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Abstract

In this master thesis I study the extremal positive partial transpose (PPT) states of the
three qubit (2 × 2 × 2) system using numerical methods. Using two algorithms which
locate PPT states of a speci�ed rank and extremal PPT states respectively, I have located
numerical examples of extremal PPT states with a variety of ranks. These numerical results
con�rm the analytical result that all PPT states of rank less than four are separable. I also
derive an upper limit on the ranks of extremal PPT states. The extremal PPT states of
lowest rank, the rank four states, were studied in more detail. These states were con�rmed
to be biseparable in accordance with both previous analytical and numerical results. The
range and kernel of these states were examined for product vectors, but none were found. In
an attempt to parametrize the SL⊗SL equivalence classes of these extremal rank four states
I have studied an analytical method to construct such states based on unextendible product
bases (UPBs). This method can be used to create PPT states from a single equivalence
class where, by design, the kernel of all states contain a UPB and the range contains no
product vectors. All states where the range is not spanned by a basis of product vectors are
necessarily entangled. I also present a numerical method for creating extremal rank four
states that are symmetric under various combinations of partial transposes. Numerical
examination of these states reveal no product vectors in neither range nor kernel.

The existence of rank four states with and without product vectors in their kernel im-
plies the existence of at least two equivalence classes. To get a better impression of these
equivalence classes I construct quantities that are invariant under SL⊗SL transformations
and must therefore have the same value for all states in the same equivalence class. Calcu-
lating the values of these invariants for all the rank four extremal states I have generated
gives a seemingly continuous range of values. This indicates that there is an in�nite number
of equivalence classes likely described by one or more continuous variables. The invariants
also revealed an interesting set of states that may belong to a single equivalence class,
where one invariant is zero and the others have identical values. This was the only equiva-
lence class where more than one of my states were included. There is obviously something
special about this class, but I do not know what it is.
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Sammendrag

Målet for denne masteroppgaven har vært å utføre numeriske studier av de ekstremale
tilstandene med positive deltransponerte (PPT-tilstander) i systemer bestående av tre
qubits (dimensjon 2× 2× 2). Ved å bruke to algoritmer som �nner henholdsvis tilstander
med en spesi�sert rang og ekstremale tilstander, har jeg funnet numeriske eksempler på ek-
stremale tilstander for en rekke forskjellige rangkombinasjoner. Disse numeriske resultatene
bekrefter det analytiske resultatet som sier at alle PPT-tilstander i dette systemet som har
rang lavere enn �re er separable. Jeg utleder også en øvre grense på rangen til ekstremale
PPT-tilstander. De ekstremale PPT-tilstandene med lavest rang, rang �re, ble studert i
mer detalj. Disse tilstandene ble i tråd med tidligere numeriske og analystiske resultater
bekreftet å være biseparable. Bilde- og nullrommet til disse tilstandene ble gjennomsøkt
etter produktvektorer, men ingen ble funnet hverken for tilstandene selv eller deres del-
transponerte. I et forsøk på å parametrisere SL⊗SL ekvivalensklassene til disse ekstremale
tilstandene har jeg sett på en analytisk metode for å konstruere slike tiltstander som byg-
ger på ikke utvidbare produktbasiser (UPB). Denne metoden kan brukes til å konstruere
tilstander fra en enkelt ekvivalensklasse hvor tilstandene er konstruert slik at de har en full-
stendig basis av produktvektorer i nullrommet og ingen produktvektorer i bilderommet.
Alle tilstander hvor bilderommet ikke utspennes av en produktbasis er nødvendigvis sam-
men�ltret. Jeg presenterer også en numerisk metode for å konstruere ekstremale rang �re
tilstander som er symmetriske under ulike kombinasjoner av deltransponering. Numeriske
undersøkelser av bilde- og nullrommet til disse tilstandene viste heller ingen produktvek-
torer.

Eksistensen av rang �re tilstander med og uten produktvektorer i nullrommet implis-
erer at det �nnes minst to ulike ekvivalensklasser. For å undersøke disse ekvivalensklassene
nærmere konstruerte jeg størrelser som er invariante under SL⊗SL-transformasjoner og der-
for har de samme verdiene for alle tilstandene i en ekvivalensklasse. Beregning av disse
verdiene for alle de ekstremale rang �re tilstandene jeg har generert gir et tilnærmet kontin-
uerlig spektrum av verdier. Dette indikerer at det �nnes et uendelig antall ekvivalensklasser
som er beskrevet av en eller �ere kontinuerlige variabler. Disse invariante størrelsene av-
slørte også en spesielt interessant type tilstander som kan tilhøre samme ekvivalensklasse,
hvor en invariant var null mens de andre hadde identiske verdier. Dette var den eneste
ekvivalensklassen som inneholdt mer enn en av mine numeriske eksempler. Det er åpenbart
noe spesielt med denne ekvivalensklassen, men jeg vet ikke hva det er.
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Chapter 1

Introduction

Quantum entanglement is one of the most fascinating features of quantum mechanics. It
is a truly non-classical phenomenon and has several interesting applications in information
theory, for example teleportation and super dense coding. It also has applications in cryp-
tography. One of the fundamental problems in the study of entanglement is the separability
problem or, in other words, the task of determining the separability or entanglement of an
arbitrary state.

One of the powerful tools that can be used to help solve this problem is the Peres
criterion, which states that the partial transpose of all separable states must be postive
semide�nite matrices. This criterion is in general not su�cient to determine separability
because the convex set of positive partial transpose states (PPT states) is in general larger
than the convex set of separable states. One approach to the separability problem is to
study the di�erences between these two sets. Because these sets are convex they are de-
scribed completely by their extreme points, which has led to the study of extremal PPT
states. These extremal PPT states have been studied numerically in the bipartite case
[1, 2]. The goal for this thesis has been to perform a similar study in the multipartite case,
mainly focused on the three qubit system i.e. a composite system with three two dimen-
sional subsystems. I focus on this particular system because it is the lowest dimensional
multipartite system and it is not obvious that going to higher dimensions would yield any
additional insight into the general properties of extremal PPT states in multipartite sys-
tems. This particular system is also interesting due to the application of systems of qubits
in quantum information theory.

The foundation for the numerical studies I conducted are the algorithms rankSearch
and extremalSearch which search for PPT states of speci�ed ranks and extremal PPT
states respectively. The consecutive application of these algorithms were used to generated
a multitude of extremal PPT states of varying ranks. Among all the PPT states generated
using this method one group is particularly interesting and were studied in more detail.
These are the extremal PPT states of rank (r(ρ), r(ρT1), r(ρT2), r(ρT3)) = (4, 4, 4, 4). There
are no mixed entangled PPT states with lower ranks than these and they are also the only
rank where both rank is preserved under all partial transposes and we �nd extremal states.
In an attempt to parametrize these states I studied the construction of such states using a
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method involving unextendible product bases (UPBs). While this method was successful
in producing extremal rank (4,4,4,4) states, a search for product vectors in the kernel of
the original states showed that not all such states can be generated using the UPB method
implying the existence of multiple equivalence classes of extremal rank (4,4,4,4) states.

Searching for another way to parametrize these equivalence classes I looked into the
creation of extremal rank (4,4,4,4) states with special symmetries, in particular di�erent
combinations of symmetry under the various partial transposes. To be able to compare
the equivalence classes of the states generated with these properties and the equivalence
classes of the original states I looked into the creation of quantities that have the same
value for all states in an equivalence class. An equivalence class is a set of states that can
be transformed into each other using SL⊗SL transformations followed by normalization
to unit trace. Four such quantities where found and their values calculated for all states,
which indicate that there is an in�nite number of equivalence classes described by one or
more continuous variables.

I will start this thesis by repeating some fundamental quantum mechanics and linear
algebra that will be useful later. These basics are covered in Chapter 2. In Chapter 3 I give
the theoretical foundation for the thesis by going through the basics of entanglement and
discussing the Peres criterion and the theory of convex sets in more detail. The algorithms
extremalSearch and rankSearch are presented in Chapter 4 followed by a discussion of the
states found by running them. The more detailed study of the extremal rank (4,4,4,4) states
are presented in Chapter 5 and I �nish with a summary and some avenues for further study
in Chapter 6. MATLAB source code for the rankSearch and extremalSearch algorithms is
found in Appendix A along with the code for creating rank four states symmetric under all
partial transposes. MATLAB source code for the optimization algorithms used to search
for product vectors can be found in Appendix B.
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Chapter 2

Fundamentals

2.1 Composite systems

A composite system consists of several separate parts or subsystems for example a system
of multiple particles. If the states |ψa〉 , |ψb〉 , ..., |ψk〉 of all subsystems a, b, ..., k are known,
the state of the composite system is |ψ〉 = |ψa, ψb, ..., ψk〉, just as you are used to from your
quantum mechanics courses. States on this form are called product states and are formed
mathematically by taking the tensor product of the individual substates, i.e. |ψa〉⊗ |ψb〉⊗
...⊗ |ψk〉. All possible states of the composite system can be written as superpositions of
product states.

2.2 Pure and mixed states

When the state of a system is exactly known it is a pure state, but if you only know that
your system has a probability pi to be in the pure state |ψi〉, we say that the state is
mixed and is described by the density matrix ρ =

∑
i pi |ψi〉 〈ψi|. That a density matrix

can be written in this form, i.e. a convex combination of normalized projection operators,
is equivalent to the requirements

ρ ≥ 0, Trρ = 1, ρ† = ρ. (2.1)

All states, including pure states, can be described by density matrices. If your system
is in the pure state |ψk〉, it has the probability distribution pi = δik, which gives the
density matrix ρ = |ψk〉 〈ψk|. This is the projection operator onto the state |ψk〉, and
like all projection operators it has the property ρ2 = ρ. All one dimensional projection
operators are rank one matrices and all rank one matrices can be written as one dimensional
projection operators. This means that rank(ρ)=1 is equivalent to the statement that ρ is a
pure state. All states are either pure or mixed. I will denote the set of all density matrices
by D.
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2.3 Some linear algebra

Here I will introduce some basic linear algebra terms you may have forgotten. This theory
can be found in any basic textbook on linear algebra. The image space or range of a matrix
A, denoted by R(A), is the vector space spanned by the set of vectors, {ψ}, where

ψ = Aϕ (2.2)

and ϕ is an arbitrary vector. The rank of A, denoted by r(A), is the dimension of R(A),
the number of non-zero eigenvalues and both the number of linearly independent columns
and rows. The null space or kernel of a matrix A, denoted by K(A), is the vector space
spanned by the set of vectors, {χ}, where

Aχ = 0. (2.3)

I will denote the dimension of K(A) by k(A). If A is an m × n matrix the sum of k(A)
and r(A) is always n.

If A is Hermitian K(A) is the orthogonal complement of R(A). This means that all
the vectors in R(A) are orthogonal to all the vectors in K(A). Here is the one line proof
using the vector de�nitions given above:

χ†ψ = χ†Aϕ = (Aχ)†ϕ = 0 (2.4)
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Chapter 3

Entanglement

In this chapter I will present the theory that forms the foundation and motivation for this
thesis. I will �rst introduce some of the theory behind entanglement in particular some of
the physical consequences and applications of entanglement as well as some of the most
rudimentary mathematical formalism. I will then discuss the Peres criterion and the partial
transpose before moving on to the theory of convex sets and extreme points and explaining
how this theory can help us solve the separability problem. I will �nish this chapter by
discussing the classi�cation of entanglement in multipartite systems.

3.1 A short introduction to entanglement

Entanglement is a quantum mechanical property of a composite system, of importance
comparable to that of energy. Just like energy it is hard to describe exactly what entan-
glement is. It is more convenient to describe how we see its e�ects. Entanglement can
manifest itself in three major ways:

• As strong correlations between results of measurements on individual subsystems.

• As a resource in information theory.

• It allows us to have more information about the system as a whole, than the combined
information about the individual subsystems.

The expectation value of simultaneous measurements of an observable A on subsystem
a and an observable B on subsystem b is given as Tr[(A ⊗ B)ρ]. If the system is in a
product state ρ = ρa ⊗ ρb, the expectation value of the measurements is

Tr[(A⊗B)(ρa ⊗ ρb)] = Tr[(Aρa)⊗ (Bρb)] = Tr[Aρa]Tr[Bρb]. (3.1)

Since the result is simply multiplication of the two individual results, they are completely
uncorrelated. If the state is a convex combination of product states,

ρ =
∑
i

pi (ρa,i ⊗ ρb,i), (3.2)
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the expectation value is ∑
i

pi Tr[Aρa,i]Tr[Bρb,i]. (3.3)

It is now possible for the results to be correlated, but all correlation stems from the dis-
tribution {pi} which can be generated by classical mechanisms. A convex combination
of product states can always be written as a convex combination of pure product states.
States that can be written as convex combinations of pure product states are called sepa-
rable states. I will denote the set of separable states by S. There are states which cannot
be written as convex combinations of product states and these states are called entangled
[3].

One of the great discussion between physicists in the early days of quantum mechanics
was the Einstein�Podolsky�Rosen paradox, which was �rst presented in a paper from 1935
[4]. The authors argued that qunatum mechanics is an incomplete theory because it is not
compatible with the principles of realism and locality. Realism means that all measurement
results are determined before they are performed and locality only allows local interactions
essentially limiting the speed of interaction between spatially separated systems to the
speed of light. Based on these assumptions it is possible to derive upper limits on the
correlation of measurement results. These limits are often called Bell inequalities after
John S. Bell who published the �rst limit of this kind in a paper from 1964 [5]. Violations
of Bell inequalities have been con�rmed experimentally.

Because Bell inequalities limit the correlations between measurement results they re-
quire a signi�cant amount of measurements to disprove. In the multipartite case it is
possible to construct �Bell equalities� which can be disproved with a single measurement.
One such experiment is described in [6] and employs the tripartite GHZ state, which will
be mentioned again in Section 3.4.

In general the relationship between entanglement and Bell inequalities is not a simple
one, as both the type of state in question and what measurements are allowed has an impact
on the result. For a more detailed discussion of the relationship between entanglement and
Bell inequalities see Chapter IV in [7], and references therein.

