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Abstract: Anomaly detection has been widely used in a variety of research and application domains,
such as network intrusion detection, insurance/credit card fraud detection, health-care informatics,
industrial damage detection, image processing and novel topic detection in text mining. In this paper,
we focus on remote facilities management that identifies anomalous events in buildings by detecting
anomalies in building electricity consumption data. We investigated five models within electricity
consumption data from different schools to detect anomalies in the data. Furthermore, we proposed
a hybrid model that combines polynomial regression and Gaussian distribution, which detects
anomalies in the data with 0 false negative and an average precision higher than 91%. Based on the
proposed model, we developed a data detection and visualization system for a facilities management
company to detect and visualize anomalies in school electricity consumption data. The system is
tested and evaluated by facilities managers. According to the evaluation, our system has improved
the efficiency of facilities managers to identify anomalies in the data.

Keywords: anomaly detection; data visualization; school electricity consumption data; time series;
remote facilities management; visual analytics; data mining

1. Introduction

In recent years, with the ever-growing shortage of natural resources, energy has been a major
political, social and economic topic. It is now widely accepted that conserving energy and reducing
energy consumption is of paramount importance. In the UK, building energy consumption has
increased at a rate of 0.5% per annum, which is approximately 40% of total energy consumption [1].
However, buildings are widely reported to utilize energy inefficiently [2].

Although many techniques have been extensively investigated for building energy consumption
modeling to design a low-energy building, buildings often exceed the energy savings promised by
their design. Anomalous events, such as faults in lighting equipment, can account for 2–11% of the
total energy consumption for commercial buildings [3]. To identify anomalous events in buildings in
time, increased attention has been given to remote facilities management.

Anomaly detection in building electricity consumption data is one of the most important methods
to identify anomalous events in buildings. In different application domains, each anomaly detection
problem has distinct features such as the nature of data, availability of labeled data and type
of anomalies to be detected. Most of the existing anomaly detection techniques solve a specific
formulation of the problem [4]. Applying concepts from different disciplines such as statistics, machine
learning, and information theory to a specific problem formulation is a challenge in anomaly detection.

Different data mining techniques have been investigated and applied to electricity consumption
data. Catterson et al. [5] presented an online contextual anomaly detection method for monitoring
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anomalies in the sensor data, such as loading, temperature, and network configuration, of a given
transformer. McArthur et al. [6] described a multi-agent system to detect anomalies for condition
monitoring of electrical plant behaviors. Jakkula et al. [7] introduced and compared different anomaly
detection algorithms for identifying anomalies in household electricity consumption datasets.

In this paper, we present an innovative method and build a system to detect and visualize
anomalies in school electricity consumption data for a facilities management company. The company
provides facilities management service for over 40 schools in Scotland. Data on electricity consumption
of these schools is recorded by their half hourly metering system. Every week facilities managers
look over spreadsheet graphs of the data to identify anomalous events in school facilities, particularly
unusually high electricity consumption. Our system is used to reduce this tedious and time-consuming
eyeballing of the data. Parts of the results of the model investigation and the system development
contributed to anomaly detection of school electricity consumption data have appeared in [8]. However,
our research in this paper significantly differs from the previous work in the following aspects:

• Investigated other two models which are not described in [8].
• Presented the design of the data detection and visualization system.
• Evaluated the anomaly detection models and the system.

The paper is organized as follows. Section 2 introduces the school electricity consumption data
used in our research and the related anomaly detection and visualization techniques. The investigation
of anomaly detection models is described in Section 3. Section 4 shows the anomaly detection and
visualization system for the school electricity consumption data. We evaluate the anomaly detection
models and the system in Section 5. Finally, we present conclusions and discussions, and suggestions
for future research in Section 6.

2. Background

2.1. Anomaly Detection

Anomaly detection, also referred to as outlier detection, is the process of detecting patterns in
a given data set that do not conform to an established normal behavior [9]. Typically, the anomalous
items correspond to some significant information in many diverse research areas, such as biomedical
imaging, hyperspectral remote sensing, cybersecurity and industrial applications. Jansson et al. [10]
applied stochastic anomaly detection methods to analyze eye-tracking data of Parkinson patients.
Veracini et al. [11] presented an anomaly detection strategy for hyperspectral imagery based on a fully
unsupervised Gaussian mixture learning. Feng et al. [12] outlined an anomaly detection method
for industrial control systems that combines the analysis of network package contents and their
time-series structure. Kumar [13] applied parallel and distributed anomaly detection algorithms to
detect sophisticated cyberattacks on large-scale networks.

