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Abstract

Material models has been developed for anionic and/or cationic hydrogels,
with a simulation framework implemented in MATLAB and the finite ele-
ment software ABAQUS. The geometry of the simulations is a hemispheroidal
hydrogel, divided into a core with a shell, covalently attached to an optical
fiber. The material models have been used to estimate the chemical param-
eters of poly-acrylamide hydrogels containing anionic or cationic monomer
groups. Simulations comparing free and constrained swelling has been con-
ducted in order to determine the effect of the geometrical constriction to the
optical fiber. Constrained hydrogel swelling featuring shells with different
properties than the core was also investigated.

The aim of the study was to validate the material models and examine
the effects of geometrical constrictions together with shell-impregnation. The
anionic material model was shown to reproduce experimental swelling data,
while the cationic material model only reproduced the data for ionic strength
greater than 100 mM. Restricting the hydrogel to an optical fiber resulted in
decreased change in volume and an increase in the axial swelling. The model
was able to reproduce reported reduction in the swelling for an impregnated
anionic hydrogel by using a neutral shell in the simulations, but failed to
recreate the shape of the swelling curve. With the reduction of swelling as a
basis, a new method for estimating thin-layer properties has been developed.



Sammendrag

Materialmodeller har blitt utviklet for anioniske og/eller kationiske hydro-
geler, med et simuleringsrammeverk implementert i MATLAB og finite ele-
ment simuleringspakken ABAQUS. Geometrien brukt i simuleringene er en
halvkule av hydrogel, delt inn i en kjerne med et skall, kjemisk fastbundet til
en optisk fiber. Materialmodellene har blitt brukt til & estimere de kjemiske
parametrene til poly-acrylamide hydrogeler som inneholder enten anioniske
eller kationiske monomergrupper. Simuleringer som sammenligner fri og ge-
ometrisk begrenset svelling har blitt gjennomfert for a fastsla effekten av
fastlimingen. Geometrisk begrenset hydrogelsvelling der det ble tatt hensyn
til et ngytralt skall ble ogsa undersgkt.

Malet med studien var & validere materialmodellene og undersgke effek-
ten av geometriske begrensninger og impregnering av hydrogeler. Den an-
ioniske materialmodellen viste seg a reprodusere eksperimentelle svelledata,
mens den kationiske materialmodellen kun reproduserte dara for ionestyrke
stgrre enn 100 mM. Fastlimingen av en hydrogel til en optisk fiber viste seg a
redusere volumendringene mens den aksielle svellingen gkte. Modellen repro-
duserte rapportert reduksjon i svelling for en impregnert anionisk hydrogel
ved a simulere et ngytralt skall utenpa kjernen, men kunne ikke gjenskape
formen pa svellekurven. Med utgangspunkt i svellereduksjonen er det blitt
utviklet en ny metode for A¥ estimere egenskapene til tynne lag.
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1 Introduction

A hydrogel is a network of covalently cross-linked polymer chains that ab-
sorbs the solvent molecules it is being immersed in. Since the swelling can
be affected by external factors like pH, ion strength and the concentration
of certain molecules, the application of hydrogels are numerous. In [I] it has
been suggested to use hydrogels as microvalves able to open and close depend-
ing on the chemical conditions in the solution. A hydrogel transducer sys-
tem has been developed at Norwegian University of Science and Technology,
based on an interferometric readout platform developed by Invivosense[2][3].
The transducer system has a capability of measuring hydrogel swelling with
nanometer resolution.

There are systematical differences in the chemically predicted and the ex-
perimentally evident defining parameters of the polymerized hydrogels [4][5].
The gel parameters will thus have to estimated by the means of mathematical
models. Further challenges with parameter estimation arises when impreg-
nating a hydrogel with a thin layer with different properties. The basis of a
chemical estimate can be even more restricted. The defining parameters of
the coating can be measured using several methods|6], or it can be estimated
by fitting experimental swelling data with simulation results.

The swelling behavior changes when the hydrogel is under geometrical
constrictions, and the swelling can only be solved analytically for a few spe-
cial cases. By using finite element simulations, estimates can still be done
for arbitrary geometries and constrictions|[I][7]. In the transducer setup in
[2]3]8], the hydrogel is covalently attached to an optical fiber and thus re-
stricted along that interface.

In the present study, a material model for cationic hydrogels has been
developed and used together with the anionic material model in [I]. A simu-
lation setup for the geometry in [2][3][8] has been implemented in combina-
tion with the material models. The simulation model supports the division
of the hydrogel into a core and a shell with a different set of parameters.
The simulation has been validated for both material models, and the effects
of hydrogel impregnation was investigated. The latter was used to develop
a method for estimating the crosslink density of an impregnation layer, by
generating contour plots relating the crosslink density and the thickness of
the layer and comparing an equicontour with experimental data.



2 Theory

2.1 Continuum mechanics

The mathematics of this section is based on [9], while the symbols referred
to are listed in table[I] The deformation gradient is defined as the change in
true coordinates related to the reference system:

ox
F = X (2.1.1)
Figure [1| shows the transition from the initial dry state, through the
swollen, stress free state to the swollen, deformed state of the hydrogel. The
propagation from a state to another can be represented by multiplication

with the deformation gradient of the transition:

Ky — Kj:drg = Fodry (212>
Ko — K :dr = Fdr,. (2.1.3)
K; — K :dr = Fy,; dr,. (2.1.4)

Table 1: Parameter definitions of section . For specific indices, see

figure 1}

X Lagrangian coordinates; Reference coordinates

x  Eulerian coordinates; Field of deformation

r  Position vector

dr Line element

Deformation gradient

Greens deformation tensor. Right deformation tensor
Left deformation tensor

I;  First principal invariant of C

I; Modified first principal invariant of C

J  Jacobian. Third principal invariant of F

A; Principal stretch for the ortogonal directions 1, 2 and 3
Ao Uniform principal stretch for the reference state.

s  Tensor of nominal stress

o  Stress tensor

Combining (2.1.2)) with (2.1.3)) gives the expression

wa=



Ftot

Figure 1: State diagram showing how the line elements and deformation
gradients are related to the different states K, where the indices d and 0
indicate dry state and reference state respectively. For the current state
there is no index. The total deformation gradient Fy,; is decomposed into
a component Fy, making the system undergo homogeneous swelling, and
a component F deforming the reference state to the current state.

K, — Ky — K:dr = FF, dI‘d, (215)

which is equivalent to (2.1.4]). This yields a relation between the defor-
mation gradients,

Ftot = :F():F7 (216)

showing that the deformation gradients can be combined by multiplica-
tion in order to represent the transition through several states. The left and
right deformation tensors are given by

B = FF” (2.1.7)

and
C=F"F. (2.1.8)

respectively. Two principal invariants of the deformation gradient are



L =tr(B)=tr(C) =M+ +)3 (2.1.9)

and

They are both scalar with unit 1 and independent of the choice of reference
coordinates. The Jacobian of the reference state is given by

Jo=detFo = \}. (2.1.11)

The Jacobians represent the change in volume due to a transition. The
Jacobian for the total transition K; — K can be found through the deter-

minant of (2.1.6)),

det Fypy = det F - det F, (2.1.12)
and inserting (2.1.10H2.1.11]):
det Ftot = JOJ (2113)

The right deformation tensor for the same transition is given by

Ctot == FtTOtFtOt' (2114)
Inserting (2.1.6) and (2.1.8]) into ([2.1.14) yields
Cit = FJCFy = \1TCA1 = \*C, (2.1.15)

since F describes a state of homogeneous swelling and thus is a diagonal
matrix with all its eigenvalues equal to \g. This leads to an expression of the
total first invariant of the system given by

Lo = tr(A®C) = No’L1 = Nj(AT + A3 + A3). (2.1.16)
The second Piola-Kirchhoff stress tensor is defined as

ou oU oUu oJ
S=2—=2—1+2——
oc "ol " “ajoc’
where U is the free energy density function, to be investigated in the next

section. The following relation holds:

(2.1.17)

1
g—é = §JC*l. (2.1.18)

The Cauchy stress tensor is defined as

4



1
o= stFT. (2.1.19)

When inserting (2.1.1742.1.18)) into (2.1.19)), and recognizing (2.1.7)), o

can be expressed as

20U ou
=—-——B+ —1. 2.1.20
7= Jan "ol (2.1.20)
I; can also be expressed by the modified first invariant:
I = J31. (2.1.21)
Combining (2.1.16|) and ([2.1.21]) yields:
Lot = N2 1 = (Jo )21, (2.1.22)

2.2 Polymer network elasticity

The behavior of a swollen polymer network and the different free energy den-
sity functions arising from the different swelling phenomena will be outlined
in this section. The parameters used are given in tables [J and [3| It is first
necessary to establish some relations regarding the chemical potential of the
free species in figure 2| and the different ways to express their concentra-
tions. The chemical potential for the different mobile species, indicated by
the subscript, is given by [1][L0]:

jis = kpTln (C—+f> (2.2.1)
C+

p- = kpTln (ci;f> (2.2.2)

pre = kT | . (2.2.3)
The chemical potential for the solvent is given by:
ps = —kpTvs Y Ca. (2.2.4)
a#S

The relation between the nominal and true concentration is
Ca = Cq det Ftot; (225)
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while the relation between the volumetric and molar concentration is

Ca = Nala]. (2.2.6)

The condition of molecular incompressibility can be written as

14 /USOS = det Ftot = J(_)J (227)

where 1 represents the dry network and vsC's the solvent. For vgCls > 1
(2.2.7) reduces to

Uscs ~ J()J (228)

In an anionic polymer network the following reaction takes place

AH= A=+ H* (2.2.9)

yielding negatively charged monomer groups upon dissociation. This can
be expressed in terms of the acid dissociation constant, K,:

an _ [HT[AT]
Y

The total number of ionizable monomer groups is conserved through the
relation

(2.2.10)

Cag(X) + Cy-(X) = % (2.2.11)

For a cationic polymer network the following reaction takes place

A+ H,O = AHY + OH~ (2.2.12)

and it can be rewritten as

Table 2: Various parameters described in terms of species, «, shown in

figure . :

[a]  Molar concentration

C, Nominal volumetric concentration inside the network
¢  True concentration inside the network

Co, Concentration in the external solution

cr¢f Reference concentration

ne  Number of species in the polymer network

no  Number of species in the external solution

tte  Chemical potential of species



Table 3: Various parameters used in section

kg JK™! Boltzmann constant

N4 mol™!  Avogadro’s number

T K Temperature

f 1 Fraction of monomers with ionizable group

v m?  Volume per monomer

vg m?  Volume per solvent molecule

Vo m? Polymer network volume
AS JK™! Entropy
AH J Enthalpy
AF J Free energy

U Jm™3 Free energy density function

N m~3  Network crosslink density

X 1 Flory-Huggins parameter

ON 1 Polymer volume fraction

Os 1 Solvent volume fraction
Va5 J M~! Molar heat of association /dissociation

AHY < A+ H*, (2.2.13)

yielding positively charged monomer groups upon association. Expressed

through K, (2.2.13)) takes the form
[H][A]

cat — ) 2.2.14
The conservation of ionizable groups in the cationic network will be
i
CA(X) +CAH+(X) = ; (2.2.15)
The free energy of the system is given by
AF =AH —TAS. (2.2.16)