As an example of how a state can contain more information about the system as a
whole than about the states of the subsystems I will use the Bell state

|ψ〉 =
1√
2

(|+−〉 − |−+〉), (3.4)

where |+〉 and |−〉 represent the states with with spin up and down in the z direction
respectively. Physically this is a state where the total spin in any direction is zero i.e. if
the spin of both particles is measured in an arbitrary direction the sum will be zero. Even
though the state provides information about the system as a whole, it does not contain
any information about the result of a measurement on an individual subsystem. This can
be seen in the mathematical formalism by calculating the reduced density matrices of the
subsystems,

ρa = Trb[ρ] =
1

2
I ρb = Tra[ρ] =

1

2
I. (3.5)
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Reduced density matrices are representations of the state of a subsystem. In this case they
are both proportional to the identity matrix which provides only the information that any
outcome of any measurement on one subsystem is equally likely.

Entanglement has some fascinating applications in quantum information theory. Quan-
tum teleportation and superdense coding are perhaps the best known. Entanglement is an
important part of some protocols in quantum cryptography and will play a key role in any
future quantum computers. You can read more about the role of entanglement in quantum
information theory and quantum computing in [8].

3.2 The Peres criterion

The Peres criterion, which was �rst published in a paper by Asher Peres in 1996 [9], is
an important separability criterion because it requires very little computational power
to apply. It states that the partial transpose of any separable state must be a positive
semide�nite matrix. The partial transpose is a mathematical operation that treats the
state as a product state and transposes one subsystem, i.e. a bipartite state ρ = ρA ⊗ ρB
has a partial transpose ρP = ρA ⊗ ρTB.

Bipartite states have two partial transposes, one transposes subsystem A and the other
subsystem B, but these can be converted into each other via the regular transpose op-
eration. The regular transpose preserves eigenvalues which implies that both rank and
positivity is preserved. It is therefore su�cient to check the positivity of one partial trans-
pose. In multipartite systems the di�erent partial transposes are not redundant in this
way. In the tripartite system that has been the focus of this thesis, there are three inde-
pendent partial transposes, independent meaning they cannot be created from each other
via a regular transpose. While the third partial transpose is equivalent to applying the
previous two partial transposes and a regular transpose, the consecutive application of the
di�erent partial transpose operation does not necessarily preserve positivity even though
each of them applied alone does. This fact was checked numerically by looking for posi-
tive matrices where two of the partially transposed matrices were positive while the third
had at least one negative eigenvalue. I will denote partial transposition with respect to
subsystem i by Ti, but in the bipartite case I will use P instead of T2.

The Peres criterion is easily proven since all separable states can be written as convex
combinations of pure product states:

ρ =
∑
i

pi ρA,i ⊗ ρB,i. (3.6)

The partial transpose of this state is then written as

ρP =
∑
i

pi ρA,i ⊗ ρTB,i. (3.7)

which is also a separable state, since the transpose operation preserves all the requirements
that ensure that ρB,i is a state (positivity, unit trace and Hermiticity). This proves that
partial transposition preserves separability.
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The Peres criterion is in general only a necessary separability criterion and not a suf-
�cient one. The set of states with positive partial transposes (PPT states), which I will
denote as P , is only identical to the set of separable states, S, in 2x2 and 2x3 dimensions
[10]. In higher dimensions there are entangled PPT states, which implies that P and S
are not identical. Due to the computational ease of the Peres criterion the separability
problem is essentially reduced to identifying these entangled PPT states.

Di�erent entangled states may not contain the same amount of entanglement. The
process of converting a set of entangled states into a smaller set of maximally entangled
states is called distillation. Entanglement that can not be concentrated in such a way is
called bound. It is known that the entanglement of entangled PPT states is always bound,
though this fact is not directly relevant for this thesis. You can read more about distillation
and bound entanglement in Chapter XII of [7].

3.3 Convex sets and extremal points

All the previously mentioned sets, D, P and S, are convex. In a convex set all points on
the straight line between two arbitrary points in the set are also included in the set. It is
possible to uniquely de�ne a convex set in two equivalent ways. It can be described by a set
of algebraic inequalities or other similar conditions or by its extreme points. An extreme
point does not lie on any straight line joining two other points of the set. Extreme points
can intuitively be interpreted as the corners of the set. Any point in a convex set can be
written as a convex combination of extreme points, but extreme points can not be written
as convex combinations of other points in the set.

The set of all density matrices, D, can easily be de�ned in both ways. Either by the
conditions stated in equation (2.1) or by its extreme points: the pure states. It is easy to
con�rm that the pure states are the extreme points of D. Any mixed state can be written
as a convex combination of pure states, but a pure state can not be written as a convex
combination of other pure states.

The two other sets, P and S, only have easy de�nitions in one of these two ways. The
set of PPT states is de�ned by the requirement that all partial transposes must be density
matrices. In the bipartite case this means that P=D ∩ DP . However the extreme points
of P are not completely known.

Separable states are de�ned as convex combinations of pure product states and because
pure states cannot be written as convex combinations of other pure states the pure product
states must be the extreme points of S. It is possible to make an alternative description of
S using entanglement witnesses, but such a description would be highly complicated and
unwieldy. Entanglement witnesses are operators with positive expectation values in all
separable states and can be used as an alternative approach to the separability problem.
You can read more about entanglement witnesses in Chapter VI of [7].

While the extreme points of P are not completely known, the relationship between D,
P and S, which is described by

S ⊂ P ⊂ D, (3.8)
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can be used to learn something about them. Because P is a subset of D all the extreme
points of D that are also members of P must be extreme points of P . This means that
since all pure product states, which are members of S and therefore P and are extreme
points of D, must be extreme points of P . Because all the extreme points of S are extreme
points of P the di�erences between the two sets are completely described by the extreme
points of P that are not pure product states. Attaining a parametrization of the extremal
PPT states would give great insight into the di�erences between S and P .

If a pure state is not a product state, it is not in P and must therefore be entan-
gled. Since this might not be obvious to everyone I will give a proof in the case of a 2x2
system. Similar proofs can be done for systems of arbitrary dimensions. Using Schmidt
decomposition a pure state of a 2x2 system can always be written as

ψ = a

(
1
0

)
⊗
(

1
0

)
+ b

(
0
1

)
⊗
(

0
1

)
(3.9)

where a and b are real positive constants. The density matrix corresponding to this pure
state is 

a2 0 0 ab
0 0 0 0
0 0 0 0
ab 0 0 b2


which has a partial transpose 

a2 0 0 0
0 0 ab 0
0 ab 0 0
0 0 0 b2


with eigenvalues a2, b2 and ±ab. If ψ is not a product state neither a nor b will be zero
and the partial transpose will have a negative eigenvalue. QED.

Since all pure PPT states are product states all entangled PPT states must have ranks
higher than one, but this is not the strongest known lower limit on the ranks of extremal
PPT states. In the bipartite case it is known that there are no PPT states of rank three
containing bound entanglement [11], which means that there are no rank three extremal
PPT states. We also know that all states of rank N and lower are separable in the 2×2×N
system [12].

3.4 Multipartite entanglement

In the multipartite case, i.e. composite systems with more than two components, the
concepts of entanglement and separability become more nuanced. The bipartite de�nition
of a separable state is easily generalized i.e. an n-partite state is separable if it can be
written as

ρ =
∑
i

pi (ρa,i ⊗ ρb,i ⊗ ...⊗ ρn,i), (3.10)
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but these states are now called fully separable. In addition we also have the notion of partial
separability or k-separability. A pure state is k-separable if it is possible to partition the
subsystems so that the state is a product state when regarded as the corresponding k-
partite state. A mixed state is k-separable if it can be written as a convex combination
of pure k-separable states. For an n-partite system we must naturally have k ≤ n. It is
worth noting that even though a state is k-separable for all possible k-partitions, it might
not be (k+ 1)-separable e.g. a tripartite system might be biseparable for all three possible
partitions and still not be fully separable.

Just as there are di�erent types of separability there are di�erent categories of entangle-
ment in multipartite systems. There are �ve inequivalent classes of entangled pure states
in a three qubit system [13]. All the states in one equivalence class can be transformed
into each other using stochastic local operations and classical communication (SLOCC),
stochastic meaning that the operation does not succeed with unit probability. The trans-
formations corresponding to local operations and classical communication (LOCC) can be
represented mathematically as SL⊗SL transformations followed by normalization to unit
trace. By SL⊗SL transformations I mean transformations on the form

ρ→ (Va ⊗ Vb ⊗ ...⊗ Vn)ρ(Va ⊗ Vb ⊗ ...⊗ Vn)† (3.11)

i.e. product transformations made up of SL transformations of dimensions corresponding
to the dimensions of the subsystems.

Three of these classes consist of biseparable states where we have bipartite entanglement
between two subsystems. These three classes are identi�ed by which state does not share in
the bipartite entanglement. The two remaining classes consist of states with true tripartite
entanglement and are exempli�ed and named after two famous states. The GHZ state,

|ψGHZ〉 =
1√
2

(|000〉+ |111〉), (3.12)

and the W-state,

|ψW 〉 =
1√
3

(|100〉+ |010〉+ |001〉). (3.13)

A characteristic di�erence between these two states is the behavior of the inherent entan-
glement when one qubit is removed from the system. If the system is in the GHZ state
and a qubit is removed the remaining to qubits are separable. If a qubit is removed while
the system is in the W state the remaining qubits are still entangled.

Removing a qubit is represented mathematically by the partial trace. Tracing out a
subsystem in this way leaves us with the reduced density matrix. The partial trace with
respect to subsystem C is de�ned as

ρAB = TrC(ρ) =
∑
i

(IA ⊗ IB ⊗ |i〉C)†ρ(IA ⊗ IB ⊗ |i〉C) ≡
∑
i

〈i| ρ |i〉 . (3.14)

If we remove the third qubit of a system in the GHZ state we get

ρGHZ,AB =
1

2
(|00〉 〈00|+ |11〉 〈11|) (3.15)
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which is a convex combination of product states and therefore separable. Doing the same
for the W state we get

ρW,AB =
1

3
(|00〉 〈00|+ |01〉 〈01|+ |01〉 〈10|+ |10〉 〈10|+ |10〉 〈01|). (3.16)

It is not quite as easy to determine if this state is separable just by looking at it, but because
this is the state of 2 × 2 system the Peres criterion is su�cient to determine separability.
The partial transpose of this state is

ρPW,AB =
1

3
(|00〉 〈00|+ |01〉 〈01|+ |00〉 〈11|+ |10〉 〈10|+ |11〉 〈00|), (3.17)

which can be explicitly written as 
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

 . (3.18)

If you calculate the eigenvalues of this matrix you will �nd that one of them is negative
and ρW,AB must therefore be an entangled state. In fact it is shown in [13] that the W
state is the state where the maximal amount of entanglement is preserved under the loss
of a qubit. The fact that there are two separate classes of true tripartite entanglement is
a sign of fundamental di�erences between bipartite and multipartite entanglement.

These equivalence classes of pure states can be used as the foundation for a complete
classi�cation of all 2 × 2 × 2 states into a hierarchy of four convex sets. The �rst is the
set of separable states S. The second set is the class of biseparable states which contains
all states that can be written as a convex combination of pure product states and pure
biseparable states. This set is denoted by B. The third set is denoted by W and contains
all convex combinations of pure product states, pure biseparable states and W type pure
states. The fourth set and class, the GHZ class, also allows GHZ type pure states to be
included in the convex combination which means that this set is D the set of all states
because convex combinations of all pure states are allowed. The internal relationships
between these sets are obviously enough

S ⊂ B ⊂ W ⊂ D. (3.19)

This classi�cation was �rst introduced in [14] by A. Acin et. al. who also conjectured that
all entangled PPT states in three qubit systems are at most in the W class.

The entanglement of pure states in a system of four qubits was classi�ed by F. Verstraete
et. al in [15]. They conclude that there are nine inequivalent classes of entangled states.
Eight of these represent states where bipartite or tripartite entanglement is distributed
among the four subsystems, while the last one contains states which behave like a 4-
partite equivalent to the tripartite GHZ state. This indicates that increasing the number
of subsystems might not introduce new types of entanglement in the way going from two to
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three subsystem introduced the distinction between W- and GHZ type entanglement. This
indication makes it tempting to focus numerical studies of multipartite entanglement on
the tripartite case because of the increased computational requirements of studying larger
systems.
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Chapter 4

Numerical studies

The foundation for the numerical studies I have conducted are two algorithms, which I will
refer to as extremalSearch and rankSearch. The �rst algorithm, extremalSearch, is used
to search for extreme points in a convex set and the second, rankSearch, searches for PPT
states of a speci�ed rank. Both algorithms will be presented in detail in the subsequent
sections. I will also describe how extremalSearch can be used as a separability test for PPT
states with low ranks and how the theory behind this algorithm can be used to derive an
upper limit on the ranks of extremal PPT states. I �nish this chapter by discussing what
states were found using these algorithms.

4.1 Searching for extremal points in a convex set

To search for extremal states I have used a modi�ed version of the method presented in
[2], but I will present it here as well. I will �rst show how the method can be used to �nd
extremal points of D as a simple example and then explain how it must be modi�ed to
�nd extremal points in P .

An arbitrary state, ρ, is either an extremal point of D or can be written as

ρ = xρ1 + (1− x)ρ2, 0 < x < 1 (4.1)

where ρ1 and ρ2 are two di�erent points in D. For an arbitrary vector ψ we have, using
the positivity of ρ, ρ1, and ρ2 and equation (4.1), that

ρψ = 0⇔ ψ†ρψ = 0⇔ ψ†ρ1ψ = ψ†ρ2ψ = 0⇔ ρ1ψ = ρ2ψ = 0 (4.2)

which means that ψ is in the null space of ρ if and only if it is in the null spaces of both
ρ1 and ρ2, i.e.

K(ρ) = K(ρ1) ∩K(ρ2). (4.3)

The complementary statement is that the range of ρ contains all vectors that can be written
as the sum of a vector from R(ρ1) and a vector from R(ρ2), i.e.

R(ρ) = R(ρ1) +R(ρ2). (4.4)
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De�ning P as the projection operator onto R(ρ) the following relations hold:

PρP = ρ, Pρ1P = ρ1, Pρ2P = ρ2. (4.5)

The matrix σ = ρ − ρ1 is now nonzero, Hermitian, has Tr σ = 0 and ful�lls PσP = σ.
Since σ is Hermitian and is traceless it must have both positive and negative eigenvalues,
which means that so must τ(x) for su�ciently large |x|, where τ(x) is de�ned as

τ(x) = ρ+ xσ. (4.6)

The null space of τ(x) will contain the null space of ρ for all values of x, because if ρψ = 0
then Pψ = 0 which implies that σψ = PσPψ = 0. This also implies that τ(x) will always
share the zero eigenvalues of ρ. Since the eigenvalues of τ(x) change continuously with
x, τ(x) will stay positive in a �nite interval around x = 0 and at the end points of this
interval τ(x) has at least one more zero eigenvalue than ρ i.e. r(τ) < r(ρ).