According to the availability of labeled data, there are three types of anomaly detection techniques:

• Supervised techniques build models for both anomalous data and normal data. An unseen data
instance is classified as normal or an anomaly by comparing which model it belongs to.

• Semi-supervised techniques only build a model for normal data. An unseen data instance is
classified as normal if it fits the model sufficiently well. Otherwise, the data instance is classified
as anomalies.

• Unsupervised techniques do not need any training dataset. These approaches are based on the
assumption that anomalies are much rarer than normal data in a given data set.

The nonconforming patterns in data are commonly called anomalies or outliers. They are classified
into the three following categories [4]:

• Point Anomalies: A point anomaly is a single independent data instance which does not conform
to a well defined normal behavior in a data set.
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• Contextual Anomalies: A contextual anomaly is a data instance that is considered as an anomaly
in a specific context, but not otherwise.

• Collective Anomalies: A collective anomaly is a collection of related data instances that are
anomalous with respect to an entire data set.

In our research, semi-supervised anomaly detection is used to detect anomalies in school electricity
data. Based on the experience of facilities managers, point and collective anomalies are the targets of
the detection.

2.2. Time Series Data of School Electricity Consumption

A time series is a sequence of data points that are ordered by a uniform time interval [14].
The school electricity consumption data used in this paper is in the form of a time series where the
time interval is half an hour. It is recorded by a facilities management company. With half hourly
frequency, the data for one week contains 336 data instances. Figure 1 shows one week’s electricity
consumption data of a School from Monday to Sunday. In Figure 1, each data point represents the
electricity consumption in the previous half hour. For weekly electricity consumption data, it fluctuates
cyclically between Monday and Friday with a pattern and becomes steady with a small value.

Figure 1. One week’s electricity consumption data of a school. The x-axis is the electricity consumption
(kWh). The y-axis is the time. Adapted from [8].

With the school electricity consumption data, two types of anomalies are significant for
facilities managers:

• One single high data point anomaly. It is often used to identify an anomalous meter because it is
usually caused by a meter that records a wrong reading.

• A collection of continuous anomalies. It is used to identify anomalous electricity facilities, such as
heating being on at the wrong time.

2.3. Data Visualization

Visualization plays an important role in exploring, analyzing, and understanding data. It has
usually focused on developing techniques and systems to support the analysis of data, with limited
analysis of the relationship between data and the construction of models on top of them [15]. However,
instead of visualizing the result of data analysis, visualization is also important for improving the
process of data modeling. Janetzko et al. [16] discussed and presented different possibilities for
visualizing the power usage time series, which enables analysts to understand the power consumption
behavior and to be aware of unexpected power consumption values.
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In this research, the visualization enables researchers to communicate efficiently with domain
experts who are mainly facilities managers. Since this research is to solve a practical anomaly detection
problem in school electricity data, the expertise of domain experts is a significant basis. During the
modeling process, each model is analyzed with visualization by researchers, which allows facilities
managers to understand the analysis results and apply their domain expertise to improve the model.
Furthermore, to understand school electricity consumption data before the analysis, the data is
visualized in a cluster heat map. A cluster heat map is a graphical representation of data where
the individual values contained in a matrix are represented as colors taken from a color scale [17].
To support the analysis of school electricity consumption data and refine the models, weekly data is
visualized in a line chart in which detected anomalies are marked out. More details of visualizing the
school electricity consumption data in a cluster heat map and a line chart are described in Section 4.2.

3. Anomaly Detection Models

To solve the practical anomaly detection problem in school electricity data, the expertise of domain
experts is a significant basis for model selection and adjustment. The visualization of the model analysis
enables domain experts who are mainly facilities managers to apply their expertise on model selection
and adjustment. As a result, five models have been investigated with visualization for detecting
anomalies in the school electricity data, including autoregressive, autoregressive-moving-average,
polynomial regression, Gaussian kernel distribution and Gaussian distribution.

3.1. Autoregressive Model

Autoregressive (AR) model is widely used in time series analysis. AR is a linear regression model,
but the output variable is regressed on its own previous values [18]. With an AR model, the future
data instances in a time series can be predicted by the previous data.

