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Preface

After the introduction of the new High Efficiency Video Coding(H.265), the standard
has been subject to significant academic research. A major evolution in this revision of
the video coding standard is the upgraded entropy coding scheme. Because of the serial
nature of this algorithm, designing an efficient implementation is vital for high throughput
encoding. This formed the motivation for this project, where a HEVC CABAC encoder
is designed and analyzed. This Master’s thesis was written for readers with knowledge
of both software and hardware design, preferably with prior knowledge of video coding
standards. It was completed in cooperation with the Department of Electronic Systems
at the Norwegian University of Science and Technology, during the autumn semester of
2017.

Trondheim, 04/08/2017

Lars Erik Songe Paulsen
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Summary and Conclusion

The Context-Adaptive Binary Arithmetic Coding(CABAC) used in High Efficiency Video
Coding(HEVC/H.265) is a near optimal entropy coding method. As a consequence of
this coding efficiency, CABAC implementation is a complicated and highly serialized
algorithm. With the CABAC becoming a bottleneck in encoder and decoder performance,
a major innovation has taken place in the binarization scheme of the transform-coefficient
level values. HEVC introduces an adaptive binarization scheme that allows more data
to be encoded using a high throughput bypass mode. This adaptive binarization scheme
utilizes three different coding methods, Truncated Unary(TrU), k-th order Truncated
Rice(TRk) and k-th order Exp-Golomb(EGk). By exploiting the properties of the video-
coding data structure, as well as the properties each of these coding methods hold, this
binarization scheme is able to achieve a near optimal code.

Thorough analysis of the binarization scheme has been performed, with a main focus on
finding an efficient hardware implementation. A major challenge was finding an efficient
way of coding the remaining absolute transform-coefficient level(ALRem). ALRem is
coded using an truncation of TRk and EGk, with an adaptive level(k). A finite state
machine approach was found, that proved to be a very efficient at coding the absolute
remaining level. This approach was implemented in hardware.

The Context Index Calculator, that form an integral part of the HEVC CABAC
system was not implemented. When this module is designed, it is proposed to combine
the Binarizer and Context Index Calculator. This is due to the large amount of shared
data dependencies.

A simplified version of an actual Context-Adaptive Binary Arithmetic Coding encoder
architecture is implemented. It performs CABAC encoding as specified in by the HEVC
standard, but is limited to the encoding of a subset of the transform-coefficient level data.
Verifying the correctness of this hardware encoder required the development of a software
model. This software encoder was expanded to also include a decoder, which allowed for
additional functional verification.

Because of the inconsistent throughput of the encoder modules, an asynchronous fifo
was developed to simplify data flow, and improve performance. Due to the unfinished
state of both the binarizer and context index calculator, the completed system was not
implemented.
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1 Introduction

1.1 Background

Due to the ever increasing demand for higher quality video content, such as 4k streaming
and Virtual Reality 3D video. The Joint Collaborative Team on Video Coding(JCT-VC)
set out to improve upon the previous coding standard, H.264/MPEG-4 Advanced Video
Coding(AVC). The result of which is the H265/MPEG-H High Efficiency Video Cod-
ing(HEVC) standard. The preliminary performance goal for HEVC was a 50% reduction
in bit rate compared to AVC at the same subjectively perceived video quality.[5].

In practical terms, HEVC can be viewed as an extension of the concepts utilized in
AVC. Although the concepts are very similar, many improvements and optimizations have
been explored since the AVC standard was first completed in 2003. Introducing a new
standard also allowed for a ground-up redesign of the data structures, that in many ways,
set the baseline for potential performance.

HEVC seems to have lived up to its performance goal, as documented by Netflix
in its large-scale study on video codecs published in 2016.[7] Using one of the leading
open-source HEVC encoders, x265, and comparing it with the leading open-source AVC
encoders, x264, as well as the VP9 reference encoder, libvpx. Netflix showed with their
advanced video multimethod assessment fusion video quality measurement tool, that x265
offered bit rate savings ranging from 35.4% to 53.3% compared to x264, and from 17.8%
to 21.8% when compared to libvpx, at the identical delivered video quality. Even still, 41/
years after the standard was ratified, adoption rate is still slow. Despite the impressive
performance displayed by HEVC, the competition in the royalty free and open-source
VP9 has shown to be quite capable. Forcing content providers to consider if HEVC is
worth the cost.

HEVC is designed and documented with a focus on a software implementation. The
standard document is meant to be understood alongside the HEVC Test Model(HM)
written in C++. This makes designing for hardware challenging. As of 2017, hardware
implementations are still sparse, with few commercial implementations available[13]. Pub-
licly available hardware implementations of the HEVC CABAC entropy coding scheme is
still absent.

HEVC uses the context-adaptive binary arithmetic coding(CABAC) as its single en-
tropy coding method. While AVC also supported the lower-complexity context-adaptive
variable-length coding(CAVLC). HEVC CABAC was redesigned to offer higher through-
put then its AVC predecessor, while still maintaining a higher compression ratio. This
was achieved, in part, by redesigning the binarization scheme for the transform-coefficient
level values. This has allowed for an 8 reduction in context coded bins(regular coded
bins).[12] Which in turn allow for for more bins to be coded using the higher throughput
bypass coding method.

The HEVC CABAC entropy coding scheme represents the state of the art lossless com-
pression technology, and has in turn been the focus of intense academic research. CABAC
delivers compression close to the theoretical limit(entropy). Because of the complexity of
the algorithm, optimizations is still being researched. With a main focus on the coding
of the transform-coefficient residual data, that contribute to the largest portion of the
compressed video data.[6]
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1.2 Objectives

This project aims to:

e Research the HEVC entropy coding scheme. With a main focus on the changes
made to the binarization of the transform-coefficient residual data.

e Implement a HEVC compliant CABAC encoder architecture in VHDL, restricted
to these residual coding syntax elements.

e Test and characterize the performance of the implemented CABAC encoder mod-
ules.

1.3 Limitations

This master thesis did not benefit from a prior semester project, which would have made
the extensive scope of this project more manageable. This could also have given a better
overview of the challenges involved in developing a HEVC CABAC module, possibly
resulting in a smarter approach.

One of the best resources for understanding the HEVC entropy coding scheme, is the
open access article on Entropy coding in HEVC from MIT[11]. Tt does a very good job
of introduction the principles utilized in HEVC, but it does not define the data structure
and interface needed to base correct module designs upon. Furthermore, it details many
versions of the coding scheme, leaving some ambiguity about the current revision function-
ality. Complete HEVC CABAC documentation is provided by ITU Telecommunication
Standardization Sector, in their Recommendation ITU-T H.265 standard document. This
documentation is best understood when used with the accompanying HEVC Test Model,
a C++ based software model. The standard document along with the HEVC Test Model
does cover everything, but does so in an unapologetically complicated manner. This re-
sulted in a major simplification of the first stage binarization, and an incomplete Context
Index Calculator. The remaining stages of the hardware CABAC encoder is designed as
best understood from the specification, but with some omitted or unverified features.
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1.4 Approach

There exists a large amount of research articles related to the HEVC binarization of the
transform-coefficient residual data. These articles are very in depth, often assuming the
reader has a very good understanding of the subject. Leading to a steep learning curve.
Basic understanding of this advanced adaptive binarization scheme is best gained by the
combination of figures and clear descriptions. For this reason, a great deal of effort has
been made to document the binarization scheme using detailed figures.

A major challenge in this project was testing and verifying the correctness of the
designs. All modules comes paired with a simulation TestBench model, this allowed for
simple verification of the signaling and state machines. But for functional verification to
be achieved, the correctness of the output data had to be established. The best approach
would be to use the HEVC Test model to trace the Binarizer and encoder outputs. But
with the complexity of this Test model, now approaching 94,000 lines of code[14], this
was deemed too demanding for the limited time constraint. Instead, it was decided to
develop an independent software model. This model was expanded to include a CABAC
decoder, allowing for functional verification with a higher level of confidence. Input test
data was however constrained to randomly generated data, making analysis of the encoder
performance difficult.

1.5 Features and Contributions

A major contribution of this project is the in-depth analysis of the binarization of the
transform-coefficient level data. As well as the efficient encoding method for the co-
eff_abs_level remaining. The code provided serves as a reference for solving many technical
challenges when implementing a correctly sequenced binarizer.

A working regular /bypass encoding module of a HEVC compliant CABAC architecture
is written in VHDL. In addition, a software version of both the encoding and decoding is
provided.
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1.6 Structure of the Report
1 Introduction

Chapter 1 gives an introduction to the project background, objectives and approach.

2 Entropy and Arithmetic Coding

Chapter 2 gives a short introduction to some of the theoretical aspects behind the CABAC
video compression system.

3 HEVC System and Data Structure:
Chapter 3 gives an overview of the High Efficiency Video Coding standard.

4 Binarization:

Chapter 4 documents the adaptive binarization of the transform-coefficient level data.

5 Context Modeling:

Chapter 5 gives an introduction to Context Index Calculation and Context modeling in
HEVC CABAC.

6 HEVC CABAC Algorithm:

Chapter 6 documents the CABAC algorithm, as it is specified in the HEVC standard
document.

7 Software Model:

Chapter 7 details the software model used to verify the hardware encoder.

8 Hardware Implementation:

Chapter 8 documents the hardware architectures implemented in this project

9 Results and Discussion:

Chapter 9 discusses the results of the project, as well as possible future work.
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2 Entropy and Arithmetic Coding

A foundation for intuitive understanding of the principles involved in data compression
is sometimes best achieved through practical examples. Consider being given the task of
reducing the page count for a normal English text. With the condition that all substantive
information is preserved, and that the recipient is able to rebuild the whole original text
with only the knowledge of the English language and writing system. A straightforward
first approach could be to eliminate all redundant spacings. Then continue by removing
any unambiguous vowels. Application of these two simple methods results in a substantial
page count reduction, while still containing the same amount of information. The com-
pressed text now carry substantially less redundancy. In other words, the compressed text
now contain more information per character when compared to the original text. The key
to achieving this compression lies in the knowledge of how the English language works,
as this compression system would not work for a completely random text pattern. This
important principle is applied when designing a compression scheme for video coding.
Where predictability of the data leads to improvements in data compression.

A very simple implementation of an entropy coder Fig. 26 shows how compression of bi-
nary information can be achieved. Note how this coder is only efficient at low byte values.

00000011 ----»| ----> 00000011
woooit— o 11 10 119 o |--{ooouens
00000000 ----» ----» 00000000
00000001 ----»| ----»> 00000001

Figure 1: Simple Unary coding based compression of byte data.

This simple unary coder is unable to produce a representation that approaches the
theoretical optimal compression ratio(entropy). More advanced entropy coding methods,
such as Context-Adaptive Binary Arithmetic Coding, are however when given sufficiently
sized information sets able to produce a representation that is arbitrarily close to entropy.
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2.1 Shannon Entropy

While generally, entropy is used to refer to the disorder or uncertainty of a system. Shan-
non entropy provides a mathematical model for the best possible compression of infor-
mation. When entropy is discussed in the realm of information theory, it is most often
referring to Shannon entropy. Where a shannon(sh) is a unit of entropy, which can also
be denoted as a bit. One of the most important principles that are applied in complex
entropy coders, is the fact that entropy is skewed by the probability for each distinct
element in the information set to occur. Generally, loga(n) bits are needed to represent a
integer variables of n values, given that n is a power of 2. If these variables are equally
probable, the entropy is said to be equal to the number of bits. If, however, some vari-
ables reliably occur more often in the information set, entropy goes down. This holds
even if every possible variable in the information set is present. Understanding this some-
what unintuitive concept requires delving deeper into the theory that Shannon presented.
Shannon defined entropy H of a discrete random variable X in the range {z1,...,z,} and
with a accompanying probability mass function P(X) as:

ZP x;) I(z;) = ZP x;) logy P(x;) (1)

Eq. 1 shows how entropy is calculated using log., resulting in a unit of entropy that
can be referred to as bits. If log;g where used the unit of entropy would denote how many
decimal symbols that is required to distinguish the variable within the range. Because
the number of bits for any binary number is an integer. The actual number of bits for
any given entropy is equal to [H(X)].

Table 1 shows how the theoretical entropy of symbols can be calculated if the proba-
bility is modeled by observing the Symbol string.

Symbol Probability

Symbol string [A | B | C | D | E | H per symbol
AAABCC o |31k |0 |0 |1.459
ABCABC g 1311310 |0 | 1585
AAAAAA 3310 |0 |0 |0 |O

ABCD Vg | Ya | s | Y| O |2

AABB h|lp|0 |0 |0 |1

ABCDE Us | s | 1 | 15 | 15 | 2.322

Table 1: Entropy calculated assuming the distribution in the symbol string is representative of
the actuall probability distribution.

This also illustrates how entropy calculation is relative to your model. Consider the
symbol string {AAABCC}. If you could map {AAA} — {D} an then instead transmit
{DBCC}. This would result in a reduction of entropy. Notice how for the Symbol string
{ABCD}, H per symbol is equal to 2. The logical mapping of this symbol string in
binary would be {A, B, C, D} — {00, 01, 10, 11}. Notice also how for the Symbol string
{AAAAAA}, the H is 0. In other words, entropy is zero when the outcome is certain.
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2.2 Entropy for binary strings

All digital information is represented in what can be referred to as binary strings. This
can be seen as a simplification of the amount of symbols that needs to be modeled with a
probability distribution. Table 2 shows how probability can be calculated by the observed
bin string. And how the entropy is affected by the observed probability distribution.

Probability
Bin string | 1 0 H per bin
00001111 | /2 1/ 1
00110011 | 1/ 1/ 1
01010101 | 1/ 1/ 1
11111110 /8 /g 0.543
00000011 | /4 3/4 0.811
11011001 | 5/8 3 /8 0.954

Table 2: Entropy calculated assuming the distribution in the bin string is representative of the
actuall probability distribution.

This simple model works on a per bin basis, while it is easily observable that there
exists patters in the bin strings. {00001111} could be reduced down to {01} by introducing
a dictionary that maps {0000, 1111} — {0, 1}. This illustrates how patterns in the bin
string can be exploited with a better model, and how this requires the model incorporate
all elements that will occur. There exists a lot of lossless entropy coding schemes. Each
with their own strengths and weaknesses. HEVC’s Context Adaptive Binary Arithmetic
Coder was developed specifically for video encoding.

16



2.3 Arithmetic Coding

Arithmetic coding is the core of the Context-Adaptive Binary Arithmetic Coder, this en-
tropy coding scheme works by encoding information by representing it as a sub-interval
between 0 and 1. This is a different approach compared to Huffman coding, where the
input component symbols are first separated and then replaced with a code. Arithmetic
coding is what is known as a statistical coding method, meaning that the coding per-
formance is directly related to the preciseness of the statistical model used. Where the
statistical model is the probability distribution for each symbol in the symbol string.

X = {A,B,C} P(X)=1{0.25025,05}
Code(C)
0 0.01 0.1 0.11

Output: 1

Figure 2: Encoding of a single symbol.

X = {A,B,C} P(X)=1{0.250.25,05}
Code(A)

0 0.001 0.01 0.011 0.1 0.101 0.11 0.111
| |

Output: 00

Figure 3: Encoding of a single symbol.

Figures 2 and 3 show how the different symbols are encoded. Where a a larger prob-
ability percentage directly results in a shorter output code. Note that the output code is
equal to the lowest value in the sub interval, and the “0.” symbols can be discarded, as
they are inferred present for all arithmetically coded symbol strings.

17



Coding of multiple sequential symbols is achieved by recursively subdividing into the
interval of previously encoded sub intervals.

X ={A,B,C} P(X)=1{0.250.25,0.5}
Code(BACQ)
0 0.01 0.1 0.11 1

001 .- 00101 0.011 0.0111 0.1

~.a
~.a

O.:Ol 0.010001 0.01001 """r-emeei 0.010011 0.0101
|

[0.01001, 0.0101)

Output: 01001

Figure 4. Sequential encoding of three symbols, using a static probability model.

A key element for achieving high compression rates with arithmetic coding is a correct
statistical model. HEVC CABAC uses an adaptive context aware probability model.
This system works by using a specific probability model(context) for each data element
it encodes. Where this probability model is updated for each encoded symbol.

18



3 HEVC System and Data Structure

One of the bigger changes to HEVC when compared to AVC is the introduction of a more
advanced data structure. This change was motivated by the need to efficiently encode
higher resolution videos. With this change comes a new set of cryptic acronyms that are
added to the standard document vocabulary. While the implemented design covered in
this report focuses on the 4x4 Transform Blocks, understanding the parent structures is
useful.

H.264

EERF _«dENNERERIZEEE
[ [ «dENNERENNEYZAYNEE
_aflEREUNYTGAE\\REEN
 «dERARFFYT AU MERIEEN
Pl Db LT LY ] e [ [ ISt |
FENODNESSNNNNEEN SHEREEERT
(Rl T L LN T T T PTIT] JANTY (]
NUNNENE THEEEEY ENANEEEY
P S THEEREL T [ ] [ e ] [ [ ][ ]/]
L T [ | [ L | (| [ |} F]
(1 d AN S 2
(1| | PP [ | | (|
] _«dllEEERENANSN
TSR 0\ | T[T 1 [ [ JTUARART [T ]
T TN AN .

Figure 5: HEVC allows larger areas of low complexity to be signaled more efficiently.[4]

Previous digital video coding standards uses the Macroblock structure, with a standard
of 16x16 samples. For HEVC the macroblocks has been replaced with the Coding tree
unit(CTU), allowing for larger block structures(16x 16, 32x32 or 64x64). This innovation
is an important part of the coding efficiency improvements HEVC provides. Allowing for
large low-complexity areas to be signaled more efficiently. The trade-off being a relative
increase in encoding time, but with an added benefit of reduced decoding time.|§]

A naming convention frequently used in HEVC is to use ” Unit”suffix when describing
the complete pixeldata set, i.e both luma and chroma components, and its accompanying
Syntax Elements. The ”Block”suffix refers to the distinct luma/chroma components.

Pictures in HEVC is initially divided into CTUs, they are then further divided into
Coding Tree Blocks(CTB). One CTB for luma, and two for each chroma component.
CTB sizes can be 16x16, 32x32 or 64x64. Then these CTB are further divided into one
or more Coding Units(CU). Each division resulting in four smaller regions. This is why
the data structure is referred to as a quadtree. CUs are then divided into one or several
Transform Units(TU) and prediction units(PU). TUs contain the Transform Blocks of the
coefficients for spatial block transforms and quantization which is the focus of this report.
TUs and TB can be 4x4, 8x8, 16x16 or 32x32, but only binarization and coding of TBs
of size 4x4 is detailed here.

The data structure of HEVC is well though out system, that enables many of the
performance improvements from the previous standard. The complexity does however
make it a challenge to fully comprehend. A thorough understanding of the data structure
is required for implementing a complete and correct functional binarizer and context index
calculator.
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3.1 Syntax Elements

One of the more abstract words heavily utilized in the standard is the Syntax Element.
Defined in the standard document as follows:

Syntax element: An element of data represented in the bitstream.

A better definition is not easily construed, but it is possible to look at syntax element
as an umbrella term for any property that the data in the bitstream hold. Transform
coefficient data for the Luma and Chroma components are known to contribute to the
largest amount of data in the video bitstream. This is the main motivation for focusing
on these syntax elements.

100%

= Terminating
© SAO
= TransformChroma

80%

70% = TransformLuma

W ChromaCBFFlag
B LumaCBFFlag
® TransformSubDivFlag

50%  InterPred
B Mergeldx
40% B MergeFlag
B IntraPredMode
30% = RoOtCBF
B PartMode
20% H PredMode
W SkipFlag
10% M SplitFlag

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 6: Bitrate distribution of Syntax Elements for varying levels of quantization in HEVC.
Where quantization can be viewed as the level of lossy compression. Data shows contribution
for encoding of all frame types.[6]

Binarized syntax elements refers to a binarized representation of the properties of the
Transform Block data. Where these properties can vary from the location of the last
non-zero element in the data set, to the actual binary value of the data.
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3.2 CABAC Encoding

Entropy coding in HEVC is based on arithmetic coding, but utilizes a few additional stages
designed to improve video coding performance. Input to the HEVC CABAC encoder is
syntax elements, and the output is the finished compressed bitstream.

e Binarization: The first stage in the encoding is a pre-processing stage that converts
the syntax elements into a binary representation more suitable for Binary Arithmetic
Coding. Finished binarized syntax elements are commonly referred to as bins.

e Context Modeling: Selection of encoding mode for bins is performed. Bypass
coding is selected for bins where the distribution is assumed to be uniform, and
Regular is selected for bins where this assumption can not be made. Each regular
coded bins include an accompanying context index. This context index is calculated
based on what syntax element the bins belong to, as well as previously encoded bins.
Each context index is a reference to a probability model in a context table.

e Regular Encoding: This stage performs Binary Arithmetic Coding of bins using
the probability model at the given context index. The probability model at the
given context index is updated after encoding of each bin(bit).

e Bypass Encoding: Bins with uniformly distributed symbols(equal amounts of ‘1’s
and ‘0’s) uses the higher throughput bypass encoding mode. Where the coding
algorithm is simplified, due to the exclusion of probability modeling.
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10|00
— 6[0|0|0
Context 0jojojo
Modeler

Bitstream Storage

Context
Tables

A

Context Context
Model Model
Read Update

Y

EEEEEEEE

0 Regular
Encoder

° Bypass
Encoder

Figure 7. CABAC encoding process for a 4 x 4 Transform Block.
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3.3 CABAC Decoding

The decoding process works by performing the same steps as the encoder, but in reverse
order. With the most important difference being that mode selection and context index
calculation has to be performed using the previously Decoded and DeBinarized syntax
elements. This is enabled by the fact that Binary Arithmetic Coding allows decoding
from the front of the bitstream, as well as a binarization scheme designed to facilitate
this process. A notable challenge in implementing a CABAC decoder lies in this feedback
control system. A simplified software decoder is used for verifying the encoder output,
but this report does not focus on covering CABAC decoding in detail.
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Bitstream Storage

Figure 8: CABAC decoding process for a 4 x 4 Transform Block.

Note that “CABAC” sometimes refer to only the actual CABAC encoder, and other
times to the complete entropy coding system of HEVC, including the Binarizer. Bypass
encoding is not really CABAC, since it is not Context-Adaptive, but will often be included

in the term CABAC.
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4 Binarization

The first stage in the CABAC coder is the binarization of different syntax elements. This
Binarizer process aims to truncate the input data, by exploiting certain known properties
of the data set. The biggest change in binarization in HEVC compared to the previous
standards is the binarization of the syntax elements related to the transform coefficient
level values. Some of these binarizations has been made adaptive based on previously
binarized transform coefficient level syntax elements. Allowing for more of these syntax
elements to be bypass coded. Most notably the coeff_abs_level remaining syntax elements.
This section covers the binarization process for a 4x4 Transform Block(TB) transform-
coefficient level data, complete with examples.

