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Abstract

In nanoparticle research it is common to perform optical measurements on par-
ticle films during deposition, to help understand the growth process. Gran-
Film is a software under development which can calculate the optical prop-
erties of an array of truncated nanoparticles supported on a substrate. The
theory behind these calculations is based on the work of Bedeaux and Vlieger.
One feature which was missing from the software until now was the ability to
do such simulations on the case of truncated spheroidal nanoparticles with an
arbitrary number of coatings of different materials. In the beginning of this
work, the equations needed to perform these simulations are derived, and then
reduced to previously derived special cases for verification. The new equa-
tions are then implemented into GranFilm, and the new code is put through
numerical tests. Finally, the new functionality is tested with the help of ex-
perimental data from an oxidation process of a silver nanoparticle film. The
qualitative evolution of the optical properties of the film is reproduced quite
successfully, but some issues remain.
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Sammendrag

Innen nanopartikkelforskning er det vanlig å utføre optiske m̊alinger p̊a par-
tikkelfilmer i løpet av deponering, for å gi mer kunnskap om vekstprosessen.
GranFilm er en programvare under utvikling som kan beregne de optiske
egenskapene til en film av trunkerte nanopartikler p̊a et substrat. Teorien bak
disse beregningene er basert p̊a arbeidene til Bedeaux og Vlieger. En funksjon-
alitet som manglet til n̊a var muligheten til å gjøre slike beregninger i tilfellet
av trunkerte sfæroidiske nanopartikler med et vilk̊arlig antall overflatelag av
forskjellige materialer. I starten av dette arbeidet blir de nødvendige liknin-
gene for å utføre disse simuleringene utledet, og s̊a for verifikasjon redusert
til spesialtilfeller utledet tidligere. De nye likningene blir s̊a implementert i
GranFilm, og den nye koden blir testet numerisk. Til slutt blir den nye
funksjonaliteten testet ved hjelp av eksperimentell data fra en oksidasjonspros-
ess av en film av sølv-nanopartikler. Den kvalitative utviklingen av de optiske
egenskapene til filmen blir reprodusert i sine grove trekk, men noen problemer
gjenst̊ar.
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1. Introduction

Nanoparticle growth is an active field of research, both caused by a desire to
understand their fascinating optical, electronic and chemical properties, as well
as the current and potential practical applications [2, 3]. These applications
include nanoelectronics [2, 4], biology/medicine [5, 6, 7], chemical sensing [2, 8],
catalysis [9] and composite materials [3].

One way to obtain metallic nanoparticles is to grow them on a substrate
through the Volmer-Weber growth mode, where the relatively large surface
energy between the substrate and the deposited metal causes the metal to ini-
tially deposit as separate islands/particles [3]. During such a deposition it is
common to perform an optical measurement called SDRS (Surface Differential
Reflectance Spectroscopy) [10, 11], in the hope of learning something about
the growth process. This essentially entails measuring the specular reflectance
spectrum of the surface using linearly polarized radiation in and around the
visible range (see Fig. 1.1). This can be done in situ, and typically several
spectra are recorded during growth resulting in a time-series. Of particular
interest is the differential reflectance, which is the difference between the re-
flectance recorded with the nanoparticles present and the reflectance measured
with the bare substrate before deposition. When this difference is normalized
with the latter, it is the SDRS signal commonly denoted ∆R/R.

One might wonder why this signal is interesting. It is commonly stated that
light in the visible spectrum is quite useless in observing the nanoscale because
of the diffraction limit [12]. While this is true for imaging, this SDRS signal
allows one to indirectly probe the properties of metallic nanoparticles through
nanoplasmonics [13]. When a metallic nanoparticle is exposed to the light’s
electric field, its electrons are periodically displaced relative to the lattice ions.
This induces opposite charges on the opposing surface giving a restoring force,
and thus effectively creating an electron oscillator. The quantum of this os-
cillator is called a surface plasmon, with a resonant frequency depending not
only on the type of metal, but also on the particle’s size, shape and envi-
ronment [13]. This is the key to gaining information about the nanoparticles
using visible light: The optical properties of a substrate covered with metal-
lic nanoparticles depend on the excitation of plasmon modes, and the latter
depends sensitively on the size and shape of these particles.

A recorded SDRS signal, such as the one shown in the inset in Fig. 1.1, is
quite useless alone however. One obviously cannot read particle size and shape
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Figure 1.1.: A schematic illustration of a common SDRS measurement. The
substrate is exposed to linearly polarized light, causing some of it
to be transmitted and some of it to be reflected. The specularly
reflected light is collected into a spectrometer, giving data on the
reflectance for different photon energies. If the same measurement
was also done with the bare substrate before the growth began,
one can find and plot the quantity differential reflectance (∆R/R),
as shown in the inset.

directly from the curve. What is needed is a theoretical model for the physical
process causing the observed phenomenon. When this is in place one can sim-
ulate the phenomenon to see what kind of particles would cause the obtained
measurement. Several attempts have been made to model the phenomenon,
including effective medium theories [14] and the Yamaguchi model [15, 16].
These theories fail in completely describing the observations because the ap-
proximations are too rough and/or because they oversimplify the geometry.
Because of these inadequacies there was a need for a new model, which could
properly account for the break in symmetry caused by particle truncation, in-
teractions with the substrate, and interactions between neighboring particles.

Such a model was developed by Bedeaux and Vlieger [17]. It is seated in
the framework of classical electromagnetism, and essentially entails solving
Maxwell’s Equations in the area of the nanoparticles using appropriate ap-
proximations. The theory can be quickly summarized as follows: The goal is
to find the Fresnel coefficients [18] of the nanoparticle covered substrate sur-
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face, which essentially contain all the information needed on its macroscopic
optical properties. The presence of the nanoparticles, or metallic islands as
they are often called, represent a perturbation from the easily solvable case of
an ideally flat surface between two bulk media. This perturbation is described
through the formalism of excess fields, and by doing so one can express the
Fresnel coefficients in terms of surface susceptibilities. The latter depends on
the density of particles and their individual polarizabilities.

The final and most complex stage of the treatment entails finding the polar-
izability of a truncated particle (or island) supported on a substrate. When
they are much smaller than the optical wavelength, this can thankfully be re-
duced to an electrostatic problem. For islands of a single material, i.e. with no
coating, the problem has been solved analytically by Bedeaux and Vlieger [17]
for spherical and spheroidal islands. The derivation results in an infinite sys-
tem of linear equations which can be truncated to a specific multipole order
depending on the desired accuracy. Solving this requires numerical methods
on a computer, both because the linear system is very large and because the
matrix elements contain integrals which cannot be calculated analytically in
most cases. A solution of this system can be used to find the polarizabilities,
the surface susceptibilities, the Fresnel coefficients and finally the reflectance.

A numerical simulation based on this theoretical treatment has been imple-
mented as part of a computer software named GranFilm [19], which has been
in development for several years now. In fact, just before the beginning of this
work, a solution for spherical islands with an arbitrary number of coatings had
been derived and implemented in GranFilm. One thing which was missing
however, was similar functionality for spheroidal islands. While the original
work of Bedeaux and Vlieger had already derived some results for spheroidal
islands, these did not cover the case of islands with an arbitrary number of
coatings of any thickness. This missing functionality is what this work aims
to create.

The three main goals of this work is to:

• Perform an analytical derivation for solving the above problem for the
case of coated spheroidal islands truncated and supported on a substrate.
This will be inspired by both the work on non-coated spheroidal islands
by Bedeaux and Vlieger and the derivations made by Prof. Ingve Simon-
sen for the case of coated spherical islands.

• Implement (i.e. program) the results of the analytical derivation as an
integral part of the existing GranFilm 2.0 code, and perform numerical
tests to ensure that it has been done correctly.

• Do a preliminary test of comparing the numerical results to experimental
data. In this case it entails trying to reproduce general trends from SDRS
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data recorded during oxidation of silver islands on a substrate.

The contents of this report may be summarized as follows: Section 2 cov-
ers the necessary theoretical background, including the formalism of excess
fields and how the surface susceptibilities relate to the optical properties of
the surface. This mostly consists of summaries of relevant parts of the book
by Bedeaux and Vlieger [17]. Section 3 contains the main analytical work of
this report, which is mostly solving Laplace’s equation for the case of a coated
spheroidal island truncated and supported on a substrate, exposed to a ho-
mogeneous electric field. Some verifications of these results are presented in
Sec. 4, as they are reduced to the two previously available special cases and
compared. Section 5 covers the implementation and integration of the new
equations into GranFilm, as well as the numerical tests performed to verify
correctness and convergence. Section 6 presents the results from the attempt
to qualitatively reproduce the observed evolution of the SDRS spectrum as Ag
islands are exposed to oxygen gas, which may be expected to create a coating
of Ag2O on the islands. Section 7 contains analyses and discussions concerning
all the performed work and obtained results, while Sec. 8 attempts to draw
some final conclusions.

This report also contains some appendices ( A – D), which cover technical
details not essential for understanding the theory or the results, but which
could be very useful for someone attempting to understand and/or modify the
added source code in GranFilm.
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2. Background

While deriving the optical properties of a uniform planar interface is a standard
procedure in optics textbooks [18], the interfaces to be treated here are not
discontinuous transitions from one homogeneous bulk to another, but rather
non-sharp. Initially a general non-sharp interface will be considered, such as

ẑ

x̂Reference surface
(z = 0)

d (Boundary region)

Bulk(−)

Bulk(+)

p

s

θi θr

θt

Figure 2.1.: An illustration of the general non-sharp interface to be considered.
A boundary region of thickness d is surrounded by bulk media
on both sides. Inside this boundary region the z = 0 plane is
placed, which will be referred to as the reference surface. Incident
radiation is coming from the bulk in the negative z region at an
angle θi, causing a reflected beam (θr) and a transmitted beam
(θt). The two linear polarization directions termed p and s are
shown at the start of the incident beam.

the one shown in Fig. 2.1. To help describe the electromagnetic properties of
such a boundary region, the formalism of excess quantities by Bedeaux and
Vlieger [17] will be summarized in Sec. 2.1. Once this is in place, the Fresnel
coefficients of such an interface can be found in terms of a few properties of
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the general boundary region called surface susceptibilities (Sec. 2.2). These
surface susceptibilities will depend on the internal structure of the boundary
region. The derivation of this for the case of a film of truncated and coated
spheroidal islands will be presented in Sec. 3. Tabulated values found for the
dielectric functions of metals are not necessarily appropriate for nanoparticles.
Some of the corrections needed to account for this will be covered in Sec. 2.3.

2.1. Boundary conditions at non-sharp interfaces

Our starting point is the Maxwell equations [20], which in SI units are given
by

∇ ·D = ρ (2.1a)

∇ ·B = 0 (2.1b)

∇×E = −∂B
∂t

(2.1c)

∇×H = J +
∂D

∂t
, (2.1d)

where the vectors D, B, E, H are the electric displacement field, the magnetic
flux density, the electric field and the magnetic field, respectively. The density
of free charges is given by ρ, while J is the density of free current.

To describe the properties of a boundary layer like the one shown in Fig. 2.1
without considering the details along the axis perpendicular to it, one may
introduce the concept of excess quantities. It will be shown that the boundary
conditions for extrapolated bulk fields at the reference surface may be ex-
pressed in terms of these excesses. A detailed introduction to excess quantities
can be found in the book by Bedeaux and Vlieger [17].

As an example, the excess electric field (Eex) is defined by

Eex(r, t) ≡ E(r, t)−E−(r, t)θ(−z)−E+(r, t)θ(z), (2.2)

where θ(z) is the step function. The fields E+ and E− are examples of bulk
extrapolated quantities, corresponding to the bulk on the z > 0 and the z < 0
side of Fig. 2.1, respectively. These bulk extrapolated quantities are the same
as the real quantities when far away from the boundary. When in the boundary
layer, these quantities are extrapolated from their values in the bulk. It follows
that the excess quantities are nonzero only in the region of the boundary. Other
excess quantities are defined equivalently.

Inserting the real field from Eq. (2.2) and its equivalents into the Maxwell
equations (2.1), while using that the Maxwell equations should also hold for
the extrapolated fields, and the fact that ∇θ(z) = δ(z)ẑ, one can find the
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following new set of equations for the excess fields

∇ ·Dex(r, t) + (D+
z (r, t)−D−z (r, t))|z=0δ(z) = ρex(r, t), (2.3a)

∇ ·Bex(r, t) + (B+
z (r, t)−B−z (r, t))|z=0δ(z) = 0, (2.3b)

∇×Eex(r, t) + ẑ× (E+
‖ (r, t)−E−‖ (r, t))|z=0δ(z) = −∂Bex(r, t)

∂t
, (2.3c)

∇×Hex(r, t) + ẑ× (H+
‖ (r, t)−H−‖ (r, t))|z=0δ(z) = Jex(r, t) +

∂Dex(r, t)

∂t
,

(2.3d)

where all excess quantities are defined in ways equivalent to Eq. (2.2). The
unit normal vector to the flat reference surface is given by ẑ.

Integrating Eqs. (2.3) along the entire z-axis, one can find the following
boundary conditions for the bulk extrapolated fields at the reference surface:[

D+
z (r‖, t)−D−z (r‖, t)

]
|z=0 = −∇‖Ds

‖(r‖, t) + ρs(r‖, t), (2.4a)[
B+
z (r‖, t)−B−z (r‖, t)

]
|z=0 = −∇‖Bs

‖(r‖, t), (2.4b)[
E+
x (r‖, t)− E−x (r‖, t)

]
|z=0 =

∂

∂x
Esz(r‖, t)−

∂

∂t
Bs
y(r‖, t), (2.4c)[

E+
y (r‖, t)− E−y (r‖, t)

]
|z=0 =

∂

∂y
Esz(r‖, t) +

∂

∂t
Bs
x(r‖, t), (2.4d)[

H+
x (r‖, t)−H−x (r‖, t)

]
|z=0 =

∂

∂x
Hs
z (r‖, t) +

∂

∂t
Ds
y(r‖, t) + Jsy (r‖, t), (2.4e)[

H+
y (r‖, t)−H−y (r‖, t)

]
|z=0 =

∂

∂y
Hs
z (r‖, t)−

∂

∂t
Ds
x(r‖, t)− Jsx(r‖, t), (2.4f)

where the superscript s indicates a total excess quantity, which is the excess of
the indicated quantity integrated along the entire z-axis.

