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Abstract

The Single-ISA Heterogeneous MAny-core Computer (SHMAC) is an infrastructure
for realizing heterogeneous computing systems. The current SHMAC prototype
does not have a Memory Management Unit (MMU). An MMU would simplify the
process of providing a process abstraction on the SHMAC and make it possible to
run multiple programs at the same time.

This master thesis provides a qualitative comparison of different techniques and
solutions for implementing virtual memory. These are discussed with regard to the
SHMAC architecture and recommendations are made as to how virtual memory
should be implemented in the SHMAC. Specifically, three different designs are
identified by locating the address translation hardware either before the L1 cache,
after the L1 cache, or before a possibly distributed L2 cache. All three designs
seem to be viable alternatives but further investigation is necessary to determine
which design is the best fit for SHMAC.

Sammendrag

Single-ISA Heterogeneous MAny-core Computer (SHMAC) er et rammeverk for å
realisere heterogene datasystemer. Den n̊aværende SHMAC-prototypen har ingen
minnebehandlingsenhet. En minnebehandlingsenhet vil forenkle prosessen med
å implementere prosessabstraksjonen i SHMAC og gjøre det mulig å kjøre flere
programmer samtidig.

Masteroppgaven gjør en kvalitativ sammenligning av forskjellige teknikker og
løsninger for implementasjon av virtuelt minne. Disse diskuteres i henhold til
SHMAC-arkitekturen og det gis anbefalinger om hvordan virtuelt minne bør im-
plementeres i SHMAC. Mer konkret, tre ulike design identifiseres ved å plassere
hardware for addresseoversettelse enten før L1 cache, etter L1 cache, eller før en
muligens distribuert L2 cache. Alle tre designene virker som brukbare alternativer,
men videre undersøkelse er nødvendig for å avgjøre hvilket design som passer best
i SHMAC.
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Chapter 1

Introduction

Since 1965, Moore’s law has correctly predicted that the number of transistors
in a microprocessor chip doubles every second year [1][2]. Using Dennard scaling
to scale the voltage proportionally to transistor dimensions it has been possible
to utilize all transistors while avoiding problems with heat dissipation [3]. The
increased transistor density has made it possible to exploit ILP by using more
complex microarchitectures, hiding the memory latency by adding on-chip caches,
and improving throughput by adding multiple homogeneous on-chip cores, enabling
a more than 1000-fold improvement in microprocessor performance over the past
25 years.

The breakdown of Dennard scaling in recent years poses a problem. While tran-
sistor dimensions are still scaled down, static power leakage at low voltages makes
further voltage reduction an ineffective measure to manage heat dissipation. As a
result, to stay within the power budget not all transistors can be active at the same
time, leading to unused area termed as dark silicon [4]. This has motivated research
into heterogeneous computing in which multicore processors are constructed from
computation units with different processing characteristics. Given a set of tasks,
the processor dynamically allocates tasks to the most suited units and keeps the
remaining units inactive to stay within the power budget. Increased transistor den-
sity will enable increased customization, increasing performance without relying on
Dennard scaling [5].

The Single-ISA Heterogenous MAny-core Computer (SHMAC) is a tile-based
processor architecture for heterogeneous computing research developed as part of
a research project by the Energy Efficient Computing Systems group at the Nor-
wegian University of Science and Technology [6]. It is a heterogeneous processor
that organizes the computational units using a rectangular grid of tiles. Each tile
is locally connected to each of its four neighbors and instructions and data are
propagated through the grid. The currently supported tiles include among others:
a processor tile executing the RISC-V instruction set architecture (ISA); a main
memory tile, which contains an L2 cache and communicates with off-chip memory;
and several accelerator tiles with different processing characteristics. The RISC-
V ISA is an open source RISC ISA designed to support computer architecture

1



CHAPTER 1. INTRODUCTION

research [7][8].
It is desired to run multiple programs on the SHMAC at the same time. How-

ever, SHMAC currently runs a bare-metal environment in which only a single
program can be executed. The ideal solution would be to port an operating sys-
tem to SHMAC in which multiple programs would run as processes. Most modern
operating systems rely on virtual memory to implement processes, a technique
used to share limited memory resources between multiple programs. While many
architectures provide hardware support to simplify the implementation of virtual
memory, no such hardware support is present in the SHMAC. To simplify the port-
ing of operating systems, SHMAC should provide some form of hardware support
for virtual memory.

This master thesis provides a qualitative comparison of different techniques
and solutions for implementing virtual memory. These are discussed with regard
to the SHMAC architecture and recommendations are made as to how virtual
memory should be implemented in the SHMAC. Emphasis is placed on performance
overhead, hardware area, and the effort necessary to port operating systems onto
the platform. Specifically, three different designs are identified by locating the
address translation hardware either before the L1 cache, after the L1 cache, or
before a possibly distributed L2 cache.



Chapter 2

Background

2.1 Virtual Memory Overview

Virtual memory is a technique used to share limited memory resources between
multiple programs. Most modern operating systems rely on virtual memory to
implement processes.

2.1.1 Address Spaces

With virtual memory, each process owns a set of virtual addresses residing in a
virtual address space. Access to physical memory is provided by translating virtual
addresses to physical addresses on the fly. Processes are isolated from each other
by restricting access to virtual addresses owned by other processes, and memory is
shared by translating virtual addresses of different processes to the same physical
addresses. To free up memory, rarely used data can be placed in secondary storage.