4.1 Binarization Processes

HEVC uses several different binarization processes. The process chosen is dependent on
the syntax element to be binarized, and in some cases the previous binarized syntax ele-
ment levels. With the goal of choosing the coding method best suited for the properties
of the current syntax element to be binarized. The coding methods vary in range, length
and growth, as well as the information about the code that needs to be known on both
encoder and decoder side. Code-complexity has also been taken into account. Adding
too much computational requirements for relative minor coding gains has been avoided.
This is especially true for computations where parallelization is difficult. All coding meth-
ods used in binarization of the residual_coding syntax elements are covered in this chapter.

4.2 Unary, Truncated Unary (TrU) Fixed-Length (FL)

Unary, Truncated Unary and Fixed-length coding are the simplest coding methods used
in HEVC. Unary and TrU offers short initial code length with linear growth, with the
length inferred from the code. This results in a flexible code suitable for binarizing syntax
elements where most values N are small, but which may still function for larger ranges.
Fixed-Length requires the length to be known on both the encoder and decoder side. FL
is therefore inflexible, but still suitable for certain syntax elements. Syntax elements of
length 1(1-bit with value 0 or 1), is said to be FL.

N | Unary(U) | Truncated Unary(TrU) | Fixed-Length(FL)
0|0 0 000
1 ]10 10 001
2 | 110 110 010
3 | 1110 1110 011
4 | 11110 11110 100
5 | 111110 111110 101
6 | 1111110 1111110 110
7 11111110 | 1111111 111

Table 3: Unary, Truncated Unary and Fixed Length code.
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4.3 Truncated Rice (TRk)

HEVC uses the k-th order truncated Rice binarization method. TRk of 0 - 4th order is
used in the binarizing process of coeff_abs_ level remaining, where the order depends on
the previously binarized coeff_abs_level remaining. TRk is similar to Unary and TrU in
that the length of the code is inferred from the code itself. The difference is that the code
is split into a prefix and a suffix part. The prefix consisting of TrU code, and the suffix is
a FL binary representation of the least significant bins. The suffix has the length k, and
the prefix is incremented every time the suffix overflows. This allows TRk to dynamically
adjust the trade-off between minimum bins length, and range. The largest value in TRk
is defined by the cMax variable.

k
N 0(cMax=3) | 1(cMax=7) | 2(cMax=15) | 3(cMax=31) | 4(cMax=63)
010 00 000 0000 00000
1 (10 01 001 0001 00001
2 | 110 100 010 0010 00010
3 | 111 101 011 0011 00011
4 | NA 1100 1000 0100 00100
5 | NA 1101 1001 0101 00101
6 | NA 1110 1010 0110 00110
7 | NA 1111 1011 0111 00111

Table 4: Truncated Rice(TRk) code. cMax values inferred from the HEVC binarization rules
at any given order(k).

4.4 Exp-Golomb

HEVC uses k-th Exp-Golomb coding technique in reverse order. EGk of 1 - 5th order is
used in the binarization of coeff_abs_level remaining. This code also uses a unary prefix,
as well as a FL suffix that has the length of prefix-length + k. EGk has no inherent range
limit, as the length of the suffix is signaled with the prefix. This is an important property
as EGk is used as the final coding method of the absolute level.

k

1 2 3 4 5

00 000 0000 00000 | 000000
01 001 0001 00001 | 000001

1000 010 0010 00010 | 000010
1001 011 0011 00011 | 000011
1010 10000 | 0100 00100 | 000100
1011 10001 | 0101 00101 | 000101
110000 | 10010 | 0110 00110 | 000110
110001 | 10011 | 0111 00111 | 000111
110010 | 10100 | 100000 | 01000 | 001000

O NO|OC W N =O 2

Table 5: Reverse order Exp-Golomb(EGk) code.
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4.5 Scan Direction

Because of the properties of the residual data in the Transform block, the binarization is
affected by the order of which the data is processed. Scan directions chosen are optimal
if the coefficient levels are of increasing magnitude, in the order chosen.

Intra Prediction mode | Oto5 | 6to 14 | 15to 21 | 22 to 30 | 31 to 34
Scan Direction Diagonal | Vertical | Diagonal | Horizontal | Diagonal

Table 6: Selection of scan direction in 4 x 4 Transform Blocks.

Scan direction is dependent on the Intra Prediction mode. In most cases the Diagonal

scan direction seen in Fig. 19 is used. But in some cases the Vertical and Horizontal scan
directions seen in Fig. 10 is employed.
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Figure 9: Scan direction for Diagonal scan.

Vertical Horizontal
L
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Figure 10: Scan direction for vertical and horizontal scans.
The example binarization covered here uses the Diagonal scan direction. Note that

for binarization with any of the other scan directions will result in a different order of the
data, and therefore also a different binarization output.

25



4.6 Transform-coefficient level data

The Syntax elements covered in this report is the Transform-coefficient residual level data.
The residual data of a 4 x 4 TB simply consists of a 4 x 4 array of signed 16-bit integers.
Binary and decimal representation can be seen in Fig. 11, as well as the representation
of the data when converted to a one dimensional(16 x 1) array using the Diagonal Scan
Direction. For simplicity, the figures in this chapter utilizes the 16 x 1 decimal repre-
sentation for representing the Transform Block, but the finished binarizations are all in

binary.
0 1 2 3

0 | 0000000000100000 | 1111111111101101 | 0000000000001001 | 1111111111111110 | 32 [-19] 9 | -2

1 | 1111111111100111 | 0000000000000000 | 0000000000000010 | 0000000000000001 | =250 | 2 |1

Y -

2 | 0000000000001011 | 0000000000000011 | 0000000000000000 | 0000000000000000 | 11 3 0 0

3 | 1111111111111001 | 0000000000000010 | 0000000000000000 | 0000000000000000 | -7 2 0 0
(zy) (33) (3,2) (23) (1) (2,2) (1,3) (3,0 (2,1) (1,2) (0,3) (2,00 (1,1) (0,2) (1,0) (0,1) (0,0)

0 0 0 1 0 2 | =2 2 3 =719 0 | 11 |—-19]-25| 32

Figure 11: Residual data in the Transform Block to be Binarized

The sample Transform block from Figure 11 is the same for all binarizations covered
in this chapter. The Syntax Elements covered in this Section is shown in Table 7

Syntax Element

last_sig_coeff x_prefix

last_sig_coeff_y_prefix

sig_coeff _flag

coeff_abs_level greaterl flag

coeff_abs_level greater2 flag

coeff_abs_level remaining

coeff_sign_flag

Abbreviation | Binarization Process | Encoding

LAST TR Regular | Regular | Regular
LAST TR Regular | Regular | Regular

SIG FL Regular | Regular | Regular
ALG1 FL Regular | Regular | Regular
ALG2 FL Regular | Regular | Regular
ALRem TrU, TRk and Egk Bypass | Bypass | Bypass
SIGN FL Bypass | Bypass | Bypass

Table 7: Syntax Elements detailed in this project.
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4.7 Coding of First Non Zero Element Coordinate

A major evolution from AVC to HEVC was a change in how the last_sig _coeff and
sig_coeff_flag was binarized. HEVC introduced a scheme where the coordinates of the last
non-zero-element(last_sig_coeff) in the Transform Block is coded using Truncated Rice.
The x- and y-coordinates are split into two distinct syntax elements, last_sig_coeff x_prefix
and last_sig_coeff_y_prefix. allowing for separate contexts for each coordinate. For TBs
larger than 4 x 4 a Fixed Length suffix is introduced,[9] but his will not be covered further
here.

inferred 0

(z,y) R

Transform Block 0 0 0 1 0 2 -2 2 3 =719 0 11 | —19]—-25( 32

/\ N TRk
0 0
1
2

10
110

last _sig_couff x_prefix last_sig_couff_y prefix 3 111

*1110 for TB8x8 or larger

Figure 12: Binarization of last_sig_coeff_x/y_prefix in 4 x 4 Transform Blocks.

Fig. 12 shows an example binarization of last_sig_coeff_x_prefix and last_sig_coeff_y_prefix
using the Diagonal Scan Direction. The notable challenge in implementing this binariza-
tion method lies in supporting the three different Scan Directions. For the 4 x4 Transform
Block, TRk coding is of 0’th order and is therefore identical to Truncated Unary coding.
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4.8 Coding of Absolute Level

Absolute levels is defined as the absolute value of the variables contained in the Transform
Block. The coding best described as a concatenation of truncated unary(TrK), k-th order
truncated Rice(TRk) and (k+1)-th order Exp-Golomb(EGk). Where the TrU coding is
implemented using the SIG, ALG1 and ALG2 syntax elements, and the TRk and EGk is
implemented using ALRem. Sign data is signaled using the FL coding. Or if the optional
sign bit hiding technique is used, signaling of SIGN is potentially skipped.

A useful definition for understanding how absolute level is binarized, is to define this
absolute level Z as seen in Equation 2.

Z = SIG + ALG1 + ALG2 + ALRem (2)

Where SIG, ALG1, and ALG2 all have the value of 0 or 1 when present, or is inferred
0 when not present. There are three thresholding parameters used in the binarization of
7. Two that relates to the coding type, By and B;. And one that relates to the TRk and
EGk levels, k. By and B is used to separate the three coding methods and k is used to
denote the order of the TRk and EGk coding. The binarization process is made adaptive
by changing these threshold variables if certain conditions are fulfilled. These conditions
are evaluated after coding each level at the current index in the scan. The subblock is
then processed by binarizing each Z using the following threshold adaption rules:

Rules:

e Before a subblock is processed, k is set equal to 0 and By is set equal to 2.

e B, is defined as By = 4 x 2 4+ B, and is updated if either k or By is changed.
e By is set equal to 1 after one occurrence of Z > 1.

e By is set equal to 0 after eight occurrences of Z > 0.

e k is set to min(k + 1,4) after each occurrence of Z > 3 x 2%,

A simplified representation of these rules can be defined as the following:

Simplified Rules:

Before a subblock is processed, k is set equal to 0.

ALG?2 is only signaled for the first occurrence of Z > 1.

ALGT1 is only signaled for the first eight occurrence of Z > 0.

k is set to min(k + 1,4) after each occurrence of Z > 3 x 2.

ALG2 is not to be signaled after eight occurrences of ALG1, if all these ALGIs
where equal to ‘0'(Z = 1).

These simplified rules can be useful for hardware implementation. As it eliminates the
somewhat costly update to Bj.
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Figure 13, 14 and 15 shows how the absolute level Z is binarized for a few selected
threshold value sets.
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Figure 13: Binarization of Z from 0 to 15 using the SIG, ALG1, ALG2 and ALRem syntax
elements. ALRem coding is distinguished with Orange for TRk and Yellow for EGk. This
shows the initial state for the adaptive binarization scheme.
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Figure 14: Binarization of Z from 0 to 15 using the SIG, ALG1, and ALRem syntax ele-
ments(ALG2 absent). ALRem coding is distinguished with Orange for TRk and Yellow for
EGk. This shows the state after a first Z > 1 has occured, and before 8 total Z > 1 has
occured. Z > 3 has also occured, as shown by the fact that the adaptive variable k now equals
1.
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Figure 15: Binarization of Z from 0 to 15 using the SIG, ALG1, and ALRem syntax ele-
ments(ALG2 inferred 0). ALRem coding is distinguished with Orange for TRk and Yellow for
EGk. This shows the state after a total of 8 Z > 1 has occured. Z > 3 has also occured, as
shown by the fact that the adaptive variable k now equals 1.
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The coding efficiency of the ALRem binarization scheme is noteworthy. Figure 16
shows how it is able to change the effective region of lowest possible code length, by simply
changing the adaption variable k. Note that due to the adaption rule(k = min(k+1,4)),
this adaptive binarization scheme is most efficient when processing data of increasing
magnitude. This could have been a motivating factor for implementing the multiple scan
directions.
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Figure 16: ALRem code length for each value of the adaptive variable k.
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4.9 Coding of Sign

Sign is coded using the SIGN(coeff_sign_flag) that accompanies all the SIG syntax elements
when sign bit hiding is not used.

Figure 17: Binarization of SIGN for TB values from -3 to 3. Note that this value is equal to
the actual sign bit in the signed integer data type.

Sign bit hiding(SBH) is a technique where the quantizer only signals positive numbers,
and instead embeds sign bit into these positive numbers. This is done by using even
numbers to represent positive values, and odd numbers to represent negative values. The
sign_data_hiding_flag indicates if SBH is being used, with the additional condition that
there are at least 3 non-zero values in the subblock.

4.10 Grouping of Bins

One advantage in the separation of absolute level Z into SIG, ALG1, ALG2 and ALRem is
the improved context modeling accuracy and performance. Another reasoning for splitting
these syntax elements is that it allows for grouping of bins based on encoding type. This
reduces the amount of switching between regular and bypass coding mode. This is mostly
related to high complexity implementations, where frequent switching would diminish the
performance gained by using speculative computing. But it should be kept in mind while
designing a correctly sequenced binarizer.
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4.11 Complete Example

Figure 18 shows how the initial transform coefficient level data from the 4 x 4 Trandsform
block, totaling 16-bitsx4 x 4 = 256-bits, is now reduced down to 81-bits using the HEVC
adaptive binariaztion scheme. The size is now equal to about 32% of the original size, even
before CABAC encoding is performed. Notice also how the symbols is biased towards ‘1’
for regular coded bins(SIGN, SIG, ALG1 and ALG2). Counting 21 total ‘1’s and 5 total
‘0’. This leaves a probabiliy skew of about 80% for the most probable symbol. These bins
do of course not share the same probability models(contexts), but this does give some in-
sight into why this binarization scheme is so efficient when paired with a CABAC encoder.
The Bypass coded bins(SIGN and ALRem) show a more equally probable distribution of
symbols, with a count of 31 total ‘1’s and 24 total ‘0’s, and a probability skew of 56%
for the most probable symbol. This is an example of why the higher throughput bypass
mode can be utilized with an insignificant compression penalty. A major design goal of
HEVC was to reduce the amount of regular coded bins, i.e. increase throughput. The
adaptive binarization scheme for the transform coefficient level values was an important
factor in achieving this goal.
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Figure 18: Complete Example, showing how the Transform Block from Figure 11 is binarized
using the Diagonal Scan direction. Threshold variable values for each scan, as well as the
condition that triggers a transition is also shown. Note that the red square under SIG is not
signaled, but inferred directly from the LAST coordinates.
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5 Context Modeling

Context modeling of the residual data is restricted to SIG, ALG1 and ALG2, with SIGN
and ALRem being bypass coded, and thus not needing a context model. This chapter
covers context table structures, context initialization, as well as an short introduction
to context selection for SIG, ALG1 and ALG2 in 4 x 4 Transform Blocks. Due to time
constraints, context index calculation was not implemented.

5.1 sig coeff flag

SIG in in 4 x 4 TBs uses a position based context selection. The context selection of SIG
for larger transform blocks uses a substantialy more advanced method, where context
index calculation is based on a selection of previously processed bins.

Figure 19: SIG context assignment for 4 x 4 Transform Blocks.[9]

5.2 sig coeff _greaterl flag and sig_coeff _greater2 flag

Both the ALG1 and ALG2 uses 6 sets of context models. 4 sets belonging to the luma
component, and 2 sets belonging to the chroma component. The details for selection of
these sets are covered in section 9.3.4.2.6 and 9.3.4.2.7 in the standard document. Simply
put, context sets are calculated based on previously subblock encoding results.

Each context set related to ALG1 contain 4 probability models. Where these models
within a set are selected based on the previous values of ALG1 encoded in a subblock.

ALG]1 subblock adaption rules:

e At the start of a subblock, the contex index within a set(ctxInc) is set equal to 1.

e For occurrences of absolute values equal to 1, ctxInc is incremented by 1(up to a
maximum of 3).

e If any occurrence of an absolute value greater than 1, ctxInc is permanently set to
0, terminating any further adaption.

For ALG2, each related set only contain a single context model. Resulting in a prob-
ability model selection equal to the set selection.
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5.3 Probability model

Each context table index contain a probability model. It consists of the two variables,
valMps and pStateldx. valMps(Value Most Probable Symbol) is the actual value of the
most probable symbol. i.e. ‘1’ or ‘0’. pStateldx(Probability State Index) is a reference
to a probability estimate. Allowing for probability estimation to be performed using a
finite state machine approach. This is a performance optimization that reduces costly
multiplications down to a simple table lookup. But requires an additional transition table
lookup for each encoded bin. The required precision for the probability model is 1-bit for
valMps and 6-bits for the pStateldx. Totaling 7-bits for each context in the context table.
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Figure 20: FSM based probability estimation in CABAC. Figure is taken from a presentation
for CABAC in h.264.[3] Dotted lines are transitions performed when the bin to be encoded is
not equal to valMps, and solid lines are transitions performed when the bin is equal to valMps.

5.4 Initialization

Before encoding, every context is initialized with unique probability model values. This
initialization process is covered in detail in section 9.2.1.1 of the standard document. The
process is described for finding the initial probability model values of a specific context
index. This is done by using tables containing initValues for all context indexes, as well as
the context index, initType and SliceQPY variables. initType and SliceQPY can be seen
as simple inputs to the context modeler. With initType ranging from 0-2 and SliceQPY
ranging from 0-51.

Appendix G shows the C# functions used to generate the context table initial values
used in the hardware and software encoders implemented in this project.
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6 HEVC CABAC Algorithm

The HEVC CABAC algorithm is documented in the standard document using UML-like
flowcharts. This documentation is very thorough, and forms a good basis for implement-
ing a software encoder or decoder. The flowcharts mostly revolve around encoding or
decoding a decision. Where a decision is either encoding or decoding a single symbol(‘1’
or ‘0’). Most of the higher level CABAC parsing process description is limited to decoding
only. These higher level processes are largely related to ordering of the syntax elements to
be binarized and encoded, and therefore is not vital to the implementation of the CABAC
encoder module itself. Thus it is possible perform correct CABAC encoding of the trans-
form coefficient level values of 4 x 4 Transform Blocks, given that the syntax elements
are binarized in proper order, and that accompanying context indexes are correct. Even
if the higher level processes are not implemented.

6.1 Overview

The algorithm is based on arithmetic coding, and is described in the standard as be-
ing based on the principle of recursive interval subdivision. Where the encoded output
is represented as a sub-interval between 0.0 and 1.0. Instead of first finding the final
sub-interval, and then outputing its lower bound as the finished encoded bitstream, the
algorithm is designed to output uniquely decodable sub-interval at each recursive step
as it climbs down towards the final sub-interval. This is achieved by representing inter-
vals with finite precision range variables, and checking if these ranges fall below a certain
threshold at each recursion step. A consequence of these range variables having finite pre-
cision, is that they require rescaling when they fall below these thresholds. This rescaling
is simply implemented by a logical left shift(doubling) of the range variables. Note that
some ivlLow rescaling is dependent on which region(lower, upper or middle) it resides in,
as to prevent overflowing.

6.2 Variable Initialization

Updates towards variables inside the flowcharts are global. Only during initalization/reset
of the encoder or decoder should these variables be set to their initial values.

Initial Value
Variable Decoder | Encoder
codlRange 510 510
codlLow 0 0
qCodIRangeidx | 0 0
CodlrangeLPS 0 0
codlOffset 0 read_bits(9)
codlLow 0 0
BitsOutstanding | NA 0
firstBitFlag NA 1

Table 8: Initial values for encoding and decoding. See Section 6.7 for read_bits function
description.
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6.3 Encoding a Decision

Input to EncodeDecision is the context index, BypassFlag, as well as the binary symbol(‘1’
or ‘0’) to be encoded. Output is 0 or more finished encoded binary symbols. This is
called for each bin in the binarized syntax element, using the same context index and
BypassFlag. The actual software model uses a functions more closely resembling the
standard document flowcharts.

EncodeDecision(ctxldx, binVal)

iviLow = iviLow << 1

InitializectxTable()

ctxTablelnitialized==True?

PutBit(1)

iviLow = iviLow - 1024

iviLow = iviLow -512
PutBit(0) bitsOutstanding++

qgRangeldx = (iviCurrRange >> 6) & 3
iviLpsRange = rangeTabLps[pStateldx]qRangeldx]
iviCurrRange = iviCurrRange - iviLpsRange

iviLow = iviLow + iviCurrRange pStateldx = transldxMps[pStateldx]
iviCurrRange = iviLpsRange

Yes

valMps = 1 - valMps
pStateldx = transldxLps[pStateldx]

II

iviCurrRange = iviCurrange - 2

iviLow = iviLow + ivICurrRange
iviCurrange = 2

RenormE

[ T
I PutBit(iviLow>>9 & 1) I

WriteBits(((ivILow>>7) & 3) | 1,2)

Done

Figure 21: Encoding of a binary decision. Note that Termination is started when ctxTable==
&& ctxldx==0. Effectively signaling the special termination context. The hardware imple-
mentation uses a simple termination flag to achieve the same result.
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6.4 Renormalization

Renormalization procedure is responsible for renormalizing the range variables such that
sufficient precision is available, as well as actually outputting finished encoded symbols.
Efficient hardware implementation of renormalization is challenging due to the nested
while loop structure. With the second while loop being performed in the PutBit procedure.
Note that outputting a symbol for a sub-interval in the middle region is deferred until
an interval in the upper or lower region is found. This is needed as it is not possible to
know for certain what symbol should be output when rescaling in the middle region.[1]
This is achieved using a bitsOutstanding variable to count consecutive symbols found in
the middle region.

| RenormE I

4

iviCurrRange<256

PutBit(1)

iviLow = iviLow - 256 ] ]
bitsOutstanding++ iviLow = iviLow - 512

iviCurrRange = iviCurrRange << 1
iviLow = iviLow << 1

| Done I

Figure 22: Renormalization during encoding of a binary decision.

39



6.5 Writing to Bitstream

Writing to bistream is done using the ButBit procedure. Which is also responsible for
skipping the first encoded symbol, as well as outputting the bitsOutstanding. The exact
reasoning for skipping the first bit is not included in the standard document.

No

firstBitFlag==07?

firstBitFlag = 0 WriteBits(B, 1)

Y

Y
bitsOutstanding > 0? es

N
© WriteBits(B, 1)

bitsOutstanding--

Y

| Done I

Figure 23: PutBit function. See Section 6.6 WriteBits function description.