This is the basis of the method. Starting at an arbitrary state ρ0, �nd a Hermitian
matrix σ0 that ful�lls P0σ0P0 = σ0, where P0 is the projection operator onto R(ρ0). De�ne

σ = σ0 − (Trσ0)ρ0 (4.7)

to obtain a traceless matrix. Using this matrix de�ne

τ(x) = ρ0 + xσ. (4.8)

De�ne ρ1 as τ(x1) where x1 is one of the two values of x for which r(τ(x))) < (r(ρ0))
and τ(x) is still positive semide�nite. Repeat the procedure using ρ1 as a starting point.
Continue this process until you can no longer �nd a nonzero σ. This means that it is no
longer possible to �nd a direction where it is possible to move both ways without leaving the
convex set i.e. you have reached an extreme point. Geometrically this method is equivalent
to moving to �at faces on the boundary of D with decreasing dimensions. This geometric
interpretation is very intuitive if we use a cube in R3 as our convex set. We start at a
point inside the cube and move in a random direction until we reach one of the faces. We
then move in a random direction along this surface until we reach an edge, where we chose
a new random direction along the edge which we follow until we reach a corner i.e. an
extreme point.

Using this method to �nd extremal points of P is very similar, but the method must
in essence be applied to both ρ and its partial transposes simultaneously. Practically this
means more constraints on valid σs. In the bipartite case you get the additional constraint

QσPQ = σP (4.9)

where Q is the projection operator onto the image space of ρP . In the tripartite case you
get three constraints similar to equation (4.9), one for each partial transpose, in addition
to the original constraints PσP = σ, σ = σ†, σ 6= 0, and Tr σ = 0.
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When searching for a valid σ it is useful to operate in the N2 dimensional real vector
space of N ×N Hermitian matrices with the scalar product

〈A,B〉 = 〈B,A〉 = Tr(AB). (4.10)

On this space the transpose of a linear transformation L is de�ned by

〈A,LTB〉 = 〈LA,B〉. (4.11)

In this space the constraints on σ are easier to handle. De�ne the following linear trans-
formation on this space

Pσ = PσP, Q1σ = (Q1σ
T1Q1)

T1 , Q2σ = (Q2σ
T2Q2)

T2 , etc. (4.12)

It is easy to show that all these linear operators are projection operators, for example

P2σ = P (PσP )P = PσP = Pσ, (4.13)

and that they are symmetric, for example

〈A,PB〉 = Tr(APBP) = Tr(PAPB) = 〈PA,B〉. (4.14)

Proving that the other operators in equation (4.12) are symmetric is not quite as simple
without knowing that

Tr(AB) =
∑
ij

AijBji =
∑
ij

A∗jiBji = Tr(ATiBTi). (4.15)

This is true because partial transposition merely rearranges the elements of a matrix, which
does not change the value of the sum. The proof for the symmetry of Qi is now

〈A,QiB〉 = Tr(A(QiB
TiQi)

Ti) = Tr(QiA
TiQiB

Ti) = Tr((QiA
TiQi)

TiB) = 〈QiA,B〉. (4.16)

All constraints on the form of equation (4.9) can now be written as

Qiσ = (Qiσ
TiQi)

Ti = σ. (4.17)

In the tripartite case the constraints on σ can now be described in a single eigenvalue
equation:

(P + Q1 + Q2 + Q3)σ = 4σ (4.18)

This compound operator is symmetric because it is a sum of symmetric operators and
we are therefore guaranteed that its eigenvalues are real. Since all this is done before
normalizing to zero trace, you can now choose σ as an arbitrary linear combination of the
eigenvectors that ful�ll equation (4.18). There is always at least one eigenvector ful�lling
equation (4.18) and that is σ = ρ0. When only this eigenvector remains there is no nonzero
σ with Tr σ = 0 and we have reached an extreme point.
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When searching for extreme points of P we are no longer guaranteed that r(ρ) decreases
in each iteration. We are only guaranteed that the sum of ranks,

r(ρ) = r(ρ) + r(ρT1) + r(ρT2) + r(ρT3) (4.19)

in the tripartite case, decreases.
To sum up the extremalSearch algorithm is described by the simple pseudo code below.

The full code can be found in Appendix A.1.

Initial ρ
σ ← createNormalizedSigma(ρ)
while σ 6= 0 do
ρ← findEdge(ρ, σ)
σ ← createNormalizedSigma(ρ)

end while
Return ρ

4.1.1 Locating the edge

When a direction σ has been calculated you need to �nd a value of x such that τ(x) is
still a PPT state, but r(τ(x)) < r(ρ). I did this by �rst increasing x until τ(x) is no
longer PPT using large increments and then approaching the desired value x from the
outside of P . One approach is to �rst choose a step size and make steps of this size while
monitoring the lowest eigenvalue, λk, of ρ and its partial transposes. A step is valid if
λk < λk+1 < 0.5λk<0. Continue making steps until the current step size no longer allows
a valid step and then divide the step size by two. Continue iterating until the step size
reaches some extremely small limit or the value of λ no longer changes. This method
should converge to the desired value of x relatively quickly.

4.1.2 Upper limit on the ranks of extreme points

By looking at the number of constraints equation (4.18) places on σ it is possible to derive
an upper limit on the ranks of extremal PPT states. The state ρ has ranks (m,n, u, v) =
(r(ρ), r(ρT1), r(ρT2), r(ρT3)). The ranks of the linear projection operators are the squares of
the ranks of the corresponding matrices e.g. r(P) = m2. Each projection operator taken
alone places a number of constraints on σ equal to the dimension of its kernel e.g. N2−m2

for P. Summing the the number of constraints gives an upper limit on the number nc of
linearly independent constraints: nc ≤ 4N2−m2−n2−u2−v2. The dimension of the space
spanned by valid solutions of equation (4.18) is the dimension of the space, N2, minus the
number of independent constraints. For an extreme point this space has dimension one
which means that nc = N2 − 1. Using this we get an upper limit on the square sum of
ranks for an extremal PPT state:

m2 + n2 + u2 + v2 ≤ 3N2 + 1 (4.20)
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We have equality when all the constraints from the various projection operators are linearly
independent, but in general this rarely happens. The highest rank combinations that are
allowed by this limit in the 2×2×2 system, where 3N2 + 1 = 193, are listed in Table 4.1.

1888 193
4788 193
5688 189
5778 187
6678 185
6777 183

Table 4.1: A list of the highest rank combinations allowed by equation (4.20), and the
corresponding square sums

4.1.3 Application as separability check for states with low ranks

A slightly expanded version of this method can be used to write an arbitrary PPT state
as a convex combination of extremal PPT states of lower total rank. Given a starting
point ρ and a search direction σ it is possible to write ρ as a convex combination of the
two edge points i.e. the two points where the line de�ned by ρ and σ hits the surface of
P . These points are easily found using the method described above. If these edge points
are not extremal the procedure can be repeated for them and so on until extreme points
are reached. If this algorithm returns a convex combination of only pure states the state
in question is separable. This is not unlikely for low rank PPT states where few mixed
extremal states of lower rank exist.

Pseudo code for a recursive implementation of this algorithm that I have called ex-
tremalDecomp is shown below. Note that this implementation only locates the extremal
states used in the convex combination and not the weights, but it could easily be modi�ed
to do so.

ρ← Input
Create empty list
σ ← createNormalizedSigma(ρ)
if σ 6= 0 then
ρ1 ← findEdge(ρ, σ)
ρ2 ← findEdge(ρ,−σ)
Add extremalDecomp(ρ1) to list
Add extremalDecomp(ρ2) to list

else
Add ρ to list

end if
Return list
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4.2 Searching for states with speci�ed ranks

My algorithm to �nd a PPT state with speci�ed ranks, rankSearch, is an adapted version
of the algorithm presented in the article [1]. We continue to utilize the N2 dimensional real
vector space of Hermitian matrices. As an orthonormal basis for this space we introduce a
set of matrices, {Mi}, which obey the equations

Tr(MiMj) = δij. (4.21)

The relationship between the real vector x representing the matrix ρ is now given by

xi = Tr(ρMi) (4.22)

and ρ can be expressed as

ρ = ρ(x) =
∑
i

xiMi. (4.23)

The rank of a matrix is equal to the number of non-zero eigenvalues. If we are looking
for a PPT state with r(ρ) = k and r(ρP ) = l the N − k lowest eigenvalues of ρ and
N − l lowest eigenvalues of ρP must be zero. The same applies to the rest of the partial
transposes in the multipartite case. We now create a vector µ where the components
are all the eigenvalues that should be zero i.e. the N − k lowest eigenvalues of ρ, the
N − l lowest eigenvalues of ρP etc. The state we are looking for is now the solution of the
problem µ(x) = 0. This problem can be solved by repeatedly solving the �rst order Taylor
expansion:

µ(x) + (∆x · ∇)µ(x) = 0. (4.24)

The problem can be reformulated as

B∆x = −µ (4.25)

where the components of B are given by Bij = ∂µi/∂xj. To simplify the problem even
further we introduce the positive, real and symmetric matrix A = BTB and the vector
b = −BTµ, which gives the formulation

A∆x = b, (4.26)

which can easily be solved with the conjugate gradient method. The components of B can
be calculated using �rst order perturbation theory

∂λk
∂xj

= ψ†k
∂ρ

∂xj
ψk = ψ†kMjψk. (4.27)

The vector ψk is the eigenvector corresponding to the eigenvalue λk. The corresponding
formulas are valid for the partial transposes. This expression is based on nondegenerate
perturbation theory and we are actually looking for a degenerate state, but this method
nevertheless works well in practice. MATLAB code for an implementation of this algorithm
can be found in Appendix A.2

It is possible for this algorithm to return a state with lower ranks than requested i.e.
there is a larger number of zero eigenvalues than we require. However if the speci�ed
combination of ranks exist changing the starting point will likely solve this problem.
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4.3 Initial results

Since I operate with three identical subsystems they can always be relabeled to interchange
the roles of ρ and its partial transposes. This makes all permutations of a particular set of
ranks equivalent e.g. (5,5,6,6) and (6,6,5,5). I ran rankSearch several times for all possible
rank combinations and then ran extremalSearch using these states as starting points. I
also did repeated searches using the identity matrix as the starting point.

PPT states where found for most high rank combinations, but if at least one rank was
four or lower only states where all ranks are equal were found i.e. rank (4,4,4,4), (3,3,3,3),
(2,2,2,2) and (1,1,1,1). The rank one states are pure product states. The rank two and
three states were tested for separability and found to be separable. Of the combinations
where all ranks are greater than four only (5,5,6,8), (5,5,8,8), and (5,8,8,8) were not found.
These are among the high rank combinations with the greatest di�erence between ranks.
These combinations may not exist, but it is also possible that they are only di�cult to �nd
using the rankSearch algorithm. I found extremal PPT states for all combinations with
ranks equal or greater then four up to the limit derived in Section 4.1.2, with one exception
(5,6,8,8). I consider it likely that extremal states of this rank combination exist. Its absence
from the data is likely due to an insu�cient number of applications of extremalSearch using
a state of suitable rank as the starting point.

The searches starting at the identity all resulted in ranks (6,7,7,7) and (6,6,7,8) as the
result of �ve iterations, each reducing a single rank by one. These are among the extremal
states with highest total rank r. Only bested by (5,7,8,8) and equaled by (5,7,7,8). The
only other state reachable by �ve reductions of a single rank by one is (5,6,8,8), but this
combination was not found. I also did searches starting at the identity for systems of
dimensions 2× 2× 3 and 3× 3× 3, which resulted in ranks (10,10,10,11) and (9,10,11,11)
and (23,23,23,24) and (22,23,24,24) respectively. Like in the 2×2×2 case these are among
the extremal states with highest total rank r allowed by the upper limit in equation (4.20).

The extremal 2× 2× 2 states generated by starting at the identity were also examined
for extremality in the sets D ∩ DTi ∩ DTj , where i, j = 1, 2, 3 and i 6= j, in addition to
P = D ∩ DT1 ∩ DT2 ∩ DT3 . I found that states where r(ρTi) = 8 were also extremal in
D ∩DTj ∩ DTk where j 6= i, k 6= i, and j 6= k.

These results are similar to what was found in [1], where similar methods were used to
study bipartite systems of low dimensions. In both cases the states with the lowest ranks,
up to some rank k, are states where all the ranks are equal. PPT states are found for
almost all combinations of ranks higher than k, excluding only the combinations where
the di�erence between ranks are greatest for some systems. And also here extremal states
where found for all states with ranks above k. The separability properties for the states
with rank k and k− 1 vary for systems with di�erent dimensions, but the 3× 3, 3× 4, and
3× 5 systems all share the same structure as my 2× 2× 2 system i.e. all states with ranks
below k are separable while states of rank k can be extremal.
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Chapter 5

A closer look at extremal rank (4,4,4,4)
PPT states

In this chapter I study the extremal rank (4,4,4,4) PPT states in more detail. The extremal
rank four states generated using the algorithms described in the previous chapter were
con�rmed to be biseparable. The range and kernel of the states themselves and their
partial transposes were examined for product vectors, but none were found. I then show
how an equivalence class of extremal rank four states can be created analytically using a
UPB construction. Because these states contain product vectors in their kernel, but not
in their range by design we know that there must be more than one equivalence class of
extremal rank four states. I continue with a method to construct extremal rank four states
that are symmetric under various combinations of partial transposes. Finally I construct
a set of quantities that are invariant under SL⊗SL transformations and therefore have
the same value for all states in the same equivalence class. Calculating the values of
these quantities for all generated states show that there is likely an in�nite number of
equivalence classes described by one or more continuous variables. These invariants also
reveal an interesting set of states which may belong to a single equivalence class, where
one invariant quantity is zero and the others equal.

5.1 General considerations

The rank four extremal PPT states are of special interest because they are the mixed
extremal states of lowest rank. As was shown in the section presenting the extremalSearch
algorithm, all non extremal PPT states can be written as convex combinations of lower
rank extremal PPT states. The only extremal states with rank lower than the rank four
states are the pure product states. This means that an arbitrary rank four PPT state is
either extremal or separable.