One can also introduce polarization and magnetization densities for the in-
terface. The total excess surface polarization is given by [17]

Ps(r‖, t) ≡ [Ds
‖(r‖, t),−ε0E

s
z(r‖, t)], (2.5)

and the surface magnetization by

Ms(r‖, t) ≡ [
1

µ0
Bs
‖(r‖, t),−H

s
z (r‖, t)], (2.6)

where the superscripts s again indicate a total excess quantity. The quantities
ε0 and µ0 are the electric permittivity and magnetic permeability of vacuum
respectively. It is important to stress that Eqs. (2.5) and (2.6) must be used
for the surface polarization and surface magnetization, and not simply the
z-integral over some excess polarization and magnetization densities [17].

7



Using the relations in Eqs. (2.5) and (2.6), one can transform Eqs. (2.4) into
the following boundary conditions for the bulk extrapolated fields:

(D+
z −D−z )|z=0 = −∇‖Ps

‖ + ρs, (2.7a)

(B+
z −B−z )|z=0 = −µ0∇‖Ms

‖, (2.7b)

(E+
‖ −E−‖ )|z=0 = µ0

∂

∂t

(
ẑ×Ms

‖

)
− 1

ε0
∇‖P sz , (2.7c)

(H+
‖ −H−‖ )|z=0 = − ∂

∂t

(
ẑ×Ps

‖

)
−∇‖M s

z − ẑ× Js‖, (2.7d)

where the dependence on variables (r‖, t) is implicit on all the field quantities,
as well as ρs and Js.

In time-dependent problems, it can be convenient to define a quantity called
the generalized electric displacement field, given in terms of the Fourier trans-
formed displacement field and current density by

D′(r, ω) ≡ D(r, ω) +
i

ω
J(r, ω). (2.8)

Here ω is the angular frequency variable introduced by the Fourier transform.
Using this generalized electric displacement field, one can also define a gener-
alized surface polarization density as

P′s(r‖, t) ≡ [D′s‖ (r‖, t),−ε0Esz(r‖, t)]. (2.9)

By using Eqs. (2.8) and (2.9) together with the Fourier transform of Eqs. (2.7),
and using the frequency domain expression of charge conservation given by

iωρ(r, ω) = ∇ · J(r, ω), (2.10)

one can express the boundary conditions as:[
D+
z (r‖, ω)−D−z (r‖, ω)

]∣∣
z=0

= −∇‖P′s‖ (r‖, ω), (2.11a)[
B+
z (r‖, ω)−B−z (r‖, ω)

]∣∣
z=0

= −µ0∇‖Ms
‖(r‖, ω), (2.11b)[

E+
‖ (r‖, ω)−E−‖ (r‖, ω)

]∣∣∣
z=0

= −iωµ0ẑ×Ms
‖(r‖, ω)− 1

ε0
∇‖P sz (r‖, ω),

(2.11c)[
H+
‖ (r‖, ω)−H−‖ (r‖, ω)

]∣∣∣
z=0

= iωẑ×P′s‖ (r‖, ω)−∇‖M s
z (r‖, ω). (2.11d)

To simplify the notation, the primes will be dropped and the symbols D and
P will from now on refer to the generalized displacement field and polarization
respectively.
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For these boundary conditions (2.11) to have any practical use, one needs
constitutive equations relating the interfacial polarization and magnetization
densities to the extrapolated fields outside the boundary region.

In the absence of spatial dispersion in the interface, the general constitutive
relation is given by [17]

Ps(r‖, ω) = ξse(ω) · [ε0E‖,Σ(r‖, ω), Dz,Σ(r‖, ω)], (2.12)

where ξ is the constitutive tensor, and the subscript Σ indicates the arithmetic
mean of the two corresponding bulk extrapolated fields at the reference surface
(z = 0). From now on the discussion will be limited to non-magnetic mate-
rials (Ms=0), and thus no corresponding constitutive relation for the surface
magnetization density will be presented.

If the interface is isotropic, homogeneous and symmetric, the constitutive
tensor is given by [17]

ξse(ω) =

γ(ω) 0 0
0 γ(ω) 0
0 0 β(ω)

 , (2.13)

where the constitutive coefficients γ and β are called the first order surface
susceptibilities. These coefficients have the dimensions of length1.

The description given by Eqs (2.12) and (2.13) ignore the possible spatial
dispersion in the interface. This effect can be taken into account by intro-
ducing constitutive coefficients of second order (δ and τ). Their influence on
the optical properties are a factor of d/λ smaller than that of the first order
coefficients, so they can be neglected in an approximation if the interface is
thin enough compared to the optical wavelength [17].

2.2. Optical response of non-sharp interfaces

It is a standard procedure in optics textbooks [18] to derive the Fresnel equa-
tions for a uniform and planar boundary between two bulk media2. This is
done by expressing the fields as a superposition of incoming and reflected plane
waves on one side, and a transmitted plane wave on the other side, and insert-
ing these fields into the boundary conditions which Maxwell’s equations imply
for a sharp interface. This leads to the laws of reflection and refraction, as well
as expressions for the reflection and transmission amplitudes for the interface.

Here we are treating interfaces which are not perfectly sharp, but a deriva-
tion of the same form can now be done in the following way [17]: The fields

1Recall that the total excess quantities have an extra dimension of length compared to the
quantities themselves.

2Sometimes called a Fresnel interface
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constructed from plane wave solutions can now take the role of the bulk extrap-
olated fields, which can be expressed in terms of reflection and transmission
amplitudes. By extrapolating them to the reference surface to express the
averages (subscript Σ) and inserting them into Eq. (2.12), one can find the
surface polarization density. By inserting this surface polarization density into
the right hand side of Eqs. (2.11), using the bulk extrapolated fields to express
the differences on the left side, and assuming non-magnetic materials (Ms=0),
one can solve for the new amplitudes of reflection and transmission. During
this derivation, one also finds that the laws of reflection and refraction stay in
their traditional form.

For non-magnetic media, while ignoring spatial dispersion (δ = τ = 0),
one finds the following reflection and transmission amplitudes for s and p
polarization [17, 21, 19]:

rs(ω) =
n− cos(θi)− n+ cos(θt) + i(ω/c)γ

n− cos(θi) + n+ cos(θt)− i(ω/c)γ
, (2.14)

ts(ω) =
2n− cos(θi)

n− cos(θi) + n+ cos(θt)− i(ω/c)γ
, (2.15)

rp(ω) =

{[
n+ cos(θi)− n− cos(θt)

](
1−

( ω
2c

)2
γβε− sin2(θi)

)
+ i

ω

c

[
βε−n+n− sin2(θi)− γ cos(θi) cos(θt)

]}
/{[

n+ cos(θi) + n− cos(θt)
](

1−
( ω

2c

)2
γβε− sin2(θi)

)
− iω

c

[
βε−n+n− sin2(θi) + γ cos(θi) cos(θt)

]}
, (2.16)

tp(ω) =

{
2n− cos(θi)

[
1 +

( ω
2c

)2
γβε− sin2(θi)

]}
/{[

n+ cos(θi) + n− cos(θt)
](

1−
( ω

2c

)2
γβε− sin2(θi)

)
− iω

c

[
βε−n+n− sin2(θi) + γ cos(θi) cos(θt)

]}
, (2.17)

where n± is the bulk refractive index for the region indicated by the superscript.
In non-magnetic materials, n =

√
ε, where ε is the relative permittivity (or

dielectric function) of the given medium. The angle of incidence and the angle
of transmission is given by θi and θt, respectively. They can be related to each
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other by the law of refraction [n− sin(θi) = n+ sin(θt)] (See also Figure 2.1).
The constant c = 1/

√
ε0µ0 is the speed of light in vacuum.

It should be noted that the exact position of the reference surface (z =
0) in the mathematical derivation carries no physical significance, and thus
measurable quantities should not depend on this choice. The constitutive
coefficients (γ, β, δ, τ) do depend on this, as do the amplitudes of reflection
and transmission. One can, however, define new quantities called invariants.
These are combinations of constitutive coefficients which are independent of
the position of the reference surface. It can be shown [17] that the reflection
and transmission amplitudes can be written as a term involving only invariants,
multiplied by a phase factor which is not invariant. The dependence in the
latter is not a problem, since these amplitudes are not directly measurable, and
the phase factor will disappear when calculating the coefficient of reflection (R)
and the coefficient of transmission (T ), which are measurable.

Note also that in the limit of a perfectly sharp interface, where γ = β = 0
because there is no boundary region with excess polarization, Eqs. (2.14),
(2.15), (2.16) and (2.17) reduce to the traditional amplitudes for a Fresnel
interface [17, 18], as required.

While the amplitudes of reflection and transmission are not directly measur-
able, the coefficients of reflection and transmission are. They can be defined
as the ratio of reflected to incident power and transmitted to incident power
respectively. By assuming energy conservation at the interface, one can find
the following expressions for them in terms of the amplitudes [18]

R = |r|2 (2.18)

T =
n+ cos(θt)

n− cos(θi)
|t|2 (2.19)

Be aware that T is not simply given by |t|2, since one must take into account
a different wave speed and direction in the substrate.

2.3. Finite-size corrections to the dielectric function of
metals

Tabulated values for the dielectric function are often measured for bulk mate-
rials. When doing calculations on nano-sized metallic islands however, these
values might not be accurate. This section will cover some of the corrections
to ε needed for small particle sizes.

When the size of the particles become comparable to the mean free path
of the conduction electrons in the bulk, the dielectric function will start to
be affected. The mean free path is an important contributor to the dielectric

11
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Figure 2.2.: The effect of the finite-size correction given in Eq. 2.20 with ~ωp =
9.17 eV, ~/τb = 0.018 eV, ~vf = 0.91 eV nm and B = −1.13 eV2nm
(values for silver from [22]). a) The effect on the imaginary part of
the dielectric function on a logarithmic scale for a set of different
radii, while holding the truncation ratio at 0.6. b) The effect on
the ∆R/R signal as calculated by GranFilm with parameters
R = 5 nm (spherical), tr = 0.6 and L = 15 nm.

function, and in the bulk case it is determined by the probability of the elec-
trons scattering off the lattice inside the material. In the case of small particles
however, surface and interface scattering become important contributors which
essentially have the effect of reducing the mean free path of the electrons, thus
also reducing the electron relaxation time. [22, 23] There is another finite-size
effect as well, due to a reduced screening of the sp electrons by the d electrons
at the surface/interface [22]. This has the effect of blue-shifting or red-shifting
the plasmon frequency of the particles, depending on the type of metal [24].

The corrections to the dielectric function due to both these finite-size effects
can be approximated by the following equation [22]

ε(ω) = εB(ω) +
ω2
p

ω2 + iω/τB
−

ω2
p

ω2 + Σ + iω/τ
, (2.20)

where εB(ω) is the material’s bulk dielectric function, τB is the bulk relax-
ation time, Σ is the plasmon frequency shift, and τ is the finite-size corrected
relaxation time. The latter is given by [25]

τ−1 = τ−1
B + vF l

−1, (2.21)

where vF and l are the Fermi velocity and the mean free path of the electrons
respectively. It is not quite clear what the mean free path is in a truncated
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sphere however, but a good candidate was found [25] to be half of the particle’s
height, i.e.

l =
1

2
(1 + tr)R. (2.22)

In the oblate spheroidal case, which is the main focus in this work, the radius
along the short axis (R⊥) will be used for R in Eq. 2.22, thus keeping l at
half of the particle’s height. See Sec. 3.1 for definitions of R⊥, tr and other
parameters of the truncated spheroidal shape.

The plasmon shift can be expressed as [22]

Σ = B
S

V
, (2.23)

where B is a material dependent constant, and S and V are the surface area
and volume of the truncated spheroids respectively. The surface-to-volume
ratio may be found by using Eqs. (3.115) and (3.116) for the volume and
surface area of a truncated spheroid.

Figure 2.2 shows the imaginary part of the dielectric function of silver for
different islands sizes, compared to the bulk value. Also shown is the effect on
the simulated SDRS signal. As seen, the finite-size effect can have a signifi-
cant effect on the dielectric function of the islands, and thus also the SDRS
signal. Beware that the correction given in Eq. 2.20 is only an approximation
which does not correct the interband part of the dielectric function, nor does
it account for any size quantization [25].
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3. Spheroidal island films

As summarized in in Sec. 2, one may calculate the optical properties of a generic
boundary layer if one can find its surface susceptibilities. These quantities will
obviously depend on the contents of this boundary layer. In this section the
surface susceptibilities for a film of truncated and coated oblate spheroidal
nanoparticles (or islands) supported on a substrate will be derived, using a
quasi static approximation.

Sections 3.1 and 3.2 will introduce the spheroidal shape and the formalism
and notation used when dealing with a set of concentric spheroids, which is
needed when deriving results for islands with an arbitrary number of coating
layers. Section 3.3 will go through the formalism of the oblate spheroidal
coordinate system. In Sec. 3.4 the entire process of finding the polarizabilities
of a truncated and coated spheroidal island supported on a substrate is gone
through in detail. This involves solving the Laplace equation for the quasi
static case in each homogeneous region using multipole expansions, in such a
way that the required boundary conditions are as closely satisfied as possible
at all interfaces between different regions. Section 3.5 summarizes how one
goes from having the polarizabilities of a single island, to having the surface
susceptibilities of a film of such islands. This includes corrections (to dipolar
order) for interactions between different islands.

