides of (2.2.1-2.2.3) can be recognized and sub-
stituted for the chemical potentials yielding

Uion =J0J

c+(µ+ − µH+) + c−(µ− + µH+)− kBT · cAH+ ln

(
cH+

crefH+

)

−kBT · cH+

(
1 +

c̄+
c̄H+

+
c̄H+ c̄−
c2H+

)
(2.4.41)

and
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Uas =J0J

kBT · cAH+ ln

(
cH+

crefH+

)

+kBT · cAH+ ln

(
NAKacAH+

cH+cA

)
+ kBT

f

J0Jv
ln

(
J0JvcA
f

)] (2.4.42)

respectively. Inserting (2.4.41-2.4.42) into (2.4.38) yields

U2 =
kBT

v/J0

[
JvcAH+ ln

(
vNAKavcAH+

vcH+vcA

)
+
f

J0
ln

(
J0JvcA
f

)

−vcH+J

(
1 +

vc̄+
vc̄H+

+
vc̄H+ vc̄−
(vcH+)2

)
+ c+(µ+ − µH+) + c−(µ− + µH+)

]
.

(2.4.43)

The reference concentrations are still represented through (2.2.1-2.2.3).

2.4.3 Finding the initial swelling of the reference state

Eq. (2.1.20) gives an expression for the stress component σ11:

σ11 =
NkBT

J0J
(B11 − 1)− (Πsol + Πion), (2.4.44)

where the osmotic pressure for mixing of the solvent and for the electro-
chemic potential is given by

Πsol = −kBT
v

[
ln

(
1− 1

J0J

)
+

1

J0J
+

χ

(J0J)2

]
(2.4.45)

and
Πion = kBT (cH+ + c+ + c− − c̄H+ − c̄+ − c̄−) (2.4.46)

respectively. In the homogeneous reference state J = 1 and B11 = λ20 =

J
2/3
0 . (2.4.44) then takes the form

σ11 =
kBT

v
· vN
J0

(J
2/3
0 − 1)− (Πsol,0 + Πion,0) = 0, (2.4.47)

where

Πsol,0 = −kBT
v

[
ln

(
1− 1

J0

)
+

1

J0
+

χ

J2
0

]
(2.4.48)
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and

Πion,0 =
kBT

v

[
vcH+ − vc̄H+ +

(
vc̄H+

vcH+

vc̄− − vc̄+
)(

1− vcH+

vc̄H+

)]
, (2.4.49)

after inserting the Donnan equations (2.4.12-2.4.13). Given the initial
conditions and material model, vcH+ can be found as described above. Then
it is just a matter of solving (2.4.47) numerically for J0 in order to find
the initial swelling of the network in the reference state. It is important to
note that this approach is only valid if the reference state is homogeneous
(Ftot = F0) and stress-free (σ = 0). It will not yield a valid solution if
the geometry is arbitrarily constrained as in the current approach, where a
hemiellipsoidal network is being covalently attached to an optical fiber. It
is however assumed that the geometrical constraints are first enforced when
the system has reached the reference state.

2.5 Implementing the cationic model

Inserting (2.1.21) into (2.4.9) yields:

U1 = Ustr + Umix =
kBT

v/J0

{
1

2
Nv

[
1

λ0
J2/3Ī1 −

3

J0
− 2

J0
log(J0J)

]

−

[
(J − 1

J0
) log(

J

J − 1
J0

) +
χ

J2
0J

] .

(2.5.1)

In order to express the free energy density function in terms of the external
salt concentrations instead of the chemical potentials, a suitable Legendre
transformation, Û , can be used[1]:

Û = U − J0J
[
c−(µ− + µH+) + c+(µ+ − µH+)

]
− µSCS

= U1 + Û2,
(2.5.2)

where

Û2 = U2 − J0J
[
c−(µ− + µH+) + c+(µ+ − µH+)

]
− µSCS. (2.5.3)

Inserting (2.4.43), (2.2.4) and (2.2.7) into (2.5.3) yields
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Û2 = kBT

[
J0J ln

(
NAKacAH+

cH+cA

)
cAH+ +

f

v
ln

(
J0JcAv

f

)
−J0J

(
1 +

c̄+
c̄H+

+
c̄H+ c̄−
(cH+)2

)
cH+

+ (J0J − 1)(c̄H+ + c̄+ + c̄−)
]
.

(2.5.4)

This can be expressed as

Û2 =
kBT

v/J0

[
J ln

(
vNAKavcAH+

vcH+vcA

)
vcAH+ +

f

J0
ln

(
J0JvcA
f

)
−J
(

1 +
vc̄+
vc̄H+

+
vc̄H+ vc̄−
(vcH+)2

)
vcH+

+

(
J − 1

J0

)
(vc̄H+ + vc̄+ + vc̄−)

]
.

(2.5.5)

As shown in [1] the chosen Legendre transformation makes Û describe
the material in terms of a hyperelastic solid, and it can thus be implemented
in the user subroutine Uhyper in ABAQUS.

2.5.1 Implementing Û in a user subroutine

The user subroutine Uhyper requires U to be hyperelastic and the initial
stresses to be zero[7]. The subroutine gets Ī1 and J as input from the FE-
program, and needs the characteristic material parameters together with J0,
to enforce homogeneous initial conditions, as further input. This was passed
to Uhyper through the PROPS vector. What needs to be implemented is
according to the ABAQUS documentation the free energy density function
for the hyperelastic material, and its first and second derivatives with respect
to Ī1 and J .

U can be implemented in the user-subroutine UHYPER by solving the
unknown quantity vcH+ and coding U with its first and second derivatives.
Using that information, ABAQUS will be able to calculate the stresses. In
order to implement the free energy density functions in a user subroutine
they were normalized by

Norm =
kBT

v/J0
. (2.5.6)
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To enforce the hyperelastic requirement, Û needed to be implemented in-
stead of U . The normalized contributions to the free energy density function
thus takes the form

U∗1 =
1

2
Nv

[
1

λ0
J2/3Ī1 −

3

J0
− 2

J0
log(J0J)

]
−(J − 1

J0
) log(

J

J − 1
J0

)− χ

J2
0J

(2.5.7)

Û∗2 =vcAH+ ln

(
vNAKavcAH+

vcH+vcA

)
+
f

J0
ln

(
J0JvcA
f

)
− vcH+J

(
1 +

vc̄+
vc̄H+

+
vc̄H+ vc̄−
(vcH+)2

)
+

(
J − 1

J0

)
(vc̄H+ + vc̄+ + vc̄−) .

(2.5.8)

Û was implemented in two separate steps. First U∗1 was coded together
with its derivatives, and then Û∗2 was implemented. While finding the deriva-
tives of U∗1 was quite straightforward, Û∗2 is dependent of several parameters
such as vcH+(J), vcAH+(vcH+) and vcA(vcAH+). The chain rule was there-
fore extensively used in the derivation of the derivatives of Û∗2 , where an
important part was to find the derivatives of vcH+(J).

2.5.2 Derivatives of vcH+(J)

The case where (2.4.24) is complex must be handled in the code in terms
of an if-else structure testing whether q2 − p3 is negative. When negative,
the algorithm for calculating vcH+ used in [1] was adopted. Due to the
logical structure of this algorithm, the derivatives of vcH+ could not be found
directly. However, they could be found by using the derivative of the cubic
equation:

Q(J) ≡ a · [vcH+(J)]3 + b(J) · [vcH+(J)]2 + c · vcH+(J) + d ≡ 0 (2.5.9)

where only the coefficient b is dependent of J .