Virtual addresses are grouped into contiguous blocks called virtual pages, each
identified by a virtual page number (VPN), and physical addresses are grouped into
page frames, each identified by a page frame number (PFN). A partial mapping is
maintained from a virtual address space to a physical address space by mapping
VPNs to PFNs.

To enable sharing, some virtual memory systems allow multiple virtual ad-
dresses to map to the same physical address. Such mappings are called synonyms.

2.1.2 Page Tables

Translation information for a virtual address space is stored in a data structure
called a page table. The page table is indexed by VPNs to access PTEs, each which
contains the translation information associated with a single virtual page. A PTE
can include information such as the PFN in memory, the location of the page in
secondary storage, and protection information used to enforce access restrictions
such as read-write and read-only permissions. A more comprehensive list is given in
Table 2.1. The operating system maintains the page table by updating the PTEs:

3
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page frame number used to translate the virtual addresses of the page
present bit indicates that the page is present in memory
page size the size of the page
disk location the disk location of the page
protection information used to enforce access restrictions
address space identifier identifies the process that owns the page
dirty bit indicates that the page is modified
use bit indicates that the page has been accessed

Table 2.1: Information that can be contained in a PTE.

it can map virtual pages to page frames, demap virtual pages from page frames,
and modify page-level protection information (rights change).

There are two approaches: either, each process has its own page table (pri-
vate address spaces), or a single page table is shared among all processes (global
address space). Private address spaces are usually kept disjoint by extending the
virtual addresses with a prefix unique to the address spaces, such as address space
identifiers (ASIDs) or segments [9]. A global address space must be large to ac-
commodate the address needs of all processes and therefore it is better suited for
systems that support wide addresses such as 64-bit architectures. A global address
space can also be used in 32-bit architectures by extending the virtual addresses
on reference, either through ASIDs or segments. An advantage of using a global
page table is that it considerably reduces management overhead associated with
managing a page table for each process [10].

2.1.3 Page Faults

When a hardware event occurs that needs to be handled in software, the processor
is interrupted by a page fault to execute a page fault handler set by the operating
system. A page fault is typically generated when a non-present page is accessed.
The accessed page is then mapped to an unused page frame and if necessary loaded
from disk (paged in). If there are no unused page frames, another page is written
to disk (paged out) to make one available, a process known as page eviction. To
reduce the size of the page table, pages can be left unmapped until they are first
accessed. Page faults are then generated when unmapped pages are accessed to
create the necessary mappings.

2.1.4 The Translation Lookaside Buffer

The virtual addresses issued by the processor are translated to physical addresses
at some location along the path to physical memory according to the translation
information stored in the page table. To reduce the number of page table accesses,
translation information is often buffered locally in a special cache called a transla-
tion lookaside buffer (TLB). On a memory access, if the translation information is
present in the TLB (TLB hit), the memory access proceeds with little or no over-



2.2. THE SHMAC ARCHITECTURE

head; otherwise (TLB miss), the required information must be loaded from the
page table into the TLB before the memory access can proceed. TLBs in modern
architectures typically contains from 16 to 512 entries with each entry buffering
information for one or two PTEs [11]. The amount of memory accessible from the
TLB is called the TLB reach and is calculated as the number of entries multiplied
by the page size. [12].

The location of the TLB directly affects the organization of the caches in the
system by determining if the bits used as index and tag originate from the physical
or the virtual address. Three different organizations are considered in this article:
physically indexed, physically tagged (PIPT); VIPT; and VIVT. A cache in which
index bits originate from the virtual address is called virtual, other caches are called
physical. Because a virtual cache implicitly stores translation information, in some
cases they can be accessed without accessing the TLB at all.

TLBs and caches that store translation information can become inconsistent
with respect to the page table. When multiple TLBs are used, different mappings
can exist for a single virtual address (homonyms). When synonyms are used, there
can be circumstances under which synonyms are created inadvertently (aliases).
When access rights are buffered in a virtual cache, the buffered access rights can
become invalid (stale access rights). To maintain correct operation, the virtual
memory system must handle homonyms, aliases and stale access rights and ensure
that they are never used.

2.1.5 Hardware Support for Simple Optimizations

Specific hardware support is necessary to enable some performance optimizations
common in virtual memory systems. To reduce the overhead of page eviction, each
page can be associated with a dirty bit that is set when the page is modified. Clean
pages can then be evicted without having to access the disk. The operating system
can maintain a pool of clean pages by writing dirty pages to disk when the disk is
idle.

To reduce the frequency of page faults, a page eviction algorithm such as least
recently used (LRU) can be used to make better decisions as to what page should
be evicted. With LRU, a use bit is associated with each page and a usage history
is obtained for every page by periodically reading and clearing use bits. When
evicting a page, the least recently used page is selected on the assumption that
other pages are more likely to be used in the near future.

2.2 The SHMAC Architecture

The SHMAC [6] is a tile-based architecture with a mesh interconnect [13]. Compu-
tational units are organized as a rectangular grid of tiles where each tile is locally
connected to its four closest neighbors; north, south, east and west. Connections
do not wrap around edges. SHMAC-architectures are realized in in FPGA and the
tiles are configured at synthesis time. An overview of the architecture is given in
Figure 2.1. SHMAC supports a number of tiles:
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Figure 2.1: The high-level architecture of SHMAC.

• a general-purpose processor tile;

• a main memory tile that communicates with off-chip memory;

• an Advanced Peripheral Bus tile to communicate with the FPGA system;

• an accelerator tile that performs specialized computation such as SHA-1;

• a scratchpad tile that implements a scratchpad memory; and

• a dummy tile, used to fill unused tile slots.