The free energy density function, or strain energy density function, is
given by

_AF

U= —. 2.2.17
- (2:2.17



2.2.1 Stretching of the network

When the network swells, the total contribution to the entropy due to stretch-
ing the monomer chains, is given by [11]:

1
ASg, = —§Nk;B (12 +13+12 -3 —2In(lilsl3))] (2.2.18)

where the entropy is relative to the unswollen, or dry, network with unit
volume. With [; = A\g\;, this becomes

1
ASg, = —ENk:B[)\%()\f + A2 402 =3 —2In(A3A )] (2.2.19)

Recalling the relations (2.1.13)) and (2.1.9]) this can be expressed as

1
ASyr = =5 Nks[AT =3 — 2In(Jo])]
1 3

1 2
= ——Nk R I — | .
5 BJO[)\O 1 To Jo H(JOJ)]

Insertion of (2.2.20) and (2.2.16) with AH =0 and V; = 1 into (2.2.17))

thus gives the free energy of stretching per volume:

(2.2.20)

1 1 3 2
= -—NkgTJy| —1[; — — — —1 ) 2.2.21
Ustr 9 k;B ']0[)\0 1 JO JO n(JOJ)} ( )

2.2.2 Mixing of polymers and solvent

The entropy of mixing between two species is given by:

ASmw = —kB [’I’Ll In ¢1 + N In ¢2] (2222)

The entropy of mixing of an assembly of free monomers with solvent

molecules is shown[IT] to satisfy (2.2.22)):

ASM = —kB[ng 1n¢5 + Nlnqu] (2223)

The enthalpy of mixing for network and solvent is given by [12] as

If x > 0, same-same interactions between the molecules is preferred and
heat is required to mix, while heat is released by mixing if y < 0. Inserting



(2.2.23) and (2.2.24)) into (2.2.16|) yields the free energy of mixing of network
and solvent:

AFM = ]{?BT[TLS ln(l — ¢N) + Nln ¢N + nsquX] (2225)
For a swollen network, ng > N. It then follows that

AFM = kBTns[ln(l - ¢N) + (bNX] (2226)

and

ns — VE)CS (2.2.27)
The volume fraction of the network can be found through the condition
of molecular incompressibility (2.2.7)):
1 1
(bN ey =
1+ v5C5g JoJ
Inserting (2.2.26)) together with (2.2.27) and (2.2.28) into (2.2.17)) gives

the free energy density of mixing of network and solvent:

(2.2.28)

1

LI Y Y B (1 — —)] : (2.2.29)

Umix -

JoJ JoJ

Vs

2.2.3 Mixing of the free ions
Free energy of mixing for the mobile ions is given by [13]:
Uion = kT Y _Co | In Lf -1 (2.2.30)
a£S Uscgca

Inserting (2.2.5) and the approximation (2.2.8) into (2.2.30|) gives the
following expression for the free energy of mixing for the mobile ions:

Uion = kBTJOJZ Co (lni_:f - 1) . (2231)
a#S Ca



2.2.4 Dissociation and association equilibria

The change in entropy for the distribution of associated, «, and dissociated,
d, ionizable groups is according to (2.2.22)):

Ca Cs
ASucia = —kgVo - JoJ |cal 1 2.2.32
d BVo " Jo [C n(ca+05> + s n<ca+05)] ( )

and the enthalpy of association and dissociation is:

AHa,é = JOJ * Ya,6Ca,é (2233)
Ua,é = —TAS,iq + AHa’g (2.2.34)
Using (22.2.5)), (2.2.35)) and (2.2.36) can be expressed as
CAH + Ca- = / (2.2.35)
UJ()J
= . 2.2.36
CA+ Cag+ o] ( )

For anionic dissociation and cationic association, ([2.2.34)) can be ex-
pressed as

Udis = kZBT~J0J [CAH In <CA—H) + CaA- In <L> —|—J0J")/diSCA—

Ca- + Cal Ca- + CaH
(2.2.37)
and
CAlH+ CA
Uas = k’BTJoJ CaAg+ In <—) +ca In (—)] +JQJ"YQSSCAH+
cag+ + ca cag+ +ca
(2.2.38)
respectively.

2.3 Inhomogeneous swelling

The mechanical work done by the forces of deformation is dependent on the
body force, B;, and the traction force, T;, along the surface of the hydrogel:

10



Wmech = /BZ(SZ’,L dV + /Tl&vz ds. (231>

Even for inhomogeneous swelling it is assumed that volumes on a micro-
scopic level swell homogeneously. The total contribution to Helmholtz free
energy, A, of the gel is thus given by:

Age = / Uav, (2.3.2)

where U denotes the free energy density function. The change in free
energy in the external solution is given by

5Asol = ,ugaﬁs + MH+5ﬁH+ + M+(5ﬁ+ + [L_(Sﬁ_. (233)

The equilibrium conditions are found when the total variation of Helmholtz
free energy of the system is zero:

514. = 5Agel + 6Asol - Wmech

= /(5U dV + pusdng + pg+0ng+ + pyony + p_on_ (2.3.4)

The negative ions, positive ions and solvent molecules don’t react chemi-
cally with the polymer network, and the total number of free species is thus
conserved. The balance of each species across the surface of the network can
be expressed as

/ 5C(X) dV = —dn_ (2.3.5)
/ 5CL(X) dV = —6m, (2.3.6)
/ 5C5(X) dV = —ons. (2.3.7)

The condition of electroneutrality must be fulfilled both inside and outside
the network. In the external solution, the condition can be expressed in terms
of the number of each mobile species:

Ng+ + Ny =n_. (2.3.8)

11



To express this condition inside the network, together with the conserva-
tion of H™, the fixed charges and the properties of the ionizable monomers
in the gel must also be taken into account. The condition of electroneutrality
inside an anionic network can be expressed in terms of the concentration of
the different charged species present:

Oy (X) + C1(X) = Ca (X) + O_(X). (2.3.9)

The conservation of H* within the anionic network and across its surface
can be expressed as

/ 5C+(X) dV — / 5Ca—(X) AV = —ny-. (2.3.10)

Inserting ([2.3.9)) into (2.3.10)) gives the following expression for the change
in protons in the external solution:

g+ = /6C+(X) dv — /50_(X) dV =ony —dn_ (2.3.11)

where the last step can be recognized in (2.3.542.3.6)). (2.3.11)) is in ac-
cordance with (2.3.8)) and makes it possible to express (2.3.3)) as

Aol = 150 + (g — ppg+)0ny + (p— + pp+)on_. (2.3.12)

The condition of electroneutrality will for the cationic network take the
form

Cp+(X) + C4(X) + Car (X) = C_(X), (2.3.13)

while the conservation of H™ is expressed by

/5CH+ (X) dV + /5CAH+ (X) dV = —Sng+. (2.3.14)
Inserting (2.3.13)) into ([2.3.14)) will also yield (2.3.11) and thus (2.3.12)).

The free energy density function can for both anionic and cationic gels be
written as a function of all the independent parameters:
U=UF,C.,C_,Cqy+). (2.3.15)

By applying the chain rule on ([2.3.2)) considering the variables in ([2.3.15))

and inserting it together with (2.3.12)) into (2.3.4]), a new expression for the
conversion of the Helmholtz free energy at equilibrium is found:

12



0Sik
0A = /[QXK —I—BZ} ox; dV

+ /[siKNK —Ti] 0x; dS

+ / [% — (py — ,uH+)] 60C, dV (2.3.16)
+/[5%U = (n-+ um)] 0C_dV

+ /%56@ dV =0

where Ny is the normal vector and the index form of the tensor of nominal
stress, s;k, is given as

ou HS e\ T
K = — —(F; i 2.3.1
SiK aEK ,US( 1K) JoJ ( 3 7)

F;k is the index form of the deformation gradient. For (2.3.16)) to hold,

each of its integral terms must also be equilibrated, and a couple of relations
can thus be identified. For the interior and the surface of the network,

0six
— = B, 2.3.18
DX ( )
and
sik Nk =1; (2.3.19)

must hold respectively. The conditions for ionic equilibrium can be iden-
tified as

oU(F,C.,C_,C
( Y + Y H+) — M+ _ MH+ (2320)
aC,

OU(F,C,C_,Ciy+)
aC_

while the protonic equilibrium is given as

= p- + pg+, (2.3.21)

OU(F,C,C_,Cy+)

=0. 2.3.22
OCy+ 0 (23.22)

13



2.4 Specific material model

The free energy density function of the gel is is assumed [I2|[1] to be the a
sum of different contributions. The network poroelastic contribution, Uy, is
the sum of the free energy density of deformation and mixing of the entire
network

Ul Ustr + Umw (241)

while the ionizable contribution, Us, is the sum of the free energy density

of electrostatic and dissociation/association contributions of the ionizable
monomer groups:

U2 - Uz'on + Udis,as' (242)

The free energy density function of the system is thus

Recalling (2.2.21]) gives the contribution from stretching of the network:

3
Ustr - kBT JOE[/\OII - 70 - TOIH(JOJ)] (244)

Setting vy = v in ([2.2.29) gives the contribution from mixing of the net-
work:

kT - Jy
(%

Umix -

G- (1) eas

Inserting for a in ([2.2.31)) gives the electrostatic contribution from the
ionizable groups:

Uion = k’BT : J()J Cy+ 111 + Ct In —

+ 7"(:‘f
i (2.4.6)

c_
e In—— — (cy+ + ¢4 + o)
c

For anionic dissociation and cationic association, ([2.2.37H2.2.38)) can be
expressed as

14



Udis = kBT . J()J [CAH In (

+CA— ln (

and

Uas = k’BT : J()J [CAHJr In (

+ca ln(

Ca-

CAH
CA- + CaH

1

ca- + CAH)

CA

cag+ + CA)

CAH+
Cag+ +cCa

1

respectively. Combining ((2.4.4) and (2.4.5]) yields

Uy = Ustr + Unpiw =

1 1 3 2
“Nu|—I - 2 — 21
2 U{Aol To T 8
1 J
— | (J= )1

kT
’U/JO

+ isCA—
kBT’Yd A

+ k,B—T%sCAH+

(2.4.7)

(2.4.8)

For both anionic and cationic networks, differentiation of U with respect

to C'y and C_ and recalling (2.2.5)) yields

U
3C,

o
0C_

= kT

= kgT

I

Cc_

crel

)

Cy+

ref

)

(2.4.10)

(2.4.11)

when treating v as an unknown constant. The value of v can be found
by solving ([2.3.22]) and will be shown below to differ between the two cases.