∂Q

∂J
=
∂vcH+

∂J

[
3a · (vcH+)2 + 2b(J) · vcH+ + c

]
+ (vcH+)2 · ∂b(J)

∂J

=
∂vcH+

∂J
· u(J) + (vcH+)2 · ∂b(J)

∂J
= 0,

(2.5.10)
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where

u(J) = 3a · [vcH+(J)]2 + 2b(J) · vcH+(J) + c. (2.5.11)

Rearranging (2.5.10) expresses ∂vcH+

∂J
explicitly:

∂vcH+

∂J
= − [vcH+(J)]2

u(J)
· ∂b(J)

∂J
. (2.5.12)

Since all the variables on the right side of (2.5.12) can be readily calcu-
lated, this expression can be implemented directly in the user subroutine.
To find ∂2vcH+

∂J2 , the chain rule can be applied on (2.5.12), and the right side
of (2.5.12) can be recognized as an implicit term in the result and then be
substituted by ∂vcH+

∂J
. A similar approach can also be used to find the third

derivative of vcH+ .
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Figure 2: Schematic of an anionic polymer network and the external so-
lution. The polymer network contains fixed ionizable groups and charges,
while both network and external solution contains the solvent and all types
of free ions, and fulfills electroneutrality. For a cationic network, the fixed
species in the network will take a different form.
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3 Simulation setup

3.1 Geometry and parameters

The parameters used to describe the properties and geometry of the hydrogel
sensor are defined in table 4. The sensor being modeled is a hemispheroidal
hydrogel, covalently attached to an optical fiber. The main component of
the network is Acrylamide monomers with Bisacrylamide as a crosslinker. A
fraction of the monomers also contain ionizable groups that will make the
swelling depend on pH and I. An optical micrograph of the geometry is
shown in figure 3.

Table 4: Parameters defining the properties and geometry of the hydrogel
network.

vN 1 1/vN is the number of monomers per polymer chain
χ 1 Flory-Huggins parameter
f 1 Fraction of monomers with ionizable group
pKa 1 Logarithmic acid dissociation constant
pH0 1 pH value at polymerization
I M Salt concentration, or ion strength, in the external solution
I0 M Ion strength in the external solution at polymerization
λ0 1 Initial, stress-free principal stretch
L0 m Initial, stress-free axial/longitudinal thickness
Lg m Constrained, deformed axial thickness
Lopt m Optical length of the deformed axial thickness
Rf m Radius of the optical fiber
Lf m Axial length of the optical fiber included in the simulation
Ls m Shell thickness
fs 1 Relative shell thickness
LS m Arc length of the outer hydrogel surface

The axial optical length Lopt of the attached hydrogel is found by sending
light through the fiber and comparing the reflection in the interface between
fiber and gel with the reflection in the interface between gel and solvent.
The optical duct for the light can be seen in the center of the optical fiber in
figure 3. The diameter of the optical fiber is 2Rf = 125 µm, while the initial
physical axial length L0 typically is 50 µm.

Since Lopt is measured with the sensor while Lg is retrieved from the
simulations, a relation between the lengths must be established. The theory
of converting between Lopt and Lg of the hydrogel is described in [2]. An
approximate relation between the lengths is
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Figure 3: Optical micrograph of hemispherical hydrogel, covalently at-
tached to the end of an optical fiber. Reproduced from [2] with permission.
The diameter of the fiber is 125 µm, while Lg is typically 50 µm.

Lg '
Lopt
1.33

, (3.1.1)

where the refractive index of water, 1.33, is used. (3.1.1) can thus be
used in comparison of simulation results with experimental data. The sensor
accuracy for Lopt is approximately 2 nm. For a hydrogel with Lg = 50 µm
this yields an error of

δ50 '
2 nm

1.33 · 50000 nm
' 0.003%. (3.1.2)

It can be seen from the expression that the error will be even smaller for
Lg > 50 µm. This will often be the case when the hydrogel swells, even for
smaller values of L0.

3.1.1 Geometry of the sensor system

Figure 4 shows the geometry of the hydrogel sensor and the defining lengths
implemented in the simulations. Rf is the radius of the fiber and will through-
out the simulations be set to 62.5 µm in accordance with the optical micro-
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graph in figure 3. Lf is the length of the fiber, and needs to be long enough
to enable contact between the outer part of the fiber and the surface of the
gel in cases of extreme swelling. Apart from that, it only plays a visal role
and needs to be greater than zero. LS is the surface arc length of the outer
hydrogel surface, or the shell. Ls defines the thickness of the shell, that
might be attributed different material parameters than the core of the gel to
simulate the effects of impregnating the hydrogel. This parameter will for
practical reasons be passed to the simulations in terms of the relative shell
thickness,

fs =
Ls
L0

. (3.1.3)

Lf

Rf

Ls

Ls

L0

z

r

LS

Figure 4: Sketch of the geometry showing the lengths. The coordinates
are cylindrical and the longitudinal axis, z, is the symmetry axis.

3.1.2 Materials

See table 5 for the materials used in this section. The gels AMPSA1 and
AMPSA2 denotes acrylamide hydrogels where 1.54 mol% and 2.2 mol%
respectively of the monomer groups are AMPSA. The gels DMAPA3 and
DMAPA7 denotes acrylamide polymer hydrogels where 3 mol% and 7 mol%
respectively of the monomer groups are DMAPA. CHIT300 denotes CHIT
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with molecular weight of about 300 kDa. AMPSAim denotes AMPSA2 im-
pregnated with CHIT300.

Table 5: The ionizable groups of monomers in the polymer network.

AMPSA 2-Acrylamido-2-methylpropanesulfonic Acid
pKa = 2.0 ; SO3H ⇀↽ SO−3 +H+

DMAPA N-(3-dimethylaminopropyl) acrylamide
pKa = 9.5 ; NH +H2O ⇀↽ NH+

2 +OH−

CHIT Chitosan
pKa = 6.5 ; NH +H2O ⇀↽ NH+

2 +OH−

3.1.3 Parameter values

The parameter values in table 6 are partly retrieved from papers and partly
being estimated. For the AMPSA gels, pKa, f , pH0, I0 and L0 could be
found in [8], while the rest had to be estimated using the experimental data
they provided. For the DMAPA gels only f , pH0 and I0 could be found in
[2], and the rest of the parameters had to be estimated from the provided
experimental data. The estimation process is reproduced in section 4.1.

Table 6: The gels and parameters used in the simulation setup. Some
parameters for the DMAPA and AMPSA gels were provided from [2] and
[8] respectively, together with experimental data to estimate the remaining
parameters.

Chemical parameters Geometrical parameters
Gel vN χ pKa f pH0 I0 [mM] L0 [µm] λ0
AMPSA1 3.4e-3 0.37 2.0 0.0154 5 150 50.79 2.2754
AMPSA2 3.0e-3 0.37 2.0 0.0220 5 150 42.81 2.3379
DMAPA3 4.9e-2 0.41 9.5 0.03 6.7 50 50.0 1.5598
DMAPA7 5.1e-2 0.41 9.5 0.07 6.7 50 50.0 1.6743

These parameter values govern the hydrogel swelling behavior together
with the free energy density function U .

3.2 Calculation and simulation

This section will be focusing on the simulation setup and the representation
of the simulation results. Table 7 introduces the parameters relevant for
setting up the simulations, while tables 8 and 9 presents the parameters used
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to present the results in section 4. The swelling capacity describes the axial
deformation in relation to the initial geometry of the polymer network:

∆L = Lg − L0 (3.2.1)
∆Lexp = Lexpg − L0. (3.2.2)

∆Lim = Limg − L0. (3.2.3)

Table 7: Parameters used in representation of simulation results.

Lfreeg m Unconstrained axial deformation
Lnumg m Lfreeg , obtained from numerical calculations
Limg m Constrained axial deformation of impregnated gel
Lexpg m Constrained axial deformation from experimental data
∆L m Swelling capacity for constrained axial deformation
∆Lexp m Swelling capacity for Lexpg

∆Lim m Swelling capacity for Limg
ε 1 Strain: see table 8
εr 1 Relative swelling capacity
δ 1 Relative deviation: see table 9
ξ 1 Square of residuals
w 1 Weight function
ES 1 Number of simulation grid elements along the gel surface, LS
E∗S 1 Approximate number of elements along LS
Ef 1 Number of elements in the optical fiber along Rf

Es,min 1 Minimum number of elements along thickness of the shell

∆L is useful when comparing swelling curves from gels with the same
chemical parameter values but with deviating geometries. The strains in
table 8 describe the relative difference between one state and another state
used as a reference. Most notable is εc, which is gives a relative comparison
between constrained swelling through Lg and free swelling through Lfreeg .