6.6 WriteBits

The WriteBits(int B, int N) function is an abstraction for adding bits to the bitstream.
It is specified to write N-bits with the value B to the bitstream, and then advance a
bitstream-pointer by N. The bitstream-pointer is not vital to the encoding or decoding of
the bitstream, but is related to proper alignment of the data structure.

6.7 read bits

The read_bits(int N) return the N first bits from the bitstream, starting with at the current
bitstream-pointer location. Then the bitstream pointer is advanced by N.

40



6.8 Decoding a Decision

Input to DecodeDecicion is the context index and BypassFlag. The function will return
a single decoded symbol binVal every time it is called. The bitstream is read internally
using the read_bits function. When the range variables falls below a certain threshold,
renormalization is performed by reading the next symbol in the bitstream. Where this
symbol essentialy contain information about the next sub-interval.

[ DecodeBin(ctxldx, bypassFlag) ]

InitializectxTable()

J iviOffset = ivIOffset << 1
”|__iviOffset = iviOffset | read_bit()

binVal = 1 .
ivlOffset = ivOffset - iviCurrRange | binVal =0

iviCurrRange = iviCurrange - 2 |

ctxTable==0 && ctxldx==0?

gRangeldx = (iviCurrRange >> 6) & 3
iviLpsRange = rangeTabLps[pStateldx][qRangeldx]

binval = 1 |
iviCurrRange = iviCurrRange - iviLpsRange

binVal =0 |

binVal = valMps

binVal = lvalMps
pStateldx = transldxMps[pStateldx]

iviOffset = ivlOffset - iviCurrRange
iviCurrRange = iviLpsRange

Yes

valMps = 1 - valMps

rstaleldx = transldxLps[pStateldx]

iviCurrRange = iviCurrRange << 1
iviOffset = iviOffset << 1
iviOffset = iviOffset | read_bit()

L]

Done

Figure 24: Decoding of a binary decision.
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7 Software Model

For the purpose of understanding and verifying the functionality of the HEVC CABAC
entropy coding scheme, a independent software model was developed. This section cov-
ers the implemented software model. Development is based on Recommendation I'TU-T
H.265(version 12/2016)[10]. Naming convention is inherited from this document.

The documentation[10] for HEVC is based on C-like pseudocode and UML-diagrams.
C# was chosen for its C-like syntax, as well as a shorter development time frame com-
pared to C/C++. The only significant downsides to choosing C# over C++, is a potential
performance loss. Which was not deemed important. The software model uses a Win-
dows Forms based interface. This limits the software to windows based computers. The
submodules is developed independent from the interface module, facilitating porting.

Load From TB.

0,111 01011010010011100101110100100010
NN NN NN 100001110010111101001101011110110

| 0,11001110001011 10001010000000111111
I O .
o fo f o |

Wite binTestiie

o1
1:030
1:07
1:028
1:02
038
038
0%
02
030
038
038
0%
o014
006
021
02
030
1:018
1:030
1:097
1:029
02
038
038
036
02
030
038
038
0%
006

Figure 25: Software model user interface.

The main requirement for the software was to be able to generate binary test and
verification strings to be used for hardware verification. For this reason, the data structure
is simplified compared to the bitstream structure described in the standard. Designing a
HEVC compliant data structure is well outside the scope of the CABAC entropy coding.
In addition to the encoder module, the decoder was also implemented in software. This
allowed for functional verification of both the software and hardware encoder.
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7.1 Binarization and Context Index Calculation

While the documentation for the encoder and decoder is very thorough, covering all
steps in great detail. Grasping the inner workings of the implemented binarizer and
Context Index Calculator is a bit more challenging. The reason for this is that while
the encoder/decoder interfacing is reliant on understanding the outputs of the Binarizer
and Context Index Calculator. Implementing a correct Binarizer and Context Index
Calculator requires understanding the structure of all the data types used in HEVC. This
restriction, along with the reduced amount of supported syntax elements, has led to a
crude implementation of binarization and context modeling. The alternative approach of
using the official HEVC Test Model(HM) was deemed too time consuming.

The current Software binarizer does not binarize the Transform Block correctly. The
plan was to address this issue with the implementation of of the context index calculator,
but this was not completed due to time constraints.

7.2 Encoder and Decoder

With the C# language supporting every statement in the documentation flowchart, im-
plementing a software encoder and decoder was relatively easy. The encoder source code
can be found in Appendix D, and the decoder source code can be found in Appendix E.
Instead of working with bit-files, the encoder and decoder uses ASCII based ‘1’s and ‘0’s
as the symbols to be encoded and decoded. This allowed for simple interfacing between
the hardware testbenches. The context table is implemented using the same initial table
as the hardware implementation. With context index calculation being unfinished, the
current system uses a static values for SliceQPY, initType and ctxIdx.

The initial plan was to design a robust and user friendly system that would allow
for proper verification of the hardware encoder. This would involve the implementation
of a debinarizer and context index calculator. But with so many parts of the system
left incomplete, the current software model is better described as a C# sandbox used to
verify the Hardware CABAC encoder. Appendix I contains a guide for using a simplified
version of the software encoder and decoder.
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7.3 Interfacing With TestBenches

The software models main purpose was to be able to verify the correctness of the Hardware
module outputs. To make this process more efficient, both the testbenches and software
model should read and write to the same files. This concept was planed for both the
Binarizer/Context Modeller and the Hardware Encoder, but it was only completed for
the Hardware Encoder. The asynchronous fifo was only verified using the accompanying

testbench.
Vivado
A [y - HW Encoder HW FIFO
Context Modeller
A A A
Y Y Y
Binarizer/Context Encoder
Modeller Test- FIFO TestBench
TestBench
Bench
A A
\ 4 \ 4
BinarizerInput.txt BinarizerOutput.txt EncoderOutput.txt Encoderlnput.txt

SOFTWARE MODEL
(HEVC_CABAC Verification_Tool)

Figure 26: System structure for interfacing with between hardware and software.
ing development platforms. Note that the Binarizer/Context Modeler was not completed.
Appendix G covers setup for the completed system, as well as a tutorial on how Hardware//-

Software Encoding can be compared.
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8 Hardware Implementation

The naming convention of variables, signals and types is largely inherited from ITU-T
H.265 v4 chapter 9. Some changes are made to account for the differences in software vs
hardware design. The target during development is the ZEDBOARD. This board uses
the Zynq-7000(7z020clg484-1) all programamable SoC.

8.1 Modules

clk MMCM/PLL l
l ’ FIFO —> Regular —> FIFO j
input ——> Binarizer —>{ Context Modeler —>1 Bins sorter l Bins combiner —>output
\—7 FIFO —> Bypass —> FIFO 4T

Figure 27: The planed modules for the completed CABAC encoder system. Implemented
modules in green, partially implemented modules in orange, and incompleted modules in red.
Note that the Regular and Bypass encoder is combined in the current hardware design.

The hardware implementation is split into different modules to facilitate greater abstrac-
tion levels, as well as simplify development towards a specific timing constraint. Because
of the sequential nature regular and bypass coding, Any CABAC implementation could
benefit from supporting different clock domains for the different modules. This is one of
the reasons that the fifo is designed to be asynchronous.

8.2 Parameters

Every Module except the Asynchronous fifo modules comes paired with a parameter
settings file. Due to the different abstraction in verilog, parameters for the fifo is changed
in the source file. These parameters effect the functionality and properties of the modules.
Such as I/O width and For loop depths. The main goal of the implemented code is to be
able to optimize towards hardware targets by manipulating the parameter files.

8.3 Byte Packing and Alignment

Data structure alignment of the finished encoded bitstream is important, because of the
variable length output of the implemented encoder. The plan was to first output finished
encoded symbols to a fifo, and have a barrel shifter combine completed sections of the
data. Due to time constraints, this was not completed.
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8.4 Binarizer Implementation

The implemented binarizer was designed to efficiently binarize 4 x 4 Transform Blocks.
Several methods for binarization of the relevant syntax elements where explored, with the
main focus of finding an efficient implementation of coding the ALRem syntax element.
This implementation was designed without a predefined interface from the rest of the
encoder. Therefore this work should only serve as inspiration for designing a compliant
binarizer. Further work should also try to incorporate both binarization and context
index calculation into a single module. The examples here uses the same transform block
as the one covered in section 4. Where the logical rules used are more closely related to
the simplified rules than the original. These rules are covered in 4.8.

The Binarizer code is provided in Appendix A. Much of the complexity for im-
plementing a hardware binarizer for the residual coding syntax elements lies in efficient
implementation of the different scan directions, as well as proper handling of the adaption
rules. Both of these challenges are solved in this current design. Efficient binarization of
the coeff_abs_level remaining is also achieved.

8.4.1 Syntax Frames

For the purpose of greater abstraction levels, as well as more efficient hardware imple-
mentation. A sort of preprocessing procedure is applied before certain finished syntax
elements are output. This allows parallel processing of the residual data, such as OR-
reductions and sign-bit checking, while still obeying the strict rules of the finished syntax
elements. These preprocessed vectors are referred to as frames.

8.4.2 last_sig_coeff

Binarization of last_sig_coeff prefixes for all the different scan directions where imple-
mented by using constant arrays of integers. This allowed indexing of the input Transform
blocks to be performed using a for-loop structure. Where each element is checked to see
if it is non-zero. This was implemented by indexing the sig_coeff_frame seen in Figure 28.
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8.4.3 sig_coeff _flag

The sig_coeff _flags is a Fixed Length Binarization that represents every non-zero element in
the TB. The number of syntax elements is derived from the last_sig_coeff syntax elements,
varying from 0 to 15. The reason for the amount being 15 instead of 16, is because the
first non-zero element is inferred directly from the coordinates provided by last_sig_coeff.

Transform Block 0 0 0 1 0 2 12| 2 3 1-719 0 [ 11 (-19]-25| 32

Value # 0

sig_coeff_frame 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1

2\ Y
inferred O sig_coeff_flag
inferred 1 by last_sig_coeff

Figure 28: Binarization of sig_coeff_flag

Figure 28 shows how the first non-zero element index is derived from last_sig_coeff. The
subsequent elements in the TB is then checked for non-zero elements. With ‘0’ resulting
in ‘0" and ‘1’ resulting in ‘1" in the finished binarized sig_coeff_flag Syntax Elements.
Notice how sig coeff flag can be implemented by outputting the remainder of the full
sig_coeff_frame starting with the index after the one inferred by last_sig coeff. Overall
a pretty simple binarization procedure. The hiding of the first non-zero element does
however introduce some complications when binarizing elements with dependencies on
sig_coeff flag. One simple solution to this is to keep this non-zero element stored in the
full sig_coeff_frame. Fig. 28 shows this non-zero element in red.
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8.4.4 coeff_abs_level _greaterl flag

The coeff_abs_level greaterl_flag is a Fixed Length Binarization that indicates if a non-
zero element(’'1’s in sig_coeff_flag) has an absolute value of greater than 1. The amount
of syntax elements is derived from the amount of ‘1’s in sig_coeff flag(pluss the inferred
first "1’ seen in red in Fig. 31), but has a maximum of 8 per subblock.

B 0Ojo0ojO0|1(0f|2|-212|41|-7T]19]|0(11(-19]-25(32
ABS(Value)>1l l l l l l l l
SIG_frame

0

0
0
B o]

=

0
1
1
1
1
1
1
0
1
1

\_ !

coeff_abs_level_greaterl_flag

Figure 29: Binarization of coeff_abs_level greaterl flag

Fig. 31 shows how the binarization procedure can be implemented using the full co-
eff_abs_level greaterl frame and sig_coeff _frame vectors.
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8.4.5 coeff_abs_ level greater2 flag

The coeff_abs_level greater2 flag is a Fixed Length Binarization that indicates if a non-
zero element(’1’s in sig_coeff_flag) has an absolute value of greater than 2.

Transform Block 0 0 0 1 0 2 -2 2 4 |1 =71 9 0 11 |—191—-25] 32

e DL LL LD LT

coeff_abs_level_greater2_flag

Figure 30: Binarization of coeff_abs_level_greater2_flag

Very similar to coeff_abs_level _greaterl_flag, but this syntax element is limited to a
length of 1 per subblock. There exists a special case for when 8 consecutive occurrences
of ALG1 with the value ‘0’ appear before a non zero element with an absolute value of
greater than 2. Here the ALG2 should not be output, but skipped entirely. With the
simplified rules it is easy to sometime output ALG2 here. Special care should be put into
handling this possible error. This error is the likely culprit of the wrong binarization by
the software model.
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8.4.6 coeff_abs_level remaining

The adaptive binarization scheme for ALRem is a substantially more advanced process
than the previous syntax elements covered here. The standard describes binarization
of coeff_abs_level remaining as a concatenation of TRk and EGk. Both of these coding
methods may seem complex enough by themselves, and when truncated even more so. A
substantial amount of effort was spent trying to find an efficient way of computing these
codes, with very impractical or low performance results. The MIT Open Access Article
on Entropy Coding in HEVC|11] does however introduce an alternative representation
using a concatenation of a unary prefix and a fixed length suffix.

Tabldx Zmin Zmaz Prefix bins Suffix bins Prefix Length | Suffix Length | Max k
0 0 k-1 0]C 1 k 4
1 1x 2% 2x2F -1 10| C 2 k 4
2 2 x 2F Ix2F -1 110 | C 3 k 4
3 25 (2°4+2) | 2P x (27 +2) -1 1110 | C 4 k 4
4 2Fx (2T +2) | 2Fx(22+2) -1 11110 | xC 5 1+k 4
5 28 x (2242) | 28 x (22 4+2) -1 111110 | xxC 6 24k 4
6 2Fx (25+2) | 2P x(2T+2) -1 1111110 | xxxC 7 3+k 4
7 2Fx (2t +2) | 2Fx(2+2) -1 11111110 | xxxxC 8 4+ k 4
8 28 x (22+42) | 22 x(2°4+2) -1 111111110 | x00xC 9 5+ k 4
9 28 x (2642) | 28 x (274+2) -1 1111111110 | x0ooxxC 10 6+ k 4
10 2Fx (27+2) | 2Fx(28+2) -1 11111111110 | x0000xxC 11 7+k 4
11 25 (284+2) | 2P x(22+2)—1 111111111110 | xxxxxxxxC 12 8+ k 4
12 2Fx (29+2) |28 x (2104+2) -1 1111111111110 | xxoooooxxxC 13 9 + k 4
13 [ 28 x(210+2) [ 28 x (211 +2)—1 11111111111110 | xxoocxxoxxxC 14 10 + k 4
14 [2FPx (21 +2)[2Fx(22+2) -1 111111111111110 | xoooooooxxC 15 11+ k 3
15 |28 x(224+2) [2F x (213 +2) —1 | 1111111111111110 | x000000000xC 16 12 + k 2
16 2P x (213 +2) [ 2P x (284 +2) — 1 | 11111111111111110 | xxxoxooooxxC 17 13 + k 1
17 28 % (214 +2) [ 2F x (215 +2) — 1 | 111111111111111110 | xxoooooxxxxxxxC 18 14 + k 0

Table 9: Alternative representation of ALRem using TrU and FL coding[11]- The suffix bins
are shown as x and C, where x represents a bin, and C represents a fixed length bin string of
length k.

This alternative representation was key in finding an efficient method for calculating
ALRem. The prefix bins is found by simply checking where Z resides. The suffix bins for
any value Z within Z,,;, and Z,,., at a given Tabldx, is found by calculating Z — Z,,;,.
Note that this will result in an fixed length representation of the binarized suffix, where
the length is equal to the suffix length at the given Tabldx. Table 10 shows the generalized
version of this table. Appendix H documents an interactive model of the table.
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Tabldx Zmin Zmaz Prefix bins Suffix bins | Prefix Length | Suffix Length | Max k
0 0 K -1 0| Z—"Zn 1 k 4
1 1 x 2k 2x2F—1 10 | Z — Zin 2 k 4
2 2 x 2F 3 x2F—1 110 | Z — Z,in 3 k 4
3 x (20 +2) x (2 +2) — 1110 | Z — Z,in 4 k 4
4 x (21 +2) x (22 +2) — 11110 | Z — Zuin 5 1+k 4
5 X (22+2) zk x (25 +2)— 1 111110 | Z — Zon 6 2tk 4
6 x (2242) | 2P x (2" +2) -1 1111110 | Z — Z,,in, 7 3+k 4
7 x(27+2) | Fx(2+2) —1 11111110 | Z — Zoim 8 41k 4
8 x (2°42) | 2P x (25+2)—1 111111110 | Z — Z,,;n, 9 5+k 4
9 x (2°+2) | Fx(27+2) —1 111111110 | Z — Zoim 10 6+ k 4
10 x (2T4+2) | 2P x (28 +2)—1 11111111110 | Z — Z,n, 11 7+k 4
11 x (2542) zk x(27+2)—1 11111111110 | Z — Zoin 12 8 +k 4
12 x (29 +2) x (210 +2) -1 1111111111110 | Z — Z,in, 13 9+ k 4
13 x (210+2) | 2P x 21 +2) —1 TIII1111111110 | Z — Zoin 14 10 + k 4
14 x (211 +2) x (212 +2) -1 111111111111110 | Z — Z,in 15 11 + k 3
15 | 2P x(2242) | 2Fx (2'342)—1 | 1111111111111110 | Z — Zyin 16 12+ k 2
16 Fx (213 +2) x (214 +2) — 1| 11111111111111110 | Z — Z,pin 17 13 + k 1
17 Fx (24 +2) | 2Fx (215 +2) — 1 | 111111111111111110 | Z — Zpin 18 14 + k 0

Table 10: Alternative representation of ALRem where 7 —

number with lenght indicated by the Suffix Length at that specific Tabldx

Zmin at any Tabldx is a binary

Tabldx | Z,in | Zimas | Prefix bins | Suffix bins | Prefix Length | Suffix Length | Max k
0 0 0 0 1 k 4
1 1 1 10 2 k 4
2 2 2 110 3 k 4
3 3 3 1110 4 k 4
4 4 5 11110 5 1+k 4
5 6 9 111110 | 10 6 2+ k 4
6 10 17 1111110 7 3+ k 4
7 18 33 11111110 8 4 + k 4

Table 11: Example Binarization of ALRem for Z = 8 and k = 0 using the method proposed

in Table 10
Tabldx | Z,in | Zmae | Prefix bins | Suffix bins | Prefix Length | Suffix Length | Max k
0 0 3 0 1 k 4
1 4 7 10 2 k 4
2 8 11 110 | 00 3 k 4
3 12 15 1110 4 k 4
4 16 23 11110 5 1+k 4

Table 12: Example Binarization of ALRem for Z = 8 and k = 2 using the method proposed

in Table 10
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This alternative approach was implemented both using a table based approach, and
using the switch case statement. The current table based approach showed very low
performance, but this could be due to using a single table for all values of k. The case
based approach, seen in Appendix A, did however show decent performance. Further
work of designing a binarizer should incorporate one of these methods to binarize ALRem.
The current designs does not signal the actual unary prefix code, as this coding can simply
be inferred when the length is known. Therefore, the prefix is simply signaled using the
prefixLength output. This would require extra logic in the bypass coder. But with this
extra logic being relatively simple, the reduction in signaling could be very beneficial.
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8.4.7 coeff_abs_level_sign_flag

The coeff_abs_level sign_flag is a Fixed Length Binarization that indicates if a non-zero
element(’1’s in sig_coeff_flag) has an value of less than 0. This is a very simple binarization
that only require checking of the sign bit. The only real complexity lies in supporting the
optional sign bit hiding technique. Which in practice involves skipping this binarization
under certain conditions.

Transform Block 0 0 0 1 0 2 -2 2 4 -7 9 0 11 [-19]-25| 32

Value < 0

coeff_sign_frame

sig_coeff_frame

Y
coeff_sign_flag

Figure 31: Binarization of coeff_abs_level sign flag
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8.5 Context Index Calculator

The context index calculator module was not implemented. Although this module was
first planed to designed separately, integration with the binarizer module could be very
beneficial. This is due to the large amount of data dependencies shared between them.
Designing a Binarizer/context Index Calculator without first knowing the completed in-
terface of the rest of the HEVC encoder modules is a very inefficient approach. As the
amount of different data and signals(syntax elements) it needs to be able to support is
rather comprehensive.
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8.6 CABAC Encoder

The Hardware Encoder was developed in VHDL alongside the C# HEVC CABAC Ver-
ification Tool. This implementation performs Context-Adaptive Binary Arithmetic en-
coding as specified in the Recommendation ITU-T H.265. The only caveat being that
the context table is limited to the residual coding syntax elements. Code is provided in
Appendix B.

Coding==Regular &&

ctxThbl!=lInitialized CcetxTbl!=Initialized

Initialize

BElglesd  Read Input
P Context Table

Coding==Bypass ) ctxThl==Initialized
Coding==Regular &&

ctxTbl==Initialized

All Bins
encoded

Encode

Bins Bypass Read Context

All Bins
encoded

Coding==Bypass &&
PutBit==Finished

All Bins not
encoded

Renorm!=Finished
&& PutBit

All Bins not
encoded Context Read
Encode Bins
Regular

Coding==Regular && Renorm==Finished

PutBit!=Finished PutBit=="Finished

Renorm!=Finished
&& No PutBit

Figure 32: Simplified state machine diagram for the hardware encoder. Context update is
written during the Write Output state.

Encoding of termination is implemented, but not included in this diagram. The ini-
tial plan was to decouple the Bypass and Regular encoders into two distinct modules.
This would allow for implementation of a dispatcher to split the workload whenever a
regular and a bypass coded bin are encoded in order. This did however introduce a few
complications to the update of the range variables. Bypass encoding was instead incor-
porated into the regular coder, as a simple state. This allowed for both the Bypass and
Regular parts of the encoder to use the same PutBit state, as well as sharing range vari-
ables. The main challenge in implementing the hardware encoder lies in correctness of
the nested while loops located in the RenormE and PutBit part of the algorithm. These
while loops contributed the largest amount of non-trivial bugs during development, and
was the main motivator for developing the software model. Another major challenge is
optimizing throughput using efficient pipelining, but due to the time constraints and the
complexity of such designs, this was not explored further.
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The focus of the current implementation was achieving correct output of the encoder.
As can be seen by the code, the resemblance to the specification flowcharts is clear. A
consequence of this is that a large amount of possible redundant clock cycles, where
the whole cycle is spent checking a simple conditional statement. This is a result of
the while-loops in the specification. During enc_bin_r a conditional check to see if the
output is ready to be written or if a renormalization is required. This conditional check
could possibly be moved to the end of the renormalization, effectively skipping this cycle.
Further the RenormkE state includes a conditional check that could possibly be moved
as a condition for entering this state. The bitsOutstanding loop located in the PutBit
also introduces complications.