(2.4.10)-2.4.11)) can be compared with (2.3.20/-2.3.21)) and (2.2.1-2.2.3) to

give the Donnan equations,
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Cy+

Cy = E+ — (2412)
CH+

c. =g I (2.4.13)
CH+

thus allowing the ion concentrations inside the network to be expressed
explicitly by cg+ and the known system parameters such as the external ion
concentrations. Solutions for cy+ must be evaluated separately for anionic
and cationic networks.

2.4.1 Anionic dissociation

Using (2.2.5)), (2.3.9) can be expressed as

Cp- = Cg+ + Cy —C—, (2414)

allowing ([2.2.35)) to be rewritten:

CaHg = o (cp+ + ¢y — o). (2.4.15)

Solving ([2.3.22)) gives the following expression:
el emrnt = ST (2.4.16)

vhod AT

By recalling (2.2.6]), the right side of (2.4.16]) can be identified as the right
side of ([2.2.10) multiplied by N4. (2.4.16) can thus be expressed as

e+ (cm+ +op — )

ﬁ — (eg+ +cp —c2)

= N4K,, (2.4.17)

where

Ydis

NuK, = ctle T, (2.4.18)

An implicit expression for vey+ can be found by inserting ([2.4.12(42.4.13))
into (|2.4.17)):

VCH+ vCH+ (2 4 19)

_ |:%’UNAK(1 + UEH+UE:| (UCHJ,-) — UNAKCLUEH+'UE, = 0.
0
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This is a cubic equation with coefficients

'UE+

a=1+— (2.4.20)
vChy+
b=a-vNsK, (2.4.21)
c=— [%UNAKQ + ’UEH+UE:| (2.4.22)
d=—vNyK, vyt ve_ (2.4.23)

and can be solved for veg+ by applying the solution of the cubic equation
given in appendix [A.T}

- b
vcH+:<’/q+ qQ—p3—|—<’/q—vq2—p5—— (2.4.24)

3a

where
c b2
= — — | — 2.4.25
P= 35 (3a> ( )

1/ be d b\*
——(—=—-=)=(=) . 2.4.2
1 2(3@2 a) (3@) ( 6)

It should be kept in mind that the term +/¢? — p? in (2.4.24) can be

complex. This will be discussed further in section [2.5 The non-poroelastic
contribution of the anionic strain energy density function takes the form

U2 - Uz’on + Udis- (2427)

The anionic material model has been both documented and implemented
in [1] and will not be the focus of the present study. The non-poroelastic con-
tribution to the cationic material model will on the other hand be presented
below.

2.4.2 Cationic association

Using (2.2.5)), (2.3.13]) can be expressed as

cag+ =c_ — (cg+ +cy) (2.4.28)
allowing ([2.2.36)) to be rewritten:

ca + (eg+ +cp —co). (2.4.29)

T udod
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Solving ([2.3.22) gives the following expression:

fo_
ref kVa\’ST - CH+(’UJ0J CAH+)
CH+6 BY = .

(2.4.30)

CAH+

By recalling (2.2.6]), the right side of (2.4.30]) can be identified as the right
side of ([2.2.14) multiplied by N4. Eq. (2.4.30) can thus be expressed as

cH+[$ — (e —ey+ —cy)]

(c- —cy+ —cy)

= N4K,, (2.4.31)

where

Yas

NuK, = c;f{ekBT. (2.4.32)
(2.4.31)) can, by inserting (2.4.12|42.4.13|), be rewritten:

<1 T ) (ver+)? +

. +oNaK, (1 + v_é+ )] (vey+)?

VCH+ J(]J VCH+ (2433)
— vég+ ve_(vegt ) — VNAK, - veg+ ve_ = 0.

This is a cubic equation with the following coefficients:

a=1+ —+ (2.4.34)
vChy+
b= |l oNuK, (2.4.35)
JoJ

¢ = —uCy+ UC_ (2.4.36)
d=—vNyK, - véy+ ve_. (2.4.37)

The solution will take the same form as for the anionic case and can be

found through (|2.4.2442.4.26)). For cationic association the non-poroelastic
contribution takes the form

Inserting (2.4.122.4.13)) into (2.4.6)) and (2.4.8) yields
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-1
CH* Cy | Cu+ ch+
Uion =k TJoJ { e+ In <—f) depln | 5 < ref) o7

CI'I+ =+ CH+ CH+

-1
C- Cu+ [ Crt Cy Cg+ C_
+c_In e |14+ S 4
el \ il G+ 2
- CH+ CH+ H H+

(2.4.39)

and

re
Cu

NsK,
Uys = kgT - JoyJ CAH+111< Allg cacg+  Capg+ )

{ CACH+ CAg+ + CA

+caln <C—A)
cag+ + Ca

NJK,
=kgT - JoJ |cag+In (A—C’“ﬁ> ¥ cags In (%)
c

CH+CA el

(2.4.40)

+ (cam+ +ca)ln (C—A)

CAg+ + Ca

respectively. The right sides of (2.2.142.2.3)) can be recognized and sub-
stituted for the chemical potentials yielding

cref

Uion =Jo | c(pig — pu+) + c—(p— + por+) — kT can+ ln<CH+>
H+

—kpT - cp+ (1 TR B C_)

CH+ Cr+

(2.4.41)

and
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Uns =JoJ | kpT - cans 1n<%)

C
e (2.4.42)
NK,
+]{ZBT cCAH+ In M + k)BT f In JOJUCA
CH+CA JoJv f

respectively. Inserting (|2.4.4112.4.42)) into (2.4.38)) yields

kT NaK, JoJ
U2 — B JUCAH+ ]_n M _|_ iln 0 UCA
U/Jo VCH+UVCA J() f
—vegd (14—t 4 T UCQ_ + e (s — pare) + c-(pe + pi+) | -
veg+  (veg+)

(2.4.43)
The reference concentrations are still represented through ([2.2.142.2.3)).

2.4.3 Finding the initial swelling of the reference state
Eq. (2.1.20]) gives an expression for the stress component oq;:

NkgT
JoJ
where the osmotic pressure for mixing of the solvent and for the electro-
chemic potential is given by

1 1 X
n(1- 2.4.45
! ( JOJ) T (JOJ)2] (2.445)

Wion = kT (cy+ + ¢4 + ¢ —Cy+ — T4 —C_) (2.4.46)

(Bi1 — 1) = (Is; 4 Iiop), (2.4.44)

011 =

kT
1_[sol == _L
v

and

respectively. In the homogeneous reference state J = 1 and By; = A\ =
Jg/?’. 2.4.44)) then takes the form

kT oN
011 = uCiha : U_(Jg/g - 1) - (Hsol,D + Hion,O) = Oa (2447)
(% JO
where
]CBT 1 1 X
Hepo=——— [In[1—— — 4+ = 2.4.48
Lo v n( J0>+JO+J§ (2.4.48)

20



and

kT

Hion,O -
v

VCE+ VCH+

Vet — Ve + <”CH* ve_ — v5+) (1 - ”Ch”)] . (2.4.49)

after inserting the Donnan equations . Given the initial
conditions and material model, vcy+ can be found as described above. Then
it is just a matter of solving (2.4.47) numerically for Jy in order to find
the initial swelling of the network in the reference state. It is important to
note that this approach is only valid if the reference state is homogeneous
(Fiot = Fo) and stress-free (o0 = 0). It will not yield a valid solution if
the geometry is arbitrarily constrained as in the current approach, where a
hemiellipsoidal network is being covalently attached to an optical fiber. It
is however assumed that the geometrical constraints are first enforced when
the system has reached the reference state.

2.5 Implementing the cationic model

Inserting (2.1.21)) into (2.4.9) yields:

ksT |1 1 - 3 2
Uy = Uy + Upi = “Nov |—J*L — = — Zlog(JyJ
1 o+ v/JO{Z U[)\o 1 T 7o og(Jo )]

(2.5.1)

1 J X
—|(J= )1

In order to express the free energy density function in terms of the external
salt concentrations instead of the chemical potentials, a suitable Legendre
transformation, U, can be used[I]:

U=U—JoJ [c—(p—+ pa+) + co (g — pur+)] — psCs

R (2.5.2)
=U; + Uy,
where
022 = U2 — JQJ [c,(,u, + /LH-&-) + C+(/L+ — ,LLH+>] — ,LLSCS. (253)

Inserting (2.4.43)), (2.2.4) and (2.2.7) into (2.5.3)) yields
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. NaK, JoJ
Uy = kT JOJln(A—CAH*) camr + L 1n< 0 C"”’)
Cg+Ca v f
; Ciri G (2.5.4)
—JoJ 1_1_76* _,_ﬂ Cr+
Cy+ (CH+)2
+ (JoJ = 1)(cu+ + &4 + )]
This can be expressed as
. kgT NaK, JoJ
Us; = b J1n PARUCANY vCag+ + iln 0-7%¢A
v/ Jo VCE+UCA Jo f
T Uch“ N VCH+ VC_ - (2.5.5)
veg+  (veg+)?

1
+ (J — —)(vcm + vey +ve-)
Jo

As shown in [I] the chosen Legendre transformation makes U describe
the material in terms of a hyperelastic solid, and it can thus be implemented
in the user subroutine Uhyper in ABAQUS.

2.5.1 Implementing U in a user subroutine

The user subroutine Uhyper requires U to be hyperelastic and the initial
stresses to be zero|7]. The subroutine gets I; and J as input from the FE-
program, and needs the characteristic material parameters together with .Jy,
to enforce homogeneous initial conditions, as further input. This was passed
to Uhyper through the PROPS vector. What needs to be implemented is
according to the ABAQUS documentation the free energy density function
for the hyperelastic material, and its first and second derivatives with respect
to I; and J.

U can be implemented in the user-subroutine UHYPER by solving the
unknown quantity vcy+ and coding U with its first and second derivatives.
Using that information, ABAQUS will be able to calculate the stresses. In
order to implement the free energy density functions in a user subroutine
they were normalized by

kgT
[ / Jo .

Norm = (2.5.6)
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To enforce the hyperelastic requirement, U needed to be implemented in-
stead of U. The normalized contributions to the free energy density function
thus takes the form

1 1 = 3 2

U = -Nv {—JQ/?’L - == 1og(JOJ)]

2 /\() Jo Jo (2 5 7)
(I~ ) log(——) - X B
T BT T g
U; —verys In UNAK s+ N iln JoJvecy
VCH+UCA Jo f
(o VCH+ VC_

_ 1 2.5.8
UCH+J< + VCH+ (veg+)? ) ( )

1
+ (J - —)(UEH+ +wvey +vi).
Jo

U was implemented in two separate steps. First U was coded together
with its derivatives, and then U; was implemented. While finding the deriva-
tives of U] was quite straightforward, (72* is dependent of several parameters
such as veg+(J), veay+(veg+) and vea(veag+). The chain rule was there-
fore extensively used in the derivation of the derivatives of Uz, where an
important part was to find the derivatives of vey+(J).