3.1. Spheroids

An oblate spheroid is an object obtained by rotating an ellipse about its minor
axis. In this text the axis of symmetry will always be along the z-axis, which
by definition will be perpendicular to the substrate surface. The equation for
such a spheroidal surface is

x2 + y2

R2
‖

+
z2

R2
⊥

= 1, (3.1)

with R‖ > R⊥ for it to be oblate. The parameters R‖ and R⊥ are the distances
from the center to the surface along r̂‖ and the z axis respectively. Specifying
such spheroids requires two parameters, but they do not have to be these two
radii. Another important parameter is the distance from the center to the two
focal points of the rotated ellipse, which in the spheroidal case is the radius of
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the focal ring. This is given in terms of the radii as

a =
√
R2
‖ −R

2
⊥. (3.2)

Another parameter is the eccentricity 0 < e < 1, which is a dimensionless
measure of the deviation from a sphere, and given by

e =
a

R‖
=

√
1−

(
R⊥
R‖

)2

. (3.3)

One can also specify a flattening parameter 0 ≤ ξ0 <∞ given by

ξ0 =
R⊥
a

=
R⊥
eR‖

=
R⊥√

R2
‖ −R

2
⊥

. (3.4)

The behavior of these parameters in the limiting cases of a sphere and a circular
disc are as follows:

Sphere : a→ 0, e→ 0, ξ0 →∞, aξ0 → R

Disc : a→ R, e→ 1, ξ0 → 0, (3.5)

where R is the radius of the sphere or disc. One might ask why one bothers to
introduce a parameter such as ξ0. As will be detailed later, it turns out that
in the oblate spheroidal coordinate system (ξ, η, φ) which will be used here,
surfaces of constant ξ = ξ0 are oblate spheroids with a ξ0 of this value.

Figure 3.1 illustrates a vertical section through the center of an oblate
spheroid, and some relationships between the parameters. Here another feature
is also introduced, namely truncation by a substrate surface placed at z = d.
Characterizing this island truncation requires an additional third parameter
called the truncation ratio, given by

tr ≡
d

R⊥
=

d

aξ0
, (3.6)

where one has 0 ≤ tr ≤ 1 when the center is above the substrate and −1 ≤
tr ≤ 0 when the center is below the substrate.

3.2. Concentric spheroids

When the aim is to calculate the properties of spheroidal nanoparticles with
one or more coating layers, a question arises about what constraints one should
put on the shapes of these concentric spheroids. Lets say that one is free to
specify any spheroid as the outermost interface. May the interface between the
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z = d

a−a

2R‖ = 2a
√
ξ2

0 + 1

2R⊥ = 2aξ0
x

z

ξ = ξ0

1

2

3

4

Figure 3.1.: Illustration of a vertical section through the center of an oblate
spheroid, also specifying a right handed Cartesian coordinate sys-
tem. Here the substrate surface is also indicated, placed in the
plane z = d. Note that if the origin (and center of the spheroid)
was below the substrate surface, the parameter d would be nega-
tive. The media in this example are labelled 1 through 4 for later
reference.

first coating and the next be any spheroid as long as it is contained within the
outer interface? It turns out that one constraint simplifies the mathematics of
satisfying the boundary conditions between different media considerably. As
will be shown in the next section, making all the spheroidal interfaces have the
same focal radius a will ensure that all of them are surfaces of constant ξ in
the same spheroidal coordinate system. An example of such a set of concentric
spheroids may be seen in Fig. 3.2. The spheroidal interfaces are numbered as
indicated, with the outermost always being the first one. Generally each of
the interfaces has a number s = 1, .., S, where S ≥ 1 is the total number of
spheroidal interfaces. The number of coating layers on the inner particles is
thus S − 1. The media around a spheroidal interface are labelled as shown
in Fig. 3.3. Interface s separates medium 2s − 1 from medium 2s + 1 above
the substrate surface, and 2s from 2s + 2 below the substrate surface. Each
interface has its own parameters, like the radii R‖,s and R⊥,s, though as men-
tioned always within the constraint that they all have the same focal radius
a. To completely specify the geometry one might do the following: Give the
horizontal and vertical radii of the outermost surface, R‖,1 and R⊥,1. Based
on this one can calculate the focal radius a through Eq. 3.2. One must also
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z = d

1
2
3

z x

Figure 3.2.: An example case of concentric spheroids with S = 3. All of the
spheroids have the same focal ring, indicated here by the black
dots on the x-axis. In this case all spheroids are truncated, so
there are 2S+2 different media present. In this example the outer
spheroid has a flattening parameter ξ0 equal to one.

specify the truncation ratio of the outer interface (t
(1)
r ), as defined in Eq. 3.6.

Because of the constraint of having a common focal ring, each of the inner
interfaces s > 1 may now be specified by a single parameter. This parameter
might be a radius ratio, given by

χs ≡
R⊥,s
R⊥,1

< 1. (3.7)

Other parameters of interface s may then be calculated at will:

R⊥,s = χsR⊥,1 (3.8)

R‖,s =
√
a2 + χ2

sR
2
⊥,1 =

√
R2
‖,1 − (1− χ2

s)R
2
⊥,1 (3.9)

t(s)r =
t
(1)
r

χs
(3.10)

ξ0,s = χsξ0,1 = χs
R⊥,1√

R2
‖,1 −R

2
⊥,1

. (3.11)

The number of different media (N) depends on the truncation ratios, consid-
ering that the substrate potentially separates the spheroids in two. Without
considering truncation, there are S + 2 media: One for each interface, in ad-
dition to the ambient and the substrate. When letting the substrate surface
enter the island, one gets an additional medium for each spheroidal interface

where |t(s)r | < 1, i.e. where χs > |t(1)
r |. This means that generally the number

of media N satisfies
S + 2 ≤ N ≤ 2S + 2. (3.12)

18



s

2s− 1
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R‖,s

R⊥,s

Figure 3.3.: Illustration of how the numbering of media relates to the number-
ing of their separating spheroidal interface.

Figure 3.2 illustrates a case where N = 2S + 2.

3.3. Oblate spheroidal coordinate system

When solving differential equations with boundary conditions on spheroids, as
will be the case here, it can be helpful to use a spheroidal coordinate system.
One such oblate spheroidal coordinate system has variables (ξ, η, φ) which map
to the Cartesian coordinates (x, y, z) as [17]

x = a
[
(1 + ξ2)(1− η2)

]1/2
cosφ

y = a
[
(1 + ξ2)(1− η2)

]1/2
sinφ

z = aξη. (3.13)

The inverse of this transformation is [17]

ξ =

[(
ρ1 + ρ2

2a

)2

− 1

]1/2

, (3.14)

η = ±

[
1−

(
ρ1 − ρ2

2a

)2
]1/2

, (3.15)

φ = arctan
(y
x

)
, (3.16)

where ρ1 and ρ2 are given by

ρ1 ≡
√
z2 + (x+ a cosφ)2 + (y + a sinφ)2

ρ2 ≡
√
z2 + (x− a cosφ)2 + (y − sinφ)2. (3.17)
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ξ = 0.5

ξ = 1

ξ = 1.5

η = −1.0

η = −0.5

η = −0.75

η = 0.0

η = 0.5

η = 0.75

η = 1.0

z
x

Figure 3.4.: Illustration of an oblate spheroidal coordinate system with the
focal point parameter a = 1. The azimuth angle φ is simply kept
at zero, although a figure with constant φ would be identical at any
value because of symmetry. The surfaces of constant ξ form oblate
spheroids all with the same focal ring of radius a. The surfaces of
constant η form halves of two-sheet hyperboloids. Note how the
lines of constant ξ are always perpendicular to the lines of constant
η, making it an orthogonal coordinate system.

See Fig. 3.4 for an illustration of this coordinate system. The positive sign
in Eq.(3.15) should be used if z > 0 and the negative sign if z < 0. The
spheroidal coordinates have the following domain:

0 ≤ ξ <∞
−1 ≤ η ≤ 1

0 ≤ φ < 2π. (3.18)

The value of a is a parameter of this coordinate system. As mentioned,
surfaces of constant ξ are spheroids, and all of them share the same focal ring
of radius a. Spheroids of with a different focal ring will not be of constant ξ
in this coordinate system. They will be surfaces of constant ξ in a new system
with the the parameter a set to its radius of focus however.

An important property of a coordinate transformation is how an infinitesimal
distance ds2 depends on infinitesimal changes in the new coordinates. This can
be expressed in terms of the metric tensor as follows:

ds2 = gξξdξ
2 + gηηdη

2 + gφφdφ2, (3.19)
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where the diagonal elements of the metric tensor are found to be [26]

gξξ = h2
ξ =

(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

+

(
∂z

∂ξ

)2

= a2 ξ
2 + η2

1 + ξ2
(3.20)

gηη = h2
η =

(
∂x

∂η

)2

+

(
∂y

∂η

)2

+

(
∂z

∂η

)2

= a2 ξ
2 + η2

1− η2
(3.21)

gφφ = h2
φ =

(
∂x

∂φ

)2

+

(
∂y

∂φ

)2

+

(
∂z

∂φ

)2

= a2
(
1 + ξ2

) (
1− η2

)
. (3.22)

Here hqi is the scale factor of coordinate qi. All off-diagonal entries of the
metric tensor are zero, since the spheroidal coordinates are orthogonal.

In the upcoming derivations it will be necessary to specify the positions of the
boundaries between the media in the new set of coordinates. The boundaries
seen in Fig. 3.1 are given by [17]

Ω1,3 : ξ = ξ0, −1 ≤ η ≤ tr
Ω2,4 : ξ = ξ0, tr ≤ η ≤ 1

Ω1,2 : η =
ξ0tr
ξ
, ξ0 ≤ ξ ≤ ∞

Ω3,4 : η =
ξ0tr
ξ
, ξ0|tr| ≤ ξ ≤ ξ0, (3.23)

where Ωi,j is the boundary between medium i and medium j.

Expressing the normal derivative of the substrate surface in the new coor-
dinates will also be needed. Given that the z-axis is by definition normal to
the substrate surface, this derivative is simply the derivative with respect to
z, which can be found to be:

∂

∂z
=
∂ξ

∂z

∂

∂ξ
+
∂η

∂z

∂

∂η
+
∂φ

∂z

∂

∂φ

=
η

a

(
1 + ξ2

ξ2 + η2

)
∂

∂ξ
+
ξ

a

(
1− η2

ξ2 + η2

)
∂

∂η
. (3.24)

More than one spheroidal coordinate system will be used in the upcoming
derivations, but they will all have a common z-axis, orientation and parameter
a. In other words they are identical except for having their origins displaced
a distance ∆z along the z-axis. This means that the coordinate z′ in the
displaced system is given by z′ = z−∆z, while x′ = x and y′ = y. The question
is how the spheroidal coordinates in such a displaced coordinate system will
relate to the spheroidal coordinates in the main coordinate system. Since they
have equal z-axes and orientations, φ′ is simply equal to φ. The relations for
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the other two parameters are more complicated though, and are given by [17]

ξ′[∆z, a](ξ, η) =
ξ√
2

{
1 +

(
∆z

aξ

)2

− 2
∆z

aξ
η − η2

ξ2

+

(1 +

(
∆z

aξ

)2

− 2
∆z

aξ
η − η2

ξ2

)2

+
4

ξ2

(
∆z

aξ
− η
)2
1/2}1/2

,

(3.25)

and

η′[∆z, a](ξ, η) =
√

2

(
η − ∆z

aξ

){
1 +

(
∆z

aξ

)2

− 2
∆z

aξ
η − η2

ξ2

+

(1 +

(
∆z

aξ

)2

− 2
∆z

aξ
η − η2

ξ2

)2

+
4

ξ2

(
∆z

aξ
− η
)2
1/2}−1/2

.

(3.26)

3.4. Finding the polarizabilities

If the sizes of the islands are small compared to the wavelength of the incident
radiation, one may neglect retardation effects. This allows one to work in the
quasi-static limit when calculating the polarizabilities of the film, i.e. one can
use the Laplace equation as a starting point [17]:

∇2ψ(r) = 0, (3.27)

where ψ is the electrostatic potential, which is related to the electrostatic field
E by

E(r) = −∇ψ(r). (3.28)

The Laplace equation (3.27) will need to be solved for a system such as the
one shown in Fig. 3.2 in the case of an externally applied homogeneous electric
field. At the boundaries between the different materials, care must be taken
to satisfy the boundary conditions implied by Maxwell’s equations (2.1) in the
electrostatic limit. These can be formulated as

ψi(r) = ψj(r) (3.29a)

εi(ω)∂nψi(r) = εj(ω)∂nψj(r) (3.29b)

∀ r ∈ ∂Ωij ,
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where ψk is the electrostatic potential for region k, εk is the complex dielectric
function of region k, ∂Ωij is the boundary between medium i and medium j,
and ∂n is the normal derivative at this boundary. Equation (3.29) should be
made valid at all the boundaries between different homogeneous media.

3.4.1. General solution of Laplace’s equation

It turns out that Laplace’s equation (3.27) is separable in the spheroidal coor-
dinates described in Sec. 3.3, giving two kinds of general solutions [17]:

Pm` (iξ)Y m
` (arccos η, φ) (3.30)

and

Qm` (iξ)Y m
` (arccos η, φ), (3.31)

where in both cases ` and m can attain the following values:

` = 0, 1, 2, ...

m = 0,±1,±2, ...± `. (3.32)

The functions Pm` are associated Legendre functions of the first kind, of
degree ` and order m, and are given by [17]

Pm` (z) ≡ (1− z2)m/2

2``!