An autoregressive is defined as:

Xt = c +
p

∑
i=1

ϕiXt−i + εt, (1)

where ϕi(i = 1, . . . , p) are parameters of model, c is a constant, and εt is a random error term with
mean 0 and variance σ2. p is the order of an AR model. An autoregressive model of order p is notated
as AR(p). If the constant in an AR model is thought as a parameter, an AR(p) model with a constant
term can be thought as an AR(p + 1) model without the constant term.

For predicting one week’s electricity consumption, this model is trained by its previous three
weeks’ data. Several existing methods, such as Yule-Walker, Akaike/Bayesian Information Criterion,
and Maximum Likelihood are adapted to estimate parameters for the models. This process is omitted
in this paper. After training, we obtained an AR(45) model. The model is investigated with one
school’s electricity consumption data of the year 2011. Figure 2 shows the comparison of the 30th
week’s electricity consumption data and the value predicted by AR(45).
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Figure 2. Comparison of the 30th week’s electricity consumption data and the predicted value.
The y-axis is the electricity consumption data (kWh). The x-axis is the time. Adapted from [8].

In Figure 2, the blue line is the actual electricity consumption data. The red line is the predicted
value. The results of other weeks’ data are similar to Figure 2. From Figure 2, it obviously shows that
the predicted value cannot be used to detect anomalies in weekly electricity consumption data.

According to Figure 2, on weekdays, the data has the same trend that increases fast before
12:00 p.m. and then decreases fast after 12:00 p.m. AR model is a linear regression model. It captures
either the trend before 12:00 p.m. or the trend after 12:00 p.m. When we fit an AR model with the data
of the entire week, it is unable to capture the temporal structure of the data.

3.2. Autoregressive-Moving-Average Model

To improve the predicted accuracy, moving-average (MA) is added to the AR model. MA is
a linear regression of the current value of a time series against current and previous random error
terms, and is commonly used to smooth out short-term fluctuations and highlights long-term trends of
a time series. A moving-average model is defined as:

Xt = µ + εt +
q

∑
i=1

θiεt−i, (2)

where µ is mean of a series, θi(i = 1, . . . , q) are parameters of model, εt is a random error term with
mean 0 and variance σ2, q is the order of a MA model. An MA model of order q is notated as MA(q).

An autoregressive-moving-average (ARMA) model is a combination of AR and MA. Based on the
definitions of AR and MA, an ARMA model is defined as:

Xt = c + εt +
p

∑
i=1

ϕiXt−i +
q

∑
i=1

θi, εt−i (3)

where c is a constant, εt is a random error term with mean 0 and variance σ2, ϕi(i = 1, . . . , p) and
θi(i = 1, . . . , q) are parameters of model, p is the order of AR part, q is the order of MA part. An ARMA
model with p autoregressive terms and q moving-average terms is notated as ARMA(p, q).

For predicting one week’s electricity consumption, an ARMA(45, 45) model is trained by its
previous three week’s data. It is investigated with the same dataset used in the AR model section.
Figure 3 shows the comparison of the 30th week’s electricity consumption data and the value predicted
by ARMA(45, 45).
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Figure 3. Comparison of one week’s electricity consumption data and the predicted value. Adapted from [8].

With moving average, ARMA performs better than AR within school electricity consumption
data. However, although the MA model smooths out the short-term fluctuation, the ARMA model
still does not capture the entire temporal structure. This is because of a significant difference in the
temporal structure of the data on weekdays and weekends.

3.3. Polynomial Regression Model

In order to avoid the volatility and capture the temporal structure of the school electricity
consumption data, polynomial regression is investigated to model the variation of the data for each
time slot through a year, since the data of a time slot in a week should fluctuate, slightly associated
with the number of the week through one year.

Given a data set {(Xt, Yt), t = 1, . . . , T} where Xt is a scalar variable, the polynomial regression
model is defined as:

Yt = c +
p

∑
i=1

αiX
p
t + εt, (4)

where c is a constant, εt is a random error conditioned on Xt, αi is the parameters of the model, and p
is the order of the model.

The order of the polynomial regression model used in this paper is 11. Furthermore, to improve
the numerical properties of the polynomial regression model, X is centered and scaled by:

X̂ =
X− µ

σ
, (5)

where µ is the mean of X, and σ is the standard deviation of X.
This model is fitted to electricity consumption data of one time slot through a year. In one year,

there are 52 data instances of each time slot. Figure 4 shows the polynomial regression model that is
fitted to one school’s electricity consumption data for the first time slot of the year 2011.