S_E| Type State

1 | Regular | r_input | r_ctx | enc_bin_r | RenormE | PutBit | RenormE | enc_bin_r | w_output

2 | Bypass r_input | enc_bin_b | PutBit | enc_bin_b | w_output
Clk 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 13: Sample state sequence for encoding of regular and then Bypass coded Bins for the
implemented hardware encoder. Assuming that the context table is already initialized, and
that RenormE and PutBit is limited to single cycle iterations.

Inefficiency of the current state machine is quite apparent. Conditional checks that
are close to trivial in software, results in possible excessive cycles for the hardware design.
Where it is possible for multiple sequences of RenormE and PutBit to occur. Degrading
performance even further. This demonstrates some of the challenges in implementing a
pipelining scheme.

Syntax Element Nr. | Type State
1 Regular | r_input | r_ctx | enc_bin_r | RenormE | RenormE | RenormE | PutBit | PutBit | RenormE | enc_bin_r | w_output
2 Bypass r_input | enc_bin_b
Clk 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 14: Sample state sequence where multiple RenormE and PutBit cycles are required
for encoding.

Syntax Element Nr. | Type Pipeline Stage
1 Regular | r_input | rctx | enc_bin_r | RenormE | PutBit | RenormE | enc_bin_r | w_output
2 Regular r_input r_ctx enc_bin_r | RenormE | PutBit | RenormE | enc_bin_r | w_output
3 Regular r_input rctx enc_bin_r | RenormE | PutBit | RenormE | enc_bin_r | w_output
4 Regular r_input r_ctx enc_bin_r | RenormE | PutBit | RenormE | enc_bin_r | w_output
5 Bypass r_input | enc_bin_b | STALL STALL PutBit | enc_bin.b | STALL | w_output
6 Bypass rinput | enc_bin.b | STALL STALL PutBit | enc_bin.b | STALL | w_output
Clk 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 15: Sample state sequence for encoding of regular and then Bypass coded Bins using a
potential pipelined implementation. Assuming that RenormE and PutBit is completed in a
single cycle, which may not be feasible. A proper high performance pipelined implementation
would most likely look different, incorporating speculative execution principles.

56



8.6.1 Interface

Interfacing the encoder is relatively simple. Input data is written along with the accom-
panying Input data length. When the Start signal is asserted, the encoder will perform
Regular encoding if Bypassl is low and Bypass encoding if Bypassl is high. When en-
coding is completed, the finished data is written to the Output, along with the Output
data length. Encoding is finished when the Finished signal is high. Termination will be
encoded if Terml is asserted at the start of encoding. The encoder testbench serves as a
reference example of interfacing the encoder.

Port Direction | Type Description

Clk in std_logic Clock.

Input in std_logic_vector | Input data.

InputlLen in std_logic_vector | Input data length.
ctxldx in std_logic_vector | Context index.
SliceQPY | in std_logic_vector | SliceQPY.

initType in std_logic_vector | initType.

Resetn in std_logic Active low reset.

Start in std_logic Start encoding signal.
Output out std_logic_vector | Output data.

OutputlLen | out std_logic_vector | Output data length.
Bypassl in std_logic Input BypassFlag.
BypassO out std_logic Output BypassFlag.
Terml in std_logic Input TerminationFlag.
TermO out std_logic Output TerminationFlag.
Finished out std_logic Encoding finished signal.

Table 16: Encoder ports.

Some redundant ports are present. Offsets from SliceQPY and initType could possible
be calculated in the binarizer/context modeler. The termination flags are unnecessary,
but requires a rework of the termination logic. Both of these issues should be solved when
there is a better picture of all the other modules required in a HEVC encoder.
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8.6.2 Parameters

ctxIdxRange should be equal to the total amount of syntax element contexts that are
supported. Maximum width of the coeff_abs_level remaining syntax element is 34. This
sets the lower bound of the input width that needs to be supported. Alternatively it is
possible to first encode the unary prefix bins before encoding the suffix bins. Resulting in
an reduction of minimum input width down to 18. PutBitLoopLen was introduced as a
parameter because of its large impact on performance. Changing PutBitLoopLen affects
how many bits are processed in the BitsOutstanding loop during each clock cycle.

CABAC _EncParameters | Type Description
ctxldxRange Constant Integer Total num.ber of diffe.rent sy./ntax Elements Context Implemented.
Update this number if additional contexts are added.
InputW Constant Integer | Input Width
OutputW Constant Integer | Output Width
. Defines the maximum number of bitsOutstanding that are output
PutBitLoopLen Constant Integer in the PutBit state.

Table 17: Hardware Encoder Parameters.

8.6.3 Transition Tables

HEVC CABAC uses precalculated transition tables to perform many of the computa-
tionally demanding operations in the algorithm. These tables could possibly introduce
some complications for the performance of the design, but none where observed during
development. The table arrays consists of 256 elements for the rangeTabLPS, and 64
elements each for both the transldxLLPS and transIldxMPS. The values for these arrays
can be copied directly from the standard document. Tables, including the Context tables
initials, are stored as text files along with the source code.

8.6.4 Context Table

The context index table for the residual coding syntax elements is initialized with 120(121
counting termination) different initial values dependent on sliceQPY and initType. Slice-
QPY ranging from 0-51 and initType ranging from 0-2. Resulting in a total of 120 x
52 x 3 = 18720 different initial values. Calculation of these values are covered in Section
5.4 on page 36. It is possible to perform these calculation during the start of each slice,
but the current implementation uses a pre-calculated Table for storing the initial values.
The table is implemented as 7 bits with (5 downto 0) representing pStateldx and (6)
representing valMPS. The standard document does a very good job of documenting the
procedures for initializing all context tables, but does so by spreading them across 38
different tables. Appendix G shows the distribution of contexts for the syntax elements
in the current context table. Note that the architecture handles the offsets from SliceQPY
and initType directly.
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8.6.5 Context Handling

Context Table Index

Syntax Element Binarization Process | initType = 0 | initType = 1 | initType = 2
last_sig_coeff x_prefix TR 0-17 120 - 137 240 - 257
last_sig_coeff_y_prefix TR 18 - 35 138 - 155 258 - 175
sig_coeff flag FL 40 - 83 160 - 203 280 - 323
coeff_abs_level greaterl flag FL 84 - 107 204 - 227 324 - 347
coeff_abs_level greater2 flag FL 108 - 113 228 - 133 348 - 353

coeff_abs_level remaining TrU, TRk and EGk Bypass Bypass Bypass

coeff_sign_flag FL Bypass Bypass Bypass

Table 18: Syntax Elements supported in the current context table.

Contexts handling is done by separating them across three levels. This is needed to avoid
overwriting the initial values, as well as reducing the amount of read/write accesses to
the working context table.

Elements | Description

Initialized as read-only memory. Contains
ctxldxTablelnitials | 18720 the proper intialization variables for all
values of SliceQPY and initType.

Initialized from reading ctxldxTablelnitials
for a given value of SliceQPY and initType.
Used as the working context table during
regular encoding. Indexed using ctxldx.
Initialized by reading ctxldxTable at a given
ctxldx before regular encoding is performed.
Contains valMps(currCtx(6)) and
pStateldx(currCtx(5 downto 0)) that is used
in regular encoding. After encoding is
completed the ctxldxTable is updated with
the value of currCtx at the same ctxldx it
was read from.

ctxldxTable 120

currCtx 1

Table 19: Hardware Encoder Context Table Structure.

It was originally planed to introduce a way of checking if a context in the ctxIdxTable
was initialized, and only load a value from the ctxIdxTablelnitials if needed. Implement-
ing this was more challenging than anticipated. Resulting in the current design, where
the whole context table is initialized at the beginning of a slice. To better facilitate
performance of coding of grouped bins, it could be beneficial to check if the current con-
text index is the same as the next to be encoded. This could save cycles that would be
spent on writing and reading to the context table. There are virtually endless ways of
implementing context handling, and is something that could be challenging to optimize.
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8.6.6 BitsOutstanding Loop

The algorithm requires the ability to output bitsQutstanding equal to the largest possible
number of finished encoded bins in a slice. This is somewhat trivial for a software stand-
point, only requiring the bitsOutstanding register to have a sufficiently large precision.
Hardware does however require that output is written when the output registers is about
to overflow. Even when this overflow limit is reduced by many orders of magnitude, the
occurrence of when bitsOutstanding overflows the output width should be relatively rare.
The current implementation does not address this issue, but it could be beneficial to hold
off on fixing this until the design is completely optimized.

8.6.7 Termination

The current termination logic uses termination flag instead of the correct special case
ctxldx related to termination. Changing this would only require introduction of the
special termination context in the context table, in addition to a simple logical check
change. The standard document(NOTE 2 - page 206) [10] hints at a special case of
normal decoding that can be used for termination. If this method can be used, it could
severely reduce the logic required to perform termination.

8.6.8 Register precision

The number of minimum bits required for each variable in the algorithm is defined as
minimum precision in the reference document. They differ from each coding method.
Bypass coding requires an additional bit for the ivlLow variable. This is due to the built in
renormalization in Bypass coding. While most of the range variables are shared, Regular
coding uses some extra variables for probability modeling and indexing of transition tables.

. Required Precision

Range Variable Bypass | Regular
iviLow 11 10
iviCurrRange 9 9
iviLpsRange 8 8
qRangeldx NA 2
pStateldx NA 6

valMps NA 1

Table 20: Range variable precision requirements.

There is no issue related to using a higher precision register than required. So for
an encoder implementation for where the range variables are shared, ivlLow is simply
implemented with 11-bit precision. All tables used are instantiated using the minimum
required register precision.
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8.6.9 Utilization

The synthesis results shows a relatively low utilization by the CABAC encoder. This
should leave room for the rest of the HEVC encoder modules. The design does not infer

any latches.

Table 21: Synthesis results using Vivado(2016.4). Device used is the Zedboards 7z020clg484-

Resource | Utilization | Available | Utilization %
LUT 2930 53200 551
LUTRAM | 20 17400 0,11
FF 150 106400 0,14

1. Parameters: InputW = 34, OutputW = 40, PutBitLoopLen = 10.

Resource | Utilization | Available | Utilization %
LUT 2892 53200 5,44
LUTRAM | 20 17400 0,11
FF 96 106400 0,09

Table 22: Synthesis results using Vivado(2016.4). Device used is the Zedboards 7z020clg484-
1. Parameters: InputW = 18, OutputW = 10, PutBitLoopLen = 5.

Most of the utilization comes from implementing the different tables. Reducing the
parameter values, effectively reducing the required mapping of the PutBitVal to the output
seems to have negligible effects on utilization. This is something that is likely to change
drastically when the FPGA is populated by the rest of the HEVC encoding modules. As
the place and route restrictions will be much more prominent. Differences in utilization
between synthesis and implementation are practically non-existent.
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8.6.10 Frequency

While utilization between synthesis and implementation are virtually identical, maximum
frequency vary substantially. The performance is calculated using no input/output wire
delays. This should be kept in mind when implementing into a complete system. Critical
path of the current design varies depending on what the parameters are set to.

Output Width | Input Width | PutBitLoopLen | Type Max Frequency
40 34 10 Synthesis 113,430127
40 34 10 Implementation | 108,8139282
40 34 5 Synthesis 118,4413123
40 34 5 Implementation | 103,4554107
40 18 10 Synthesis 123,3501912
40 18 10 Implementation | 106,7919692
40 18 5 Synthesis 122,8501229
40 18 5 Implementation | 105,8873359
20 34 10 Synthesis 121,2709192
20 34 10 Implementation | 103,6591687
20 34 5 Synthesis 119,9760048
20 34 5 Implementation | 105,2299274
20 18 10 Synthesis 123,3806292
20 18 10 Implementation | 102,396068
20 18 5 Synthesis 123,3501912
20 18 5 Implementation | 101,1838511

Table 23: CABAC Encoder maximum frequency for a few select parameters.
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8.6.11 Performance

Quantifying the actual CABAC Encoder performance requires real world test data. Where
this test data is the output provided by the binarizer and context modeler in a working
HEVC encoder system. The reason for this is that the test data structure has a large
impact on the actual run time of the algorithm. Either by the distribution of the regular
vs bypass coded bins, or simply by the actual entropy of the data to be encoded. Even
the preciseness of the probability models have a large impact on the throughput of regular
encoding.

The current testbench uses arbitrary test data either generated using the software
model, or simply written to the test text file. In any case, this data is not representative
of actual real world binarized syntax elements. It is only useful in verifying correctness
of the design when comparing output to the software encoder.

It is possible to generate an estimate of bypass encoder performance. Since this en-
coding is to be performed for uniformly distributed bins, using randomly generated data
might actually be representative.

Syntax Element Length | Encoding Time ns | cycles bins/cycle | Mb/s

10 2301000 272533,4589 | 0,366927424 | 43,4593655
5 1301300 154127,6793 | 0,324406364 | 38,4231154
1 501000 59339,09731 | 0,168522955 | 19,9600798

Table 24: Performance for bypass encoding. Calculated using Fmax = 118.44 MHz, over
10000 iterations. Syntax element data are randomly generated for varying lengths.

The same can not be said for regular encoding. Where it is not possible to find useful
information using the same approach.

Syntax Element Length | Encoding Time ns | cycles bins/cycle | Mb/s

10 3901000 462039,5581 | 0,216431685 | 25.6344527
5 1429500 169311,8555 | 0,295313047 | 34,9772648
1 607000 71893,87638 | 0,139093905 | 16,4744646

Table 25: Performance for regular encoding. Calculated using Fmax = 118.44 MHz, over
10000 iterations. Syntax element data are randomly generated for varying lengths.
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8.7 Fifo Buffer

Because of the irregular throughput of the modules in a CABAC circuit, it is beneficial
to introduce a fifo buffer to connect them. For this reason a general purpose fifo was
developed. With the Zedboards artix-7 FPGA natively supporting clock manipulation
with its Mixed-Mode Clock Manager(MMCM) module, there existed motivation for mak-
ing this fifo asynchronous. This could possibly allow for the modules to run at different
frequencies. Due to the incompleteness of the Binarizer and Context Index Calculator
modules, the asynchronous fifo was never utilized.

data_in Wdata Rdata > data_out

data_in_valid > ——— data_out_ack
Wen RAM
data_in_full < > Waddr Radar data_out_valid

clock_in >

clock_out

data_in_valid Waddr Raddr DataOutEmpty

Write side logic Read side logic

Read ointer

WriteGrayPointer2Read2

<

Read!

>

rst_in_n rst_out_n

Figure 33: Asynchronous fifo.

The fifo design achieves glitch free asynchronous operation by using a proven method
of passing address pointers using gray code.[2] Source code is provided in Appendix C.
The buffer size as well as data width is implemented as fully customizable parameters.
This would allow for writing the context index, BypassFlag, Bins data and Bins length
to the same address in the buffer. The buffer is instantiated as block ram as specified in
the Xilinx dual port block ram example.
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O Results and Discussion

9.1 Binarizer and Context Index Calculator

Far and away the most challenging part of the binarizer implementation is the coding
of the ALRem syntax element. A disproportionate amount of effort was spent on the
fruitless endeavor of finding an efficient way of computing it. In the end, the proposed
FSM approach was able to achieve efficient binarization. Had this method been known
at the start of the project, it would have freed up a substantial amount of time. Time
that could possibly be spent on integrating a context index calculator with the binarizer.
The analysis of the subject performed in this thesis should provide a good foundation for
future work.

9.2 CABAC Hardware Encoder

The current architecture of the hardware encoder is a relatively low performance imple-
mentation. But with the framework it provides, it allows for the exploration of higher
performance architectures. There exists a lot of research into hardware optimizations
that could more easily be understood with the presence of a working design. Further-
more, there still remains work to be done on the design. Expansion of the context table is
required. In addition to the many possible improvements that could be made to the han-
dling of these contexts. Pipelining could also be implemented, but should be postponed
until more research into the higher performance architectures has been performed.

9.3 Achieving Correctness

A lot of effort was put into achieving correctness of the design, resulting in the development
of the software model. But any serious attempt at making any HEVC compliant hardware
should utilize the HEVC HM TEST Model software. This would allow for tracing and
in depth analysis of the data flow. Having this tool would be invaluable compared to
only working with the standard document. Anything less will introduce some uncertainty
about the actual correctness of the designs.

9.4 Future Work

While the actual CABAC coding algorithm may not leave much room left for improve-
ments. The binarization schemes used are bound to see modifications with succeeding
revisions of HEVC, or even complete reworks with the introduction of new standards.
Leaving practical implementations aside, there exists many possibilities of studying these
binarization methods. Being able to quantify the actual binarizer performance would
however require a framework, such as the HEVC HM Test Model.
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ragma synthesis_off

-- your simulation-only code

P

1ib:
lib
use
use
use
use

oy

1ib:
use

ent

ragma synthesis_on

rary ieee;
rary std;
ieee.std_logic_1164.all;
ieee.numeric_std.all;
ieee.std_logic_unsigned.all;
ieee.std_logic_misc.all; --
http://wwwl.pldworld. com/@rilinz/html/technote/tool/manual/15%_doc/fndtn/vhd/vhd10_3.htm

rary work;
work.BinarizerParameters.all;

ity Binarizer is

port

(

Clk : in std_logic;

Dataln ¢ in std_logic_vector((16*CoeffWidth)-1 downto 0);
ScanDir : in std_logic_vector(l downto 0);

Resetn : in std_logic;

StartBinarizer : in std_logic;

DataOut : out std_logic_vector(OutputWidth-1 downto 0);
DataLength : out std_logic_vector(OutputWidthLength-1 downto 0);
PrefixLength : out std_logic_vector(OutputWidthLength-1 downto 0);
Finished : out std_logic

)5

end Binarizer;

arc

hitecture struct of Binarizer is

-- Signal declarations

type BinarizeStateType is(
read_input,
write_last_sig_coeff_x_prefix,
write_last_sig_coeff_y_prefix,
write_sig_coeff_flag,
write_coeff_abs_level_greaterl,
write_coeff_abs_level _greater2,
sync,
write_coeff_abs_level_remaining,
write_coeff_sign_flag,
write_finished

)

type transform_block is array (15 downto 0) of integer range -(2**(coeffwidth-1)) to
< (2**(coeffwidth-1));

signal BinarizeState : BinarizeStateType;



70 signal coefficients : Transform_Block;

71 signal coeff_abs_level_greaterl_flag : std_logic_vector(0 to 15);

72 signal coeff_abs_level_greater2_flag : std_logic_vector(0 to 15);

73 signal sig_coeff_flag : std_logic_vector(0 to 15);

74 signal ABS_index : integer range O to 15;

75 signal ABS_started : std_logic;

76 signal ABS_done : std_logic;

7 signal ABS_level_writeout : integer range 0 to 32767;

78 signal k : integer range O to 4;

79

80  begin

81

82 Next_ABS : process(Clk, Dataln, Resetn, StartBinarizer)

83 variable ABS_index_cycler : integer range 0 to 15;

84

85 begin

86 if Resetn = 'O' then

87 ABS_index_cycler := 0;

88 ABS_index <= 0;

89 ABS_done <= '0';

90 elsif rising_edge(Clk) then

91 case BinarizeState is

92 when sync | write_coeff_abs_level_remaining =>

93 find_next_ALG2_loop : for ABS_index_cycler in O to 15 loop

94 if (ABS_index_cycler <= ABS_index) then --<<<<<<<<< Here be issues
95 --spin TODO FIX end condition

96 else

97 if (coeff_abs_level_greaterl_flag(ABS_index_cycler) = '1') then
98 report "ALG found at ABS_index[" & integer'image(ABS_index_cycler) & "1";
99 ABS_index <= ABS_index_cycler;

100 ABS_level _writeout <= coefficients(ABS_index_cycler);
101 if (ABS_index_cycler = 15) then

102 ABS_done <= '1';

103 else

104 exit find_next_ALG2_loop;

105 end if;

106 end if;

107 end if;

108 end loop;

109 when others =>

110 ABS_index <= 0;

111 ABS_done <= '0';

112 end case;

113 end if;

114 end process;

115

116 Binarize : process(Clk, Dataln, Resetn, StartBinarizer)

117

118 e - - - - - - - - -
119 -- Vartable declarations

20 0 - 0= - - - - - - -
121

122 variable sig_coeff_flag_found : std_logic;

123 variable sig_coeff_flag_index : integer range OutputWidth-1 downto OutputWidth-14;
124 variable coeff_sign_flag : std_logic_vector(0 to 15);

125 variable ALG1_index : integer range O to 8;

126 variable SIGN_index : integer range O to 15;

127 variable Scan_Direction : Scan_Directions := DiagonalScan; -- T0D0: Add all scan directions
128

129 begin

130 if Resetn = 'O' then

131 sig_coeff_flag <= (others => '0');

132 sig_coeff_flag _found := '0';

133 sig_coeff_flag_index := OutputWidth-1;

134 ALG1_index := 0;

135 SIGN_index :=0;

136 DataOut <= (others => '0');

137 DataLength <= (others => '0');

138 BinarizeState <= read_input;

139 Finished <= '1';

140 coeff_abs_level_greaterl_flag <= (others => '0');

141 coeff_abs_level_greater2_flag <= (others => '0');

142 k <= 0;
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PrefixLength <= (others => '0');

elsif rising_edge(Clk) then
case BinarizeState is
when read_input =>
BinarizeState <= write_last_sig_coeff_x_prefix;
Finished <= '0"';

for i in 0 to 15 loop

-— Read absolute values.

coefficients(Scan_Direction(15-1)) <=
—  to_integer(abs(signed(DataIn(((CoeffWidth*(i+1))-1)  downto
—  (CoeffWidth*i)))));

-- Read sign.

coeff_sign_flag(Scan_Direction(15-i))

sig_coeff_flag(Scan_Direction(15-i)) <= or_reduce(DataIn(((CoeffWidth*(i+1))-2)
< downto (CoeffWidth*i)));

-- Find >1 data and >2 data. Procedure dependent on sign bit

case DataIn((CoeffWidth*(i+1))-1) is
when '0' =>
coeff_abs_level_greaterl_flag(Scan_Direction(15-i)) <=
«  or_reduce(DataIn(((CoeffWidth*(i+1))-2) downto
< ((CoeffWidth*i)+1)));

coeff_abs_level_greater2_flag(Scan_Direction(15-i)) <=
—  (DataIn(CoeffWidth*i) and DataIn((CoeffWidth*i)+1))
or