In addition to the strains in table 8 the relative swelling capacity, εr, can
also be expressed:

εr =
∆L−∆Lim

∆L
. (3.2.4)

Table 9 shows the relative deviations. Rather than comparing one state
with a different one, δ compares two representations of the same state and is
thus a measure of the relative error between the representations. The most
important one is δe, which is the error of the simulation results compared
with experimental data.
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Table 8: Strain definitions. The strains can be understood as a relative
difference between one state and another state used as a reference.

Strain Definition
Volumetric εv = J−J0

J0

Longitudinal εl = Lg−L0

L0

Constrictional εc =
Lg−Lfreeg

Lfreeg

Impregnational εs =
Limg −Lg
Lg

Table 9: Relative deviations. The deviations represents the error of one
representation of a data set compared with another.

Relative deviation Definition

from experimental data for Lg δe =
Lg−Lexpg

Lexpg

from numerical calculations or Lfreeg δn =
Lfreeg −Lnumg

Lnumg

from numerical calculations for Jfree δn,v = Jfree−Jnum
Jnum

3.2.1 Simulation setup

Table 10 shows geometrical parameters used to define the geometry of the
simulation models throughout the simulations. The true number of grid
elements along the hemispheroidal surface of the gel, ES, will deviate from
the desired number of elements, E∗S, due to an approximation of hemispheric
gel surface in calculating the mesh seed needed to achieve ES. The difference
between ES and E∗S is small, however. As shown in section 4.1.1, even a
moderate difference would have been of no practical consequence.

Table 10: Fixed geometrical parameter values defining the geometry of
a simulation model.

Rf [µm] Lf E∗S Ef
62.5 1

3
Rf 30 9

The number of grid elements along the fiber radius, Ef , is only a visual
parameter, as the elements in the fiber part of the model normally don’t ex-
perience any forces from the gel. The movement restrictions on the hydrogel
from the fiber is enforced by restricting all the nodes of the hydrogel along
the fiber-gel interface. The fiber elements will only experience forces if the
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hydrogel swells sufficiently to allow the outer surfaces of the fiber and gel
to make contact. It is thus only required that Ef ≥ 1, and the number of
elements along Lf will be a third of Ef , rounded up.

Table 11 shows a set of gels with geometric parameters to complement the
values in table 10. When Es,min is set to 1, the mesh will have equal resolution
in core and the shell of the gel, and should thus be done in simulations where
the effects of impregnation are not considered.

Table 11: Parameters defining the geometry of a simulation model for a
pair of gels together with the values in table 10.

Gel L0 [µm] fs Es,min
AMPSA1 50.79 0.15 1
AMPSAim 42.81 0.15 5

The simulation models resulting from the parameter values in tables 10
and 11 are given in figures 5 and 6 for AMPSA1 and AMPSAim respectively.

Figure 5: Simulation model of the sensor for AMPSA1. The model is 2D
axisymmetrical, with ES = 28 along the surface arc, LS .
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Figure 6: Simulation model of the sensor for AMPSAim. The model is
2D axisymmetrical, with ES = 27. The interface between the core and
the shell of the gel can clearly be seen where the mesh of the gel becomes
denser.

The effect of adjusting Es,min can be seen when comparing the figures.
In figure 5 the shell inherits the density of the core, since Es,min is smaller
than what the mesh density of the core of the gel would dictate. In figure
6 the value of Es,min is greater than the inherited value, and thus overrides
it. Here the boundary between the core and the shell of the gel can be seen
clearly, while this interface is obscured in figure 5 due to the homogeneous
mesh density of the gel.

Figure 7 illustrates the axisymmetric properties of the simulation setup,
and is based on the mesh of AMPSAim in figure 6. The axisymmetric prop-
erty of the simulation setup ensures that the three dimensional sensor in
figure 3 can be modeled using a 2D representation.

In addition to the geometry, the chemical nature of the hydrogel must also
be defined in the simulation together with input parameters to tell whether
the gel is divided in core and shell, and if the simulation is free or constrained.
The parameters needed to define a simulation are listed in table 12 under
their respective property vector.
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Figure 7: The mesh in figure 6 for AMPSAim swept in a 300 degree angle
for illustrational purposes.

Table 12: Property vectors. AnCat = 1 for anionic gels and AnCat = 2
for cationic gels. The parameters in the flags vector are described in
tables 13 and 14.

Property vector Parameters
gelGeom [L0,Rf ,fs,E∗S,Es,min,Ef ]
chemProps [vN ,χ,pKa,f ,AnCat]

flags [CoreShell,Cons]

Table 13: CoreShell flag. Describes the chemical properties of the gel
together with chemProps in table 12

CoreShell Description
1 Purely anionic gel
2 Purely cationic gel
12 Anionic core, cationic shell
21 Cationic core, anionic shell
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Table 14: Constriction flag. Governs whether the simulation is geomet-
rically constrained along the fiber-hydrogel interface.

Cons Description
0 Free swelling
1 Constrained swelling
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3.2.2 Parameter estimation setup

As stated in section 3.1.3, not all the characteristic gel parameters were
known a priori and had to be estimated by fitting simulation results to exper-
imental data. This fitting was done through iterative nonlinear least square
estimation and some relations must thus be established in that regard. ξ is
the square of residuals used in the parameter estimation:

ξ =
∑
i

wi(Lg,i − Lexpg,i )2, (3.2.5)

where w is a weight function with wi = 1 for the unweighted case. By
using wi = 1/Lexpg,i , (3.2.5) can be expressed in terms of δe:

ξ =
∑
i

(δe,i)
2. (3.2.6)

The square of residuals can also be expressed in terms of the swelling
capacity:

ξ̄ =
∑
i

wi(∆Li −∆Lexpi )2. (3.2.7)

The program flow of the parameter estimation process is described in fig-
ure 8. TheMatlab function lsqnonlin is initiated with initial parameter values
and a specified tolerance. The Matlab function getDiff will also be passed on
to lsqnonlin in order for it to retrieve the differences to be minimized. The
tolerance includes the maximum number of times lsqnonlin can call getDiff
and the number of decimals to be estimated for the set of variables.

For each iteration, lsqnonlin changes the estimation parameters and re-
trieves a new set of differences between simulation results and experimental
data. It then computes the square of residuals from one of the equations
(3.2.5-3.2.7), depending on the contents of getDiff and form of the experi-
mental data, and attempts to minimize ξ. When the conditions of the estima-
tion reaches the provided tolerance, the estimation process will be terminated
and the parameter values corresponding to the minimum value of ξ will be
sent back to the initial script.

The simulations themselves were being run in Abaqus as described in
section 2.5. The parameters defining the geometry and nature of the gel were
passed to Abaqus from the Matlab function getData, which also retrieved Lg
and J from the FEM-software, enabling getDiff to calculate the deviation
from Lexpg .

36



Estimate P0, tol

disp(P)

lsqnonlin

new cond

new P
If cond < tol

   -->

else

   -->

end

minimize P

by rms(D)

P P0,tolDP

E

Start

End

P: Estimation parameters

G: Geometric parameters

tol: Tolerance

cond: Iteration conditions

E: Experimental data

F: FEM simulation data

D: Deviation/di erence

getExp

E

getDi
D=E-F

G

F

getData

1

3

2

1

2

1 3

2

3

1

1

2

G,P

G,P

F

UHYPER

MATLAB ABAQUS

Figure 8: Program flow of the parameter estimation. The solid box in
the right top corner of a program lists the constants defined in the routine.
The numbers in the dotted boxes indicate the order of which the modules
of a program is run, while the arrows represent program calls with input
parameters or a return call with output parameters.

4 Results

4.1 Development of method

4.1.1 Determining a feasible mesh resolution

The finite element calculations are numerical and the precision is ultimately
restricted by the number of elements in the mesh. Figures 9b and d show
how the relative deviation between the steps converges towards zero as ES is
increased.