In Figure 4, the blue stars are the electricity consumption data and the red line is the polynomial
regression model that is fitted to the data.
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Figure 4. Polynomial regression model fitted to one school’s electricity consumption data for the first
time slot through the year 2011. The x-axis is the week number from 1 to 52. The y-axis is the electricity
consumption data (kWh). Adapted from [8].

To predict one week’s electricity consumption data, each polynomial regression model is used
to predict one data instance of one time slot. Figure 5 shows the predicted values of a week’s
electricity consumption data, in which the green line is the data of the year 2011 and the red line is the
predicted values.

Figure 5. Predicted values a week. Adapted from [8].

In Figure 5, although the model does not predict the values of weekday sufficiently well,
the predictions of Saturday and Sunday are accurate.

To detect anomalies in the data, the residual of each time slot is calculated. For one time slot,
the residual is the difference between the actual value and the predicted value for this time slot. If the
residual is greater than a threshold, the data instance will be detected as an anomaly. The threshold is
computed for each school’s model, respectively, based on two labeled datasets. One is used to train the
model. Then, the threshold is set and adjusted to guarantee that all the anomalies in Saturday and
Sunday’s data can be detected in another dataset based on the model. Figure 6 shows the process of
detecting anomalies in Saturday and Sunday’s data by the polynomial regression model.
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Figure 6. Detecting anomalies in Saturday and Sunday. Adapted from [8].

In Figure 6, the green line is the data of the year 2011 that is used to train the model. The blue
line is the data of the year 2012. The red line is the predicted values. The black line is the residual
between the data of the year 2012 and the predicted values. The yellow line is y = 0, which is the
threshold. Since the data of Saturday and Sunday in 2012 are much higher than that in 2011, the data
of Saturday and Sunday in 2012 are anomalous. These anomalies can be detected by the residual.
In Saturday and Sunday, if the residual of a data instance is greater than 0, the data instance will be
detected as an anomaly. However, the residual of weekdays always fluctuates around 0. If we use
the residual to detect the anomalies in a weekday, many normal data instances will be detected as
anomalies. Therefore, this model cannot be used to detect the anomalies in a weekday.

3.4. Gaussian Kernel Distribution Model

An alternate approach to model the data in a week is to fit a distribution to the data instances
from one time slot for a year. For each time slot, the data instance with a very low probability can be
considered as an anomaly. Based on the features of the data, Gaussian kernel density estimation (KDE)
is used to estimate the probability density function of the data.

Given a data set xn = {x1, . . . , xn} from an unknown continuous probability density function f ,
the Gaussian kernel density estimation is defined as:

f̂ (x) =
1

nh

n

∑
i=1

1√
2π

e−
1
2 (

x−xi
h )2

, (6)

where K = 1√
2π

e−
1
2 (

x−xi
h )2

is the Gaussian kernel function, h is the bandwidth, and n is the number of
the data instances in the data set.

In this research, the initial bandwidth h is estimated by minimizing the mean integrated squared
error (MISE), the MISE is defined as:

MISE( f̂ (x)) = E[
∫
[ f̂ (x)− f (x)]2dx], (7)

and the initial bandwidth will be adjusted according to the model performance and facilities managers’
domain experience iteratively.

One school’s electricity consumption of the year 2011 is used to estimate the Gaussian kernel
distribution for the data of each time slot. Figure 7 shows the Gaussian kernel distribution of the
first time slot’s data, in which the red “+” is the electricity consumption data and the blue line is the
Gaussian kernel distribution of the data.
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Figure 7. Gaussian kernel distribution of the first time slot’s electricity consumption data. The x-axis is
the electricity consumption data. The y-axis is the probability.

To detect anomalies in weekly data, the probability of each data instance is calculated by the
Gaussian kernel distribution of the corresponding time slot. If the probability of a data instance is
less than a threshold of the time slot, the data instance will be considered as an anomaly. With the
Gaussian kernel distribution of one time slot, the threshold for the time slot is given by:

threshold = Pmin + α× (Pmax − Pmin), (8)

where Pmin is the minimum probability of the Gaussian kernel distribution, Pmax is the maximum
probability of the Gaussian kernel distribution, and α is a coefficient. The process of adjusting the
coefficient α for different schools’ data is also based on two labeled datasets. One is used to train the
model. Another is used to calculate the coefficient, which guarantees that all anomalies are detected in
the dataset.