2.5.2 Derivatives of vcy+(J)

The case where is complex must be handled in the code in terms
of an if-else structure testing whether ¢*> — p? is negative. When negative,
the algorithm for calculating vey+ used in [I] was adopted. Due to the
logical structure of this algorithm, the derivatives of vcg+ could not be found
directly. However, they could be found by using the derivative of the cubic
equation:

Q(J)=a-[veg+ (NP +b(J) - veg+ (D)) +c-veg+(J)+d=0  (2.5.9)
where only the coefficient b is dependent of J.

od — Quen [3a - (veg+)? 4 2b(J) - veg+ + ] + (veg+)? - 9b(J)
o0J o0J 0J
oo 3b(J) (2.5.10)
= () + (e )2 - 5L =0,
oJ oJ
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where

u(J) = 3a - [veg+ (J)]? + 2b(J) - veg+ (J) + c. (2.5.11)

Rearranging ((2.5.10)) expresses 81};?* explicitly:

Qven+ _ _ven+()]* 9b(J)
7 W) ag

(2.5.12)

Since all the variables on the right side of (2.5.12) can be readily calcu-

lated, this expression can be implemented directly in the user subroutine.

To find 82;35*, the chain rule can be applied on ([2.5.12), and the right side
of (2.5.12) can be recognized as an implicit term in the result and then be

Ovey+

substituted by —%+~. A similar approach can also be used to find the third
derivative of veg+.
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/\ Associated anionic group AH \ Dissociated cationic group A @ Positive ion Proton
/A Dissociated anionic group A° W Associated cationic group AH* (O Negative ion

Figure 2: Schematic of an anionic polymer network and the external so-
lution. The polymer network contains fixed ionizable groups and charges,
while both network and external solution contains the solvent and all types
of free ions, and fulfills electroneutrality. For a cationic network, the fixed
species in the network will take a different form.
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3 Simulation setup

3.1 Geometry and parameters

The parameters used to describe the properties and geometry of the hydrogel
sensor are defined in table [l The sensor being modeled is a hemispheroidal
hydrogel, covalently attached to an optical fiber. The main component of
the network is Acrylamide monomers with Bisacrylamide as a crosslinker. A
fraction of the monomers also contain ionizable groups that will make the
swelling depend on pH and I. An optical micrograph of the geometry is
shown in figure [3]

Table 4: Parameters defining the properties and geometry of the hydrogel

network.
vN 1 1/vN is the number of monomers per polymer chain
X 1 Flory-Huggins parameter
f 1 Fraction of monomers with ionizable group
pK, 1 Logarithmic acid dissociation constant
pHy 1 pH value at polymerization
I M Salt concentration, or ion strength, in the external solution
Iy M Ton strength in the external solution at polymerization
Ao 1 Initial, stress-free principal stretch
Lo m Initial, stress-free axial/longitudinal thickness
L, m Constrained, deformed axial thickness
Lo,y m  Optical length of the deformed axial thickness
Ry m Radius of the optical fiber
L; m Axial length of the optical fiber included in the simulation
L, m  Shell thickness
fs 1 Relative shell thickness
Ls m Arc length of the outer hydrogel surface

The axial optical length L, of the attached hydrogel is found by sending
light through the fiber and comparing the reflection in the interface between
fiber and gel with the reflection in the interface between gel and solvent.
The optical duct for the light can be seen in the center of the optical fiber in
figure [3| The diameter of the optical fiber is 2R; = 125 pm, while the initial
physical axial length Ly typically is 50 pm.

Since Ly is measured with the sensor while L, is retrieved from the
simulations, a relation between the lengths must be established. The theory
of converting between L,, and L, of the hydrogel is described in [2]. An
approximate relation between the lengths is

26



Figure 3: Optical micrograph of hemispherical hydrogel, covalently at-
tached to the end of an optical fiber. Reproduced from [2] with permission.
The diameter of the fiber is 125 pm, while L, is typically 50 pm.

Lo
77133

where the refractive index of water, 1.33, is used. can thus be
used in comparison of simulation results with experimental data. The sensor

accuracy for L,y is approximately 2 nm. For a hydrogel with L, = 50 pm
this yields an error of

(3.1.1)

N 2nm
~ 1.33- 50000 nm
It can be seen from the expression that the error will be even smaller for

Ly, > 50 pm. This will often be the case when the hydrogel swells, even for
smaller values of L.

3.1.1 Geometry of the sensor system

Figure [ shows the geometry of the hydrogel sensor and the defining lengths
implemented in the simulations. R is the radius of the fiber and will through-
out the simulations be set to 62.5 pym in accordance with the optical micro-

27



graph in figure 3| Ly is the length of the fiber, and needs to be long enough
to enable contact between the outer part of the fiber and the surface of the
gel in cases of extreme swelling. Apart from that, it only plays a visal role
and needs to be greater than zero. Lg is the surface arc length of the outer
hydrogel surface, or the shell. L, defines the thickness of the shell, that
might be attributed different material parameters than the core of the gel to
simulate the effects of impregnating the hydrogel. This parameter will for
practical reasons be passed to the simulations in terms of the relative shell
thickness,

fo= =2 (3.1.3)

R¢

Figure 4: Sketch of the geometry showing the lengths. The coordinates
are cylindrical and the longitudinal axis, z, is the symmetry axis.

3.1.2 Materials

See table [5| for the materials used in this section. The gels AMPSA; and
AMPSA, denotes acrylamide hydrogels where 1.54 mol% and 2.2 mol%
respectively of the monomer groups are AMPSA. The gels DMAPA3 and
DMAPA, denotes acrylamide polymer hydrogels where 3 mol% and 7 mol%
respectively of the monomer groups are DMAPA. CHIT300 denotes CHIT
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with molecular weight of about 300 kDa. AMPSA;,,, denotes AMPSA, im-
pregnated with CHIT300.

Table 5: The ionizable groups of monomers in the polymer network.

2-Acrylamido-2-methylpropanesulfonic Acid
AMPSA | e Z90: SO H = SO; + H*
N-(3-dimethylaminopropyl) acrylamide
DMAPA pK,=95; NH+ H,O+= NH}f +OH~
Chitosan
CHIT pK,=65; NH+ H,O<= NHf +OH~

3.1.3 Parameter values

The parameter values in table [6] are partly retrieved from papers and partly
being estimated. For the AMPSA gels, pK,, f, pHo, Iy and Ly could be
found in [8], while the rest had to be estimated using the experimental data
they provided. For the DMAPA gels only f, pHp and Iy could be found in
[2], and the rest of the parameters had to be estimated from the provided
experimental data. The estimation process is reproduced in section

Table 6: The gels and parameters used in the simulation setup. Some
parameters for the DMAPA and AMPSA gels were provided from [2] and
[8] respectively, together with experimental data to estimate the remaining
parameters.

Chemical parameters Geometrical parameters
Gel olN X PK, f pHo 1o [mM] Lo [pm]| Ao

AMPSA; | 3.4e-3 037 20 0.0154| 5 150 50.79  2.2754
AMPSA, | 3.0e-3 0.37 2.0 0.0220 | 5 150 42.81  2.3379
DMAPA; | 4.9e-2 041 9.5  0.03 | 6.7 50 50.0 1.5598
DMAPA; | 5.1e-2 041 9.5  0.07 | 6.7 50 50.0 1.6743

These parameter values govern the hydrogel swelling behavior together
with the free energy density function U.

3.2 Calculation and simulation

This section will be focusing on the simulation setup and the representation
of the simulation results. Table [7] introduces the parameters relevant for
setting up the simulations, while tables [§]and [0 presents the parameters used
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to present the results in section [} The swelling capacity describes the axial
deformation in relation to the initial geometry of the polymer network:

AL=1L,— Ly (3.2.1)
AL = L5 — Ly, (3.2.2)
AL™ = L™ — Ly. (3.2.3)

Table 7: Parameters used in representation of simulation results.

Lfree

m Unconstrained axial deformation
Ly*™  m Lg’"ee, obtained from numerical calculations
Ly m Constrained axial deformation of impregnated gel
Ly m Constrained axial deformation from experimental data
AL m Swelling capacity for constrained axial deformation
AL“? m Swelling capacity for Lg™
AL™ m  Swelling capacity for Ly"
€ 1 Strain: see table
€r 1  Relative swelling capacity
) 1 Relative deviation: see table|§|
19 1 Square of residuals
w 1 Weight function
Eg 1 Number of simulation grid elements along the gel surface, Lg
E 1 Approximate number of elements along Lg
Ey 1 Number of elements in the optical fiber along R
Esmin 1 Minimum number of elements along thickness of the shell

AL is useful when comparing swelling curves from gels with the same
chemical parameter values but with deviating geometries. The strains in
table [8] describe the relative difference between one state and another state
used as a reference. Most notable is €., which is gives a relative comparison
between constrained swelling through L, and free swelling through Lg”ee.

In addition to the strains in table [§| the relative swelling capacity, €., can
also be expressed:

AL — AL™
- AL

Table [ shows the relative deviations. Rather than comparing one state
with a different one, § compares two representations of the same state and is
thus a measure of the relative error between the representations. The most
important one is J., which is the error of the simulation results compared
with experimental data.

(3.2.4)

€r
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Table 8: Strain definitions. The strains can be understood as a relative
difference between one state and another state used as a reference.

Strain Definition
Volumetric €y = J}—OJO
. . o LgfLo
Longitudinal €=~
. . L 7Lf7‘ee
Constrictional e, = <2 —
L
. Lim_[,
_ g 9
Impregnational €5 = .

Table 9: Relative deviations. The deviations represents the error of one
representation of a data set compared with another.

Relative deviation Definition
from experimental data for L, 0 = L‘?—fgw

g
free num
Ly "Ly

from numerical calculations or Liree Op = Ly

free _ Jnum

from numerical calculations for J/me¢ Onw = JJT

3.2.1 Simulation setup

Table shows geometrical parameters used to define the geometry of the
simulation models throughout the simulations. The true number of grid
elements along the hemispheroidal surface of the gel, Eg, will deviate from
the desired number of elements, %, due to an approximation of hemispheric
gel surface in calculating the mesh seed needed to achieve Fg. The difference
between Eg and LY is small, however. As shown in section [4.1.1] even a
moderate difference would have been of no practical consequence.

Table 10: Fixed geometrical parameter values defining the geometry of
a simulation model.

Rylpm| Ly E§ Ef

625 Ry 30 9

The number of grid elements along the fiber radius, Ey, is only a visual
parameter, as the elements in the fiber part of the model normally don’t ex-
perience any forces from the gel. The movement restrictions on the hydrogel
from the fiber is enforced by restricting all the nodes of the hydrogel along
the fiber-gel interface. The fiber elements will only experience forces if the
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hydrogel swells sufficiently to allow the outer surfaces of the fiber and gel
to make contact. It is thus only required that £y > 1, and the number of
elements along L; will be a third of E¢, rounded up.