—  or_reduce(DataIn(((CoeffWidthx*(
— downto
— ((CoeffWidth#*i)+2)));
when '1' =>
coeff_abs_level_greaterl_flag(Scan_Direction(15-i)) <=
< nand_reduce(DataIn(((CoeffWidth*(i+1))-2) downto (CoeffWidth#*i)));
coeff_abs_level_greater2_flag(Scan_Direction(15-i)) <=
—  (DataIn(CoeffWidth*i) and (not(DataIn((CoeffWidth*i)+1))))
or
— nand_reduce(DataIn(((CoeffWidth
—  downto((CoeffWidth*i)+2)));
when others =>
end case;
end loop;

when write_last_sig_coeff_x_prefix =>

for i in O to 15 loop

report "coefficients(" & integer'image(i) & "): " &
— integer'image(coefficients(i));
end loop;

report "sig_coeff_flag: " & integer'image(conv_integer(sig_coeff_flag));
report "coeff_abs_level_greaterl_flag: " &
<  integer'image(conv_integer(coeff_abs_level_greaterl_flag));
report "coeff_abs_level_greater2_flag: " &
—  integer'image(conv_integer(coeff_abs_level_greater2_flag));
report "coeff_sign_flag: " & integer'image(conv_integer(coeff_sign_flag));

BinarizeState <= write_last_sig_coeff_y_prefix;
write_last_sig_coeff_x_prefix_loop : for index in O to 15 loop
if (sig_coeff_flag(index) = '1') then
case index is
when O => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";
Datalength <=
—  std_logic_vector(to_unsigned(3,0utputWidthLength));
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when

when

when

when

when

when

when

when

when

when

when

when

when

when

when

end case;

10

11

12

13

14

15

DataOut (OutputWidth-1 downto OutputWidth-3) <= "111";
DatalLength <=

—  std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-3) <= "110";
Datalength <=

—  std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-3) <= "111";
Datalength <=

— std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-3) <= "110";
DatalLength <=

—  std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-2) <= "10";
DatalLength <=

—  std_logic_vector(to_unsigned(2,0utputWidthLength));
DataOut (QutputWidth-1 downto OutputWidth-3) <= "111";
Datalength <=

< std_logic_vector(to_unsigned(3,0utputWidthLength)) ;
DataOut (OutputWidth-1 downto OutputWidth-3) <= "110";
Datalength <=

— std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (QutputWidth-1 downto OutputWidth-2) <= "10";
DatalLength <=

—  std_logic_vector(to_unsigned(2,0utputWidthLength));
DataOut (OutputWidth-1) <= '0';
Datalength <=

—  std_logic_vector(to_unsigned(1,OutputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-3) <= "110";
Datalength <=

— std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-2) <= "10";
DatalLength <=

—  std_logic_vector(to_unsigned(2,0utputWidthLength));
DataOut (OutputWidth-1) <= '0';
Datalength <=

—  std_logic_vector(to_unsigned(1l,OutputWidthLength));
DataOut (QutputWidth-1 downto OutputWidth-2) <= "10";
Datalength <=

— std_logic_vector(to_unsigned(2,0utputWidthLength));
DataOut (OutputWidth-1) <= '0"';
DatalLength <=

—  std_logic_vector(to_unsigned(1l,0OutputWidthLength));
DataOut (OutputWidth-1) <= '0';
DatalLength <=

—  std_logic_vector(to_unsigned(l,OutputWidthLength));

exit write_last_sig_coeff_x_prefix_loop;

end if;
end loop;

when write_last_sig_coeff_y_prefix =>
BinarizeState <= write_sig_coeff_flag;
write_last_sig_coeff_y_prefix_loop : for index in O to 15 loop
if (sig_coeff_flag(index) = '1') then
case index is

when

when

when

when

when

when

when

0

=>

DataOut (QutputWidth-1 downto OutputWidth-3) <= "111";
Datalength <=

— std_logic_vector(to_unsigned(3,0utputWidthLength)) ;
DataOut (OutputWidth-1 downto OutputWidth-3) <= "110";
Datalength <=

—  std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-3) <= "111";
DatalLength <=

—  std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-2) <= "10";
Datalength <=

— std_logic_vector(to_unsigned(2,0utputWidthLength));
DataOut (QutputWidth-1 downto OutputWidth-3) <= "110";
DatalLength <=

< std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1 downto OutputWidth-3) <= "110";
DatalLength <=

—  std_logic_vector(to_unsigned(3,0utputWidthLength));
DataOut (OutputWidth-1) <= '0';
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Datalength <=
— std_logic_vector(to_unsigned(1,0OutputWidthLength));
when 7 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";
Datalength <=
— std_logic_vector(to_unsigned(2,0utputWidthLength));
when 8 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";
Datalength <=
— std_logic_vector(to_unsigned(3,0utputWidthLength));
when 9 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";
Datalength <=
— std_logic_vector(to_unsigned(3,0utputWidthLength)) ;
when 10 => DataOut(OutputWidth-1) <= '0';
Datalength <=
—  std_logic_vector(to_unsigned(1l,0utputWidthLength));
when 11 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";
DatalLength <=
—  std_logic_vector(to_unsigned(2,0utputWidthLength));
when 12 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";
Datalength <=
— std_logic_vector(to_unsigned(3,0utputWidthLength));
when 13 => DataOut(OutputWidth-1) <= '0"';
Datalength <=
— std_logic_vector(to_unsigned(1l,OutputWidthLength));
when 14 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";
DatalLength <=
—  std_logic_vector(to_unsigned(2,0utputWidthLength));
when 15 => DataOut(OutputWidth-1) <= '0';
Datalength <=
—  std_logic_vector(to_unsigned(l,OutputWidthLength));

end case;
exit write_last_sig_coeff_y_prefix_loop;
end if;
end loop;

when write_sig_coeff_flag =>
BinarizeState <= write_coeff_abs_level_greaterl;
write_sig_coeff_flag loop : for index in O to 15 loop
if sig_coeff_flag _found = '1' then
DataOut(sig_coeff_flag_index) <= sig_coeff_flag(index);
sig_coeff_flag _index := sig_coeff_flag _index - 1;
if (sig_coeff_flag(index) = '1') then
coefficients(index) <= coefficients(index) - 1;
end if;
elsif (sig_coeff_flag(index) = '1') then
sig_coeff_flag found := '1';
Datalength <= std_logic_vector(to_unsigned(15-index,OutputWidthLength));
coefficients(index) <= coefficients(index) - 1;
end if;
end loop;

when write_coeff_abs_level_greaterl =>
BinarizeState <= write_coeff_abs_level_greater2;
write_coeff_abs_level _greater_1_loop : for index in O to 15 loop
if sig_coeff_flag(index) = '1' and ALG1_index < 8 then
if ( coeff_abs_level_greateri_flag(index) = '1') then
DataOut (OutputWidth-1-ALG1_index) <= '1';
report "ALGl:coefficients(" & integer'image(index) & "): " &
<  integer'image(coefficients(index));
coefficients(index) <= coefficients(index) - 1;
report "ALGl:coefficients(" & integer'image(index) & "): " &
— integer'image(coefficients(index));

else
DataOut (OutputWidth-1-ALG1_index) <= '0O';
end if;
ALG1_index := ALGl_index + 1;
end if;
end loop;

DataLength <= std_logic_vector(to_unsigned(ALG1_index,OutputWidthLength)) ;

when write_coeff_abs_level_greater2 =>
BinarizeState <= sync;
write_coeff_abs_level_greater_2_loop : for index in O to 15 loop
if sig_coeff_flag(index) = '1' then
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if (coeff_abs_level_greater2_flag(index) = '1') then
DataOut (QutputWidth-1) <= '1';
report "ALG2:coefficients(" & integer'image(index) & "): " &
—  integer'image(coefficients(index));
coefficients(index) <= coefficients(index) - 1;
report "ALG2:coefficients(" & integer'image(index) & "): " &
< integer'image(coefficients(index));
else
DataOut (QutputWidth-1) <= '0';
end if;
DataLength <= std_logic_vector(to_unsigned(1,0OutputWidthLength));
exit write_coeff_abs_level_greater_2_loop;
end if;
end loop;

when sync =>
BinarizeState <= write_coeff_abs_level_remaining;

for i in O to 15 loop

report "coefficients(" & integer'image(i) & "): " &
— integer'image(coefficients(i));
end loop;

when write_coeff_abs_level_remaining =>
report "write_coeff_abs_level_remaining: @ k: " & integer'image(k) & "
— ABS_level_writeout: " & integer'image(ABS_level_writeout);
if (ABS_done = '1') then
BinarizeState <= write_coeff_sign_flag;
end if;
case k is
when 0 =>
case (ABS_level_writeout) is
when 0 =>
Datalength <= std_logic_vector(to_unsigned(0,OutputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(l,OutputWidthLength));
when 1 =>
DatalLength <= std_logic_vector(to_unsigned(0,OutputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
when 2 =>
DataLength <= std_logic_vector(to_unsigned(0,OutputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
when 3 =>
Datalength <= std_logic_vector(to_unsigned(0,OutputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
when 4 to 5 =>
DataOut (OutputWidth-1 downto OutputWidth-1) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-4,1));
Datalength <= std_logic_vector(to_unsigned(1,0OutputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
k <= 1;
when 6 to 9 =>
DataOut (OutputWidth-1 downto OutputWidth-2) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-6,2));
Datalength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
when 10 to 17 =>
DataOut (OutputWidth-1 downto OutputWidth-3) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-10,3));
Datalength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
when 18 to 33 =>
DataOut (OutputWidth-1 downto OutputWidth-4) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-18,4));
Datalength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
when 34 to 65 =>
DataOut (QutputWidth-1 downto OutputWidth-5) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-34,5));
Datalength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
when 66 to 129 =>
DataOut (QutputWidth-1 downto OutputWidth-6) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-66,6));
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Datalength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
when 130 to 257 =>
DataOut (OutputWidth-1 downto OutputWidth-7) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-130,7));
Datalength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
when 258 to 513 =>
DataOut (OutputWidth-1 downto OutputWidth-8) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-258,8));
Datalength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
when 514 to 1025 =>
DataOut (QutputWidth-1 downto OutputWidth-9) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-514,9));
Datalength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
when 1026 to 2049 =>
DataOut (QutputWidth-1 downto OutputWidth-10) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-1026,10));
Datalength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
when 2050 to 4097 =>
DataOut (OutputWidth-1 downto OutputWidth-11) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-2050,11));
DataLength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(15,0utputWidthLength));
when 4098 to 8193 =>
DataOut (QutputWidth-1 downto OutputWidth-12) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-4098,12));
Datalength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(16,0utputWidthLength));
when 8194 to 16385 =>
DataOut (OutputWidth-1 downto OutputWidth-13) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-8194,13));
Datalength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(17,0utputWidthLength));
when 16386 to 32767 =>
DataOut (OutputWidth-1 downto OutputWidth-14) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-16386,14));
Datalength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(18,0utputWidthLength));

when others =>
end case;
when 1 =>

case (ABS_level_writeout) is
when 0 to 1 =>
DataOut (OutputWidth-1 downto OutputWidth-1) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout,1));
Datalength <= std_logic_vector(to_unsigned(1,0OutputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));
when 2 to 3 =>
DataOut (QutputWidth-1 downto OutputWidth-1) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-2,1));
Datalength <= std_logic_vector(to_unsigned(1,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
when 4 to 5 =>
DataOut (QutputWidth-1 downto OutputWidth-1) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-4,1));
DatalLength <= std_logic_vector(to_unsigned(1,0OutputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
when 6 to 7 =>
DataOut (OutputWidth-1 downto OutputWidth-1) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-6,1));
Datalength <= std_logic_vector(to_unsigned(1,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
when 8 to 11 =>
DataOut (OutputWidth-1 downto OutputWidth-2) <=
< std_logic_vector(to_unsigned(ABS_level_writeout-8,2));
Datalength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
when 12 to 19 =>
DataOut (OutputWidth-1 downto OutputWidth-3) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-12,3));
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DataLength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
when 20 to 35 =>
DataOut (OutputWidth-1 downto OutputWidth-4) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-20,4));
Datalength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
when 36 to 67 =>
DataOut (OutputWidth-1 downto OutputWidth-5) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-36,5));
Datalength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
when 68 to 131 =>
DataOut (QutputWidth-1 downto OutputWidth-6) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-68,6));
Datalength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
when 132 to 259 =>
DataOut (QutputWidth-1 downto OutputWidth-7) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-132,7));
DatalLength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
when 260 to 515 =>
DataOut (OutputWidth-1 downto OutputWidth-8) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-260,8));
Datalength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
when 516 to 1027 =>
DataOut (OutputWidth-1 downto OutputWidth-9) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-516,9));
Datalength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
when 1028 to 2051 =>
DataOut (OutputWidth-1 downto OutputWidth-10) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-1028,10));
Datalength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
when 2052 to 4099 =>
DataOut (OutputWidth-1 downto OutputWidth-11) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-2052,11));
DataLength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
when 4100 to 8195 =>
DataOut (QutputWidth-1 downto OutputWidth-12) <=
<  std_logic_vector(to_unsigned(ABS_level_writeout-4100,12));
Datalength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(15,0utputWidthLength));
when 8196 to 16387 =>
DataOut (QutputWidth-1 downto OutputWidth-13) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-8196,13));
Datalength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(16,0utputWidthLength));
when 16388 to 32767 =>
DataOut (QutputWidth-1 downto OutputWidth-14) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-16388,14));
Datalength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(17,0utputWidthLength));

when others =>
end case;
when 2 =>

case (ABS_level_writeout) is
when 0 to 3 =>
DataOut (OutputWidth-1 downto OutputWidth-2) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout,2));
Datalength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(1l,OutputWidthLength));
when 4 to 7 =>
DataOut (OutputWidth-1 downto OutputWidth-2) <=
< std_logic_vector(to_unsigned(ABS_level_writeout-4,2));
Datalength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
when 8 to 11 =>
DataOut (OutputWidth-1 downto OutputWidth-2) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-8,2));
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DataLength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
when 12 to 15 =>
DataOut (OutputWidth-1 downto OutputWidth-2) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-12,2));
Datalength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
when 16 to 23 =>
DataOut (OutputWidth-1 downto OutputWidth-3) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-16,3));
Datalength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
when 24 to 39 =>
DataOut (QutputWidth-1 downto OutputWidth-4) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-24,4));
Datalength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
when 40 to 71 =>
DataOut (QutputWidth-1 downto OutputWidth-5) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-40,5));
Datalength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
when 72 to 135 =>
DataOut (OutputWidth-1 downto OutputWidth-6) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-72,6));
DataLength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
when 136 to 263 =>
DataOut (OutputWidth-1 downto OutputWidth-7) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-136,7));
Datalength <= std_logic_vector(to_unsigned(7,0OutputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
when 264 to 519 =>
DataOut (OutputWidth-1 downto OutputWidth-8) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-264,8));
Datalength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
when 520 to 1031 =>
DataOut (QutputWidth-1 downto OutputWidth-9) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-520,9));
DataLength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
when 1032 to 2055 =>
DataOut (QutputWidth-1 downto OutputWidth-10) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-1032,10));
DataLength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
when 2056 to 4103 =>
DataOut (QutputWidth-1 downto OutputWidth-11) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-2056,11));
Datalength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
when 4104 to 8199 =>
DataOut (QutputWidth-1 downto OutputWidth-12) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-4104,12));
Datalength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
when 8200 to 16391 =>
DataOut (OutputWidth-1 downto OutputWidth-13) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-8200,13));
Datalength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(15,0utputWidthLength));
when 16392 to 32767 =>
DataOut (OutputWidth-1 downto OutputWidth-14) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-16392,14));
Datalength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(16,0utputWidthLength));

when others =>
end case;
when 3 =>

case (ABS_level_writeout) is
when 0 to 7 =>
DataOut (OutputWidth-1 downto OutputWidth-3) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout,3));

9
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DataLength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(1l,OutputWidthLength));
when 8 to 15 =>
DataOut (OutputWidth-1 downto OutputWidth-3) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-8,3));
Datalength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
when 16 to 23 =>
DataOut (OutputWidth-1 downto OutputWidth-3) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-16,3));
Datalength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
when 24 to 31 =>
DataOut (QutputWidth-1 downto OutputWidth-3) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-24,3));
Datalength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
when 32 to 47 =>
DataOut (QutputWidth-1 downto OutputWidth-4) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-32,4));
DatalLength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
when 48 to 79 =>
DataOut (OutputWidth-1 downto OutputWidth-5) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-48,5));
Datalength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
when 80 to 143 =>
DataOut (OutputWidth-1 downto OutputWidth-6) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-80,6));
Datalength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
when 144 to 271 =>
DataOut (OutputWidth-1 downto OutputWidth-7) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-144,7));
Datalength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
when 272 to 527 =>
DataOut (QutputWidth-1 downto OutputWidth-8) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-272,8));
Datalength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
when 528 to 1039 =>
DataOut (QutputWidth-1 downto OutputWidth-9) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-528,9));
Datalength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
when 1040 to 2063 =>
DataOut (QutputWidth-1 downto OutputWidth-10) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-1040,10));
Datalength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
when 2064 to 4111 =>
DataOut (QutputWidth-1 downto OutputWidth-11) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-2064,11));
Datalength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
when 4112 to 8207 =>
DataOut (OutputWidth-1 downto OutputWidth-12) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-4112,12));
Datalength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
when 8208 to 16399 =>
DataOut (OutputWidth-1 downto OutputWidth-13) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-8208,13));
Datalength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
when 16400 to 32767 =>
DataOut (QutputWidth-1 downto OutputWidth-14) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-16400,14));
Datalength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(15,0utputWidthLength));
when others =>

10
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end case;
when 4 =>
case (ABS_level_writeout) is
when 0 to 15 =>
DataOut (QutputWidth-1 downto OutputWidth-4) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout,4));
Datalength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(l,OutputWidthLength));
when 16 to 31 =>
DataOut (QutputWidth-1 downto OutputWidth-4) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-16,4));
Datalength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(2,0utputWidthLength));
when 32 to 47 =>
DataOut (OutputWidth-1 downto OutputWidth-4) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-32,4));
Datalength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(3,0utputWidthLength));
when 48 to 63 =>
DataOut (OutputWidth-1 downto OutputWidth-4) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-48,4));
Datalength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(4,0utputWidthLength));
when 64 to 95 =>
DataOut (OutputWidth-1 downto OutputWidth-5) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-64,5));
Datalength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(5,0utputWidthLength));
when 96 to 159 =>
DataOut (QutputWidth-1 downto OutputWidth-6) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-96,6));
Datalength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(6,0utputWidthLength));
when 160 to 287 =>
DataOut (QutputWidth-1 downto OutputWidth-7) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-160,7));
DatalLength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(7,0utputWidthLength));
when 288 to 543 =>
DataOut (OutputWidth-1 downto OutputWidth-8) <=
<  std_logic_vector(to_unsigned(ABS_level_writeout-288,8));
Datalength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(8,0utputWidthLength));
when 544 to 1055 =>
DataOut (OutputWidth-1 downto OutputWidth-9) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-544,9));
Datalength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(9,0utputWidthLength));
when 1056 to 2079 =>
DataOut (OutputWidth-1 downto OutputWidth-10) <=
— std_logic_vector(to_unsigned(ABS_level_writeout-1056,10));
Datalength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(10,0utputWidthLength));
when 2080 to 4127 =>
DataOut (OutputWidth-1 downto OutputWidth-11) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-2080,11));
Datalength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(11,0utputWidthLength));
when 4128 to 8223 =>
DataOut (QutputWidth-1 downto OutputWidth-12) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-4128,12));
Datalength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(12,0utputWidthLength));
when 8224 to 16415 =>
DataOut (QutputWidth-1 downto OutputWidth-13) <=
—  std_logic_vector(to_unsigned(ABS_level_writeout-8224,13));
Datalength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(13,0utputWidthLength));
when 16416 to 32767 =>
DataOut (QutputWidth-1 downto OutputWidth-14) <=
< std_logic_vector(to_unsigned(ABS_level_writeout-16416,14));
DataLength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
PrefixLength <= std_logic_vector(to_unsigned(14,0utputWidthLength));
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when others =>
end case;

end case;

if (k<4 and (ABS_level_writeout) > (3#(2#%%*k))) then

k <= k+1;
end if;

when write_coeff_sign_flag =>
BinarizeState <= write_finished;

write_coeff_sign_flag_loop :
if sig_coeff_flag(index) = '1' then
if coeff_sign_flag(index) = '1' then
DataOut (QutputWidth-1 - SIGN_index) <= '1';

DataOut (QutputWidth-1 - SIGN_index) <= '0O';

else

end if;

SIGN_index := SIGN_index + 1;
end if;
Datalength

end loop;
when others =>

<= std_logic_vector(to_unsigned(SIGN_index,OutputWidthLength)) ;

BinarizeState <= write_finished;

Finished <= '1';

DataOut
DatalLength
end case;
end if;
end process;
end struct;

<= (others => '0');
<= (others => '0');

12

for index in O to 15 loop
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TODO LIST:
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BinCountInNALUnits

bitsOutstanding overflow

Replace ctzxIdzTablelInitials with calculation

Proper memory interfacing for tables
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rary ieee;
ieee.std_logic_1164.all;
ieee.std_logic_arith.ALL;
ieee.numeric_std.all;
ieee.std_logic_unsigned.all;
ieee.std_logic_misc.all;

rary std;
std.textio.all;

rary work;
work.CABAC_EncParameters.all;

ity CABAC_Enc is

port

(

Clk : in std_logic;

Input ¢ in  std_logic_vector(InputW-1 downto 0);
Inputlen : in std_logic_vector(InputWLen-1 downto 0);
ctxIdx : in std_logic_vector(6 downto 0);

SliceQPY : in std_logic_vector(5 downto 0);

initType : in std_logic_vector(l downto 0);

Resetn : in std_logic;

Start : in std_logic;

Output : out std_logic_vector(OutputW-1 downto 0);
OutputLen : out std_logic_vector(OutputWLen-1 downto 0);
BypassI : in std_logic;

BypassO : out std_logic;

TermI : in std_logic;

TermO : out std_logic;

Finished : out std_logic

)5

end CABAC_Enc;

arc

hitecture struct of CABAC_Enc is

-- Type declarations

-- States
type CABAC_EncStateType is(
r_Input,
init_ctxTbl,
r_ctx,

enc_bin_r,
enc_bin_b,
RenormE,
PutBit,
w_ctx,
enc_Term,
w_finished



72

73 -- Table types

74 type transIdx_t is array(0 to 63) of std_logic_vector(5 downto 0);
75 type qRange_t is array(0 to 3) of std_logic_vector(7 downto 0);
76 type rangeTabLps_t is array(0 to 63) of qRange_t;