Figure 8 shows the detected anomalies in weekly data by the Gaussian kernel distribution model.

Figure 8. Anomaly detection in weekly data by the Gaussian kernel distribution model. Adapted from [8].

In Figure 8, the green line is the data of the year 2011, which is used to estimate the distribution.
The blue line is the data of the year 2012. The red “*” is the detected anomalies in the data of the year
2012. Comparing the data of the year 2011 and 2012, the model has detected all the anomalies in the
Monday, Friday, Saturday and Sunday’s data. However, the Gaussian kernel distribution model also
comes with a low precision, which is shown in Figure 9.
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Figure 9. Low precision of the Gaussian kernel distribution model. Adapted from [8].

In Figure 9, the green line is the data of the year 2011. The blue line is the data of the year 2012.
The red “*” is the detected anomalies. Comparing the data of the year 2011 and 2012, the data of the
year 2012 do not contain any anomalies. However, many normal data instances have been detected
as anomalies. This is because some occasional activities such as a holiday on a weekday affect the
electricity consumption, and this effect has been modeled by the Gaussian kernel distribution.

3.5. Gaussian Distribution Model

To avoid the low precision caused by the Gaussian kernel distribution, Gaussian distribution
is adopted. With Gaussian distribution, for each time slot, if a data instance is greater than an
upper bound, it will be considered as an anomaly. The probability density function of the Gaussian
distribution is:

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (9)

where µ is the mean of the data, and σ2 is the variance of the data.
Figure 10 shows the estimated Gaussian distribution of one school’s electricity consumption data

for the first time slot of the year 2011. In Figure 10, the red “+” is the electricity consumption data.
The blue line is the Gaussian distribution of the data.

Figure 10. Gaussian distribution of the first time slot’s electricity consumption data. Adapted from [8].
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To detect anomalies, the upper bound of one time slot is defined as:

upperBound = µ + α× σ, (10)

where µ is the mean of the Gaussian distribution, σ is the standard deviation of the Gaussian
distribution, and α is a coefficient. The process of adjusting the coefficient α is the same as previously
described in Section 3.4.

Figure 11 shows the process of detecting anomalies in the data by the Gaussian distribution model.

Figure 11. Anomaly detection based on the Gaussian distribution model. The x-axis is the time.
The y-axis is the electricity consumption data. Adapted from [8].

In Figure 11, the green line is the data of 2011, which is used to fit the distribution. The blue line is
the data of the year 2012. Comparing the data of the year 2011 and 2012, the model has detected the
anomalies in Monday and Thursday of the year 2012. The thick part of the blue line is the detected
anomalies. However, it does not detect the anomalies in Saturday and Sunday sufficiently well.

The Gaussian distribution model can avoid the low precision problem that appeared in the
Gaussian Kernel distribution model. Effects caused by occasional activities are omitted by Gaussian
distribution. Figure 12 shows the using Gaussian distribution model to detect anomalies in the weekly
data which only contains normal data. In Figure 12, the green line is the data of the year 2011. The blue
line is the data of the year 2012. The red line is the upper bound. It shows that all normal data of the
year 2012 are less than the upper bound.

Figure 12. Anomaly detection on normal weekly data based on Gaussian distribution model. Adapted from [8].
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3.6. Model Selection

The polynomial regression model detects anomalies in the data of Saturday and Sunday.
However, it is not suitable for the data of weekdays. The Gaussian kernel distribution model detects
all anomalies in the data. However, it results in a high false positive and causes the low precision.
The Gaussian distribution model detects anomalies in the data of weekdays with a low false positive.
Therefore, in order to detect anomalies in weekly data xt(t = 1, . . . , 336) with a low false negative
and a high precision, a hybrid model that combines polynomial regression and Gaussian distribution
is proposed:

xt =

 1√
2πσ2 e−

(x−µ)2

2σ2 , upperBound = µ + α× σ, if 1 ≤ t ≤ 240,

∑11
i=1 βiti + ε, threshold = c, if 241 ≤ t ≤ 336,

(11)

where the coefficient α and threshold c are adjusted according to different schools’ electricity
consumption data as mentioned in Sections 3.3 and 3.5.