The accelerator and dummy tiles can also be integrated into a processor tile.

2.2.1 Processor Tiles

A processor tile consist of a processing core, separate instruction and data-caches,
a router, a local scratchpad and tile registers. It can be configured to contain a
global scratchpad and an accelerator, but these are optional.

The processor tile executes the complete 32-bit RISCV base integer instruction
set plus standard extension A for atomic instructions [14]. Some instructions can
be left unimplemented to conserve FPGA resources; when these instructions are
executed, the processor is interrupted and the instruction is emulated in software.

2.2.2 Caches and the Memory Hierarchy

The memory hierarchy consists of local L1 caches located at each processor tile,
a global L2 cache, and an external main memory. All caches are implemented by
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a single, configurable cache module. A cache is accessed in two stages: the first
stage reads data from the cache memory and the second stage handles the request
depending on what was read. This results in a two cycle latency for cache reads.
Writes can complete in a single cycle if the cache is configured to support non-
blocking writes [15]. Caches also have some optional components. A miss status
holding register can be used to better serve simultaneous read requests. A write
buffer can be used to buffer writes when the interconnect is busy. Also, a merging
write buffer can be used to merge different writes.

Cache coherency must be maintained between L1 caches at different processor
tiles. Three different techniques are currently used to address this issue:

1. placing shared data in uncacheable regions;

2. turning off the cache when accessing shared memory; and

3. flushing or invalidating the cache.

All three techniques can be expected to exhibit inferior performance when com-
pared to using a more sophisticated cache coherency protocol that allows accessing
shared data directly in the cache. At the time of this writing, a theses project to
implement a more efficient cache coherency protocol in hardware is being worked
on [15].





Chapter 3

Virtual Memory Design

This section discusses design choices that must be considered when designing a
virtual memory system. The discussion is simplifying by focusing on architectures
in which there are two levels of cache in the memory hierarchy: a private L1 cache
located at each core, and a single unified L2-cache located between the L1 caches
and the main memory. Note that this is different from the SHMAC memory system
in which the L2-cache can be distributed around the grid (see Section 2.2).

3.1 Cache Organization

This section discusses the placement of the TLB and the organization of the L1
caches. The cache organization depends on the TLB location and has important
consequences for the characteristics of the overall system. Table 3.1 summarizes the
characteristics of each alternative with respect to implementation and performance.

3.1.1 TLB Before a PIPT L1 Cache

The TLB can be located before a PIPT L1 cache. Access to the cache can either
be pipelined or parallel.

When the access is pipelined, the TLB is placed on the critical path of every
access to the L1 cache. This can make it problematic to support single-cycle
accesses to the L1 cache at high frequencies. For this reason, modern architectures
seldom opt for this approach [9]. No translation information is buffered in the cache
and therefore translation buffer consistency can be maintained simply by flushing
the relevant entries from the TLB whenever the page table is updated.

When the access is parallel, the index bit used to access the cache must come
from the page offset bits from the virtual address. These bits are not translated
by the TLB and can be used to index the cache immediately without waiting for
translation. It is still necessary to translate the tag bits and therefore the TLB
access latency is only partially hidden. A disadvantage of this approach is that the
restriction on the index bits effectively limits the cache size to the size of a page
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times the number of ways [16]. The cache size can still be increased by increasing
the number of ways but this also increases the hardware complexity and latency of
tag comparison [17].

3.1.2 TLB Before a VIPT L1 Cache

The TLB can be located before a VIPT L1 cache. This approach is similar to the
previous one but by using virtual bits to index the cache it lifts the restriction on
cache size. It also gives the compiler better control over where data is placed in the
cache [18], allowing optimization techniques such as blocking [19]. A disadvantage
of using virtual bits to index the cache is that the cache is vulnerable to aliases
(see Section 3.7). The tag is still physical and therefore aliases can only occur in
different sets. Cache coherence protocols that operate on physical addresses may
require hardware to perform reverse translation in order to invalidate elements in
the L1 cache.

3.1.3 TLB After a VIVT L1 Cache

The TLB can be located after a VIVT L1 cache.
An advantage of using virtual tags is that the TLB can be removed from the

critical path. Following it can be large and slow without affecting the access time of
the L1 cache, increasing the TLB reach and reducing the frequency of TLB misses.
Also, there has been a trend toward computing in memory and communication
interfaces. Moving the TLB down the memory hierarchy can make virtual addresses
available where they are needed.

There are some issues when moving the TLB down the memory hierarchy.
Cache access must still be checked against protection bits for process isolation and
dirty bits and use bits must still be updated for performance. A common solution
is to buffer information in the cache, even though this increases the size of the
PTEs and the total cache area [11]. By relaxing the requirements for use and dirty
bits they can be removed from the TLB entirely [20]. Use bits can be replaced by
miss bits that are stored in the page table and set only when an access to a cache
block misses. Accesses to present cache blocks does not set the miss bit, thus a
page can be paged out even if it was used very recently. A similar approach can
be used for dirty bits by setting the dirty bit whenever a writable block is brought
into cache, with the disadvantage that dirty bits may be set even if the page has
not been modified, causing unnecessary disk activity.

There are some disadvantages. With wide addresses, more bits are needed for
the tags in a VIVT cache than in a VIPT cache. For example, with 64-bit virtual
addresses, 36-bit physical addresses and 32 byte cache lines, a VIPT cache is about
10% larger [18].