(
d

dz

)`+m
(z2 − 1)` (3.33)

for m ≥ 0, and

Pm` (z) = (−1)m
(`+m)!

(`−m)!
P−m` (z) (3.34)

for m < 0. These functions have the following symmetry property:

Pm` (−z) = (−1)`+mPm` (z). (3.35)

Along the imaginary axis one has

Pm` (iξ) = (−1)mi`+m
(
1 + ξ2

)m/2
2``!

(
d

dξ

)`+m (
ξ2 + 1

)`
. (3.36)

The functions Qm` are associated Legendre functions of the second kind, of
degree ` and order m, and are along the imaginary axis given by [17]

Qm` (iξ) = (−1)m+1i`+1

(
1 + ξ2

)m/2
2``!

(
d

dξ

)m
{

2

(
d

dξ

)`
arctan

(
1

ξ

)
(1 + ξ2)` − arctan

(
1

ξ

)(
d

dξ

)`
(1 + ξ2)`

}
(3.37)
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for m ≤ 0, and

Qm` (iξ) =
(`+m)!

(`−m)!
Q−m` (iξ) (3.38)

for m < 0. The functions Qm` will not be needed outside the imaginary axis
here.

The functions Y m
` are the spherical harmonics, given by [17]

Y m
` (arccos η, φ) ≡

[
2`+ 1

4π

(`−m)!

(`+m)!

]1/2

Pm` (η)(−1)meimφ (3.39)

Using Eq. (3.35) they can be shown to have the following symmetry property
for the coordinate η:

Y m
` (arccos[−η], φ) = (−1)`+mY m

` (arccos η, φ) (3.40)

The spherical harmonics Y m
` form an orthonormal set [17], such that∫ 1

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ Y m′
`′ (arccos η, φ) = δ``′δmm′ (3.41)

where δij is the Kronecker delta. It will also often be used that∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ Y m′
`′ (arccos η′, φ) = δmm′ζm``′P

m
` (η)Pm

′
`′ (η′), (3.42)

which follows from the orthogonality relation∫ 2π

0
dφ ei(m

′−m)φ = 2πδm′m. (3.43)

The quantity ζm``′ is defined by:

ζm``′ ≡
1

2

√
(2`+ 1)(2`′ + 1)(`−m)!(`′ −m)!

(`+m)!(`′ +m)!
. (3.44)

The prime on η′ indicates that it may belong to a different spheroidal coordi-
nate system than η.

For convenience the following two functions will be introduced as part of the
general solutions:

Xm
` (ξ, a) ≡ im−` (`−m)!

(2`− 1)!!
a`Pm` (iξ) (3.45)

and

Zm` (ξ, a) ≡ i`+1 (2`+ 1)!!

(`+m)!
a−`−1Qm` (iξ), (3.46)
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where (n)!! is the double factorial given by

(n)!! =


1 · 3 · 5 · ... · (n− 2) · n odd n > 0

2 · 4 · 6 · ... · (n− 2) · n even n > 0

1 n = −1, 0

. (3.47)

By inspecting Eqs. (3.36) and (3.37) one can see that Xm
` and Zm` will always

be real. There are many ways to define functions of Pm` and Qm` which are
guaranteed to be real however, so why exactly these definitions? It turns out
that in the spherical limit (ξ →∞, a→ 0, aξ → r), the asymptotic behaviors
of Xm

` (ξ, a) and Zm` (ξ, a) are [17]

Xm
` (ξ, a) ' r`

Zm` (ξ, a) ' r−`−1, (3.48)

which can be recognized as the radial parts of a spherical multipole expan-
sion [17]. Using these functions Xm

` and Zm` as the “radial” (ξ dependent) part
of the spheroidal multipole expansion thus allows similar interpretation of the
multipole coefficients as in the spherical case, without needing to convert via
some ` and m dependent factor.

Solutions of the first kind (3.30), on the form of Xm
` (ξ, a)Y m

` (arccos η, φ),
satisfy the Laplace equation (3.27) everywhere, but do not approach zero as
ξ → ∞. These kinds of solutions may then not be used to represent the
potential in media where ξ is limitless, i.e. in the ambient or the substrate.
Solutions of the second kind (3.31), on the form of Zm` (ξ, a)Y m

` (arccos η, φ),
reach zero as ξ → ∞, but satisfy the Laplace equation only for ξ > 0 [17].
These kinds of solutions may then not be used to represent the potential in
media containing the origin of the coordinate system used.

The question now is how one should proceed to use these general solutions
to construct a correct solution for the problem at hand. The Laplace equa-
tion (3.27) is linear and homogeneous, and thus any linear combination of
the terms in Eqs. (3.30) and (3.31) are also guaranteed to be solutions. The
potential in each homogeneous region may then be represented as a linear com-
bination of all possible general solution terms. The task is then to figure out
what the coefficients in the linear combinations need to be in order to satisfy
the boundary conditions (3.29) at all boundaries between the regions. For
the potential representing the polarization response of the island one would
also require that it is finite everywhere, as well as approaching zero as one
moves infinitely far away from the island. The only potentials allowed to be
nonzero far away from the island are the ones representing the incoming and
transmitted homogeneous electric fields.

A linear combination of the general solutions in Eqs. (3.30) and (3.31) is
called a spheroidal multipole expansion [17], which is said to have its source at
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the origin of the coordinate system used in this particular expansion. Such a
source will be called a spheroidal multipole. Two such multipoles will be used
to represent the response of the system, both restricted to be placed along the
z-axis: One is placed somewhere inside the island, and represents the potential
due to its induced charge distribution. This multipole is labelled µ. The other
is placed at the mirror point of the first one across the substrate surface, and
represents the image charge distribution induced in the substrate below the
island. This multipole is labelled µ̄. In terms of the main coordinate system
with its origin at the center of the spheroidal island, multipole µ is located at

Pµ = (0, 0, µz). (3.49)

The second multipole must then be located at

Pµ̄ = (0, 0, µ̄z) = (0, 0, 2d− µz), (3.50)

which is valid for both positive and negative µz. Each multipole will have its

z = d

x

z

P

µ

µ̄

(ξ
, η
, φ

)(ξµ
, ηµ

, φµ
)

(ξ
µ̄
, η
µ̄
, φ
µ̄
)

Figure 3.5.: Illustration of the three coordinate systems used, indicating the
different sets of coordinates used to represent the same point P .
The main coordinate system (ξ, η, φ) has its origin at the center
of the spheroids. A different coordinate system µ (ξµ, ηµ, φ) has
its origin at z = µz, which is the position of the multipole in the
island. Equidistant from the substrate surface is another coordi-
nate system µ̄ (ξµ̄, ηµ̄, φµ̄) with its origin at z = 2d− µz, which is
the position of the image multipole. Note that because all three
coordinate systems share the same z-axis, φµ̄ = φµ = φ.

own spheroidal coordinate system with the same label. For an illustration of
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the three coordinate systems, see Fig. 3.5. As shown, the same point P will
of course be specified by different values for the coordinates depending on the
coordinate system. In the main coordinate system it is specified by (ξ, η, φ), in
the µ coordinate system it is specified by (ξµ, ηµ, φµ), while in the µ̄ coordinate
system it is specified by (ξµ̄, ηµ̄, φµ̄). All three coordinate systems share the
same parameter a. The different coordinates for the same point are related in
the following way:

ξµ = ξ′[∆z = µz, a](ξ, η)

ξµ̄ = ξ′[∆z = 2d− µz, a](ξ, η)

ηµ = η′[∆z = µz, a](ξ, η)

ηµ̄ = η′[∆z = 2d− µz, a](ξ, η)

φµ = φµ̄ = φ (3.51)

where ξ′[∆z, a](ξ, η) and η′[∆z, a](ξ, η) are given by Eqs. (3.25) and (3.26).

In some cases intermediate results will be derived generally for both µ and
µ̄. In these cases the symbol κ will be used as a generic placeholder, which
should be replaced by either µ or µ̄ when applying the expressions.

A general solution of Laplace’s equation (3.27) in any region i above the
substrate surface may now be written as

ψi(r) = ψ
(i)
0

+
′∑
`m

[
A

(i)
`mZ

m
` (ξµ, a) +B

(i)
`mX

m
` (ξµ, a)

]
Y m
` (arccos ηµ, φµ)

+
′∑
`m

[
Ā

(i)
`mZ

m
` (ξµ̄, a) + B̄

(i)
`mX

m
` (ξµ̄, a)

]
Y m
` (arccos ηµ̄, φµ̄)

+ δi,1ψinc(ξ, η, φ), (3.52)

where i must be odd, according to the numbering convention illustrated in
Fig. 3.3. The prime on top of the summations denotes the exclusion of the
` = 0 term in the sum. This may be done because the total charge of the
system is assumed to be zero [17]. Besides this, ` and m in the summations
follow the rules of Eq. (3.32), such that they in principle go to infinite `. This
solution is a linear combination of multipole terms from both multipole µ and

multipole µ̄, with unknown coefficients A
(i)
`m, B

(i)
`m, Ā

(i)
`m and B̄

(i)
`m. It also adds

the potential corresponding to the applied homogeneous electric field (ψinc) in
the case when i = 1, i.e. when ψi is the potential in the ambient outside the
island.

A general solution of Laplace’s equation (3.27) in any region i+ 1 below the
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substrate surface may now be written as

ψi+1(r) = ψ
(i+1)
0

+
′∑
`m

[
A

(i+1)
`m Zm` (ξµ, a) +B

(i+1)
`m Xm

` (ξµ, a)
]
Y m
` (arccos ηµ, φµ)

+ δi,1ψtr(ξ, η, φ). (3.53)

This solution is a linear combination of multipole terms from multipole µ

only, with unknown coefficients A
(i+1)
`m and B

(i+1)
`m . It also adds the potential

corresponding to the transmitted homogeneous electric field (ψtr) in the case
when i = 1, i.e. when ψi+1 is the potential in the substrate outside the island.
Multipole µ̄ is not a part of this solution, as by the principles of the image
method [27], virtual image charges should not be used to represent the potential
in the region where these image charges are located. In both Eqs. (3.52)
and (3.53), be aware of the fact that the variables may belong to different
coordinate systems, depending on the subscript or lack thereof.

If the form of the general solutions in Eqs. (3.52) and (3.53) seem somewhat
unjustified and arbitrary, note the following: The goal is to find functions
which are solutions to Laplace’s equation (3.27) in all regions of the geometry,
while satisfying the necessary boundary conditions (3.29) at all interfaces. The
uniqueness theorem [27] guarantees that there is only one unique function
which satisfy these requirements. Therefore, if one by some trick or clever guess
is able to discover such a function, it must be the correct solution. Hence, the
form of the general solutions here do not really have to be justified. If they were
missing some crucial term, one would not end up with an incorrect solution,
one would simply not be able to satisfy all the boundary conditions.

The multipoles µ and µ̄ could in principle be placed anywhere, but constrain-
ing them as done here might make the solution converge at lower multipole
orders. Within the z-axis constraint, some positions might also give better
convergence than others. Requiring µ̄ to be at the mirror point of µ makes it
especially simple to satisfy the boundary conditions at the substrate surface,
as will be shown in the next section.

3.4.2. Boundary conditions at the substrate surface

First one can attempt to satisfy the boundary conditions (3.29) at the flat
z = d boundaries between mediums i and i + 1 (i odd). The potentials ψinc

and ψtr should alone satisfy these conditions by definition, and thus they might
be eliminated immediately. For all points on the plane equidistant from the
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coordinate systems µ and µ̄ (the substrate surface), we have the relations

ξµ̄ = ξµ

ηµ̄ =− ηµ
φµ̄ = φµ

when z = d. (3.54)

Using Eqs. (3.40), (3.54), and the linear independence of the general solution
terms in Eqs. (3.52) and (3.53), satisfying the boundary condition in (3.29a)
leads to the following relations:

ψ
(i+1)
0 = ψ

(i)
0

A
(i+1)
`m = A

(i)
`m + (−1)`+mĀ

(i)
`m

B
(i+1)
`m = B

(i)
`m + (−1)`+mB̄

(i)
`m. (3.55)

Another set of relations between the coefficients can be found by satisfying
the boundary condition in (3.29b). Using Eqs. (3.24), (3.40) and (3.54) one
finds that

∂

∂z
[Zm` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄)]|z=d

= (−1)(−1)`+m
∂

∂z
[Zm` (ξµ, a)Y m

` (arccos ηµ, φµ)]|z=d
∂

∂z
[Xm

` (ξµ̄, a)Y m
` (arccos ηµ̄, φµ̄)]|z=d

= (−1)(−1)`+m
∂

∂z
[Xm

` (ξµ, a)Y m
` (arccos ηµ, φµ)]|z=d . (3.56)

Combining Eq. (3.56) with the linear independence of terms appearing in
Eqs. (3.52) and (3.53), one finds the addition set of relations to be

εi+1A
(i+1)
`m = εiA

(i)
`m − (−1)`+mεiĀ

(i)
`m,

εi+1B
(i+1)
`m = εiB

(i)
`m − (−1)`+mεiB̄

(i)
`m. (3.57)

Equations (3.55) and (3.57) may now be combined into the following relations

Ā
(i)
`m = (−1)`+m

εi − εi+1

εi + εi+1
A

(i)
`m,

A
(i+1)
`m =

2εi
εi + εi+1

A
(i)
`m,

B̄
(i)
`m = (−1)`+m

εi − εi+1

εi + εi+1
B

(i)
`m,

B
(i+1)
`m =

2εi
εi + εi+1

B
(i)
`m, (3.58)
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thus reducing the unknown coefficients to only A
(i)
`m and B

(i)
`m, with only odd

i. Beware that these relations, and the relation from the top of Eq. (3.55)

(ψ
(i+1)
0 = ψ

(i)
0 ), may only be used when i and i+ 1 refer to neighboring media

separated by the flat substrate surface. In other words they only apply when i
is odd, according to the numbering convention for media introduced in Sec. 3.2.
The general solutions in Eqs. (3.52) and (3.53) may now be rewritten in terms
of only the remaining unknown coefficients:

ψi(r) = ψ
(i)
0

+

′∑
`m

A
(i)
`m

[
Zm` (ξµ, a)Y m

` (arccos ηµ, φµ)

+ (−1)`+mRiZm` (ξµ̄, a)Y m
` (arccos ηµ̄, φµ̄)

]
+

′∑
`m

B
(i)
`m

[
Xm
` (ξµ, a)Y m

` (arccos ηµ, φµ)

+ (−1)`+mRiXm
` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄)
]

+ δi,1ψinc(ξ, η, φ), (3.59)

and

ψi+1(r) = ψ
(i+1)
0

+ Ti
′∑
`m

[
A

(i)
`mZ

m
` (ξµ, a) +B

(i)
`mX

m
` (ξµ, a)

]
Y m
` (arccos ηµ, φµ)

+ δi,1ψtr(ξ, η, φ), (3.60)

where

Ri ≡
εi − εi+1

εi + εi+1
, (3.61)

and

Ti ≡
2εi

εi + εi+1
. (3.62)

3.4.3. Boundary conditions at the spheroidal interfaces

What remains now is to find the coefficients A
(i)
`m and B

(i)
`m which make the gen-

eral solutions in Eqs. (3.59) and (3.60) satisfy the boundary conditions (3.29)
at every spheroidal interface s = 1, ..., S.

