
Design and analysis of a High
Efficiency Video Coding(H.265)

compliant Context-Adaptive Binary
Arithmetic Coding Architecture

Lars Erik Songe Paulsen

04/08/2017

Master Thesis
Department of Electronics and Telecommunications

Norwegian University of Science and Technology

Supervisor 1: Professor Kjetil Svarstad
Supervisor 2: Milica Orlandic

Preface

After the introduction of the new High Efficiency Video Coding(H.265), the standard
has been subject to significant academic research. A major evolution in this revision of
the video coding standard is the upgraded entropy coding scheme. Because of the serial
nature of this algorithm, designing an efficient implementation is vital for high throughput
encoding. This formed the motivation for this project, where a HEVC CABAC encoder
is designed and analyzed. This Master’s thesis was written for readers with knowledge
of both software and hardware design, preferably with prior knowledge of video coding
standards. It was completed in cooperation with the Department of Electronic Systems
at the Norwegian University of Science and Technology, during the autumn semester of
2017.

Trondheim, 04/08/2017

Lars Erik Songe Paulsen

2

Acknowledgment

The amount of progress achieved in this project would not have been possible without
the countless consultations I have had with Milica Orlandic. Her input and knowledge
of the HEVC standard has been vital to my understanding of the subject. For this I am
very grateful. I would also like to thank Kjetil Svarstad for his invaluable guidance he
has given me, regarding both hardware theory and the Hardware Description Languages.

L.E.S.P.

3

Summary and Conclusion

The Context-Adaptive Binary Arithmetic Coding(CABAC) used in High Efficiency Video
Coding(HEVC/H.265) is a near optimal entropy coding method. As a consequence of
this coding efficiency, CABAC implementation is a complicated and highly serialized
algorithm. With the CABAC becoming a bottleneck in encoder and decoder performance,
a major innovation has taken place in the binarization scheme of the transform-coefficient
level values. HEVC introduces an adaptive binarization scheme that allows more data
to be encoded using a high throughput bypass mode. This adaptive binarization scheme
utilizes three different coding methods, Truncated Unary(TrU), k-th order Truncated
Rice(TRk) and k-th order Exp-Golomb(EGk). By exploiting the properties of the video-
coding data structure, as well as the properties each of these coding methods hold, this
binarization scheme is able to achieve a near optimal code.

Thorough analysis of the binarization scheme has been performed, with a main focus on
finding an efficient hardware implementation. A major challenge was finding an efficient
way of coding the remaining absolute transform-coefficient level(ALRem). ALRem is
coded using an truncation of TRk and EGk, with an adaptive level(k). A finite state
machine approach was found, that proved to be a very efficient at coding the absolute
remaining level. This approach was implemented in hardware.

The Context Index Calculator, that form an integral part of the HEVC CABAC
system was not implemented. When this module is designed, it is proposed to combine
the Binarizer and Context Index Calculator. This is due to the large amount of shared
data dependencies.

A simplified version of an actual Context-Adaptive Binary Arithmetic Coding encoder
architecture is implemented. It performs CABAC encoding as specified in by the HEVC
standard, but is limited to the encoding of a subset of the transform-coefficient level data.
Verifying the correctness of this hardware encoder required the development of a software
model. This software encoder was expanded to also include a decoder, which allowed for
additional functional verification.

Because of the inconsistent throughput of the encoder modules, an asynchronous fifo
was developed to simplify data flow, and improve performance. Due to the unfinished
state of both the binarizer and context index calculator, the completed system was not
implemented.

4

Contents

Preface 2

Acknowledgment 3

Summary and Conclusion 4

1 Introduction 10
1.1 Background . 10
1.2 Objectives . 11
1.3 Limitations . 11
1.4 Approach . 12
1.5 Features and Contributions . 12
1.6 Structure of the Report . 13

2 Entropy and Arithmetic Coding 14
2.1 Shannon Entropy . 15
2.2 Entropy for binary strings . 16
2.3 Arithmetic Coding . 17

3 HEVC System and Data Structure 19
3.1 Syntax Elements . 20
3.2 CABAC Encoding . 21
3.3 CABAC Decoding . 22

4 Binarization 23
4.1 Binarization Processes . 23
4.2 Unary, Truncated Unary (TrU) Fixed-Length (FL) 23
4.3 Truncated Rice (TRk) . 24
4.4 Exp-Golomb . 24
4.5 Scan Direction . 25
4.6 Transform-coefficient level data . 26
4.7 Coding of First Non Zero Element Coordinate 27
4.8 Coding of Absolute Level . 28
4.9 Coding of Sign . 33
4.10 Grouping of Bins . 33
4.11 Complete Example . 34

5 Context Modeling 35
5.1 sig coeff flag . 35
5.2 sig coeff greater1 flag and sig coeff greater2 flag 35
5.3 Probability model . 36
5.4 Initialization . 36

6 HEVC CABAC Algorithm 37
6.1 Overview . 37
6.2 Variable Initialization . 37
6.3 Encoding a Decision . 38
6.4 Renormalization . 39

5

6.5 Writing to Bitstream . 40
6.6 WriteBits . 40
6.7 read bits . 40
6.8 Decoding a Decision . 41

7 Software Model 42
7.1 Binarization and Context Index Calculation 43
7.2 Encoder and Decoder . 43
7.3 Interfacing With TestBenches . 44

8 Hardware Implementation 45
8.1 Modules . 45
8.2 Parameters . 45
8.3 Byte Packing and Alignment . 45
8.4 Binarizer Implementation . 46

8.4.1 Syntax Frames . 46
8.4.2 last sig coeff . 46
8.4.3 sig coeff flag . 47
8.4.4 coeff abs level greater1 flag . 48
8.4.5 coeff abs level greater2 flag . 49
8.4.6 coeff abs level remaining . 50
8.4.7 coeff abs level sign flag . 53

8.5 Context Index Calculator . 54
8.6 CABAC Encoder . 55

8.6.1 Interface . 57
8.6.2 Parameters . 58
8.6.3 Transition Tables . 58
8.6.4 Context Table . 58
8.6.5 Context Handling . 59
8.6.6 BitsOutstanding Loop . 60
8.6.7 Termination . 60
8.6.8 Register precision . 60
8.6.9 Utilization . 61
8.6.10 Frequency . 62
8.6.11 Performance . 63

8.7 Fifo Buffer . 64

9 Results and Discussion 65
9.1 Binarizer and Context Index Calculator . 65
9.2 CABAC Hardware Encoder . 65
9.3 Achieving Correctness . 65
9.4 Future Work . 65

6

List of Figures

1 Simple Unary coding based compression of byte data. 14
2 Encoding of a single symbol. 17
3 Encoding of a single symbol. 17
4 Sequential Encoding of Three Symbols . 18
5 AVC vs HEVC Picture Partitioning . 19
6 Syntax Element Bitrate Distribution . 20
7 CABAC encoding process for a 4× 4 Transform Block. 21
8 CABAC decoding process for a 4× 4 Transform Block. 22
9 Scan direction for Diagonal scan. 25
10 Scan direction for vertical and horizontal scans. 25
11 Residual data in the Transform Block to be Binarized 26
12 Binarization of last sig coeff x/y prefix in 4× 4 Transform Blocks. 27
13 Binarization of Z using the SIG, ALG1, ALG2 and ALRem. 29
14 Binarization of Z using the SIG, ALG1 and ALRem. 30
15 Binarization of Z using the SIG and ALRem. 31
16 ALRem code length for each value of the adaptive variable k. 32
17 Binarization of SIGN. 33
18 Complete Example Binarization of a 4× 4 Transform Block. 34
19 SIG context assignment for 4× 4 Transform Blocks.[9] 35
20 FSM based probability estimation in CABAC. 36
21 Encoding of a binary decision. 38
22 Renormalization during encoding of a binary decision. 39
23 PutBit procedure . 40
24 Decoding of a binary decision. 41
25 Software model user interface. 42
26 Hardware and Software Interfacing . 44
27 Planed Hardware Modules . 45
28 Binarization of sig coeff flag . 47
29 Binarization of coeff abs level greater1 flag 48
30 Binarization of coeff abs level greater2 flag 49
31 Binarization of coeff abs level sign flag . 53
32 Hardware Encoder State Machine Diagram 55
33 Asynchronous fifo. 64

7

List of Tables

1 Entropy of Symbols . 15
2 Entropy of Binary Strings . 16
3 Unary, Truncated Unary and Fixed Length code. 23
4 Truncated Rice(TRk) Code . 24
5 Reverse order Exp-Golomb(EGk) code. 24
6 Selection of scan direction in 4× 4 Transform Blocks. 25
7 Syntax Elements detailed in this project. 26
8 Initial values for encoding and decoding. 37
9 Alternative representation of ALRem . 50
10 Alternative representation of ALRem(calculation) 51
11 Example Binarization of ALRem for Z = 8 and k = 0 51
12 Example Binarization of ALRem for Z = 8 and k = 2 51
13 Hardware Encoder State Sequence . 56
14 Hardware Encoder State Sequance With Redundancies. 56
15 Pipelined Hardware Encoder State Sequence. 56
16 Encoder ports. 57
17 Hardware Encoder Parameters. 58
18 Syntax Elements supported in the current context table. 59
19 Hardware Encoder Context Table Structure. 59
20 Range variable precision requirements. 60
21 Synthesis results . 61
22 Synthesis results . 61
23 CABAC Encoder maximum frequency for a few select parameters. 62
24 Performance for bypass encoding. 63
25 Performance for regular encoding. 63

8

Appendixes:

Appendix A: VHDL Binarizer

Appendix B: VHDL Encoder

Appendix C: Verilog FIFO

Appendix D: C# Encoder

Appendix E: C# Decoder

Appendix F: System Setup

Appendix G: Context Table

Appendix H: Alternative Binarization of coeff abs level remaining

Appendix I: Software Encoder and Decoder demonstration

9

1 Introduction

1.1 Background

Due to the ever increasing demand for higher quality video content, such as 4k streaming
and Virtual Reality 3D video. The Joint Collaborative Team on Video Coding(JCT-VC)
set out to improve upon the previous coding standard, H.264/MPEG-4 Advanced Video
Coding(AVC). The result of which is the H265/MPEG-H High Efficiency Video Cod-
ing(HEVC) standard. The preliminary performance goal for HEVC was a 50% reduction
in bit rate compared to AVC at the same subjectively perceived video quality.[5].

In practical terms, HEVC can be viewed as an extension of the concepts utilized in
AVC. Although the concepts are very similar, many improvements and optimizations have
been explored since the AVC standard was first completed in 2003. Introducing a new
standard also allowed for a ground-up redesign of the data structures, that in many ways,
set the baseline for potential performance.

HEVC seems to have lived up to its performance goal, as documented by Netflix
in its large-scale study on video codecs published in 2016.[7] Using one of the leading
open-source HEVC encoders, x265, and comparing it with the leading open-source AVC
encoders, x264, as well as the VP9 reference encoder, libvpx. Netflix showed with their
advanced video multimethod assessment fusion video quality measurement tool, that x265
offered bit rate savings ranging from 35.4% to 53.3% compared to x264, and from 17.8%
to 21.8% when compared to libvpx, at the identical delivered video quality. Even still, 41/2
years after the standard was ratified, adoption rate is still slow. Despite the impressive
performance displayed by HEVC, the competition in the royalty free and open-source
VP9 has shown to be quite capable. Forcing content providers to consider if HEVC is
worth the cost.

HEVC is designed and documented with a focus on a software implementation. The
standard document is meant to be understood alongside the HEVC Test Model(HM)
written in C++. This makes designing for hardware challenging. As of 2017, hardware
implementations are still sparse, with few commercial implementations available[13]. Pub-
licly available hardware implementations of the HEVC CABAC entropy coding scheme is
still absent.

HEVC uses the context-adaptive binary arithmetic coding(CABAC) as its single en-
tropy coding method. While AVC also supported the lower-complexity context-adaptive
variable-length coding(CAVLC). HEVC CABAC was redesigned to offer higher through-
put then its AVC predecessor, while still maintaining a higher compression ratio. This
was achieved, in part, by redesigning the binarization scheme for the transform-coefficient
level values. This has allowed for an 8× reduction in context coded bins(regular coded
bins).[12] Which in turn allow for for more bins to be coded using the higher throughput
bypass coding method.

The HEVC CABAC entropy coding scheme represents the state of the art lossless com-
pression technology, and has in turn been the focus of intense academic research. CABAC
delivers compression close to the theoretical limit(entropy). Because of the complexity of
the algorithm, optimizations is still being researched. With a main focus on the coding
of the transform-coefficient residual data, that contribute to the largest portion of the
compressed video data.[6]

10

1.2 Objectives

This project aims to:

• Research the HEVC entropy coding scheme. With a main focus on the changes
made to the binarization of the transform-coefficient residual data.

• Implement a HEVC compliant CABAC encoder architecture in VHDL, restricted
to these residual coding syntax elements.

• Test and characterize the performance of the implemented CABAC encoder mod-
ules.

1.3 Limitations

This master thesis did not benefit from a prior semester project, which would have made
the extensive scope of this project more manageable. This could also have given a better
overview of the challenges involved in developing a HEVC CABAC module, possibly
resulting in a smarter approach.

One of the best resources for understanding the HEVC entropy coding scheme, is the
open access article on Entropy coding in HEVC from MIT[11]. It does a very good job
of introduction the principles utilized in HEVC, but it does not define the data structure
and interface needed to base correct module designs upon. Furthermore, it details many
versions of the coding scheme, leaving some ambiguity about the current revision function-
ality. Complete HEVC CABAC documentation is provided by ITU Telecommunication
Standardization Sector, in their Recommendation ITU-T H.265 standard document. This
documentation is best understood when used with the accompanying HEVC Test Model,
a C++ based software model. The standard document along with the HEVC Test Model
does cover everything, but does so in an unapologetically complicated manner. This re-
sulted in a major simplification of the first stage binarization, and an incomplete Context
Index Calculator. The remaining stages of the hardware CABAC encoder is designed as
best understood from the specification, but with some omitted or unverified features.

11

1.4 Approach

There exists a large amount of research articles related to the HEVC binarization of the
transform-coefficient residual data. These articles are very in depth, often assuming the
reader has a very good understanding of the subject. Leading to a steep learning curve.
Basic understanding of this advanced adaptive binarization scheme is best gained by the
combination of figures and clear descriptions. For this reason, a great deal of effort has
been made to document the binarization scheme using detailed figures.

A major challenge in this project was testing and verifying the correctness of the
designs. All modules comes paired with a simulation TestBench model, this allowed for
simple verification of the signaling and state machines. But for functional verification to
be achieved, the correctness of the output data had to be established. The best approach
would be to use the HEVC Test model to trace the Binarizer and encoder outputs. But
with the complexity of this Test model, now approaching 94,000 lines of code[14], this
was deemed too demanding for the limited time constraint. Instead, it was decided to
develop an independent software model. This model was expanded to include a CABAC
decoder, allowing for functional verification with a higher level of confidence. Input test
data was however constrained to randomly generated data, making analysis of the encoder
performance difficult.

1.5 Features and Contributions

A major contribution of this project is the in-depth analysis of the binarization of the
transform-coefficient level data. As well as the efficient encoding method for the co-
eff abs level remaining. The code provided serves as a reference for solving many technical
challenges when implementing a correctly sequenced binarizer.

A working regular/bypass encoding module of a HEVC compliant CABAC architecture
is written in VHDL. In addition, a software version of both the encoding and decoding is
provided.

12

1.6 Structure of the Report

1 Introduction

Chapter 1 gives an introduction to the project background, objectives and approach.

2 Entropy and Arithmetic Coding

Chapter 2 gives a short introduction to some of the theoretical aspects behind the CABAC
video compression system.

3 HEVC System and Data Structure:

Chapter 3 gives an overview of the High Efficiency Video Coding standard.

4 Binarization:

Chapter 4 documents the adaptive binarization of the transform-coefficient level data.

5 Context Modeling:

Chapter 5 gives an introduction to Context Index Calculation and Context modeling in
HEVC CABAC.

6 HEVC CABAC Algorithm:

Chapter 6 documents the CABAC algorithm, as it is specified in the HEVC standard
document.

7 Software Model:

Chapter 7 details the software model used to verify the hardware encoder.

8 Hardware Implementation:

Chapter 8 documents the hardware architectures implemented in this project

9 Results and Discussion:

Chapter 9 discusses the results of the project, as well as possible future work.

13

2 Entropy and Arithmetic Coding

A foundation for intuitive understanding of the principles involved in data compression
is sometimes best achieved through practical examples. Consider being given the task of
reducing the page count for a normal English text. With the condition that all substantive
information is preserved, and that the recipient is able to rebuild the whole original text
with only the knowledge of the English language and writing system. A straightforward
first approach could be to eliminate all redundant spacings. Then continue by removing
any unambiguous vowels. Application of these two simple methods results in a substantial
page count reduction, while still containing the same amount of information. The com-
pressed text now carry substantially less redundancy. In other words, the compressed text
now contain more information per character when compared to the original text. The key
to achieving this compression lies in the knowledge of how the English language works,
as this compression system would not work for a completely random text pattern. This
important principle is applied when designing a compression scheme for video coding.
Where predictability of the data leads to improvements in data compression.

A very simple implementation of an entropy coder Fig. 26 shows how compression of bi-
nary information can be achieved. Note how this coder is only efficient at low byte values.

00000011

00000011

00000000

00000001

ENC

00000011

00000011

00000000

00000001

DEC
1 1 1 0 1 1 1 0 0 1 0

Figure 1: Simple Unary coding based compression of byte data.

This simple unary coder is unable to produce a representation that approaches the
theoretical optimal compression ratio(entropy). More advanced entropy coding methods,
such as Context-Adaptive Binary Arithmetic Coding, are however when given sufficiently
sized information sets able to produce a representation that is arbitrarily close to entropy.

14

2.1 Shannon Entropy

While generally, entropy is used to refer to the disorder or uncertainty of a system. Shan-
non entropy provides a mathematical model for the best possible compression of infor-
mation. When entropy is discussed in the realm of information theory, it is most often
referring to Shannon entropy. Where a shannon(sh) is a unit of entropy, which can also
be denoted as a bit. One of the most important principles that are applied in complex
entropy coders, is the fact that entropy is skewed by the probability for each distinct
element in the information set to occur. Generally, log2(n) bits are needed to represent a
integer variables of n values, given that n is a power of 2. If these variables are equally
probable, the entropy is said to be equal to the number of bits. If, however, some vari-
ables reliably occur more often in the information set, entropy goes down. This holds
even if every possible variable in the information set is present. Understanding this some-
what unintuitive concept requires delving deeper into the theory that Shannon presented.
Shannon defined entropy H of a discrete random variable X in the range {x1, . . . , xn} and
with a accompanying probability mass function P (X) as:

H(X) =
n∑

i=1

P(xi) I(xi) = −
n∑

i=1

P(xi) log2 P(xi) (1)

Eq. 1 shows how entropy is calculated using log2, resulting in a unit of entropy that
can be referred to as bits. If log10 where used the unit of entropy would denote how many
decimal symbols that is required to distinguish the variable within the range. Because
the number of bits for any binary number is an integer. The actual number of bits for
any given entropy is equal to dH(X)e.

Table 1 shows how the theoretical entropy of symbols can be calculated if the proba-
bility is modeled by observing the Symbol string.

Symbol Probability
Symbol string A B C D E H per symbol
AAABCC 1/2 1/3 1/6 0 0 1.459
ABCABC 1/3 1/3 1/3 0 0 1.585
AAAAAA 3/3 0 0 0 0 0
ABCD 1/4 1/4 1/4 1/4 0 2
AABB 1/2 1/2 0 0 0 1
ABCDE 1/5 1/5 1/5 1/5 1/5 2.322

Table 1: Entropy calculated assuming the distribution in the symbol string is representative of
the actuall probability distribution.

This also illustrates how entropy calculation is relative to your model. Consider the
symbol string {AAABCC}. If you could map {AAA} → {D} an then instead transmit
{DBCC}. This would result in a reduction of entropy. Notice how for the Symbol string
{ABCD}, H per symbol is equal to 2. The logical mapping of this symbol string in
binary would be {A, B, C, D} → {00, 01, 10, 11}. Notice also how for the Symbol string
{AAAAAA}, the H is 0. In other words, entropy is zero when the outcome is certain.

15

2.2 Entropy for binary strings

All digital information is represented in what can be referred to as binary strings. This
can be seen as a simplification of the amount of symbols that needs to be modeled with a
probability distribution. Table 2 shows how probability can be calculated by the observed
bin string. And how the entropy is affected by the observed probability distribution.

Probability
Bin string 1 0 H per bin
00001111 1/2 1/2 1
00110011 1/2 1/2 1
01010101 1/2 1/2 1
11111110 7/8 1/8 0.543
00000011 1/4 3/4 0.811
11011001 5/8 3/8 0.954

Table 2: Entropy calculated assuming the distribution in the bin string is representative of the
actuall probability distribution.

This simple model works on a per bin basis, while it is easily observable that there
exists patters in the bin strings. {00001111} could be reduced down to {01} by introducing
a dictionary that maps {0000, 1111} → {0, 1}. This illustrates how patterns in the bin
string can be exploited with a better model, and how this requires the model incorporate
all elements that will occur. There exists a lot of lossless entropy coding schemes. Each
with their own strengths and weaknesses. HEVC’s Context Adaptive Binary Arithmetic
Coder was developed specifically for video encoding.

16

2.3 Arithmetic Coding

Arithmetic coding is the core of the Context-Adaptive Binary Arithmetic Coder, this en-
tropy coding scheme works by encoding information by representing it as a sub-interval
between 0 and 1. This is a different approach compared to Huffman coding, where the
input component symbols are first separated and then replaced with a code. Arithmetic
coding is what is known as a statistical coding method, meaning that the coding per-
formance is directly related to the preciseness of the statistical model used. Where the
statistical model is the probability distribution for each symbol in the symbol string.

0 0.01 0.1 0.11 1

X = {A,B,C} P (X) = {0.25, 0.25, 0.5}
Code(C)

PA = 25% PB = 25% PC = 50%

[0.1, 1.0)

Output: 1

Figure 2: Encoding of a single symbol.

0 0.001 0.01 0.011 0.1 0.101 0.11 0.111 1

X = {A,B,C} P (X) = {0.25, 0.25, 0.5}
Code(A)

PA = 25% PB = 25% PC = 50%

[0.00, 0.01)

Output: 00

Figure 3: Encoding of a single symbol.

Figures 2 and 3 show how the different symbols are encoded. Where a a larger prob-
ability percentage directly results in a shorter output code. Note that the output code is
equal to the lowest value in the sub interval, and the “0.” symbols can be discarded, as
they are inferred present for all arithmetically coded symbol strings.

17

Coding of multiple sequential symbols is achieved by recursively subdividing into the
interval of previously encoded sub intervals.

0 0.01 0.1 0.11 1

0.01 0.0101 0.011 0.0111 0.1

0.01 0.010001 0.01001 0.010011 0.0101

X = {A,B,C} P (X) = {0.25, 0.25, 0.5}
Code(BAC)

PA = 25% PB = 25% PC = 50%

PA = 25% PB = 25% PC = 50%

PA = 25% PB = 25% PC = 50%

[0.01001, 0.0101)

Output: 01001

Figure 4: Sequential encoding of three symbols, using a static probability model.

A key element for achieving high compression rates with arithmetic coding is a correct
statistical model. HEVC CABAC uses an adaptive context aware probability model.
This system works by using a specific probability model(context) for each data element
it encodes. Where this probability model is updated for each encoded symbol.