3.1.4 TLB Before the L2 Cache

As bus addresses are virtual, no reverse translation is necessary for cache coherency
protocols.
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Design Choice Implementation Issues Performance Issues

PIPT (pipelined) None TLB access is fully on the critical
path of cache access

PIPT (parallel) L1 index size is restricted by page
size

TLB access is partly on the
critical path of cache access

VIPT Aliases can occur in different sets,
coherency protocol may require
reverse translation

TLB access is partly on the
critical path of cache access, the
compiler can control data
placement

VIVT Aliases can occur, coherency
protocol may require reverse
translation, the cache buffers
translation information, computing
in memory is supported

A large TLB can be located
further down the memory
hierarchy, the compiler can
control data placement

Table 3.1: Comparison of cache organizations.

3.2 Page Table Organization

The organization of the page table impacts both its storage size and access latency,
usually with a trade-off between the two. The two main categories of page tables
are hierarchical and inverted.

3.2.1 Linear Page Table

The PTEs can be stored in a linear structure to get excellent access time. By using
the VPN as an offset into the page table, only a single memory reference is needed
per access. Unfortunately, it also has a large memory footprint: with 32-bit virtual
addresses, a page size of 4 KB, and a PTE size of 4 bytes, the table itself occupies
4 MB of physical memory. Allocating this amount of memory for the page table of
every process is usually not acceptable. Also, for larger address spaces the problem
becomes worse [10].

3.2.2 Hierarchical Page Table

Hierarchical page tables use a root page table to map pages containing user page
tables. A user page table either maps pages containing another level of user page
tables, or maps the pages used by the process. The root page table is typically
pinned down, while the user page tables are left unmapped to be paged in on need,
allowing the hierarchical page table to occupy much less space in memory than
the linear structure. A disadvantage is that table access requires an additional
memory reference for each level below the root. One optimization to this is to
check the bottom layer directly for a valid page, and use the top-down table-walk
as a fallback strategy. However, for large address spaces the access latency can still
become a limiting factor [10].
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Organization Performance Issues

Linear One memory reference per access, memory foot-
print is proportional to the number of pages in
the virtual address space

Hierarchical Memory references per access increases with the
number of levels, memory footprint is propor-
tional to the number of pages accessed by the
process

Inverted Memory references per access depends on the
average length of the collision chains, memory
footprint depends on the number of page frames

Table 3.2: Comparison of page table organizations.

3.2.3 Inverted Page Table

An inverted page table uses a different approach in that it contains a PTE for every
page frame. Virtual pages are mapped onto page frames by hashing the VPN and
using the hash to select a PTE. Because the number of page frames usually is much
smaller than the number of pages, inverted page tables can be more space efficient
than hierarchical page tables, especially for large address spaces. In the simplest
organization, the hash is used to index a linear structure of PTEs and collisions
are handled by an internal collision chain. On average, a table access requires a
number of references equal to the average length of the collision chains. Increasing
the size of the linear structure will keep the collision chains short, but increases the
size of the table. PTEs are also larger than in a hierarchical page table because
they must contain a PFN and a pointer to the next PTE in the collision chain,
amplifying the effect [10].

3.3 TLB Management

Mapping information can be loaded into the TLB either by hardware or software.
The hardware approach uses a finite state machine to access the page table directly
in memory, a process known as page table walking. The hardware-based scheme is
efficient, but it places constraints on the organization of the page table and makes
it harder to port operating systems onto the hardware. The software approach
generates a page fault to have the page fault handler load the information explicitly.
The hardware never accesses the page table directly, thus no constraints are placed
on the page table organization and porting efforts are smaller. However, the handler
code can be 10 to 100 instructions long, taking many cycles to complete. A cache
miss occurs if the handler code is not present in the instruction cache, and in
pipelined cores the pipeline is flushed [9].
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TLB Management Implementation Issues Performance Issues

Hardware Page table organization is restricted Efficient

Software Page table organization is not restricted Potentially inefficient

Table 3.3: Comparison of TLB management schemes.

3.4 Shared Memory

Shared memory increases memory utilization and efficiency by allowing processes
to share program code or dynamic libraries and is used extensively in modern
operating systems. In order to support efficient implementation of shared memory
the virtual memory system must provide hardware support. This section discusses
different ways shared memory can be supported in virtual memory systems.

3.4.1 Virtual Address Aliasing

With virtual address aliasing, multiple virtual pages are mapped to a single page
frame. When the virtual pages belong to different processes, these processes share
the physical page. Depending on the implementation of access rights, the processes
may have different access rights to the physical page. The disadvantages of this
approach is the additional overhead of maintaining multiple mappings. When a
physical page is relocated, all virtual pages mapped to it must be updated. The
multiple mappings can also compete for space in the TLB [10].

3.4.2 Shared Portions of Page Tables

An alternative that reduces the impact of managing multiple mappings is to share
larger portions of the page table instead of sharing individual mappings. Such an
approach can easily be implemented in a hierarchical page table. The disadvantages
of this approach is that it increases the granularity with which memory can be
shared and that it makes it harder to give different processes different access rights
to the shared memory [10].

3.4.3 Global Address Space

A global address space can support sharing at small granularity and little overhead.
Either the architecture must support wide addresses or addresses must be extended
on reference. Modern operating systems may have poor support for global address
spaces and therefore the efforts of porting them may be increased [10]. special hard-
ware is needed to support different access rights (see Sectionsec:process-isolation).