While the boundary conditions should in principle be satisfied at every single
point on the spheroids, one may instead try to impose the weak formulation of
these conditions [17]. This implies not strictly demanding that the boundary
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conditions in Eq. (3.29) are satisfied everywhere at the boundaries, but instead
demanding that integrals of these conditions multiplied by a test function are
satisfied. The integrals are made across the entire spheroidal interface, but
will have to be separated into parts above and below the substrate surface:∫

©s

=

∫
⋂

s

+

∫
⋃

s

, (3.63)

where©s indicates integration over the entire spheroidal interface s, while
⋂
s

and
⋃
s are its parts above and below the substrate surface respectively.

The test functions for this weak formulation will be the complex conjugated
spherical harmonics Y m

` (arccos η, φ)∗ centered at the origin of the main coor-
dinate system. The conditions should be satisfied for all spherical harmonics,
with ` and m obeying the rules in Eq. (3.32). The integrals used in this weak
formulation will be ∫

©s

=

∫ 1

−1
dη

∫ 2π

0
dφ

∫
⋂

s

=

∫ t
(s)
r

−1
dη

∫ 2π

0
dφ∫

⋃
s

=

∫ 1

t
(s)
r

dη

∫ 2π

0
dφ, (3.64)

which allows the convenient use of the orthonormal property of the test func-
tions, as seen in Eq. (3.41), and the relation displayed in Eq. (3.42). The limits
of integration for the last two integrals were found using Eq. (3.23).

First boundary condition

The weak formulation of the boundary condition in Eq. (3.29a) may be written
as ∫ t

(s)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ (ψ2s−1 − ψ2s+1)|ξ=ξ0

+

∫ 1

t
(s)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ (ψ2s − ψ2s+2)|ξ=ξ0 = 0

∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, ...; m = 0,±1,±2, ...,±`. (3.65)

For convenience, dimensionless versions of the functions X and Z are defined,
identified by the lack of the parameter a in their parameter list:

Xm
` (ξ) ≡ Xm

` (ξ, a)a−`, (3.66)
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Zm` (ξ) ≡ Zm` (ξ, a)a`+1. (3.67)

These functions are part of the definitions of two classes of integrals V and W ,
which are given by

V m
``′ [κz, ξ](η1, η2) ≡

∫ η2

η1

dηPm` (η)Pm`′ (ηκ(ξ, η))Zm`′ (ξκ(ξ, η)), (3.68)

and

Wm
``′ [κz, ξ](η1, η2) ≡

∫ η2

η1

dηPm` (η)Pm`′ (ηκ(ξ, η))Xm
`′ (ξκ(ξ, η)). (3.69)

Here κ is used as a placeholder for either µ or µ̄, indicating the replacement
of the coordinates (ξκ, ηκ) with either (ξµ, ηµ) or (ξµ̄, ηµ̄).

Using Eqs. (3.66) – (3.69) and (3.42), it may now be shown that

∫ η2

η1

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ Zm
′

`′ (ξκ, a)Y m′
`′ (arccos ηκ, φκ)

∣∣∣
ξ=ξ0,s

= δmm′ζm``′a
−`′−1V m

``′ [κz, ξ0,s](η1, η2), (3.70)

and

∫ η2

η1

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗Xm′
`′ (ξκ, a)Y m′

`′ (arccos ηκ, φκ)
∣∣∣
ξ=ξ0,s

= δmm′ζm``′a
`′Wm

``′ [κz, ξ0,s](η1, η2). (3.71)

Also, since 1 = 2
√
πY 0

0 , one may by using the orthonormality of spherical
harmonics (3.41) show that:

∫ 1

−1
dη

∫ 2π

0
dφ [Y m

` ( η, φ)]∗ψ
(2s−1)
0 = 2

√
πψ

(2s−1)
0 δ`0δm0 (3.72)

Inserting the general solutions in Eqs. (3.59) and (3.60) into the left side
of the weak formulation of the boundary condition (3.65), while using the
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relations in Eqs. (3.70), (3.71) and (3.72), leads to the following equation:∫ t
(s)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ (ψ2s−1 − ψ2s+1)|ξ=ξ0

+

∫ 1

t
(s)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ (ψ2s − ψ2s+2)|ξ=ξ0

= 2
√
π
[
ψ

(2s−1)
0 − ψ(2s+1)

0

]
δ`0δm0

+
′∑

`′m′

A
(2s−1)
`′m′ δmm′ζm``′a

−`′−1
[
V m
``′ [µz, ξ0,s](−1, t(s)r )

+ (−1)`
′+mR2s−1V

m
``′ [µ̄z, ξ0,s](−1, t(s)r ) + T2s−1V

m
``′ [µz, ξ0,s](t

(s)
r , 1)

]
−

′∑
`′m′

A
(2s+1)
`′m′ δmm′ζm``′a

−`′−1
[
V m
``′ [µz, ξ0,s](−1, t(s)r )

+ (−1)`
′+mR2s+1V

m
``′ [µ̄z, ξ0,s](−1, t(s)r ) + T2s+1V

m
``′ [µz, ξ0,s](t

(s)
r , 1)

]
+

′∑
`′m′

B
(2s−1)
`′m′ δmm′ζm``′a

`′
[
Wm
``′ [µz, ξ0,s](−1, t(s)r )

+ (−1)`
′+mR2s−1W

m
``′ [µ̄z, ξ0,s](−1, t(s)r ) + T2s−1W

m
``′ [µz, ξ0,s](t

(s)
r , 1)

]
−

′∑
`′m′

B
(2s+1)
`′m′ δmm′ζm``′a

`′
[
Wm
``′ [µz, ξ0,s](−1, t(s)r )

+ (−1)`
′+mR2s+1W

m
``′ [µ̄z, ξ0,s](−1, t(s)r ) + T2s+1W

m
``′ [µz, ξ0,s](t

(s)
r , 1)

]
+ δs1

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψinc(ξ, η, φ)|ξ=ξ0,1

+ δs1

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψtr(ξ, η, φ)|ξ=ξ0,1 .

(3.73)

By introducing shorthands I and K:

Im(i)
``′ (tr, ξ0) ≡ ξ`

′+1
0

{
V m
``′ [µz, ξ0](−1, tr) + (−1)`

′+mRiV m
``′ [µ̄z, ξ0](−1, tr)

+ TiV m
``′ [µz, ξ0](tr, 1)

}
= ξ`

′+1
0 Ri

[
− V m

``′ [µz, ξ0](−1, tr) + (−1)`
′+mV m

``′ [µ̄z, ξ0](−1, tr)

+
2εi

εi − εi+1
V m
``′ [µz, ξ0](−1, 1)

]
, (3.74)
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Km(i)
``′ (tr, ξ0) ≡ ξ−`

′

0

{
Wm
``′ [µz, ξ0](−1, tr) + (−1)`

′+mRiWm
``′ [µ̄z, ξ0](−1, tr)

+ TiWm
``′ [µz, ξ0](tr, 1)

}
= ξ−`

′

0 Ri
[
−Wm

``′ [µz, ξ0](−1, tr) + (−1)`
′+mWm

``′ [µ̄z, ξ0](−1, tr)

+
2εi

εi − εi+1
Wm
``′ [µz, ξ0](−1, 1)

]
, (3.75)

where it in the second step has been used that 1 − Ti = −Ri. The weak
formulation of the boundary condition (3.65) may now be written as

2
√
π
[
ψ

(2s−1)
0 − ψ(2s+1)

0

]
δ`0δm0

+
′∑

`′=|m|

ζm``′R
−`′−1
⊥,s

[
Im(2s−1)
``′ (t(s)r , ξ0,s)A

(2s−1)
`′m − Im(2s+1)

``′ (t(s)r , ξ0,s)A
(2s+1)
`′m

]

+

′∑
`′=|m|

ζm``′R
`′
⊥,s

[
Km(2s−1)
``′ (t(s)r , ξ0,s)B

(2s−1)
`′m −Km(2s+1)

``′ (t(s)r , ξ0,s)B
(2s+1)
`′m

]

+ δs1

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψinc(ξ, η, φ)|ξ=ξ0,1

+ δs1

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψtr(ξ, η, φ)|ξ=ξ0,1 = 0

∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, ...; m = 0,±1,±2, ...,±`. (3.76)

Thus the first boundary condition (3.29a), in the weak formulation, has been

reduced to a set of linear equations for the unknown multipole coefficients A
(i)
`m

and B
(i)
`m (odd i).

Second boundary condition

Similarly, the weak formulation of the boundary condition in Eq. (3.29b) may
be written as:

∫ t
(s)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
[
∂

∂ξ
(ε2s−1ψ2s−1 − ε2s+1ψ2s+1)

]∣∣∣∣
ξ=ξ0

+

∫ 1

t
(s)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
[
∂

∂ξ
(ε2sψ2s − ε2s+2ψ2s+2)

]∣∣∣∣
ξ=ξ0

= 0

∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, ...; m = 0,±1,±2, ...,±`. (3.77)
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Using Eqs. (3.66) – (3.69) and (3.42), it may be shown that

∫ η2

η1

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
Zm

′
`′ (ξκ, a)Y m′

`′ (arccos ηκ, φκ)
}∣∣∣∣
ξ=ξ0,s

= δmm′ζm``′a
−`′−1 ∂

∂ξ

{
V m
``′ [κz, ξ0,s](η1, η2)

}∣∣∣
ξ=ξ0,s

,

(3.78)

and

∫ η2

η1

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
Xm′
`′ (ξκ, a)Y m′

`′ (arccos ηκ, φκ)
}∣∣∣∣
ξ=ξ0,s

= δmm′ζm``′a
`′ ∂

∂ξ

{
Wm
``′ [κz, ξ0,s](η1, η2)

}∣∣∣
ξ=ξ0,s

.

(3.79)

Inserting the general solutions in Eqs. (3.59) and (3.60) into the left side of the
weak formulation of the boundary condition (3.77), while using the relations
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in Eqs. (3.78) and (3.79), leads to the following equation:

∫ t
(s)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
[
∂

∂ξ
(ε2s−1ψ2s−1 − ε2s+1ψ2s+1)

]∣∣∣∣
ξ=ξ0

+

∫ 1

t
(s)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
[
∂

∂ξ
(ε2sψ2s − ε2s+2ψ2s+2)

]∣∣∣∣
ξ=ξ0

=
′∑

`′m′

A
(2s−1)
`′m′ δmm′ζm``′a

−`′−1
[
ε2s−1

∂

∂ξ

{
V m
``′ [µz, ξ](−1, t(s)r )

}∣∣∣
ξ=ξ0,s

+ ε2s−1(−1)`
′+mR2s−1

∂

∂ξ

{
V m
``′ [µ̄z, ξ](−1, t(s)r )

}∣∣∣
ξ=ξ0,s

+ ε2sT2s−1
∂

∂ξ

{
V m
``′ [µz, ξ](t

(s)
r , 1)

}∣∣∣
ξ=ξ0,s

]
−

′∑
`′m′

A
(2s+1)
`′m′ δmm′ζm``′a

−`′−1
[
ε2s+1

∂

∂ξ

{
V m
``′ [µz, ξ](−1, t(s)r )

}∣∣∣
ξ=ξ0,s

+ ε2s+1(−1)`
′+mR2s+1

∂

∂ξ

{
V m
``′ [µ̄z, ξ](−1, t(s)r )

}∣∣∣
ξ=ξ0,s

+ ε2s+2T2s+1
∂

∂ξ

{
V m
``′ [µz, ξ](t

(s)
r , 1)

}∣∣∣
ξ=ξ0,s

]
+

′∑
`′m′

B
(2s−1)
`′m′ δmm′ζm``′a

`′
[
ε2s−1

∂

∂ξ

{
Wm
``′ [µz, ξ](−1, t(s)r )

}∣∣∣
ξ=ξ0,s

+ ε2s−1(−1)`
′+mR2s−1

∂

∂ξ

{
Wm
``′ [µ̄z, ξ](−1, t(s)r )

}∣∣∣
ξ=ξ0,s

+ ε2sT2s−1
∂

∂ξ

{
Wm
``′ [µz, ξ](t

(s)
r , 1)

}∣∣∣
ξ=ξ0,s

]
−

′∑
`′m′

B
(2s+1)
`′m′ δmm′ζm``′a

`′
[
ε2s+1

∂

∂ξ

{
Wm
``′ [µz, ξ](−1, t(s)r )