18

3 HEVC System and Data Structure

One of the bigger changes to HEVC when compared to AVC is the introduction of a more
advanced data structure. This change was motivated by the need to efficiently encode
higher resolution videos. With this change comes a new set of cryptic acronyms that are
added to the standard document vocabulary. While the implemented design covered in
this report focuses on the 4×4 Transform Blocks, understanding the parent structures is
useful.

Figure 5: HEVC allows larger areas of low complexity to be signaled more efficiently.[4]

Previous digital video coding standards uses the Macroblock structure, with a standard
of 16×16 samples. For HEVC the macroblocks has been replaced with the Coding tree
unit(CTU), allowing for larger block structures(16×16, 32×32 or 64×64). This innovation
is an important part of the coding efficiency improvements HEVC provides. Allowing for
large low-complexity areas to be signaled more efficiently. The trade-off being a relative
increase in encoding time, but with an added benefit of reduced decoding time.[8]

A naming convention frequently used in HEVC is to use ”Unit”suffix when describing
the complete pixeldata set, i.e both luma and chroma components, and its accompanying
Syntax Elements. The ”Block”suffix refers to the distinct luma/chroma components.

Pictures in HEVC is initially divided into CTUs, they are then further divided into
Coding Tree Blocks(CTB). One CTB for luma, and two for each chroma component.
CTB sizes can be 16×16, 32×32 or 64×64. Then these CTB are further divided into one
or more Coding Units(CU). Each division resulting in four smaller regions. This is why
the data structure is referred to as a quadtree. CUs are then divided into one or several
Transform Units(TU) and prediction units(PU). TUs contain the Transform Blocks of the
coefficients for spatial block transforms and quantization which is the focus of this report.
TUs and TB can be 4×4, 8×8, 16×16 or 32×32, but only binarization and coding of TBs
of size 4×4 is detailed here.

The data structure of HEVC is well though out system, that enables many of the
performance improvements from the previous standard. The complexity does however
make it a challenge to fully comprehend. A thorough understanding of the data structure
is required for implementing a complete and correct functional binarizer and context index
calculator.

19

3.1 Syntax Elements

One of the more abstract words heavily utilized in the standard is the Syntax Element.
Defined in the standard document as follows:

Syntax element: An element of data represented in the bitstream.

A better definition is not easily construed, but it is possible to look at syntax element
as an umbrella term for any property that the data in the bitstream hold. Transform
coefficient data for the Luma and Chroma components are known to contribute to the
largest amount of data in the video bitstream. This is the main motivation for focusing
on these syntax elements.

Figure 6: Bitrate distribution of Syntax Elements for varying levels of quantization in HEVC.
Where quantization can be viewed as the level of lossy compression. Data shows contribution
for encoding of all frame types.[6]

Binarized syntax elements refers to a binarized representation of the properties of the
Transform Block data. Where these properties can vary from the location of the last
non-zero element in the data set, to the actual binary value of the data.

20

3.2 CABAC Encoding

Entropy coding in HEVC is based on arithmetic coding, but utilizes a few additional stages
designed to improve video coding performance. Input to the HEVC CABAC encoder is
syntax elements, and the output is the finished compressed bitstream.

• Binarization: The first stage in the encoding is a pre-processing stage that converts
the syntax elements into a binary representation more suitable for Binary Arithmetic
Coding. Finished binarized syntax elements are commonly referred to as bins.

• Context Modeling: Selection of encoding mode for bins is performed. Bypass
coding is selected for bins where the distribution is assumed to be uniform, and
Regular is selected for bins where this assumption can not be made. Each regular
coded bins include an accompanying context index. This context index is calculated
based on what syntax element the bins belong to, as well as previously encoded bins.
Each context index is a reference to a probability model in a context table.

• Regular Encoding: This stage performs Binary Arithmetic Coding of bins using
the probability model at the given context index. The probability model at the
given context index is updated after encoding of each bin(bit).

• Bypass Encoding: Bins with uniformly distributed symbols(equal amounts of ‘1’s
and ‘0’s) uses the higher throughput bypass encoding mode. Where the coding
algorithm is simplified, due to the exclusion of probability modeling.

0

0

0

0

0

0

0

0

0

0

0

0

6

0

-1

0

0 00

1 1 0 00

0 10

1 20

0 00

1 00

0 00

1 00

0 1

1 1

1 1 0 1

Binarizer

Context
Modeler

0

1

Context
Tables

Regular
Encoder

Bypass
Encoder

Context
Model
Update

Context
Model
Read

Bitstream Storage

Figure 7: CABAC encoding process for a 4× 4 Transform Block.

21

3.3 CABAC Decoding

The decoding process works by performing the same steps as the encoder, but in reverse
order. With the most important difference being that mode selection and context index
calculation has to be performed using the previously Decoded and DeBinarized syntax
elements. This is enabled by the fact that Binary Arithmetic Coding allows decoding
from the front of the bitstream, as well as a binarization scheme designed to facilitate
this process. A notable challenge in implementing a CABAC decoder lies in this feedback
control system. A simplified software decoder is used for verifying the encoder output,
but this report does not focus on covering CABAC decoding in detail.

Bitstream StorageBypass
Decoder

Regular
Decoder

0

1

Context
Tables

Context
Model
Update

Context
Model
Read

0

1 1 0

0

1

0

1

0

1

0

1

1 1 0

De-
Binarizer

Context
Modeler

0

0

0

0

0

0

0

0

0

0

0

0

6

0

-1

0

Figure 8: CABAC decoding process for a 4× 4 Transform Block.

Note that “CABAC” sometimes refer to only the actual CABAC encoder, and other
times to the complete entropy coding system of HEVC, including the Binarizer. Bypass
encoding is not really CABAC, since it is not Context-Adaptive, but will often be included
in the term CABAC.

22

4 Binarization

The first stage in the CABAC coder is the binarization of different syntax elements. This
Binarizer process aims to truncate the input data, by exploiting certain known properties
of the data set. The biggest change in binarization in HEVC compared to the previous
standards is the binarization of the syntax elements related to the transform coefficient
level values. Some of these binarizations has been made adaptive based on previously
binarized transform coefficient level syntax elements. Allowing for more of these syntax
elements to be bypass coded. Most notably the coeff abs level remaining syntax elements.
This section covers the binarization process for a 4×4 Transform Block(TB) transform-
coefficient level data, complete with examples.

4.1 Binarization Processes

HEVC uses several different binarization processes. The process chosen is dependent on
the syntax element to be binarized, and in some cases the previous binarized syntax ele-
ment levels. With the goal of choosing the coding method best suited for the properties
of the current syntax element to be binarized. The coding methods vary in range, length
and growth, as well as the information about the code that needs to be known on both
encoder and decoder side. Code-complexity has also been taken into account. Adding
too much computational requirements for relative minor coding gains has been avoided.
This is especially true for computations where parallelization is difficult. All coding meth-
ods used in binarization of the residual coding syntax elements are covered in this chapter.

4.2 Unary, Truncated Unary (TrU) Fixed-Length (FL)

Unary, Truncated Unary and Fixed-length coding are the simplest coding methods used
in HEVC. Unary and TrU offers short initial code length with linear growth, with the
length inferred from the code. This results in a flexible code suitable for binarizing syntax
elements where most values N are small, but which may still function for larger ranges.
Fixed-Length requires the length to be known on both the encoder and decoder side. FL
is therefore inflexible, but still suitable for certain syntax elements. Syntax elements of
length 1(1-bit with value 0 or 1), is said to be FL.

N Unary(U) Truncated Unary(TrU) Fixed-Length(FL)
0 0 0 000
1 10 10 001
2 110 110 010
3 1110 1110 011
4 11110 11110 100
5 111110 111110 101
6 1111110 1111110 110
7 11111110 1111111 111

Table 3: Unary, Truncated Unary and Fixed Length code.

23

4.3 Truncated Rice (TRk)

HEVC uses the k-th order truncated Rice binarization method. TRk of 0 - 4th order is
used in the binarizing process of coeff abs level remaining, where the order depends on
the previously binarized coeff abs level remaining. TRk is similar to Unary and TrU in
that the length of the code is inferred from the code itself. The difference is that the code
is split into a prefix and a suffix part. The prefix consisting of TrU code, and the suffix is
a FL binary representation of the least significant bins. The suffix has the length k, and
the prefix is incremented every time the suffix overflows. This allows TRk to dynamically
adjust the trade-off between minimum bins length, and range. The largest value in TRk
is defined by the cMax variable.

N
k

0(cMax=3) 1(cMax=7) 2(cMax=15) 3(cMax=31) 4(cMax=63)
0 0 00 000 0000 00000
1 10 01 001 0001 00001
2 110 100 010 0010 00010
3 111 101 011 0011 00011
4 NA 1100 1000 0100 00100
5 NA 1101 1001 0101 00101
6 NA 1110 1010 0110 00110
7 NA 1111 1011 0111 00111

Table 4: Truncated Rice(TRk) code. cMax values inferred from the HEVC binarization rules
at any given order(k).

4.4 Exp-Golomb

HEVC uses k-th Exp-Golomb coding technique in reverse order. EGk of 1 - 5th order is
used in the binarization of coeff abs level remaining. This code also uses a unary prefix,
as well as a FL suffix that has the length of prefix-length + k. EGk has no inherent range
limit, as the length of the suffix is signaled with the prefix. This is an important property
as EGk is used as the final coding method of the absolute level.

N
k
1 2 3 4 5

0 00 000 0000 00000 000000
1 01 001 0001 00001 000001
2 1000 010 0010 00010 000010
3 1001 011 0011 00011 000011
4 1010 10000 0100 00100 000100
5 1011 10001 0101 00101 000101
6 110000 10010 0110 00110 000110
7 110001 10011 0111 00111 000111
8 110010 10100 100000 01000 001000

Table 5: Reverse order Exp-Golomb(EGk) code.

24

4.5 Scan Direction

Because of the properties of the residual data in the Transform block, the binarization is
affected by the order of which the data is processed. Scan directions chosen are optimal
if the coefficient levels are of increasing magnitude, in the order chosen.

Intra Prediction mode 0 to 5 6 to 14 15 to 21 22 to 30 31 to 34
Scan Direction Diagonal Vertical Diagonal Horizontal Diagonal

Table 6: Selection of scan direction in 4× 4 Transform Blocks.

Scan direction is dependent on the Intra Prediction mode. In most cases the Diagonal
scan direction seen in Fig. 19 is used. But in some cases the Vertical and Horizontal scan
directions seen in Fig. 10 is employed.

Diagonal

X

Y

0 1 2 3

0

1

2

3

(3, 3) (3, 2) (2, 3) (3, 1) (2, 2) (1, 3) (3, 0) (2, 1) (1, 2) (0, 3) (2, 0) (1, 1) (0, 2) (1, 0) (0, 1) (0, 0)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9: Scan direction for Diagonal scan.

V ertical Horizontal

Figure 10: Scan direction for vertical and horizontal scans.

The example binarization covered here uses the Diagonal scan direction. Note that
for binarization with any of the other scan directions will result in a different order of the
data, and therefore also a different binarization output.

25

4.6 Transform-coefficient level data

The Syntax elements covered in this report is the Transform-coefficient residual level data.
The residual data of a 4× 4 TB simply consists of a 4× 4 array of signed 16-bit integers.
Binary and decimal representation can be seen in Fig. 11, as well as the representation
of the data when converted to a one dimensional(16 × 1) array using the Diagonal Scan
Direction. For simplicity, the figures in this chapter utilizes the 16 × 1 decimal repre-
sentation for representing the Transform Block, but the finished binarizations are all in
binary.

X

Y

0 1 2 3

0

1

2

3

(x, y) (3, 3) (3, 2) (2, 3) (3, 1) (2, 2) (1, 3) (3, 0) (2, 1) (1, 2) (0, 3) (2, 0) (1, 1) (0, 2) (1, 0) (0, 1) (0, 0)

0000000000000000

0000000000000000

0000000000000000

0000000000000001

0000000000000000

0000000000000010

1111111111111110

0000000000000010

0000000000000011

1111111111111001

0000000000001001

0000000000000000

0000000000001011

1111111111101101

1111111111100111

0000000000100000

0

0

0

1

0

2

−2

2

3

−7

9

0

11

−19

−25

32

0 0 0 1 0 2 −2 2 3 −7 9 0 11 −19 −25 32

Figure 11: Residual data in the Transform Block to be Binarized

The sample Transform block from Figure 11 is the same for all binarizations covered
in this chapter. The Syntax Elements covered in this Section is shown in Table 7

Syntax Element Abbreviation Binarization Process Encoding
last sig coeff x prefix LAST TR Regular Regular Regular
last sig coeff y prefix LAST TR Regular Regular Regular
sig coeff flag SIG FL Regular Regular Regular
coeff abs level greater1 flag ALG1 FL Regular Regular Regular
coeff abs level greater2 flag ALG2 FL Regular Regular Regular
coeff abs level remaining ALRem TrU, TRk and Egk Bypass Bypass Bypass
coeff sign flag SIGN FL Bypass Bypass Bypass

Table 7: Syntax Elements detailed in this project.

26

4.7 Coding of First Non Zero Element Coordinate

A major evolution from AVC to HEVC was a change in how the last sig coeff and
sig coeff flag was binarized. HEVC introduced a scheme where the coordinates of the last
non-zero-element(last sig coeff) in the Transform Block is coded using Truncated Rice.
The x- and y-coordinates are split into two distinct syntax elements, last sig coeff x prefix
and last sig coeff y prefix. allowing for separate contexts for each coordinate. For TBs
larger than 4×4 a Fixed Length suffix is introduced,[9] but his will not be covered further
here.

0 0 0 1 0 2 −2 2 3 −7 9 0 11 −19 −25 32

(x, y) (3, 1)

Transform Block

1 1 1 1 0

last sig coeff x prefix last sig coeff y prefix

inferred 0

N TRk

0 0

1 10

2 110

3 111∗
*1110 for TB8×8 or larger

Figure 12: Binarization of last sig coeff x/y prefix in 4× 4 Transform Blocks.

Fig. 12 shows an example binarization of last sig coeff x prefix and last sig coeff y prefix
using the Diagonal Scan Direction. The notable challenge in implementing this binariza-
tion method lies in supporting the three different Scan Directions. For the 4×4 Transform
Block, TRk coding is of 0’th order and is therefore identical to Truncated Unary coding.

27

4.8 Coding of Absolute Level

Absolute levels is defined as the absolute value of the variables contained in the Transform
Block. The coding best described as a concatenation of truncated unary(TrK), k-th order
truncated Rice(TRk) and (k+1)-th order Exp-Golomb(EGk). Where the TrU coding is
implemented using the SIG, ALG1 and ALG2 syntax elements, and the TRk and EGk is
implemented using ALRem. Sign data is signaled using the FL coding. Or if the optional
sign bit hiding technique is used, signaling of SIGN is potentially skipped.

A useful definition for understanding how absolute level is binarized, is to define this
absolute level Z as seen in Equation 2.

Z = SIG + ALG1 + ALG2 + ALRem (2)

Where SIG, ALG1, and ALG2 all have the value of 0 or 1 when present, or is inferred
0 when not present. There are three thresholding parameters used in the binarization of
Z. Two that relates to the coding type, B0 and B1. And one that relates to the TRk and
EGk levels, k. B0 and B1 is used to separate the three coding methods and k is used to
denote the order of the TRk and EGk coding. The binarization process is made adaptive
by changing these threshold variables if certain conditions are fulfilled. These conditions
are evaluated after coding each level at the current index in the scan. The subblock is
then processed by binarizing each Z using the following threshold adaption rules:

Rules:

• Before a subblock is processed, k is set equal to 0 and B0 is set equal to 2.
• B1 is defined as B1 = 4× 2k + B0 and is updated if either k or B0 is changed.
• B0 is set equal to 1 after one occurrence of Z > 1.
• B0 is set equal to 0 after eight occurrences of Z > 0.
• k is set to min(k + 1,4) after each occurrence of Z > 3× 2k.

A simplified representation of these rules can be defined as the following:

Simplified Rules:

• Before a subblock is processed, k is set equal to 0.
• ALG2 is only signaled for the first occurrence of Z > 1.
• ALG1 is only signaled for the first eight occurrence of Z > 0.
• k is set to min(k + 1,4) after each occurrence of Z > 3× 2k.
• ALG2 is not to be signaled after eight occurrences of ALG1, if all these ALG1s

where equal to ‘0’(Z = 1).

These simplified rules can be useful for hardware implementation. As it eliminates the
somewhat costly update to B1.

28

Figure 13, 14 and 15 shows how the absolute level Z is binarized for a few selected
threshold value sets.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0 0

0 1

1 0

1 0

1 0

1 0

0 0

0 1

1 0

1 1

1 1 0

1 1 0

1 1 0

0 0 0

0 0 1

0 1 0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

B0 = 2

B0 + 1

B1 = 6

B1 + 1

215

TrU
cMax = 3

TRk
k = 0

cMax = 4

EGk
k + 1 = 1

Z SIG ALG1 ALRemALG2

Figure 13: Binarization of Z from 0 to 15 using the SIG, ALG1, ALG2 and ALRem syntax
elements. ALRem coding is distinguished with Orange for TRk and Yellow for EGk. This
shows the initial state for the adaptive binarization scheme.

29

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0 0

0 1

0 0

0 1

0 0

0 1

0 0

0 1

0 0

0 1

1 0

1 1

1 0 0 0 0

1 0 0 0 1

0

B0 = 1

B0 + 1

B1 = 9

B1 + 1

215

TrU
cMax = 2

TRk
k = 1

cMax = 8

EGk
k + 1 = 2

Z SIG ALG1 ALRem

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 14: Binarization of Z from 0 to 15 using the SIG, ALG1, and ALRem syntax ele-
ments(ALG2 absent). ALRem coding is distinguished with Orange for TRk and Yellow for
EGk. This shows the state after a first Z > 1 has occured, and before 8 total Z > 1 has
occured. Z > 3 has also occured, as shown by the fact that the adaptive variable k now equals
1.

30

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0 0

0 1

0 0

0 1

0 0

0 1

0 0

0 1

0 0 0

0 1

1 0

1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

B0 = 1

B0 + 1

B1 = 9

B1 + 1

215

TrU
cMax = 1

TRk
k = 1

cMax = 8

EGk
k + 1 = 2

Z SIG ALRem

Figure 15: Binarization of Z from 0 to 15 using the SIG, ALG1, and ALRem syntax ele-
ments(ALG2 inferred 0). ALRem coding is distinguished with Orange for TRk and Yellow for
EGk. This shows the state after a total of 8 Z > 1 has occured. Z > 3 has also occured, as
shown by the fact that the adaptive variable k now equals 1.

31

The coding efficiency of the ALRem binarization scheme is noteworthy. Figure 16
shows how it is able to change the effective region of lowest possible code length, by simply
changing the adaption variable k. Note that due to the adaption rule(k = min(k+1,4)),
this adaptive binarization scheme is most efficient when processing data of increasing
magnitude. This could have been a motivating factor for implementing the multiple scan
directions.

20 21 22 23 24 25 26 27
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ALRem

C
o

de
L

en
gt

h

k=0
k=1
k=2
k=3
k=4

Figure 16: ALRem code length for each value of the adaptive variable k.

32

4.9 Coding of Sign

Sign is coded using the SIGN(coeff sign flag) that accompanies all the SIG syntax elements
when sign bit hiding is not used.

-3 -2 -1 0 1 2 3TB

SIGN 1 1 1 0 0 0 0

Figure 17: Binarization of SIGN for TB values from -3 to 3. Note that this value is equal to
the actual sign bit in the signed integer data type.

Sign bit hiding(SBH) is a technique where the quantizer only signals positive numbers,
and instead embeds sign bit into these positive numbers. This is done by using even
numbers to represent positive values, and odd numbers to represent negative values. The
sign data hiding flag indicates if SBH is being used, with the additional condition that
there are at least 3 non-zero values in the subblock.

4.10 Grouping of Bins

One advantage in the separation of absolute level Z into SIG, ALG1, ALG2 and ALRem is
the improved context modeling accuracy and performance. Another reasoning for splitting
these syntax elements is that it allows for grouping of bins based on encoding type. This
reduces the amount of switching between regular and bypass coding mode. This is mostly
related to high complexity implementations, where frequent switching would diminish the
performance gained by using speculative computing. But it should be kept in mind while
designing a correctly sequenced binarizer.

33

4.11 Complete Example

Figure 18 shows how the initial transform coefficient level data from the 4×4 Trandsform
block, totaling 16-bits×4× 4 = 256-bits, is now reduced down to 81-bits using the HEVC
adaptive binariaztion scheme. The size is now equal to about 32% of the original size, even
before CABAC encoding is performed. Notice also how the symbols is biased towards ‘1’
for regular coded bins(SIGN, SIG, ALG1 and ALG2). Counting 21 total ‘1’s and 5 total
‘0’. This leaves a probabiliy skew of about 80% for the most probable symbol. These bins
do of course not share the same probability models(contexts), but this does give some in-
sight into why this binarization scheme is so efficient when paired with a CABAC encoder.
The Bypass coded bins(SIGN and ALRem) show a more equally probable distribution of
symbols, with a count of 31 total ‘1’s and 24 total ‘0’s, and a probability skew of 56%
for the most probable symbol. This is an example of why the higher throughput bypass
mode can be utilized with an insignificant compression penalty. A major design goal of
HEVC was to reduce the amount of regular coded bins, i.e. increase throughput. The
adaptive binarization scheme for the transform coefficient level values was an important
factor in achieving this goal.

1 1 1

1 0

last sig coeff x prefix

last sig coeff y prefix

0

0

0

1

0

2

-2

2

3

-7

9

0

11

-19

-25

32

0

0

0

1

0

2

2

2

3

7

9

0

11

19

25

32

1

0

1

1

1

1

1

1

0

1

1

1

1

0

1

1

1

1

1

1

1

0

0

1 0

1 1 1 1 0 1

1 1 1 0 1

1 1 0 0 1

1 1 1 1 0 0 1 0

1 1 1 0 0 0 0

1 0 1 1 1 1 1

0

0

0

0

1

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

2

2

2

3

4

2

2

2

2

2

2

1

1

1

1

1

1

1

0

0

0

6

6

6

6

6

6

5

5

5

5

9

17

17

16

32

64

Z > 3

Z > 6

Z > 12

Z > 24

1×ALG2

8×ALG1

TB Z SIG ALG1 ALRemALG2SIGN K B0 B1

Figure 18: Complete Example, showing how the Transform Block from Figure 11 is binarized
using the Diagonal Scan direction. Threshold variable values for each scan, as well as the
condition that triggers a transition is also shown. Note that the red square under SIG is not
signaled, but inferred directly from the LAST coordinates.

34

5 Context Modeling

Context modeling of the residual data is restricted to SIG, ALG1 and ALG2, with SIGN
and ALRem being bypass coded, and thus not needing a context model. This chapter
covers context table structures, context initialization, as well as an short introduction
to context selection for SIG, ALG1 and ALG2 in 4 × 4 Transform Blocks. Due to time
constraints, context index calculation was not implemented.

5.1 sig coeff flag

SIG in in 4× 4 TBs uses a position based context selection. The context selection of SIG
for larger transform blocks uses a substantialy more advanced method, where context
index calculation is based on a selection of previously processed bins.

X

Y

0 1 2 3

0

1

2

3 8

8

8

5

8

7

5

4

6

7

4

3

6

1

2

0

Figure 19: SIG context assignment for 4× 4 Transform Blocks.[9]

5.2 sig coeff greater1 flag and sig coeff greater2 flag

Both the ALG1 and ALG2 uses 6 sets of context models. 4 sets belonging to the luma
component, and 2 sets belonging to the chroma component. The details for selection of
these sets are covered in section 9.3.4.2.6 and 9.3.4.2.7 in the standard document. Simply
put, context sets are calculated based on previously subblock encoding results.