7 type ctxTblInit_t is array(0 to (52+3*ctxIdxRange)-1) of std_logic_vector(6 downto 0);
78 type ctxTbl_t is array(0 to ctxIdxRange-1) of std_logic_vector(6 downto 0);
79

8o 0 T = - e
81 -- Functions

82 T 0= - - - -
83 function string_to_binary(inp: string) return std_logic_vector is

84 variable temp: std_logic_vector(inp'length-1 downto 0) := (others => 'X');
85 begin

86 for i in inp'range loop

87 case inp(i) is

88 when '0' => temp(i-1) := '0';

89 when '1' => temp(i-1) := '1';

90 when others => temp(i-1) := 'X';

91 end case;

92 end loop;

93 return temp;

94 end function string_to_binary;

95

96 impure function InitctxTbl (RomFileName : in string) return ctxTblInit_t is
97 FILE romfile : text is in RomFileName;

98 variable RomFileLine : line;

99 variable rom : ctxTblInit_t;

100 variable TestString : string(7 downto 1);

101 begin

102 for i in ctxTblInit_t'range loop

103 readline(romfile, RomFileLine);

104 read(RomFileLine, TestString);

105 rom(i) := string_to_binary(TestString) (6 downto 0);

106 end loop;

107 return rom;

108 end function;

109

110 impure function InittransIdx (RomFileName : in string) return transIdx_t is
111 FILE romfile : text is in RomFileName;

112 variable RomFileLine : line;

113 variable rom : transIdx_t;

114 variable TestString : string(8 downto 1);

115 begin

116 for i in 0 to 63 loop

117 readline(romfile, RomFileLine);

118 read(RomFileLine, TestString);

119 rom(i) := string_to_binary(TestString) (5 downto 0);

120 end loop;

121 return rom;

122 end function;

123

124 impure function InitrangeTabLps (RomFileName : in string) return rangeTabLps_t is
125 FILE romfile : text is in RomFileName;

126 variable RomFileLine : line;

127 variable rom : rangeTabLps_t;

128 variable TestString : string(8 downto 1);

129 begin

130 for i in 0 to 3 loop

131 for j in O to 63 loop

132 readline(romfile, RomFileLine);

133 read (RomFileLine, TestString);

134 rom(j) (i) := string_to_binary(TestString) (7 downto 0);

135 end loop;

136 end loop;

137 return rom;

138 end function;

139

140 = == - e
141 -- Signal declarations

142 - = - - -
143

144 - 0= - - - -
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-- Signal declarations

signal CABAC_EncState
signal currCtx
signal initTbl

: CABAC_EncStateType;
std_logic_vector(6 downto 0);
integer range O to ctxIdxRange-1;

-- Tables

signal rangeTabLPS

signal transIdxLPS

signal transIdxMPS

signal ctxIdxTableInitials

: transIdx_t
: transIdx_t
ctxTblInit_t

: rangeTabLps_t

= InitrangeTaprs(HCABAC_Enc_TablesNrangeTabLPS.txtﬂ);

:= InittransIdx  (["|CABAC_Enc_Tables|\transIdxLPS.txt");
:= InittransIdx  ("/CABAC_Enc_Tables|\transIdxMPS.txt") ;
:= InitctxTbl

<+ (['CABAC_Enc_Tables[\ctxIdxTableInitials.txt['];

signal ctxIdxTable ctxTbl_t;

begin

—---- Debugger process

--Debugger : process(Resetn)
--begin

--t1f rising_edge(Resetn) then
- for i in 0 to 63 loop

- report "index: " & integer'image (i) &
- " rangeTabLPS: " & integer'image (conv_integer(rangeTabLPS (i) (0))) &
= o & integer'image (conv_integer(rangeTabLPS (i) (1))) &
- v & integer'image (conv_integer(rangeTabLPS (i) (2))) &
— v & integer'image (conu_integer (rangeTabLPS(3) (3))) &
- " transIdzLPS: " & integer'image (conv_integer (transIdezLPS(i))) &
- " transIdzMPS: " & integer'image (conv_integer (transIdzMPS(i)));

- end loop;

- for i in 0 to 17939 loop

- report "index: " & integer'image (i) &
- " ctzldeTableInitials: " & integer'image(conv_integer(ctzIdzTableInitials(4)));
- end loop;

--end if;

--end process;

-- ctzldzTable interfacing process

ctxIdxTableLookups : process(Clk)
begin
if rising_edge(Clk) then
case CABAC_EncState is

when init_ctxTbl => -- TODO ver:ify full table 7s loaded
-— Read context table inital values with the correct offset

ctxIdxTable(initTbl)

<= ctxIdxTableInitials((conv_integer (SliceQPY)*(ctxIdxRange+*3))
+(conv_integer (initType)*ctxIdxRange)+initTbl);

when r_ctx =>

-- Store current context in working register
-- T0DO: Figure out why this needs to in CABAC_Enc Process.

when w_ctx =>

-- Update context from working register
ctxIdxTable(conv_integer (ctxIdx)) <= currCtx;

when others =>
end case;
end if;
end process;

—-— CABAC_Enc coding main process

CABAC_Enc :

process(Clk, Input, initType, SliceQPY, BypassI, Resetn, Start, ctxIdx, TermI)

-- Encoding wals
variable ivlLow :
variable ivlCurrRange

std_logic_vector (10 downto 0);--unsigned(10 downto 0);
std_logic_vector(8 downto 0);--unsigned(8 downto 0);



variable
variable

-- binla
variable
variable
variable

-- PutBzt
variable
variable
variable
variable
variable

variable

begin

ivlLpsRange : std_logic_vector(7 downto 0);
gRangeIdx : std_logic_VECTOR(O to 1);

ls

bins : std_logic_vector(InputW-1 downto 0);
binVall : integer range O to InputW-1;

binsLen : std_logic_vector(InputWLen-1 downto 0);
t variables

PutBitVal : std_logic;

PutBitI : integer range OutputW-1 downto O;
bitsOutstanding : integer range O to OutputW-1;
firstBitFlag : std_logic;

Flushed : std_logic_vector(l downto 0);

InitFlag : std_logic;

if Resetn = '0O' then

elsi

currCtx <= (others => '0');

Output <= (others => '0');
OutputLen <= (others => '0');
CABAC_EncState <= r_Input;
Finished <= '1';

TermO <= '0"';

BypassO <= '0"';

InitFlag = '0";

Flushed = "00";

initTbl <= 0;

ivlLow := (others => '0');--0
ivlCurrRange = "111111110"; --510
firstBitFlag = '1'
bitsOutstanding := 03

qRangeIdx := (others => '0');
PutBitl := 03

f rising_edge(Clk) then

case CABAC_EncState is
when r_Input =>
if (Start = '1') then

if (InitFlag = '0') then
CABAC_EncState <= init_ctxTbl;

elsif (TermI = '1') then
CABAC_EncState <= enc_Term;

else
if (BypassI = '1') then

CABAC_EncState <= enc_bin_b;

else
CABAC_EncState <= r_ctx;
end if;
end if;
BypassO <= BypassI;
bins := Input;
binsLen = InputLen;
Finished <= '0"';
binVall := InputW-1;

end if;
when init_ctxTbl =>
if (initTbl = (ctxIdxRange-1)) then
if (BypassI = '1') then
CABAC_EncState <= enc_bin_b;

else
CABAC_EncState <= r_ctx;
end if;
InitFlag := '1';
else
initTbl <= initTbl + 1;
end if;

when r_ctx =>

CABAC_EncState <= enc_bin_r;

currCtx <= ctxIdxTable(conv_integer (ctxIdx));
when enc_bin_b =>

if (binValI>=(InputW-conv_integer (binsLen))) then
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else

end
when enc
if (

else

end
when Ren
if (

else

end
when Put
if (

else

ivlLow := ivlLow(9 downto 0) & "0";
if (bins(binValI) /= '0O') then

ivlLow := ivlLow + ivlCurrRange;
end if;
if (ivlLow>=1024) then
PutBitVal = '1';
CABAC_EncState <= PutBit;
ivlLow := ivlLow - 1024;
elsif (ivlLow<512) then
PutBitVal = '0';
CABAC_EncState <= PutBit;
else
ivlLow := ivlLow - 512;
bitsOutstanding := bitsOutstanding + 1;
end if;

binVall := binVall - 1;

OutputLen <= std_logic_vector(to_unsigned(PutBitI,OutputWlen));
CABAC_EncState <= w_ctx;
if;
_bin_r =>
binValI>=(InputW-conv_integer(binsLen))) then
gRangeIdx := ivlCurrRange(7 downto 6);
ivlLpsRange := rangeTabLPS(conv_integer (currCtx(5 downto
< 0)))(conv_integer (qRangeIdx));

ivlCurrRange := ivlCurrRange - ivlLpsRange;
if (bins(binVall) /= currCtx(6)) then

ivlLow := ivlLow + ivlCurrRange;

ivlCurrRange := "0" & ivlLpsRange;

if (currCtx(5 downto 0) = "000000") then

currCtx(6) <= not currCtx(6);

end if;

currCtx(5 downto 0) <= transIdxLPS(conv_integer (currCtx(5 downto 0)));
else

currCtx(5 downto 0) <= transIdxMPS(conv_integer (currCtx(5 downto 0)));
end if;
binVall := binVall - 1;
CABAC_EncState <= RenormE;

Outputlen <= std_logic_vector(to_unsigned(PutBitI,OutputWlLen));
CABAC_EncState <= w_ctx;

if;
ormE =>
ivlCurrRange < 256) then

if (ivlLow < 256) then
PutBitVal = '0";
CABAC_EncState <= PutBit;

elsif(ivlLow >= 512) then

ivlLow := ivlLow - 5123

PutBitVal = '1';

CABAC_EncState <= PutBit;
else

ivlLow := ivlLow - 256;
bitsOutstanding := bitsOutstanding + 1;
ivlCurrRange := ivlCurrRange(7 downto 0) & "0";
ivlLow ivlLow(9 downto 0) & "0";

end if;

if (Flushed = "11") then
OutputLen <= std_logic_vector(to_unsigned (PutBitI,OutputWlLen)) ;
CABAC_EncState <= w_finished;

elsif (Flushed = "01") then

Flushed = "10";
PutBitVal ;= ivlLow(9);
CABAC_EncState <= PutBit;
else
CABAC_EncState <= enc_bin_r;
end if;
if;
Bit =>
firstBitFlag /= '0') then
firstBitFlag := '0';



Output ((OutputW-1)-PutBitI) <= PutBitVal;
PutBitI := PutBitI + 1;
end if;
PutBit_loop : for i in O to PutBitLoopLen-1 loop -- TODO: Potential overflow here if
— bitsOutstanding > PutBitLoopLen
if (bitsOutstanding > 0) then
Output ((OutputW-1)-PutBitI) <= not PutBitVal;
bitsOutstanding := bitsOutstanding - 1;
PutBitl PutBitI + 1;

370
371
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

393
394
395
396
397
398
399
400
401
402
403
404
405

407

else
if (Flushed = "10") then

Output ((OutputW-1)-PutBitI downto (OutputW-1)-PutBitI-1) <= ivlLow(8) &

<y R

OutputLen <= std_logic_vector(to_unsigned(PutBitI+2,0utputWlen));
CABAC_EncState <= w_finished;

elsif (BypassI = '1') then
CABAC_EncState <= enc_bin_b;

else

ivlCurrRange := ivlCurrRange(7 downto 0) & "0";

ivlLow := ivlLow(9 downto 0) & "0";
CABAC_EncState <= RenormE;
end if;
exit PutBit_loop;
end if;
end loop;

when w_ctx =>
CABAC_EncState <= r_Input;

PutBitl := 0;
Finished <= '1';
when enc_Term =>

ivlCurrRange := ivlCurrRange - 2;

if (bins(binValI) /= '0') then
ivlLow := ivlLow + ivlCurrRange;
ivlCurrRange := "000000010"; --2
Flushed = "01";
CABAC_EncState <= RenormE;

else
Flushed = "1l
CABAC_EncState <= RenormE;

end if;

when others =>
CABAC_EncState <= w_finished;
Finished <= '1';
TermO <= '1';
end case;
end if;
end process;
end struct;
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Appendix C

[) RARAAAKA KA KA AKAKAAAKA KA A A A AN A A A AIAI A A A A AIAHA A A A AAAAAA KA AR AR AR KKK KKK
// Asynchronous fifo

// 08.05.17

// Norwegian University of Science and Technology

// Lars Erik Songe Paulsen

J) RARARAR A KA KA A A A A AR AR AKAKAKA KA AKATAK AR A KA KA KA AKAK KA KIAAAAK KA A AKAKAK KKK KKK

[) RARARAKAKA KA AKAIAAAIA KA AR A A A A A A AIAA A AT AH A A A A A AAKAK KKK A KKK
// TODO LIST:

[) RARARAAA KA KA KA AKAAA KA AI A A A AN A A AIAIAI A A A A A A A A A A A AA A KA AR AR AR KKK KKK
// No "almost full" or "almost empty" signaling logic implemented

[) RARARARA KA KA AAAKAAA KA A A AAAAAK A A A AIA A A A A A AAAA KKK KKK AR AR AK AR AR AR KKK KKK
“timescale 1ns/1ps

module fifo #(parameter
BUFFER_SIZE = 16,
DATA_WIDTH = 32,
ADDRESS_WIDTH = clogb2(BUFFER_SIZE) - 1

)
(
v
// Data in interface
v

input wire rst_in_n,

input wire clock_in,

input wire [DATA_WIDTH-1:0] data_in,
input wire data_in_valid,

output reg data_in_full,

v
// Data out interface
/7
input wire rst_out_n,

input wire clock_out,

output wire [DATA_WIDTH-1:0] data_out,
output reg data_out_valid,

input wire data_out_ack

);

Y7 — _— _—
// Functions
v
// ceil log_2
function integer clogb2;

input integer depth;

for (clogb2=0; depth>0; clogb2=clogb2+1)
depth = depth >> 1;

endfunction

//
// Memory interface and logic

// Low latency version(no output register)

// See XilinzSimpleDualPort1ClockBlockRamEzample.v for detailed documentation

/) === - - - - -
reg [DATA_WIDTH-1:0] Buffer [BUFFER_SIZE-1:0];

// Initialize memory values to all zeros
generate
integer ram_index;
initial
for(ram_index = 0; ram_index < BUFFER_SIZE; ram_index = ram_index + 1)
Buffer [ram_index] = {DATA_WIDTH{1'bO}};
endgenerate

// Conditional sampling of data_in
always @(posedge clock_in) begin
if (data_in_valid && '!data_in_full)
Buffer[BufferWriteAddress] <= data_in;
end



72

73 // data_out must only be sampled when data_out_valid is asserted

74 assign data_out = Buffer[BufferReadAddress];

75

76 // MSB used for checking fifo full condition

7 // Remainder is actuall Buffer address

78 reg [ADDRESS_WIDTH:0] ExtendedBufferWriteAddress, ExtendedBufferReadAddress;
79

80 // Used for addressing memory

81 wire [ADDRESS_WIDTH-1:0] BufferWriteAddress, BufferReadAddress;

82

83 // Binary coded (ADDRESS_WIDTH) bit memory next address

84 wire [ADDRESS_WIDTH:0] WriteNextAddress, ReadNextAddress;

85

86 // Gray coded Pointers for generating full/empty signals

87 reg [ADDRESS_WIDTH:0]  WriteGrayPointer, ReadGrayPointer;

88

89 // Gray coded Next Pointers for syncronizing across clock domains

90 wire [ADDRESS_WIDTH:0]  WriteGrayNextPointer, ReadGrayNextPointer;

91

92 // Gray coded pointers for synchronizing accross clock domains

93 // 2 registers used to avoid metastability

94 reg [ADDRESS_WIDTH:0] WriteGrayPointer2Readl, ReadGrayPointer2Writel;

95 reg [ADDRESS_WIDTH:0] WriteGrayPointer2Read2, ReadGrayPointer2Write2;

96

97 // Wires to signal fifo status

98 wire DataInFull, DataOutEmpty;

99

100 /) === - - - - - - - - -
101 // Write side logic

102 Y
103 // Check full condition

104 assign DatalnFull = (WriteGrayNextPointer ==

105 {"ReadGrayPointer2Write2 [ADDRESS_WIDTH:ADDRESS_WIDTH-1],
106 ReadGrayPointer2Write2 [ADDRESS_WIDTH-2:0]1});
107 // Remove MSB before memory indexing

108 assign BufferWriteAddress = ExtendedBufferWriteAddress [ADDRESS_WIDTH-1:0];
109 // Increase Write address if conditions are met

110 assign WriteNextAddress = ExtendedBufferWriteAddress +

111 (data_in_valid & “data_in_full);

112 // Binary to Gray code conversion

113 assign WriteGrayNextPointer = (WriteNextAddress>>1) ~ WriteNextAddress;

114

115 always @(posedge clock_in or negedge rst_in_n) begin

116 if (!rst_in_n) begin

117 data_in_full <= 0;

118 ExtendedBufferWriteAddress <= 0;

119 WriteGrayPointer <= 0;

120 WriteGrayPointer2Readl <= 0;

121 WriteGrayPointer2Read2 <= 0;

122 end

123 else begin

124 // Update data in full register

125 data_in_full <= DataInFull;

126 // Update Write adress register

127 ExtendedBufferWriteAddress <= WriteNextAddress;

128 // Update current Gray code writepointer

129 WriteGrayPointer <= WriteGrayNextPointer;

130 // Send previous Gray code writepointer to Read side logic

131 WriteGrayPointer2Read1l <= WriteGrayPointer;

132 WriteGrayPointer2Read2 <= WriteGrayPointer2Readl;

133 end

134 end

135

136 /) === - - - - =
137 // Read side logic

138 e -
139 // Check empty condition

140 assign DataOutEmpty = (ReadGrayNextPointer==WriteGrayPointer2Read2);
141 // Remove MSB before memory indezing

142 assign BufferReadAddress = ExtendedBufferReadAddress [ADDRESS_WIDTH-1:0];
143 // Increase Read address if conditions are met

144 assign ReadNextAddress = ExtendedBufferReadAddress + (data_out_ack & data_out_valid);



145
146
147
148
149

151
152
153
154
155
156

158
159
160
161
162

164
165
166
167
168

// Binary to Gray code conversion
assign ReadGrayNextPointer = (ReadNextAddress>>1) ~ ReadNextAddress;

always @(posedge clock_out or negedge rst_out_n) begin
if (!rst_out_n) begin

end

data_out_valid <= 0;
ExtendedBufferReadAddress <= 0;
ReadGrayPointer <= 0;
ReadGrayPointer2Writel <= 0;
ReadGrayPointer2Write2 <= 0;

else begin

end
end
endmodule

// Update data out wvalid register

data_out_valid <= !DataOutEmpty;

// Update Read adress register

ExtendedBufferReadAddress <= ReadNextAddress;

// Update current Gray code readpointer

ReadGrayPointer <= ReadGrayNextPointer;

// Send previous Gray code readpointer to Write side logic
ReadGrayPointer2Writel <= ReadGrayPointer;
ReadGrayPointer2Write2 <= ReadGrayPointer2Writel;



1 “timescale 1ns/l1ps

2

3 module fifo_tb;

4 parameter BUFFER_SIZE = 128;//128;

5 parameter DATA_WIDTH = 32;

6

7 // Data in interface

8 reg rst_in_n;

9 reg clock_in;

10 reg [DATA_WIDTH-1:0] data_in;

11 reg data_in_valid;

12 wire data_in_full;

13

14 // Data out interface

15 reg rst_out_n;

16 reg clock_out;

17 wire [DATA_WIDTH-1:0] data_out;
18 wire data_out_valid;

19 reg data_out_ack;

20

21 fifo dut(.rst_in_n(rst_in_n),

22 .clock_in(clock_in),

23 .data_in(data_in),

24 .data_in_valid(data_in_valid),
25 .data_in_full(data_in_full),
26 .rst_out_n(rst_out_n),

27 .clock_out(clock_out),

28 .data_out (data_out),

29 .data_out_valid(data_out_valid),
30 .data_out_ack(data_out_ack)
31 );

32

33 reg [31:0] COMPARE[0:65536];
34 reg [7:0] in_index, out_index;

35

36 initial begin // data in

37 in_index = 8'b00000000;

38 clock_in = 1'b0;

39 rst_in_n = 1'b0;

40 data_in_valid = 1'bl;

41 data_in = 32'h00000001;

42 #5;

43 clock_in = 1'bl;

44 rst_in_n = 1'bl;

45 //data_in_valid = 1'b1;

46 #5;

47 repeat (20) begin

48 if(!data_in_full) begin

49 if (clock_in) begin // change data on negedge
50 if(data_in != 0) begin

51 data_in = (data_in) + 1;
52 end

53 else begin

54 data_in <= 1'bl;

55 end

56 end

57 else begin

58 end

59 end

60 clock_in = “clock_in;

61 #50;

62 end

63

64

65

66

67 repeat (200) begin

68 if (!data_in_full) begin

69 if (clock_in) begin // change data on negedge
70 if(data_in != 0) begin

71 data_in = (data_in) + 1;
72 end

73 else begin



74 data_in <= 1'bl;

75 end

76 end

7 else begin

78 end

79 end

80 clock_in = “clock_in;

81 #2;

82 end

83

84 repeat (200) begin

85 if(!data_in_full) begin

86 if (clock_in) begin // change data on negedge
87 if(data_in != 0) begin

88 data_in = (data_in) + 1;
89 end

90 else begin

91 data_in <= 1'bl;

92 end

93 end

94 else begin

95 end

96 end

97 clock_in = “clock_in;

98 #50;

99 end

100 end

101

102 // Sample data to compare with output

103 always Q@(posedge clock_in or negedge rst_in_n) begin
104 if (!rst_in_n) begin

105

106 end

107 else if (data_in_valid && !data_in_full) begin
108 COMPARE[in_index] <= (data_in);

109 in_index <= in_index + 1;

110 end

111 end

112

113 initial begin // data out

114 out_index = 8'b00000000;

115 clock_out = 1'b0;

116 rst_out_n = 1'b0;

117 data_out_ack = 1'Db0;

118 #5;

119 rst_out_n = 1'bl;

120 data_out_ack = 1'bl;

121 #220;

122 clock_out = 1'bl;

123

124

125

126

127

128

129

130

131

132

133 repeat (200) begin

134 #1;

135 if (data_out_valid) begin

136 if (clock_out) begin

137 if (data_out == COMPARE[out_index]) begin
138 $monitor ("data match");
139 end

140 else begin

141 $monitor("data missmatch: out_index: %d: %d != %d",out_index,
142 COMPARE [out_index], data_out);
143 end

144 end

145 else begin

146 out_index = out_index + 1;



end
end
clock_out = “clock_out;
end

repeat (120) begin
#25;
if (data_out_valid) begin
if (clock_out) begin
if (data_out == COMPARE[out_index]) begin
$monitor ("data match");
end
else begin

$monitor("data missmatch: out_index: %d: %d

COMPARE [out_index], data_out);
end
end
else begin
out_index = out_index + 1;
end
end
clock_out = “clock_out;
end

repeat (360) begin
#1;
if (data_out_valid) begin
if (clock_out) begin
if (data_out == COMPARE[out_index]) begin
$monitor("data match");
end
else begin

$monitor ("data missmatch: out_index: %d: %d

COMPARE [out_index], data_out);
end
end
else begin
out_index = out_index + 1;
end
end
clock_out = “clock_out;
end
end
endmodule

!= 7d",out_index,

I= 7d",out_index,
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Appendix D

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace HEVC_CABAC_Verification_Tool
{
class CABAC_encoder
{
private List<Syntax_element> S_E_ = new List<Syntax_element>();
private int S_E_index;
private List<bin> Encoded;

public uint offset;

static uint qCodIRangeidx, CodIrangeLPS, codIRange, codIOffset, codILow;
static uint bitsOutstanding;
public bool firstBitFlag;

static uint ctxIdxTable_depth = 120;

public uint[,] rangeTabLPS = new uint[64, 4];

public uint[] transIdxMPS = new uint[64];

public uint[] transIdxLPS = new uint[64];

public uint[] pStateldxTable = new uint[ctxIdxTable_depth * 3 * 52];
public uint[] MPSIdxTable = new uint[ctxIdxTable_depth * 3 * 52];

public List<bin> Encode(List<Syntax_element> S_E)
{

S_E_ = S_E;

Encoded = new List<bin>();

bitsOutstanding = 0O;

S_E_index = 0;

uint bin;
bool bypass;

ResetCodeVals();

try
{
while (S_E_index < S_E.Count)
{
bin = read_bit(out bypass);
if (bypass)
{
EncodeBypass(bin) ;
}
else
{
EncodeDecision(bin);
}
}

EncodeTerminate (1) ;

return Encoded;
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString());
}

return new List<bin>();



72

73

74

75

76

v

78

79 public uint read_bit(out bool bypass)

80 {

81 try

82 {

83 while (S_E_index < S_E_.Count)

84 {

85 if (S_E_[S_E_index].currPos < S_E_[S_E_index] .Bins.Count)

86 {

87 bypass = S_E_[S_E_index] .bypass;

88 return (S_E_[S_E_index].Bins[S_E_[S_E_index].currPos++] == '1') ? (uint)l : 0;

89 }

90 else

91 {

92 S_E_index++;

93 }

94 ¥

95 }

96 catch (Exception ex)

97 {

98 MessageBox.Show(ex.ToString()) ;

99 }

100 //MessageBox.Show("read bit called when finished");

101 bypass = false;

102 return 0O;

103 }

104

105 public void ResetCodeVals()

106 {

107 //The status of the arithmetic decoding engine is represented by the variables codIRange and
<~  codI0Offset.