According to the numerical results of [1] all rank (4,4) states of a bipartite 2×4 or 4×2
system are separable. If this is true all rank (4,4,4,4) states must be biseparable. You can
�nd a theoretical derivation of this result in [12]. I have checked the biseparability of all
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my extremal rank four states and they are biseparable as expected.
An important property of a state ρ is the number of product vectors that can be found

in R(ρ) and K(ρ). Among other things it is related to a separability criterion known as the
range criterion. The bipartite version of the range criterion states that the range, R(ρ),
of any separable state contains and is spanned by a set of product vectors {ψi ⊗ ϕi} and
the range of the partial transpose, R(ρP ), must be spanned by the corresponding set of
product vectors {ψi ⊗ ϕ∗i }. The generalization to multipartite systems is easily done by
adding similar criteria for all partial transposes.

By using parameter counting it is possible to give give an educated guess as to the
existence of product vectors in a generic subspace of dimension d. Let us look at a composite
system of dimension N with subsystems of dimensions NA, NB and NC . Each subsystem
contributes Ni−1 free complex parameters after normalization resulting in a total number
of NA +NB +NC − 3 complex parameters for an arbitrary product vector. The restriction
to a particular subspace implies a number of constraint equations

ψ†k(ϕ⊗ χ⊗ η) = 0, k = 1, 2, ..., N − d, (5.1)

where {ψk} is a set vectors spanning the orthogonal complement of the chosen d-dimensional
subspace. Subtracting a complex parameter for each complex constraint equation leaves
us with p free complex parameters with

p = NA +NB +NC − 3−N + d. (5.2)

If p > 0 the problem is underdetermined i.e. there is an in�nite number of product vectors
in the d dimensional subspace characterized by p free complex parameters. If p < 0 the
problem is overdetermined and we expect no solutions in the generic case. However it is
still possible for special d dimensional subspaces to contain product vectors. When p = 0
the number of constraints and available parameters matches exactly and we have a �nite
set of solutions. For our three qubit system this means that we expect a �nite set of
solutions in subspaces of dimension d = 5 e.g. the range of rank 5 states or the kernel of
rank 3 states. Based on parameter counting we do not expect that the range or kernel of
the rank four states and their partial transposes contain product vectors.

All product vectors in a speci�ed subspace are global solutions of the problem

min
ϕ,χ,η

(ϕ⊗ χ⊗ η)†P (ϕ⊗ χ⊗ η)

s.t. ϕ†ϕ = 1

χ†χ = 1

η†η = 1

(5.3)

where P is the projection operator onto the orthogonal complement of the speci�ed sub-
space. Since P is a positive semide�nite operator the global minima correspond to a
function value of zero and all these minima are product vectors in the speci�ed subspace.
I tried solving this problem with three di�erent numerical methods: generalizations of the
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sequential quadratic programming (SQP) and conjugate gradient methods presented in my
project [16] and a generalization of the double eigenvalue problem presented in Appendix
A of [1]. You can �nd the MATLAB code for these methods in Appendix B.

None of these methods found any product vectors in the range or kernel of any of the
rank four extremal states or their corresponding partial transposes.

5.2 UPB construction

Of the bipartite systems studied in [1] the �rank structure� of the 2× 2× 2 system is most
similar to the bipartite 3 × 3 system. In both systems the extremal states with lowest
nontrivial rank are the rank 4 states. In the 3 × 3 case the range of the rank 4 states
contained no product vectors while the kernel contained a complete set. This property led
to the parametrization of the rank 4 states using unextendible product bases (UPBs).

An unextendible product basis is a product basis of some space HS, which is a subspace
of a Hilbert space H, which makes it impossible to �nd a single product vector in the
orthogonal complement of the space spanned by the UPB, (HS)⊥ = H − HS, i.e. it is
impossible to �nd a product vector that is orthogonal to all the vectors in the UPB. It
is shown in [17] that states with kernels spanned by a UPB contain bound entanglement.
Entanglement of this kind is also found in extremal PPT states. The same article also
describes the properties and construction of UPBs in more detail.

The UPB parametrization of the extremal rank four states of the 3 × 3 system is dis-
cussed in detail in [18], but I will repeat the highlights here. A �ve dimensional orthogonal
UPB for the 3×3 system is parametrized by four real, positive and continuous parameters.
While the UPBs in the kernels of the rank four states are not necessarily orthogonal, all
of them can be transformed to states where the UPB is orthogonal using SL⊗SL trans-
formations. This means that equivalence classes of the extremal rank (4,4) states are
parametrized by the four previously mentioned parameters.

Hoping to �nd a similar structure for the extremal rank (4,4,4,4) states I looked into
the construction of a four dimensional orthogonal UPB for the 2× 2× 2 system. For two
product vectors to be orthogonal only the vectors representing one of the subsystems need
to be orthogonal i.e.

(ϕ⊗ χ⊗ η)†(u⊗ v ⊗ w) = (ϕ†u)(χ†v)(η†w) = 0 (5.4)

is true if
ϕ†u = 0 ∨ χ†v = 0 ∨ η†w = 0. (5.5)

In addition to the requirement of orthogonality the vectors of all three subsystems must be
linearly independent respectively for two arbitrary chosen product vectors. This implies
that the same vector cannot be used twice for one subsystem in two di�erent product
vectors. Using the qubit states

|1〉 =

(
1
0

)
|0〉 =

(
0
1

)
|+〉 =

1√
2

(
1
1

)
|−〉 =

1√
2

(
1
−1

)
(5.6)
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I constructed the UPB

{ψi} = {|1, 1, 1〉 , |0,+,+〉 , |+, 0,−〉 , |−,−, 0〉}. (5.7)

This is not the only UPB you can construct, but any four dimensional three qubit UPB
can be transformed into all other such UPBs using an SL⊗SL transformation. I will give
an explicit example and show how the UPB presented in [17],

{ϕi} = {|0, 1,+〉 , |1,+, 0〉 , |+, 0, 1〉 , |−,−,−〉}, (5.8)

can be transformed into the one I constructed. In this case both UPBs used the same four
qubit vectors, but even if two UPBs were constructed using di�erent vectors they would
still be SL⊗SL equivalent. I am now looking for matrices A,B,C ∈ SL(2,C) such that

{ψi} = {ki(A⊗B ⊗ C)ϕi}, (5.9)

where ki is a complex constant.
To determine A we have the equations

A |0〉 = α1 |1〉 A |1〉 = α2 |0〉 A |+〉 = α3 |+〉 A |−〉 = α4 |−〉 (5.10)

where αi are arbitrary complex constants. The �rst two equations limit A to the form(
0 α1

α2 0

)
. (5.11)

The third equation implies α1 = α2 = α3 and the fourth equation requires α1 = −α4.
Choosing α1 = 1 we get

A =

(
0 1
1 0

)
. (5.12)

To determine B we have the equations

B |1〉 = β1 |1〉 B |+〉 = β2 |+〉 B |0〉 = β3 |0〉 B |−〉 = β4 |−〉 (5.13)

which are easily solved by choosing βi = 1 and B = I. The equations determining C are

C |+〉 = γ1 |1〉 C |0〉 = γ2 |+〉 C |1〉 = γ3 |−〉 C |−〉 = γ4 |0〉 (5.14)

The second and third equations limit C to the form

1√
2

(
γ3 γ2
−γ3 γ2

)
. (5.15)

The remaining equations imply γ1 = γ2 = γ3 and γ1 = −γ4. Choosing γ1 = 1 we get

C =
1√
2

(
1 1
−1 1

)
. (5.16)
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The constants ki in equation (5.9) are given by ki = αiβiγi, which means that ki = 1.
We have now showed that the UPB {ϕi} can be transformed into the UPB {ψi} with the
transformation

1√
2

(
0 1
1 0

)
⊗
(

1 0
0 1

)
⊗
(

1 1
−1 1

)
. (5.17)

To construct a state with a UPB, {ψi}, contained in its kernel simply create the nor-
malized projection operator onto the orthogonal complement of the UPB i.e.

ρ =
1

N − d

(
I −

d∑
i=1

ψiψ
†
i

)
. (5.18)

The kernels of the partial transposes of ρ will contain the corresponding UPBs where the
vectors of the transposed subsystem are complex conjugated. Because I have chosen a real
basis the kernels of ρ and its partial transposes contain identical UPBs. The state ρ and
all states created from ρ via SL⊗SL transformations are extremal rank four PPT states.

Numerical examinations of the extremal rank four states found via the systematic search
presented in the previous chapter showed no product vectors in any kernels. This implies
that there are at least two equivalence classes of extremal rank four states that cannot be
converted into each other using SL⊗SL transformations. An interesting question is what
the fundamental di�erence between these classes are.

5.3 States symmetric under partial transpositions

Another way to classify states are which symmetries they possess. It is possible that the
extremal rank (4,4,4,4) states could belong to equivalence classes exempli�ed by states with
particular symmetries. The �rst symmetries that come to mind are symmetry under one
or more of the partial transposes. I looked at symmetry under all three partial transposes
�rst, which also implies symmetry under the regular transpose and makes the matrices real.
A general 2×2×2 state is described by 64 real parameters before normalization. Imposing
these symmetry requirements reduces that number to 27. Creating PPT states with these
symmetry properties is not di�cult using numerical methods. Simply minimize the square
of the four lowest eigenvalues of a generic state with the required symmetry properties.
MATLAB code for an implementation of this method can be found in Appendix A.3. I
created several hundred rank four states using this method and they were all extremal.

It is also possible to relax the symmetry requirements a bit and only require symmetry
under two partial transposes. This raises the number of free parameters describing a
generic state to 36 and allows the matrices to be complex, but states generated using
the method described above are still guaranteed to be PPT because the excluded partial
transpose can be created by sequentially applying the other two partial transposes and
a regular transpose. The state is still symmetric under the �rst two operations and the
regular transpose does not change eigenvalues so we still end up with a state with four
identical sets of eigenvalues. Only about 75 % of the states generated using this method
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and these relaxed symmetry requirements are extremal. All states generated using this
method were examined for product vectors in both range and kernel using the numerical
methods mentioned in Section 5.1, but none were found.

If we only require symmetry under a single partial transpose we are no longer guaranteed
that the produced states will be PPT using the method presented above. I did not pursue
this case.

5.4 Invariants

As demonstrated by the existence of extremal rank (4,4,4,4) PPT states with and without
product vectors in their kernel, we have at least two equivalence classes of such states. In
order to explore the di�erences of these classes I have constructed some quantities that are
invariant under SL⊗SL transformations. These quantities will be referred to as invariants,
but all states in the same equivalence class will not produce the same values for these
invariants. Remember that a physical transformation consists of an SL⊗SL transformation
and normalization to unit trace. The normalization will change the value of the invariants,
but it is possible to compensate for this by looking at the ratio of two invariants of the
same order. In these ratios, which I will call normalized invariants, the normalization factor
accompanying the SL⊗SL transformation cancels out and all states in an equivalence class
will produce the same values.

This approach to constructing invariants utilizes a property unique to two dimensional
systems and can therefore not be directly applied to higher dimensional systems. SL⊗SL
transformations preserve the determinant of any state. The determinant of the Hermitian
matrix

A =

(
a+ b c− id
c+ id a− b

)
(5.19)

is a2 − b2 − c2 − d2, which is equal to the inner product of a four-vector

x = (a, b, c, d)T (5.20)

with itself i.e.

x2 = xµxµ = ηµνx
µxν = xTηx =

(
a b c d

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



a
b
c
d

 = a2− b2− c2−d2.

(5.21)
Here η is the Minkowski metric and we use the Einstein summation convention i.e. repeated
Greek indices imply a sum from zero to three and repeated Latin indices imply a sum from
one to three. Inner products are preserved under Lorentz transformations and it is therefore
possible to represent any SL transformation of a Hermitian 2 by 2 matrix by a Lorentz
transformation of the corresponding four-vector. The conversion from Hermitian matrix to
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real four-vector is easily formulated using the Pauli matrices as an orthogonal basis. The
Pauli matrices are

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(5.22)

and obey the relation
σiσj = δijσ0 + iεijkσl, i, j, k = 1, 2, 3 (5.23)

where ε is the antisymmetric Levi-Cevita tensor . The matrix A can be written as

A = xµσµ (5.24)

where xµ is the equivalent four-vector whose components are given as

xµ =
1

2
Tr(Aσµ). (5.25)

In an equivalent way the three qubit state ρ can be written as

ρ = ρµνλ(σµ ⊗ σν ⊗ σλ) (5.26)

where the components ρµνλ are given by

ρµνλ =
1

8
Tr(ρ (σµ ⊗ σν ⊗ σλ)). (5.27)

The tensor ρµνλ will serve as the basis for my invariants, but because partial transposition
is equivalent to a Lorentz transformation using (ρTi)µνλ would produce identical values.
Each index represents a di�erent subsystem and can therefore only be contracted with the
corresponding index on another tensor. This leaves us with only one second order invariant:

I2 = ηµαηνβηλγρ
µνλραβγ = ρµνλρµνλ (5.28)

There are �ve independent fourth order invariants corresponding to di�erent combi-
nations of contracted indices, but one of these is simply the square of the second order
invariant. The four new invariants can be written as

I4,12 = ηµαηνβηλτηδκηεξηζγρ
µνλραβγρδεζρκξτ = ρµνλρµνζρ

δεζρδελ (5.29)

I4,21 = ηµαηνξηλγηδκηεβηζτρ
µνλραβγρδεζρκξτ = ρµνλρµελρ

δεζρδνζ (5.30)

I4,22 = ηµαηνξηλτηδκηεβηζγρ
µνλραβγρδεζρκξτ = ρµνλρµεζρ

δεζρδνλ (5.31)

I4,23 = ηµαηνξηλζηδκηεβητγρ
µνλραβγρδεζρκξτ = ρµνλρ βζ

µ ρδνζρδβλ (5.32)

I have used these four fourth order invariants divided by the square of the second order
invariant as my normalized invariants.

To test that my normalized invariants actually are invariant under SL⊗SL transfor-
mations I �rst calculated their values for the state I created using the UPB construction
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and SL⊗SL transformations of this state. The greatest di�erence between two value of the
same invariant was of the order of 10−9 and the greatest di�erence between the values of a
transformed state and the original state was of the order of 10−12. These small errors are
likely due to numerical anomalies and I consider my normalized invariants to be unchanged
by SL⊗SL transformations.