Each context set related to ALG1 contain 4 probability models. Where these models
within a set are selected based on the previous values of ALG1 encoded in a subblock.

ALG1 subblock adaption rules:

• At the start of a subblock, the contex index within a set(ctxInc) is set equal to 1.
• For occurrences of absolute values equal to 1, ctxInc is incremented by 1(up to a

maximum of 3).
• If any occurrence of an absolute value greater than 1, ctxInc is permanently set to

0, terminating any further adaption.

For ALG2, each related set only contain a single context model. Resulting in a prob-
ability model selection equal to the set selection.

35

5.3 Probability model

Each context table index contain a probability model. It consists of the two variables,
valMps and pStateIdx. valMps(Value Most Probable Symbol) is the actual value of the
most probable symbol. i.e. ‘1’ or ‘0’. pStateIdx(Probability State Index) is a reference
to a probability estimate. Allowing for probability estimation to be performed using a
finite state machine approach. This is a performance optimization that reduces costly
multiplications down to a simple table lookup. But requires an additional transition table
lookup for each encoded bin. The required precision for the probability model is 1-bit for
valMps and 6-bits for the pStateIdx. Totaling 7-bits for each context in the context table.

Figure 20: FSM based probability estimation in CABAC. Figure is taken from a presentation
for CABAC in h.264.[3] Dotted lines are transitions performed when the bin to be encoded is
not equal to valMps, and solid lines are transitions performed when the bin is equal to valMps.

5.4 Initialization

Before encoding, every context is initialized with unique probability model values. This
initialization process is covered in detail in section 9.2.1.1 of the standard document. The
process is described for finding the initial probability model values of a specific context
index. This is done by using tables containing initValues for all context indexes, as well as
the context index, initType and SliceQPY variables. initType and SliceQPY can be seen
as simple inputs to the context modeler. With initType ranging from 0-2 and SliceQPY
ranging from 0-51.

Appendix G shows the C# functions used to generate the context table initial values
used in the hardware and software encoders implemented in this project.

36

6 HEVC CABAC Algorithm

The HEVC CABAC algorithm is documented in the standard document using UML-like
flowcharts. This documentation is very thorough, and forms a good basis for implement-
ing a software encoder or decoder. The flowcharts mostly revolve around encoding or
decoding a decision. Where a decision is either encoding or decoding a single symbol(‘1’
or ‘0’). Most of the higher level CABAC parsing process description is limited to decoding
only. These higher level processes are largely related to ordering of the syntax elements to
be binarized and encoded, and therefore is not vital to the implementation of the CABAC
encoder module itself. Thus it is possible perform correct CABAC encoding of the trans-
form coefficient level values of 4 × 4 Transform Blocks, given that the syntax elements
are binarized in proper order, and that accompanying context indexes are correct. Even
if the higher level processes are not implemented.

6.1 Overview

The algorithm is based on arithmetic coding, and is described in the standard as be-
ing based on the principle of recursive interval subdivision. Where the encoded output
is represented as a sub-interval between 0.0 and 1.0. Instead of first finding the final
sub-interval, and then outputing its lower bound as the finished encoded bitstream, the
algorithm is designed to output uniquely decodable sub-interval at each recursive step
as it climbs down towards the final sub-interval. This is achieved by representing inter-
vals with finite precision range variables, and checking if these ranges fall below a certain
threshold at each recursion step. A consequence of these range variables having finite pre-
cision, is that they require rescaling when they fall below these thresholds. This rescaling
is simply implemented by a logical left shift(doubling) of the range variables. Note that
some ivlLow rescaling is dependent on which region(lower, upper or middle) it resides in,
as to prevent overflowing.

6.2 Variable Initialization

Updates towards variables inside the flowcharts are global. Only during initalization/reset
of the encoder or decoder should these variables be set to their initial values.

Initial Value
Variable Decoder Encoder
codIRange 510 510
codILow 0 0
qCodIRangeidx 0 0
CodIrangeLPS 0 0
codIOffset 0 read bits(9)
codILow 0 0
BitsOutstanding NA 0
firstBitFlag NA 1

Table 8: Initial values for encoding and decoding. See Section 6.7 for read bits function
description.

37

6.3 Encoding a Decision

Input to EncodeDecision is the context index, BypassFlag, as well as the binary symbol(‘1’
or ‘0’) to be encoded. Output is 0 or more finished encoded binary symbols. This is
called for each bin in the binarized syntax element, using the same context index and
BypassFlag. The actual software model uses a functions more closely resembling the
standard document flowcharts.

Figure 21: Encoding of a binary decision. Note that Termination is started when ctxTable==0
&& ctxIdx==0. Effectively signaling the special termination context. The hardware imple-
mentation uses a simple termination flag to achieve the same result.

38

6.4 Renormalization

Renormalization procedure is responsible for renormalizing the range variables such that
sufficient precision is available, as well as actually outputting finished encoded symbols.
Efficient hardware implementation of renormalization is challenging due to the nested
while loop structure. With the second while loop being performed in the PutBit procedure.
Note that outputting a symbol for a sub-interval in the middle region is deferred until
an interval in the upper or lower region is found. This is needed as it is not possible to
know for certain what symbol should be output when rescaling in the middle region.[1]
This is achieved using a bitsOutstanding variable to count consecutive symbols found in
the middle region.

Figure 22: Renormalization during encoding of a binary decision.

39

6.5 Writing to Bitstream

Writing to bistream is done using the ButBit procedure. Which is also responsible for
skipping the first encoded symbol, as well as outputting the bitsOutstanding. The exact
reasoning for skipping the first bit is not included in the standard document.

Figure 23: PutBit function. See Section 6.6 WriteBits function description.

6.6 WriteBits

The WriteBits(int B, int N) function is an abstraction for adding bits to the bitstream.
It is specified to write N-bits with the value B to the bitstream, and then advance a
bitstream-pointer by N. The bitstream-pointer is not vital to the encoding or decoding of
the bitstream, but is related to proper alignment of the data structure.

6.7 read bits

The read bits(int N) return the N first bits from the bitstream, starting with at the current
bitstream-pointer location. Then the bitstream pointer is advanced by N.

40

6.8 Decoding a Decision

Input to DecodeDecicion is the context index and BypassFlag. The function will return
a single decoded symbol binVal every time it is called. The bitstream is read internally
using the read bits function. When the range variables falls below a certain threshold,
renormalization is performed by reading the next symbol in the bitstream. Where this
symbol essentialy contain information about the next sub-interval.

Figure 24: Decoding of a binary decision.

41

7 Software Model

For the purpose of understanding and verifying the functionality of the HEVC CABAC
entropy coding scheme, a independent software model was developed. This section cov-
ers the implemented software model. Development is based on Recommendation ITU-T
H.265(version 12/2016)[10]. Naming convention is inherited from this document.

The documentation[10] for HEVC is based on C-like pseudocode and UML-diagrams.
C# was chosen for its C-like syntax, as well as a shorter development time frame com-
pared to C/C++. The only significant downsides to choosing C# over C++, is a potential
performance loss. Which was not deemed important. The software model uses a Win-
dows Forms based interface. This limits the software to windows based computers. The
submodules is developed independent from the interface module, facilitating porting.

Figure 25: Software model user interface.

The main requirement for the software was to be able to generate binary test and
verification strings to be used for hardware verification. For this reason, the data structure
is simplified compared to the bitstream structure described in the standard. Designing a
HEVC compliant data structure is well outside the scope of the CABAC entropy coding.
In addition to the encoder module, the decoder was also implemented in software. This
allowed for functional verification of both the software and hardware encoder.

42

7.1 Binarization and Context Index Calculation

While the documentation for the encoder and decoder is very thorough, covering all
steps in great detail. Grasping the inner workings of the implemented binarizer and
Context Index Calculator is a bit more challenging. The reason for this is that while
the encoder/decoder interfacing is reliant on understanding the outputs of the Binarizer
and Context Index Calculator. Implementing a correct Binarizer and Context Index
Calculator requires understanding the structure of all the data types used in HEVC. This
restriction, along with the reduced amount of supported syntax elements, has led to a
crude implementation of binarization and context modeling. The alternative approach of
using the official HEVC Test Model(HM) was deemed too time consuming.

The current Software binarizer does not binarize the Transform Block correctly. The
plan was to address this issue with the implementation of of the context index calculator,
but this was not completed due to time constraints.

7.2 Encoder and Decoder

With the C# language supporting every statement in the documentation flowchart, im-
plementing a software encoder and decoder was relatively easy. The encoder source code
can be found in Appendix D, and the decoder source code can be found in Appendix E.
Instead of working with bit-files, the encoder and decoder uses ASCII based ‘1’s and ‘0’s
as the symbols to be encoded and decoded. This allowed for simple interfacing between
the hardware testbenches. The context table is implemented using the same initial table
as the hardware implementation. With context index calculation being unfinished, the
current system uses a static values for SliceQPY, initType and ctxIdx.

The initial plan was to design a robust and user friendly system that would allow
for proper verification of the hardware encoder. This would involve the implementation
of a debinarizer and context index calculator. But with so many parts of the system
left incomplete, the current software model is better described as a C# sandbox used to
verify the Hardware CABAC encoder. Appendix I contains a guide for using a simplified
version of the software encoder and decoder.

43

7.3 Interfacing With TestBenches

The software models main purpose was to be able to verify the correctness of the Hardware
module outputs. To make this process more efficient, both the testbenches and software
model should read and write to the same files. This concept was planed for both the
Binarizer/Context Modeller and the Hardware Encoder, but it was only completed for
the Hardware Encoder. The asynchronous fifo was only verified using the accompanying
testbench.

Vivado

Visual Studio

HW Binarizer/-
Context Modeller

Binarizer/Context
Modeller Test-

Bench

BinarizerInput.txt BinarizerOutput.txt

HW Encoder

Encoder
TestBench

EncoderInput.txtEncoderOutput.txt

HW FIFO

FIFO TestBench

SOFTWARE MODEL
(HEVC CABAC Verification Tool)

Figure 26: System structure for interfacing with between hardware and software. Includ-
ing development platforms. Note that the Binarizer/Context Modeler was not completed.
Appendix G covers setup for the completed system, as well as a tutorial on how Hardware/-
Software Encoding can be compared.

44

8 Hardware Implementation

The naming convention of variables, signals and types is largely inherited from ITU-T
H.265 v4 chapter 9. Some changes are made to account for the differences in software vs
hardware design. The target during development is the ZEDBOARD. This board uses
the Zynq-7000(7z020clg484-1) all programamable SoC.

8.1 Modules

Figure 27: The planed modules for the completed CABAC encoder system. Implemented
modules in green, partially implemented modules in orange, and incompleted modules in red.
Note that the Regular and Bypass encoder is combined in the current hardware design.

The hardware implementation is split into different modules to facilitate greater abstrac-
tion levels, as well as simplify development towards a specific timing constraint. Because
of the sequential nature regular and bypass coding, Any CABAC implementation could
benefit from supporting different clock domains for the different modules. This is one of
the reasons that the fifo is designed to be asynchronous.

8.2 Parameters

Every Module except the Asynchronous fifo modules comes paired with a parameter
settings file. Due to the different abstraction in verilog, parameters for the fifo is changed
in the source file. These parameters effect the functionality and properties of the modules.
Such as I/O width and For loop depths. The main goal of the implemented code is to be
able to optimize towards hardware targets by manipulating the parameter files.

8.3 Byte Packing and Alignment

Data structure alignment of the finished encoded bitstream is important, because of the
variable length output of the implemented encoder. The plan was to first output finished
encoded symbols to a fifo, and have a barrel shifter combine completed sections of the
data. Due to time constraints, this was not completed.

45

8.4 Binarizer Implementation

The implemented binarizer was designed to efficiently binarize 4 × 4 Transform Blocks.
Several methods for binarization of the relevant syntax elements where explored, with the
main focus of finding an efficient implementation of coding the ALRem syntax element.
This implementation was designed without a predefined interface from the rest of the
encoder. Therefore this work should only serve as inspiration for designing a compliant
binarizer. Further work should also try to incorporate both binarization and context
index calculation into a single module. The examples here uses the same transform block
as the one covered in section 4. Where the logical rules used are more closely related to
the simplified rules than the original. These rules are covered in 4.8.

The Binarizer code is provided in Appendix A. Much of the complexity for im-
plementing a hardware binarizer for the residual coding syntax elements lies in efficient
implementation of the different scan directions, as well as proper handling of the adaption
rules. Both of these challenges are solved in this current design. Efficient binarization of
the coeff abs level remaining is also achieved.

8.4.1 Syntax Frames

For the purpose of greater abstraction levels, as well as more efficient hardware imple-
mentation. A sort of preprocessing procedure is applied before certain finished syntax
elements are output. This allows parallel processing of the residual data, such as OR-
reductions and sign-bit checking, while still obeying the strict rules of the finished syntax
elements. These preprocessed vectors are referred to as frames.

8.4.2 last sig coeff

Binarization of last sig coeff prefixes for all the different scan directions where imple-
mented by using constant arrays of integers. This allowed indexing of the input Transform
blocks to be performed using a for-loop structure. Where each element is checked to see
if it is non-zero. This was implemented by indexing the sig coeff frame seen in Figure 28.

46

8.4.3 sig coeff flag

The sig coeff flags is a Fixed Length Binarization that represents every non-zero element in
the TB. The number of syntax elements is derived from the last sig coeff syntax elements,
varying from 0 to 15. The reason for the amount being 15 instead of 16, is because the
first non-zero element is inferred directly from the coordinates provided by last sig coeff.

0 0 0 1 0 2 -2 2 3 -7 9 0 11 -19 -25 32

V alue 6= 0

0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1

inferred 1 by last sig coeff

inferred 0

Transform Block

sig coeff frame

sig coeff flag

Figure 28: Binarization of sig coeff flag

Figure 28 shows how the first non-zero element index is derived from last sig coeff. The
subsequent elements in the TB is then checked for non-zero elements. With ‘0’ resulting
in ‘0’ and ‘1’ resulting in ‘1’ in the finished binarized sig coeff flag Syntax Elements.
Notice how sig coeff flag can be implemented by outputting the remainder of the full
sig coeff frame starting with the index after the one inferred by last sig coeff. Overall
a pretty simple binarization procedure. The hiding of the first non-zero element does
however introduce some complications when binarizing elements with dependencies on
sig coeff flag. One simple solution to this is to keep this non-zero element stored in the
full sig coeff frame. Fig. 28 shows this non-zero element in red.

47

8.4.4 coeff abs level greater1 flag

The coeff abs level greater1 flag is a Fixed Length Binarization that indicates if a non-
zero element(’1’s in sig coeff flag) has an absolute value of greater than 1. The amount
of syntax elements is derived from the amount of ‘1’s in sig coeff flag(pluss the inferred
first ’1’ seen in red in Fig. 31), but has a maximum of 8 per subblock.

0 0 0 1 0 2 -2 2 4 -7 9 0 11 -19 -25 32

ABS(V alue) > 1

TB

SIG frame

ALG1 frame

coeff abs level greater1 flag

0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1

0

0

0

1

0

1

1

1

1

1

1

0

1

1

0

1

1

1

1

1

1

1

Figure 29: Binarization of coeff abs level greater1 flag

Fig. 31 shows how the binarization procedure can be implemented using the full co-
eff abs level greater1 frame and sig coeff frame vectors.

48

8.4.5 coeff abs level greater2 flag

The coeff abs level greater2 flag is a Fixed Length Binarization that indicates if a non-
zero element(’1’s in sig coeff flag) has an absolute value of greater than 2.

0 0 0 1 0 2 −2 2 4 −7 9 0 11 −19 −25 32

ABS(V alue) > 2

Transform Block

coeff abs level greater1 frame

coeff abs level greater2 frame

coeff abs level greater2 flag

0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1

0

0

0

0

1

1

1

0

Figure 30: Binarization of coeff abs level greater2 flag

Very similar to coeff abs level greater1 flag, but this syntax element is limited to a
length of 1 per subblock. There exists a special case for when 8 consecutive occurrences
of ALG1 with the value ‘0’ appear before a non zero element with an absolute value of
greater than 2. Here the ALG2 should not be output, but skipped entirely. With the
simplified rules it is easy to sometime output ALG2 here. Special care should be put into
handling this possible error. This error is the likely culprit of the wrong binarization by
the software model.

49

8.4.6 coeff abs level remaining

The adaptive binarization scheme for ALRem is a substantially more advanced process
than the previous syntax elements covered here. The standard describes binarization
of coeff abs level remaining as a concatenation of TRk and EGk. Both of these coding
methods may seem complex enough by themselves, and when truncated even more so. A
substantial amount of effort was spent trying to find an efficient way of computing these
codes, with very impractical or low performance results. The MIT Open Access Article
on Entropy Coding in HEVC[11] does however introduce an alternative representation
using a concatenation of a unary prefix and a fixed length suffix.

TabIdx Zmin Zmax Prefix bins Suffix bins Prefix Length Suffix Length Max k
0 0 k2 − 1 0 C 1 k 4
1 1× 2k 2× 2k − 1 10 C 2 k 4
2 2× 2k 3× 2k − 1 110 C 3 k 4
3 2k × (20 + 2) 2k × (21 + 2)− 1 1110 C 4 k 4
4 2k × (21 + 2) 2k × (22 + 2)− 1 11110 xC 5 1 + k 4
5 2k × (22 + 2) 2k × (23 + 2)− 1 111110 xxC 6 2 + k 4
6 2k × (23 + 2) 2k × (24 + 2)− 1 1111110 xxxC 7 3 + k 4
7 2k × (24 + 2) 2k × (25 + 2)− 1 11111110 xxxxC 8 4 + k 4
8 2k × (25 + 2) 2k × (26 + 2)− 1 111111110 xxxxxC 9 5 + k 4
9 2k × (26 + 2) 2k × (27 + 2)− 1 1111111110 xxxxxxC 10 6 + k 4

10 2k × (27 + 2) 2k × (28 + 2)− 1 11111111110 xxxxxxxC 11 7 + k 4
11 2k × (28 + 2) 2k × (29 + 2)− 1 111111111110 xxxxxxxxC 12 8 + k 4
12 2k × (29 + 2) 2k × (210 + 2)− 1 1111111111110 xxxxxxxxxC 13 9 + k 4
13 2k × (210 + 2) 2k × (211 + 2)− 1 11111111111110 xxxxxxxxxxC 14 10 + k 4
14 2k × (211 + 2) 2k × (212 + 2)− 1 111111111111110 xxxxxxxxxxxC 15 11 + k 3
15 2k × (212 + 2) 2k × (213 + 2)− 1 1111111111111110 xxxxxxxxxxxxC 16 12 + k 2
16 2k × (213 + 2) 2k × (214 + 2)− 1 11111111111111110 xxxxxxxxxxxxxC 17 13 + k 1
17 2k × (214 + 2) 2k × (215 + 2)− 1 111111111111111110 xxxxxxxxxxxxxxC 18 14 + k 0

Table 9: Alternative representation of ALRem using TrU and FL coding[11]- The suffix bins
are shown as x and C, where x represents a bin, and C represents a fixed length bin string of
length k.

This alternative representation was key in finding an efficient method for calculating
ALRem. The prefix bins is found by simply checking where Z resides. The suffix bins for
any value Z within Zmin and Zmax at a given TabIdx, is found by calculating Z − Zmin.
Note that this will result in an fixed length representation of the binarized suffix, where
the length is equal to the suffix length at the given TabIdx. Table 10 shows the generalized
version of this table. Appendix H documents an interactive model of the table.

50

TabIdx Zmin Zmax Prefix bins Suffix bins Prefix Length Suffix Length Max k
0 0 k2 − 1 0 Z − Zmin 1 k 4
1 1× 2k 2× 2k − 1 10 Z − Zmin 2 k 4
2 2× 2k 3× 2k − 1 110 Z − Zmin 3 k 4
3 2k × (20 + 2) 2k × (21 + 2)− 1 1110 Z − Zmin 4 k 4
4 2k × (21 + 2) 2k × (22 + 2)− 1 11110 Z − Zmin 5 1 + k 4
5 2k × (22 + 2) 2k × (23 + 2)− 1 111110 Z − Zmin 6 2 + k 4
6 2k × (23 + 2) 2k × (24 + 2)− 1 1111110 Z − Zmin 7 3 + k 4
7 2k × (24 + 2) 2k × (25 + 2)− 1 11111110 Z − Zmin 8 4 + k 4
8 2k × (25 + 2) 2k × (26 + 2)− 1 111111110 Z − Zmin 9 5 + k 4
9 2k × (26 + 2) 2k × (27 + 2)− 1 1111111110 Z − Zmin 10 6 + k 4

10 2k × (27 + 2) 2k × (28 + 2)− 1 11111111110 Z − Zmin 11 7 + k 4
11 2k × (28 + 2) 2k × (29 + 2)− 1 111111111110 Z − Zmin 12 8 + k 4
12 2k × (29 + 2) 2k × (210 + 2)− 1 1111111111110 Z − Zmin 13 9 + k 4
13 2k × (210 + 2) 2k × (211 + 2)− 1 11111111111110 Z − Zmin 14 10 + k 4
14 2k × (211 + 2) 2k × (212 + 2)− 1 111111111111110 Z − Zmin 15 11 + k 3
15 2k × (212 + 2) 2k × (213 + 2)− 1 1111111111111110 Z − Zmin 16 12 + k 2
16 2k × (213 + 2) 2k × (214 + 2)− 1 11111111111111110 Z − Zmin 17 13 + k 1
17 2k × (214 + 2) 2k × (215 + 2)− 1 111111111111111110 Z − Zmin 18 14 + k 0

Table 10: Alternative representation of ALRem where Z − Zmin at any TabIdx is a binary
number with lenght indicated by the Suffix Length at that specific TabIdx

TabIdx Zmin Zmax Prefix bins Suffix bins Prefix Length Suffix Length Max k
0 0 0 0 1 k 4
1 1 1 10 2 k 4
2 2 2 110 3 k 4
3 3 3 1110 4 k 4
4 4 5 11110 5 1 + k 4
5 6 9 111110 10 6 2 + k 4
6 10 17 1111110 7 3 + k 4
7 18 33 11111110 8 4 + k 4

Table 11: Example Binarization of ALRem for Z = 8 and k = 0 using the method proposed
in Table 10

TabIdx Zmin Zmax Prefix bins Suffix bins Prefix Length Suffix Length Max k
0 0 3 0 1 k 4
1 4 7 10 2 k 4
2 8 11 110 00 3 k 4
3 12 15 1110 4 k 4
4 16 23 11110 5 1 + k 4

Table 12: Example Binarization of ALRem for Z = 8 and k = 2 using the method proposed
in Table 10

51

This alternative approach was implemented both using a table based approach, and
using the switch case statement. The current table based approach showed very low
performance, but this could be due to using a single table for all values of k. The case
based approach, seen in Appendix A, did however show decent performance. Further
work of designing a binarizer should incorporate one of these methods to binarize ALRem.
The current designs does not signal the actual unary prefix code, as this coding can simply
be inferred when the length is known. Therefore, the prefix is simply signaled using the
prefixLength output. This would require extra logic in the bypass coder. But with this
extra logic being relatively simple, the reduction in signaling could be very beneficial.

52

8.4.7 coeff abs level sign flag

The coeff abs level sign flag is a Fixed Length Binarization that indicates if a non-zero
element(’1’s in sig coeff flag) has an value of less than 0. This is a very simple binarization
that only require checking of the sign bit. The only real complexity lies in supporting the
optional sign bit hiding technique. Which in practice involves skipping this binarization
under certain conditions.