}∣∣∣
ξ=ξ0,s

+ ε2s+1(−1)`
′+mR2s+1

∂

∂ξ

{
Wm
``′ [µ̄z, ξ](−1, t(s)r )

}∣∣∣
ξ=ξ0,s

+ ε2s+2T2s+1
∂

∂ξ

{
Wm
``′ [µz, ξ](t

(s)
r , 1)

}∣∣∣
ξ=ξ0,s

]
+ δs1ε1

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψinc(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

+ δs1ε2

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψtr(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

. (3.80)
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By introducing shorthands J and L:

Jm(i)
``′ (tr, ξ0) ≡ ξ`

′+1
0

{
εi
∂

∂ξ
{V m

``′ [µz, ξ](−1, tr)}|ξ=ξ0

+ εi(−1)`
′+mRi

∂

∂ξ
{V m

``′ [µ̄z, ξ](−1, tr)}|ξ=ξ0

+ εi+1Ti
∂

∂ξ
{V m

``′ [µz, ξ](tr, 1)}|ξ=ξ0
}

= ξ`
′+1

0 εiRi
[ ∂
∂ξ
{V m

``′ [µz, ξ](−1, tr)}|ξ=ξ0

+ (−1)`
′+m ∂

∂ξ
{V m

``′ [µ̄z, ξ](−1, tr)}|ξ=ξ0

+ 2
εi+1

εi − εi+1

∂

∂ξ
{V m

``′ [µz, ξ](−1, 1)}|ξ=ξ0
]
, (3.81)

and

Lm(i)
``′ (tr, ξ0) ≡ ξ−`

′

0

{
εi
∂

∂ξ
{Wm

``′ [µz, ξ](−1, tr)}|ξ=ξ0

+ εi(−1)`
′+mRi

∂

∂ξ
{Wm

``′ [µ̄z, ξ](−1, tr)}|ξ=ξ0

+ εi+1Ti
∂

∂ξ
{Wm

``′ [µz, ξ](tr, 1)}|ξ=ξ0
}

= ξ−`
′

0 εiRi
[ ∂
∂ξ
{Wm

``′ [µz, ξ](−1, tr)}|ξ=ξ0

+ (−1)`
′+m ∂

∂ξ
{Wm

``′ [µ̄z, ξ](−1, tr)}|ξ=ξ0

+ 2
εi+1

εi − εi+1

∂

∂ξ
{Wm

``′ [µz, ξ](−1, 1)}|ξ=ξ0
]
, (3.82)
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where it in the second step has been used that εi − εi+1T = εiR, the weak
formulation of the boundary condition (3.77) may now be written as

′∑
l′=|m|

ζm``′R
−`′−1
⊥,s

[
Jm(2s−1)
``′ (t(s)r , ξ0,s)A

(2s−1)
`′m − Jm(2s+1)

``′ (t(s)r , ξ0,s)A
(2s+1)
`′m

]

+

′∑
l′=|m|

ζm``′R
`′
⊥,s

[
Lm(2s−1)
``′ (t(s)r , ξ0,s)B

(2s−1)
`′m − Lm(2s+1)

``′ (t(s)r , ξ0,s)B
(2s+1)
`′m

]

+ δs1ε1

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψinc(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

+ δs1ε2

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψtr(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

= 0

∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, ...; m = 0,±1,±2, ...,±`. (3.83)

Thus the second boundary condition (3.29b), in the weak formulation, has also
been reduced to a set of linear equations for the unknown multipole coefficients

A
(i)
`m and B

(i)
`m (odd i).

3.4.4. Incident and transmitted potentials

The main results so far, Eqs. (3.76) and (3.83), both have two final terms with
integrals involving the incident potential ψinc and the transmitted potential ψtr.
These potentials will now be defined, and these final terms will be expressed
in terms of simpler integrals.

The incident electric field is assumed to be homogeneous, and thus in the
Cartesian coordinate system given by:

E0 = [E0,x, E0,y, E0,z]

= E0 [sin θ0 cosφ0, sin θ0 sinφ0, cos θ0] . (3.84)

Here θ0 is the angle of E0 with the positive z-axis, and φ0 is the angle between
the projection of E0 on the substrate and the positive x-axis. Beware that
these angles are not the same as the angles of incidence found in Fig. 2.1 and
in Eqs. (2.14)– (2.17) for the reflection and transmission amplitudes. In fact,
the multipole polarizabilities (and surface susceptibilities) found in this chapter
are completely independent of E0

1, and it is only introduced intermediately
for convenience. If the goal is not only to find the surface susceptibilities, but
also examining the electrostatic potential itself, this would obviously require
specifying an incident electric field. Given an incident radiation (θi and φi)

1As long as E0 is kept constant, i.e. a homogeneous incident field.
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and a polarization type (p or s) relative to the substrate, there are two possible
directions for the electric field, both along the same line. Simply picking one
of these directions gives the following relations, which ensure that θ0 ∈ [0, π]
and φ0 ∈ [0, 2π):

θ0 =


π/2− θi p-polarization, θi < π/2

θi − π/2 p-polarization, θi > π/2

π/2 s-polarization, any θi

, (3.85)

φ0 =


φi + π p-polarization, φi < π

φi − π p-polarization, φi > π

φi + π/2 s-polarization, φi < 3π/2

φi − 3π/2 s-polarization, φi > 3π/2

. (3.86)

It can be shown [17] that the electrostatic potential corresponding to the
electrostatic field in Eq. (3.84) can be expressed in the oblate spheroidal coor-
dinate system as:

ψinc(r) =− r ·E0

=

√
2π

3
E0

[
−
√

2 cos θ0X
0
1 (ξ, a)Y 0

1 (arccos η, φ)

+ sin θ0e−iφ0X1
1 (ξ, a)Y 1

1 (arccos η, φ)

− sin θ0eiφ0X−1
1 (ξ, a)Y −1

1 (arccos η, φ)
]
. (3.87)

The potential of a transmitted field in the region z > d satisfying the boundary
conditions with ψinc across a sharp planar surface at z = d is then [17]:

ψtr(r) = d

(
ε1
ε2
− 1

)
E0 cos θ0

+

√
2π

3
E0

{
−
√

2
ε1
ε2

cos θ0X
0
1 (ξ, a)Y 0

1 (arccos η, φ)

+ sin θ0e−iφ0X1
1 (ξ, a)Y 1

1 (arccos η, φ)

− sin θ0eiφ0X−1
1 (ξ, a)Y −1

1 (arccos η, φ)

}
, (3.88)

where ε1 is the dielectric function of the ambient (region 1) and ε2 is the
dielectric function of the substrate (region 2).
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In this section a new shorthand for a class of integrals will be introduced,
defined by

Qm``′(η1, η2) ≡
∫ η2

η1

dηPm` (η)Pm`′ (η), (3.89)

which has the following orthogonality property:

Qm``′(−1, 1) =
2

2`+ 1

(`+m)!

(`−m)!
δ``′ =

δ``′

ζm``
. (3.90)

Do not confuse these integrals with the functions Qm` (iξ), which are the asso-
ciated Legendre functions of the second kind, and given by Eq. (3.37).

Using Eq. (3.87) for the incident potential, Eq. (3.88) for the transmitted
potential, together with Eqs. (3.42), (3.66) and (3.90), one may show that

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψinc(ξ, η, φ)|ξ=ξ0,1

=

√
2π

3
aE0

{
−
√

2 cos θ0X
0
1 (ξ0,1)ζ0

`1Q
0
`1(−1, t(1)

r )δm0

+ sin θ0e−iφ0X1
1 (ξ0,1)ζ1

`1Q
1
`1(−1, t(1)

r )δm1

− sin θ0eiφ0X−1
1 (ξ0,1)ζ−1

`1 Q
−1
`1 (−1, t(1)

r )δm,−1

}
(3.91)

and

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψtr(ξ, η, φ)|ξ=ξ0,1

=

√
4π

3
E0 cos θ0

[
√

3d

(
ε1
ε2
− 1

)
ζ0
`0

(
δ`0
ζ0

00

−Q0
`0(−1, t(1)

r )

)

− aε1
ε2
X0

1 (ξ0,1)ζ0
`1

(
δ`1
ζ0

11

−Q0
`1(−1, t(1)

r )

)]
δm0

+

√
2π

3
aE0 sin θ0e−iφ0X1

1 (ξ0,1)ζ1
`1

(
δ`1
ζ1

11

−Q1
`1(−1, t(1)

r )

)
δm1

−
√

2π

3
aE0 sin θ0eiφ0X−1

1 (ξ0,1)ζ−1
`1

(
δ`1

ζ−1
11

−Q−1
`1 (−1, t(1)

r )

)
δm,−1. (3.92)

Combining Eqs. (3.91) and (3.92), while using that a = R⊥,s/ξ0,s and d =
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R⊥,st
(s)
r for any s, leads to the following equation:

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψinc(ξ, η, φ)|ξ=ξ0,1

+

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψtr(ξ, η, φ)|ξ=ξ0,1

=−R⊥,sE0 cos θ0

√
4π

3

{
ε1
ε2
ξ−1

0,sX
0
1 (ξ0,1)δ`1 +

(
ε1
ε2
− 1

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ξ−1
0,sX

0
1 (ξ0,1)ζ0

`1Q
0
`1(−1, t(1)

r )−
√

3t(1)
r δ`0

]}
δm0

+R⊥,s

√
2π

3
E0 sin θ0e−iφ0ξ−1

0,sX
1
1 (ξ0,1)δ`1δm1

−R⊥,s

√
2π

3
E0 sin θ0eiφ0ξ−1

0,sX
−1
1 (ξ0,1)δ`1δm,−1. (3.93)

Similarly one may show that∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψinc(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

=

√
2π

3
aE0

{
−
√

2 cos θ0
∂X0

1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

ζ0
`1Q

0
`1(−1, t(1)

r )δm0

+ sin θ0e−iφ0
∂X1

1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

ζ1
`1Q

1
`1(−1, t(1)

r )δm1

− sin θ0eiφ0
∂X−1

1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

ζ−1
`1 Q

−1
`1 (−1, t(1)

r )δm,−1

}
, (3.94)

and∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψtr(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

=

√
2π

3
aE0

{
−
√

2
ε1
ε2

cos θ0
∂X0

1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

ζ0
`1

[
δ`1
ζ0

11

−Q0
`1(−1, t(1)

r )

]
δm0

+ sin θ0e−iφ0
∂X1

1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

ζ1
`1

[
δ`1
ζ1

11

−Q1
`1(−1, t(1)

r )

]
δm1

− sin θ0eiφ0
∂X−1

1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

ζ−1
`1

[
δ`1

ζ−1
11

−Q−1
`1 (−1, t(1)

r )

]
δm,−1

}
, (3.95)
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which may be combined into the following equation:

ε1

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψinc(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

+ε2

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψtr(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

= −R⊥,sξ−1
0,s

√
4π

3
E0 cos θ0ε1

∂X0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

δ`1δm0

+R⊥,sξ
−1
0,s

√
2π

3
E0 sin θ0e−iφ0

∂X1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

×
{

(ε1 − ε2)ζ1
`1Q

1
`1(−1, t(1)

r ) + ε2δ`1

}
δm1

−R⊥,sξ−1
0,s

√
2π

3
E0 sin θ0eiφ0

∂X−1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

×
{

(ε1 − ε2)ζ−1
`1 Q

−1
`1 (−1, t(1)

r ) + ε2δ`1

}
δm,−1. (3.96)

3.4.5. Linear set of equations for the expansion coefficients

Equations (3.93) and (3.96) may now be combined with Eqs. (3.76) and (3.83)
respectively, to give the following set of equations for the expansion coefficients

A
(i)
`m and B

(i)
`m with odd i:

′∑
`′=|m|

ζm``′R
−`′−2
⊥,s

[
Im(2s−1)
``′ (t(s)r , ξ0,s)A

(2s−1)
`′m − Im(2s+1)

``′ (t(s)r , ξ0,s)A
(2s+1)
`′m

]

+
′∑

`′=|m|

ζm``′R
`′−1
⊥,s

[
Km(2s−1)
``′ (t(s)r , ξ0,s)B

(2s−1)
`′m −Km(2s+1)

``′ (t(s)r , ξ0,s)B
(2s+1)
`′m

]

= δs,1E0

[
cos θ0

√
4π

3

{
ε1
ε2
ξ−1

0,1X
0
1 (ξ0,1)δ`1 +

(
ε1
ε2
− 1

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ξ−1
0,1X

0
1 (ξ0,1)ζ0

`1Q
0
`1(−1, t(1)

r )−
√

3t(1)
r δ`0

]}
δm0

−
√

2π

3
sin θ0e−iφ0ξ−1

0,1X
1
1 (ξ0,1)δ`1δm1 +

√
2π

3
sin θ0eiφ0ξ−1

0,1X
−1
1 (ξ0,1)δ`1δm,−1

]

+
2
√
π

R⊥,s

[
ψ

(2s+1)
0 − ψ(2s−1)

0

]
δ`0δm0

∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, ...; m = 0,±1,±2, ...,±`, (3.97)
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and

′∑
l′=|m|

ζm``′R
−`′−2
⊥,s

[
Jm(2s−1)
``′ (t(s)r , ξ0,s)A

(2s−1)
`′m − Jm(2s+1)

``′ (t(s)r , ξ0,s)A
(2s+1)
`′m

]

+

′∑
l′=|m|

ζm``′R
`′−1
⊥,s

[
Lm(2s−1)
``′ (t(s)r , ξ0,s)B

(2s−1)
`′m − Lm(2s+1)

``′ (t(s)r , ξ0,s)B
(2s+1)
`′m

]