4. Anomaly Detection and Visualization System

Based on the model proposed in the Section 3.6, we developed a data detection and visualization
system for school electricity consumption data.

4.1. System Design

To simplify the user operation, client–server architecture is adapted to design and develop the
data detection and visualization system. By using web browsers as clients in the system, there is
no additional software need to be installed by users. Figure 13 shows the sequence diagram of data
detection and visualization process of the system.

Figure 13. Data detection process of the system.

As shown in Figure 13, users only need to upload the data to the server. The data is automatically
processed and detected on the server. The result of data detection is visualized in clients.

4.2. System Implementation

In the system, weekly data is visualized in a line chart and a cluster heat map, in which anomalies
are marked out. Figure 14 shows the line chart of the 5th week’s electricity consumption data of
a school.
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Figure 14. The line chart of the 5th week’s electricity consumption data of a school [8].

In Figure 14, the blue line is the data of the year 2012. The green line is the data of the year
2011, which is used to train the model. The red points are the detected single point anomaly and
collective continuous anomalies in the data of the year 2012. Figure 15 shows the same data visualized
in a cluster heat map.

Figure 15. The heat map of the 5th week’s electricity consumption data of a school [8].

In Figure 15, each row is daily electricity consumption data and the color of each cell is changed
according to the data in which green represents low consumption, yellow represents medium
consumption and red represents high consumption.
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5. Evaluation

5.1. Model Evaluation

Recall, precision and false negative rate (FNR) are three common criteria used for evaluating
anomaly detection methods, which are given as:

Recall =
TP

TP + FN
, (12)

Precision =
TP

TP + FP
, (13)

FNR =
FN

TP + FN
, (14)

where TP (true positive) is the number of correctly detected anomalies, FP (false positive) is the
number of normal instances that have been detected as anomalies, and FN (false negative) is the
number of anomalies that have not been detected as anomalies.

For different schools’ electricity consumption data, the model proposed in Section 3.6 is trained
to guarantee that all anomalies in the dataset are detected. This training criterion is requested by
facilities managers based on their domain expertise. If a week with anomalies is not successfully
detected, the whole system will be useless for facilities managers. Therefore, FN of the model is
constant 0. This results in FNR of the model being constant 0 and Recall of the model being constant 1.
Accordingly, Precesion is used as the only one criterion for the model evaluation. A low precision
means that facilities managers need to check many incorrectly detected anomalies that actually are
normal data instances.

The model is evaluated with three schools’ electricity consumption data, in which anomalies are
labeled by facilities managers. Figure 16 shows the precision of anomaly detection result for three
schools’ weekly data of the year 2012. The detailed tables of precision data are shown in the appendix.

Figure 16. The precision of anomaly detection result for three schools’ weekly data of the year 2012.

In Figure 16, since FN of the model is 0, precision 0 means that there are no anomalies in those
weeks’ data. Therefore, precision 0 is considered the same as the precision 100%. Precision 100%
means that all anomalies have been correctly detected in the corresponding weeks’ data with zero
FP. Precision between 0 and 100% means that all anomalies have been detected in the corresponding
week’s data with non-zero FP. According to Figure 16, there are 92/156 weeks of data have a 100%
precision, 18/156 weeks of data have a 0 precision, and 46/156 weeks of data have an average precision
that is higher than 70%. In total, the average precision of the model is higher than 91%.
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5.2. System Evaluation

The system is evaluated by making a questionnaire that is shown in the appendix. There are nine
facilities managers from a facilities management company participated in the evaluation. They used
the system to detect different schools’ electricity consumption data and filled the questionnaire. For all
questions, 5 represents the most positive answer and 1 the most negative answer. The statistical result
of each question is shown in Figure 17. As the responses shown, facilities managers generally think:

• The system is easy to use.
• The visualization of anomaly detection is easy to read and understand.
• The system has improved their efficiency for identifying anomalies in school electricity

consumption data.

Figure 17. The statistical result of the questionnaire.

6. Conclusions

In this paper, we have examined five models to detect anomalies in electricity consumption
data. Moreover, we proposed a hybrid model that combines polynomial regression and Gaussian
distribution. During the data modeling process, we integrated visualization techniques and data
analysis. Based on the proposed model, we built a data detection and visualization system for
a facilities management company, which has improved the efficiency of facilities managers to identify
anomalies in the data. Furthermore, the variation of the proposed model can also be used for other
types of time series that have similar characteristics.