The difference in Lg when going from ES = 22 to ES = 47 elements
along the surface is less than 0.007 percent while the difference from 47 to
92 elements is less than 0.0003 percent. The systematic error of choosing a
value of ES between 22 and 47 elements will thus yield a systematic error of
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Figure 9: a) Cationic constrained swelling along the symmetry axis using
different mesh densities, represented by ES . b) Relative deviation in Lg
for a given value of ES from a) compared to the previous, lower value. c)
Relative volume change for different mesh densities. d) Relative deviation
in J for a given value of ES from c) compared to the previous, lower value.
The curves in a) and c) are approximately coinciding.

less than 0.01 percent, without becoming too computationally demanding.
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4.1.2 Error of assuming an incorrect reference state

In both [8] and [2] the hydrogels are polymerized and even impregnated[2]
at a set of reference conditions often a bit different from the starting condi-
tions of the measurements. The hydrogels are therefore not in a stress-free
reference condition at the start of the measurements, which is a crucial crite-
rion for simulations running the UHYPER subroutine in ABAQUS. Figure 10
shows the effect of assuming different start conditions than the true reference
conditions as the stress-free state for the AMPSA2 hydrogel.
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Figure 10: a) The effect of assuming a different reference state than the
true stress free state for AMPSA2. The stars indicate the initial condi-
tions of the assumed reference states. b) The relative deviation from the
reference curve for each of the other lines in a).

The error of choosing I0 = 100 mM as initial condition instead of 150 mM
is in figure 10b shown to less than 0.1 percent while the choice of I0 = 10
mM yields an error approaching 0.9 percent. The deviation is smaller again
for I0 = 1 mM which is due to the upper plateau of the swelling curve
already being reached and the proximity to the end condition, preventing
much cumulation of error. How much a deviation in I0 will impact on the
swelling curve is thus dependent on both the deviation itself and the slope
of the line.

4.1.3 Limitations of the initial conditions

The limits of the initial conditions of the simulations using Uhyper are given
in figure 11 and figure 12 for the AMPSA2 and DMAPA7 hydrogels, respec-
tively. For initial conditions outside the indicated ranges, the simulations
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were found to not converge and thus abort. The determination of such lim-
its is a useful tool when setting up a more complex simulation series where
the initial conditions and simulation range is being varied for simulations
featuring different material models.
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Figure 11: Range of valid AMPSA2 simulation intervals for a) I and b)
pH. For a given value along the x-axis, the limits of the interval can be
read out along the y-axis. The inner limits are confirmed to give converging
simulations while the outer limits are confirmed not to, when they aren’t
indicating invalid ranges, such as the 1 M limit. The outer and inner lower
limits coincide in a) while the lower outer limit is practically non-existent
in b).

It can be seen from the figures that for simulations combining the AMPSA2

and DMAPA7 hydrogels and varying I in the range 3 to 100 mM is bound to
conducted around pH 5, and that a simulation varying pH in the range 4 to 6
must be conducted for a value of I just around 10 mM. This implies that any
simulations combining AMPSA2 and DMAPA7 will have to be conducted in
the range where the anionic gel is fully dissociated and the cationic gel is
fully associated, i.e. both gels are fully charged and more sensitive to the
concentration of mobile ions. Similar constrictions should be expected for
models utilizing other combinations of anionic and cationic materials as well.
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Figure 12: Range of valid DMAPA7 simulation intervals for a) I and b)
pH. For a given value along the x-axis, the limits of the interval can be
read out along the y-axis. The inner limits are confirmed to give converging
simulations while the outer limits are confirmed not to, when they aren’t
indicating invalid ranges, such as the 1 M limit.

4.1.4 Estimating characteristic gel parameters

The geometrical properties of a homogeneous hydrogel sensor will generally
be known a priori or found in the initial measurements. Some of the chemical
parameters can also be known a priori or be experimentally controlled vari-
ables, like f , while the rest of them, vN and χ in particular, will have to be
estimated by fitting simulation results to available experimental data. The
parameters were estimated by running simulations with different parameter
values and minimizing χ as described in section 3.2.2.

For anionic hydrogel swelling, data for AMPSA1 and AMPSA2 was provided[8].
The unknown simulation parameters were vN and χ. The initial estimate
combined deviations of both AMPSA1 and AMPSA2. The initial and final
parameters are listed in table 15.

Table 15: AMPSA1 and AMPSA2 fitted dependently.

Values vN χ ξ1,I ξ2,I
Initial 1.0e-3 0.40 - -
Final 3.14e-3 0.372 9.90e-4 4.35e-4

Independent estimates of the AMPSA-gels were then conducted in order
to validate the previous estimate. The results are given in table 16 and
corresponds closely with the combined estimates.

χ is in principle the same for the AMPSA-gels while vN might vary
slightly. The results in table 16 confirms this and also suggests a value of
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Table 16: The AMPSA-gels fitted separately.

Gel vN χ ξi,I
All; Initial 3.1e-3 0.4 -
AMPSA1 3.42e-3 0.370 2.44e-4
AMPSA2 3.02e-3 0.373 7.08e-5

χ = 0.37. Using this value, independent estimates were run to determine
vN . These values are given in table 17 and confirms the previous estimate.
The resulting chemical parameters were implemented in table 6 and the final
fitting is reproduced in figure 16.

Table 17: The AMPSA-gels fitted independently for χ = 0.37.

Gel vN ξi,I
All; Initial 3.1e-3 -
AMPSA1 3.42e-3 2.44e-4
AMPSA2 2.98e-3 7.85e-5

4.1.5 DMAPA-estimation

For cationic swelling, [2] provided swelling data for DMAPA3 and DMAPA7

and the unknown simulation parameters were vN , χ, pKa and L0. L0 is un-
known due to the swelling data being presented in terms of ∆L in the study.
As with the estimation of the AMPSA parameters, an initial fit involving
the the combined deviations of the DMAPA gels was conducted, assuming
L0 = 50.0 µm. The estimated parameters are given in table 18 and the fitting
result is shown in figure 13. It can be noted that the pKa value appears to
be 9.5 as opposed to 8.6[2]. The respective sums of residuals, ξ, should be
comparable for the different curve fittings of DMAPA.

Table 18: The DMAPA-gels fitted dependently for both pH and I, as-
suming L0 = 50.0 µm. The result of the process is reproduced in figure 13.

Values vN χ pKa ξ3,pH ξ3,I ξ7,pH ξ7,I
Initial 3.0e-2 0.4 8.6 - - - -
Final 5.4e-2 0.43 9.5 1.65 0.05 0.29 1.23

The parameter values from the combined estimate were then used as
initial values for independent simulations for each case of swelling. The
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Figure 13: Comparison of experimental data with the simulation results
of cationic swelling using the final parameter values in table 18. Swelling
capacity compared with experimental data for a) increasing ion strength
and c) increasing pH. b) and d) show the deviation between the simula-
tions and swelling data in a) and c) respectively.

results are given in table 19 and show that the values are close to the values
from the combined estimate, with the exception of DMAPA3,I . The latter
estimate reached the upper bound for pKa and approached the lower bound
for L0.

The values of L0, with exception of DMAPA3,I , are close to the suggested
initial value and are thus assumed to either lay close to the true value or
having little effect on the overall estimate. The latter is most likely due to
the natural spread in L0 when polymerizing the gels. Either way; for the rest
of the estimates L0 will be assumed to be 50.0 µm.

The pH simulations indicate a higher χ value than the I simulations
and are more consistent with the combined estimate. The I simulations are
conducted at pH 6.7 which is far from the pKa value of about 9.5. They are
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Table 19: DMAPA-gels estimated separately. The values indicated in
bold have reached or are approaching the upper or lower bounds of the
estimation.

Gel vN χ pKa L0[µm] ξ
All; initial 5.0e-2 0.40 9.5 50 -
DMAPA3,pH 5.1e-2 0.44 9.5 48 0.10
DMAPA7,pH 4.5e-2 0.37 9.5 47 0.44
DMAPA3,I 4.5e-2 0.13 11.0 38 0.41
DMAPA7,I 5.4e-2 0.22 9.4 45 0.48

therefore assumed to be less sensitive to the pKa than the pH simulations.
In order to extract the pKa value, a combined fitting of the two pH series
was conducted with a higher resolution than the previous attempts. The
results are given in table 20 and clearly indicate that the pKa value is 9.5 in
agreement with table 18.