= δs1ξ
−1
0,1E0

{√
4π

3
ε1 cos θ0

∂X0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

δ`1δm0

−
√

2π

3
sin θ0e−iφ0

∂X1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

[
(ε1 − ε2)ζ1

`1Q
1
`1(−1, t(1)

r ) + ε2δ`1

]
δm1

+

√
2π

3
sin θ0eiφ0

∂X−1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

[
(ε1 − ε2)ζ−1

`1 Q
−1
`1 (−1, t(1)

r ) + ε2δ`1

]
δm,−1

}
∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, ...; m = 0,±1,±2, ...,±`. (3.98)

First note that there is no coupling between different values of m, and thus a
system of equations may be set up for each m separately. Note also that the
right hand sides are only nonzero for m = 0,±1, because the assumed incident
field only contains terms which are nonzero for these values of m. All depen-
dence on the incident electric field strength E0 is on the right hand sides, and

thus the system of equations for the coefficients A
(i)
`m and B

(i)
`m when |m| > 1 are

independent of E0. When E0 = 0 one would expect a homogeneous potential2,
making the expansion coefficients zero. Since the coefficients for |m| > 1 are
independent of E0, it may then be concluded that for all homogeneous E0 one
has:

A
(i)
`m = B

(i)
`m = 0

when |m| > 1 (3.99)

In fact, only the systems for m = 0 and m = 1 need to be solved, because the
coefficients for negative m are related to the corresponding ones for positive
m in a simple way. Using Eqs. (3.34) and (3.38), one may show that

ζ−m``′ V
−m
``′ [κz, ξ](η1, η2) = ζm``′V

m
``′ [κz, ξ](η1, η2)

ζ−m``′ W
−m
``′ [κz, ξ](η1, η2) = ζm``′W

m
``′ [κz, ξ](η1, η2), (3.100)

2Still assuming zero net charge in the island.
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which may be used to show that

ζ−m``′ I
−m(i)
``′ (tr, ξ0) = ζm``′I

m(i)
``′ (tr, ξ0)

ζ−m``′ K
−m(i)
``′ (tr, ξ0) = ζm``′K

m(i)
``′ (tr, ξ0)

ζ−m``′ J
−m(i)
``′ (tr, ξ0) = ζm``′J

m(i)
``′ (tr, ξ0)

ζ−m``′ L
−m(i)
``′ (tr, ξ0) = ζm``′L

m(i)
``′ (tr, ξ0). (3.101)

By inspecting Eqs. (3.97) and (3.98), and using that X−1
1 (ξ) = X1

1 (ξ) and
ζ−1
`1 Q

−1
`1 (η1, η2) = ζ1

`1Q
1
`1(η1, η2), one finds the following symmetry relations for

a change in the sign of m:

A
(i)
`,−1 = (−1)ei2φ0A

(i)
`,1 (3.102)

and

B
(i)
`,−1 = (−1)ei2φ0B

(i)
`,1 (3.103)

for all ` > 0.

The multipole expansions, and thus the sums in Eqs. (3.97) and (3.98),
contain an infinite number of terms. To be able to solve this problem in

practice one must neglect all A
(i)
`′m and B

(i)
`′m with `′ > M , where M will be

called the multipole order of the calculation. To have a matching number of
equations for these unknowns, ` will then also be restricted to be no larger
than M .

As mentioned earlier, because of net charge neutrality there are no multipole
coefficients for `′ = 0. There are enough equations in the cases ` = 1, ...,M
of Eqs. (3.97) and (3.98) to solve for all the unknown coefficients, and thus
the case of ` = 0 may be treated separately. For ` > 0, one gets the following
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system of equations for the unknown coefficients A
(i)
`′m and B

(i)
`′m:

M∑
`′=1

ζm``′R
−`′−2
⊥,s

[
Im(2s−1)
``′ (t(s)r , ξ0,s)A

(2s−1)
`′m − Im(2s+1)

``′ (t(s)r , ξ0,s)A
(2s+1)
`′m

]
+

M∑
`′=1

ζm``′R
`′−1
⊥,s

[
Km(2s−1)
``′ (t(s)r , ξ0,s)B

(2s−1)
`′m −Km(2s+1)

``′ (t(s)r , ξ0,s)B
(2s+1)
`′m

]
= δs1E0

[
cos θ0

√
4π

3

{
ε1
ε2
ξ−1

0,1X
0
1 (ξ0,1)δ`1 +

(
ε1
ε2
− 1

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ξ−1
0,1X

0
1 (ξ0,1)ζ0

`1Q
0
`1(−1, t(1)

r )
]}
δm0

−
√

2π

3
sin θ0e−iφ0ξ−1

0,1X
1
1 (ξ0,1)δ`1δm1

]
∀ s = 1, 2, 3, ..., S; ` = 1, 2, 3, ...,M ; m = 0, 1, (3.104)

and

M∑
l′=1

ζm``′R
−`′−2
⊥,s

[
Jm(2s−1)
``′ (t(s)r , ξ0,s)A

(2s−1)
`′m − Jm(2s+1)

``′ (t(s)r , ξ0,s)A
(2s+1)
`′m

]
+

M∑
l′=1

ζm``′R
`′−1
⊥,s

[
Lm(2s−1)
``′ (t(s)r , ξ0,s)B

(2s−1)
`′m − Lm(2s+1)

``′ (t(s)r , ξ0,s)B
(2s+1)
`′m

]
= δs1ξ

−1
0,1E0

{√
4π

3
ε1 cos θ0

∂X0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

δ`1δm0

−
√

2π

3
sin θ0e−iφ0

∂X1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

[
(ε1 − ε2)ζ1

`1Q
1
`1(−1, t(1)

r ) + ε2δ`1

]
δm1

}
∀ s = 1, 2, 3, ..., S; ` = 1, 2, 3, ...,M ; m = 0, 1. (3.105)

The case of ` = 0 gives an expression for the difference between the constant
terms of the potentials in neighboring media, which may be calculated once the

coefficients A
(i)
`′0 and B

(i)
`′0 have been found by solving the system of equations

45



given by Eqs. (3.104) and (3.105):[
ψ

(2s+1)
0 − ψ(2s−1)

0

]
=

1

2
√
π

M∑
`=1

ζ0
0`R
−`−1
⊥,s

[
I0(2s−1)

0` (t(s)r , ξ0,s)A
(2s−1)
`0 − I0(2s+1)

0` (t(s)r , ξ0,s)A
(2s+1)
`0

]
+

1

2
√
π

M∑
`=1

ζ0
0`R

`
⊥,s

[
K0(2s−1)

0` (t(s)r , ξ0,s)B
(2s−1)
`0 −K0(2s+1)

0` (t(s)r , ξ0,s)B
(2s+1)
`0

]
+ δs1E0R⊥,1 cos θ0

(
ε1
ε2
− 1

)
×
{

1√
3
ζ0

01Q
0
01(−1, t(1)

r ) + t(1)
r

(
1− ζ0

00Q
0
00(−1, t(1)

r )
)}

∀ s = 1, 2, 3, ..., S, (3.106)

where it has been used that ξ−1X0
1 (ξ) = 1.

Two of the expansion coefficients must be set to zero immediately to ensure
that the potential is finite everywhere. By inspecting the general solution for

the potential in media above the substrate (3.59), one sees that A
(i)
`m must

be set to zero in media where Zm` (ξµ, a) and/or Zm` (ξµ̄, a) might be invalid as

solutions. Similarly, B
(i)
`m must be set to zero in media where Xm

` (ξµ, a) and/or
Xm
` (ξµ̄, a) might be invalid as solutions. As mentioned in Sec. 3.4.1, Pm` (iξ)

(and Xm
` (ξµ, a)) diverges as ξ → ∞, and Qm` (iξ) (and Zm` (ξµ, a)) becomes

invalid as as ξ → 0. This leads to the immediate elimination of the following
coefficients:

B
(1)
`m = 0

A
(j)
`m = 0, (3.107)

where medium j is the medium above the substrate containing the area where
ξµ → 0. Note that this area is a disc extending to the focal ring, not a point.
If the multipole µ has been placed such that this disc is contained within more
than one medium, this approach will not be valid.

From Eqs. (3.104) and (3.105) one can see that the number of equations for
the coefficients is 2× 2×M × S = 4MS. Obviously the number of unknown
coefficients should be the same. The unknown coefficients after taking care
of the boundary conditions across the substrate surface (see Sec. 3.4.2) are
A`m and B`m for every medium above the substrate. There are always S + 1
media above the substrate, and there are initially 2 × 2 ×M coefficients for
each of them, taking into account the combinations of ` and m for both A and
B. According to Eq. (3.107) one must subtract 2 × 2 ×M from this number
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however, since these coefficients are know to be zero from the start. In total
this gives 2×2×M × (S+ 1)−2×2×M = 4MS unknown coefficients, which
is the same as the number of equations. As mentioned, each m may be treated
separately. Hence there are two systems of dimension 2MS to be solved, one
for m = 0 and one for m = 1.

The reference point for the potential can be set freely, so without loss of
generality one may set the constant term in the ambient to zero:

ψ
(1)
0 = 0. (3.108)

By use of Eq. (3.106) and the first part of Eq. (3.55), all other constant terms

ψ
(i)
0 may then be calculated, as long as one has found the values A`0 and B`0

for ` = 1, ...,M .

When the linear systems of Eqs. (3.104) and (3.105) have been solved,
the expansion coefficients may be used to calculate the island polarizabilities
(Sec. 3.4.6) and subsequently the surface susceptibilities of the film (Sec. 3.5).
Additionally one may calculate the potential at any point in space, by inserting
the expansion coefficients into the general solutions in Eqs. (3.59) and (3.60),
and finding ψ0 in each region through Eq. (3.106).

3.4.6. Island polarizabilities

The polarizability α, assuming a stationary system, is defined by [17]

P(r, ω) =

∫
α(r, ω|r′) ·E(r′, ω)dr′, (3.109)

where P is the polarization and E is the electric field. In words, the polarizabil-
ity matrix α(r, ω|r′) is a frequency dependent specification of how the electric
field at a point r′ contributes to the polarization at a point r. When one is
interested in the effects of the polarization as seen from a place far away from
the island compared to its size, it is convenient to expand the polarization in a
multipole expansion. When the island has an axis of symmetry perpendicular
to the substrate, and one chooses to neglect multipole polarizabilities of higher
than quadrupole order, one can essentially describe the polarizability of the
island by dipole polarizabilities αz,α‖ and quadrupole polarizabilities α10

z ,α10
‖ .
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For the case considered here, it can be shown that they are given by [17]

αz =
2πε1√

π/3E0 cos θ0

A
(1)
10

α‖ =
−4πε1√

2π/3E0 sin θ0 exp(−iφ0)
A

(1)
11

α10
z =

πε1√
π/5E0 cos θ0

A
(1)
20

α10
‖ =

−4πε1√
6π/5E0 sin θ0 exp(−iφ0)

A
(1)
21 (3.110)

Notice how these polarizabilities are in fact independent of E0, θ0 and φ0,

because A
(i)
`0 and A

(i)
`1 are proportional to [E0 cos θ] and [E0 sin θ0 exp(−iφ0)]

respectively.

The fact that the polarizabilities of interest only depend on A`m up to
quadrupolar order does not mean that one should truncate (3.104) and (3.105)

at M = 2. The coupling displayed means that A
(1)
10 , A

(1)
11 , A

(1)
20 and A

(1)
21 will

be obtained more and more accurately as M →∞. In practice one has to find
the M which gives the coefficients to the needed accuracy.

3.5. Island films

So far we have found the polarizability of a single island, but the objective is
to find the optical properties of a substrate supporting many such islands in
an array, such as the ones illustrated in Fig. 3.6. Besides the lattice symmetry,
which is assumed to be square or hexagonal, the lattice also has a parameter
called the lattice constant (L). This is the nearest neighbor distance between
islands in the film.

3.5.1. Correcting for island-island interactions

The polarizabilities calculated so far in Eq. (3.110) only account for the re-
sponse of a single truncated island, while accounting for the interactions with
image charges in the substrate. If the lattice constant is very large, these may
be appropriate to use when calculating the optical properties of the film, but
if that is not the case one should correct for island-island interactions. As a
first approximation one may correct only the dipolar response, which has the
largest range of effect. It has been shown that the dipolar corrections are given
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L

R

(a)

L

L

R

(b)

Figure 3.6.: The lattice types supported by GranFilm: a) Square lattice and
b) hexagonal lattice. Both lattices are drawn with the same values
for R and L, showing that the hexagonal lattice has a greater
coverage given the same parameters.

by [17]

αIz =
αz

1− 2αz
1√

20πε1L3

[
S20 −

(
ε1−ε2
ε1+ε2

)
S̃r20

]
αI‖ =

α‖

1 + α‖
1√

20πε1L3

[
S20 +

(
ε1−ε2
ε1+ε2

)
S̃r20

] , (3.111)

for a regular array with a 4- or 6-fold symmetry. Here S20 and S̃r20 are lattice
sums, depending only on the island lattice and defined by

S20 ≡
∑
i 6=0

(
L

r

)3

Y 0
2 (θ, φ)

∣∣
r=Ri

, (3.112)

S̃r20 ≡
∑
i 6=0

(
L

r

)3

Y 0
2 (θ, φ)

∣∣
r=Rr

i
, (3.113)

where the sums are made over all other islands except the island centered at
the origin. The vectors Ri and Rr

i are the positions of the center of island i
and its mirror point, respectively.