Table |11 shows a set of gels with geometric parameters to complement the
values in table . When Ej i, is set to 1, the mesh will have equal resolution
in core and the shell of the gel, and should thus be done in simulations where
the effects of impregnation are not considered.

Table 11: Parameters defining the geometry of a simulation model for a
pair of gels together with the values in table .

Gel Ly [}Im] fs Es,min
AMPSA, 50.79  0.15 1
AMPSA;,, 4281 0.15 5

The simulation models resulting from the parameter values in tables [10]
and [T are given in figures 5] and [6] for AMPSA; and AMPSA,,, respectively.

Figure 5: Simulation model of the sensor for AMPSA;. The model is 2D
axisymmetrical, with Fg = 28 along the surface arc, Lg.
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Figure 6: Simulation model of the sensor for AMPSA,,,,. The model is
2D axisymmetrical, with Eg = 27. The interface between the core and
the shell of the gel can clearly be seen where the mesh of the gel becomes
denser.

The effect of adjusting Fj,,i, can be seen when comparing the figures.
In figure |5] the shell inherits the density of the core, since E ., is smaller
than what the mesh density of the core of the gel would dictate. In figure
|§| the value of E,,;, is greater than the inherited value, and thus overrides
it. Here the boundary between the core and the shell of the gel can be seen
clearly, while this interface is obscured in figure [5| due to the homogeneous
mesh density of the gel.

Figure [7] illustrates the axisymmetric properties of the simulation setup,
and is based on the mesh of AMPSA,,, in figure [f] The axisymmetric prop-
erty of the simulation setup ensures that the three dimensional sensor in
figure [3] can be modeled using a 2D representation.

In addition to the geometry, the chemical nature of the hydrogel must also
be defined in the simulation together with input parameters to tell whether
the gel is divided in core and shell, and if the simulation is free or constrained.
The parameters needed to define a simulation are listed in table [12] under
their respective property vector.
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Figure 7: The mesh in ﬁgure@ for AMPSA;,, swept in a 300 degree angle
for illustrational purposes.

Table 12: Property vectors. AnCat = 1 for anionic gels and AnCat = 2
for cationic gels. The parameters in the flags vector are described in

tables |E| and @

Property vector Parameters
gelGeom [Lo, Ry, fs, ES Es min,E¥|
chemProps [vN,x,pK,,f,AnCat]
flags [CoreShell,Cons|

Table 13: CoreShell flag. Describes the chemical properties of the gel
together with chemProps in table

CoreShell Description
1 Purely anionic gel
2 Purely cationic gel
12 Anionic core, cationic shell
21 Cationic core, anionic shell
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Table 14: Constriction flag. Governs whether the simulation is geomet-
rically constrained along the fiber-hydrogel interface.

Cons Description
0 Free swelling
1 Constrained swelling
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3.2.2 Parameter estimation setup

As stated in section [3.1.3] not all the characteristic gel parameters were
known a priori and had to be estimated by fitting simulation results to exper-
imental data. This fitting was done through iterative nonlinear least square
estimation and some relations must thus be established in that regard. £ is
the square of residuals used in the parameter estimation:

€= Z wi(Lg; — LyT)?, (3.2.5)

where w is a weight function with w; = 1 for the unweighted case. By
using w; = 1/Ly77, (3.2.5)) can be expressed in terms of d,:

§=2_(0)", (3.2.6)

The square of residuals can also be expressed in terms of the swelling
capacity:

£=> wi(AL; — AL{™). (3.2.7)

The program flow of the parameter estimation process is described in fig-
ure[8 The Matlab function lsqgnonlin is initiated with initial parameter values
and a specified tolerance. The Matlab function getDiff will also be passed on
to Isqnonlin in order for it to retrieve the differences to be minimized. The
tolerance includes the maximum number of times Isqnonlin can call getDiff
and the number of decimals to be estimated for the set of variables.

For each iteration, Isqnonlin changes the estimation parameters and re-
trieves a new set of differences between simulation results and experimental
data. It then computes the square of residuals from one of the equations
(3.2.5H3.2.7)), depending on the contents of getDiff and form of the experi-
mental data, and attempts to minimize £&. When the conditions of the estima-
tion reaches the provided tolerance, the estimation process will be terminated
and the parameter values corresponding to the minimum value of ¢ will be
sent back to the initial script.

The simulations themselves were being run in Abaqus as described in
section [2.5] The parameters defining the geometry and nature of the gel were
passed to Abagus from the Matlab function getData, which also retrieved L,
and J from the FEM-software, enabling getDiff to calculate the deviation
from L.
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MATLAB ABAQUS

G,P
Ii getData i1 > UHYPER
getExp T F
A
E
1 A Estimate P,, tol
Start
getpiff | D=EF disp(P) | End
A A
P D P Py, tol
‘ H
new cond minimize P 2 If cond < tol
new P by rms(D) Y
i1 3
Isqnonlin
P: Estimation parameters E: Experimental data
G: Geometric parameters F: FEM simulation data
tol: Tolerance D: Deviation/difference

cond: lteration conditions

Figure 8: Program flow of the parameter estimation. The solid box in
the right top corner of a program lists the constants defined in the routine.
The numbers in the dotted boxes indicate the order of which the modules
of a program is run, while the arrows represent program calls with input
parameters or a return call with output parameters.

4 Results

4.1 Development of method
4.1.1 Determining a feasible mesh resolution

The finite element calculations are numerical and the precision is ultimately
restricted by the number of elements in the mesh. Figures Ob and d show
how the relative deviation between the steps converges towards zero as Fg is
increased.

The difference in L, when going from Fg = 22 to Eg = 47 elements
along the surface is less than 0.007 percent while the difference from 47 to
92 elements is less than 0.0003 percent. The systematic error of choosing a
value of Fg between 22 and 47 elements will thus yield a systematic error of
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Figure 9: a) Cationic constrained swelling along the symmetry axis using
different mesh densities, represented by Eg. b) Relative deviation in L,
for a given value of Eg from a) compared to the previous, lower value. c)
Relative volume change for different mesh densities. d) Relative deviation
in J for a given value of Fg from c¢) compared to the previous, lower value.
The curves in a) and c¢) are approximately coinciding.

less than 0.01 percent, without becoming too computationally demanding.
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4.1.2 Error of assuming an incorrect reference state

In both [§] and [2] the hydrogels are polymerized and even impregnated|2]
at a set of reference conditions often a bit different from the starting condi-
tions of the measurements. The hydrogels are therefore not in a stress-free
reference condition at the start of the measurements, which is a crucial crite-
rion for simulations running the UHYPER subroutine in ABAQUS. Figure
shows the effect of assuming different start conditions than the true reference
conditions as the stress-free state for the AMPSA, hydrogel.
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Figure 10: a) The effect of assuming a different reference state than the
true stress free state for AMPSA,. The stars indicate the initial condi-
tions of the assumed reference states. b) The relative deviation from the
reference curve for each of the other lines in a).

The error of choosing Iy = 100 mM as initial condition instead of 150 mM
is in figure [I0p shown to less than 0.1 percent while the choice of Iy = 10
mM yields an error approaching 0.9 percent. The deviation is smaller again
for Iy = 1 mM which is due to the upper plateau of the swelling curve
already being reached and the proximity to the end condition, preventing
much cumulation of error. How much a deviation in I, will impact on the
swelling curve is thus dependent on both the deviation itself and the slope
of the line.

4.1.3 Limitations of the initial conditions

The limits of the initial conditions of the simulations using Uhyper are given
in figure [[1] and figure [12] for the AMPSA, and DMAPA; hydrogels, respec-
tively. For initial conditions outside the indicated ranges, the simulations
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were found to not converge and thus abort. The determination of such lim-
its is a useful tool when setting up a more complex simulation series where
the initial conditions and simulation range is being varied for simulations

featuring different material models.

a
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5t T- -
T
o 4+
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— — —upper inner limit
2r lower inner limit
1
107 10° N 107" 10°

10
[NaCl] /M

[NaCl]/ M

************

upper outer limit
— — — upper inner limit
lower inner limit

Figure 11: Range of valid AMPSA; simulation intervals for a) I and b)
pH. For a given value along the x-axis, the limits of the interval can be
read out along the y-axis. The inner limits are confirmed to give converging
simulations while the outer limits are confirmed not to, when they aren’t
indicating invalid ranges, such as the 1 M limit. The outer and inner lower
limits coincide in a) while the lower outer limit is practically non-existent

in b).

It can be seen from the figures that for simulations combining the AMPSA,
and DMAPA~; hydrogels and varying [ in the range 3 to 100 mM is bound to
conducted around pH 5, and that a simulation varying pH in the range 4 to 6
must be conducted for a value of I just around 10 mM. This implies that any
simulations combining AMPSA, and DMAPA; will have to be conducted in
the range where the anionic gel is fully dissociated and the cationic gel is
fully associated, i.e. both gels are fully charged and more sensitive to the
concentration of mobile ions. Similar constrictions should be expected for
models utilizing other combinations of anionic and cationic materials as well.
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Figure 12: Range of valid DMAPA7; simulation intervals for a) I and b)
pH. For a given value along the x-axis, the limits of the interval can be
read out along the y-axis. The inner limits are confirmed to give converging
simulations while the outer limits are confirmed not to, when they aren’t
indicating invalid ranges, such as the 1 M limit.

4.1.4 Estimating characteristic gel parameters

The geometrical properties of a homogeneous hydrogel sensor will generally
be known a priori or found in the initial measurements. Some of the chemical
parameters can also be known a priori or be experimentally controlled vari-
ables, like f, while the rest of them, vN and x in particular, will have to be
estimated by fitting simulation results to available experimental data. The
parameters were estimated by running simulations with different parameter
values and minimizing x as described in section [3.2.2]

For anionic hydrogel swelling, data for AMPSA; and AMPSA, was provided|].
The unknown simulation parameters were v/N and x. The initial estimate
combined deviations of both AMPSA; and AMPSA,. The initial and final
parameters are listed in table

Table 15: AMPSA; and AMPSA; fitted dependently.

Values N X ‘ ISWs So1
Initial 1.0e-3  0.40 - -
Final 3.14e-3 0.372 | 9.90e-4 4.35e-4

Independent estimates of the AMPSA-gels were then conducted in order
to validate the previous estimate. The results are given in table and
corresponds closely with the combined estimates.

X is in principle the same for the AMPSA-gels while v N might vary
slightly. The results in table [L6| confirms this and also suggests a value of
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Table 16: The AMPSA-gels fitted separately.