3.5 Process Isolation

The task of maintaining process isolation is typically delegated to the virtual mem-
ory system for efficiency reasons. There are several ways to do this, depending on
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Sharing Technique Implementation Issues Performance Issues

Virtual address
aliasing

Used with private address spaces Allows sharing at the granularity
of a page, additional overhead of
maintaining multiple mappings

Shared portions of
page tables

Used with private address spaces Allows sharing at the granularity
of a portion of the page table

Global address
space

Require extensive porting efforts,
special hardware is needed to
supporting different access rights

Allows sharing at a small
granularity

Table 3.4: Comparison of techniques to implement shared memory.

whether private or global page tables are used. This section compares several
solutions.

When private address spaces are used, processes can be associated with an
address space by associating them with the ASIDs. When a global address space is
used, a process can reference all possible virtual addresses. Isolation is achieved by
executing processes in different protection domains that specifies access permissions
for the different pages.

3.5.1 Flush on context switch (private address spaces)

The simplest way to maintain process isolation is to flush the TLB and any virtual
caches on a context switch. The first access to any cache block generates a miss
and is verified directly against the page table.

Flushing the TLB increases the frequency of TLB misses. Flushing the virtual
cache also increases the frequency of cache misses, but this effect can be negligible in
small caches with short warm-up time [21]. In caches that use a write-back policy, a
flush can cause a considerable number of write-backs, increasing the context-switch
latency. It may be possible to distribute such writes in time [21].

3.5.2 Tag translation information with ASID (private ad-
dress spaces)

Flushes on context switch can be avoided by using ASIDs [22]. This approach has
been used in several architectures [9]. The entries in the TLB and any virtual
caches are extended to hold the ASID of the address space to which the translation
information in the entry belongs, and a protected register is used to hold the ASID
of the current process. On memory access, the ASID of the process is matched
against the ASIDs in the TLB and the virtual caches.

When ASIDs are used, flushing is not necessary on context switch unless there
are globally shared pages [10]. However, flushing is still necessary when the oper-
ating system recycles old ASIDs during process creation. The frequency of ASID
recycling is affected by the number of unique ASIDs supported by hardware. Se-
lective flushing by ASID can also be supported.
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3.5.3 The domain-page model (global address space)

The domain-page model associates access permissions with each pair (domain,
page) [18]. A register is used to hold the protection domain identifier (PD-ID)
of the running process, and a protection lookaside buffer (PLB) is used to buffer
access permissions associated with domain-page pairs. On memory access, the PLB
is accessed with the PD-ID of the process and the VPN of the accessed page to
retrieve access permissions. On a PLB miss, the permissions must be fetched from
the page table before the access proceeds. If the process does not have permissions
to access the page, an exception is generated regardless of whether the access hits
cache or not.

The PLB is indexed using virtual addresses and can be accessed in parallel with
the cache. On mapping changes, the PLB must be purged.

One might consider using the PLB as a TLB to hold both translation infor-
mation and permissions. However, translation information is then duplicated for
different domain-page pairs in which the page is identical, leading to unnecessary
area overhead. Instead, moving access permissions from the TLB to the PLB makes
it easier to locate the TLB after the L1 cache (see Section 3.1). Because the model
separates translation and protection, it also allows optimizations in granularity and
protection.

3.5.4 The page-group model (global page table)

The page-group model groups pages into page-groups; permissions are associated
with each page-group, and one or more page-groups are associated with a domain
[18]. This was implemented in the Hewlett-Packard PA-RISC architecture [23]. A
set of registers holds page-group identifiers that identify the page-groups accessi-
ble to the protection domain of the running process. Each TLB entry includes
a page-group identifier and page-group access permissions along with translation
information. On memory access, the page-group identifier retrieved from the TLB
is matched against the page-group identifiers in the registers. On a match, the
access type is verified against the access permissions. On insufficient permissions
or failure to match the page-group identifier, the processor can be interrupted to
pass control to the operating system. The operating system may either modify
the TLB and page-group registers and restart the instruction, or it may generate
a protection fault.

As the TLB is accessed on every reference, this approach does not allow the
TLB to be located after the L1 cache.

3.6 Maintaining TLB Consistency

Page-mapping changes can cause translation information buffered in the TLB to
become inconsistent with respect to the page table. To maintain correct opera-
tion, the virtual memory system must ensure that inconsistent or stale translation
information is never used.
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Technique Requirements Performance Considerations

Flush on context
switch

Private page tables TLB and virtual caches are
flushed on context switch

Tag translation
information with
ASID

Private page tables, register to
buffer ASID, entries in the TLB
and cache are extended with an
ASID field

TLB and virtual caches are
flushed on ASID recycle

Domain-page model Global page tables, register to
buffer PD-ID, PLB to buffer
access permissions

Mapping changes cause PLB
purge

Page-group model Global page tables, registers to
hold page-group identifiers, TLB
entries can hold page-group
identifiers and permissions, the
TLB is located on the critical
path

Mapping changes cause
page-group identifiers to be
purged

Table 3.5: Comparison of techniques to enforce process isolation.

In single-core systems, a simple solution is to flush translation information from
the TLB as the page table is updated. In multi-core systems, however, a more so-
phisticated solution is required. Different cores can access the same translation
information, making it necessary to involve multiple TLBs in the consistency ac-
tions. To see why different cores can access the same translation information,
observe that a single page can be shared between multiple processes and that a
single process can be scheduled on more than one core [24]. It is also necessary to
eliminate race conditions that result from buffer hardware accessing the page table
during update [25].