0 0 0 1 0 2 -2 2 4 -7 9 0 11 -19 -25 32

V alue < 0

Transform Block

sig coeff frame

coeff sign frame

coeff sign flag

0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0

0

0

0

1

0

1

1

1

1

1

1

0

1

1

1

1

0

0

1

0

0

1

0

0

1

1

0

Figure 31: Binarization of coeff abs level sign flag

53

8.5 Context Index Calculator

The context index calculator module was not implemented. Although this module was
first planed to designed separately, integration with the binarizer module could be very
beneficial. This is due to the large amount of data dependencies shared between them.
Designing a Binarizer/context Index Calculator without first knowing the completed in-
terface of the rest of the HEVC encoder modules is a very inefficient approach. As the
amount of different data and signals(syntax elements) it needs to be able to support is
rather comprehensive.

54

8.6 CABAC Encoder

The Hardware Encoder was developed in VHDL alongside the C# HEVC CABAC Ver-
ification Tool. This implementation performs Context-Adaptive Binary Arithmetic en-
coding as specified in the Recommendation ITU-T H.265. The only caveat being that
the context table is limited to the residual coding syntax elements. Code is provided in
Appendix B.

Read Inputstart
Initialize

Context Table

Read Context
Encode

Bins Bypass

Encode Bins
Regular

Write Output

RenormPutBit

Coding==Regular &&
ctxTbl!=Initialized

Coding==Regular &&
ctxTbl==Initialized

Coding==Bypass

All Bins
encoded

ctxTbl==Initialized

CctxTbl!=Initialized

Context Read

All Bins
encoded

All Bins not
encoded

Output
Written

Renorm!=Finished
&& PutBit

Renorm==Finished

Renorm!=Finished
&& No PutBit

PutBit!=Finished

Coding==Regular &&
PutBit==Finished

All Bins not
encoded

Coding==Bypass &&
PutBit==Finished

Figure 32: Simplified state machine diagram for the hardware encoder. Context update is
written during the Write Output state.

Encoding of termination is implemented, but not included in this diagram. The ini-
tial plan was to decouple the Bypass and Regular encoders into two distinct modules.
This would allow for implementation of a dispatcher to split the workload whenever a
regular and a bypass coded bin are encoded in order. This did however introduce a few
complications to the update of the range variables. Bypass encoding was instead incor-
porated into the regular coder, as a simple state. This allowed for both the Bypass and
Regular parts of the encoder to use the same PutBit state, as well as sharing range vari-
ables. The main challenge in implementing the hardware encoder lies in correctness of
the nested while loops located in the RenormE and PutBit part of the algorithm. These
while loops contributed the largest amount of non-trivial bugs during development, and
was the main motivator for developing the software model. Another major challenge is
optimizing throughput using efficient pipelining, but due to the time constraints and the
complexity of such designs, this was not explored further.

55

The focus of the current implementation was achieving correct output of the encoder.
As can be seen by the code, the resemblance to the specification flowcharts is clear. A
consequence of this is that a large amount of possible redundant clock cycles, where
the whole cycle is spent checking a simple conditional statement. This is a result of
the while-loops in the specification. During enc bin r a conditional check to see if the
output is ready to be written or if a renormalization is required. This conditional check
could possibly be moved to the end of the renormalization, effectively skipping this cycle.
Further the RenormE state includes a conditional check that could possibly be moved
as a condition for entering this state. The bitsOutstanding loop located in the PutBit
also introduces complications.

S E Type State
1 Regular r input r ctx enc bin r RenormE PutBit RenormE enc bin r w output
2 Bypass r input enc bin b PutBit enc bin b w output

Clk 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 13: Sample state sequence for encoding of regular and then Bypass coded Bins for the
implemented hardware encoder. Assuming that the context table is already initialized, and
that RenormE and PutBit is limited to single cycle iterations.

Inefficiency of the current state machine is quite apparent. Conditional checks that
are close to trivial in software, results in possible excessive cycles for the hardware design.
Where it is possible for multiple sequences of RenormE and PutBit to occur. Degrading
performance even further. This demonstrates some of the challenges in implementing a
pipelining scheme.

Syntax Element Nr. Type State
1 Regular r input r ctx enc bin r RenormE RenormE RenormE PutBit PutBit RenormE enc bin r w output
2 Bypass r input enc bin b

Clk 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 14: Sample state sequence where multiple RenormE and PutBit cycles are required
for encoding.

Syntax Element Nr. Type Pipeline Stage
1 Regular r input r ctx enc bin r RenormE PutBit RenormE enc bin r w output
2 Regular r input r ctx enc bin r RenormE PutBit RenormE enc bin r w output
3 Regular r input r ctx enc bin r RenormE PutBit RenormE enc bin r w output
4 Regular r input r ctx enc bin r RenormE PutBit RenormE enc bin r w output
5 Bypass r input enc bin b STALL STALL PutBit enc bin b STALL w output
6 Bypass r input enc bin b STALL STALL PutBit enc bin b STALL w output

Clk 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 15: Sample state sequence for encoding of regular and then Bypass coded Bins using a
potential pipelined implementation. Assuming that RenormE and PutBit is completed in a
single cycle, which may not be feasible. A proper high performance pipelined implementation
would most likely look different, incorporating speculative execution principles.

56

8.6.1 Interface

Interfacing the encoder is relatively simple. Input data is written along with the accom-
panying Input data length. When the Start signal is asserted, the encoder will perform
Regular encoding if BypassI is low and Bypass encoding if BypassI is high. When en-
coding is completed, the finished data is written to the Output, along with the Output
data length. Encoding is finished when the Finished signal is high. Termination will be
encoded if TermI is asserted at the start of encoding. The encoder testbench serves as a
reference example of interfacing the encoder.

Port Direction Type Description
Clk in std logic Clock.
Input in std logic vector Input data.
InputLen in std logic vector Input data length.
ctxIdx in std logic vector Context index.
SliceQPY in std logic vector SliceQPY.
initType in std logic vector initType.
Resetn in std logic Active low reset.
Start in std logic Start encoding signal.
Output out std logic vector Output data.
OutputLen out std logic vector Output data length.
BypassI in std logic Input BypassFlag.
BypassO out std logic Output BypassFlag.
TermI in std logic Input TerminationFlag.
TermO out std logic Output TerminationFlag.
Finished out std logic Encoding finished signal.

Table 16: Encoder ports.

Some redundant ports are present. Offsets from SliceQPY and initType could possible
be calculated in the binarizer/context modeler. The termination flags are unnecessary,
but requires a rework of the termination logic. Both of these issues should be solved when
there is a better picture of all the other modules required in a HEVC encoder.

57

8.6.2 Parameters

ctxIdxRange should be equal to the total amount of syntax element contexts that are
supported. Maximum width of the coeff abs level remaining syntax element is 34. This
sets the lower bound of the input width that needs to be supported. Alternatively it is
possible to first encode the unary prefix bins before encoding the suffix bins. Resulting in
an reduction of minimum input width down to 18. PutBitLoopLen was introduced as a
parameter because of its large impact on performance. Changing PutBitLoopLen affects
how many bits are processed in the BitsOutstanding loop during each clock cycle.

CABAC EncParameters Type Description

ctxIdxRange Constant Integer
Total number of different Syntax Elements Context Implemented.
Update this number if additional contexts are added.

InputW Constant Integer Input Width
OutputW Constant Integer Output Width

PutBitLoopLen Constant Integer
Defines the maximum number of bitsOutstanding that are output
in the PutBit state.

Table 17: Hardware Encoder Parameters.

8.6.3 Transition Tables

HEVC CABAC uses precalculated transition tables to perform many of the computa-
tionally demanding operations in the algorithm. These tables could possibly introduce
some complications for the performance of the design, but none where observed during
development. The table arrays consists of 256 elements for the rangeTabLPS, and 64
elements each for both the transIdxLPS and transIdxMPS. The values for these arrays
can be copied directly from the standard document. Tables, including the Context tables
initials, are stored as text files along with the source code.

8.6.4 Context Table

The context index table for the residual coding syntax elements is initialized with 120(121
counting termination) different initial values dependent on sliceQPY and initType. Slice-
QPY ranging from 0-51 and initType ranging from 0-2. Resulting in a total of 120 ×
52× 3 = 18720 different initial values. Calculation of these values are covered in Section
5.4 on page 36. It is possible to perform these calculation during the start of each slice,
but the current implementation uses a pre-calculated Table for storing the initial values.
The table is implemented as 7 bits with (5 downto 0) representing pStateIdx and (6)
representing valMPS. The standard document does a very good job of documenting the
procedures for initializing all context tables, but does so by spreading them across 38
different tables. Appendix G shows the distribution of contexts for the syntax elements
in the current context table. Note that the architecture handles the offsets from SliceQPY
and initType directly.

58

8.6.5 Context Handling

Context Table Index
Syntax Element Binarization Process initType = 0 initType = 1 initType = 2
last sig coeff x prefix TR 0 - 17 120 - 137 240 - 257
last sig coeff y prefix TR 18 - 35 138 - 155 258 - 175
sig coeff flag FL 40 - 83 160 - 203 280 - 323
coeff abs level greater1 flag FL 84 - 107 204 - 227 324 - 347
coeff abs level greater2 flag FL 108 - 113 228 - 133 348 - 353
coeff abs level remaining TrU, TRk and EGk Bypass Bypass Bypass
coeff sign flag FL Bypass Bypass Bypass

Table 18: Syntax Elements supported in the current context table.

Contexts handling is done by separating them across three levels. This is needed to avoid
overwriting the initial values, as well as reducing the amount of read/write accesses to
the working context table.

Elements Description

ctxIdxTableInitials 18720
Initialized as read-only memory. Contains
the proper intialization variables for all
values of SliceQPY and initType.

ctxIdxTable 120

Initialized from reading ctxIdxTableInitials
for a given value of SliceQPY and initType.
Used as the working context table during
regular encoding. Indexed using ctxIdx.

currCtx 1

Initialized by reading ctxIdxTable at a given
ctxIdx before regular encoding is performed.
Contains valMps(currCtx(6)) and
pStateIdx(currCtx(5 downto 0)) that is used
in regular encoding. After encoding is
completed the ctxIdxTable is updated with
the value of currCtx at the same ctxIdx it
was read from.

Table 19: Hardware Encoder Context Table Structure.

It was originally planed to introduce a way of checking if a context in the ctxIdxTable
was initialized, and only load a value from the ctxIdxTableInitials if needed. Implement-
ing this was more challenging than anticipated. Resulting in the current design, where
the whole context table is initialized at the beginning of a slice. To better facilitate
performance of coding of grouped bins, it could be beneficial to check if the current con-
text index is the same as the next to be encoded. This could save cycles that would be
spent on writing and reading to the context table. There are virtually endless ways of
implementing context handling, and is something that could be challenging to optimize.

59

8.6.6 BitsOutstanding Loop

The algorithm requires the ability to output bitsOutstanding equal to the largest possible
number of finished encoded bins in a slice. This is somewhat trivial for a software stand-
point, only requiring the bitsOutstanding register to have a sufficiently large precision.
Hardware does however require that output is written when the output registers is about
to overflow. Even when this overflow limit is reduced by many orders of magnitude, the
occurrence of when bitsOutstanding overflows the output width should be relatively rare.
The current implementation does not address this issue, but it could be beneficial to hold
off on fixing this until the design is completely optimized.

8.6.7 Termination

The current termination logic uses termination flag instead of the correct special case
ctxIdx related to termination. Changing this would only require introduction of the
special termination context in the context table, in addition to a simple logical check
change. The standard document(NOTE 2 - page 206) [10] hints at a special case of
normal decoding that can be used for termination. If this method can be used, it could
severely reduce the logic required to perform termination.

8.6.8 Register precision

The number of minimum bits required for each variable in the algorithm is defined as
minimum precision in the reference document. They differ from each coding method.
Bypass coding requires an additional bit for the ivlLow variable. This is due to the built in
renormalization in Bypass coding. While most of the range variables are shared, Regular
coding uses some extra variables for probability modeling and indexing of transition tables.

Range Variable
Required Precision
Bypass Regular

ivlLow 11 10
ivlCurrRange 9 9
ivlLpsRange 8 8
qRangeIdx NA 2
pStateIdx NA 6
valMps NA 1

Table 20: Range variable precision requirements.

There is no issue related to using a higher precision register than required. So for
an encoder implementation for where the range variables are shared, ivlLow is simply
implemented with 11-bit precision. All tables used are instantiated using the minimum
required register precision.

60

8.6.9 Utilization

The synthesis results shows a relatively low utilization by the CABAC encoder. This
should leave room for the rest of the HEVC encoder modules. The design does not infer
any latches.

Resource Utilization Available Utilization %
LUT 2930 53200 5,51
LUTRAM 20 17400 0,11
FF 150 106400 0,14

Table 21: Synthesis results using Vivado(2016.4). Device used is the Zedboards 7z020clg484-
1. Parameters: InputW = 34, OutputW = 40, PutBitLoopLen = 10.

Resource Utilization Available Utilization %
LUT 2892 53200 5,44
LUTRAM 20 17400 0,11
FF 96 106400 0,09

Table 22: Synthesis results using Vivado(2016.4). Device used is the Zedboards 7z020clg484-
1. Parameters: InputW = 18, OutputW = 10, PutBitLoopLen = 5.

Most of the utilization comes from implementing the different tables. Reducing the
parameter values, effectively reducing the required mapping of the PutBitVal to the output
seems to have negligible effects on utilization. This is something that is likely to change
drastically when the FPGA is populated by the rest of the HEVC encoding modules. As
the place and route restrictions will be much more prominent. Differences in utilization
between synthesis and implementation are practically non-existent.

61

8.6.10 Frequency

While utilization between synthesis and implementation are virtually identical, maximum
frequency vary substantially. The performance is calculated using no input/output wire
delays. This should be kept in mind when implementing into a complete system. Critical
path of the current design varies depending on what the parameters are set to.

Output Width Input Width PutBitLoopLen Type Max Frequency
40 34 10 Synthesis 113,430127
40 34 10 Implementation 108,8139282
40 34 5 Synthesis 118,4413123
40 34 5 Implementation 103,4554107
40 18 10 Synthesis 123,3501912
40 18 10 Implementation 106,7919692
40 18 5 Synthesis 122,8501229
40 18 5 Implementation 105,8873359
20 34 10 Synthesis 121,2709192
20 34 10 Implementation 103,6591687
20 34 5 Synthesis 119,9760048
20 34 5 Implementation 105,2299274
20 18 10 Synthesis 123,3806292
20 18 10 Implementation 102,396068
20 18 5 Synthesis 123,3501912
20 18 5 Implementation 101,1838511

Table 23: CABAC Encoder maximum frequency for a few select parameters.

62

8.6.11 Performance

Quantifying the actual CABAC Encoder performance requires real world test data. Where
this test data is the output provided by the binarizer and context modeler in a working
HEVC encoder system. The reason for this is that the test data structure has a large
impact on the actual run time of the algorithm. Either by the distribution of the regular
vs bypass coded bins, or simply by the actual entropy of the data to be encoded. Even
the preciseness of the probability models have a large impact on the throughput of regular
encoding.

The current testbench uses arbitrary test data either generated using the software
model, or simply written to the test text file. In any case, this data is not representative
of actual real world binarized syntax elements. It is only useful in verifying correctness
of the design when comparing output to the software encoder.

It is possible to generate an estimate of bypass encoder performance. Since this en-
coding is to be performed for uniformly distributed bins, using randomly generated data
might actually be representative.

Syntax Element Length Encoding Time ns cycles bins/cycle Mb/s
10 2301000 272533,4589 0,366927424 43,4593655
5 1301300 154127,6793 0,324406364 38,4231154
1 501000 59339,09731 0,168522955 19,9600798

Table 24: Performance for bypass encoding. Calculated using Fmax = 118.44 MHz, over
10000 iterations. Syntax element data are randomly generated for varying lengths.

The same can not be said for regular encoding. Where it is not possible to find useful
information using the same approach.

Syntax Element Length Encoding Time ns cycles bins/cycle Mb/s
10 3901000 462039,5581 0,216431685 25.6344527
5 1429500 169311,8555 0,295313047 34,9772648
1 607000 71893,87638 0,139093905 16,4744646

Table 25: Performance for regular encoding. Calculated using Fmax = 118.44 MHz, over
10000 iterations. Syntax element data are randomly generated for varying lengths.

63

8.7 Fifo Buffer

Because of the irregular throughput of the modules in a CABAC circuit, it is beneficial
to introduce a fifo buffer to connect them. For this reason a general purpose fifo was
developed. With the Zedboards artix-7 FPGA natively supporting clock manipulation
with its Mixed-Mode Clock Manager(MMCM) module, there existed motivation for mak-
ing this fifo asynchronous. This could possibly allow for the modules to run at different
frequencies. Due to the incompleteness of the Binarizer and Context Index Calculator
modules, the asynchronous fifo was never utilized.

Figure 33: Asynchronous fifo.

The fifo design achieves glitch free asynchronous operation by using a proven method
of passing address pointers using gray code.[2] Source code is provided in Appendix C.
The buffer size as well as data width is implemented as fully customizable parameters.
This would allow for writing the context index, BypassFlag, Bins data and Bins length
to the same address in the buffer. The buffer is instantiated as block ram as specified in
the Xilinx dual port block ram example.

64

9 Results and Discussion

9.1 Binarizer and Context Index Calculator

Far and away the most challenging part of the binarizer implementation is the coding
of the ALRem syntax element. A disproportionate amount of effort was spent on the
fruitless endeavor of finding an efficient way of computing it. In the end, the proposed
FSM approach was able to achieve efficient binarization. Had this method been known
at the start of the project, it would have freed up a substantial amount of time. Time
that could possibly be spent on integrating a context index calculator with the binarizer.
The analysis of the subject performed in this thesis should provide a good foundation for
future work.

9.2 CABAC Hardware Encoder

The current architecture of the hardware encoder is a relatively low performance imple-
mentation. But with the framework it provides, it allows for the exploration of higher
performance architectures. There exists a lot of research into hardware optimizations
that could more easily be understood with the presence of a working design. Further-
more, there still remains work to be done on the design. Expansion of the context table is
required. In addition to the many possible improvements that could be made to the han-
dling of these contexts. Pipelining could also be implemented, but should be postponed
until more research into the higher performance architectures has been performed.

9.3 Achieving Correctness

A lot of effort was put into achieving correctness of the design, resulting in the development
of the software model. But any serious attempt at making any HEVC compliant hardware
should utilize the HEVC HM TEST Model software. This would allow for tracing and
in depth analysis of the data flow. Having this tool would be invaluable compared to
only working with the standard document. Anything less will introduce some uncertainty
about the actual correctness of the designs.

9.4 Future Work

While the actual CABAC coding algorithm may not leave much room left for improve-
ments. The binarization schemes used are bound to see modifications with succeeding
revisions of HEVC, or even complete reworks with the introduction of new standards.
Leaving practical implementations aside, there exists many possibilities of studying these
binarization methods. Being able to quantify the actual binarizer performance would
however require a framework, such as the HEVC HM Test Model.

65

References

[1] Joe Bertolami. Context adaptive binary arithmetic coding. http://bertolami.

com/index.php?engine=blog&content=posts&detail=arithmetic-coding, Jan-
uary 2015.

[2] Clifford E. Cummings. Synthesis and scripting techniques for designing multiasyn-
chronous clock designs. http://www.deepchip.com/downloads/cliffsnug01.pdf,
2001.

[3] Heiko Schwarz Detlev Marpe and Thomas Wiegand. Cabac context-based adaptive
binary arithmetic coding in the h.264/avc video compression ieee csvt. http://

slideplayer.com/slide/5674258/, July 2003.

[4] http://z3technology.com. Hevc- what’s next in video compression. http://

z3technology.com/News/HEVC-What-is-next-in-video-compression/26.html.

[5] in cites.com. An interview with dr. thomas wiegand. http://www.in-cites.com/

scientists/ThomasWiegand.html, 2007.

[6] Tomasz Grajek Krzysztof Wegner Jakub Siast Krzysztof Klimaszewski Olgierd
Stankiewicz Marek Domaski Jakub Stankowski, Damian Karwowski. Bitrate dis-
tribution of syntax elements in the hevc encoded video. http://ieeexplore.ieee.
org/stamp/stamp.jsp?arnumber=6948726, 2014.

[7] Anush Moorthy Anne Aaron Jan De Cock, Aditya Mavlankar.
A large-scale comparison of x264, x265, and libvpxa
sneak peek. https://medium.com/netflix-techblog/

a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f,
2016.

[8] Heiko Schwarz Thiow Keng Tan Jens-Rainer Ohm, Gary J. Sullivan and Thomas Wie-
gand. Comparison of the coding efficiency of video coding standardsincluding high ef-
ficiency video coding (hevc). http://iphome.hhi.de/wiegand/assets/pdfs/2012_
12_IEEE-HEVC-Performance.pdf, 2012.

[9] Nguyen Nguyen Tianying Ji Marta Karczewicz Gordon Clare Felix Henry Joel Sole,
Rajan Joshi and Alberto Duenas. Transform coefficient coding in hevc. http://

ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6324418, 2012.

[10] TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU SG16. Rec.
itu-t h.265 v4. https://www.itu.int/rec/T-REC-H.265-201612-I/en, 2017.

[11] Vivienne Sze and Detlev Marpe. Entropy coding in hevc. high efficiency video coding.
(hevc): 209-274. https://dspace.mit.edu/handle/1721.1/100315, 2014.

[12] Madhukar Budagavi Vivienne Sze. High throughput cabac entropy coding
in hevc. http://ieeexplore.ieee.org/document/6317157/?arnumber=6317157&

tag=1, 2012.

[13] Wikipedia. High efficiency video coding implementations and prod-
ucts. https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding_

implementations_and_products, 2017.

66

http://bertolami.com/index.php?engine=blog&content=posts&detail=arithmetic-coding
http://bertolami.com/index.php?engine=blog&content=posts&detail=arithmetic-coding
http://www.deepchip.com/downloads/cliffsnug01.pdf
http://slideplayer.com/slide/5674258/
http://slideplayer.com/slide/5674258/
http://z3technology.com/News/HEVC-What-is-next-in-video-compression/26.html
http://z3technology.com/News/HEVC-What-is-next-in-video-compression/26.html
http://www.in-cites.com/scientists/ThomasWiegand.html
http://www.in-cites.com/scientists/ThomasWiegand.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6948726
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6948726
https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f
https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Performance.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Performance.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6324418
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6324418
https://www.itu.int/rec/T-REC-H.265-201612-I/en
https://dspace.mit.edu/handle/1721.1/100315
http://ieeexplore.ieee.org/document/6317157/?arnumber=6317157&tag=1
http://ieeexplore.ieee.org/document/6317157/?arnumber=6317157&tag=1
https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding_implementations_and_products
https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding_implementations_and_products

[14] www.openhub.net. Hevc test model(hm) analysis. https://www.openhub.net/p/

hevc/analyses/latest/languages_summary, 2017.