The values of the normalized invariants were calculated for the states found during my
general search and with the symmetries discussed in the previous section i.e. symmetric
under all partial transpositions and combinations of any two partial transpositions. Plots
of the �rst against the second and the third against the fourth normalized invariants are
shown in Figure 5.1. The invariants from the UPB state is also included in the plot as a
single data point. These plots are focused on the interval where most of the data points
are located, but there are also some points for higher values that are outside the interval
shown in the plot in particular for the asymmetric and completely symmetric states. This
is shown in the plot of all of the third against the fourth normalized invariants for the
partially symmetric states is shown in Figure 5.2a. The values of the invariants seem to
vary continuously. This is even more clear when looking at Figure 5.2b where the sorted
values of the �rst normalized invariants are shown for all state types. This continuous
variation of invariants suggests that we have an in�nite set of equivalence classes described
by one or more continuous variables.

There seems to be no obvious di�erence between the types of states. The invariants
seem to span the same range of values and be correlated in the same way for all the
di�erent state types. The correlations between the di�erent invariants were studied by
calculating the covariance matrices and their eigenvectors and eigenvalues for each state
type. For all state categories the covariance matrix had one dominant eigenvalue with the
remaining ones very close to zero in comparison. The dominant eigenvalue corresponded
to an eigenvector very close to (0.5 0.5 0.5 0.5). This indicates that the invariants are lie
very close to a line in a four dimensional space. This �ts well with the plots in Figure 5.1.
Here the data is projected onto a two dimensional space where it lies roughly along a line.
Due to the lack of di�erences between the state categories it is possible that one of the
categories could be used as a standard form for all extremal rank four state, meaning that
all states can be transformed to the standard form using SL⊗SL transformations.

There is a small subset of the data that does not appear in any of the �gures. For
nine of the states without any speci�c symmetry the quadratic invariant has a value of
zero. This is interesting because the remaining values of the quadratic invariant do not fall
below 10−2 so there is not a continuous descent to zero. They are also interesting because
for each of these state all the fourth order invariants have the same value indicating that
these states belong to the same equivalence class, something that does not occur anywhere
else in the data. There is obviously something special about this equivalence class, but we
do not know what, apart from the special value of the quadratic invariant.
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(a) Plot of the �rst invariant against the second invariant for the original
extremal rank four states (Ext), the completely symmetric rank four states
(Sym) and the UPB state (UPB).

(b) Plot of the �rst invariant against the second invariant for the states which
are symmetric under two partial transposes. They are labeled with the sym-
metry they do not possess.

Figure 5.1
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(c) Plot of the third invariant against the fourth invariant for the original
extremal rank four states (Ext), the completely symmetric rank four states
(Sym) and the UPB state (UPB).

(d) Plot of the third invariant against the fourth invariant for the states which
are symmetric under two partial transposes. They are labeled with the sym-
metry they do not possess.

Figure 5.1
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(a) Plot of the �rst invariant against the second invariant for the states which
are symmetric under two partial transposes. They are labeled with the sym-
metry they do not possess

(b) Plot of the �rst invariant against the second invariant for the states which
are symmetric under two partial transposes. They are labeled with the sym-
metry they do not possess.

Figure 5.2
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Chapter 6

Summary and further work

I have presented numerical methods that can be used to locate PPT states of speci�c rank
and extremal PPT states. I have used these methods to systematically search for extremal
PPT states in the three qubit system and found states of a variety of rank combinations.
For ranks up to and including four only states of equal rank were found. All rank one
states are extremal pure product states. For ranks two and three only separable states
were found in concordance with theory. The �rst mixed extremal states were found at
rank four. Above rank four I found extremal PPT states for almost all rank combinations
up to an upper limit on the ranks of extremal PPT states which I derived in Section
4.1.2. The set of rank combinations where extremal states were found is similar to the
corresponding sets for bipartite systems of dimension 3× 3.

The most natural classi�cation of PPT states is classi�cation into SL⊗SL equivalence
classes. The de�ning characteristic of these equivalence classes is that all states in a class
can be transformed into all other states by SL⊗SL transformations followed by normal-
ization to unit trace. I studied the extremal rank four states in more detail in the hope
of determining a parametrization of the equivalence classes of these states. I �rst hoped
to achieve this goal by using a UPB construction. This UPB construction succeeded in
producing extremal rank four states, but an examination of the initial non UPB states for
product vectors in their range and kernel revealed that the UPB construction could not
possibly create all extremal rank four states. As an alternative approach I then constructed
extremal rank four states that are symmetric under varying combinations of partial trans-
poses. To assess whether these symmetric states could be used as a standard form for all
extremal rank four states I constructed quantities that are equal for all states in the same
equivalence class. The values of these invariants were calculated for all states, but the
available data was not su�cient to con�rm or refute that the symmetric states can be used
as a standard form for all extremal rank four states. The data does indicate that there is
an in�nite number of equivalence classes described by one or more continuous variables.
One avenue that could be pursued to determine whether the symmetric states can be used
as a standard form is to look for SL⊗SL transformations that can transform an arbitrary
state into a symmetric state.

The calculation of these invariants revealed a small group of especially interesting states
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where the quadratic invariant was zero and the fourth order invariants all had the same
value. These were also the only set of states likely to belong to the same equivalence class.
Discovering what makes these states special is an obvious goal for further studies.

Another possible direction for continued studies is to look at the dimension and geom-
etry of the surfaces of PPT states of a particular rank. Such studies have been conducted
in the bipartite case and are described in [19]. One could also perform studies similar
to what was done in this thesis for higher dimensional systems, in particular tripartite
systems where each subsystem is not of the same dimension and multipartite systems con-
sisting of more subsystems. It is worth noting that the dimension of the complete Hilbert
space increases quickly with the dimension and number of subsystems, which increases the
computational power required to run the algorithms presented in this thesis.
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Appendix A

Matlab source code

A.1 extremalSearch

n1=2;
n2=2;
n3=2;
n=n1∗n2∗n3 ;
N=n∗n ;
id=eye (N) ;
t o l=1e−13;

% rho=eye (n)/n ;
rho=s t a t e s {1} ;

i t e r =0;
whi l e t rue

i t e r=i t e r +1;
createSigma
%I f rho i s an extremal point , stop .
i f index==(N−1)

break
end
s t e p s i z e =0.1 ;
approachEdge

end

A.1.1 createSigma

%Calcu la te the p a r t i a l t r an spo s e s o f rho , t h e i r e i genva lue s , e i g env e c t o r s
%and ranks .
rhoP1 = de l t ransponer ( rho , n1 , n2∗n3 ) ;
rhoP2 = de l t ransponer ( de l t ranspone r ( rho , n1 , n2∗n3 ) , n1∗n2 , n3 ) ;
rhoP3 = de l t ransponer ( rho , n1∗n2 , n3 ) ;
[ eve , eva ] = e i g ( rho ) ;
[ eveP1 , evaP1 ] = e i g ( rhoP1 ) ;
[ eveP2 , evaP2 ] = e i g ( rhoP2 ) ;
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[ eveP3 , evaP3 ] = e i g ( rhoP3 ) ;
r r=rank ( rho , t o l ) ;
rrP1=rank ( rhoP1 , t o l ) ;
rrP2=rank ( rhoP2 , t o l ) ;
rrP3=rank ( rhoP3 , t o l ) ;

% For rho and i t s p a r t i a l t r an spo s e s c a l c u l a t e the p r o j e c t i o n operator on
% the image space .
P = eve ( : , n−r r +1:n)∗ eve ( : , n−r r +1:n ) ' ;
P = 0 . 5∗ (P+P ' ) ;
PX1 = eveP1 ( : , n−rrP1+1:n)∗ eveP1 ( : , n−rrP1+1:n ) ' ;
PX1 = 0 .5∗ (PX1+PX1 ' ) ;
PX2 = eveP2 ( : , n−rrP2+1:n)∗ eveP2 ( : , n−rrP2+1:n ) ' ;
PX2 = 0 .5∗ (PX2+PX2 ' ) ;
PX3 = eveP3 ( : , n−rrP3+1:n)∗ eveP3 ( : , n−rrP3+1:n ) ' ;
PX3 = 0 .5∗ (PX3+PX3 ' ) ;

% Ca lcu la te the r e a l matrix r ep r e s en t a t i on o f the t rans fo rmat ion P∗ rho∗P,
% and the r e s p e c t i v e t rans f o rmat i ons f o r the var i ous p a r t i a l t r an spos e s .
PP = ze ro s (N,N) ;
f o r i i =1:N
AA = rvec2hmat ( id ( : , i i ) , n ) ;
BB = P∗AA∗P;
BB = 0 .5∗ (BB+BB' ) ;
PP( : , i i ) = hmat2rvec (BB, n ) ;

end
PP = 0 .5∗ (PP+PP' ) ;

PPX1 = ze ro s (N,N) ;
f o r i i =1:N
AA = rvec2hmat ( id ( : , i i ) , n ) ;
AA = de l t ransponer (AA, n1 , n2∗n3 ) ;
BB = PX1∗AA∗PX1;
BB = 0 .5∗ (BB+BB' ) ;
CC = de l t ransponer (BB, n1 , n2∗n3 ) ;
PPX1( : , i i ) = hmat2rvec (CC, n ) ;

end
PPX1 = 0 .5∗ (PPX1+PPX1 ' ) ;

PPX2 = ze ro s (N,N) ;
f o r i i =1:N
AA = rvec2hmat ( id ( : , i i ) , n ) ;
AA = de l t ransponer ( de l t ransponer (AA, n1 , n2∗n3 ) , n1∗n2 , n3 ) ;
BB = PX2∗AA∗PX2;
BB = 0 .5∗ (BB+BB' ) ;
CC = de l t ransponer ( de l t ranspone r (BB, n1 , n2∗n3 ) , n1∗n2 , n3 ) ;
PPX2( : , i i ) = hmat2rvec (CC, n ) ;

end
PPX2 = 0 .5∗ (PPX2+PPX2 ' ) ;

PPX3 = ze ro s (N,N) ;
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f o r i i =1:N
AA = rvec2hmat ( id ( : , i i ) , n ) ;
AA = de l t ransponer (AA, n1∗n2 , n3 ) ;
BB = PX3∗AA∗PX3;
BB = 0 .5∗ (BB+BB' ) ;
CC = de l t ransponer (BB, n1∗n2 , n3 ) ;
PPX3( : , i i ) = hmat2rvec (CC, n ) ;

end
PPX3 = 0 .5∗ (PPX3+PPX3 ' ) ;

PPP = PP+PPX1+PPX2+PPX3;
[ vecs e ]= e i g (PPP) ;

% Create sigma as a random l i n e a r combination o f the e i g env e c t o r s o f PPP
% that correspond to e i g enva lu e s that are 4 .
index=N;
sigma=ze ro s (n ) ;
whi l e ( e ( index , index )>(4−1e−12))

sigma=sigma+rand∗ rvec2hmat ( vecs ( : , index ) , n ) ;
index=index −1;
i f index==0,

break ;
end

end
% Ensure that that t r a c e ( sigma ) i s ze ro to pre s e rve noramal i za t ion .
sigma=sigma−t r a c e ( sigma )∗ rho ;

A.1.2 approachEdge

%Moves rho along the d i r e c t i o n o f sigma as f a r as p o s s i b l e without rho
%or i t s p a r t i a l t r an spo s e s ga in ing any negat ive e i g enva lu e s .

e=ze ro s (n , 4 ) ;
i t =0;

%move un t i l you have at l e a s t one negat ive e i g enva lue
whi l e t rue

rho=rho+s t e p s i z e ∗ sigma ;
e = f u l l e i g ( rho ) ;
e i g rho=so r t ( e ( : ) ) ;
i f e i g rho (1)<−1e−9

break ;
end

end

s t e p s i z e=−1∗ s t e p s i z e ;

%Move backwards un t i l you are exac t l y at the edge . A step i s a l lowed
%i f i t r a i s e s the value o f the lowest e igenva lue , but does not
%in c r e a s e i t to more than ha l f the va lue o f the prev ious lowest
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%eigenva lue . I f a s tep i s not a l lowed the s t e p s i z e i s ha l f ed .
%The loop cont inues u n t i l no change can be detec ted in the e i g enva lu e s
%or the s t e p s i z e becomes l e s s s than 1e−20.
whi l e t rue

i t=i t +1;
tau=rho+s t e p s i z e ∗ sigma ;
e i g tau = f u l l e i g ( tau ) ;
e i g tau=so r t ( e i g tau ( : ) ) ;

i f e i g tau (1) <0.5∗ e i g rho (1)&&( e i g rho (1)< e ig tau ( 1 ) )
rho=tau ;
e0=e ;
e = f u l l e i g ( rho ) ;
e i g rho=so r t ( e ( : ) ) ;
i f max(max( abs ( e0−e )))==0

break ;
end

e l s e
s t e p s i z e =0.5∗ s t e p s i z e ;
i f abs ( s t e p s i z e )<1e−20

break ;
end

end

i f i t ==10000,
d i sp ( 'MAX ITER REACHED' )
break ;

end
end

A.1.3 hmat2rvec

f unc t i on OUT = hmat2rvec (A, n)
% A i s a Hermitean (n x n) matrix
% to be r epre s ent ed as a r e a l vec to r o f dimension n^2
%
v = ze ro s (n , 1 ) ;
f o r i i =1:n
v ( i i ) = r e a l (A( i i , i i ) ) ;

end
kk = n ;
a = sq r t ( 2 . 0 ) ;
f o r j j =2:n

f o r i i =1: j j −1
kk = kk+1;
v ( kk ) = a∗ r e a l (A( i i , j j ) ) ;
kk = kk+1;
v ( kk ) = a∗ imag (A( i i , j j ) ) ;

end
end
%
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OUT = v ;

A.1.4 rvec2hmat

f unc t i on OUT = rvec2hmat (v , n)
% v i s a r e a l vec to r o f dimension n^2
% to be made in to a Hermitean (n x n) matrix A
%
A = ones (n , n)+1 i ∗ ones (n , n ) ;
f o r i i =1:n
A( i i , i i ) = v ( i i ) ;

end
kk = n+1;
a = sq r t ( 0 . 5 ) ;
f o r j j =2:n

f o r i i =1: j j −1
A( i i , j j ) = a ∗( v ( kk)+1 i ∗v ( kk+1)) ;
A( j j , i i ) = conj (A( i i , j j ) ) ;
kk = kk+2;

end
end
%
OUT = A;

A.2 rankSearch

A.2.1 rankSearchMain.m

% Searches f o r a PPT dens i ty matrix with a given s e t o f ranks r and rP
% f o r the dens i ty matrix and i t s p a r t i a l l y t ransposed rhoP . S ta r t s a
% d i s t ance y from the maximally mixed s t a t e approximately .