Many different solutions exist. They differ in characteristics such as the pro-
cessor execution and idle time that result from maintaining tlb consistency, but
also in implicit side-effects such as serialized page-table modifications, increased
swapping activity, an increased number of TLB misses, and the inability to use
time-saving optimizations [26]. Some solutions solve the problem by flushing stale
translation information at the time of update, others instead use some strategy to
prevent stale information from being accessed.

3.6.1 Typical hardware support

There are often special instructions that the processor cores can use to flush their
TLBs. There can be an instruction to completely flush all translation information,
but instructions can also exist for selectively flushing only parts of the TLB. Some
types of partial flushing include flushing the mapping for a virtual address, flushing
all synonyms for a physical address, or flushing all mappings given an ASID.
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3.6.2 TLB Shootdown

TLB shootdown is a common algorithm for managing TLB consistency in software
with minimal hardware support. In the classical TLB shootdown algorithm, pro-
cessing cores are interrupted to perform consistency actions on their TLBs. The
algorithm proceeds in two phases: first, the core that updates the page table (ini-
tiator) sends an interrupt to other cores (responders) if the operation might result
in an inconsistency; second, the responders receive interrupts and carry out incon-
sistency actions. The operating system approximates the set of TLBs caching a
mapping so that the initiator does not have to interrupt all cores [27].

The minimal hardware requirements for this solution is a set of interrupt lines
that can interrupt the processors, and a mechanism for flushing TLB entries such as
a special processor instruction. The cost of a single TLB shootdown increases with
the number of processors. The frequency of TLB shootdowns is mainly workload de-
pendent; workloads that perform memory or file I/O causes more page-remappings
and triggers more TLB shootdowns. For the Linux 2.6.36, the set of responders
is a relatively poor approximation, including most cores at every shootdown with
about 80% being false positives on average. The percentage of compute cycles lost
on executing TLB shootdowns seems to increase linearly with the number of cores.
For certain workloads, it can approach as much as 25% for 64 cores, or 50% for 128
cores [27].

3.7 The Synonym Problem

The presence of synonyms can complicate the management of virtual caches by
allowing multiple copies of the same data to exist at different locations in the
cache. Writing to a copy causes the other copies to become stale and creates a
consistency problem.

First note that there is no synonym problem in PIPT caches: the synonyms
of a physical address all map to the same set and copies are avoided implicitly
through tag comparison. Virtual caches are different in that they are indexed with
virtual address bits. Synonyms with different index bits map to different sets,
therefore tag comparison is no longer sufficient to detect copies. The possible sets
that the synonyms of a physical address can map to form the superset. The size of
the superset can be computed as two to the power of the number of virtual index
bits. Recall that page offset bits are not translated, thus those index bits are not
counted.

VIPT caches can exploit the fact that copies share the same tag. In VIVT
caches, also the tag is virtual.

3.7.1 Using a global address space

The symbolic processing using RISCs (SPUR) avoids synonyms by giving each
process access to four disjoint 1G-byte segments that are mapped onto a 256G-byte
global virtual address space [28]. No synonyms are allowed to exist in the global
address space. Instead, memory is shared between processes at the granularity of
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segments. This avoids synonyms but restricts sharing to a course granularity and
disallows synonyms within a single virtual address space. As modern operating
systems rely on such features, this solution is not very portable.

3.7.2 Synonym Alignment

Synonyms can be prevented in software by ensuring that synonyms map to the same
set in the virtual caches (alignment). This forces the operating system to deal with
synonyms instead. As modern operating systems have poor support for synonym
alignment, this solution is not very portable. To prevent synonyms from coexisting
within the same cache set, the cache must be either VIPT or direct-mapped.

3.7.3 Read-only synonyms

Another solution is to permit shared data to be read-only. Writes are permitted
by flushing or invalidating any read-copies. This does not restrict sharing but has
a negative impact on performance.

3.7.4 Flush virtual caches on context switch

Synonyms can be avoided by flushing the virtual caches on context switch. If the
virtual caches are large, this can increase the miss frequency considerably. Write-
back caches may need additional logic to spread the write-backs that occur on
context switch through time (see Section 3.5.1).

3.7.5 Searching the superset

A brute force approach that works for physical tags is to perform tag comparison
on all blocks in the superset. However, the required hardware area is proportional
to the size of the superset and additional delay is introduced in tag comparison.
Some systems have still used this approach, such as the IBM 3090 system [29] and
the AMD Opteron 1000, 2000, and 8000 Series [30]. It is important that synonyms
cannot coexist in the same set, therefore the cache must either be /VIPT or direct-
mapped.

3.7.6 Backpointers in L2

A physical-address L2 cache can be used to store backpointers to a virtual L1 cache
[21]. There is a backpointer for every block in the L1 cache, each pointing to the
set in the cache where the block is valid. Synonyms are detected whenever an
access misses in the L1 cache and the L2 cache contains a valid backpointer for
that reference (soft miss). The block is then moved to the new cache set in L1
and retagged. To ensure that the L2 cache always contains backpointers for all
synonyms, the L2 cache needs to be inclusive with respect to the L1 cache. Using
backpointers for the L2 cache is not sufficient, thus the L2 cache cannot be virtual
using this technique.
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3.7.7 Dual-directory cache

Synonyms can be detected dynamically by extending the cache with a dual direc-
tory [17]. The dual directory is used to access cache blocks with physical addresses.
On a miss, the virtual address is translated by the TLB and the cache is accessed
through the dual directory to detect whether the accessed block was brought into
the cache through a synonym. If present, the block is moved to the cache block se-
lected through the virtual and the dual directory is updated; otherwise it is fetched
from memory.