Table 20: The DMAPA-gels fitted dependently with respect to pH. pKa

was found to be 9.5.

Values vN χ pKa ξ3,pH ξ7,pH
Initial 5.0e-2 0.40 9.5 - -
Final 4.80e-2 0.401 9.53 0.041 0.276

Figure 13 shows that the parts of DMAPAI exceeding 100 mM couldn’t
be fitted properly by the simulations. DMAPA3,I even display a trend of
increasing Lg for increasing I, a phenomena that can’t be reproduced by the
current theory and material models for neither cationic nor anionic gels. The
estimated line of DMAPA3,I clearly cuts through the experimental curve to
compensate for this effect. This deviation from the material model might
also account for the failure in estimating the parameters for DMAPA3,I in
table 19.

The parameters in table 21 were estimated by excluding the parts where
I > 100 mM. The values are not far from the initial estimate in table 18,
but the ξ values are, with the exception of ξ7,pH , considerably lower. Note
that the values for ξi,I can’t be directly compared between tables 18 and 21
due to the truncation of the data for high ion strength, since the loss of data
points will contribute directly to lower the value of ξ.

As with AMPSA, χ is assumed to be equal for the DMAPA-gels. Fur-
thermore, the value of χ seems to be consistent whether or not the data is
truncated above I = 150 mM, by comparison of tables 20 and 21. By us-
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Table 21: The DMAPA-gels fitted dependently for both pH and I, ex-
cluding the parts where I > 100 mM. χ was found to be 0.41.

Values vN χ ξ3,pH ξ3,I ξ7,pH ξ7,I
Initial 5.0e-2 4.0 - - - -
Final 4.69e-2 0.407 0.053 0.216 0.048 0.901

ing the value of χ = 0.41, vN was estimated individually for DMAPA1 and
DMAPA2 in table 22.

Table 22: The value of vN was estimated for DMAPA3 and DMAPA7

by combining the deviations with respect to f . The simulations were
conducted with pKa = 9, 5 and χ = 0.41, excluding the parts where I >
100 mM.

Values vN ξi,pH ξi,I
InitialAll 4.7e-2 - -
Final3 4.88e-2 0.118 0.047
Final7 5.12e-2 0.721 0.309

The estimated values of vN can only be assumed to be valid for I <
100 mM while χ and especially pKa seems to be more generally valid. The
material model is evidently more applicable on DMAPA for pH simulations
than for I simulations. The estimated parameter values are incorporated in
table 6 together with the ones known a priori, and the final estimates are
given in figure 17.

4.1.6 pKa-value

It was observed in figure 13a that the pKa-value in the simulation deviates
much from the midpoint of the swelling curve for varying pH. Figures 14 and
15 show the swelling fraction as a function of pKa for free and constrained
swelling simulations respectively, for both AMPSA2 and DMAPA7. For a
solution of ionizable groups, an equal amount of groups will be associated
and dissociated at the pKa-value. If the swelling was proportional with the
distribution of associated and dissociated groups, the swelling fraction would
thus have been 1

2
at the pKa-value.

The figures indicate that this is not the general case for free nor con-
strained swelling. The swelling fraction is, with the exception of figure 15b,
far below the midpoint, implying that the pKa-value is strongly shifted to-
wards the plateau of minimum swelling. It can also be seen that lower ion
strength will increase this shift. It should be noted that the the swelling
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fraction is around equilibrium for DMAPA7 at I0 = 50mM and pKa = 8.5,
as suggested in [2].
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Figure 14: Free swelling. a) AMPSA2, shrunk reference state. b)
DMAPA7, swollen reference state.
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Figure 15: Constrained swelling. a) AMPSA2, shrunk reference state.
b) DMAPA7, swollen reference state.

The AMPSA- and DMAPA-simulations are conducted with shrunk and
swollen reference states respectively. By comparing figures 14 and 15, it can
be seen that the constrictions have little effect on the swelling fraction for
the shrunk reference state (a), while they contribute significantly in the case
with swollen reference state (b).
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4.2 Validation of material models

4.2.1 Comparison to experimental data

Simulations of AMPSA1 and AMPSA2 have been compared with experimen-
tal data for the estimated parameters given in table 6. Figure 16a shows the
plots together, while figure 16b shows the deviation between simulations and
experimental measurements.
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Figure 16: Comparison of constrained simulations with experimental
data for anionic swelling. a) Comparison with experimental data for de-
creasing I. b) Relative deviation between the simulations and swelling
data in a).

The curves show good agreement between the simulations and experimen-
tal data. The deviations are less than a percentage from the experimental
data at any point and it can be noted that the curves in figure 16b in a broad
sense seem to run parallel. This can be an indication of a systematic error
either in the experiments or in the theory and simulations.

Figures 17a and 17c shows the comparison of simulation results and ex-
perimental data from [2] for increasing ion strength and pH, respectively.
The pH-simulations show good agreement with the experimental data. The
estimated value of pKa for fitting the data was found to be 9.5, as opposed
to 8.6[2]. This is closer to the bottom plateau of the pH-curves in figure
17c than the midpoint of the slope. The ion strength simulation fails to re-
produce the experimental trends for I < 100 mM. Figure 17b also shows a
strong parallel tendency in this range.
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Figure 17: Comparison of constrained simulations with experimental
data for cationic swelling. Swelling capacity compared with experimental
data for a) increasing ion strength and c) increasing pH. b) and d) show
the deviation between the simulations and swelling data in a) and c),
respectively.

4.2.2 Free swelling

Equation 2.4.47 has been used as a basis for the numerical calculations in
this section, by solving it for J0 and calculating Lfreeg in accordance with
section A.2. It can be seen in figure 18 that the results are equivalent for
Lfreeg and J . δ even have the same form for the two cases, although with
different offsets. J will thus be omitted from the rest of the section.

Figure 19 shows Lfreeg for decreasing pH. The deviation is less than 0.005
percent, with the exception of the initial point of I = 150 mM, where the
deviation is several times higher than for the other values of I. Figure 20
shows Lfreeg for increasing pH, and it can be clearly seen that the deviation
increases as the simulation approaches the upper pH limit of about 6, indi-

48



10
−3

10
−2

10
−1

44

46

48

50

52

54

I / M

L
g
 /
 µ

m

 

 
a

10
−3

10
−2

10
−1

−6

−5

−4

−3

−2

−1

0

1

2

3

x 10
−3

I / M

δ
n
  
/ 
%

 

 
b

10
−3

10
−2

10
−1

1

1.2

1.4

1.6

1.8

2

2.2

I / M

J

 

 
c

10
−3

10
−2

10
−1

0

5

10

15

20

x 10
−3

I / M

δ
n

,v
 /
 %

 

 
d

pH 3.0
num

pH 3.0
free

pH 4.0
num

pH 4.0
free

pH 5.0
num

pH 5.0
free

pH 3.0

pH 4.0

pH 5.0

pH 3.0
num

pH 3.0
free

pH 4.0
num

pH 4.0
free

pH 5.0
num

pH 5.0
free

pH 3.0

pH 4.0

pH 5.0

Figure 18: Comparison of unconstrained simulations and numerical cal-
culations for homogeneous swelling when decreasing I for AMPSA2. a)
and c) show the axial deformation and relative change in volume, re-
spectively. b) and d) are the relative deviations between unconstrained
swelling and numerical calculations in a) and c), respectively.

cated in figure 11a. It only shows significantly for I = 150 mM, where the
upper pH-limit is about 5. This can be an indication on why the deviation
for I = 150 mM is relatively big in figure 19b, with initial pH 5.
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Figure 19: Comparison of unconstrained simulations and numerical cal-
culations for homogeneous swelling when decreasing pH for AMPSA2. a)
shows the axial deformation while b) shows the relative deviation between
unconstrained swelling and numerical calculations in a).
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Figure 21 shows comparison of increasing I-simulations for DMAPA7

compared with numerical calculations for several values of pH. For pH much
lower than the pKa of 9.5, Lfreeg is monotonously decreasing, while it is unaf-
fected at pH-values slightly larger than the pKa. For a pH slightly less than
the pKa, Lfreeg increases before it decreases again, reaching a net decrease.
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Figure 21: Comparison of unconstrained simulations and numerical cal-
culations for homogeneous swelling when increasing I for DMAPA7. a)
shows the axial deformation while b) shows the relative deviation between
unconstrained swelling and numerical calculations in a).