108 //In the initialization procedure of the arithmetic decoding process,

109 //codIRange is set equal to 510 and codIOffset is set equal to the value returned from
—  read_bits(9)

110 //interpreted as a 9 bit binary representation of an unsigned integer with most significant bit
— written first.

111 codIRange = 510;

112 codILow = 0;

113 qCodIRangeidx = 0;

114 CodIrangelPS = 0;

115 codIOffset = 0;

116 codILow = 0;

117 }

118

119

120 public void EncodeDecision(uint bin)

121 {

122 qCodIRangeidx = (codIRange >> 6) & 3;

123 CodIrangelPS = rangeTabLPS[pStateIdxTable[offset], gCodIRangeidx];

124 codIRange = codIRange - CodIrangeLPS;

125 if (bin != MPSIdxTable[offset])

126 {

127 codILow = codILow + codIRange;

128 codIRange = CodIrangeLPS;

129 if (pStateldxTable[offset] == 0)

130 {

131 MPSIdxTable[offset] = 1 - MPSIdxTable[offset];

132 }

133 pStateIdxTable[offset] = transIdxLPS[pStateIdxTable[offset]];

134 }

135 else

136 {

137 pStateIdxTable[offset] = transIdxMPS[pStateIdxTable[offset]];

138 }

139 RenormE() ;

140 }

141



142 public void EncodeBypass(uint bin)

143 {

144 try

145 {

146 codILow = codILow << 1;

147 if (bin != 0)

148 {

149 codILow = codILow + codIRange;

150 ¥

151 if (codILow >= 1024)

152 {

153 PutBit (1) ;

154 codILow = codILow - 1024;

155 ¥

156 else if (codILow < 512)

157 {

158 PutBit (0);

159 ¥

160 else

161 {

162 codILow = codILow - 512;

163 bitsOutstanding++;

164 ¥

165 }

166 catch (Exception ex)

167 {

168 MessageBox.Show(ex.ToString()) ;

169 }

170 }

171

172 public void RenormE()

173 {

174 while (codIRange < 256)

175 {

176 if (codILow < 256)

177 {

178 PutBit (0);

179 }

180 else if (codILow >= 512)

181 {

182 codILow = codILow - 512;

183 PutBit(1);

184 ¥

185 else

186 {

187 codILow = codILow - 256;

188 bitsOutstanding = bitsOutstanding + 1;

189 ¥

190 codIRange = codIRange << 1;

191 codILow = codILow << 1;

192 }

193 }

194

195 //string teststring;

196

197 public void PutBit(uint B)

198 {

199 if (B != 0 && B != 1) { MessageBox.Show("ERROR: PutBit called with argument: " + B.ToString() +
— "\n Only O or 1 is valid arguments"); }

200

201 if (firstBitFlag)

202 {

203 firstBitFlag = false;

204 }

205 else

206 {

207 bin tempBin = new bin();

208 tempBin.val = (B == 1) 7 '1' : '0';

209 Encoded.Add (tempBin) ;

210 }

211 while (bitsOutstanding > 0)

212 {

213 bin tempBin = new bin();



214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

234
235
236
237
238

240
241
242
243
244
245
246
247
248
249
250
251
252

254
255
256
257
258
259

261
262
263
264
265
266

268
269
270
271
272
273

tempBin.val = (B == 1) 7 '0' : '1';
Encoded.Add (tempBin) ;
bitsOutstanding--;

void EncodeTerminate(uint bin)

codIRange = codIRange - 2;
if (bin != 0)

{
codILow = codILow + codIRange;
EncodeFlush();

¥

else

{
RenormE() ;

¥

ch (Exception ex)

MessageBox.Show(ex.ToString());

void EncodeFlush()

codIRange = 2;
RenormE() ;
PutBit ((codILow >> 9) & 1);

//PutBit (((codILow >> 7) & 3) | 1); // does not work. Using

PutBit ((codILow >> 8) & 1);
PutBit (((codILow >> 7) & 1) | 1);

ch (Exception ex)

MessageBox.Show(ex.ToString());

class Syntax_element

}
}
public
{
try
{
}
cat
{
}
}
public
{
try
{
}
cat
{
}
}
}
{
public
public
public
public
public
}

class bin
{

public
}

List<char> Bins = new List<char>();
int ctxIdx;

int currPos = 0;

int nr = 0;

bool bypass;

char val;

a workarround

for now.
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45
46

47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Appendix E

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace HEVC_CABAC_Verification_Tool
{
class CABAC_decoder
{
private List<bin> bins_ = new List<bin>();
private int bins_index;
private int syntax_element_index;

private char[] Decoded;
private int Decodedindex;

public RichTextBox binValTarget;
public RichTextBox debugg;
uint binValIndex;

public uint offset;

static uint qCodIRangeidx, CodIrangeLPS, codIRange, codIOffset, codILow;
static uint bitsOutstanding;
static bool firstBitFlag;

static uint ctxIdxTable_depth = 120;

public uint[,] rangeTabLPS = new uint[64, 4];

public uint[] transIdxMPS = new uint[64];

public uint[] transIdxLPS = new uint[64];

public uint[] pStateIdxTable = new uint[ctxIdxTable_depth * 3 * 52];
public uint[] MPSIdxTable = new uint[ctxIdxTable_depth * 3 * 52];

private void ResetCodeVals()

{
try
{
//The status of the arithmetic decoding engine is represented by the wvartables codIRange and
—  codIOffset.
//In the initialization procedure of the arithmetic decoding process,
//codIRange is set equal to 510 and codIOffset is set equal to the value returned from
—  read_bits(9)
//interpreted as a 9 bit binary representation of an unsigned integer with most significant
—  bit written first.
codIRange = 510;
codILow = O;
qCodIRangeidx = 0O;
CodIrangelPS = 0;
codI0ffset = 0;
codILow = O;
char[] tempA = "XXXXXXXXX".ToCharArray();
for (int i = 0; i < 9; i++)
{
tempA[i] = (read_bit() == 1) ? '1' : '0';
}
codIOffset = Convert.ToUInt32(new string(tempA), 2); // read 9 first binary vals
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString()) ;
}
}
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99
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101
102
103
104
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106
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110
111
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113
114
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116
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public string Decode(List<bin> bins)

{

Decoded = new char[65535];
Decodedindex = 0;

bins_ = bins;
bins_index = 0;
syntax_element_index = O;

ResetCodeVals();
try
{
return new string(Decoded).Substring(0, Decodedindex) ;
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString());
}

return "empty";

public uint read_bit()

{

try
{
while (bins_index < bins_.Count)
{
return (bins_[bins_index++ ].val == '1') ? (uint)1
}
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString()) ;
¥

MessageBox.Show("read bit called when finished");
return 0;

private void DecodeDecicison()

{

try
{
qCodIRangeidx = (codIRange >> 6) & 3;
CodIrangelPS = rangeTabLPS[pStateIdxTable[offset], gqCodIRangeidx];
codIRange = codIRange - CodIrangeLPS;
if (codIOffset >= codIRange)
{
Decoded[Decodedindex++] = (MPSIdxTablel[offset] == 1) 7 '0' "1
codIOffset = codIOffset - codIRange;
codIRange = CodIrangeLPS;
if (pStateIdxTable[offset] == 0)
{
MPSIdxTable[offset] = 1 - MPSIdxTable[offset];
}
pStateldxTable[offset] = transIdxLPS[pStateldxTablel[offset]];
¥
else
{
Decoded[Decodedindex++] = ((MPSIdxTablel[offset] == 1) ? '1' 0');
pStateIldxTable[offset] = transIdxMPS[pStateldxTable[offset]];
}
RenormD() ;
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString()) ;
}
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}
private void DecodeBypass()
{
codIOffset = codIOffset << 1;
codI0ffset = codIOffset | read_bit();
if (codIOffset >= codIRange)
{
Decoded[Decodedindex++] = '1'
codIOffset = codIOffset - codIRange;
}
else
{
Decoded[Decodedindex++] = '0';
}
}
private void RenormD()
{
try
{
while (codIRange < 256)
{
codIRange = codIRange << 1;
codI0ffset = codIOffset << 1;
codIOffset = codIOffset | read_bit();
}
if (codIOffset >= codIRange)
{
MessageBox.Show("Decoding error:\n The bitstream shall not contain data that result in
— a value of " +
"codIOffset being greater than or equal to codIRange upon completion of
<  this process.");
}
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString());
}
}



Appendix F

This Appendix shows how to setup the different hardware modules and testbenches. It
also shows how the software model can be used to verify hardware encoder output. The
systems was developed using Vivado 2016.4 WebPack Edition. Relevant files is included
in the delivery folder.

CABAC Hardware Encoder Test System Setup

% NewP roject

Project Name
Enter a name for your project and specify a directory where the project data files will be stored. '

Project name: CAB.ﬁ.C_Encoder|
Project location: | C:/Users lepaulse
Create project subdirectory

Project will be created at: C:/Users/lepaulse/CABAC_Encoder

? < Back Finish Cancel

Create a new project in Vivado. Give it a suitable name and click next. Select "RTL
Project” and “Do not specify sources at this time”, and click next.

% NewP roject

Default Part
Choose a default ¥ilinx part or board for your project. This can be changed later. ’

Select: & Parts

4 Filtery Preview

Vendor: All -
Display Mame: | All -
Board Rey: Latest -

Reset All Filters

Search: |C) -

) ) ’ ) Block ) c
Display Name Vendor Board Rev Part If0 Pin Count  File Version RAMs DSPs FlipFlops 1
" ZedBoard Zyng Evaluation and Development kit 72020194841 106400
B Artix-7 AC701 Evaluation Platform xilins . com 1.1 & xc7a200tfbos76-2 676 1.3 365 740 269200 8
B ZyNQ-7 ZC702 Evaluation Board xilin . com 1.0 9 xc72020dg484-1 484 1.2 140 220 106400 1]
< >

? < Back Finish Cancel

Select the Zedboard in the Boards Tab. Click next, then click finish.



Navigate to the sources tab, and add the following files to design sources:

% Add Source Files

Look in: CABAC_Enc v 2O = s DRSS E-
Recent Directories
[ C:/usersflepaulse Desktop -
Recent Items | o
= @ CABAC EncTestbench.vhd e vy
[ PP
Desktop - CABAC Enc coder for h.265
- o B v
< >
Documents
File name: "CABAC_Enc.vhd" "CABAC_EncParameters.vhd™
! Files of type: | all Fies - Cancel

Then add the tables in the tables folder to design sources:

Look n: CABAC_Enc_Tables Y rOE R, DX S B
|=J ctxldxTablelnitials.tet Recent Directories
|=| rangeTabLPS.txt [ C:JCABAC_Enc -
Recentltems  [SIRTERERM IR e
=] transldxMPS.txt e Preview
[ poooooo1 ~
Desktop 00000010
nanAnnT1 ©
< 2>
Documents  File name: “cbddTableIntials. bet™ “rangeTabLPS. txt” "transIdxLPS. txt” "transIdxMPS. bet”
- Files of type: | all Files ~ Cancel

Then add the following files to simulation sources:

% Add Source Files

Look in: CABAC_Enc. v P BER s OXSGS B
CABAC_Enc_Tables Bec Deeoes
@il CABAC_Enc.vhd = C:/CABAC_Enc -
Recent Ttems
File Preview
Desktop <

File name: “CABAC_EncParameters.vhd” "CABAC_EncTestbench.vhd™

Pocuments - Files of type: [ Al Files

Then add the following files to simulation sources. Note that these files are located in the
HEVC_CABAC _Verification_Tool folder.

. Add Source Files

Look in: HEVC_CABAC_Verification_Tool v PR g DX G5 B
B BinarizerTestfile.txt 8 HEVC_CABAC Verification_Tool.pdb B transldxMPS.bet Recent Directories
ctxldxTablelnitials.tct B initinput bt [ C:/CABAC_Enc -
RecentItems B Decoderinput.bet initOutput. et
File Preview
B DecoderlnputHeretxt B Input.bet
- B DecoderOutput.ixt B MPSIdxTabletxt b.o ~
Desktop =] Encoderinput.txt B Outputitxt 0.0
=] EncoderQutput.tt B pStateldxTable.tet o
B EncoderTestFile.txt B rangeTablLPS.ixt 0,1
Documents [ HEVC_CABAC Verification_Tool.exe B TestFile txt S;
1 HEVC_CABAC Verification_Tool.exe.config B trans|dxLPS.txt Lo v
! < 5| 1€ 2
This PC
) File name: “"EncoderInput, txt” "EncoderCutput. bxt”™
? Fies of type: | all Files - Cancel




The Source tab should now look like this.

Sources 70O X

AZS waR
Design Sources (5)
- da CABAC_Enc - struct (CABAC_Enc.vhd)
Text (4)
ctxIdxTableInitials. txt
rangeTabLPs, bt
transIdxLPS. bt
transIdxMPS, tet
{7 Constraints
: - constrs_1
=+ simulation Sources (3
26 sim_1 (3)
: += CABAC_EncTestbench - struct (CABAC EncTestbench vhd) (1)
i el CABAC_EncInstance - CABAC_Enc - struct (CABAC Enc.vhd)
B Text (2)
: EncoderInput. et
“-[3 EncoderOutput. tet

Open the "CABAC _EncTestbench.vhd” file and verify that the “EncoderInput.txt” and
“EncoderOutput.txt” linked in the code is in the same folder as the “HEVC_CABAC_Verification
-_Tool.exe” executable file that is used. It should look something like this:

-- Include EncoderImput.txt in Vivado simulation source,
file TestFile : TEXT cpen read mode iz "C:\Users\lepaulse\Desktop\CABACFiles\HEVC CABAC Verification Tool\EncoederInput.txt";
-- Include EncoderOutput.txt in Vivado simulation sources.

file TestFileCut : TEXT cpen write_mode iz "C:\Users\lepaulse\Desktop\CABACFiles\HEVC CABAC Verification Teol\EncoderOutput.txt";

It is now possible to generate Encoder test data using the software model. First start the
executable file.

<« Desktop » CABACFiles » HEVC_CABAC Verification_Tool w | D Search HEVC_CABAC Verifica.., 0O
i Mame " Date modified Type Size

B BinarizerTestfile.txt 03.08.2017 20.49 TXT File 1KB
. B ctulduTablelnitials bt 30.05.201710.43 TXT File 141 KB
” =] Decoderlnput.tet 03.08.2017 21.56 TXT File 0 KB
* B DecoderlnputHere.bd 03.08.2017 22.04 TXT File 0 KB
- 8 DecoderDutput.tet 0.05.2017 10.43 TXT File 0 KB
» =] Encoderinput.tet 03.08.2017 22.04 TXT File 1KB
P =] EncoderOutput.te 03.08.2017 22.05 TXT File 1KB
* B EncoderTestFiletst 03.08.2017 21.04 TXT File 1KB

[#=] HEWC_CABAC Verification_Tool.exe 03.08.2017 22.04 Application A7 KB
. lf'__'l HEVC_CABAC Verification_Tool.exe.config  20.05.2017 10.43 AML Configuratio... 1EKE
* & HEWVC_CABAC Verification_Tool.pdb 03.08.2017 22.04 Program Debug D... 20 KB
» B initinput.txt 08.08.2017 12,45 TXT File 2 KB

B initrnte it bt NNk 201712 53 T¥T File AR KR



Create some binarized bins by changing the values in the transform block, or simply
clicking Binarize.

e HEVC CABAC Verification Tool

0,110
0,110
0,11010011011

W

10
1,10

1,1111110001
1,01
1,01

1: First write the current binarization the the EncoderInput.txt file by pressing the
Write TestFile button. 2: Then encode this data with the software encoder by pressing
the Encode Butten.

rification Tool

10000110011110111010111001100111
01001011110011110010000111000000
011

10
1,10
1,1111110001
1,01
1,01
1,101
1,

1,




Go back to back to Vivado and Press run simulation. This will perform CABAC hardware
encoding using the same test file as written to earlier.

1 CABAC_Encoder - [Ci/Users/lepaulse/CABAC_Encoder/CABAC_Encoderxpr] - Vivade 20164
File Edit Flow Tools Window Layout View Run  Help

AR 2l XD D B H XKL G52 0efautLayout - K| K B, b s

Flow Mavigator 7 Behavioral Simulation - Functional - sim_1 - CABAC_EncTestbench
™y ol pd
o Wy — Sources 7 _

ororect M A= et RE
4 Proj anager
) ) =|-{=> Design Sources (5
{5 Project Settings . -@ha CABAC_Enc - struct (CAEAC Enc.vhd]
0'4}? Add Sources =} 7 Text (4]

".L_: Language Templates

1F 1P Catalog

5 rangeTabLPs. et
2 transIdxLPs. txt
B transIdxMPS. bt

4 TP Integrator : Constraints
4}’, Create Block Design L) constrs_1
i Simulation Sources 3
=1 sim_1(3)
%---v_h-.'. CABAC_EncTestbench - struct (CABAC EncTe d) {1
. L.l CABAC_EncInstance - CABAC_Enc - struct (CA d
4 Simulation = Text (2

E 5 EncoderInput. txt
L[5 EncoderOutput. bt

% Simulation Settings
'@llﬂ Run Simulation

4 DTl Armslusic

The Simulation should result in something like this:

14 [, Piri| 500000 [ns v |uz Q| ®

wch

Objects 0w X @il CABAC_EncTestbench.vhd X | B Untitled 2 X ?
A Chlcsh| | 1% 8 6
Name Value Data Tyl ™

% Ck 1 Logic
-2 Input[33:0] 200000000 Aray
#-2 InputLen[5:0) 01 Array
-2 chxldx[5:0] 02 Array
w9 SliceQPY[S:0] 02 Array
-9 initType[1:0] 2 Array

% Resetn 1 Logic

% Start 0 Logic
-9 Output[33:0] 50000000  Aray
-2 Outputlen[5:0] Ob Array

% Bypassl 0 Logic

} BypassO 0 Logic

% Terml 1 Logic

% Termo 1 Logic

% Finished 1 Logic

¥ TestFie File Type

¥ TestFieOut File Type

Make sure that the simulation is run long enough to finish encoding.



Head back to the HEVC_CABAC _Verification_Tool.exe software and press the Load From
TB button. This

will load the hardware encod

0,110
0,110
0,11010011011

1,0
1,10

1,1111110001
1,01

er result.

100001100111101110101171001100711 {100001100111101110710111001100111
01001011110011110010000111000000 [1010071011110011110010000110111111
011 1

With both hardware and software encoder result showing, it is now possible to press the
Compare HW and SW encoding button. This will show how many percent of the encoding
is correct, as well as the index of the first conflicting character.

0,110
0,11010011011

1,0
1,10

1,1111110001
1,01

SR

Compare HW and SW

=

10000110011110111010111001100111 [{10000110011110111010111001100111
07007011110011110010000111000000 {01001011110011110010000110111111
011 1

Note that some errors may occur either due t

o improper termination(as seen above) or

if the BitsOutstanding Loop in the hardware encoder is completed without the BitsOut-

standing register reaching a value of 0.