Future research will focus on the automation of model fitting for different schools’ electricity
consumption data. Currently, the model used in the system needs to be trained manually before
detecting anomalies. Furthermore, since the model is trained by one year of data, long-term effects
of the data have not been explored comprehensively. Therefore, optimizing the model with a larger
dataset (e.g., data of 10 years), for example, investigating season and holiday effect on the model, is
another research emphasis. Additionally, Visual Analytics (VA) [19] combine automatic data analytics
with interactive data visualizations. It has been shown that visual analytics enable a virtuous cycle
of user interaction, parameter refinement for algorithmic analysis methods so as to achieve rapid
correction and improvement of human knowledge and decisions. We will further develop our anomaly
detection methods in the VA framework for coupling interactive visual representations with underlying
analytical processes.
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Appendix A. Questionnaire

Please mark your level in a red color of agreement to the following questions.
1: Strongly Disagree 2: Disagree 3: Neither 4: Agree 5: Strongly Agree
1. Do you think the graphical user interface is friendly?
1 2 3 4 5
2. Do you think navigating through different views is easy?
1 2 3 4 5
3. Do you think the line chart is easy to read and understand?
1 2 3 4 5
4. Do you think the heat map is easy to read and understand?
1 2 3 4 5
5. Do you think the line chart shows enough information?
1 2 3 4 5
6. Do you think the heat map shows enough information?
1 2 3 4 5
7. Do you think the system is useful?
1 2 3 4 5
8. Do you have any advice for the system?

Appendix B. Tables of Precision Data

Table A1. The precision of anomaly detection results for the weekly data of School A.

Week 1 2 3 4 5 6 7 8
Precision 100% 0 0 82.4% 86.4% 72.2% 100% 93.9%

Week 9 10 11 12 13 14 15 16
Precision 0 100% 68.7% 71.4% 100% 100% 100% 0

Week 17 18 19 20 21 22 23 24
Precision 0 100% 100% 100% 100% 100% 100% 100%

Week 25 26 27 28 29 30 31 32
Precision 100% 100% 100% 100% 100% 100% 100% 100%

Week 33 34 35 36 37 38 39 40
Precision 100% 100% 100% 100% 100% 100% 100% 43.1%

Week 41 42 43 44 45 46 47 48
Precision 0 100% 45.3% 85.1% 89% 92.3% 84.6% 70.2%

Week 49 50 51 52
Precision 66.7% 72.7% 78.6% 100%
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Table A2. The precision of anomaly detection results for the weekly data of School B.

Week 1 2 3 4 5 6 7 8
Precision 100% 86.2% 71.9% 72.4% 86.4% 89% 100% 72.7%

Week 9 10 11 12 13 14 15 16
Precision 76.5% 77.6% 61.2% 81.4% 0 100% 100% 0

Week 17 18 19 20 21 22 23 24
Precision 0 0 87.2% 100% 100% 100% 100% 100%

Week 25 26 27 28 29 30 31 32
Precision 100% 100% 100% 100% 100% 94.3% 100% 100%

Week 33 34 35 36 37 38 39 40
Precision 76.2% 100% 100% 79.6% 100% 100% 0 0

Week 41 42 43 44 45 46 47 48
Precision 0 100% 77.6% 100% 100% 100% 100% 65%

Week 49 50 51 52
Precision 48% 72.7% 15% 100%

Table A3. The precision of anomaly detection results for weekly data of School C.

Week 1 2 3 4 5 6 7 8
Precision 100% 100% 0 79.6% 68.1% 0 100% 74.3%

Week 9 10 11 12 13 14 15 16
Precision 100% 100% 100% 100% 100% 100% 100% 100%

Week 17 18 19 20 21 22 23 24
Precision 81.5% 71.4% 100% 100% 100% 100% 100% 100%

Week 25 26 27 28 29 30 31 32
Precision 100% 100% 100% 100% 100% 100% 100% 100%

Week 33 34 35 36 37 38 39 40
Precision 100% 100% 100% 100% 0 100% 100% 100%

Week 41 42 43 44 45 46 47 48
Precision 100% 100% 100% 78.9% 64.4% 0 71.8% 0

Week 49 50 51 52
Precision 38.6% 32.6% 80.3% 100%
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