67

https://www.openhub.net/p/hevc/analyses/latest/languages_summary
https://www.openhub.net/p/hevc/analyses/latest/languages_summary

Appendix A

1 -- **

2 -- Binarizer for HEVC H.265

3 -- 01/03/2017

4 -- Norwegian University of Science and Technology

5 -- Lars Erik Songe Paulsen

6 -- **

7

8 -- **

9 -- TODO LIST:

10 -- **

11 --

12 -- **

13

14 --pragma synthesis_off

15 -- your simulation-only code

16 --pragma synthesis_on

17

18 library ieee;

19 library std;

20 use ieee.std_logic_1164.all;

21 use ieee.numeric_std.all;

22 use ieee.std_logic_unsigned.all;

23 use ieee.std_logic_misc.all; --

http://www1.pldworld.com/@xilinx/html/technote/tool/manual/15i_doc/fndtn/vhd/vhd10_3.htm↪→
24

25 library work;

26 use work.BinarizerParameters.all;

27

28 entity Binarizer is

29

30 port

31 (

32 Clk : in std_logic;

33 DataIn : in std_logic_vector((16*CoeffWidth)-1 downto 0);

34 ScanDir : in std_logic_vector(1 downto 0);

35 Resetn : in std_logic;

36 StartBinarizer : in std_logic;

37 DataOut : out std_logic_vector(OutputWidth-1 downto 0);

38 DataLength : out std_logic_vector(OutputWidthLength-1 downto 0);

39 PrefixLength : out std_logic_vector(OutputWidthLength-1 downto 0);

40 Finished : out std_logic

41);

42

43 end Binarizer;

44

45 architecture struct of Binarizer is

46

47 -- ---

48 -- Signal declarations

49 -- ---

50

51 type BinarizeStateType is(

52 read_input,

53 write_last_sig_coeff_x_prefix,

54 write_last_sig_coeff_y_prefix,

55 write_sig_coeff_flag,

56 write_coeff_abs_level_greater1,

57 write_coeff_abs_level_greater2,

58 sync,

59 write_coeff_abs_level_remaining,

60 write_coeff_sign_flag,

61 write_finished

62);

63

64 type transform_block is array(15 downto 0) of integer range -(2**(coeffwidth-1)) to

(2**(coeffwidth-1));↪→
65

66 signal BinarizeState : BinarizeStateType;

67

68

69

1

70 signal coefficients : Transform_Block;

71 signal coeff_abs_level_greater1_flag : std_logic_vector(0 to 15);

72 signal coeff_abs_level_greater2_flag : std_logic_vector(0 to 15);

73 signal sig_coeff_flag : std_logic_vector(0 to 15);

74 signal ABS_index : integer range 0 to 15;

75 signal ABS_started : std_logic;

76 signal ABS_done : std_logic;

77 signal ABS_level_writeout : integer range 0 to 32767;

78 signal k : integer range 0 to 4;

79

80 begin

81

82 Next_ABS : process(Clk, DataIn, Resetn, StartBinarizer)

83 variable ABS_index_cycler : integer range 0 to 15;

84

85 begin

86 if Resetn = '0' then

87 ABS_index_cycler := 0;

88 ABS_index <= 0;

89 ABS_done <= '0';

90 elsif rising_edge(Clk) then

91 case BinarizeState is

92 when sync | write_coeff_abs_level_remaining =>

93 find_next_ALG2_loop : for ABS_index_cycler in 0 to 15 loop

94 if (ABS_index_cycler <= ABS_index) then --<<<<<<<<< Here be issues

95 --spin TODO FIX end condition

96 else

97 if(coeff_abs_level_greater1_flag(ABS_index_cycler) = '1') then

98 report "ALG found at ABS_index[" & integer'image(ABS_index_cycler) & "]";

99 ABS_index <= ABS_index_cycler;

100 ABS_level_writeout <= coefficients(ABS_index_cycler);

101 if(ABS_index_cycler = 15) then

102 ABS_done <= '1';

103 else

104 exit find_next_ALG2_loop;

105 end if;

106 end if;

107 end if;

108 end loop;

109 when others =>

110 ABS_index <= 0;

111 ABS_done <= '0';

112 end case;

113 end if;

114 end process;

115

116 Binarize : process(Clk, DataIn, Resetn, StartBinarizer)

117

118 -- ---

119 -- Variable declarations

120 -- ---

121

122 variable sig_coeff_flag_found : std_logic;

123 variable sig_coeff_flag_index : integer range OutputWidth-1 downto OutputWidth-14;

124 variable coeff_sign_flag : std_logic_vector(0 to 15);

125 variable ALG1_index : integer range 0 to 8;

126 variable SIGN_index : integer range 0 to 15;

127 variable Scan_Direction : Scan_Directions := DiagonalScan; -- TODO: Add all scan directions

128

129 begin

130 if Resetn = '0' then

131 sig_coeff_flag <= (others => '0');

132 sig_coeff_flag_found := '0';

133 sig_coeff_flag_index := OutputWidth-1;

134 ALG1_index := 0;

135 SIGN_index := 0;

136 DataOut <= (others => '0');

137 DataLength <= (others => '0');

138 BinarizeState <= read_input;

139 Finished <= '1';

140 coeff_abs_level_greater1_flag <= (others => '0');

141 coeff_abs_level_greater2_flag <= (others => '0');

142 k <= 0;

2

143 PrefixLength <= (others => '0');

144

145 elsif rising_edge(Clk) then

146 case BinarizeState is

147 when read_input =>

148 BinarizeState <= write_last_sig_coeff_x_prefix;

149 Finished <= '0';

150

151 for i in 0 to 15 loop

152 -- ---

153 -- Read absolute values.

154 -- ---

155 coefficients(Scan_Direction(15-i)) <=

to_integer(abs(signed(DataIn(((CoeffWidth*(i+1))-1) downto

(CoeffWidth*i)))));

↪→
↪→

156

157 -- ---

158 -- Read sign.

159 -- ---

160 coeff_sign_flag(Scan_Direction(15-i)) := DataIn((CoeffWidth*(i+1))-1);

161

162 -- ---

163 -- Find non-zero data.

164 -- ---

165 sig_coeff_flag(Scan_Direction(15-i)) <= or_reduce(DataIn(((CoeffWidth*(i+1))-2)

downto (CoeffWidth*i)));↪→
166

167 -- ---

168 -- Find >1 data and >2 data. Procedure dependent on sign bit.

169 -- ---

170 case DataIn((CoeffWidth*(i+1))-1) is

171 when '0' =>

172 coeff_abs_level_greater1_flag(Scan_Direction(15-i)) <=

or_reduce(DataIn(((CoeffWidth*(i+1))-2) downto

((CoeffWidth*i)+1)));

↪→
↪→

173 coeff_abs_level_greater2_flag(Scan_Direction(15-i)) <=

(DataIn(CoeffWidth*i) and DataIn((CoeffWidth*i)+1))↪→
174 or

or_reduce(DataIn(((CoeffWidth*(i+1))-2)

downto

((CoeffWidth*i)+2)));

↪→
↪→
↪→

175 when '1' =>

176 coeff_abs_level_greater1_flag(Scan_Direction(15-i)) <=

nand_reduce(DataIn(((CoeffWidth*(i+1))-2) downto (CoeffWidth*i)));↪→
177 coeff_abs_level_greater2_flag(Scan_Direction(15-i)) <=

(DataIn(CoeffWidth*i) and (not(DataIn((CoeffWidth*i)+1))))↪→
178 or

nand_reduce(DataIn(((CoeffWidth*(i+1))-2)

downto((CoeffWidth*i)+2)));

↪→
↪→

179 when others =>

180 end case;

181 end loop;

182

183 when write_last_sig_coeff_x_prefix =>

184

185 for i in 0 to 15 loop

186 report "coefficients(" & integer'image(i) & "): " &

integer'image(coefficients(i));↪→
187 end loop;

188

189 report "sig_coeff_flag: " & integer'image(conv_integer(sig_coeff_flag));

190 report "coeff_abs_level_greater1_flag: " &

integer'image(conv_integer(coeff_abs_level_greater1_flag));↪→
191 report "coeff_abs_level_greater2_flag: " &

integer'image(conv_integer(coeff_abs_level_greater2_flag));↪→
192 report "coeff_sign_flag: " & integer'image(conv_integer(coeff_sign_flag));

193

194 BinarizeState <= write_last_sig_coeff_y_prefix;

195 write_last_sig_coeff_x_prefix_loop : for index in 0 to 15 loop

196 if(sig_coeff_flag(index) = '1') then

197 case index is

198 when 0 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";

199 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→

3

200 when 1 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";

201 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
202 when 2 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

203 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
204 when 3 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";

205 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
206 when 4 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

207 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
208 when 5 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";

209 DataLength <=

std_logic_vector(to_unsigned(2,OutputWidthLength));↪→
210 when 6 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";

211 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
212 when 7 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

213 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
214 when 8 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";

215 DataLength <=

std_logic_vector(to_unsigned(2,OutputWidthLength));↪→
216 when 9 => DataOut(OutputWidth-1) <= '0';

217 DataLength <=

std_logic_vector(to_unsigned(1,OutputWidthLength));↪→
218 when 10 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

219 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
220 when 11 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";

221 DataLength <=

std_logic_vector(to_unsigned(2,OutputWidthLength));↪→
222 when 12 => DataOut(OutputWidth-1) <= '0';

223 DataLength <=

std_logic_vector(to_unsigned(1,OutputWidthLength));↪→
224 when 13 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";

225 DataLength <=

std_logic_vector(to_unsigned(2,OutputWidthLength));↪→
226 when 14 => DataOut(OutputWidth-1) <= '0';

227 DataLength <=

std_logic_vector(to_unsigned(1,OutputWidthLength));↪→
228 when 15 => DataOut(OutputWidth-1) <= '0';

229 DataLength <=

std_logic_vector(to_unsigned(1,OutputWidthLength));↪→
230 end case;

231 exit write_last_sig_coeff_x_prefix_loop;

232 end if;

233 end loop;

234 when write_last_sig_coeff_y_prefix =>

235 BinarizeState <= write_sig_coeff_flag;

236 write_last_sig_coeff_y_prefix_loop : for index in 0 to 15 loop

237 if(sig_coeff_flag(index) = '1') then

238 case index is

239 when 0 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";

240 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
241 when 1 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

242 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
243 when 2 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";

244 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
245 when 3 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";

246 DataLength <=

std_logic_vector(to_unsigned(2,OutputWidthLength));↪→
247 when 4 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

248 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
249 when 5 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

250 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
251 when 6 => DataOut(OutputWidth-1) <= '0';

4

252 DataLength <=

std_logic_vector(to_unsigned(1,OutputWidthLength));↪→
253 when 7 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";

254 DataLength <=

std_logic_vector(to_unsigned(2,OutputWidthLength));↪→
255 when 8 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

256 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
257 when 9 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "111";

258 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
259 when 10 => DataOut(OutputWidth-1) <= '0';

260 DataLength <=

std_logic_vector(to_unsigned(1,OutputWidthLength));↪→
261 when 11 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";

262 DataLength <=

std_logic_vector(to_unsigned(2,OutputWidthLength));↪→
263 when 12 => DataOut(OutputWidth-1 downto OutputWidth-3) <= "110";

264 DataLength <=

std_logic_vector(to_unsigned(3,OutputWidthLength));↪→
265 when 13 => DataOut(OutputWidth-1) <= '0';

266 DataLength <=

std_logic_vector(to_unsigned(1,OutputWidthLength));↪→
267 when 14 => DataOut(OutputWidth-1 downto OutputWidth-2) <= "10";

268 DataLength <=

std_logic_vector(to_unsigned(2,OutputWidthLength));↪→
269 when 15 => DataOut(OutputWidth-1) <= '0';

270 DataLength <=

std_logic_vector(to_unsigned(1,OutputWidthLength));↪→
271 end case;

272 exit write_last_sig_coeff_y_prefix_loop;

273 end if;

274 end loop;

275 when write_sig_coeff_flag =>

276 BinarizeState <= write_coeff_abs_level_greater1;

277 write_sig_coeff_flag_loop : for index in 0 to 15 loop

278 if sig_coeff_flag_found = '1' then

279 DataOut(sig_coeff_flag_index) <= sig_coeff_flag(index);

280 sig_coeff_flag_index := sig_coeff_flag_index - 1;

281 if(sig_coeff_flag(index) = '1') then

282 coefficients(index) <= coefficients(index) - 1;

283 end if;

284 elsif(sig_coeff_flag(index) = '1') then

285 sig_coeff_flag_found := '1';

286 DataLength <= std_logic_vector(to_unsigned(15-index,OutputWidthLength));

287 coefficients(index) <= coefficients(index) - 1;

288 end if;

289 end loop;

290

291 when write_coeff_abs_level_greater1 =>

292 BinarizeState <= write_coeff_abs_level_greater2;

293 write_coeff_abs_level_greater_1_loop : for index in 0 to 15 loop

294 if sig_coeff_flag(index) = '1' and ALG1_index < 8 then

295 if(coeff_abs_level_greater1_flag(index) = '1') then

296 DataOut(OutputWidth-1-ALG1_index) <= '1';

297 report "ALG1:coefficients(" & integer'image(index) & "): " &

integer'image(coefficients(index));↪→
298 coefficients(index) <= coefficients(index) - 1;

299 report "ALG1:coefficients(" & integer'image(index) & "): " &

integer'image(coefficients(index));↪→
300 else

301 DataOut(OutputWidth-1-ALG1_index) <= '0';

302 end if;

303 ALG1_index := ALG1_index + 1;

304 end if;

305 end loop;

306

307 DataLength <= std_logic_vector(to_unsigned(ALG1_index,OutputWidthLength));

308

309 when write_coeff_abs_level_greater2 =>

310 BinarizeState <= sync;

311 write_coeff_abs_level_greater_2_loop : for index in 0 to 15 loop

312 if sig_coeff_flag(index) = '1' then

5

313 if (coeff_abs_level_greater2_flag(index) = '1') then

314 DataOut(OutputWidth-1) <= '1';

315 report "ALG2:coefficients(" & integer'image(index) & "): " &

integer'image(coefficients(index));↪→
316 coefficients(index) <= coefficients(index) - 1;

317 report "ALG2:coefficients(" & integer'image(index) & "): " &

integer'image(coefficients(index));↪→
318 else

319 DataOut(OutputWidth-1) <= '0';

320 end if;

321 DataLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

322 exit write_coeff_abs_level_greater_2_loop;

323 end if;

324 end loop;

325

326 when sync =>

327 BinarizeState <= write_coeff_abs_level_remaining;

328

329 for i in 0 to 15 loop

330 report "coefficients(" & integer'image(i) & "): " &

integer'image(coefficients(i));↪→
331 end loop;

332

333 when write_coeff_abs_level_remaining =>

334 report "write_coeff_abs_level_remaining: @ k: " & integer'image(k) & "

ABS_level_writeout: " & integer'image(ABS_level_writeout);↪→
335 if(ABS_done = '1') then

336 BinarizeState <= write_coeff_sign_flag;

337 end if;

338 case k is

339 when 0 =>

340 case (ABS_level_writeout) is

341 when 0 =>

342 DataLength <= std_logic_vector(to_unsigned(0,OutputWidthLength));

343 PrefixLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

344 when 1 =>

345 DataLength <= std_logic_vector(to_unsigned(0,OutputWidthLength));

346 PrefixLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

347 when 2 =>

348 DataLength <= std_logic_vector(to_unsigned(0,OutputWidthLength));

349 PrefixLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

350 when 3 =>

351 DataLength <= std_logic_vector(to_unsigned(0,OutputWidthLength));

352 PrefixLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

353 when 4 to 5 =>

354 DataOut(OutputWidth-1 downto OutputWidth-1) <=

std_logic_vector(to_unsigned(ABS_level_writeout-4,1));↪→
355 DataLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

356 PrefixLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

357 k <= 1;

358 when 6 to 9 =>

359 DataOut(OutputWidth-1 downto OutputWidth-2) <=

std_logic_vector(to_unsigned(ABS_level_writeout-6,2));↪→
360 DataLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

361 PrefixLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

362 when 10 to 17 =>

363 DataOut(OutputWidth-1 downto OutputWidth-3) <=

std_logic_vector(to_unsigned(ABS_level_writeout-10,3));↪→
364 DataLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

365 PrefixLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

366 when 18 to 33 =>

367 DataOut(OutputWidth-1 downto OutputWidth-4) <=

std_logic_vector(to_unsigned(ABS_level_writeout-18,4));↪→
368 DataLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

369 PrefixLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

370 when 34 to 65 =>

371 DataOut(OutputWidth-1 downto OutputWidth-5) <=

std_logic_vector(to_unsigned(ABS_level_writeout-34,5));↪→
372 DataLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

373 PrefixLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

374 when 66 to 129 =>

375 DataOut(OutputWidth-1 downto OutputWidth-6) <=

std_logic_vector(to_unsigned(ABS_level_writeout-66,6));↪→

6

376 DataLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

377 PrefixLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

378 when 130 to 257 =>

379 DataOut(OutputWidth-1 downto OutputWidth-7) <=

std_logic_vector(to_unsigned(ABS_level_writeout-130,7));↪→
380 DataLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

381 PrefixLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

382 when 258 to 513 =>

383 DataOut(OutputWidth-1 downto OutputWidth-8) <=

std_logic_vector(to_unsigned(ABS_level_writeout-258,8));↪→
384 DataLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

385 PrefixLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

386 when 514 to 1025 =>

387 DataOut(OutputWidth-1 downto OutputWidth-9) <=

std_logic_vector(to_unsigned(ABS_level_writeout-514,9));↪→
388 DataLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

389 PrefixLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

390 when 1026 to 2049 =>

391 DataOut(OutputWidth-1 downto OutputWidth-10) <=

std_logic_vector(to_unsigned(ABS_level_writeout-1026,10));↪→
392 DataLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

393 PrefixLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

394 when 2050 to 4097 =>

395 DataOut(OutputWidth-1 downto OutputWidth-11) <=

std_logic_vector(to_unsigned(ABS_level_writeout-2050,11));↪→
396 DataLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

397 PrefixLength <= std_logic_vector(to_unsigned(15,OutputWidthLength));

398 when 4098 to 8193 =>

399 DataOut(OutputWidth-1 downto OutputWidth-12) <=

std_logic_vector(to_unsigned(ABS_level_writeout-4098,12));↪→
400 DataLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

401 PrefixLength <= std_logic_vector(to_unsigned(16,OutputWidthLength));

402 when 8194 to 16385 =>

403 DataOut(OutputWidth-1 downto OutputWidth-13) <=

std_logic_vector(to_unsigned(ABS_level_writeout-8194,13));↪→
404 DataLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

405 PrefixLength <= std_logic_vector(to_unsigned(17,OutputWidthLength));

406 when 16386 to 32767 =>

407 DataOut(OutputWidth-1 downto OutputWidth-14) <=

std_logic_vector(to_unsigned(ABS_level_writeout-16386,14));↪→
408 DataLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

409 PrefixLength <= std_logic_vector(to_unsigned(18,OutputWidthLength));

410 when others =>

411 end case;

412 when 1 =>

413 case (ABS_level_writeout) is

414 when 0 to 1 =>

415 DataOut(OutputWidth-1 downto OutputWidth-1) <=

std_logic_vector(to_unsigned(ABS_level_writeout,1));↪→
416 DataLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

417 PrefixLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

418 when 2 to 3 =>

419 DataOut(OutputWidth-1 downto OutputWidth-1) <=

std_logic_vector(to_unsigned(ABS_level_writeout-2,1));↪→
420 DataLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

421 PrefixLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

422 when 4 to 5 =>

423 DataOut(OutputWidth-1 downto OutputWidth-1) <=

std_logic_vector(to_unsigned(ABS_level_writeout-4,1));↪→
424 DataLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

425 PrefixLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

426 when 6 to 7 =>

427 DataOut(OutputWidth-1 downto OutputWidth-1) <=

std_logic_vector(to_unsigned(ABS_level_writeout-6,1));↪→
428 DataLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

429 PrefixLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

430 when 8 to 11 =>

431 DataOut(OutputWidth-1 downto OutputWidth-2) <=

std_logic_vector(to_unsigned(ABS_level_writeout-8,2));↪→
432 DataLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

433 PrefixLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

434 when 12 to 19 =>

435 DataOut(OutputWidth-1 downto OutputWidth-3) <=

std_logic_vector(to_unsigned(ABS_level_writeout-12,3));↪→

7

436 DataLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

437 PrefixLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

438 when 20 to 35 =>

439 DataOut(OutputWidth-1 downto OutputWidth-4) <=

std_logic_vector(to_unsigned(ABS_level_writeout-20,4));↪→
440 DataLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

441 PrefixLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

442 when 36 to 67 =>

443 DataOut(OutputWidth-1 downto OutputWidth-5) <=

std_logic_vector(to_unsigned(ABS_level_writeout-36,5));↪→
444 DataLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

445 PrefixLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

446 when 68 to 131 =>

447 DataOut(OutputWidth-1 downto OutputWidth-6) <=

std_logic_vector(to_unsigned(ABS_level_writeout-68,6));↪→
448 DataLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

449 PrefixLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

450 when 132 to 259 =>

451 DataOut(OutputWidth-1 downto OutputWidth-7) <=

std_logic_vector(to_unsigned(ABS_level_writeout-132,7));↪→
452 DataLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

453 PrefixLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

454 when 260 to 515 =>

455 DataOut(OutputWidth-1 downto OutputWidth-8) <=

std_logic_vector(to_unsigned(ABS_level_writeout-260,8));↪→
456 DataLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

457 PrefixLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

458 when 516 to 1027 =>

459 DataOut(OutputWidth-1 downto OutputWidth-9) <=

std_logic_vector(to_unsigned(ABS_level_writeout-516,9));↪→
460 DataLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

461 PrefixLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

462 when 1028 to 2051 =>

463 DataOut(OutputWidth-1 downto OutputWidth-10) <=

std_logic_vector(to_unsigned(ABS_level_writeout-1028,10));↪→
464 DataLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

465 PrefixLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

466 when 2052 to 4099 =>

467 DataOut(OutputWidth-1 downto OutputWidth-11) <=

std_logic_vector(to_unsigned(ABS_level_writeout-2052,11));↪→
468 DataLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

469 PrefixLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

470 when 4100 to 8195 =>

471 DataOut(OutputWidth-1 downto OutputWidth-12) <=

std_logic_vector(to_unsigned(ABS_level_writeout-4100,12));↪→
472 DataLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

473 PrefixLength <= std_logic_vector(to_unsigned(15,OutputWidthLength));

474 when 8196 to 16387 =>

475 DataOut(OutputWidth-1 downto OutputWidth-13) <=

std_logic_vector(to_unsigned(ABS_level_writeout-8196,13));↪→
476 DataLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

477 PrefixLength <= std_logic_vector(to_unsigned(16,OutputWidthLength));

478 when 16388 to 32767 =>

479 DataOut(OutputWidth-1 downto OutputWidth-14) <=

std_logic_vector(to_unsigned(ABS_level_writeout-16388,14));↪→
480 DataLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

481 PrefixLength <= std_logic_vector(to_unsigned(17,OutputWidthLength));

482 when others =>

483 end case;

484 when 2 =>

485 case (ABS_level_writeout) is

486 when 0 to 3 =>

487 DataOut(OutputWidth-1 downto OutputWidth-2) <=

std_logic_vector(to_unsigned(ABS_level_writeout,2));↪→
488 DataLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

489 PrefixLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

490 when 4 to 7 =>

491 DataOut(OutputWidth-1 downto OutputWidth-2) <=

std_logic_vector(to_unsigned(ABS_level_writeout-4,2));↪→
492 DataLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

493 PrefixLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

494 when 8 to 11 =>

495 DataOut(OutputWidth-1 downto OutputWidth-2) <=

std_logic_vector(to_unsigned(ABS_level_writeout-8,2));↪→

8

496 DataLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

497 PrefixLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

498 when 12 to 15 =>

499 DataOut(OutputWidth-1 downto OutputWidth-2) <=

std_logic_vector(to_unsigned(ABS_level_writeout-12,2));↪→
500 DataLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

501 PrefixLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

502 when 16 to 23 =>

503 DataOut(OutputWidth-1 downto OutputWidth-3) <=

std_logic_vector(to_unsigned(ABS_level_writeout-16,3));↪→
504 DataLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