Gel vIN X ‘ it

All; Initial  3.1e-3 0.4 | -
AMPSA;  3.42e-3 0.370 | 2.44e-4
AMPSA,  3.02¢-3 0.373 | 7.08e-5

x = 0.37. Using this value, independent estimates were run to determine
vN. These values are given in table [17] and confirms the previous estimate.
The resulting chemical parameters were implemented in table [6] and the final
fitting is reproduced in figure [16]

Table 17: The AMPSA-gels fitted independently for xy = 0.37.

Gel vIN ‘ f@[

All; Initial = 3.1e-3 | -
AMPSA;,  3.42e-3 | 2.44e-4
AMPSA,  2.98e-3 | 7.85e-5

4.1.5 DMAPA-estimation

For cationic swelling, [2] provided swelling data for DMAPA3; and DMAPA;
and the unknown simulation parameters were vN, x, pK, and Ly. Ly is un-
known due to the swelling data being presented in terms of AL in the study.
As with the estimation of the AMPSA parameters, an initial fit involving
the the combined deviations of the DMAPA gels was conducted, assuming
Lo = 50.0 pm. The estimated parameters are given in table[18 and the fitting
result is shown in figure [I3] It can be noted that the pK, value appears to
be 9.5 as opposed to 8.6[2]. The respective sums of residuals, &, should be
comparable for the different curve fittings of DMAPA.

Table 18: The DMAPA-gels fitted dependently for both pH and I, as-
suming Ly = 50.0 pm. The result of the process is reproduced in figure

Values  vN X PKal|&pn &i Gpn &
Initial 3.0e-2 04 8.6 - - - -
Final 54e-2 043 9.5 | 1.65 0.05 0.29 1.23

The parameter values from the combined estimate were then used as
initial values for independent simulations for each case of swelling. The
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Figure 13: Comparison of experimental data with the simulation results
of cationic swelling using the final parameter values in table [I8] Swelling
capacity compared with experimental data for a) increasing ion strength
and c) increasing pH. b) and d) show the deviation between the simula-
tions and swelling data in a) and c) respectively.

results are given in table [19| and show that the values are close to the values
from the combined estimate, with the exception of DMAPA; ;. The latter
estimate reached the upper bound for pK, and approached the lower bound
for L.

The values of Ly, with exception of DMAPA; ;, are close to the suggested
initial value and are thus assumed to either lay close to the true value or
having little effect on the overall estimate. The latter is most likely due to
the natural spread in Ly when polymerizing the gels. Either way; for the rest
of the estimates Ly will be assumed to be 50.0 pm.

The pH simulations indicate a higher y value than the I simulations
and are more consistent with the combined estimate. The I simulations are
conducted at pH 6.7 which is far from the pK, value of about 9.5. They are
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Table 19: DMAPA-gels estimated separately. The values indicated in
bold have reached or are approaching the upper or lower bounds of the
estimation.

Gel oN  x pK, Lolum]|¢
All; initial  5.0e.2 040 9.5 50 |-
DMAPA;,; b5.1c2 044 95 48 [0.10
DMAPA;,; 4.5¢-2 037 95 A7 | 0.44
DMAPA;;  4.5e-2 013 11.0 38 |04l
DMAPA;; 5.4e2 022 94 45 | 0.48

therefore assumed to be less sensitive to the pK, than the pH simulations.
In order to extract the pK, value, a combined fitting of the two pH series
was conducted with a higher resolution than the previous attempts. The
results are given in table 20| and clearly indicate that the pK, value is 9.5 in
agreement with table [18]

Table 20: The DMAPA-gels fitted dependently with respect to pH. pK,
was found to be 9.5.

Values vIN X pK, ‘ Espr CrpH
Initial  5.0e-2 040 9.5 - -
Final 4.80e-2 0.401 9.53 | 0.041 0.276

Figure [13] shows that the parts of DMAPA; exceeding 100 mM couldn’t
be fitted properly by the simulations. DMAPAj;; even display a trend of
increasing L, for increasing /, a phenomena that can’t be reproduced by the
current theory and material models for neither cationic nor anionic gels. The
estimated line of DMAPAj; ; clearly cuts through the experimental curve to
compensate for this effect. This deviation from the material model might
also account for the failure in estimating the parameters for DMAPA; ; in
table [19]

The parameters in table 21| were estimated by excluding the parts where
I > 100 mM. The values are not far from the initial estimate in table
but the £ values are, with the exception of &7y, considerably lower. Note
that the values for & ; can’t be directly compared between tables [I§] and
due to the truncation of the data for high ion strength, since the loss of data
points will contribute directly to lower the value of &.

As with AMPSA, y is assumed to be equal for the DMAPA-gels. Fur-
thermore, the value of y seems to be consistent whether or not the data is
truncated above I = 150 mM, by comparison of tables [20] and By us-
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Table 21: The DMAPA-gels fitted dependently for both pH and I, ex-
cluding the parts where I > 100 mM. x was found to be 0.41.

Values vN X ‘ Saprr &30 Srpm Sra
Initial ~ 5.0e-2 4.0 - - - -
Final  4.69e-2 0.407 | 0.053 0.216 0.048 0.901

ing the value of y = 0.41, vN was estimated individually for DMAPA; and
DMAPA, in table 22

Table 22: The value of vN was estimated for DMAPA3 and DMAPA~
by combining the deviations with respect to f. The simulations were
conducted with pK, = 9,5 and y = 0.41, excluding the parts where I >
100 mM.

Values vN ‘ SipH it
InitialAll 4.7e-2 - -
Final; 4.88e-2 | 0.118 0.047
Final; 5.12e-2 | 0.721 0.309

The estimated values of v/N can only be assumed to be valid for [ <
100 mM while y and especially pK, seems to be more generally valid. The
material model is evidently more applicable on DMAPA for pH simulations
than for I simulations. The estimated parameter values are incorporated in
table [0] together with the ones known a priori, and the final estimates are

given in figure

4.1.6 pKa-value

It was observed in figure that the pK,-value in the simulation deviates
much from the midpoint of the swelling curve for varying pH. Figures |14 and
show the swelling fraction as a function of pK, for free and constrained
swelling simulations respectively, for both AMPSA, and DMAPA,. For a
solution of ionizable groups, an equal amount of groups will be associated
and dissociated at the pK,-value. If the swelling was proportional with the
distribution of associated and dissociated groups, the swelling fraction would
thus have been % at the pK,-value.

The figures indicate that this is not the general case for free nor con-
strained swelling. The swelling fraction is, with the exception of figure [15pb,
far below the midpoint, implying that the pK,-value is strongly shifted to-
wards the plateau of minimum swelling. It can also be seen that lower ion
strength will increase this shift. It should be noted that the the swelling
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fraction is around equilibrium for DMAPA; at Iy = 50mM and pK, = 8.5,
as suggested in [2].
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Figure 15: Constrained swelling. a) AMPSAs, shrunk reference state.
b) DMAPA7, swollen reference state.

The AMPSA- and DMAPA-simulations are conducted with shrunk and
swollen reference states respectively. By comparing figures [I4] and [15] it can
be seen that the constrictions have little effect on the swelling fraction for
the shrunk reference state (a), while they contribute significantly in the case
with swollen reference state (b).
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4.2 Validation of material models
4.2.1 Comparison to experimental data

Simulations of AMPSA; and AMPSA, have been compared with experimen-
tal data for the estimated parameters given in table[6] Figure shows the
plots together, while figure shows the deviation between simulations and
experimental measurements.
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Figure 16: Comparison of constrained simulations with experimental
data for anionic swelling. a) Comparison with experimental data for de-
creasing I. b) Relative deviation between the simulations and swelling
data in a).

The curves show good agreement between the simulations and experimen-
tal data. The deviations are less than a percentage from the experimental
data at any point and it can be noted that the curves in figure in a broad
sense seem to run parallel. This can be an indication of a systematic error
either in the experiments or in the theory and simulations.

Figures and shows the comparison of simulation results and ex-
perimental data from [2] for increasing ion strength and pH, respectively.
The pH-simulations show good agreement with the experimental data. The
estimated value of pK, for fitting the data was found to be 9.5, as opposed
to 8.6[2]. This is closer to the bottom plateau of the pH-curves in figure
than the midpoint of the slope. The ion strength simulation fails to re-
produce the experimental trends for I < 100 mM. Figure also shows a
strong parallel tendency in this range.
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Figure 17: Comparison of constrained simulations with experimental
data for cationic swelling. Swelling capacity compared with experimental
data for a) increasing ion strength and c) increasing pH. b) and d) show
the deviation between the simulations and swelling data in a) and c),
respectively.

4.2.2 Free swelling

Equation has been used as a basis for the numerical calculations in
this section, by solving it for Jy and calculating Lg"ee in accordance with
section [A.2] It can be seen in figure that the results are equivalent for
Lg“e and J. ¢ even have the same form for the two cases, although with
different offsets. J will thus be omitted from the rest of the section.

Figure [19| shows Lg’“ee for decreasing pH. The deviation is less than 0.005
percent, with the exception of the initial point of I = 150 mM, where the
deviation is several times higher than for the other values of I. Figure
shows Lgree for increasing pH, and it can be clearly seen that the deviation
increases as the simulation approaches the upper pH limit of about 6, indi-
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Figure 18: Comparison of unconstrained simulations and numerical cal-
culations for homogeneous swelling when decreasing I for AMPSAy. a)
and c) show the axial deformation and relative change in volume, re-
spectively. b) and d) are the relative deviations between unconstrained
swelling and numerical calculations in a) and c), respectively.

cated in figure [ITh. It only shows significantly for I = 150 mM, where the
upper pH-limit is about 5. This can be an indication on why the deviation
for I = 150 mM is relatively big in figure [[9p, with initial pH 5.
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Figure 19: Comparison of unconstrained simulations and numerical cal-
culations for homogeneous swelling when decreasing pH for AMPSA5. a)
shows the axial deformation while b) shows the relative deviation between
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Figure [2I] shows comparison of increasing I-simulations for DMAPA;
compared with numerical calculations for several values of pH. For pH much
lower than the pK, of 9.5, Li;”e is monotonously decreasing, while it is unaf-
fected at pH-values slightly larger than the pK,. For a pH slightly less than
the pK,, Lgme increases before it decreases again, reaching a net decrease.

XX e
x> XX g

x % X

49}

— pHES5
pH 6.5free
_ _ _pH 8.5nu
« PH 8'5free
_.pH 10.5'_Iu

o PH105

um

m

> *
481

L/

m

471

m

free

x

X
504 ©00000000006008006088Y6004d
X

X

10 10
/M

8 /%
n

/M

Figure 21: Comparison of unconstrained simulations and numerical cal-
culations for homogeneous swelling when increasing I for DMAPA;. a)
shows the axial deformation while b) shows the relative deviation between

unconstrained swelling and numerical calculations in a).

Figure[22]shows how the deviation between increasing pH-simulations and
numerical calculations abruptly increases when the simulations approaches

the range indicated in figure [12.