Figure 22 shows how the deviation between increasing pH-simulations and
numerical calculations abruptly increases when the simulations approaches
the range indicated in figure 12a.
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4.2.3 Comparison of free and constrained simulations

A major part of the present study is comparing free and constrained swelling,
to determine the effect of the geometrical constraints in the sensor setup. The
AMSPA2 gel has been used in the simulations for anionic swelling. Figures
23 and 24 show the effect of the constraints when using ionic strength and
pH as the experimental parameter, respectively. Figure 23a shows that the
swelling in the axial direction increases when the gel is constrained, despite
the decrease in overall swelling shown in figure 23c.

The results in figure 24 also show increased swelling along the axial direc-
tion despite an overall decrease in volume when constraining the gel. This
implies that the constraints of the geometry reduces the overall swelling but
enhances the swelling along the unrestricted direction for the anionic gel.

For cationic swelling, the DMAPA7 gel has been used in the simulations.
The results in figure 25 are completely analogous to figure 23, showing that
there is no principal difference between anionic and cationic swelling as a
function of I. The results in figure 26 are also analogous to figure 24 with
the exception that the anionic gel swells while the cationic gel shrinks with
increasing pH. This implies that the constraints of the geometry reduces the
overall change in volume, but enhances the swelling or shrinking along the
unrestricted direction for both gels.

In figures 23 - 26, it can be observed that the deviation between the free
and constrained gels increases with the degree of swelling or shrinking. The
error in assuming free swelling is significant compared with the experimental

52



10
−3

10
−2

10
−1

44

46

48

50

52

54

56

58

60

I / M

L
g
 /
 µ

m

 

 
a pH 3

free

pH 3
cons

pH 5
free

pH 5
cons

10
−3

10
−2

10
−1

−7

−6

−5

−4

−3

−2

−1

0

I / M

ε
c
  
/ 
%

 

 
b

pH 3

pH 5

10
−3

10
−2

10
−1

1

1.2

1.4

1.6

1.8

2

2.2

I / M

J

 

 
c pH 3

free

pH 3
cons

pH 5
free

pH 5
cons

10
−3

10
−2

10
−1

0

2

4

6

8

10

12

14

16

18

I / M

ε
v
  
/ 
%

 

 
d pH 3

pH 5

Figure 23: Comparison of free and constrained anionic swelling for
AMPSA2 at different pH-values. a) shows the swelling along the axial
direction while c) shows the relative change in volume. b) and d) show
the difference in a) and c), respectively.

accuracy and numerical precision of the simulations. The deviation in the
axial length is throughout the figures opposite in sign and about half in
magnitude, compared with the deviation in volume.

The electrostatic contribution to the swelling increases with the amount
of fixed charges in the networks. The anionic and cationic polymer chains be-
come charged upon proton dissociation and association, respectively. Hence,
the gels behave oppositely with respect to pH as can be seen in figures 24 and
26. There it can also be confirmed that when the gels are uncharged they are
insensitive to the salt concentration, and that the sensitivity increases with
the charge of the gels.
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4.3 Impregnational effects

4.3.1 Shell

Figures 27 through ?? shows surface plots of constrained simulations of
AMPSAim. χ is assumed to be uniform throughout both core and shell
of the gel. Figure 27a shows how the swelling capacity varies with the thick-
ness and the network density of the shell, for a shells in the thick range. It
can be seen that the equicontours starts exhibiting a linear nature in the
for vNshell > vNcore. Figure 27b shows the relative swelling capacity of an
impregnated gel compared to an untreated one. εr = 50 % for log10(vN) in
the range of -1.75 to -1.25.
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Figure 27: Surface plot of a) swelling capacity and b) relative swelling
capacity as a function of vN of the shell and fs for AMPSAim. I = 0.5
mM and fs in the range of a thick shell. The dashed line indicate the
vN -value of the gels core while the dotted lines are equidistant contours
with spacing of 1 µm and 10 % for a) and b), respectively.

Figure 28a shows how the swelling capacity varies with the thickness and
the network density of the shell, for a shells in the very thin range. The
equicontours fails to show the same linear nature in this region. εr = 50 %
for log10(vN) in the range of -1.25 to -1.

Figure 29a plots the swelling capacity for an untreated hydrogel, together
with three cases of impregnated hydrogels. The two simulated impregnated
gels have vN and fs chosen to match the reduction in swelling capacity for
the untreated and experimental swelling curves, using figures 27-28 for the
thick and the thin shell, respectively. It can be seen that none of the lines
from impregnated gels intersect at low I, which was the requrement.

In figure 29b, the curves from a) have been normalized my their maxi-
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Figure 28: Same plot as figure 27, but with fs in the range of a thin
shell. The dotted lines are equidistant contours with spacing of 1 µm and
10 % for a) and b), respectively.

mum value, so the different shapes can be compared. The two impregnated
simulations almost coincide, and lay above the untreated hydrogels, while
the experimental curve lies below it.

Figures 30 through 32 show the AMPSA2 swelling simulations from figure
29a. The stesses are given as normalized von Mises stresses, that is an non-
directional stress based on all the principal stresses, and the normalization
in (2.5.6). It can be seen that the stresses in the thin shell is approximately
three times greater than the stresses in the shell that is about three times
thicker. By comparing the grid of the optical fiber, it can be seen that figure
30 is zoomed furher out than figures 31-32, and thus is far more swollen in
its end state, in agreement with figure 29a.
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highest swelling capacity in order to compare their shapes.
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Figure 30: The untreated AMPSA hydrogel from figure 29, in its swollen
state.
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Figure 31: The impregnated AMPSA hydrogel from figure 29 with a
thick shell, in its swollen state.
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Figure 32: The impregnated AMPSA hydrogel from figure 29 with a thin
shell, in its swollen state.
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5 Discussion
Both the anionic and cationic material models reproduces experimental data
as shown in figures 16 and 17, respectively, although the cationic material
model failed to reproduce the experimental data for the DMAPA-gels in
the range of I < 100 mM. In this range, the DMAPA3-gel even swells for
decreasing I, which is not handled by the current theory.

5.1 The estimated chemical parameters

The estimated parameters are given in table 6. In [5], χ = 0.475 for poly-
acrylamide hydrogels, while χ was found to be 0.37 and 0.41 for AMPSA and
DMAPA poly-acrylamid hydrogels, respectively. The relationship between
the estimated and the chemically determined value of vN , vNch, is treated in
appendix A.3. It is shown that vNch ' 0.06 for both AMPSA and DMAPA.
It is interesting to note that the ratio between vN and vNch is 5 % for
AMPSA and 85 % for DMAPA, while the experimental data in [5] predicts
a value of 23 %, as shown in figure 33 in the appendix. However, it has not
been taken into consideration which crosslinker and ionizable groups being
utilized in [5], and thus how valid the comparison is. The polymerization
processes in [2] and [8] has neither been taken into account, so the effective
values of vNch might deviate from the calculated value of 0.06.

The pKa-value for DMAPA was estimated to be 9.5. This is considerably
further away from neutral pH 7 than the midpoint of the swelling curve,
with a swelling fraction of 1

2
, at about pH 8.6, which was assumed to be

the pKa-value in [2]. In figure 15, it can be seen that both AMPSA at pH
2 and DMAPA at pH 9.5, their respective pKa-values, are far towards the
lower plateau of the swelling curves. When only considering the effects of
association and dissociation, the pKa-value should coincide with the midpoint
of the swelling curve.