%example : [ rho , ra , raP ] = rankSearchMain ( 3 , 3 , 7 , 6 , 0 . 0 1 ) ;

f unc t i on [ rho , ra , raP1 , raP2 , raP3 ] = . . .
rankSearchMain (nA,nB,nC, r , rP1 , rP2 , rP3 , y )

format long
warning o f f

t = cputime ;
% Dimensions n , nA and nB f o r the H i l b e r t spaces H = H_A tenso r H_B, H_A
% and H_B r e s p e c t i v e l y .
n = nA∗nB∗nC;

% Bound f o r zero .
bound = 1e−15;

% Number o f e i g enva lu e s o f rho and rhoP which should be equal to zero in
% the f i n a l dens i ty matrix .
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zeroEVs = n − r + 1 ;
zeroEVP1s = n − rP1 + 1 ;
zeroEVP2s = n − rP2 + 1 ;
zeroEVP3s = n − rP3 + 1 ;

% eye (n)/n i s the n−by−n i d e n t i t y matrix d iv ided by n , so t h i s i s the
% maximally mixed s t a t e in H.
rho0 = eye (n)/n ;

% M i s a c e l l vec to r where each element i s a ba s i s matrix f o r
% t r a c e l e s s , hermit ian n−by−n matr i ce s .
M = genGellMann (n ) ;

% dim i s the number o f dimensions o f the s e t o f normal ized hermit ian
% matr i ce s .
dim = n∗n − 1 ;

% sigma w i l l be the t r a c e l e s s part o f rho .
sigma = ze ro s (n ) ;

x0 = randn (dim , 1 ) ;

% making sure that we s t a r t i n s i d e the s e t o f dens i ty matr i ce s . This s tep
% i s not r e a l l y neccessary , but expe r i ence shows that i t i s e a s i e r to f i nd
% dens i ty matr i ce s with very asymmetric ranks i f we s t a r t c l o s e to the
% maximally mixed s t a t e .

x0 = y∗x0 ;
sigma = cSV(M, n , x0 ) ;
rho = rho0 + sigma ;

% Do the search
[ fMin , xMin ] = rankSearch ( rho0 , x0 , dim , M, zeroEVs , . . .

zeroEVP1s , zeroEVP2s , zeroEVP3s , nA, nB, nC, bound ) ;

% Recreate rho from xmin
sigma = cSV(M, n , xMin ) ;
rho = rho0 + sigma ;

% d i sp l ay the e i g enva lu e s and ranks o f rho and rhoP
[ e i g ( rho ) e i g ( de l t ransponer ( rho ,nA,nB∗nC ) ) . . .

e i g ( de l t ranspone r ( de l t ranspone r ( rho ,nA,nB∗nC) ,nA∗nB,nC ) ) . . .
e i g ( de l t ranspone r ( rho ,nA∗nB,nC ) ) ]

ra = rank ( rho , 1 e−12);
raP1 = rank ( de l t ranspone r ( rho ,nA,nB∗nC) ,1 e−12);
raP2 = rank ( de l t ranspone r ( de l t ranspone r ( rho ,nA,nB∗nC) ,nA∗nB,nC) ,1 e−12);
raP3 = rank ( de l t ranspone r ( rho ,nA∗nB,nC) ,1 e−12);
[ ra raP1 raP2 raP3 ]

cputime − t
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end

A.2.2 rankSearch.m

f unc t i on [ f , xc ] = rankSearch ( rho0 , x0 , dim , M, zeroEVs , zeroEVP1s , . . .
zeroEVP2s , zeroEVP3s , nA, nB, nC, fbound )

% output to s c r e en
d i sp ( ' S ta r t i ng search : ' )

% c a l c u l a t i n g the dimension o f the f u l l H i l b e r t space
n = nA∗nB∗nC;

% xc conta in s the cur rent x−va lue s
xc = x0 ;

% B w i l l conta in the change in the e i g enva lu e s we want to minimize
% as we vary x−va lue s . zeroEVs+zeroEVP1s+zeroEVP2s+zeroEVP3s i s the #
% of e i g enva lu e s we want to be equal to zero when we ' re done
B = ze ro s ( zeroEVs+zeroEVP1s+zeroEVP2s+zeroEVP3s , dim ) ;

sigma = cSV(M, n , x0 ) ;
rho = rho0 + sigma ;

rhoP1 = de l t ransponer ( rho ,nA,nB∗nC) ;
rhoP2 = de l t ransponer ( de l t ranspone r ( rho ,nA,nB∗nC) ,nA∗nB,nC ) ;
rhoP3 = de l t ransponer ( rho ,nA∗nB,nC ) ;

E = e i g ( rho ) ;
EP1 = e i g ( rhoP1 ) ;
EP2 = e i g ( rhoP2 ) ;
EP3 = e i g ( rhoP3 ) ;

[E, I ] = so r t (E) ;
[EP1 , IP1 ] = so r t (EP1 ) ;
[EP2 , IP2 ] = so r t (EP2 ) ;
[EP3 , IP3 ] = so r t (EP3 ) ;

lambda = [E( 1 : zeroEVs ) ; EP1 ( 1 : zeroEVP1s ) ; . . .
EP2 ( 1 : zeroEVP2s ) ; EP3 ( 1 : zeroEVP3s ) ] ;

f = sq r t ( lambda '∗ lambda ) ;

eigOK = s ign (E( 1 ) ) ;

i f f < fbound && eigOK == 1
return

e l s e
MP1 = c e l l ( l ength (M) , 1 ) ;
MP2 = c e l l ( l ength (M) , 1 ) ;
MP3 = c e l l ( l ength (M) , 1 ) ;
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f o r i t =1: l ength (M)
MP1{ i t } = de l t ranspone r (M{ i t } ,nA,nB∗nC) ;
MP2{ i t } = de l t ranspone r ( de l t ranspone r (M{ i t } ,nA,nB∗nC) ,nA∗nB,nC ) ;
MP3{ i t } = de l t ranspone r (M{ i t } ,nA∗nB,nC ) ;

end

i t e r = 0 ;
whi l e f > fbound

i t e r = i t e r + 1 ;
% c a l c u l a t i n g the p a r t i a l l y t ransposed o f the cur rent best f i n a l s t a t e

rhoP1 = de l t ranspone r ( rho ,nA,nB∗nC) ;
rhoP2 = de l t ranspone r ( de l t ranspone r ( rho ,nA,nB∗nC) ,nA∗nB,nC ) ;
rhoP3 = de l t ranspone r ( rho ,nA∗nB,nC ) ;

% vecs ( vecsP ) i s a matrix with the e i g env e c t o r s o f rho ( rhoP ) as
% column vec to r s D (DP) i s a d iagona l matrix with the e i g enva lu e s
% o f rho ( rhoP ) on the d iagona l

[ vecs ,D] = e i g ( rho ) ;
vecs = vecs ( : , I ' ) ;

[ vecsP1 ,DP1] = e i g ( rhoP1 ) ;
vecsP1 = vecsP1 ( : , IP1 ' ) ;

[ vecsP2 ,DP2] = e i g ( rhoP2 ) ;
vecsP2 = vecsP2 ( : , IP2 ' ) ;

[ vecsP3 ,DP3] = e i g ( rhoP3 ) ;
vecsP3 = vecsP3 ( : , IP3 ' ) ;

% V i s a matrix with the e i g env e c t o r s o f rho and rhoP correspond ing
% to the e i g enva lu e s which we are t ry ing to minimize to zero as
% column vec to r s

V = [ vecs ( : , 1 : zeroEVs ) vecsP1 ( : , 1 : zeroEVP1s ) . . .
vecsP2 ( : , 1 : zeroEVP2s ) vecsP3 ( : , 1 : zeroEVP3s ) ] ;

f o r i t =1:( zeroEVs )
B( i t , : ) = transpose ( c e l l f u n (@(A) V( : , i t ) '∗A∗V( : , i t ) ,M) ) ;

end
f o r i t =(zeroEVs+1):( zeroEVs+zeroEVP1s )

B( i t , : ) = transpose ( c e l l f u n (@(A) V( : , i t ) '∗A∗V( : , i t ) ,MP1) ) ;
end
f o r i t =(zeroEVs+zeroEVP1s+1):( zeroEVs+zeroEVP1s+zeroEVP2s )

B( i t , : ) = transpose ( c e l l f u n (@(A) V( : , i t ) '∗A∗V( : , i t ) ,MP2) ) ;
end
f o r i t =(zeroEVs+zeroEVP1s+zeroEVP2s+1):( zeroEVs+zeroEVP1s + . . .

zeroEVP2s+zeroEVP3s )
B( i t , : ) = transpose ( c e l l f u n (@(A) V( : , i t ) '∗A∗V( : , i t ) ,MP3) ) ;

end

% ca l c u l a t i n g the l e f t and r i gh t hand s i d e s o f A∗dx = b
B = r e a l (B) ;
A = B'∗B;
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b = −B'∗ lambda ;

% so l v i n g A∗dx = b f o r dx with the conjugate g rad i en t method
[ dx , f l a g g ] = cgs (A, b ) ;

% updating our cur rent best e s t imate f o r x
xc = xc + dx ;

sigma = cSV(M, n , xc ) ;

rho = rho0 + sigma ;
E = e i g ( rho ) ;
[E, I ] = so r t (E) ;

rhoP1 = de l t ranspone r ( rho ,nA,nB∗nC) ;
EP1 = e i g ( rhoP1 ) ;
[EP1 , IP1 ] = so r t (EP1 ) ;

rhoP2 = de l t ranspone r ( de l t ranspone r ( rho ,nA,nB∗nC) ,nA∗nB,nC ) ;
EP2 = c i r c s h i f t (EP2 , 1 ) ;
[EP2 , IP2 ] = so r t (EP2 ) ;

rhoP3 = de l t ransponer ( rho ,nA∗nB,nC ) ;
EP3(n+1) = 0 ;
EP3 = c i r c s h i f t (EP3 , 1 ) ;
[EP3 , IP3 ] = so r t (EP3 ) ;

lambda = [E( 1 : zeroEVs ) ; EP1 ( 1 : zeroEVP1s ) ; EP2 ( 1 : zeroEVP2s ) ; . . .
EP3 ( 1 : zeroEVP3s ) ] ;

f = sq r t ( lambda '∗ lambda ) ;

% output to s c r e en
i f mod( i t e r , 5 00 ) == 0

di sp ( [ ' I t e r : ' num2str ( i t e r ) ' ' . . .
' f = ' num2str ( f , '%1.15 g ' ) ] )

end
end

end

A.2.3 cSV

f unc t i on sigma = cSV(M, n , x )
% cSV re tu rn s sigma which i s a t r a c e l e s s hermit ian n−by−n matrix whose
% c o e f f i c i e n t s are g iven by the vec to r x .
dim = length (M) ;
sigma = ze ro s (n ) ;
f o r i t = 1 : dim

sigma = sigma + x( i t )∗M{ i t } ;
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end

A.2.4 genGellMann

f unc t i on D = genGellMann (d)
%Creates a complete ba s i s f o r t r a c e l e s s , hermit ian n−by−n matr i ce s .

D = c e l l (d∗d−1 ,1) ;

w = 0 ;
f o r i t =1:d

f o r j t=i t +1:d
w = w+1;
E = ze ro s (d ) ;
E( i t , j t ) = 1 ;
D{w} = E + E ' ;
D{w} = D{w}/ sq r t ( 2 ) ;
w = w+1;
D{w} = −1 i ∗(E'−E) ;
D{w} = D{w}/ sq r t ( 2 ) ;
c l e a r E

end
end

f o r i t =2:(d−1)
w = w+1;
A = sq r t (2/( i t ∗( i t −1)))∗ b lkd iag ( eye ( i t −1),1− i t ) ;
D{w} = blkd iag (A, 0 ) ;
c l e a r A
f o r j t =1:(d−i t −1)

D{w} = blkd iag (D{w} , 0 ) ;
end
D{w} = D{w}/ sq r t ( 2 ) ;

end

w = w + 1 ;

D{w} = sq r t (2/(d∗(d−1)))∗ b lkd iag ( eye (d−1),1−d ) ;
D{w} = D{w}/ sq r t ( 2 ) ;

A.3 Gathering Symmetric States

A.3.1 gatherSymmetric

opts=opt imset ( ' Algorithm ' , ' sqp ' , . . .
'MaxFunEvals ' , 2 0 0 0 0 0 , . . .
' MaxIter ' , 5 0 0 0 0 0 , . . .
'TolFun ' , 1 . 0 e −500 , . . .
'TolCon ' , 1 . 0 e −500 , . . .
'TolX ' , 1 . 0 e−500);
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ind=1;
s t a t e s=c e l l ( 1 ) ;
f o r i i =1:200

x0=randn ( 2 7 , 1 ) ;
[ Xf f v a l e x i t f l a g ]= fminsearch (@(x ) findSymFun (x ) , x0 , opts ) ;
rho=createSymmetric (Xf ) ;
d i sp ( f v a l )
f u l l e i g ( rho )
i f f va l <1e−14

s t a t e s { ind}=rho ;
ind=ind+1;

end
end

A.3.2 �ndSymFun

f unc t i on r e s = findSymFun (x )
rho=createSymmetric ( x ) ;
e=e i g ( rho ) ;
r e s=(e (1)^2+e (2)^2+e(3)^2+e (4 )^2 ) ;

A.3.3 createSymmetric

f unc t i on rho =createSymmetric ( x )
%Converts the r e a l 27 d imens iona l vec to r x to a he r im i t i an
%8 by 8 matrix rho that i s symmetric under a l l p a r t i a l t r an spos e s

a=diag ( [ x (1 ) x ( 2 ) ] ) ;
a (2 ,1)=x ( 3 ) ;
a (1 ,2)=x ( 3 ) ;

b=diag ( [ x (4 ) x ( 5 ) ] ) ;
b(2 ,1)=x ( 6 ) ;
b(1 ,2)=x ( 6 ) ;

c=diag ( [ x (7 ) x ( 8 ) ] ) ;
c (2 ,1)=x ( 9 ) ;
c (1 ,2)=x ( 9 ) ;