505 PrefixLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

506 when 24 to 39 =>

507 DataOut(OutputWidth-1 downto OutputWidth-4) <=

std_logic_vector(to_unsigned(ABS_level_writeout-24,4));↪→
508 DataLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

509 PrefixLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

510 when 40 to 71 =>

511 DataOut(OutputWidth-1 downto OutputWidth-5) <=

std_logic_vector(to_unsigned(ABS_level_writeout-40,5));↪→
512 DataLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

513 PrefixLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

514 when 72 to 135 =>

515 DataOut(OutputWidth-1 downto OutputWidth-6) <=

std_logic_vector(to_unsigned(ABS_level_writeout-72,6));↪→
516 DataLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

517 PrefixLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

518 when 136 to 263 =>

519 DataOut(OutputWidth-1 downto OutputWidth-7) <=

std_logic_vector(to_unsigned(ABS_level_writeout-136,7));↪→
520 DataLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

521 PrefixLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

522 when 264 to 519 =>

523 DataOut(OutputWidth-1 downto OutputWidth-8) <=

std_logic_vector(to_unsigned(ABS_level_writeout-264,8));↪→
524 DataLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

525 PrefixLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

526 when 520 to 1031 =>

527 DataOut(OutputWidth-1 downto OutputWidth-9) <=

std_logic_vector(to_unsigned(ABS_level_writeout-520,9));↪→
528 DataLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

529 PrefixLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

530 when 1032 to 2055 =>

531 DataOut(OutputWidth-1 downto OutputWidth-10) <=

std_logic_vector(to_unsigned(ABS_level_writeout-1032,10));↪→
532 DataLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

533 PrefixLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

534 when 2056 to 4103 =>

535 DataOut(OutputWidth-1 downto OutputWidth-11) <=

std_logic_vector(to_unsigned(ABS_level_writeout-2056,11));↪→
536 DataLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

537 PrefixLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

538 when 4104 to 8199 =>

539 DataOut(OutputWidth-1 downto OutputWidth-12) <=

std_logic_vector(to_unsigned(ABS_level_writeout-4104,12));↪→
540 DataLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

541 PrefixLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

542 when 8200 to 16391 =>

543 DataOut(OutputWidth-1 downto OutputWidth-13) <=

std_logic_vector(to_unsigned(ABS_level_writeout-8200,13));↪→
544 DataLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

545 PrefixLength <= std_logic_vector(to_unsigned(15,OutputWidthLength));

546 when 16392 to 32767 =>

547 DataOut(OutputWidth-1 downto OutputWidth-14) <=

std_logic_vector(to_unsigned(ABS_level_writeout-16392,14));↪→
548 DataLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

549 PrefixLength <= std_logic_vector(to_unsigned(16,OutputWidthLength));

550 when others =>

551 end case;

552 when 3 =>

553 case (ABS_level_writeout) is

554 when 0 to 7 =>

555 DataOut(OutputWidth-1 downto OutputWidth-3) <=

std_logic_vector(to_unsigned(ABS_level_writeout,3));↪→

9

556 DataLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

557 PrefixLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

558 when 8 to 15 =>

559 DataOut(OutputWidth-1 downto OutputWidth-3) <=

std_logic_vector(to_unsigned(ABS_level_writeout-8,3));↪→
560 DataLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

561 PrefixLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

562 when 16 to 23 =>

563 DataOut(OutputWidth-1 downto OutputWidth-3) <=

std_logic_vector(to_unsigned(ABS_level_writeout-16,3));↪→
564 DataLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

565 PrefixLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

566 when 24 to 31 =>

567 DataOut(OutputWidth-1 downto OutputWidth-3) <=

std_logic_vector(to_unsigned(ABS_level_writeout-24,3));↪→
568 DataLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

569 PrefixLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

570 when 32 to 47 =>

571 DataOut(OutputWidth-1 downto OutputWidth-4) <=

std_logic_vector(to_unsigned(ABS_level_writeout-32,4));↪→
572 DataLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

573 PrefixLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

574 when 48 to 79 =>

575 DataOut(OutputWidth-1 downto OutputWidth-5) <=

std_logic_vector(to_unsigned(ABS_level_writeout-48,5));↪→
576 DataLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

577 PrefixLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

578 when 80 to 143 =>

579 DataOut(OutputWidth-1 downto OutputWidth-6) <=

std_logic_vector(to_unsigned(ABS_level_writeout-80,6));↪→
580 DataLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

581 PrefixLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

582 when 144 to 271 =>

583 DataOut(OutputWidth-1 downto OutputWidth-7) <=

std_logic_vector(to_unsigned(ABS_level_writeout-144,7));↪→
584 DataLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

585 PrefixLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

586 when 272 to 527 =>

587 DataOut(OutputWidth-1 downto OutputWidth-8) <=

std_logic_vector(to_unsigned(ABS_level_writeout-272,8));↪→
588 DataLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

589 PrefixLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

590 when 528 to 1039 =>

591 DataOut(OutputWidth-1 downto OutputWidth-9) <=

std_logic_vector(to_unsigned(ABS_level_writeout-528,9));↪→
592 DataLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

593 PrefixLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

594 when 1040 to 2063 =>

595 DataOut(OutputWidth-1 downto OutputWidth-10) <=

std_logic_vector(to_unsigned(ABS_level_writeout-1040,10));↪→
596 DataLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

597 PrefixLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

598 when 2064 to 4111 =>

599 DataOut(OutputWidth-1 downto OutputWidth-11) <=

std_logic_vector(to_unsigned(ABS_level_writeout-2064,11));↪→
600 DataLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

601 PrefixLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

602 when 4112 to 8207 =>

603 DataOut(OutputWidth-1 downto OutputWidth-12) <=

std_logic_vector(to_unsigned(ABS_level_writeout-4112,12));↪→
604 DataLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

605 PrefixLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

606 when 8208 to 16399 =>

607 DataOut(OutputWidth-1 downto OutputWidth-13) <=

std_logic_vector(to_unsigned(ABS_level_writeout-8208,13));↪→
608 DataLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

609 PrefixLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

610 when 16400 to 32767 =>

611 DataOut(OutputWidth-1 downto OutputWidth-14) <=

std_logic_vector(to_unsigned(ABS_level_writeout-16400,14));↪→
612 DataLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

613 PrefixLength <= std_logic_vector(to_unsigned(15,OutputWidthLength));

614 when others =>

10

615 end case;

616 when 4 =>

617 case (ABS_level_writeout) is

618 when 0 to 15 =>

619 DataOut(OutputWidth-1 downto OutputWidth-4) <=

std_logic_vector(to_unsigned(ABS_level_writeout,4));↪→
620 DataLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

621 PrefixLength <= std_logic_vector(to_unsigned(1,OutputWidthLength));

622 when 16 to 31 =>

623 DataOut(OutputWidth-1 downto OutputWidth-4) <=

std_logic_vector(to_unsigned(ABS_level_writeout-16,4));↪→
624 DataLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

625 PrefixLength <= std_logic_vector(to_unsigned(2,OutputWidthLength));

626 when 32 to 47 =>

627 DataOut(OutputWidth-1 downto OutputWidth-4) <=

std_logic_vector(to_unsigned(ABS_level_writeout-32,4));↪→
628 DataLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

629 PrefixLength <= std_logic_vector(to_unsigned(3,OutputWidthLength));

630 when 48 to 63 =>

631 DataOut(OutputWidth-1 downto OutputWidth-4) <=

std_logic_vector(to_unsigned(ABS_level_writeout-48,4));↪→
632 DataLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

633 PrefixLength <= std_logic_vector(to_unsigned(4,OutputWidthLength));

634 when 64 to 95 =>

635 DataOut(OutputWidth-1 downto OutputWidth-5) <=

std_logic_vector(to_unsigned(ABS_level_writeout-64,5));↪→
636 DataLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

637 PrefixLength <= std_logic_vector(to_unsigned(5,OutputWidthLength));

638 when 96 to 159 =>

639 DataOut(OutputWidth-1 downto OutputWidth-6) <=

std_logic_vector(to_unsigned(ABS_level_writeout-96,6));↪→
640 DataLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

641 PrefixLength <= std_logic_vector(to_unsigned(6,OutputWidthLength));

642 when 160 to 287 =>

643 DataOut(OutputWidth-1 downto OutputWidth-7) <=

std_logic_vector(to_unsigned(ABS_level_writeout-160,7));↪→
644 DataLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

645 PrefixLength <= std_logic_vector(to_unsigned(7,OutputWidthLength));

646 when 288 to 543 =>

647 DataOut(OutputWidth-1 downto OutputWidth-8) <=

std_logic_vector(to_unsigned(ABS_level_writeout-288,8));↪→
648 DataLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

649 PrefixLength <= std_logic_vector(to_unsigned(8,OutputWidthLength));

650 when 544 to 1055 =>

651 DataOut(OutputWidth-1 downto OutputWidth-9) <=

std_logic_vector(to_unsigned(ABS_level_writeout-544,9));↪→
652 DataLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

653 PrefixLength <= std_logic_vector(to_unsigned(9,OutputWidthLength));

654 when 1056 to 2079 =>

655 DataOut(OutputWidth-1 downto OutputWidth-10) <=

std_logic_vector(to_unsigned(ABS_level_writeout-1056,10));↪→
656 DataLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

657 PrefixLength <= std_logic_vector(to_unsigned(10,OutputWidthLength));

658 when 2080 to 4127 =>

659 DataOut(OutputWidth-1 downto OutputWidth-11) <=

std_logic_vector(to_unsigned(ABS_level_writeout-2080,11));↪→
660 DataLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

661 PrefixLength <= std_logic_vector(to_unsigned(11,OutputWidthLength));

662 when 4128 to 8223 =>

663 DataOut(OutputWidth-1 downto OutputWidth-12) <=

std_logic_vector(to_unsigned(ABS_level_writeout-4128,12));↪→
664 DataLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

665 PrefixLength <= std_logic_vector(to_unsigned(12,OutputWidthLength));

666 when 8224 to 16415 =>

667 DataOut(OutputWidth-1 downto OutputWidth-13) <=

std_logic_vector(to_unsigned(ABS_level_writeout-8224,13));↪→
668 DataLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

669 PrefixLength <= std_logic_vector(to_unsigned(13,OutputWidthLength));

670 when 16416 to 32767 =>

671 DataOut(OutputWidth-1 downto OutputWidth-14) <=

std_logic_vector(to_unsigned(ABS_level_writeout-16416,14));↪→
672 DataLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

673 PrefixLength <= std_logic_vector(to_unsigned(14,OutputWidthLength));

11

674 when others =>

675 end case;

676 end case;

677

678 if(k<4 and (ABS_level_writeout) > (3*(2**k))) then

679 k <= k+1;

680 end if;

681

682 when write_coeff_sign_flag =>

683 BinarizeState <= write_finished;

684 write_coeff_sign_flag_loop : for index in 0 to 15 loop

685 if sig_coeff_flag(index) = '1' then

686 if coeff_sign_flag(index) = '1' then

687 DataOut(OutputWidth-1 - SIGN_index) <= '1';

688 else

689 DataOut(OutputWidth-1 - SIGN_index) <= '0';

690 end if;

691 SIGN_index := SIGN_index + 1;

692 end if;

693 DataLength <= std_logic_vector(to_unsigned(SIGN_index,OutputWidthLength));

694 end loop;

695 when others =>

696 BinarizeState <= write_finished;

697 Finished <= '1';

698 DataOut <= (others => '0');

699 DataLength <= (others => '0');

700 end case;

701 end if;

702 end process;

703 end struct;

12

Appendix B

1 -- **

2 -- CABAC_Enc coder for HEVC h.265

3 -- 01/03/2017

4 -- Norwegian University of Science and Technology

5 -- Lars Erik Songe Paulsen

6 -- **

7

8 -- **

9 -- TODO LIST:

10 -- **

11 -- BinCountInNALUnits

12 -- bitsOutstanding overflow

13 -- Replace ctxIdxTableInitials with calculation

14 -- Proper memory interfacing for tables

15 -- **

16

17 library ieee;

18 use ieee.std_logic_1164.all;

19 use ieee.std_logic_arith.ALL;

20 use ieee.numeric_std.all;

21 use ieee.std_logic_unsigned.all;

22 use ieee.std_logic_misc.all;

23

24 library std;

25 use std.textio.all;

26

27 library work;

28 use work.CABAC_EncParameters.all;

29

30 entity CABAC_Enc is

31

32 port

33 (

34 Clk : in std_logic;

35 Input : in std_logic_vector(InputW-1 downto 0);

36 InputLen : in std_logic_vector(InputWLen-1 downto 0);

37 ctxIdx : in std_logic_vector(6 downto 0);

38 SliceQPY : in std_logic_vector(5 downto 0);

39 initType : in std_logic_vector(1 downto 0);

40 Resetn : in std_logic;

41 Start : in std_logic;

42 Output : out std_logic_vector(OutputW-1 downto 0);

43 OutputLen : out std_logic_vector(OutputWLen-1 downto 0);

44 BypassI : in std_logic;

45 BypassO : out std_logic;

46 TermI : in std_logic;

47 TermO : out std_logic;

48 Finished : out std_logic

49);

50

51 end CABAC_Enc;

52

53 architecture struct of CABAC_Enc is

54

55 -- ---

56 -- Type declarations

57 -- ---

58

59 -- States

60 type CABAC_EncStateType is(

61 r_Input,

62 init_ctxTbl,

63 r_ctx,

64 enc_bin_r,

65 enc_bin_b,

66 RenormE,

67 PutBit,

68 w_ctx,

69 enc_Term,

70 w_finished

71);

1

72

73 -- Table types

74 type transIdx_t is array(0 to 63) of std_logic_vector(5 downto 0);

75 type qRange_t is array(0 to 3) of std_logic_vector(7 downto 0);

76 type rangeTabLps_t is array(0 to 63) of qRange_t;

77 type ctxTblInit_t is array(0 to (52*3*ctxIdxRange)-1) of std_logic_vector(6 downto 0);

78 type ctxTbl_t is array(0 to ctxIdxRange-1) of std_logic_vector(6 downto 0);

79

80 -- ---

81 -- Functions

82 -- ---

83 function string_to_binary(inp: string) return std_logic_vector is

84 variable temp: std_logic_vector(inp'length-1 downto 0) := (others => 'X');

85 begin

86 for i in inp'range loop

87 case inp(i) is

88 when '0' => temp(i-1) := '0';

89 when '1' => temp(i-1) := '1';

90 when others => temp(i-1) := 'X';

91 end case;

92 end loop;

93 return temp;

94 end function string_to_binary;

95

96 impure function InitctxTbl (RomFileName : in string) return ctxTblInit_t is

97 FILE romfile : text is in RomFileName;

98 variable RomFileLine : line;

99 variable rom : ctxTblInit_t;

100 variable TestString : string(7 downto 1);

101 begin

102 for i in ctxTblInit_t'range loop

103 readline(romfile, RomFileLine);

104 read(RomFileLine, TestString);

105 rom(i) := string_to_binary(TestString)(6 downto 0);

106 end loop;

107 return rom;

108 end function;

109

110 impure function InittransIdx (RomFileName : in string) return transIdx_t is

111 FILE romfile : text is in RomFileName;

112 variable RomFileLine : line;

113 variable rom : transIdx_t;

114 variable TestString : string(8 downto 1);

115 begin

116 for i in 0 to 63 loop

117 readline(romfile, RomFileLine);

118 read(RomFileLine, TestString);

119 rom(i) := string_to_binary(TestString)(5 downto 0);

120 end loop;

121 return rom;

122 end function;

123

124 impure function InitrangeTabLps (RomFileName : in string) return rangeTabLps_t is

125 FILE romfile : text is in RomFileName;

126 variable RomFileLine : line;

127 variable rom : rangeTabLps_t;

128 variable TestString : string(8 downto 1);

129 begin

130 for i in 0 to 3 loop

131 for j in 0 to 63 loop

132 readline(romfile, RomFileLine);

133 read(RomFileLine, TestString);

134 rom(j)(i) := string_to_binary(TestString)(7 downto 0);

135 end loop;

136 end loop;

137 return rom;

138 end function;

139

140 -- ---

141 -- Signal declarations

142 -- ---

143

144 -- ---

2

145 -- Signal declarations

146 -- ---

147 signal CABAC_EncState : CABAC_EncStateType;

148 signal currCtx : std_logic_vector(6 downto 0);

149 signal initTbl : integer range 0 to ctxIdxRange-1;

150

151 -- Tables

152 signal rangeTabLPS : rangeTabLps_t := InitrangeTabLps("CABAC_Enc_Tables\rangeTabLPS.txt");

153 signal transIdxLPS : transIdx_t := InittransIdx ("CABAC_Enc_Tables\transIdxLPS.txt");

154 signal transIdxMPS : transIdx_t := InittransIdx ("CABAC_Enc_Tables\transIdxMPS.txt");

155 signal ctxIdxTableInitials : ctxTblInit_t := InitctxTbl

("CABAC_Enc_Tables\ctxIdxTableInitials.txt");↪→
156 signal ctxIdxTable : ctxTbl_t;

157

158 begin

159

160 ---- ---

161 ---- Debugger process

162 ---- ---

163 --Debugger : process(Resetn)

164 --begin

165 --if rising_edge(Resetn) then

166 -- for i in 0 to 63 loop

167 -- report "index: " & integer'image(i) &

168 -- " rangeTabLPS: " & integer'image(conv_integer(rangeTabLPS(i)(0))) &

169 -- " " & integer'image(conv_integer(rangeTabLPS(i)(1))) &

170 -- " " & integer'image(conv_integer(rangeTabLPS(i)(2))) &

171 -- " " & integer'image(conv_integer(rangeTabLPS(i)(3))) &

172 -- " transIdxLPS: " & integer'image(conv_integer(transIdxLPS(i))) &

173 -- " transIdxMPS: " & integer'image(conv_integer(transIdxMPS(i)));

174 -- end loop;

175 -- for i in 0 to 17939 loop

176 -- report "index: " & integer'image(i) &

177 -- " ctxIdxTableInitials: " & integer'image(conv_integer(ctxIdxTableInitials(i)));

178 -- end loop;

179 --end if;

180 --end process;

181

182 -- ---

183 -- ctxIdxTable interfacing process

184 -- ---

185 ctxIdxTableLookups : process(Clk)

186 begin

187 if rising_edge(Clk) then

188 case CABAC_EncState is

189 when init_ctxTbl => -- TODO verify full table is loaded

190 -- Read context table inital values with the correct offset

191 ctxIdxTable(initTbl)

192 <= ctxIdxTableInitials((conv_integer(SliceQPY)*(ctxIdxRange*3))

193 +(conv_integer(initType)*ctxIdxRange)+initTbl);

194 when r_ctx =>

195 -- Store current context in working register

196 -- TODO: Figure out why this needs to in CABAC_Enc Process.

197 when w_ctx =>

198 -- Update context from working register

199 ctxIdxTable(conv_integer(ctxIdx)) <= currCtx;

200 when others =>

201 end case;

202 end if;

203 end process;

204

205 -- ---

206 -- CABAC_Enc coding main process

207 -- ---

208 CABAC_Enc : process(Clk, Input, initType, SliceQPY, BypassI, Resetn, Start, ctxIdx, TermI)

209

210 -- ---

211 -- Variable declarations

212 -- ---

213

214 -- Encoding vals

215 variable ivlLow : std_logic_vector(10 downto 0);--unsigned(10 downto 0);

216 variable ivlCurrRange : std_logic_vector(8 downto 0);--unsigned(8 downto 0);

3

217 variable ivlLpsRange : std_logic_vector(7 downto 0);

218 variable qRangeIdx : std_logic_VECTOR(0 to 1);

219

220 -- binVals

221 variable bins : std_logic_vector(InputW-1 downto 0);

222 variable binValI : integer range 0 to InputW-1;

223 variable binsLen : std_logic_vector(InputWLen-1 downto 0);

224

225 -- PutBit variables

226 variable PutBitVal : std_logic;

227 variable PutBitI : integer range OutputW-1 downto 0;

228 variable bitsOutstanding : integer range 0 to OutputW-1;

229 variable firstBitFlag : std_logic;

230

231 variable Flushed : std_logic_vector(1 downto 0);

232

233 variable InitFlag : std_logic;

234

235 begin

236 if Resetn = '0' then

237 currCtx <= (others => '0');

238 Output <= (others => '0');

239 OutputLen <= (others => '0');

240 CABAC_EncState <= r_Input;

241 Finished <= '1';

242 TermO <= '0';

243 BypassO <= '0';

244 InitFlag := '0';

245 Flushed := "00";

246 initTbl <= 0;

247 ivlLow := (others => '0');--0

248 ivlCurrRange := "111111110"; --510

249 firstBitFlag := '1';

250 bitsOutstanding := 0;

251 qRangeIdx := (others => '0');

252 PutBitI := 0;

253 elsif rising_edge(Clk) then

254 case CABAC_EncState is

255 when r_Input =>

256 if (Start = '1') then

257 if (InitFlag = '0') then

258 CABAC_EncState <= init_ctxTbl;

259 elsif (TermI = '1') then

260 CABAC_EncState <= enc_Term;

261 else

262 if (BypassI = '1') then

263 CABAC_EncState <= enc_bin_b;

264 else

265 CABAC_EncState <= r_ctx;

266 end if;

267 end if;

268 BypassO <= BypassI;

269 bins := Input;

270 binsLen := InputLen;

271 Finished <= '0';

272 binValI := InputW-1;

273 end if;

274 when init_ctxTbl =>

275 if (initTbl = (ctxIdxRange-1)) then

276 if(BypassI = '1') then

277 CABAC_EncState <= enc_bin_b;

278 else

279 CABAC_EncState <= r_ctx;

280 end if;

281 InitFlag := '1';

282 else

283 initTbl <= initTbl + 1;

284 end if;

285 when r_ctx =>

286 CABAC_EncState <= enc_bin_r;

287 currCtx <= ctxIdxTable(conv_integer(ctxIdx));

288 when enc_bin_b =>

289 if (binValI>=(InputW-conv_integer(binsLen))) then

4

290 ivlLow := ivlLow(9 downto 0) & "0";

291 if (bins(binValI) /= '0') then

292 ivlLow := ivlLow + ivlCurrRange;

293 end if;

294 if (ivlLow>=1024) then

295 PutBitVal := '1';

296 CABAC_EncState <= PutBit;

297 ivlLow := ivlLow - 1024;

298 elsif (ivlLow<512) then

299 PutBitVal := '0';

300 CABAC_EncState <= PutBit;

301 else

302 ivlLow := ivlLow - 512;

303 bitsOutstanding := bitsOutstanding + 1;

304 end if;

305 binValI := binValI - 1;

306 else

307 OutputLen <= std_logic_vector(to_unsigned(PutBitI,OutputWLen));

308 CABAC_EncState <= w_ctx;

309 end if;

310 when enc_bin_r =>

311 if (binValI>=(InputW-conv_integer(binsLen))) then

312 qRangeIdx := ivlCurrRange(7 downto 6);

313 ivlLpsRange := rangeTabLPS(conv_integer(currCtx(5 downto

0)))(conv_integer(qRangeIdx));↪→
314 ivlCurrRange := ivlCurrRange - ivlLpsRange;

315 if(bins(binValI) /= currCtx(6)) then

316 ivlLow := ivlLow + ivlCurrRange;

317 ivlCurrRange := "0" & ivlLpsRange;

318 if(currCtx(5 downto 0) = "000000") then

319 currCtx(6) <= not currCtx(6);

320 end if;