However, the poroelastic contribution, U1, will also contribute to the
swelling, making the polymer chains in the network work like entropy springs.
This will contribute to the total entropy balance and thusly cause the mid-
point of the swelling curve to be displaced from the pKa-value. The midpoint
being skewed towards the swollen state for both the anionic and cationic
networks indicate that the equilibrium point of the entropy springs is in the
region of low swelling.

The swelling fraction at pH = pKa can also be seen to be affected by
the ionic strength of the external solution. The swelling fraction at the pKa-
value increases with I. This can be understood in terms of (2.4.46). When
a cationic network is fully associated, negative ions will diffuse inside to
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screen the positive fixed charges. This electrostatic screening increases with
increasing ionic strength. When I is low the network will thus not need to
absorb as much solvent to minimize Πion as if I was higher. The difference
between pKa and the fully associated gel will thus be smaller for high I than
for lower I.

5.2 Comparing free and constrained swelling

Figures 20 and 22 show that the error of simulating Lfreeg increased consider-
ably when the range of the simulation approaches the limits sketched out in
figures 11a and 12a. Even though these limits apply for the initial conditions,
it will be expected that the simulations will be unable work optimally close to
this range. Slow convergence has been observed in simulations approaching
the end of the range before finally failing to converge when exceeding it.

The magnitude of the error when approaching the limits of the simula-
tions is still small, and in this region the simulations approaches the point
where they are unable to converge. The error is disappearingly small in the
rest of the simulation region, and the correspondence between free swelling
simulations and numerical calculations is thus very good.

Throughout figures 23-26, it can be seen that the effect of constraining the
hydrogel to the optical fiber is to reduce the overall swelling while increasing
the swelling in the axial direction. A reduction in J is to be expected while
the increase in Lg has to be understood in terms the degrees of freedom in the
system. Due to the constrictions along the fiber, the network will have less
freedom of movement in the radial direction. It will compensate by increasing
the swelling in the unconstrained, axial direction, due to the pressure from
the resulting forces of the constraints.

The same effect can in the same figures be observed for shrinking, al-
though the effect on J and Lg is opposite. The underlaying mechanisms are
the same as with swelling. The deviation observed when comparing free and
constrained swelling is exceeding the resolution of the sensor for a hydro-
gel with L0 = 50µm, δ50 =' 0.003%, by far for both anionic and cationic
hydrogel swelling. The deviation is thus significant.

5.3 Effects of impregnation

Figure 29a shows that the contour plots in figures 27 and 28 have reduced ap-
plicability to hydrogels of different sizes, even though they show the swelling
capacity and not the absolute swelling. This indicates that contour plots
should be made for the specific initial geometry in order to find an accurate
relation between fs and vN .
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Figure 29b indicates that the shape of the swelling curve isn’t affected
significantly by the constraints of a neutrally charged shell, for a given re-
duction in the swelling capacity. A consequence of this is that a least square
estimation setup will yield a redundant solution. Furthermore, it will not be
possible to reproduce the shape of AMPSAexp

im , which data points lay below
the simulation results between the endpoints of the simulation range.

Comparing figures 31 and 32, reveals that the stresses in the thin shell
is about three times greater than the stresses in the approximately three
times thicker shell. This is due to both figures being generated from the
same reduction in the swelling capacity, with a different set of vN and fs.
To achieve this, the thickest gel would only need a third of the stress in
the thin shell, spread over its larger volume. Furthermore, the stress in the
shells appears to be homogeneous, with the notable exception of the interface
between a shell and the optical fiber.

The shell with the highest value of vN would also experience more stress,
explaining the proportionality evident in the equicontours in figure 27a. This
proportionality ceases when vNshell < vNcore, due to the shell no longer
constricting the core elastically. The proportionality also ceases when the
fs < 5% as can be seen in figure 28a. The range of proportionality is thus
fs > 5% and vNshell > vNcore for the AMPSA2 hydrogel impregnated with a
neutral shell of thickness below 15 percent.

Due to the high resolution in determining fs by fluorescence microscopy,
and that it is possible to achieve quite thin equicontours in plots like figure 31
and 32, the value of vN can be found with a quite good resolution. However,
generating high resolution contour plots for individual hydrogels is quite time
consuming. Furthermore, the systematical errors of assuming an anionic gel
with a sharp transition to a neutral shell has yet to be quantified.

The main advantage of this method of determining vN , is that it can be
applied on a wide range of hydrogels, with Young’s modulus below 10 kPa.
Accurate methods of determining the properties of thin layers by measuring
surface wrinkles[6] are inapplicable in the range of Young’s modulus below
100 kPa.

5.4 Limitations of the subroutine

The range of the initial conditions is quite limited, as can be seen from figures
11-12, making it necessary to offset either I0 or pH0 from the actual value
to get the simulation to converge. When doing so, one assumes that the
chosen reference state is stress-free, due to the Uhyper subroutine requiring
stress-free starting conditions[7]. While following error might be tolerable in
regions where the slope of swelling curve is gentle, as can be seen in figure
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10, this might not always be feasible.
The Umat subroutine requires the initial stresses in the simulation, to-

gether with the updated stress-profile for each step. It is thus more versatile
than Uhyper, although its implementation is more complex. Umat has been
shown to yield the same results as Uhyper for poroelastic hydrogel swelling
with stress-free initial conditions[7].

6 Conclusion
The developed simulation setup for the hydrogel sensor system reproduces
anionic swelling data from [8], by using the material model in [1]. It also
reproduces cationic swelling data from [2], for I > 100 mM, by using the
developed material model for cationic hydrogels. Further estimation studies
must be conducted in order to validate the material model for an increased
range of I.

General contour plots of the swelling capacity as a function of vN and fs
was shown to have reduced value for hydrogels differing in L0, as can be seen
in figure 29a. More information on how the contour plots of ∆L depend on
L0 needs to be obtained. Such information might be able to supplement a
general contour plot in stead of generating a new plot for each gel size.

The simulation module handling the effects of gel impregnation has also
been able to reproduce a reduction in the swelling capacity, as shown in
[8]. Even when assuming homogeneous χ in the gel and neutral charge in
the shell, there is still a redundancy in estimating vN and the thickness of
the shell. The suggested method is to estimate the thickness of the shell
from fluorescence microscope images and using suitable contour plots of the
swelling capacity as a function of fs and vN to get an estimate of vN .

Geometrical constrictions increases the swelling or shrinking in the axial
direction, the direction being measured by the hydrogel transducer, while
impregnation of the hydrogel reduces it. The change is significant compared
to sensor resolution and approximations in the simulation model. The simu-
lation setup is useful to obtain information not readily accessible by physical
measurements/readouts from the hydrogel sensor, and simulation results can
serve as a guide for further experiments, in particular regarding different
impregnation setups.
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A Further mathematical relations

A.1 Solution of a cubic equation

Solution of the cubic equation

ax3 + bx2 + cx+ d = 0, (A.1.1)

takes the following form:

x =
3

√
q +

√
q2 + p3 +

3

√
q −

√
q2 + p3 − b

3a
(A.1.2)
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b
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)2

(A.1.3)
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3a2
− d

a

)
−
(
b

3a

)3

. (A.1.4)

This can be verified by inserting (A.1.2-A.1.4) back into the left side of
(A.1.1), yielding zero.

A.2 Swelling for different geometries

The aim of this section is to derive the expressions for the gel length Lg
depending on the geometry. For the sensors being modeled, a hemiellipsoidal
geometry is used, while for the case of homogeneous swelling, a spherical
geometry is applied. This yields different relations between the gel length
and the swelling.