A=[a , b ; b , c ] ;

a=diag ( [ x (10) x ( 1 1 ) ] ) ;
a (2 ,1)=x ( 1 2 ) ;
a (1 ,2)=x ( 1 2 ) ;

b=diag ( [ x (13) x ( 1 4 ) ] ) ;
b(2 ,1)=x ( 1 5 ) ;
b(1 ,2)=x ( 1 5 ) ;

c=diag ( [ x (16) x ( 1 7 ) ] ) ;
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c (2 ,1)=x ( 1 8 ) ;
c (1 ,2)=x ( 1 8 ) ;

B=[a , b ; b , c ] ;

a=diag ( [ x (19) x ( 2 0 ) ] ) ;
a (2 ,1)=x ( 2 1 ) ;
a (1 ,2)=x ( 2 1 ) ;

b=diag ( [ x (22) x ( 2 3 ) ] ) ;
b(2 ,1)=x ( 2 4 ) ;
b(1 ,2)=x ( 2 4 ) ;

c=diag ( [ x (25) x ( 2 6 ) ] ) ;
c (2 ,1)=x ( 2 7 ) ;
c (1 ,2)=x ( 2 7 ) ;

C=[a , b ; b , c ] ;

rho=[A,B;B,C ] ;
rho=rho/ t r a c e ( rho ) ;
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Appendix B

Optimization methods

B.1 trippleEigMin

n1=2;
n2=2;
n3=2;
n=n1∗n2∗n3 ;
f t o l=1e−16;
e t o l=1e−12;
id1=eye ( n1 ) ;
id2=eye ( n2 ) ;
id3=eye ( n3 ) ;

%Se l e c t A
% load ( ' ext remal4444states ' )
% A=s t a t e s {6} ;

%Choose randnom s t a r t i n g ve c to r s
u=randn (n1 ,1)+1 i ∗ randn (n1 , 1 ) ;
v=randn (n2 ,1)+1 i ∗ randn (n2 , 1 ) ;
w=randn (n3 ,1)+1 i ∗ randn (n3 , 1 ) ;
u=u/norm(u ) ;
v=v/norm(v ) ;
w=w/norm(w) ;

%Calcu la te func t i on value
p s i=kron (u , kron (v ,w) ) ;
f v a l u e=r e a l ( ps i '∗A∗ p s i ) ;
f va lue0 =10;

evs=ze ro s ( 1 , 6 ) ;
i t e r =0;
whi l e ( fva lue>f t o l )&&( i t e r <5000)&&(abs ( fva lue0−f v a l u e )>0)

% Solve f i r s t e igenva lueproblem and r ep l a c e the f i r s t vec to r with the
% e i g enve c t o r cor re spond ing to the sma l l e s t e i g enva lue
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temp=kron ( id1 , kron (v ,w) ) ;
V1=temp '∗A∗temp ;
V1=0.5∗(V1+V1 ' ) ;
[ vec ev ]= e i g (V1 ) ;
mind=1;
mev=ev ( 1 ) ;
f o r i i =2:n1

i f ev ( i i , i i )<mev
mev=ev ( i i , i i ) ;
mind=i i ;

end
end
evs (1:2)= diag ( ev ) ' ;
u=vec ( : , mind ) ;

%Repeat f o r second and th i rd e i g enva lue problems
temp=kron (u , kron ( id2 ,w) ) ;
V2=temp '∗A∗temp ;
V2=0.5∗(V2+V2 ' ) ;
[ vec ev ]= e i g (V2 ) ;
mind=1;
mev=ev ( 1 ) ;
f o r i i =2:n1

i f ev ( i i , i i )<mev
mev=ev ( i i , i i ) ;
mind=i i ;

end
end
v=vec ( : , mind ) ;
evs (3:4)= diag ( ev ) ' ;

temp=kron (u , kron (v , id3 ) ) ;
A3=temp '∗A∗temp ;
A3=0.5∗(A3+A3 ' ) ;
[ vec ev ]= e i g (A3 ) ;
mind=1;
mev=ev ( 1 ) ;
f o r i i =2:n1

i f ev ( i i , i i )<mev
mev=ev ( i i , i i ) ;
mind=i i ;

end
end
w=vec ( : , mind ) ;
evs (5:6)= diag ( ev ) ' ;

%Reca l cu la t e func t i on value
p s i=kron (u , kron (v ,w) ) ;
f va lue0=fva lu e ;
f v a l u e=r e a l ( ps i '∗A∗ p s i ) ;
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i t e r=i t e r +1;
end

B.2 Conjugate gradient method

n1=2;
n2=2;
n3=2;
id1=eye ( n1 ) ;
id2=eye ( n2 ) ;
id3=eye ( n3 ) ;
MaxIter = 1e5 ;
TolGrad = 1e−14;
TolGradC = 1e−14;

% Choose A
load ( ' ext remal4444states ' )
A=s t a t e s { n s t a t e s } ;

e x i t f l a g = 0 ;
phi=randn (n1 ,1)+1 i ∗ randn (n1 , 1 ) ;
ch i=randn (n2 ,1)+1 i ∗ randn (n2 , 1 ) ;
x i=randn (n3 ,1)+1 i ∗ randn (n3 , 1 ) ;
phi=phi /norm( phi ) ;
ch i=ch i /norm( ch i ) ;
x i=x i /norm( x i ) ;

grad1=((phi '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗ x i )∗ ( kron ( id1 , kron ( chi , x i ) ) '∗A∗ . . .
kron ( phi , kron ( chi , x i )))−( chi '∗ ch i )∗ ( xi '∗ x i ) ∗ . . .
( kron ( phi , kron ( chi , x i ) ) '∗A∗kron ( phi , kron ( chi , x i ) ) )∗ phi ) / . . .
(norm( phi )∗norm( ch i )∗norm( x i ) )^4 ;

grad2=((phi '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗ x i )∗ ( kron ( phi , kron ( id2 , x i ) ) '∗A∗ . . .
kron ( phi , kron ( chi , x i )))−( phi '∗ phi )∗ ( xi '∗ x i ) ∗ . . .
( kron ( phi , kron ( chi , x i ) ) '∗A∗kron ( phi , kron ( chi , x i ) ) )∗ ch i ) / . . .
(norm( phi )∗norm( ch i )∗norm( x i ) )^4 ;

grad3=((phi '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗ x i )∗ ( kron ( phi , kron ( chi , id3 ) ) '∗A∗ . . .
kron ( phi , kron ( chi , x i )))−( phi '∗ phi )∗ ( chi '∗ ch i ) ∗ . . .
( kron ( phi , kron ( chi , x i ) ) '∗A∗kron ( phi , kron ( chi , x i ) ) )∗ x i ) / . . .
(norm( phi )∗norm( ch i )∗norm( x i ) )^4 ;

grad=[grad1 ; grad2 ; grad3 ] ;
ngrad1=grad1 ;
ngrad2=grad2 ;
ngrad3=grad3 ;
ngrad=[ngrad1 ; ngrad2 ; ngrad3 ] ;

u=−1∗grad1 ;
v=−1∗grad2 ;
w=−1∗grad3 ;

f v a l u e=f (A, phi , chi , x i ) ;
i t e r =0;
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whi le (norm( ngrad)>TolGrad )
i t e r=i t e r +1;
f va lue0=fva lu e ;
[ t f v a l u e ]=TPlineMinimize (A, phi , chi , xi , u , v ,w) ;

phi=phi+t ∗u ;
ch i=ch i+t ∗v ;
x i=x i+t ∗w;

nphi=phi /norm( phi ) ;
nchi=ch i /norm( ch i ) ;
nxi=x i /norm( x i ) ;

grad0=grad ;
ngrad1=(kron ( id1 , kron ( nchi , nxi ) ) '∗A∗kron ( nphi , kron ( nchi , nxi ) ) . . .

−f v a l u e ∗nphi ) ;
ngrad2=(kron ( nphi , kron ( id2 , nxi ) ) '∗A∗kron ( nphi , kron ( nchi , nxi ) ) . . .

−f v a l u e ∗nchi ) ;
ngrad3=(kron ( nphi , kron ( nchi , id3 ) ) '∗A∗kron ( nphi , kron ( nchi , nxi ) ) . . .

−f v a l u e ∗nxi ) ;
ngrad=[ngrad1 ; ngrad2 ; ngrad3 ] ;

grad1=((phi '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗ x i )∗ ( kron ( id1 , kron ( chi , x i ) ) '∗A∗ . . .
kron ( phi , kron ( chi , x i )))−( chi '∗ ch i )∗ ( xi '∗ x i ) ∗ . . .
( kron ( phi , kron ( chi , x i ) ) '∗A∗kron ( phi , kron ( chi , x i ) ) )∗ phi ) / . . .
(norm( phi )∗norm( ch i )∗norm( x i ) )^4 ;

grad2=((phi '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗ x i )∗ ( kron ( phi , kron ( id2 , x i ) ) '∗A∗ . . .
kron ( phi , kron ( chi , x i )))−( phi '∗ phi )∗ ( xi '∗ x i ) ∗ . . .
( kron ( phi , kron ( chi , x i ) ) '∗A∗kron ( phi , kron ( chi , x i ) ) )∗ ch i ) / . . .
(norm( phi )∗norm( ch i )∗norm( x i ) )^4 ;

grad3=((phi '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗ x i )∗ ( kron ( phi , kron ( chi , id3 ) ) '∗A∗ . . .
kron ( phi , kron ( chi , x i )))−( phi '∗ phi )∗ ( chi '∗ ch i ) ∗ . . .
( kron ( phi , kron ( chi , x i ) ) '∗A∗kron ( phi , kron ( chi , x i ) ) )∗ x i ) / . . .
(norm( phi )∗norm( ch i )∗norm( x i ) )^4 ;

grad=[grad1 ; grad2 ; grad3 ] ;
gradchange=abs (norm( grad)−norm( grad0 ) ) ;

beta=max( r e a l ( ( grad ' ∗ ( grad−grad0 ) ) / ( grad0 '∗ grad0 ) ) ,0 ) ;% Polak−Rib i e r e

u=−1∗grad1+beta ∗u ;
v=−1∗grad2+beta ∗v ;
w=−1∗grad3+beta ∗w;

i f i t e r >MaxIter ,
d i sp ( 'MAX ITER' )
e x i t f l a g =1;
break ;

end
i f gradchange<TolGradC ,

e x i t f l a g =2;
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break ;
end

phi=phi /norm( phi ) ;
ch i=ch i /norm( ch i ) ;
x i=x i /norm( x i ) ;

end

% Standardform phi e t c
normphi=norm( phi ) ;
normchi=norm( ch i ) ;
normxi=norm( x i ) ;
phi=phi /normphi ;
ch i=ch i /normchi ;
x i=x i /normxi ;
[ maxvalue index ] =max( abs ( phi ) ) ;
phi=conj ( phi ( index ) )∗ phi /maxvalue ;
[ maxvalue index ] =max( abs ( ch i ) ) ;
ch i=conj ( ch i ( index ) )∗ ch i /maxvalue ;
[ maxvalue index ] =max( abs ( x i ) ) ;
x i=conj ( x i ( index ) )∗ x i /maxvalue ;

B.2.1 Line minimize

f unc t i on [ t f v a l ] = TPlineMinimize (W, phi , chi , xi , u , v ,w)

A0 = r e a l ( kron ( phi , kron ( chi , x i ) ) '∗W∗kron ( phi , kron ( chi , x i ) ) ) ;
A1 = r e a l ( kron (u , kron ( chi , x i ) ) '∗W∗kron ( phi , kron ( chi , x i ) ) . . .

+ kron ( phi , kron (v , x i ) ) '∗W∗kron ( phi , kron ( chi , x i ) ) . . .
+ kron ( phi , kron ( chi ,w) ) '∗W∗kron ( phi , kron ( chi , x i ) ) . . .
+ kron ( phi , kron ( chi , x i ) ) '∗W∗kron (u , kron ( chi , x i ) ) . . .
+ kron ( phi , kron ( chi , x i ) ) '∗W∗kron ( phi , kron (v , x i ) ) . . .
+ kron ( phi , kron ( chi , x i ) ) '∗W∗kron ( phi , kron ( chi ,w) ) ) ;

A2 = r e a l ( kron (u , kron (v , x i ) ) '∗W∗kron ( phi , kron ( chi , x i ) ) . . .
+ kron (u , kron ( chi ,w) ) '∗W∗kron ( phi , kron ( chi , x i ) ) . . .
+ kron (u , kron ( chi , x i ) ) '∗W∗kron (u , kron ( chi , x i ) ) . . .
+ kron (u , kron ( chi , x i ) ) '∗W∗kron ( phi , kron (v , x i ) ) . . .
+ kron (u , kron ( chi , x i ) ) '∗W∗kron ( phi , kron ( chi ,w ) ) . . .
+ kron ( phi , kron (v ,w) ) '∗W∗kron ( phi , kron ( chi , x i ) ) . . .
+ kron ( phi , kron (v , x i ) ) '∗W∗kron (u , kron ( chi , x i ) ) . . .
+ kron ( phi , kron (v , x i ) ) '∗W∗kron ( phi , kron (v , x i ) ) . . .
+ kron ( phi , kron (v , x i ) ) '∗W∗kron ( phi , kron ( chi ,w ) ) . . .
+ kron ( phi , kron ( chi ,w) ) '∗W∗kron (u , kron ( chi , x i ) ) . . .
+ kron ( phi , kron ( chi ,w) ) '∗W∗kron ( phi , kron (v , x i ) ) . . .
+ kron ( phi , kron ( chi ,w) ) '∗W∗kron ( phi , kron ( chi ,w ) ) . . .
+ kron ( phi , kron ( chi , x i ) ) '∗W∗kron (u , kron (v , x i ) ) . . .
+ kron ( phi , kron ( chi , x i ) ) '∗W∗kron (u , kron ( chi ,w ) ) . . .
+ kron ( phi , kron ( chi , x i ) ) '∗W∗kron ( phi , kron (v ,w) ) ) ;