The dual directory can be used for reverse translation as part of cache coherency
protocols such as snooping. Also, it can enable retranslation of virtual addresses on
page-mapping changes. The main disadvantage is the additional hardware required
to implement the dual directory. As when searching the superset, it is important
that synonyms cannot coexist within the same set, therefore the cache must be
either VIPT or direct-mapped. Also note that a hit through the dual directory
takes more tag cycles that a direct hit because the cache is effectively accessed
twice.

3.7.8 U-cache

The U-cache improves over the dual-directory cache by only providing reverse
translations for unaligned synonyms [31]. This allows the U-cache to be smaller.
The U-cache is used in a similar fashion to the dual-directory. Cache hits are
processed as normal. On a cache miss, the U-cache is accessed to detect whether
the accessed block resides in the cache in a different location. On a U-cache hit,
the block is moved to the cache block selected through the virtual address and
the U-cache pointer is updated. On a U-cache miss, either there are no unaligned
synonyms in the cache, or there is an aligned synonym. The former case implies
that the access is unaligned, otherwise the access would have resulted in a cache hit.
To avoid inconsistencies, the cache block that may contain the aligned synonym
must be checked. If an aligned synonym is present, it is used to service the cache
miss; otherwise the missed block is fetched from main memory and the U-cache is
updated with a pointer to it.

Similar to the dual-directory, the U-cache can be adapted to work with cache
coherency protocols. The U-cache can benefit from page alignment performed by
the operating system, but this is not necessary for correctness. When new entries
are allocated in the U-cache, old entries are evicted.

3.7.9 Synonym Lookaside Buffer

A synonym lookaside buffer (TLB) can be used to avoid synonyms even with a
virtual L2 cache [32][33][34]. An extended virtual address space is formed by ex-
tending the virtual addresses of the private address spaces with ASIDs. Every
page is associated with a single unique extended virtual address called the pri-
mary virtual address; synonyms of the primary address are called secondary virtual
addresses. Only primary addresses are ever used to access the memory hierarchy



CHAPTER 3. VIRTUAL MEMORY DESIGN

Synonym Solution Requirements Performance Considerations

Flush cache on
context switch

None significant Flush virtual caches on context
switch

Search the
superset

Additional tag comparison
hardware, cache must be VIPT
or direct-mapped

Slower tag comparison

Backpointers in L2 Backpointers stored in L2 cache,
L2 cache is physical

Slower access to synonyms

Dual directory
cache

Dual directory, the L1 cache
must be either VIPT or
direct-mapped

Slower access to synonyms

U-cache with
synonym
alignment

U-cache (smaller than the dual
directory), the L1 cache must be
either VIPT or direct-mapped

Slower access to synonyms

Synonym lookaside
buffer

Virtual L1 cache, small synonym
lookaside buffer, software
managed TLB and SLB

Flush SLB when the content of a
virtual page is changed

Table 3.6: Comparison of techniques to solve the synonym problem.

(possibly excluding the L1 cache); a TLB is used to dynamically translate syn-
onyms into their corresponding primary address on access. The TLB needs to be
managed in software. When the operating systems detect synonyms for a page,
one of the synonyms is selected as a primary virtual address. The mechanism for
loading entries into the TLB works as follows. When the TLB cannot provide
a translation for a synonym, the access is allowed to proceed down the memory
hierarchy. The operating system ensures that such accesses will generate a TLB
miss by not loading mappings for synonyms into the TLB. The TLB miss traps
the processor, the missing primary virtual address can be loaded into the SLB, and
memory access is retried with the primary address.

The TLB has better coverage than a TLB and can be kept small and fast (16
elements can be sufficient), thus it is possible that it can be accessed before the L1
cache. If parallel access is necessary, backpointers can be stored in the L2 cache
to avoid aliases. The main drawback of using an TLB is that it requires specific
support by the operating system.

Page-mapping operations affect the TLB and the L1 cache as usual. The SLB
is only affected by rare mapping operations that change the content of a virtual
page; then the TLB must be flushed for demapped secondary virtual addresses.
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Virtual Memory in SHMAC

This section discusses virtual memory systems with regards to the SHMAC archi-
tecture.

4.1 TLB Placement

The TLB can be placed either before or after the L1 caches; in the former case,
the cache is either PIPT or VIPT, and in the latter case the cache must be VIVT.

4.1.1 TLB before a PIPT L1 cache

A potential disadvantage of locating the TLB in front of a PIPT L1 cache is that
the TLB is placed on the critical path of cache access, either fully by accessing it in
before accessing the cache or partly by accessing it in parallel with cache indexing.
However, the SHMAC processor core is implemented using slow BRAM and runs
at a relatively slow clock frequency when compared to modern processor cores.
Since the cache is accessed in two stages, the latency of each stage is quite small.
Consequently the core frequency is limited by the BRAM frequency, not the cache
latency [15]. It is conceivable that the additional delay introduced by the TLB
will not affect limit the core frequency regardless of whether it is accessed in serial
or in parallel with the cache. If parallel access is used, the L1 caches currently
are sufficiently small that the size of their index is not restricted [15]. Physical
caches also have benefits when compared to virtual caches: aliases do not occur,
translation information need not be buffered in the cache, and reverse translation
hardware is not needed to support coherency protocols.