J0 =
V0
Vd

(A.2.1)

Jtot =
V

Vd
. (A.2.2)

Inserting (A.2.1) into (A.2.2) yields

V

V0
=
Jtot
J0

. (A.2.3)
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Hemiellipsoid

Volume of hemiellipsoid with two of the half-axis equal to rf and the last one
equal to Lg:

V =
1

2

4

3
πr2fLg (A.2.4)

and thus

V0 =
1

2

4

3
πr2fL0 (A.2.5)

where L0 is the gel length at a stress-free state. (A.2.3) can be written
as:

Lg =
Jtot
J0

L0 = JL0. (A.2.6)

Sphere

Volume of sphere with radius equal to Lg:

V =
4

3
πL3

g (A.2.7)

and thus

V0 =
4

3
πL3

0. (A.2.8)

(A.2.3) can be written as:

Lg =
λtot
λ0

L0 = λL0. (A.2.9)

A.3 Chemically estimated crosslink density

The known chemical composition used in polymerizing the hydrogel can be
used in a mathematical estimate of vN . The chemical parameters that are
relevant for this section are listed in table 23. The molfraction of crosslinkers
is given by

fX =
NX

NM

, (A.3.1)

while the number of monomers per crosslink can be estimated by
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Table 23: Parameter definitions for the section.

k g/cm3 Monomer weight fraction
ρ g/cm3 Monomer density
fX 1 Molfraction crosslinker
F 1 Crosslink functionality
NM #/m3 Monomers per volume
NX #/m3 Crosslinkers per volume
vNch 1 Crosslinks per monomer

1

vNch

' NM

F ·NX

=
1

fX · F
. (A.3.2)

Eq. (A.3.2) can be rearranged to express vNch:

vNch ' fX · F. (A.3.3)

Lastly, λ0 can also be calculated from the weight fraction of polymers:

λ0 = 3

√
1

φN
= 3

√
ρ

k
. (A.3.4)

Table 24 shows the provided and estimated parameters for the AMPSA
and DMAPA hydrogels. The values of vNch is then compared with the values
of vN in table 6, and the ratios between vN and vNch is then compared with
experimental data from [5], in figure 33.

Table 24: See table 23 for units.

Gel k ρ fX F vNch λ0
AMPSA 0.10 1.13 0.03 2 0.06 2.244
DMAPA 0.15 1.13 0.03 2 0.06 1.960
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Figure 33: Ratio between effective and chemically determined crosslink
density. The experimental data are reproduced from table 1 in [5]. The
estimated values of vN are from table 6.

B Setting up a model in MATLAB

B.1 Initial preparations

The simulation framework requires two file directories, denoted dirPath and
wsPath for MATLAB and for ABAQUS, respectively, and a workspace di-
rectory denoted myPath for the abaqus job files and the generated input
and output files. The contents of wsPath should be a folder called bin with
the following contents:

• createOutput.py

• Sensor.py

• Uhyper_multi.f

• Template.cae

Template.cae is a default ABAQUS -simulation that can be copied into
myPath and renamed for every new .cae file needed. It can be many my-
Path directories for different kinds of simulations, but all of them have to
contain a in and out folder, together with a .cae file that will be the target of
the variable simName in MATLAB. A default myPath folder called Default
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should be created within wsPath, containing Default.cae. The contents of
dirPath should be a folder out for generated .mat files, and a folder bin
containing:

• AbaRunner.py

• getGel.m

• getSimInfo.m

• updateGel.m

• getData.m

• getFreeData.m

• makeInputFile.m

• get_JtotFree.m

• get_sigma11.m

• get_vcH.m

B.2 Functions

The help files of the essential MATLAB functions in the simulation frame-
work:

getGel.m
1 % function gel = getGel(gelName)
2 %
3 % Returns a requested gel struct
4 %
5 % INPUT
6 % gelName - string with gel name
7 % OUTPUT
8 % gel - gel struct matching gelName , or list of gels of no match was found

updateGel.m
1 % function gel = updateGel(g)
2 %
3 % Updates the geom and chemProps arrays in the input gel struct
4 %
5 % INPUT
6 % g - gel struct to be updated
7 % OUTPUT
8 % gel - updated gel struct

getSimInfo.m
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1 % function simInfo = getSimInfo(endVal , nSteps , N, myPath , simName , jobDescr)
2 %
3 % Retrieves a simulation struct. wsPath should be edited in this function
4 % or be set afterwards by: simInfo.wsPath = ’/path/to/workspace/’.
5 %
6 % INPUT
7 % endVal - End of simulation range (I or pH)
8 % nSteps - number of simulation steps
9 % N - Model/job number

10 % myPath - path to simulation workspace
11 % simName - simulation name
12 % jobDescr - job description
13 %
14 % OUTPUT
15 % simInfo - simulation struct; describin the simulation

getData.m
1 % function [axis ,Lgel ,J,lam0] = getData(gel ,simInfo ,scriptName)
2 %
3 % Runs makeInputFile and a python script to link with ABAQUS.
4 % Retrieves simulation results.
5 %
6 % INPUT
7 % gel - gel struct
8 % simInfo - simulation struct
9 % scriptName - name of the python script to link with ABAQUS

10 % OUTPUT
11 % axis - axis of the simulation. Either I or pH , depending on simInfo
12 % Lgel - Gel length
13 % J - relative volume change
14 % lam0 - length change at reference state

getFreeData.m
1 % function [axis ,Lg ,J,lam0] = getData(gel ,simInfo)
2 %
3 % Retrieves numerical calculations for stress -free swelling.
4 %
5 % INPUT
6 % gel - gel struct
7 % simInfo - simulation struct
8 % OUTPUT
9 % axis - axis of the simulation. Either I or pH , depending on simInfo

10 % Lgel - Gel length
11 % J - relative volume change. Practically equal to J0
12 % lam0 - length change at reference state

makeInputFile.m
1 %function [statusFlag , lam0] = makeInputFile(gel , simInfo)
2 %
3 % Generates the input file to be read from the python script linking the
4 % simulation with ABAQUS using the information in gel and simInfo
5 %
6 % INPUT
7 % gel - gel struct containing the defining gel parameters
8 % simInfo - simulation struct containg simulation info
9 % OUTPUT

10 % statusFlag - 1 if successful , 0 if no file was created
11 % lam0 - array containg lam0 for the anionic and cationic material

get_JtotFree.m
1 % function [JtotFree , sigma11 , vcH , sigma11_0] = get_JtotFree(PROPS ,J0J ,salt ,pH,interpFlag)
2 %
3 % Calculating a Jtot matrix from PROPS and the intervals.
4 % Passes on input parameters to get_sigma11(PROPS ,J0J ,salt ,pH).
5 %
6 % INPUT
7 % PROPS - array with the characteristic gel parameters. Use gel.chemProps
8 % J0J - Search/calculation interval of J0J. J0J = 1:.01:500 is suggested
9 % salt - Result interval for ionic strength

10 % pH - Result interval for pH
11 % interpFlag - 1: allowing linterploation , 0: closest neigbour fit
12 %
13 % OUTPUT
14 % JtotFree - Jtot for free swelling
15 % sigma11
16 % vcH - molecular volume times proton concentration
17 % sigma11_0
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get_sigma11.m
1 % function [sigma11 , vcH] = get_sigma11(PROPS ,J0J ,salt ,pH)
2 %
3 % Calculating a sigma11 matrix from PROPS and the intervals.
4 % Passes on input parameters to get_vcH(PROPS ,J0J ,salt ,pH).
5 %
6 % INPUT
7 % PROPS - array with the characteristic gel parameters. Use gel.chemProps
8 % J0J - Search/calculation interval of J0J. J0J = 1:.01:500 is suggested
9 % salt - Result interval for ionic strength

10 % pH - Result interval for pH
11 %
12 % OUTPUT
13 % sigma11
14 % vcH - molecular volume times proton concentration

get_vcH.m
1 % function vcH = get_vcH(PROPS ,salt ,pH , J0J)
2 %
3 % Calculating a vcH matrix from PROPS and the intervals.
4 % Passes on input parameters to get_vcH(PROPS ,J0J ,salt ,pH).
5 %
6 % INPUT
7 % PROPS - array with the characteristic gel parameters. Use gel.chemProps
8 % J0J - Search/calculation interval of J0J. J0J = 1:.01:500 is suggested
9 % salt - Result interval for ionic strength

10 % pH - Result interval for pH
11 %
12 % OUTPUT
13 % vcH - molecular volume times proton concentration
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