A3 = r e a l ( kron (u , kron (v ,w) ) '∗W∗kron ( phi , kron ( chi , x i ) ) . . .
+ kron (u , kron (v , x i ) ) '∗W∗kron (u , kron ( chi , x i ) ) . . .
+ kron (u , kron (v , x i ) ) '∗W∗kron ( phi , kron (v , x i ) ) . . .
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+ kron (u , kron (v , x i ) ) '∗W∗kron ( phi , kron ( chi ,w ) ) . . .
+ kron (u , kron ( chi ,w) ) '∗W∗kron (u , kron ( chi , x i ) ) . . .
+ kron (u , kron ( chi ,w) ) '∗W∗kron ( phi , kron (v , x i ) ) . . .
+ kron (u , kron ( chi ,w) ) '∗W∗kron ( phi , kron ( chi ,w ) ) . . .
+ kron (u , kron ( chi , x i ) ) '∗W∗kron (u , kron (v , x i ) ) . . .
+ kron (u , kron ( chi , x i ) ) '∗W∗kron (u , kron ( chi ,w ) ) . . .
+ kron (u , kron ( chi , x i ) ) '∗W∗kron ( phi , kron (v ,w ) ) . . .
+ kron ( phi , kron (v ,w) ) '∗W∗kron (u , kron ( chi , x i ) ) . . .
+ kron ( phi , kron (v ,w) ) '∗W∗kron ( phi , kron (v , x i ) ) . . .
+ kron ( phi , kron (v ,w) ) '∗W∗kron ( phi , kron ( chi ,w ) ) . . .
+ kron ( phi , kron (v , x i ) ) '∗W∗kron (u , kron (v , x i ) ) . . .
+ kron ( phi , kron (v , x i ) ) '∗W∗kron (u , kron ( chi ,w ) ) . . .
+ kron ( phi , kron (v , x i ) ) '∗W∗kron ( phi , kron (v ,w ) ) . . .
+ kron ( phi , kron ( chi ,w) ) '∗W∗kron (u , kron (v , x i ) ) . . .
+ kron ( phi , kron ( chi ,w) ) '∗W∗kron (u , kron ( chi ,w ) ) . . .
+ kron ( phi , kron ( chi ,w) ) '∗W∗kron ( phi , kron (u ,w ) ) . . .
+ kron ( phi , kron ( chi , x i ) ) '∗W∗kron (u , kron (v ,w) ) ) ;

A4 = r e a l ( kron ( phi , kron ( chi ,w) ) '∗W∗kron (u , kron (v ,w ) ) . . .
+ kron ( phi , kron (v , x i ) ) '∗W∗kron (u , kron (v ,w ) ) . . .
+ kron ( phi , kron (v ,w) ) '∗W∗kron ( phi , kron (v ,w ) ) . . .
+ kron ( phi , kron (v ,w) ) '∗W∗kron (u , kron ( chi ,w ) ) . . .
+ kron ( phi , kron (v ,w) ) '∗W∗kron (u , kron (v , x i ) ) . . .
+ kron (u , kron ( chi , x i ) ) '∗W∗kron (u , kron (v ,w ) ) . . .
+ kron (u , kron ( chi ,w) ) '∗W∗kron ( phi , kron (v ,w ) ) . . .
+ kron (u , kron ( chi ,w) ) '∗W∗kron (u , kron ( chi ,w ) ) . . .
+ kron (u , kron ( chi ,w) ) '∗W∗kron (u , kron (v , x i ) ) . . .
+ kron (u , kron (v , x i ) ) '∗W∗kron ( phi , kron (v ,w ) ) . . .
+ kron (u , kron (v , x i ) ) '∗W∗kron (u , kron ( chi ,w ) ) . . .
+ kron (u , kron (v , x i ) ) '∗W∗kron (u , kron (v , x i ) ) . . .
+ kron (u , kron (v ,w) ) '∗W∗kron ( phi , kron ( chi ,w ) ) . . .
+ kron (u , kron (v ,w) ) '∗W∗kron ( phi , kron (v , x i ) ) . . .
+ kron (u , kron (v ,w) ) '∗W∗kron (u , kron ( chi , x i ) ) ) ;

A5 = r e a l ( kron ( phi , kron (v ,w) ) '∗W∗kron (u , kron (v ,w ) ) . . .
+ kron (u , kron ( chi ,w) ) '∗W∗kron (u , kron (v ,w ) ) . . .
+ kron (u , kron (v , x i ) ) '∗W∗kron (u , kron (v ,w ) ) . . .
+ kron (u , kron (v ,w) ) '∗W∗kron ( phi , kron (v ,w ) ) . . .
+ kron (u , kron (v ,w) ) '∗W∗kron (u , kron ( chi ,w ) ) . . .
+ kron (u , kron (v ,w) ) '∗W∗kron (u , kron (v , x i ) ) ) ;

A6 = r e a l ( kron (u , kron (v ,w) ) '∗W∗kron (u , kron (v ,w) ) ) ;

B0 = ( phi '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗ x i ) ;
B1 = ( phi '∗u+u '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗ x i ) . . .

+ ( phi '∗ phi )∗ ( chi '∗ v+v '∗ ch i )∗ ( xi '∗ x i ) . . .
+ ( phi '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗w+w'∗ x i ) ;

B2 = (u '∗u )∗ ( chi '∗ ch i )∗ ( xi '∗ x i ) . . .
+ ( phi '∗ phi )∗ ( v '∗ v )∗ ( xi '∗ x i ) . . .
+ ( phi '∗ phi )∗ ( chi '∗ ch i )∗ (w'∗w ) . . .
+ ( phi '∗ phi )∗ ( chi '∗ v+v '∗ ch i )∗ ( xi '∗w+w'∗ x i ) . . .
+ ( phi '∗u+u '∗ phi )∗ ( chi '∗ ch i )∗ ( xi '∗w+w'∗ x i ) . . .
+ ( phi '∗u+u '∗ phi )∗ ( chi '∗ v+v '∗ ch i )∗ ( xi '∗ x i ) ;

B3 = ( phi '∗u+u '∗ phi )∗ ( chi '∗ v+v '∗ ch i )∗ ( xi '∗w+w'∗ x i ) . . .
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+ (u '∗u )∗ ( chi '∗ v+v '∗ ch i )∗ ( xi '∗ x i ) . . .
+ (u '∗u )∗ ( chi '∗ ch i )∗ ( xi '∗w+w'∗ x i ) . . .
+ ( phi '∗ phi )∗ ( v '∗ v )∗ ( xi '∗w+w'∗ x i ) . . .
+ ( phi '∗u+u '∗ phi )∗ ( v '∗ v )∗ ( xi '∗ x i ) . . .
+ ( phi '∗ phi )∗ ( chi '∗ v+v '∗ ch i )∗ (w'∗w ) . . .
+ ( phi '∗u+u '∗ phi )∗ ( chi '∗ ch i )∗ (w'∗w) ;

B4 = (u '∗u )∗ ( chi '∗ v+v '∗ ch i )∗ ( xi '∗w+w'∗ x i ) . . .
+ ( phi '∗u+u '∗ phi )∗ ( v '∗ v )∗ ( xi '∗w+w'∗ x i ) . . .
+ ( phi '∗u+u '∗ phi )∗ ( chi '∗ v+v '∗ ch i )∗ (w'∗w ) . . .
+ ( phi '∗ phi )∗ ( v '∗ v )∗ (w'∗w ) . . .
+ (u '∗u )∗ ( chi '∗ ch i )∗ (w'∗w ) . . .
+ (u '∗u )∗ ( v '∗ v )∗ ( xi '∗ x i ) ;

B5 = ( phi '∗u+u '∗ phi )∗ ( v '∗ v )∗ (w'∗w ) . . .
+ (u '∗u )∗ ( chi '∗ v+v '∗ ch i )∗ (w'∗w ) . . .
+ (u '∗u )∗ ( v '∗ v )∗ ( xi '∗w+w'∗ x i ) ;

B6 = (u '∗u )∗ ( v '∗ v )∗ (w'∗w) ;

C = [A6∗B5−A5∗B6 , . . .
2∗A6∗B4−2∗A4∗B6 , . . .
3∗A6∗B3+A5∗B4−A4∗B5−3∗A3∗B6 , . . .
4∗A6∗B2+2∗A5∗B3−2∗A3∗B5−4∗A2∗B6 , . . .
5∗A6∗B1+3∗A5∗B2+A4∗B3−A3∗B4−3∗A2∗B5−5∗A1∗B6 , . . .
6∗A6∗B0+4∗A5∗B1+2∗A4∗B2−2∗A2∗B4−4∗A1∗B5−6∗A0∗B6 , . . .
5∗A5∗B0+3∗A4∗B1+A3∗B2−A2∗B3−3∗A1∗B4−5∗A0∗B5 , . . .
4∗A4∗B0+2∗A3∗B1−2∗A1∗B3−4∗A0∗B4 , . . .
3∗A3∗B0+A2∗B1−A1∗B2−3∗A0∗B3 , . . .
2∗A2∗B0−2∗A0∗B2 , . . .
A1∗B0−A0∗B1 ] ;

r = roo t s (C) ;
r=r ( f i nd ( r e a l ( r ) >0)) ;
r=r ( f i nd ( imag ( r )==0));

% Choose the sma l l e s t r e a l s o l u t i o n
t=min ( r ) ;
i f isempty ( t )

t=2;
end

f v a l=f (W, phi+t ∗u , ch i+t ∗v , x i+t ∗w) ;

B.3 SQP

% Supply the dimensions n1 , n2 , and n3 the obse rvab l e A

nr1=2∗n1 ;
nr2=2∗n2 ;
nr3=2∗n3 ;

id1=eye ( n1 ) ;

53



id2=eye ( n2 ) ;
id3=eye ( n3 ) ;

J=[ id1 1 i ∗ id1 ] ;
K=[ id2 1 i ∗ id2 ] ;
L=[ id3 1 i ∗ id3 ] ;
JKL=kron (J , kron (K,L ) ) ;
W=r e a l (JKL'∗A∗JKL) ;
W=0.5∗(W+W' ) ;
W=0.25∗(W+de l t ransponer (W, nr1∗nr2 , nr3)+de l t ranspone r (W, nr1 , nr2∗nr3 ) ' . . .

+de l t ranspone r ( de l t ranspone r (W, nr1 , nr2∗nr3 ) , nr1∗nr2 , nr3 ) ) ;

% A=0.25∗(A+A'+pt (A+A' , nr1 , nr2 ) ) ;

x0=randn ( nr1 , 1 ) ;
x0=x0/norm( x0 ) ;
y0=randn ( nr2 , 1 ) ;
y0=y0/norm( y0 ) ;
z0=randn ( nr3 , 1 ) ;
z0=z0/norm( z0 ) ;
X0=[x0 ; y0 ; z0 ] ;
c l e a r x0 y0 z0

opts=opt imset ( ' Algorithm ' , ' sqp ' , . . .
' DerivativeCheck ' , ' o f f ' , . . .
' D iagnost i c s ' , ' o f f ' , . . .
' Display ' , ' o f f ' , . . .
' GradConstr ' , ' on ' , . . .
'GradObj ' , ' on ' , . . .
'MaxFunEvals ' , 2 00∗ ( nr1+nr2 ) , . . .
' MaxIter ' , 5 0 0 , . . .
'TolFun ' , 1 . 0 e −16 , . . .
'TolCon ' , 1 . 0 e −16 , . . .
'TolX ' , 1 . 0 e −16 , . . .
' Object iveLimit ' ,−1.0 e6 , . . .
' ScaleProblem ' , ' none ' . . .
) ;

[ Xf f v a l e x i t f l a g output lambda grad ] = . . .
fmincon (@(X) SQPfun( nr1 , nr2 , nr3 ,W,X) ,X0 , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , . . .

@(X) SQPconstr ( nr1 , nr2 , nr3 ,X) , opts ) ;

phi=J∗Xf ( 1 : nr1 ) ;
ch i=K∗Xf ( nr1+1: nr1+nr2 ) ;
x i=L∗Xf ( nr1+nr2+1: nr1+nr2+nr3 ) ;
[ maxvalue index ] =max( abs ( phi ) ) ;
phi=conj ( phi ( index ) )∗ phi /maxvalue ;
[ maxvalue index ] =max( abs ( ch i ) ) ;
ch i=conj ( ch i ( index ) )∗ ch i /maxvalue ;
[ maxvalue index ] =max( abs ( x i ) ) ;
x i=conj ( x i ( index ) )∗ x i /maxvalue ;
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B.3.1 SQPfun

f unc t i on [ funva l grad ]=SQPfun( nr1 , nr2 , nr3 ,A,X)
%
% [ funva l grad ]= f01 spqeva l ( nr1 , nr2 ,B, z )
%

xyz=kron (X( 1 : nr1 ) , kron (X( nr1+1: nr1+nr2 ) ,X( nr1+nr2+1: nr1+nr2+nr3 ) ) ) ;
funva l=xyz '∗A∗xyz ;
grad=2∗[ kron ( eye ( nr1 ) , kron (X( nr1+1: nr1+nr2 ) ,X( nr1+nr2+1: nr1+nr2+nr3 ) ) ) ' . . .

∗A∗xyz ;
kron (X( 1 : nr1 ) , kron ( eye ( nr2 ) ,X( nr1+nr2+1: nr1+nr2+nr3 ) ) ) ' ∗A∗xyz ;

kron (X( 1 : nr1 ) , kron (X( nr1+1: nr1+nr2 ) , eye ( nr3 ) ) ) ' ∗A∗xyz ] ;

B.3.2 SQPconstr

f unc t i on [ c ceq gradc gradceq ] = SQPconstr ( nr1 , nr2 , nr3 ,X)
%
% [ c ceq gradc gradceq ] = SQPconstr ( nr1 , nr2 , z )
%

c=ze ro s ( nr1+nr2+nr3 , 0 ) ;
ceq=[X( 1 : nr1 ) '∗X(1 : nr1 )−1;

X( nr1+1: nr1+nr2 ) '∗X( nr1+1: nr1+nr2 )−1;
X( nr1+nr2+1: nr1+nr2+nr3 ) '∗X( nr1+nr2+1: nr1+nr2+nr3 )−1] ;

gradc=c ;
gradceq =2∗ [ [X( 1 : nr1 ) ; z e r o s ( nr2 , 1 ) ; z e r o s ( nr3 , 1 ) ] , [ z e r o s ( nr1 , 1 ) ; . . .

X( nr1+1: nr1+nr2 ) ; z e r o s ( nr3 , 1 ) ] , [ z e r o s ( nr1+nr2 , 1 ) ; . . .
X( nr1+nr2+1: nr1+nr2+nr3 ) ] ] ;
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