The Bypassflag is signaled to the encoders by appending it to each bins as shown below:

(0000010010110111011171717010000111 {00000700101101110111111070000111
0,111 071707111111000111011170717111101000 [{011011111700011101111011117107000
0,111111111111111 01701101111010701100070111010111 {01101701111010101100010111010111

11100101110101111110070117010111 [{11100707110701111110010117070111

11100101110101111110070111011001 [{11100707110701111110010117011001
1,11111111111001001000 (0007001111011007000710071111011001 {0001007111101100100071001111011001
1,11171111111001000111 (0007001111011007000710071111011001 {0001007111101100100071001111011001
1,1117111111001000011 (0007001111011007000710071111011001 {0001007111101100100071001111011001
1,11111111000111011 (00070011110101111110700000000001 {0001007111101011111107100000000001
1,1111111000101011 0010110111111 00101101
1,1111111000701011
1,1111111000701011
1,1111111000701011
1,1111111000101100
1,1111111000101100
1,1111111000101100
1,1111111000101100
1,1111111000101100
1,1111111000101100
1,1111111000101100
1,1111111000101100

The encoders will use the context index signaled by initType, SliceQPY and ctxIdx. For
the encoders to return the same result, these variables should be set to the same values,
as shown above and below.

| Kl R, bt | 500000 [ns ~ |uz Il Q| &

ach
¢ Objects R Rt L@(M_EETMM % |Buntited 2 x
=
o, [Ph e s 1S e ) [ C:/CABAC_Enc/CABAC_EncTestbench.vhd
Mame Value Data Typ " 5 208
- 1% ck 1 Logic s 209 begin
B3 Input{330] 200000000  Array Ll _ _ _ )
[#-3§ InputLen[5:0] 01 Array % 211 --file gpen(TestFilefut, "TestFileOut.txt", vrite mode);
(- 3§ chadx[6:0] 0z Array B 212 10O Input <= (others => '0'});
- 3§ SlicePY[5:0] 02 Array 213 {1Q Inputlen <= (others =» '0'):
-3 initType[1:0] 2 Array 13214 (o] B - 2 1T A =S | L
-1} Resetn 1 Logic ¥ |215 O initType <= "10"; --Z
-1 Start 0 Logic —l216 | {0 S1iceQPY <= "000010"; --2
og
[#-3§ Output[35%:0]  4b40000000  Array H 217 10 ctxlde <= "0000010"; -2
[ % Outputlen[5:0]  Oa Array E 218 e T
-1 Bypass] 0 Logic &0 O TermI <= '0':
-1 BypassO 0 Logic — 220

Note that it is possible to manually edit “EncoderInput.txt” to create a custom test
pattern. But it is required to include the Bypassflag on each line.



Binarizer

Create a new project in Vivado and give it a suitable name for the Binarizer module(same
steps as for the CABAC Encoder, adding zedboard as target). Add the Binarizer files
from the ”Binarizer_Case_Based_ALRem” folder as shown below.

Sources
o= wet BE
=-{= Design Sources (1
i L.@hs Binarizer - struct (Binarize
Constraints
i belD constrs_1L
= Simulation Sources (2
=} -| sim 1 2)
inarizerTestbench - struct (EinarizerTesthench.vhd)
: Wl BinarizerInstance - Binarizer - struct (Binarize
= Text (1)
L2 TestFile, et

Press run simulation, and make sure it is able to run for long enough.

B Untitled 1 X | 5 TestFile.txt » | ifi BinarizerTestbench.vhd %

th[4:0]
th[:0]

_
]

EE— —
e —
e
]
e —
e —
e —
—_g

The binarizer will output the finished binarized elements in the order of LASTx, LASTy,
SIG, ABS1, ABS2, ALRem and SIGN.



Fifo

Create a new project in Vivado and give it a suitable name for the Fifo module(same
steps as for the CABAC Encoder, adding zedboard as target). Add the fifo files as shown

below.

Behavioral Simulation - Functional - sim_1 - fifo_tb

Sources T 0O X
Q= gh [
Design Sources (1)
@ fifo [
+ Constraints [ 1]
=I-{= Simulation Sources (1]
=hI= sim_1 (1)

L@ dut-fifo (fo)

Press run simulation, and make sure it is able to run for long enough.

Behavioral Simulation

Td Console

=i
=

oy
=

Qi &=

data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match
data match

<

Functional - sm_1 - fifo_tb

relaunch sim: Time (s): cpu = 00:00:0;

>

v

4% Scope | £y Sources 5 Tel Console

The testbench will run the asynchronous fifo using three different frequencies on both the
input and output clocks. It will check that the output matches the expected result.

5 Untitled 1 %

-( > <




Appendix G

Context table initial value generation functions in C#(.NET). Including overview of resid-
ual coding syntax element initvals for all initTypes.

1 // Binary initial value generation for HEVC CABAC contexzt modeling.

2 void initTable_file_generation()

3 {

4 // Input file containing initvalues copied from the HEVC standard document.

5 // Should contain initvalues for initType 0, 1 and 2.

6 // Each line should contain an initvalue on each line, starting with

7 // every initvalue from initType O, then imeadiatly followed by every initvalue

8 // from initType 1, and finaly then every initvalue from initType2.

9 StreamWriter input = initializeReadFile("initinput.txt");

10

11 // Output file containing Binary(1/0 ASCII chars) formated initvalues for any value of sliceQPY and
— wnitType.

12 StreamWriter Output = initializeWriteFile("initOutput.txt");

13

14 Int32 initValue, slopeldx, intersecIdx, m, n, preCtxState, valMPS, pStateldx;

15

16 try

17 {

18 for (int SliceQPY = 0; SliceQPY < 52; SliceQPY++)

19 {

20

21 while (!input.EndOfStream)

22 {

23 initValue = int.Parse(input.ReadLine());

24 slopeldx = initValue >> 4;

25 intersecldx = initValue & 15;

26 m = (slopeldx * 5) - 45;

27 n = (intersecIdx << 3) - 16;

28 preCtxState = Clip3(1, 126, ((m * Clip3(0, 51, SliceQPY)) >> 4) + n);

29 valMPS = (preCtxState <= 63) 7 0 : 1;

30 pStateldx = (valMPS > 0) 7 (preCtxState - 64) : (63 - preCtxState);

31

32 // Binary(1/0 ASCII chars) formated output

33 Output.WriteLine(String.Format ("{0:X}", valMPS) +

34 Convert.ToString(pStateldx, 2).PadLeft(6, '0'));

35 }

36 input.DiscardBufferedData() ;

37 input.BaseStream.Seek(0, System.I0.SeekOrigin.Begin);

38 }

39 }

40 catch (Exception ex)

41 {

42 MessageBox.Show(ex.ToString());

43 }

44 Output.Close();

45 input.Close();

46}

47

48  int Clip3(int x, int y, int z)

49 {

50 if (z < x) return x;

51 else if (z > y) return y;

52 else return z;

53  }

54

55

56

57

58

59

60

61

62

63

64



110
111
112
113
114
115
116
117
118
119
120

// Initialize write file to current folder.
StreamWriter initializeWriteFile(string filename)

{

}

try
{
FileStream fs;
StreamWriter file;
string startUpPath;
string currentLogFileName;
string logfolder;
currentLogFileName = string.Format(filename) ;
startUpPath = Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().Location) ;
logfolder = Path.Combine(startUpPath, currentLogFileName) ;
File.Delete(logfolder);
fs = File.Create(logfolder);
file = new StreamWriter(fs);
return file;

}
catch (IOException)
{
MessageBox.Show("Unable to access: " + filename);
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString());
}

return null;

// Initialize read file to current folder.
StreamReader initializeReadFile(string filename)

{

try
{
FileStream fs;
StreamReader file;
string startUpPath;
string currentLogFileName;
string logfolder;
currentLogFileName = string.Format(filename) ;
startUpPath = Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().Location);
logfolder = Path.Combine(startUpPath, currentLogFileName) ;
fs = File.OpenRead(logfolder);
file = new StreamReader(fs);
return file;

}
catch (IOException)
{
MessageBox.Show("Unable to access: " + filename);
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString());
}

return null;



mitType
0 1 2
syntax element ctxTable | ctxTable index | initValue | Index | ctxTable index | initValue | Index | ctxTable index | initValue | Index
Tast_sig_coefl_x_prefix 9-26 0 110 0 18 125 20 [36 125 240
Tast_sig_coofl_x_prefix 1 110 1 10 110 1|37 110 211
Tast_sig_cocfl_x_prefix 2 124 2 20 91 22|38 124 242
Tast_sig_coofl_x_prefix 3 3 21 110 23 |30 110
Tast_sig_cocflx_prefix 1 1 2 95 24 [40 95
Tast_sig_coofl_x_prefix 5 153 5 23 70 125 |41 91
Tast_sig_coeflx_prefix 6 125 [§ 21 125 26 |42 125
Tast_sig_coefl_x_prefix 7 7 25 111 12713 111
Tast_sig_coeflx_prefix 8 B 26 110 28 |4 111
Tast_sig_coefl_x_prefix 9 9 7 78 29 |5
Tast_sig_coefl_x_prefix 10 10 B 110 30|46
Tast_sig_coefl_x_prefix 1 11 20 111 BT [47
Tast_sig_coefl_x_prefix 12 12 30 111 18
Tast_sig_coefl_x_prefix 13 13 31 95 1
Tast_sig_coeflx_prefix 14 14 32 91 50
Tast_sig_coefl_x_prefix 15 15 33 108 51
Tast_sig_coellx_prefix 16 16 34 123 52
Tast_sig_coelly 17 17 35 108 53
Tast_sig_coefly_prefix 0 18 18 125 36
Tast_sig_coefl_y_prefix 1 19 10 110 37
Tast_sig_coefly_prefix 2 20 20 91 38
Tast_sig_coefl_y_prefix 3 21 21 110 30
Tast_sig_coefly_prefix 1 2 2 95 10
Tast_sig_coefl_y_prefix 5 23 23 70 i
Tast_sig_coefly_prefix 6 21 2 125 2 125
Tast_sig_coefl_y_prefix 7 25 25 111 3 111
Tast_sig_coefly_prefix B 26 26 110 1 111
Tast_sig_coefl_y_prefix 9 7 7 78 5 70
Tast_sig_coefly_prefix 10 28 110 16 125
Tast_sig_coefl_y_prefix 11 29 111 7 126
Tast_sig_coefly_prefix 12 30 111 B 111
Tast_sig_coefl_y_prefix 13 31 95 514 111
Tast_sig_coefly_prefix 11 32 91 152 |50 79
Tast_sig_coefl_y_prefix 15 33 108 153 108
Tast_sig_coefly_prefix 16 31 123 154 52 123
Tast_sig_coefl_y_prefix 17 35 108 155 |53 93
coded_sub_block flag| 0 36 1 121 156 21
coded_sub_block flag[ ][ 1 37 5 140 57|90 110
coded_sub block flag| 2 38 g 61 158 61
coded_sub_block fag[ ][ 3 30 7 151 15 151
Sig_cocfl flag) 0 10 12 155 160 170
sig_cocll_flag| 1 il 13 151 161 151
Sig_cocll flag 2 2 i 139 162 139
sig_cocll_flag| 3 3 5 153 163 153
Sig_cochl flag 1 1 16 139 164 139
sig_cocll_flag| 5 5 a7 123 165 123
Sig_cochl flag [§ 16 18 123 166 123
el flag 7 7 19 63 167 63
Cocll flag B 8 50 153 168 124
oefl flag 0 1 51 166 160 166
Coell flag 10 50 52 183 170 183
el flag 1 51 53 140 171 110
oeff flag B 52 51 136 172 136
el flag 13 52 55 153 173 153
el flag 0] 51 56 151 171 154
el flag 15 55 57 166 175 166
el flag 16 56 58 183 176__| 100 183
coefl flag 17 57 50 140 177|101 110
oeff flag I8 58 G0 136 178|102 136
coell flag i 59 153 103 153
Sig_cocll flag 20 60 151 101 154
sig_cocll_flag| 21 61 63 166 105 166
ool Tlag 2 62 61 183 106 183
coell flag 23 63 65 140 107 110
ool Tlag, 21 61 6 136 108 136
coell flag 2 65 67 153 109 153
ool Tlag, 26 6 [ 151 110 151
el flag 27 67 69 170 111 170
oeff flag 28 [ 70 153 12 153
oeff flag 20 69 1 123 113 138
oeff flag 30 70 72 123 114 138
oeff flag 31 1 73 107 115 122
Cocff flag 3 ) 7 121 116 121
oeff flag 33 73 75 107 117 122
Coclt flag 31 i 76 121 118 121
oeff flag 35 75 i 167 119 167
Coclf flag 36 76 [ 151 120 151
sig_cocll_flag| 37 77 70 183 121 83
Sig_cocll flag 38 7S 50 110 122 110
oeff flag 30 70 31 51 123 151
Sig_cocll flag 10 30 82 183 121 183
oeff flag 11 31 33 40 125 110
Sig_cocll_flag 126 82 120 110 13 110
sig_cocll_flag] 127 33 130 140 131 110
cocf_abs level_greater] flag] 0 81 21 151 18 151
coell_abs level_greater]_flag| 1 S % 196 ) 196
cocll_abs level_greater] flag| 2 6 26 196 50 167
coefl_abs_level_greater]_flag| 3 37 27 167 51 167
cocff_abs_level_greater] flag| 1 38 B 151 52 151
coefl_abs_levelgreater]_flag| 5 El 29 52 53 152
cocff_abs_level_greater] _flag| 6 90 30 167 51 167 330
coefl_abs level greater]_flag| 7 91 31 182 55 182 331
cocff_abs_level_greater] _flag| 8 92 32 182 56 182
coefl_abs_level greater]_flag| 0 93 33 131 57 131
cocff_abs_level_greater] _flag| 10 91 31 119 58 119
coell_abs_level_greater_flag| 11 9% 35 136 50 136
cocff_abs_level_greater]_flag| 5] 96 36 153 60 153
coefl_abs_levelgreater]_flag| 13 97 37 121 61 121
cocff_abs_level_greater] flag| 11 9% 38 136 62 136
coefl_abs level greater_flag| 15 99 39 137 63 122
cocff_abs_level_greater]_flag| 16 100 |10 160 61 169
coefl_abs level_greater_flag| 7 01 |41 104 65 208
cocff_abs_level_greater] _flag| 18 102 7] 166 6 166
coefl_abs_level greater_flag| i 03|13 167 67 167
cocff_abs_level_greater] flag| 20 101 11 151 [ 151
coefl_abs_level_greater_flag| 21 05|45 167 69 152
cocff_abs_level_greater] flag| 2 106 16 137 70 167
coefl_abs level greater_flag| 23 07|47 182 71 182
cocff_abs_level_greater2_flag| 0 08 |6 107 B 107
coefl_abs level_greater2_flag| 1 09 |7 167 13 167
cocff_abs_level_greater2_flag| 2 10 |8 91 11 91
coefl_abs level_greater2_flag| 3 EE 122 15 107
cocff_abs_level_greater2_flag| 1 2|10 107 16 107
coefl_abs level_greater2_flag 5 3 |1 167 17 167
transform_skip_flag] ][] 0 0 |1 151 2 139
transform_skip_fag| ][ ][ 1 ] transform_skip fAag[ ][ ][ 2] 3 5[4 154 5 139
explicitrdpem flag] ][ ][0 16 [0 139 1 139
explicitrdpem_flag[ [ ][ 1] explicit_rdpem fag[ ][] 2] 7|2 139 3 139
explicitrdpem_dir_flag[ ][]0 ] 8|0 139 1 139 358
explicitrdpem_dir_fag[ ][ ][ 1 Jexplicitrdpem_dir_fag[ ][][ 2] |2 139 3 139 350




Appendix H

The table based binarisation of the coeff_abs_level remaining was first verified using an
excel implementation. The excel sheets shows the binarization of ALRem for a given

value of k and Z.

A B C D F G

1 K N_min N_max Prefix bins Suffix bins Prefix length Suffix length

2 2 0 3 0]- 1 2
3|z 4 7 10|- 2 2
4 44 8 11 110|- 3 2
5 12 15 1110|- 4 2
6 16 23 11110(- 5 3
7 24 39 111110(- 6 4
8 40 71 1111110{00100 7 5
9 72 135 11111110|- 8 6
10 136 263 111111110|- 9 7
11 264 519 1111111110 10 8
12 520 1031 11111111110(- 11 9
13 1032 2055 111111111110|- 12 10
14 2056 4103 1111111111110(- 13 11
15 4104 8199 11111111111110(- 14 12
16 8200 16391 111111111111110(- 15 13
17 16392 32775 1111111111111110|- 16 14
18 32776 65543 11111111111111110- 17 15
19 65544 131079 111111111111111110- 18 16
20 131080 262151 1111111111111111110(- 19 17
21 262152 524295 11111111111111111110- 20 18
22 524296 1048583 111111111111111111110(- 21 19

The interactive excel sheet(CoeffAbsLevelRemaining.xlsm) is included in the delivery
folder.

Note that due to the use of an extended DECTOBIN function(vDecimalToBinary), you
might need to enable content to use the excel sheet. Because the vDecimalToBinary
function only supports output of 16 or less binary symbols, Binarization of suffixes longer
than 16-bits will not work properly.



Appendix |

This Appendix shows how a simple demonstration of Software CABAC encoding/decoding
using the C# software model. Relevant files is included in the delivery folder.

Navigate to the ”SW Encoder and Decoder demonstration” folder and open “TestFile.txt”
and the HEVC_CABAC Verification_Tool as seen below.

View Goto Tools Project Preferences Help

111111111111 HEVC CABAC Verification Toel (SW ENCODER/DECODER ONLY)
111111111111

4 1munnun _ » »
FFETTEEEERER i Type Original Datalength Original index MPS pStateldc
111111111111 B 12 D0s22:1:007
TTETT I 111111111111 oosex- 1022
111111111111 Load Oiginal (111111111111
111111111111 00825 1: 014

111111111111 SlicsQPY 111111111111 oo oo

Tl 111111111111 s i
ot Cliegefss (111111111111 00550 1635
= 111111111111 Bgzgﬁ : B;g

111111111111 00534 1: 030
ERRRRRRRRRR prgifon

Share View |:| 00936 : 1: 038
Reset bl

00937: 1: 036

<« CABACFiles » SW Encoder and Decoder demonstration LARRRRRRRRRRI 00938 : 1: 014

A Rame - . T 003:0 1021

S Quick access 111111111111 ggm } ggg
9 Deskiop B ettt w49 111111111111 e 10
& Downloads g Dcederputot . 111111111111 Dhate 1037

B DecoderOutputixt
=2 00346 : 1: 029
| Documents [5] HEVC_CABAC_Verification_Tool.exe LARRRRRRRRRY 00947 - 1: 022
00348 1: 038

(] Pictures 2 HEVC_CABAC Verification_Tool.exe.config 040} 0345 1. 038
lepaulse Bl HEVC_CABAC Verification_Tool pdb 040 0sc0. 1: 036
Googe Diive 5 inputs 020 00%es 1038
GitHub MPSldTable.tet 040 0% 1038
B outputtt 040 00955 : 1: 036

7943592mvht = 0056 - 1: 014
B pStateldiTable bt 04 00557 1: 006
rangeTablLPS.bt 049 gggg; ‘D Bﬁ;
& Google Drive B TestFilent o o0%0: 1:015
[ OneDrive W trarlc Pt . 00362 1: 000
8 transldkMPS.et 040 00363 : 1: 000

fife

[ ThisPC
[ Desktop

The ”TestFile.txt” contains the encoder input. Each line should contain a number of 70”s
and 71”7 equal or longer than in the Original DatalLength TextBox. To change the encoder
input: 1 edit “TestFile.txt” 2 Press the Load Original button.

File Edit Selection Find View Goto JTools Project Preferences  Help

TestFile.txt
HEVC CABAC Vernfication Tool (SW ENCODER/DECODER QOMLY)

init Type: Original Datalength  Orginal
NE 111111000000
2 | oo oona§/111111000000
e 111111000000
[] Bypass 111111000000
[JfstBtFizg 111111000000
111111000000
111111000000
Decode 111111000000
ResetThl 111111000000
111111000000
111111000000
111111000000
111111000000
111111000000

o8]

ContextIndex
Encode

||




It is now possible to encode and decode. 1 Check the firstBitFlag checkbox(important).
This will make sure the first bit is skipped in PutBit, and is required for the decoder to
work 2 Press the Encode button. 3 Press the Decode button.

111111000000
111111000000
111111000000
111111000000
111111000000
111111000000
111111000000
111111000000
111111000000

111111000000
111111000000
111111000000
111111000000

The context index used can be changed by editing initType, SliceQPY and Context Index.
But it should be the same for both encoding and decoding.



Compression performance is heavily reliant on input data, as well as the initial value of

the probability model at the selected context index.

File Edit Selection Find

111
111111111111
111111111111
111111111111
111111111111
111111111111
111111111111
111111111111
111111111111
111111111111

View Goto Tools Project Preferences Help

HEVC CABAC Verification Tool (SW ENCODER/DECODER ONLY)

Onginal Datalength  Onginal

|2

Load Original
SliceQPY

L] Bipase

first Bit Fl
Contextindex o =

Encode
Decode

Resst Thl

|

Encoded Here

DecoderOutput

index MPS pStatelds

111111111111
11111111111
111111111111
11111111111
111111111111
111111111111
11111111111
111111111111
11111111111
111111111111
11111111111
111111111111
111111111111
11111111111

000000000000
000000111000
011

111111111111
11111111111
11111111111
11111111111
11111111111
111111111111
11111111111
111111111111
11111111111
11111111111
11111111111
11111111111
111111111111
111111

08188 1:
08189 1:
08150 - 1 -
08191 :1:
08192:1:
08193 - 1:
08194 - 1:
08135 1 :
08196
08197 :1:017
08198 : 1 :
08199
08200 1:

~

It is possible to switch to bypass coding by checking the Bypass checkbox.

TestFile.brd

111111111111
11 1]

111111111111
111111111111
111111111111
111111111111

File Edit Selection Find View

Goto  Tools

Project  Preferences  Help

HEVC CABAC Verification Tool (SW ENCODER/DECODER OMLY)

Original Datalength Crigingl

2 | |12
Load Original

SliceQPY
Bypass

[ firstBitFlag
ContextIndex
Encode
| e

Encoded Here

DecoderOutput

111111111111
11111111111
11111111111
111111111111
111111111111
111111111111
111111111111
111111111111
111111111111
11111111111
11111111111
111111111111
111111111111
111111111111

111111101111
111111111111
11111111111
11111111111
111111111111
11111111111
11111111111
11111111111
11111111111
111111111111
11111111111
11111111111
111111111111
111111111111
111111111

111111111111
111111111111
11111111111
11111111111
111111111111
111111111111
111111111111
111111111111
111111111111
111111111111
11111111111
11111111111
111111111111
111111111111
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