51




10 mM
- — —50mM
— —-100mM

5 6 7 8 9 10 11 12

Figure 22: Comparison of unconstrained simulations and numerical cal-
culations for homogeneous swelling when increasing pH for DMAPA~;. a)
shows the axial deformation while b) shows the relative deviation between
unconstrained swelling and numerical calculations in a).

4.2.3 Comparison of free and constrained simulations

A major part of the present study is comparing free and constrained swelling,
to determine the effect of the geometrical constraints in the sensor setup. The
AMSPA, gel has been used in the simulations for anionic swelling. Figures
and show the effect of the constraints when using ionic strength and
pH as the experimental parameter, respectively. Figure [23a shows that the
swelling in the axial direction increases when the gel is constrained, despite
the decrease in overall swelling shown in figure 23.

The results in figure 24] also show increased swelling along the axial direc-
tion despite an overall decrease in volume when constraining the gel. This
implies that the constraints of the geometry reduces the overall swelling but
enhances the swelling along the unrestricted direction for the anionic gel.

For cationic swelling, the DMAPA~, gel has been used in the simulations.
The results in figure 25 are completely analogous to figure 23], showing that
there is no principal difference between anionic and cationic swelling as a
function of I. The results in figure [26] are also analogous to figure 24 with
the exception that the anionic gel swells while the cationic gel shrinks with
increasing pH. This implies that the constraints of the geometry reduces the
overall change in volume, but enhances the swelling or shrinking along the
unrestricted direction for both gels.

In figures [23] - [26] it can be observed that the deviation between the free
and constrained gels increases with the degree of swelling or shrinking. The
error in assuming free swelling is significant compared with the experimental
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Figure 23: Comparison of free and constrained anionic swelling for
AMPSA; at different pH-values. a) shows the swelling along the axial
direction while ¢) shows the relative change in volume. b) and d) show
the difference in a) and c), respectively.

accuracy and numerical precision of the simulations. The deviation in the
axial length is throughout the figures opposite in sign and about half in
magnitude, compared with the deviation in volume.

The electrostatic contribution to the swelling increases with the amount
of fixed charges in the networks. The anionic and cationic polymer chains be-
come charged upon proton dissociation and association, respectively. Hence,
the gels behave oppositely with respect to pH as can be seen in figures [24] and
26 There it can also be confirmed that when the gels are uncharged they are
insensitive to the salt concentration, and that the sensitivity increases with
the charge of the gels.
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4.3 Impregnational effects
4.3.1 Shell

Figures through 7?7 shows surface plots of constrained simulations of
AMPSA;,,. x is assumed to be uniform throughout both core and shell
of the gel. Figure [27h shows how the swelling capacity varies with the thick-
ness and the network density of the shell, for a shells in the thick range. It
can be seen that the equicontours starts exhibiting a linear nature in the
for v Ngpen > VNeore. Figure shows the relative swelling capacity of an
impregnated gel compared to an untreated one. €. = 50 % for logio(v/N) in
the range of -1.75 to -1.25.

0.15
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0.12
0.11 0.11
0.09
0.08
0.07
0.06

0.05L

-1.5 -1 -3 -25 -1.5 -1

-2 -2
Iogm(vN) Iogm(vN)

Figure 27: Surface plot of a) swelling capacity and b) relative swelling
capacity as a function of vIN of the shell and fs; for AMPSA;,,. I = 0.5
mM and fs in the range of a thick shell. The dashed line indicate the
vIN-value of the gels core while the dotted lines are equidistant contours
with spacing of 1 ym and 10 % for a) and b), respectively.

Figure [28a shows how the swelling capacity varies with the thickness and
the network density of the shell, for a shells in the very thin range. The
equicontours fails to show the same linear nature in this region. €, = 50 %
for logip(vN) in the range of -1.25 to -1.

Figure 29 plots the swelling capacity for an untreated hydrogel, together
with three cases of impregnated hydrogels. The two simulated impregnated
gels have vIN and f; chosen to match the reduction in swelling capacity for
the untreated and experimental swelling curves, using figures 27}28] for the
thick and the thin shell, respectively. It can be seen that none of the lines
from impregnated gels intersect at low I, which was the requrement.

In figure , the curves from a) have been normalized my their maxi-
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Figure 28: Same plot as figure but with f, in the range of a thin
shell. The dotted lines are equidistant contours with spacing of 1 pm and
10 % for a) and b), respectively.

mum value, so the different shapes can be compared. The two impregnated
simulations almost coincide, and lay above the untreated hydrogels, while
the experimental curve lies below it.

Figures 30| through [32] show the AMPSA, swelling simulations from figure
29%. The stesses are given as normalized von Mises stresses, that is an non-
directional stress based on all the principal stresses, and the normalization
in . It can be seen that the stresses in the thin shell is approximately
three times greater than the stresses in the shell that is about three times
thicker. By comparing the grid of the optical fiber, it can be seen that figure
0] is zoomed furher out than figures [31}32] and thus is far more swollen in
its end state, in agreement with figure [29a.
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Figure 29: a) Swelling capacity of untreated and impregnated AMPSA,
hydrogels. The impregnation simulations have a value of v/N to match
their value of fs, estimated from figures and for the thick and the
thin shell, respectively. b) The swelling curves from a), normalized by the
highest swelling capacity in order to compare their shapes.

Figure 30: The untreated AMPSA hydrogel from figure in its swollen
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Figure 31: The impregnated AMPSA hydrogel from figure with a
thick shell, in its swollen state.
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Figure 32: The impregnated AMPSA hydrogel from figure with a thin
shell, in its swollen state.
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5 Discussion

Both the anionic and cationic material models reproduces experimental data
as shown in figures and respectively, although the cationic material
model failed to reproduce the experimental data for the DMAPA-gels in
the range of I < 100 mM. In this range, the DMAPA3-gel even swells for
decreasing I, which is not handled by the current theory.

5.1 The estimated chemical parameters

The estimated parameters are given in table [f In [5], x = 0.475 for poly-
acrylamide hydrogels, while x was found to be 0.37 and 0.41 for AMPSA and
DMAPA poly-acrylamid hydrogels, respectively. The relationship between
the estimated and the chemically determined value of vN, v N, is treated in
appendix It is shown that vN,, ~ 0.06 for both AMPSA and DMAPA.
It is interesting to note that the ratio between vN and vN, is 5 % for
AMPSA and 85 % for DMAPA, while the experimental data in [5] predicts
a value of 23 %, as shown in figure 33| in the appendix. However, it has not
been taken into consideration which crosslinker and ionizable groups being
utilized in [5], and thus how valid the comparison is. The polymerization
processes in [2] and [8] has neither been taken into account, so the effective
values of vV, might deviate from the calculated value of 0.06.

The pK,-value for DMAPA was estimated to be 9.5. This is considerably
further away from neutral pH 7 than the midpoint of the swelling curve,
with a swelling fraction of %, at about pH 8.6, which was assumed to be
the pK,-value in [2]. In figure [15] it can be seen that both AMPSA at pH
2 and DMAPA at pH 9.5, their respective pK,-values, are far towards the
lower plateau of the swelling curves. When only considering the effects of
association and dissociation, the p K,-value should coincide with the midpoint
of the swelling curve.

However, the poroelastic contribution, U;, will also contribute to the
swelling, making the polymer chains in the network work like entropy springs.
This will contribute to the total entropy balance and thusly cause the mid-
point of the swelling curve to be displaced from the pK,-value. The midpoint
being skewed towards the swollen state for both the anionic and cationic
networks indicate that the equilibrium point of the entropy springs is in the
region of low swelling.

The swelling fraction at pH = pK, can also be seen to be affected by
the ionic strength of the external solution. The swelling fraction at the pK,-
value increases with I. This can be understood in terms of . When
a cationic network is fully associated, negative ions will diffuse inside to
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screen the positive fixed charges. This electrostatic screening increases with
increasing ionic strength. When [ is low the network will thus not need to
absorb as much solvent to minimize Il;,, as if I was higher. The difference
between pK, and the fully associated gel will thus be smaller for high I than
for lower 1.

5.2 Comparing free and constrained swelling

Figures [20[ and [22| show that the error of simulating Li;ree increased consider-
ably when the range of the simulation approaches the limits sketched out in
figures and[12h. Even though these limits apply for the initial conditions,
it will be expected that the simulations will be unable work optimally close to
this range. Slow convergence has been observed in simulations approaching
the end of the range before finally failing to converge when exceeding it.

The magnitude of the error when approaching the limits of the simula-
tions is still small, and in this region the simulations approaches the point
where they are unable to converge. The error is disappearingly small in the
rest of the simulation region, and the correspondence between free swelling
simulations and numerical calculations is thus very good.

Throughout figures[23}20], it can be seen that the effect of constraining the
hydrogel to the optical fiber is to reduce the overall swelling while increasing
the swelling in the axial direction. A reduction in J is to be expected while
the increase in L, has to be understood in terms the degrees of freedom in the
system. Due to the constrictions along the fiber, the network will have less
freedom of movement in the radial direction. It will compensate by increasing
the swelling in the unconstrained, axial direction, due to the pressure from
the resulting forces of the constraints.

The same effect can in the same figures be observed for shrinking, al-
though the effect on J and L, is opposite. The underlaying mechanisms are
the same as with swelling. The deviation observed when comparing free and
constrained swelling is exceeding the resolution of the sensor for a hydro-
gel with Ly = 50um, 659 ==~ 0.003%, by far for both anionic and cationic
hydrogel swelling. The deviation is thus significant.

5.3 Effects of impregnation

Figure shows that the contour plots in figures 27| and 28 have reduced ap-
plicability to hydrogels of different sizes, even though they show the swelling
capacity and not the absolute swelling. This indicates that contour plots
should be made for the specific initial geometry in order to find an accurate
relation between f; and vN.
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Figure 29b indicates that the shape of the swelling curve isn’t affected
significantly by the constraints of a neutrally charged shell, for a given re-
duction in the swelling capacity. A consequence of this is that a least square
estimation setup will yield a redundant solution. Furthermore, it will not be
possible to reproduce the shape of AMPSAS” which data points lay below
the simulation results between the endpoints of the simulation range.

Comparing figures [31] and [32] reveals that the stresses in the thin shell
is about three times greater than the stresses in the approximately three
times thicker shell. This is due to both figures being generated from the
same reduction in the swelling capacity, with a different set of v/N and f,.
To achieve this, the thickest gel would only need a third of the stress in
the thin shell, spread over its larger volume. Furthermore, the stress in the
shells appears to be homogeneous, with the notable exception of the interface
between a shell and the optical fiber.

The shell with the highest value of v/N would also experience more stress,
explaining the proportionality evident in the equicontours in figure 27h. This
proportionality ceases when vNgey < vNepre, due to the shell no longer
constricting the core elastically. The proportionality also ceases when the
fs < 5% as can be seen in figure R8p. The range of proportionality is thus
fs > 5% and vNgpey > v Ngore for the AMPSA, hydrogel impregnated with a
neutral shell of thickness below 15 percent.