4.1.2 TLB after a Virtual L1 cache

The main disadvantages with virtual caches are that aliases must be handled and
that reverse translation might be needed to support some coherency protocols. A
potential benefit of locating the TLB after the cache is that the TLB is removed
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from the critical path and that a large TLB can be used to reduce the TLB miss
frequency. As the critical path issue may be irrelevant, it is possible that a suf-
ficiently large TLB can also be located before the cache to obtain an acceptable
miss frequency.

4.1.3 TLB at the Memory Tile

Locating the TLB before the L2 cache at the memory tile poses some interesting
issues due to the fact that the L2 cache can be distributed. To avoid defeating
the benefits of using a distributed L2 cache the TLB must also be distributed. An
obvious approach is to let each cache have its own TLB that contains translation
information for the data present in that cache. One must consider whether different
TLBs should be allowed to contain the same mappings. This necessitates the use
of a distributed algorithm to flush invalid entries on page-mapping changes. It
is not possible to use straight-forward TLB shootdown because the TLBs are no
longer associated with individual cores. One might imagine laying a bus over
the grid to allow TLB coherency transactions, either initiated by the cores on a
page-mapping change or initiated by the caches when a new page frame is loaded
to maintain exclusiveness, but the scalability of bus-based approaches in tile-based
architectures is questionable. The grid can be used for communication, but this may
in an increase in data traffic. The implementation would be simplified if mappings
could only reside in a single TLB at once. This may be achieved by ensuring that
only a page frame can only be present in a single cache. The operating system
must track the the location of different page frames in a data structure in order to
know which TLB to flush at a page-mapping change. A handler is trapped on an
L2 miss to update to the data structure. This approach limits the granularity with
which data can be located in different caches to the size of a page.

4.2 Process Isolation

Four different techniques for process isolation were introduced in Section 3.5, two
for private page tables and two for global page tables.

An important factor that sets private and global page tables apart is that con-
temporary operating systems have poor support for global page tables. Private
page tables have been the dominating trend. Building hardware that relies on
using a global page table will inevitably increase the efforts necessary to port op-
erating systems onto the SHMAC.

When private page tables are used, either the TLB and any virtual caches must
be flushed on context switch or the entries in the TLB and the virtual caches must
be extended with an ASID field. Because the caches currently used in SHMAC
are relatively small, flushing may be an acceptable alternative. However, it is also
possible that future versions of the SHMAC will need larger L1 caches in order to
accommodate the memory needs of a modern operating system running multiple
processes. ASIDs can be used to avoid flushing at context switch, but this will
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increase the area of the TLB and virtual caches; at the moment, area is a limited
FPGA resource [15].

4.3 Solving the Synonym Problem

The synonyms problem must be solved when virtual caches are used. The TLB
can be located before a VIPT or direct-mapped L1 cache, after a virtual L1 cache,
or on the memory tile. When the TLB is located on the processor tile, a simple
solution is to flush the L1 caches on context switch, possibly with a negative impact
on performance (see Section 4.2).

Some solutions require that a VIPT or direct-mapped L1 cache is used. Search-
ing the superset on access may increase the area used for the tag comparison hard-
ware and consume more FPGA resources. Storing backpointers in the L2 cache
may significantly increase memory traffic in the grid as it would then be necessary
to access the L2 cache once for every synonym access. A dual directory uses a
considerable amount of hardware area by implementing a reverse translation ta-
ble for all cache entries, although it provides some support for cache coherence
protocols. The U-cache is similar to the dual directory but only provides reverse
translation for a configurable number of cache entries that are synonyms. Thus it
offers a trade-off between area and performance but no support for cache coherence
protocols.

An TLB can be used to support VIVT caches but since software keeps track
of synonyms a TLB may significantly increase the effort needed to port operating
systems onto the architecture.

When the TLB is located on the memory tile, storing backpointers in L2 may
be a more promising alternative as it does not increase memory traffic.
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Conclusion

There are several promising virtual memory system designs for the SHMAC.
The simplest design is to place a TLB in front of a PIPT L1 cache and access

it either in sequence or in parallel. This allows for a simple implementation with
no synonyms and no impact on the coherence protocol. The potential impact on
core frequency should be determined and an algorithm must be devised that will
work on grid-based architectures, for instance by adapting the TLB shootdown
algorithm.

An alternative design is to place the TLB after a VIVT L1 cache. The main
motivation for this technique in SHMAC is that since the TLB is no longer on the
critical path it can be large and slow to support a good hit rate. Also, using virtual
address bits to index the L1 cache allows compilers to optimize the placement of
data in the cache. A significant disadvantage is that synonyms in the virtual
cache must be handled and that cache coherence protocols might need reverse
translation to invalidate cache data. The potential performance benefits of this
scheme would need to be estimated and compared against the simpler scheme
of using a PIPT L1 cache. If the differences favor the virtual cache approach, a
SHMAC-specific solution to the synonym problem and the cache coherency problem
could be devised.

A more novel design to virtual memory is to place the TLB at the memory tile.
Since virtual addresses are used on the bus this algorithm has no impact on the
cache coherency protocol. It is necessary to investigate whether the TLB can meet
the bandwidth requirements set by the processing cores. Also, since the L2 cache
can be distributed over multiple tiles, some scheme must be devised to implement
a distributed TLB.

A very simple technique that can be used both to implement process isolation
and solve the synonym problem is to flush the L1 caches on context switch. The
potentially negative performance impact associated with flushing the caches on the
SHMAC should be investigated to determine whether this is a viable technique
when implementing virtual memory in the SHMAC.
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