321 currCtx(5 downto 0) <= transIdxLPS(conv_integer(currCtx(5 downto 0)));

322 else

323 currCtx(5 downto 0) <= transIdxMPS(conv_integer(currCtx(5 downto 0)));

324 end if;

325 binValI := binValI - 1;

326 CABAC_EncState <= RenormE;

327 else

328 OutputLen <= std_logic_vector(to_unsigned(PutBitI,OutputWLen));

329 CABAC_EncState <= w_ctx;

330 end if;

331 when RenormE =>

332 if (ivlCurrRange < 256) then

333 if (ivlLow < 256) then

334 PutBitVal := '0';

335 CABAC_EncState <= PutBit;

336 elsif(ivlLow >= 512) then

337 ivlLow := ivlLow - 512;

338 PutBitVal := '1';

339 CABAC_EncState <= PutBit;

340 else

341 ivlLow := ivlLow - 256;

342 bitsOutstanding := bitsOutstanding + 1;

343 ivlCurrRange := ivlCurrRange(7 downto 0) & "0";

344 ivlLow := ivlLow(9 downto 0) & "0";

345 end if;

346 else

347 if (Flushed = "11") then

348 OutputLen <= std_logic_vector(to_unsigned(PutBitI,OutputWLen));

349 CABAC_EncState <= w_finished;

350 elsif (Flushed = "01") then

351 Flushed := "10";

352 PutBitVal := ivlLow(9);

353 CABAC_EncState <= PutBit;

354 else

355 CABAC_EncState <= enc_bin_r;

356 end if;

357 end if;

358 when PutBit =>

359 if (firstBitFlag /= '0') then

360 firstBitFlag := '0';

361 else

5

362 Output((OutputW-1)-PutBitI) <= PutBitVal;

363 PutBitI := PutBitI + 1;

364 end if;

365 PutBit_loop : for i in 0 to PutBitLoopLen-1 loop -- TODO: Potential overflow here if

bitsOutstanding > PutBitLoopLen↪→
366 if (bitsOutstanding > 0) then

367 Output((OutputW-1)-PutBitI) <= not PutBitVal;

368 bitsOutstanding := bitsOutstanding - 1;

369 PutBitI := PutBitI + 1;

370 else

371 if(Flushed = "10") then

372 Output((OutputW-1)-PutBitI downto (OutputW-1)-PutBitI-1) <= ivlLow(8) &

'1';↪→
373 OutputLen <= std_logic_vector(to_unsigned(PutBitI+2,OutputWLen));

374 CABAC_EncState <= w_finished;

375 elsif(BypassI = '1') then

376 CABAC_EncState <= enc_bin_b;

377 else

378 ivlCurrRange := ivlCurrRange(7 downto 0) & "0";

379 ivlLow := ivlLow(9 downto 0) & "0";

380 CABAC_EncState <= RenormE;

381 end if;

382 exit PutBit_loop;

383 end if;

384 end loop;

385 when w_ctx =>

386 CABAC_EncState <= r_Input;

387 PutBitI := 0;

388 Finished <= '1';

389 when enc_Term =>

390 ivlCurrRange := ivlCurrRange - 2;

391 if (bins(binValI) /= '0') then

392 ivlLow := ivlLow + ivlCurrRange;

393 ivlCurrRange := "000000010"; --2

394 Flushed := "01";

395 CABAC_EncState <= RenormE;

396 else

397 Flushed := "11";

398 CABAC_EncState <= RenormE;

399 end if;

400 when others =>

401 CABAC_EncState <= w_finished;

402 Finished <= '1';

403 TermO <= '1';

404 end case;

405 end if;

406 end process;

407 end struct;

6

Appendix C

1 // **

2 // Asynchronous fifo

3 // 08.05.17

4 // Norwegian University of Science and Technology

5 // Lars Erik Songe Paulsen

6 // **

7

8 // **

9 // TODO LIST:

10 // **

11 // No "almost full" or "almost empty" signaling logic implemented

12 // **

13 `timescale 1ns/1ps

14

15 module fifo #(parameter

16 BUFFER_SIZE = 16,

17 DATA_WIDTH = 32,

18 ADDRESS_WIDTH = clogb2(BUFFER_SIZE) - 1

19)

20 (

21 // --

22 // Data in interface

23 // --

24 input wire rst_in_n,

25 input wire clock_in,

26 input wire [DATA_WIDTH-1:0] data_in,

27 input wire data_in_valid,

28 output reg data_in_full,

29

30 // --

31 // Data out interface

32 // --

33 input wire rst_out_n,

34 input wire clock_out,

35 output wire [DATA_WIDTH-1:0] data_out,

36 output reg data_out_valid,

37 input wire data_out_ack

38);

39

40 // --

41 // Functions

42 // --

43 // ceil log_2

44 function integer clogb2;

45 input integer depth;

46 for (clogb2=0; depth>0; clogb2=clogb2+1)

47 depth = depth >> 1;

48 endfunction

49

50 // --

51 // Memory interface and logic

52 // Low latency version(no output register)

53 // See XilinxSimpleDualPort1ClockBlockRamExample.v for detailed documentation

54 // --

55 reg [DATA_WIDTH-1:0] Buffer[BUFFER_SIZE-1:0];

56

57 // Initialize memory values to all zeros

58 generate

59 integer ram_index;

60 initial

61 for(ram_index = 0; ram_index < BUFFER_SIZE; ram_index = ram_index + 1)

62 Buffer[ram_index] = {DATA_WIDTH{1'b0}};

63 endgenerate

64

65

66

67 // Conditional sampling of data_in

68 always @(posedge clock_in) begin

69 if (data_in_valid && !data_in_full)

70 Buffer[BufferWriteAddress] <= data_in;

71 end

1

72

73 // data_out must only be sampled when data_out_valid is asserted

74 assign data_out = Buffer[BufferReadAddress];

75

76 // MSB used for checking fifo full condition

77 // Remainder is actuall Buffer address

78 reg [ADDRESS_WIDTH:0] ExtendedBufferWriteAddress, ExtendedBufferReadAddress;

79

80 // Used for addressing memory

81 wire [ADDRESS_WIDTH-1:0] BufferWriteAddress, BufferReadAddress;

82

83 // Binary coded (ADDRESS_WIDTH) bit memory next address

84 wire [ADDRESS_WIDTH:0] WriteNextAddress, ReadNextAddress;

85

86 // Gray coded Pointers for generating full/empty signals

87 reg [ADDRESS_WIDTH:0] WriteGrayPointer, ReadGrayPointer;

88

89 // Gray coded Next Pointers for syncronizing across clock domains

90 wire [ADDRESS_WIDTH:0] WriteGrayNextPointer, ReadGrayNextPointer;

91

92 // Gray coded pointers for synchronizing accross clock domains

93 // 2 registers used to avoid metastability

94 reg [ADDRESS_WIDTH:0] WriteGrayPointer2Read1, ReadGrayPointer2Write1;

95 reg [ADDRESS_WIDTH:0] WriteGrayPointer2Read2, ReadGrayPointer2Write2;

96

97 // Wires to signal fifo status

98 wire DataInFull, DataOutEmpty;

99

100 // --

101 // Write side logic

102 // --

103 // Check full condition

104 assign DataInFull = (WriteGrayNextPointer ==

105 {~ReadGrayPointer2Write2[ADDRESS_WIDTH:ADDRESS_WIDTH-1],

106 ReadGrayPointer2Write2[ADDRESS_WIDTH-2:0]});

107 // Remove MSB before memory indexing

108 assign BufferWriteAddress = ExtendedBufferWriteAddress[ADDRESS_WIDTH-1:0];

109 // Increase Write address if conditions are met

110 assign WriteNextAddress = ExtendedBufferWriteAddress +

111 (data_in_valid & ~data_in_full);

112 // Binary to Gray code conversion

113 assign WriteGrayNextPointer = (WriteNextAddress>>1) ^ WriteNextAddress;

114

115 always @(posedge clock_in or negedge rst_in_n) begin

116 if (!rst_in_n) begin

117 data_in_full <= 0;

118 ExtendedBufferWriteAddress <= 0;

119 WriteGrayPointer <= 0;

120 WriteGrayPointer2Read1 <= 0;

121 WriteGrayPointer2Read2 <= 0;

122 end

123 else begin

124 // Update data in full register

125 data_in_full <= DataInFull;

126 // Update Write adress register

127 ExtendedBufferWriteAddress <= WriteNextAddress;

128 // Update current Gray code writepointer

129 WriteGrayPointer <= WriteGrayNextPointer;

130 // Send previous Gray code writepointer to Read side logic

131 WriteGrayPointer2Read1 <= WriteGrayPointer;

132 WriteGrayPointer2Read2 <= WriteGrayPointer2Read1;

133 end

134 end

135

136 // --

137 // Read side logic

138 // --

139 // Check empty condition

140 assign DataOutEmpty = (ReadGrayNextPointer==WriteGrayPointer2Read2);

141 // Remove MSB before memory indexing

142 assign BufferReadAddress = ExtendedBufferReadAddress[ADDRESS_WIDTH-1:0];

143 // Increase Read address if conditions are met

144 assign ReadNextAddress = ExtendedBufferReadAddress + (data_out_ack & data_out_valid);

2

145 // Binary to Gray code conversion

146 assign ReadGrayNextPointer = (ReadNextAddress>>1) ^ ReadNextAddress;

147

148 always @(posedge clock_out or negedge rst_out_n) begin

149 if (!rst_out_n) begin

150 data_out_valid <= 0;

151 ExtendedBufferReadAddress <= 0;

152 ReadGrayPointer <= 0;

153 ReadGrayPointer2Write1 <= 0;

154 ReadGrayPointer2Write2 <= 0;

155 end

156 else begin

157 // Update data out valid register

158 data_out_valid <= !DataOutEmpty;

159 // Update Read adress register

160 ExtendedBufferReadAddress <= ReadNextAddress;

161 // Update current Gray code readpointer

162 ReadGrayPointer <= ReadGrayNextPointer;

163 // Send previous Gray code readpointer to Write side logic

164 ReadGrayPointer2Write1 <= ReadGrayPointer;

165 ReadGrayPointer2Write2 <= ReadGrayPointer2Write1;

166 end

167 end

168 endmodule

3

1 `timescale 1ns/1ps

2

3 module fifo_tb;

4 parameter BUFFER_SIZE = 128;//128;

5 parameter DATA_WIDTH = 32;

6

7 // Data in interface

8 reg rst_in_n;

9 reg clock_in;

10 reg [DATA_WIDTH-1:0] data_in;

11 reg data_in_valid;

12 wire data_in_full;

13

14 // Data out interface

15 reg rst_out_n;

16 reg clock_out;

17 wire [DATA_WIDTH-1:0] data_out;

18 wire data_out_valid;

19 reg data_out_ack;

20

21 fifo dut(.rst_in_n(rst_in_n),

22 .clock_in(clock_in),

23 .data_in(data_in),

24 .data_in_valid(data_in_valid),

25 .data_in_full(data_in_full),

26 .rst_out_n(rst_out_n),

27 .clock_out(clock_out),

28 .data_out(data_out),

29 .data_out_valid(data_out_valid),

30 .data_out_ack(data_out_ack)

31);

32

33 reg [31:0] COMPARE[0:65536];

34 reg [7:0] in_index, out_index;

35

36 initial begin // data in

37 in_index = 8'b00000000;

38 clock_in = 1'b0;

39 rst_in_n = 1'b0;

40 data_in_valid = 1'b1;

41 data_in = 32'h00000001;

42 #5;

43 clock_in = 1'b1;

44 rst_in_n = 1'b1;

45 //data_in_valid = 1'b1;

46 #5;

47 repeat (20) begin

48 if(!data_in_full) begin

49 if(clock_in) begin // change data on negedge

50 if(data_in != 0) begin

51 data_in = (data_in) + 1;

52 end

53 else begin

54 data_in <= 1'b1;

55 end

56 end

57 else begin

58 end

59 end

60 clock_in = ~clock_in;

61 #50;

62 end

63

64

65

66

67 repeat (200) begin

68 if(!data_in_full) begin

69 if(clock_in) begin // change data on negedge

70 if(data_in != 0) begin

71 data_in = (data_in) + 1;

72 end

73 else begin

4

74 data_in <= 1'b1;

75 end

76 end

77 else begin

78 end

79 end

80 clock_in = ~clock_in;

81 #2;

82 end

83

84 repeat (200) begin

85 if(!data_in_full) begin

86 if(clock_in) begin // change data on negedge

87 if(data_in != 0) begin

88 data_in = (data_in) + 1;

89 end

90 else begin

91 data_in <= 1'b1;

92 end

93 end

94 else begin

95 end

96 end

97 clock_in = ~clock_in;

98 #50;

99 end

100 end

101

102 // Sample data to compare with output

103 always @(posedge clock_in or negedge rst_in_n) begin

104 if (!rst_in_n) begin

105

106 end

107 else if (data_in_valid && !data_in_full) begin

108 COMPARE[in_index] <= (data_in);

109 in_index <= in_index + 1;

110 end

111 end

112

113 initial begin // data out

114 out_index = 8'b00000000;

115 clock_out = 1'b0;

116 rst_out_n = 1'b0;

117 data_out_ack = 1'b0;

118 #5;

119 rst_out_n = 1'b1;

120 data_out_ack = 1'b1;

121 #220;

122 clock_out = 1'b1;

123

124

125

126

127

128

129

130

131

132

133 repeat (200) begin

134 #1;

135 if (data_out_valid) begin

136 if(clock_out) begin

137 if (data_out == COMPARE[out_index]) begin

138 $monitor("data match");

139 end

140 else begin

141 $monitor("data missmatch: out_index: %d: %d != %d",out_index,

142 COMPARE[out_index], data_out);

143 end

144 end

145 else begin

146 out_index = out_index + 1;

5

147 end

148 end

149 clock_out = ~clock_out;

150 end

151

152 repeat (120) begin

153 #25;

154 if (data_out_valid) begin

155 if(clock_out) begin

156 if (data_out == COMPARE[out_index]) begin

157 $monitor("data match");

158 end

159 else begin

160 $monitor("data missmatch: out_index: %d: %d != %d",out_index,

161 COMPARE[out_index], data_out);

162 end

163 end

164 else begin

165 out_index = out_index + 1;

166 end

167 end

168 clock_out = ~clock_out;

169 end

170

171 repeat (360) begin

172 #1;

173 if (data_out_valid) begin

174 if(clock_out) begin

175 if (data_out == COMPARE[out_index]) begin

176 $monitor("data match");

177 end

178 else begin

179 $monitor("data missmatch: out_index: %d: %d != %d",out_index,

180 COMPARE[out_index], data_out);

181 end

182 end

183 else begin

184 out_index = out_index + 1;

185 end

186 end

187 clock_out = ~clock_out;

188 end

189 end

190 endmodule

6

Appendix D

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using System.Threading.Tasks;

6 using System.Windows.Forms;

7

8 namespace HEVC_CABAC_Verification_Tool

9 {

10 class CABAC_encoder

11 {

12 private List<Syntax_element> S_E_ = new List<Syntax_element>();

13 private int S_E_index;

14 private List<bin> Encoded;

15

16 public uint offset;

17

18 static uint qCodIRangeidx, CodIrangeLPS, codIRange, codIOffset, codILow;

19 static uint bitsOutstanding;

20 public bool firstBitFlag;

21

22

23 static uint ctxIdxTable_depth = 120;

24

25 public uint[,] rangeTabLPS = new uint[64, 4];

26 public uint[] transIdxMPS = new uint[64];

27 public uint[] transIdxLPS = new uint[64];

28 public uint[] pStateIdxTable = new uint[ctxIdxTable_depth * 3 * 52];

29 public uint[] MPSIdxTable = new uint[ctxIdxTable_depth * 3 * 52];

30

31 public List<bin> Encode(List<Syntax_element> S_E)

32 {

33 S_E_ = S_E;

34 Encoded = new List<bin>();

35 bitsOutstanding = 0;

36 S_E_index = 0;

37

38 uint bin;

39 bool bypass;

40

41 ResetCodeVals();

42

43 try

44 {

45 while (S_E_index < S_E.Count)

46 {

47 bin = read_bit(out bypass);

48 if (bypass)

49 {

50 EncodeBypass(bin);

51 }

52 else

53 {

54 EncodeDecision(bin);

55 }

56 }

57 EncodeTerminate(1);

58

59 return Encoded;

60 }

61 catch (Exception ex)

62 {

63 MessageBox.Show(ex.ToString());

64 }

65

66 return new List<bin>();

67 }

68

69

70

71

1

72

73

74

75

76

77

78

79 public uint read_bit(out bool bypass)

80 {

81 try

82 {

83 while (S_E_index < S_E_.Count)

84 {

85 if (S_E_[S_E_index].currPos < S_E_[S_E_index].Bins.Count)

86 {

87 bypass = S_E_[S_E_index].bypass;

88 return (S_E_[S_E_index].Bins[S_E_[S_E_index].currPos++] == '1') ? (uint)1 : 0;

89 }

90 else

91 {

92 S_E_index++;

93 }

94 }

95 }

96 catch (Exception ex)

97 {

98 MessageBox.Show(ex.ToString());

99 }

100 //MessageBox.Show("read bit called when finished");

101 bypass = false;

102 return 0;

103 }

104

105 public void ResetCodeVals()

106 {

107 //The status of the arithmetic decoding engine is represented by the variables codIRange and

codIOffset.↪→
108 //In the initialization procedure of the arithmetic decoding process,

109 //codIRange is set equal to 510 and codIOffset is set equal to the value returned from

read_bits(9)↪→
110 //interpreted as a 9 bit binary representation of an unsigned integer with most significant bit

written first.↪→
111 codIRange = 510;

112 codILow = 0;

113 qCodIRangeidx = 0;

114 CodIrangeLPS = 0;

115 codIOffset = 0;

116 codILow = 0;

117 }

118

119

120 public void EncodeDecision(uint bin)

121 {

122 qCodIRangeidx = (codIRange >> 6) & 3;

123 CodIrangeLPS = rangeTabLPS[pStateIdxTable[offset], qCodIRangeidx];

124 codIRange = codIRange - CodIrangeLPS;

125 if (bin != MPSIdxTable[offset])

126 {

127 codILow = codILow + codIRange;

128 codIRange = CodIrangeLPS;

129 if (pStateIdxTable[offset] == 0)

130 {

131 MPSIdxTable[offset] = 1 - MPSIdxTable[offset];

132 }

133 pStateIdxTable[offset] = transIdxLPS[pStateIdxTable[offset]];

134 }

135 else

136 {

137 pStateIdxTable[offset] = transIdxMPS[pStateIdxTable[offset]];

138 }

139 RenormE();

140 }

141

2

142 public void EncodeBypass(uint bin)

143 {

144 try

145 {

146 codILow = codILow << 1;

147 if (bin != 0)

148 {

149 codILow = codILow + codIRange;

150 }

151 if (codILow >= 1024)

152 {

153 PutBit(1);

154 codILow = codILow - 1024;

155 }

156 else if (codILow < 512)

157 {

158 PutBit(0);

159 }

160 else

161 {

162 codILow = codILow - 512;

163 bitsOutstanding++;

164 }

165 }

166 catch (Exception ex)

167 {

168 MessageBox.Show(ex.ToString());

169 }

170 }

171

172 public void RenormE()

173 {

174 while (codIRange < 256)

175 {

176 if (codILow < 256)

177 {

178 PutBit(0);

179 }

180 else if (codILow >= 512)

181 {

182 codILow = codILow - 512;

183 PutBit(1);

184 }

185 else

186 {

187 codILow = codILow - 256;

188 bitsOutstanding = bitsOutstanding + 1;

189 }

190 codIRange = codIRange << 1;

191 codILow = codILow << 1;

192 }

193 }

194

195 //string teststring;

196

197 public void PutBit(uint B)

198 {

199 if (B != 0 && B != 1) { MessageBox.Show("ERROR: PutBit called with argument: " + B.ToString() +

"\n Only 0 or 1 is valid arguments"); }↪→
200

201 if (firstBitFlag)

202 {

203 firstBitFlag = false;

204 }

205 else

206 {

207 bin tempBin = new bin();

208 tempBin.val = (B == 1) ? '1' : '0';

209 Encoded.Add(tempBin);

210 }

211 while (bitsOutstanding > 0)

212 {

213 bin tempBin = new bin();

3

214 tempBin.val = (B == 1) ? '0' : '1';

215 Encoded.Add(tempBin);

216 bitsOutstanding--;

217 }

218 }

219

220 public void EncodeTerminate(uint bin)

221 {

222 try

223 {

224 codIRange = codIRange - 2;

225 if (bin != 0)

226 {

227 codILow = codILow + codIRange;

228 EncodeFlush();

229 }

230 else

231 {

232 RenormE();

233 }

234 }

235 catch (Exception ex)

236 {

237 MessageBox.Show(ex.ToString());

238 }

239 }

240

241 public void EncodeFlush()

242 {

243 try

244 {

245 codIRange = 2;

246 RenormE();

247 PutBit((codILow >> 9) & 1);

248 //PutBit(((codILow >> 7) & 3) | 1); // does not work. Using a workarround for now.