Due to the high resolution in determining f, by fluorescence microscopy,
and that it is possible to achieve quite thin equicontours in plots like figure
and the value of v N can be found with a quite good resolution. However,
generating high resolution contour plots for individual hydrogels is quite time
consuming. Furthermore, the systematical errors of assuming an anionic gel
with a sharp transition to a neutral shell has yet to be quantified.

The main advantage of this method of determining v N, is that it can be
applied on a wide range of hydrogels, with Young’s modulus below 10 kPa.
Accurate methods of determining the properties of thin layers by measuring
surface wrinkles[6] are inapplicable in the range of Young’s modulus below
100 kPa.

5.4 Limitations of the subroutine

The range of the initial conditions is quite limited, as can be seen from figures
12, making it necessary to offset either Iy or pHy from the actual value
to get the simulation to converge. When doing so, one assumes that the
chosen reference state is stress-free, due to the Uhyper subroutine requiring
stress-free starting conditions[7]. While following error might be tolerable in
regions where the slope of swelling curve is gentle, as can be seen in figure
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[10} this might not always be feasible.

The Umat subroutine requires the initial stresses in the simulation, to-
gether with the updated stress-profile for each step. It is thus more versatile
than Uhyper, although its implementation is more complex. Umat has been
shown to yield the same results as Uhyper for poroelastic hydrogel swelling
with stress-free initial conditions|7].

6 Conclusion

The developed simulation setup for the hydrogel sensor system reproduces
anionic swelling data from [§], by using the material model in [I]. It also
reproduces cationic swelling data from [2], for 7 > 100 mM, by using the
developed material model for cationic hydrogels. Further estimation studies
must be conducted in order to validate the material model for an increased
range of I.

General contour plots of the swelling capacity as a function of vN and f;
was shown to have reduced value for hydrogels differing in Lg, as can be seen
in figure 29%h. More information on how the contour plots of AL depend on
Lo needs to be obtained. Such information might be able to supplement a
general contour plot in stead of generating a new plot for each gel size.

The simulation module handling the effects of gel impregnation has also
been able to reproduce a reduction in the swelling capacity, as shown in
[8]. Even when assuming homogeneous x in the gel and neutral charge in
the shell, there is still a redundancy in estimating v/N and the thickness of
the shell. The suggested method is to estimate the thickness of the shell
from fluorescence microscope images and using suitable contour plots of the
swelling capacity as a function of f, and v/N to get an estimate of v V.

Geometrical constrictions increases the swelling or shrinking in the axial
direction, the direction being measured by the hydrogel transducer, while
impregnation of the hydrogel reduces it. The change is significant compared
to sensor resolution and approximations in the simulation model. The simu-
lation setup is useful to obtain information not readily accessible by physical
measurements/readouts from the hydrogel sensor, and simulation results can
serve as a guide for further experiments, in particular regarding different
impregnation setups.
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A  Further mathematical relations

A.1 Solution of a cubic equation

Solution of the cubic equation

ax® +bx® +cx +d =0, (A.1.1)

takes the following form:

b
r= Vet Ve P+ V- Ve - o (A.1.2)

where
c b\?
=— — | — A.1.3
=35 (3a> ( )

1 /b d b\’
— () () Al4
=3 (3&2 a) (3a) ( )
This can be verified by inserting (A.1.2HA.1.4)) back into the left side of
(A.1.1)), yielding zero.

A.2 Swelling for different geometries

The aim of this section is to derive the expressions for the gel length L,
depending on the geometry. For the sensors being modeled, a hemiellipsoidal
geometry is used, while for the case of homogeneous swelling, a spherical
geometry is applied. This yields different relations between the gel length
and the swelling.

Vo
Jo = — A21
b= (A2.1)
V
T = —. A22
o = 7 (A.2.2)
Inserting (A.2.1)) into (A.2.2) yields
V Jtot
— = . A23
T (A.2.3)



Hemiellipsoid

Volume of hemiellipsoid with two of the half-axis equal to 7 and the last one
equal to Ly:

V = §§7FTng (A24)
and thus
14

where L is the gel length at a stress-free state. (A.2.3)) can be written
as:

Jio
L,= Jtot Lo = JLo. (A.2.6)

Sphere

Volume of sphere with radius equal to L,:

4
V= ngg (A.2.7)
and thus
43
(A.2.3) can be written as:
L=, AL
9= 0 = AlLg. (A.2.9)
Ao

A.3 Chemically estimated crosslink density

The known chemical composition used in polymerizing the hydrogel can be
used in a mathematical estimate of vN. The chemical parameters that are
relevant for this section are listed in table 23l The molfraction of crosslinkers
is given by

Ny
fX — N_M’

while the number of monomers per crosslink can be estimated by

(A.3.1)



Table 23: Parameter definitions for the section.

k g/cm®  Monomer weight fraction
p g/cm®  Monomer density

fx 1 Molfraction crosslinker
F 1 Crosslink functionality

Ny #/m?®  Monomers per volume
Ny  #/m?® Crosslinkers per volume
VNgp 1 Crosslinks per monomer

1 Ny 1
vNepw ~ F-Nx  fx - F

Eq. (A.3.2) can be rearranged to express vN.:

UNch ~ fX - P

(A.3.2)

(A.3.3)

Lastly, Ay can also be calculated from the weight fraction of polymers:

_ o L ofp
Ao = ¢N\/;

(A.3.4)

Table [24] shows the provided and estimated parameters for the AMPSA
and DMAPA hydrogels. The values of v/N,, is then compared with the values
of vN in table[6] and the ratios between vN and vNy, is then compared with

experimental data from [5], in figure [33|

Table 24: See table for units.

Gel k P fx F ‘ vNe, Ao

AMPSA 0.10 1.13 0.03 2 | 0.06 2.244
DMAPA 0.15 1.13 0.03 2 | 0.06 1.960
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Figure 33: Ratio between effective and chemically determined crosslink
density. The experimental data are reproduced from table 1 in [5]. The
estimated values of vIN are from table @

B Setting up a model in MATLAB

B.1 Initial preparations

The simulation framework requires two file directories, denoted dirPath and
wsPath for MATLAB and for ABAQUS, respectively, and a workspace di-
rectory denoted myPath for the abaqus job files and the generated input
and output files. The contents of wsPath should be a folder called bin with
the following contents:

e createQutput.py
e Sensor.py
e Uhyper multi.f

e Template.cae

Template.cae is a default ABAQUS-simulation that can be copied into
myPath and renamed for every new .cae file needed. It can be many my-
Path directories for different kinds of simulations, but all of them have to
contain a in and out folder, together with a .cae file that will be the target of
the variable simName in MATLAB. A default myPath folder called Default
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should be created within wsPath, containing Default.cae. The contents of
dirPath should be a folder out for generated .mat files, and a folder bin
containing;:

e AbaRunner.py

o getGel.m

e getSimInfo.m

e updateGel.m

e getData.m

e getFreeData.m
e makelnputFile.m
e get JtotkFree.m
e get sigmall.m

o get vcH.m

B.2 Functions

The help files of the essential MATLAB functions in the simulation frame-
work:

getGel.m

updateGel.m

getSimInfo.m
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function simInfo = getSimInfo(endVal, nSteps, N, myPath, simName, jobDescr)
Retrieves a simulation struct. wsPath should be edited in this function
or be set afterwards by: simInfo.wsPath = ’/path/to/workspace/’.
INPUT
endVal - End of simulation range (I or pH)
nSteps - number of simulation steps
N - Model/job number
myPath - path to simulation workspace
simName - simulation name
jobDescr - job description
OUTPUT
simInfo - simulation struct; describin the simulation
getData.m
function [axis,Lgel,J,lam0] = getData(gel,simInfo,scriptName)
Runs makeInputFile and a python script to link with ABAQUS.
Retrieves simulation results.
INPUT
gel - gel struct
simInfo - simulation struct
scriptName - name of the python script to link with ABAQUS
OUTPUT
axis - axis of the simulation. Either I or pH, depending on simInfo
Lgel - Gel length
J - relative volume change
lam0 - length change at reference state
getFreeData.m
function [axis,Lg,J,lam0] = getData(gel,simInfo)
Retrieves numerical calculations for stress-free swelling.
INPUT
gel - gel struct
simInfo - simulation struct
QUTPUT
axis - axis of the simulation. Either I or pH, depending on simlInfo
Lgel - Gel length
J - relative volume change. Practically equal to JO
lam0 - length change at reference state
makelnputFile.m
function [statusFlag, lam0] = makeInputFile(gel, simInfo)
Generates the input file to be read from the python script linking the
simulation with ABAQUS using the information in gel and simInfo
INPUT
gel - gel struct containing the defining gel parameters
simInfo - simulation struct containg simulation info
OUTPUT
statusFlag - 1 if successful, 0 if no file was created
lam0 - array containg lam0 for the anionic and cationic material
get JtotFree.m
function [JtotFree, sigmall, vcH, sigmall_0] = get_JtotFree(PROPS,J0J,salt,pH,interpFlag)
Calculating a Jtot matrix from PROPS and the intervals.
Passes on input parameters to get_sigmall (PROPS,JO0J,salt,pH).
INPUT
PROPS - array with the characteristic gel parameters. Use gel.chemProps
JOJ - Search/calculation interval of JOJ. JOJ = 1:.01:500 is suggested
salt - Result interval for ionic strength
pH - Result interval for pH
interpFlag - 1: allowing linterploation, 0: closest neigbour fit
QUTPUT
JtotFree - Jtot for free swelling
sigmall
vcH - molecular volume times proton concentration
sigmall_O
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get sigmall.m

funct

Calcu

ion [sigmall, vcH] = get_sigmall (PROPS,J0J,salt,pH)

lating a sigmall matrix from PROPS and the intervals.
Passes on input parameters to get_vcH(PROPS,J0J,salt,pH).

Use gel.chemProps

INPUT

PROPS - array with the characteristic gel parameters.

JOJ - Search/calculation interval of JOJ. JOJ = 1:.01:500 is suggested
salt - Result interval for ionic strength

pH - Result interval for pH

0UTPUT

sigmall

vcH - molecular volume times proton concentration

get vcH.m

funct

Calculating a vcH matrix from PROPS and the intervals.

ion vcH = get_vcH(PROPS,salt,pH, JOJ)

Passes on input parameters to get_vcH(PROPS,J0J,salt,pH).

Use gel.chemProps

INPUT

PROPS - array with the characteristic gel parameters.

JOJ - Search/calculation interval of JOJ. JOJ = 1:.01:500 is suggested
salt - Result interval for ionic strength

pH - Result interval for pH

0UTPUT

vcH - molecular volume times proton concentration
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