249 PutBit((codILow >> 8) & 1);

250 PutBit(((codILow >> 7) & 1) | 1);

251 }

252 catch (Exception ex)

253 {

254 MessageBox.Show(ex.ToString());

255 }

256 }

257

258 }

259

260 class Syntax_element

261 {

262 public List<char> Bins = new List<char>();

263 public int ctxIdx;

264 public int currPos = 0;

265 public int nr = 0;

266 public bool bypass;

267 }

268

269 class bin

270 {

271 public char val;

272 }

273 }

4

Appendix E

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using System.Threading.Tasks;

6 using System.Windows.Forms;

7

8 namespace HEVC_CABAC_Verification_Tool

9 {

10 class CABAC_decoder

11 {

12 private List<bin> bins_ = new List<bin>();

13 private int bins_index;

14 private int syntax_element_index;

15

16

17 private char[] Decoded;

18 private int Decodedindex;

19

20 public RichTextBox binValTarget;

21 public RichTextBox debugg;

22 uint binValIndex;

23

24 public uint offset;

25

26 static uint qCodIRangeidx, CodIrangeLPS, codIRange, codIOffset, codILow;

27 static uint bitsOutstanding;

28 static bool firstBitFlag;

29

30

31 static uint ctxIdxTable_depth = 120;

32

33 public uint[,] rangeTabLPS = new uint[64, 4];

34 public uint[] transIdxMPS = new uint[64];

35 public uint[] transIdxLPS = new uint[64];

36 public uint[] pStateIdxTable = new uint[ctxIdxTable_depth * 3 * 52];

37 public uint[] MPSIdxTable = new uint[ctxIdxTable_depth * 3 * 52];

38

39

40 private void ResetCodeVals()

41 {

42 try

43 {

44 //The status of the arithmetic decoding engine is represented by the variables codIRange and

codIOffset.↪→
45 //In the initialization procedure of the arithmetic decoding process,

46 //codIRange is set equal to 510 and codIOffset is set equal to the value returned from

read_bits(9)↪→
47 //interpreted as a 9 bit binary representation of an unsigned integer with most significant

bit written first.↪→
48 codIRange = 510;

49 codILow = 0;

50 qCodIRangeidx = 0;

51 CodIrangeLPS = 0;

52 codIOffset = 0;

53 codILow = 0;

54

55 char[] tempA = "XXXXXXXXX".ToCharArray();

56 for (int i = 0; i < 9; i++)

57 {

58 tempA[i] = (read_bit() == 1) ? '1' : '0';

59 }

60 codIOffset = Convert.ToUInt32(new string(tempA), 2); // read 9 first binary vals

61 }

62 catch (Exception ex)

63 {

64 MessageBox.Show(ex.ToString());

65 }

66

67 }

68

1

69 public string Decode(List<bin> bins)

70 {

71 Decoded = new char[65535];

72 Decodedindex = 0;

73

74 bins_ = bins;

75 bins_index = 0;

76 syntax_element_index = 0;

77

78 ResetCodeVals();

79

80 try

81 {

82 return new string(Decoded).Substring(0, Decodedindex);

83 }

84 catch (Exception ex)

85 {

86 MessageBox.Show(ex.ToString());

87 }

88

89 return "empty";

90 }

91

92

93 public uint read_bit()

94 {

95 try

96 {

97 while (bins_index < bins_.Count)

98 {

99 return (bins_[bins_index++].val == '1') ? (uint)1 : 0;

100 }

101 }

102 catch (Exception ex)

103 {

104 MessageBox.Show(ex.ToString());

105 }

106 MessageBox.Show("read bit called when finished");

107 return 0;

108 }

109

110

111

112 private void DecodeDecicison()

113 {

114 try

115 {

116 qCodIRangeidx = (codIRange >> 6) & 3;

117 CodIrangeLPS = rangeTabLPS[pStateIdxTable[offset], qCodIRangeidx];

118 codIRange = codIRange - CodIrangeLPS;

119 if (codIOffset >= codIRange)

120 {

121 Decoded[Decodedindex++] = (MPSIdxTable[offset] == 1) ? '0' : '1';

122 codIOffset = codIOffset - codIRange;

123 codIRange = CodIrangeLPS;

124 if (pStateIdxTable[offset] == 0)

125 {

126 MPSIdxTable[offset] = 1 - MPSIdxTable[offset];

127 }

128 pStateIdxTable[offset] = transIdxLPS[pStateIdxTable[offset]];

129 }

130 else

131 {

132 Decoded[Decodedindex++] = ((MPSIdxTable[offset] == 1) ? '1' : '0');

133 pStateIdxTable[offset] = transIdxMPS[pStateIdxTable[offset]];

134 }

135

136 RenormD();

137 }

138 catch (Exception ex)

139 {

140 MessageBox.Show(ex.ToString());

141 }

2

142

143 }

144

145 private void DecodeBypass()

146 {

147 codIOffset = codIOffset << 1;

148 codIOffset = codIOffset | read_bit();

149 if (codIOffset >= codIRange)

150 {

151 Decoded[Decodedindex++] = '1';

152 codIOffset = codIOffset - codIRange;

153 }

154 else

155 {

156 Decoded[Decodedindex++] = '0';

157 }

158 }

159

160 private void RenormD()

161 {

162 try

163 {

164 while (codIRange < 256)

165 {

166 codIRange = codIRange << 1;

167 codIOffset = codIOffset << 1;

168 codIOffset = codIOffset | read_bit();

169 }

170 if (codIOffset >= codIRange)

171 {

172 MessageBox.Show("Decoding error:\n The bitstream shall not contain data that result in

a value of " +↪→
173 "codIOffset being greater than or equal to codIRange upon completion of

this process.");↪→
174 }

175 }

176 catch (Exception ex)

177 {

178 MessageBox.Show(ex.ToString());

179 }

180

181 }

182 }

183 }

3

Appendix F

This Appendix shows how to setup the different hardware modules and testbenches. It
also shows how the software model can be used to verify hardware encoder output. The
systems was developed using Vivado 2016.4 WebPack Edition. Relevant files is included
in the delivery folder.

CABAC Hardware Encoder Test System Setup

Create a new project in Vivado. Give it a suitable name and click next. Select ”RTL
Project” and “Do not specify sources at this time”, and click next.

Select the Zedboard in the Boards Tab. Click next, then click finish.

1

Navigate to the sources tab, and add the following files to design sources:

Then add the tables in the tables folder to design sources:

Then add the following files to simulation sources:

Then add the following files to simulation sources. Note that these files are located in the
HEVC CABAC Verification Tool folder.

2

The Source tab should now look like this.

Open the ”CABAC EncTestbench.vhd” file and verify that the “EncoderInput.txt” and
“EncoderOutput.txt” linked in the code is in the same folder as the “HEVC CABAC Verification
- Tool.exe” executable file that is used. It should look something like this:

It is now possible to generate Encoder test data using the software model. First start the
executable file.

3

Create some binarized bins by changing the values in the transform block, or simply
clicking Binarize.

1: First write the current binarization the the EncoderInput.txt file by pressing the
Write TestFile button. 2: Then encode this data with the software encoder by pressing
the Encode Butten.

4

Go back to back to Vivado and Press run simulation. This will perform CABAC hardware
encoding using the same test file as written to earlier.

The Simulation should result in something like this:

Make sure that the simulation is run long enough to finish encoding.

5

Head back to the HEVC CABAC Verification Tool.exe software and press the Load From
TB button. This will load the hardware encoder result.

With both hardware and software encoder result showing, it is now possible to press the
Compare HW and SW encoding button. This will show how many percent of the encoding
is correct, as well as the index of the first conflicting character.

Note that some errors may occur either due to improper termination(as seen above) or
if the BitsOutstanding Loop in the hardware encoder is completed without the BitsOut-
standing register reaching a value of 0.

6

The Bypassflag is signaled to the encoders by appending it to each bins as shown below:

The encoders will use the context index signaled by initType, SliceQPY and ctxIdx. For
the encoders to return the same result, these variables should be set to the same values,
as shown above and below.

Note that it is possible to manually edit “EncoderInput.txt” to create a custom test
pattern. But it is required to include the Bypassflag on each line.

7

Binarizer

Create a new project in Vivado and give it a suitable name for the Binarizer module(same
steps as for the CABAC Encoder, adding zedboard as target). Add the Binarizer files
from the ”Binarizer Case Based ALRem” folder as shown below.

Press run simulation, and make sure it is able to run for long enough.

The binarizer will output the finished binarized elements in the order of LASTx, LASTy,
SIG, ABS1, ABS2, ALRem and SIGN.

8

Fifo

Create a new project in Vivado and give it a suitable name for the Fifo module(same
steps as for the CABAC Encoder, adding zedboard as target). Add the fifo files as shown
below.

Press run simulation, and make sure it is able to run for long enough.

The testbench will run the asynchronous fifo using three different frequencies on both the
input and output clocks. It will check that the output matches the expected result.

9

Appendix G

Context table initial value generation functions in C#(.NET). Including overview of resid-
ual coding syntax element initvals for all initTypes.

1 // Binary initial value generation for HEVC CABAC context modeling.

2 void initTable_file_generation()

3 {

4 // Input file containing initvalues copied from the HEVC standard document.

5 // Should contain initvalues for initType 0, 1 and 2.

6 // Each line should contain an initvalue on each line, starting with

7 // every initvalue from initType 0, then imeadiatly followed by every initvalue

8 // from initType 1, and finaly then every initvalue from initType2.

9 StreamWriter input = initializeReadFile("initinput.txt");

10

11 // Output file containing Binary(1/0 ASCII chars) formated initvalues for any value of sliceQPY and

initType.↪→
12 StreamWriter Output = initializeWriteFile("initOutput.txt");

13

14 Int32 initValue, slopeIdx, intersecIdx, m, n, preCtxState, valMPS, pStateIdx;

15

16 try

17 {

18 for (int SliceQPY = 0; SliceQPY < 52; SliceQPY++)

19 {

20

21 while (!input.EndOfStream)

22 {

23 initValue = int.Parse(input.ReadLine());

24 slopeIdx = initValue >> 4;

25 intersecIdx = initValue & 15;

26 m = (slopeIdx * 5) - 45;

27 n = (intersecIdx << 3) - 16;

28 preCtxState = Clip3(1, 126, ((m * Clip3(0, 51, SliceQPY)) >> 4) + n);

29 valMPS = (preCtxState <= 63) ? 0 : 1;

30 pStateIdx = (valMPS > 0) ? (preCtxState - 64) : (63 - preCtxState);

31

32 // Binary(1/0 ASCII chars) formated output

33 Output.WriteLine(String.Format("{0:X}", valMPS) +

34 Convert.ToString(pStateIdx, 2).PadLeft(6, '0'));

35 }

36 input.DiscardBufferedData();

37 input.BaseStream.Seek(0, System.IO.SeekOrigin.Begin);

38 }

39 }

40 catch (Exception ex)

41 {

42 MessageBox.Show(ex.ToString());

43 }

44 Output.Close();

45 input.Close();

46 }

47

48 int Clip3(int x, int y, int z)

49 {

50 if (z < x) return x;

51 else if (z > y) return y;

52 else return z;

53 }

54

55

56

57

58

59

60

61

62

63

64

1

65 // Initialize write file to current folder.

66 StreamWriter initializeWriteFile(string filename)

67 {

68 try

69 {

70 FileStream fs;

71 StreamWriter file;

72 string startUpPath;

73 string currentLogFileName;

74 string logfolder;

75 currentLogFileName = string.Format(filename);

76 startUpPath = Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().Location);

77 logfolder = Path.Combine(startUpPath, currentLogFileName);

78 File.Delete(logfolder);

79 fs = File.Create(logfolder);

80 file = new StreamWriter(fs);

81 return file;

82 }

83 catch (IOException)

84 {

85 MessageBox.Show("Unable to access: " + filename);

86 }

87 catch (Exception ex)

88 {

89 MessageBox.Show(ex.ToString());

90 }

91 return null;

92 }

93

94 // Initialize read file to current folder.

95 StreamReader initializeReadFile(string filename)

96 {

97 try

98 {

99 FileStream fs;

100 StreamReader file;

101 string startUpPath;

102 string currentLogFileName;

103 string logfolder;

104 currentLogFileName = string.Format(filename);

105 startUpPath = Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().Location);

106 logfolder = Path.Combine(startUpPath, currentLogFileName);

107 fs = File.OpenRead(logfolder);

108 file = new StreamReader(fs);

109 return file;

110 }

111 catch (IOException)

112 {

113 MessageBox.Show("Unable to access: " + filename);

114 }

115 catch (Exception ex)

116 {

117 MessageBox.Show(ex.ToString());

118 }

119 return null;

120 }

2

initType
0 1 2

syntax element ctxTable ctxTable index initValue Index ctxTable index initValue Index ctxTable index initValue Index
last sig coeff x prefix 9-26 0 110 0 18 125 120 36 125 240
last sig coeff x prefix 9-26 1 110 1 19 110 121 37 110 241
last sig coeff x prefix 9-26 2 124 2 20 94 122 38 124 242
last sig coeff x prefix 9-26 3 125 3 21 110 123 39 110 243
last sig coeff x prefix 9-26 4 140 4 22 95 124 40 95 244
last sig coeff x prefix 9-26 5 153 5 23 79 125 41 94 245
last sig coeff x prefix 9-26 6 125 6 24 125 126 42 125 246
last sig coeff x prefix 9-26 7 127 7 25 111 127 43 111 247
last sig coeff x prefix 9-26 8 140 8 26 110 128 44 111 248
last sig coeff x prefix 9-26 9 109 9 27 78 129 45 79 249
last sig coeff x prefix 9-26 10 111 10 28 110 130 46 125 250
last sig coeff x prefix 9-26 11 143 11 29 111 131 47 126 251
last sig coeff x prefix 9-26 12 127 12 30 111 132 48 111 252
last sig coeff x prefix 9-26 13 111 13 31 95 133 49 111 253
last sig coeff x prefix 9-26 14 79 14 32 94 134 50 79 254
last sig coeff x prefix 9-26 15 108 15 33 108 135 51 108 255
last sig coeff x prefix 9-26 16 123 16 34 123 136 52 123 256
last sig coeff x prefix 9-26 17 63 17 35 108 137 53 93 257
last sig coeff y prefix 9-27 0 110 18 18 125 138 36 125 258
last sig coeff y prefix 9-27 1 110 19 19 110 139 37 110 259
last sig coeff y prefix 9-27 2 124 20 20 94 140 38 124 260
last sig coeff y prefix 9-27 3 125 21 21 110 141 39 110 261
last sig coeff y prefix 9-27 4 140 22 22 95 142 40 95 262
last sig coeff y prefix 9-27 5 153 23 23 79 143 41 94 263
last sig coeff y prefix 9-27 6 125 24 24 125 144 42 125 264
last sig coeff y prefix 9-27 7 127 25 25 111 145 43 111 265
last sig coeff y prefix 9-27 8 140 26 26 110 146 44 111 266
last sig coeff y prefix 9-27 9 109 27 27 78 147 45 79 267
last sig coeff y prefix 9-27 10 111 28 28 110 148 46 125 268
last sig coeff y prefix 9-27 11 143 29 29 111 149 47 126 269
last sig coeff y prefix 9-27 12 127 30 30 111 150 48 111 270
last sig coeff y prefix 9-27 13 111 31 31 95 151 49 111 271
last sig coeff y prefix 9-27 14 79 32 32 94 152 50 79 272
last sig coeff y prefix 9-27 15 108 33 33 108 153 51 108 273
last sig coeff y prefix 9-27 16 123 34 34 123 154 52 123 274
last sig coeff y prefix 9-27 17 63 35 35 108 155 53 93 275
coded sub block flag[][] 9-28 0 91 36 4 121 156 8 121 276
coded sub block flag[][] 9-28 1 171 37 5 140 157 9 140 277
coded sub block flag[][] 9-28 2 134 38 6 61 158 10 61 278
coded sub block flag[][] 9-28 3 141 39 7 154 159 11 154 279
sig coeff flag[][] 9-29 0 111 40 42 155 160 84 170 280
sig coeff flag[][] 9-29 1 111 41 43 154 161 85 154 281
sig coeff flag[][] 9-29 2 125 42 44 139 162 86 139 282
sig coeff flag[][] 9-29 3 110 43 45 153 163 87 153 283
sig coeff flag[][] 9-29 4 110 44 46 139 164 88 139 284
sig coeff flag[][] 9-29 5 94 45 47 123 165 89 123 285
sig coeff flag[][] 9-29 6 124 46 48 123 166 90 123 286
sig coeff flag[][] 9-29 7 108 47 49 63 167 91 63 287
sig coeff flag[][] 9-29 8 124 48 50 153 168 92 124 288
sig coeff flag[][] 9-29 9 107 49 51 166 169 93 166 289
sig coeff flag[][] 9-29 10 125 50 52 183 170 94 183 290
sig coeff flag[][] 9-29 11 141 51 53 140 171 95 140 291
sig coeff flag[][] 9-29 12 179 52 54 136 172 96 136 292
sig coeff flag[][] 9-29 13 153 53 55 153 173 97 153 293
sig coeff flag[][] 9-29 14 125 54 56 154 174 98 154 294
sig coeff flag[][] 9-29 15 107 55 57 166 175 99 166 295
sig coeff flag[][] 9-29 16 125 56 58 183 176 100 183 296
sig coeff flag[][] 9-29 17 141 57 59 140 177 101 140 297
sig coeff flag[][] 9-29 18 179 58 60 136 178 102 136 298
sig coeff flag[][] 9-29 19 153 59 61 153 179 103 153 299
sig coeff flag[][] 9-29 20 125 60 62 154 180 104 154 300
sig coeff flag[][] 9-29 21 107 61 63 166 181 105 166 301
sig coeff flag[][] 9-29 22 125 62 64 183 182 106 183 302
sig coeff flag[][] 9-29 23 141 63 65 140 183 107 140 303
sig coeff flag[][] 9-29 24 179 64 66 136 184 108 136 304
sig coeff flag[][] 9-29 25 153 65 67 153 185 109 153 305
sig coeff flag[][] 9-29 26 125 66 68 154 186 110 154 306
sig coeff flag[][] 9-29 27 140 67 69 170 187 111 170 307
sig coeff flag[][] 9-29 28 139 68 70 153 188 112 153 308
sig coeff flag[][] 9-29 29 182 69 71 123 189 113 138 309
sig coeff flag[][] 9-29 30 182 70 72 123 190 114 138 310
sig coeff flag[][] 9-29 31 152 71 73 107 191 115 122 311
sig coeff flag[][] 9-29 32 136 72 74 121 192 116 121 312
sig coeff flag[][] 9-29 33 152 73 75 107 193 117 122 313
sig coeff flag[][] 9-29 34 136 74 76 121 194 118 121 314
sig coeff flag[][] 9-29 35 153 75 77 167 195 119 167 315
sig coeff flag[][] 9-29 36 136 76 78 151 196 120 151 316
sig coeff flag[][] 9-29 37 139 77 79 183 197 121 183 317
sig coeff flag[][] 9-29 38 111 78 80 140 198 122 140 318
sig coeff flag[][] 9-29 39 136 79 81 151 199 123 151 319
sig coeff flag[][] 9-29 40 139 80 82 183 200 124 183 320
sig coeff flag[][] 9-29 41 111 81 83 140 201 125 140 321
sig coeff flag[][] 9-29 126 141 82 129 140 202 130 140 322
sig coeff flag[][] 9-29 127 111 83 130 140 203 131 140 323
coeff abs level greater1 flag[] 9-30 0 140 84 24 154 204 48 154 324
coeff abs level greater1 flag[] 9-30 1 92 85 25 196 205 49 196 325
coeff abs level greater1 flag[] 9-30 2 137 86 26 196 206 50 167 326
coeff abs level greater1 flag[] 9-30 3 138 87 27 167 207 51 167 327
coeff abs level greater1 flag[] 9-30 4 140 88 28 154 208 52 154 328
coeff abs level greater1 flag[] 9-30 5 152 89 29 152 209 53 152 329
coeff abs level greater1 flag[] 9-30 6 138 90 30 167 210 54 167 330
coeff abs level greater1 flag[] 9-30 7 139 91 31 182 211 55 182 331
coeff abs level greater1 flag[] 9-30 8 153 92 32 182 212 56 182 332
coeff abs level greater1 flag[] 9-30 9 74 93 33 134 213 57 134 333
coeff abs level greater1 flag[] 9-30 10 149 94 34 149 214 58 149 334
coeff abs level greater1 flag[] 9-30 11 92 95 35 136 215 59 136 335
coeff abs level greater1 flag[] 9-30 12 139 96 36 153 216 60 153 336
coeff abs level greater1 flag[] 9-30 13 107 97 37 121 217 61 121 337
coeff abs level greater1 flag[] 9-30 14 122 98 38 136 218 62 136 338
coeff abs level greater1 flag[] 9-30 15 152 99 39 137 219 63 122 339
coeff abs level greater1 flag[] 9-30 16 140 100 40 169 220 64 169 340
coeff abs level greater1 flag[] 9-30 17 179 101 41 194 221 65 208 341
coeff abs level greater1 flag[] 9-30 18 166 102 42 166 222 66 166 342
coeff abs level greater1 flag[] 9-30 19 182 103 43 167 223 67 167 343
coeff abs level greater1 flag[] 9-30 20 140 104 44 154 224 68 154 344
coeff abs level greater1 flag[] 9-30 21 227 105 45 167 225 69 152 345
coeff abs level greater1 flag[] 9-30 22 122 106 46 137 226 70 167 346
coeff abs level greater1 flag[] 9-31 23 197 107 47 182 227 71 182 347
coeff abs level greater2 flag[] 9-31 0 138 108 6 107 228 12 107 348
coeff abs level greater2 flag[] 9-31 1 153 109 7 167 229 13 167 349
coeff abs level greater2 flag[] 9-31 2 136 110 8 91 230 14 91 350
coeff abs level greater2 flag[] 9-31 3 167 111 9 122 231 15 107 351
coeff abs level greater2 flag[] 9-31 4 152 112 10 107 232 16 107 352
coeff abs level greater2 flag[] 9-31 5 152 113 11 167 233 17 167 353
transform skip flag[][][0] 9-25 0 139 114 1 154 234 2 139 354
transform skip flag[][][1] transform skip flag[][][2] 9-25 3 139 115 4 154 235 5 139 355
explicit rdpcm flag[][][0] 9-32 116 0 139 236 1 139 356
explicit rdpcm flag[][][1] explicit rdpcm flag[][][2] 9-32 117 2 139 237 3 139 357
explicit rdpcm dir flag[][][0] 9-33 118 0 139 238 1 139 358
explicit rdpcm dir flag[][][1]explicit rdpcm dir flag[][][2] 9-33 119 2 139 239 3 139 359

3

Appendix H

The table based binarisation of the coeff abs level remaining was first verified using an
excel implementation. The excel sheets shows the binarization of ALRem for a given
value of k and Z.

The interactive excel sheet(CoeffAbsLevelRemaining.xlsm) is included in the delivery
folder.

Note that due to the use of an extended DECTOBIN function(vDecimalToBinary), you
might need to enable content to use the excel sheet. Because the vDecimalToBinary
function only supports output of 16 or less binary symbols, Binarization of suffixes longer
than 16-bits will not work properly.

1

Appendix I

This Appendix shows how a simple demonstration of Software CABAC encoding/decoding
using the C# software model. Relevant files is included in the delivery folder.
Navigate to the ”SW Encoder and Decoder demonstration” folder and open “TestFile.txt”
and the HEVC CABAC Verification Tool as seen below.

The ”TestFile.txt” contains the encoder input. Each line should contain a number of ”0”s
and ”1” equal or longer than in the Original DataLength TextBox. To change the encoder
input: 1 edit “TestFile.txt” 2 Press the Load Original button.

1

It is now possible to encode and decode. 1 Check the firstBitFlag checkbox(important).
This will make sure the first bit is skipped in PutBit, and is required for the decoder to
work 2 Press the Encode button. 3 Press the Decode button.

The context index used can be changed by editing initType, SliceQPY and Context Index.
But it should be the same for both encoding and decoding.

2

Compression performance is heavily reliant on input data, as well as the initial value of
the probability model at the selected context index.

It is possible to switch to bypass coding by checking the Bypass checkbox.

3

	Preface
	Acknowledgment
	Summary and Conclusion
	Introduction
	Background
	Objectives
	Limitations
	Approach
	Features and Contributions
	Structure of the Report

	Entropy and Arithmetic Coding
	Shannon Entropy
	Entropy for binary strings
	Arithmetic Coding

	HEVC System and Data Structure
	Syntax Elements
	CABAC Encoding
	CABAC Decoding

	Binarization
	Binarization Processes
	Unary, Truncated Unary (TrU) Fixed-Length (FL)
	Truncated Rice (TRk)
	Exp-Golomb
	Scan Direction
	Transform-coefficient level data
	Coding of First Non Zero Element Coordinate
	Coding of Absolute Level
	Coding of Sign
	Grouping of Bins
	Complete Example

	Context Modeling
	sig_coeff_flag
	sig_coeff_greater1_flag and sig_coeff_greater2_flag
	Probability model
	Initialization

	HEVC CABAC Algorithm
	Overview
	Variable Initialization
	Encoding a Decision
	Renormalization
	Writing to Bitstream
	WriteBits
	read_bits
	Decoding a Decision

	Software Model
	Binarization and Context Index Calculation
	Encoder and Decoder
	Interfacing With TestBenches

	Hardware Implementation
	Modules
	Parameters
	Byte Packing and Alignment
	Binarizer Implementation
	Syntax Frames
	last_sig_coeff
	sig_coeff_flag
	coeff_abs_level_greater1_flag
	coeff_abs_level_greater2_flag
	coeff_abs_level_remaining
	coeff_abs_level_sign_flag

	Context Index Calculator
	CABAC Encoder
	Interface
	Parameters
	Transition Tables
	Context Table
	Context Handling
	BitsOutstanding Loop
	Termination
	Register precision
	Utilization
	Frequency
	Performance

	Fifo Buffer

	Results and Discussion
	Binarizer and Context Index Calculator
	CABAC Hardware Encoder
	Achieving Correctness
	Future Work