3.5.2. Surface susceptibilities

As shown in Eqs. (2.14) – (2.17), it is the surface susceptibilities one needs in
the end to calculate the film’s amplitudes of reflection and transmission. When
finding the surface susceptibilities of second order, δ and τ , it is necessary to
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take into account the fact that the location of the multipole µ is not necessarily
located at the reference surface used in the calculations in Sec. 2. Here the
reference surface is located at the substrate surface, and the distance from
there to the island multipole is |d−µz|. It may then be shown that the surface
susceptibilities of first and second order are given by [17]

β = ραz/ε
2
1

γ = ρα‖

δ = ρ
[
(|d− µz|)αz + (|d− µz|)α‖ − α10

z − α10
‖

]
/ε1

τ = ρ
[
(|d− µz|)α‖ − α10

‖

]
(3.114)

where ρ is the number of islands per unit area (see Sec. 3.5.3). The polarizabili-
ties (α) in Eq. (3.114) may be replaced with versions corrected for island-island
interactions (αI) from e.g. Eq. (3.111) if needed.

3.5.3. Derived parameters

In this section useful parameters of the supported island film will be defined,
and equations for finding them will be derived.

Island volume and surface area

The volume inside spheroidal interface s and above the substrate may be found
by integrating the volume of horizontal circular discs from −R⊥ to d:

Vs =

∫ d

−R⊥

πa2
(
1 + ξ2

0

)(
1−

(
z

aξ0

)2
)

dz

=
π

3
a3ξ0,s

(
1 + ξ2

0,s

) (
2 + 3t(s)r − t(s)r

3
)

=
π

3
R⊥,sR

2
‖,s

(
2 + 3t(s)r − t(s)r

3
)
. (3.115)

The volume of a coating (medium 2s + 1) may then be found as Vs − Vs+1.
Similarly the surface area of a truncated spheroid s, including the area of the
flat bottom base, may be found by integrating bands of circumference 2πx and
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width hηdη:

S(R, tr) =πa2
(
1 + ξ2

0,s

) (
1− t(s)r

2
)

+

∫ t
(s)
r

−1

(
2πa

√
1 + ξ2

0,s

√
1− η2

)a
√
ξ2

0,s + η2

1− η2

 dη

=πa2
√
ξ2

0,s + 1

{√
ξ2

0,s + 1
(

2− t(s)r
2
)

+ t(s)r

√
t
(s)
r

2
+ ξ2

0,s

+ ξ2
0,s ln


√
t
(s)
r

2
+ ξ2

0,s + t
(s)
r√

1 + ξ2
0,s − 1

}. (3.116)

This allows the calculation of the surface-to-volume ratio needed in e.g. the
finite-size corrections to the dielectric function in Sec. 2.3.

Contact angle

The contact angle of an island is defined as shown in Fig. 3.7. It may be
calculated as the angle between the unit vector in the x-direction and the unit
vector in the η-direction at the point of truncation. The latter may be found
as [26]

η̂|φ=0 = −x̂η

√
1 + ξ2

ξ2 + η2
+ ẑξ

√
1− η2

ξ2 + η2
, (3.117)

allowing the calculation of the contact angle with

cos θc =
x̂ · η̂
|x̂||η̂|

∣∣∣∣
ξ=ξ0, η=tr, φ=0

= −tr

√
ξ2

0 + 1

ξ2
0 + t2r

, (3.118)

which reduces to cos θc = −tr for spheres (ξ0 →∞) as expected.

θcx̂
ẑ

ξ = ξ0, η = tr

Figure 3.7.: Definition of the contact angle θc of a truncated spheroid.
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Island density

The density (ρ) is the number of islands per unit area. By considering the
geometries of the lattices (Fig. 3.6) it is found to be

ρ =

{
L−2 Square lattice

2√
3
L−2 Hexagonal lattice

, (3.119)

where L is the center-to-center distance between nearest neighbors, i.e. the
lattice constant.

Coverage

Coverage is a dimensionless quantity which can be defined as the fraction of
the substrate area covered by the islands as seen from above the substrate
surface. The area of a single island seen from above is πR2

app, where Rapp is
given by:

Rapp =

R‖,1 t
(1)
r ≥ 0

R‖,1

√
1− t(1)

r

2
t
(1)
r < 0

. (3.120)

The coverage (Θ) is then given by:

Θ = πR2
appρ =

π
(
Rapp

L

)2
Square lattice

2π√
3

(
Rapp

L

)2
Hexagonal lattice

(3.121)

The coverage is maximally (L = 2Rapp) 78.5% and 90.7% for the square and
hexagonal lattices respectively. The latter is in fact the closest possible pack-
ing of monodisperse circles. In reality an even larger coverage can be achieved
because of polydispersity. This high coverage case can probably not be ac-
curately simulated by GranFilm, as the island-island interactions are only
taken into account to dipolar (see Sec. 3.5.1) or quadrupolar [17] order.

Equivalent thickness

If the total volume of all the islands in the film was deposited uniformly in-
stead of forming islands, it would form a layer with a certain thickness. This
equivalent thickness is the total amount of deposited volume, divided by the
area deposited on, and may be calculated as:

teq,tot = ρV1. (3.122)

This parameter is useful because it is normally a known quantity in a deposition
experiment. The equivalent thickness found by fitting the parameters of these
calculations to a measured SDRS curve may then be compared with the known
number, to assess the correctness of the model fit.
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4. Special cases

To help verify the correctness of the theory derived in Sec. 3, it is useful to
reduce the results to some special cases which have been calculated by others
and see if they agree. In this section the results will be reduced to two different
special cases: Section 4.1 will cover the case where the islands have no coatings,
and where µz = 0. This corresponds to the derivations done in the book by
Bedeaux and Vlieger [17]. Section 4.2 reduces the results to the case where
the islands are truncated spheres, not truncated spheroids. This must be done
analytically, as the spherical limit of spheroids (ξ0 → ∞, a → 0) can not
be reached numerically in practice. The results from this should correspond
to what is already implemented in the GranFilm code for coated spherical
islands.

4.1. No coatings and centered multipole

With no coatings, the number of spheroidal interfaces is one, and thus the
subscripts and superscripts with s will be dropped. With S = 1 and a centered
island multipole, Eq. 3.107 reduces to

B
(1)
`m = 0

A
(3)
`m = 0, (4.1)

which leaves A
(1)
`m and B

(3)
`m as the remaining unknown coefficients. An island

multipole centered in the origin implies the following:

µz = 0

µ̄z = 2d (4.2)

In this special case one may easily show that

V m
``′ [µz = 0, ξ](η1, η2) = Zm`′ (ξ)Qm``′(η1, η2), (4.3)

and

Wm
``′ [µz = 0, ξ](η1, η2) = Xm

`′ (ξ)Qm``′(η1, η2), (4.4)
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which may be used together with Eq. (3.90) to show that

Im(1)
``′ (tr, ξ0) =

ξ`
′+1

0

ζm``′

{
2ε1

ε1 + ε2
Zm`′ (ξ0)δ``′

+
ε1 − ε2
ε1 + ε2

ζm``′
[
(−1)`

′+mV m
``′ [µ̄z, ξ0](−1, tr)− Zm`′ (ξ0)Qm``′(−1, tr)

]}
,

(4.5)

Km(3)
``′ (tr, ξ0) =

ξ−`
′

0

ζm``′

{
2ε3

ε3 + ε4
Xm
`′ (ξ0)δ``′

+
ε3 − ε4
ε3 + ε4

ζm``′
[
(−1)`

′+mWm
``′ [µ̄z, ξ0](−1, tr)−Xm

`′ (ξ0)Qm``′(−1, tr)
]}

,

(4.6)

Jm(1)
``′ (tr, ξ0) =

ξ`
′+1

0

ζm``′
ε1

{
2ε2

ε1 + ε2

∂

∂ξ
[Zm`′ (ξ)]|ξ=ξ0 δ``′

+
ε1 − ε2
ε1 + ε2

ζm``′

[
∂

∂ξ
[Zm`′ (ξ0)]|ξ=ξ0 Q

m
``′(−1, tr)

+ (−1)`
′+m ∂

∂ξ
[V m
``′ [µ̄z, ξ0](−1, tr)]|ξ=ξ0

]}
, (4.7)

and

Lm(3)
``′ (tr, ξ0) =

ξ−`
′

0

ζm``′
ε3

{
2ε4

ε3 + ε4

∂

∂ξ
[Xm

`′ (ξ)]|ξ=ξ0 δ``′

+
ε3 − ε4
ε3 + ε4

ζm``′

[
∂

∂ξ
[Xm

`′ (ξ0)]|ξ=ξ0 Q
m
``′(−1, tr)

+ (−1)`
′+m ∂

∂ξ
[Wm

``′ [µ̄z, ξ0](−1, tr)]|ξ=ξ0

]}
. (4.8)

The linear systems of equations in Eqs. (3.104) and (3.105) are in this case
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reduced to

M∑
`′=1

ζm``′R
−`′−2
⊥ Im(1)

``′ (tr, ξ0)A
(1)
`′m −

M∑
`′=1

ζm``′R
`′−1
⊥ Km(3)

``′ (tr, ξ0)B
(3)
`′m

= E0

{
cos θ0

√
4π

3

{
ε1
ε2
ξ−1

0 X0
1 (ξ0)δ`1 +

(
ε1
ε2
− 1

)[√
3trζ

0
`0Q

0
`0(−1, tr)

− ξ−1
0 X0

1 (ξ0)ζ0
`1Q

0
`1(−1, tr)

]}
δm0 −

√
2π

3
sin θ0e−iφ0ξ−1

0 X1
1 (ξ0)δ`1δm1

}
,

∀ ` = 1, 2, 3, ...,M ; m = 0, 1 (4.9)

and

M∑
`′=1

ζm``′R
−`′−2
⊥ Jm(1)

``′ (tr, ξ0)A
(1)
`′m −

M∑
`′=1

ζm``′R
`′−1
⊥ Lm(3)

``′ (tr, ξ0)B
(3)
`′m

= ξ−1
0,1E0

{√
4π

3
ε1 cos θ0

∂X0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

δ`1δm0

−
√

2π

3
sin θ0e−iφ0

∂X1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

[
(ε1 − ε2)ζ1

`1Q
1
`1(−1, t(1)

r ) + ε2δ`1

]
δm1

}
.

∀ ` = 1, 2, 3, ...,M ; m = 0, 1 (4.10)

Given only a single spheroidal interface there are only two unknown constant

terms, namely ψ
(1)
0 and ψ

(3)
0 . As usual the former may simply be set to zero,

and the latter may then be calculated through Eq. (3.106), which in this case
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reduces to

ψ
(3)
0 =

1

2
√
π

M∑
`=1

ζ0
0`R
−`−1
⊥ I0(1)

0` (tr, ξ0)A
(1)
`0 −

1

2
√
π

M∑
`=1

ζ0
0`R

`
⊥K

0(3)
0` (tr, ξ0)B

(3)
`0

− E0 cos θ0R⊥

(
ε1
ε2
− 1

)
1

4
(1− tr)2

=
1

2
√
π

M∑
`=1

R−`−1
⊥

(
ε1 − ε2
ε1 + ε2

)
ζ0

0`ξ
`+1
0

×
[
(−1)`V 0

0`[µ̄z, ξ0](−1, tr)− Z0
` (ξ0)Q0

0`(−1, tr)
]
A

(1)
`0

− 1

2
√
π

M∑
`=1

R`⊥

(
ε3 − ε4
ε3 + ε4

)
ζ0

0`ξ
−`
0

×
[
(−1)`W 0

0`[µ̄z, ξ0](−1, tr)−X0
` (ξ0)Q0

0`(−1, tr)
]
B

(3)
`0

− E0 cos θ0R⊥

(
ε1
ε2
− 1

)
1

4
(1− tr)2 . (4.11)

These equations, (4.9), (4.10) and (4.11), agree with the results for films of
truncated spheroids found in [17], as they should.

4.2. The spherical limit

The spherical limit of a spheroid is given by

a→ 0

ξ0 →∞
aξ0,s → Rs, (4.12)

where Rs is the radius of the sphere. The limit of the corresponding spheroidal
coordinate system with the same focal radius a is then

ξ ' r

a
η ' cos θ

φ = φ, (4.13)

where (r, θ, φ) are the regular coordinates of a spherical coordinate system.
As mentioned in Sec. 3.4.1 it can be shown that[17]

Xm
` (ξ, a) ' r`

Zm` (ξ, a) ' r−`−1, (4.14)
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which means that the dimensionless versions of Eqs. (3.66) and (3.67) have the
following asymptotic behavior:

Xm
` (ξ) ' a−`r`

Zm` (ξ) ' a`+1r−`−1. (4.15)

The above relations may be used to find the following relations in the spherical
limit:

Qm``′(η1, η2) '
∫ x2

x1

dxPm` (x)Pm`′ (x)

ξ`
′+1

0,s V m
``′ [κz, ξ0,s](η1, η2) ' Im``′ [Rs, κz,−`′ − 1](x1, x2)

ξ−`
′

0,s W
m
``′ [κz, ξ0,s](η1, η2) ' Im``′ [Rs, κz, `′](x1, x2)

ξ`
′+2

0,s

∂

∂ξ
{V m

``′ [κz, ξ](η1, η2)}|r=Rs
' Jm``′ [Rs, κz,−`′ − 1](x1, x2)

ξ−`
′+1

0,s

∂

∂ξ
{Wm

``′ [κz, ξ](η1, η2)}|r=Rs
' Jm``′ [Rs, κz, `′](x1, x2). (4.16)

The new integrals I and J are defined as

Im``′ [Rs, κz, α](x1, x2) ≡
∫ x2

x1

dxPm` (x)Pm`′ (xκ)

(
rκ
Rs

)α
Jm``′ [Rs, κz, α](x1, x2) ≡ Rs

∂

∂r

{∫ x2

x1

dxPm` (x)Pm`′ (xκ)

(
rκ
Rs

)α}∣∣∣∣
r=Rs

, (4.17)

where x1 = cos θ1 ' η1 and x2 = cos θ2 ' η2. The variable xκ is equal to
cos θκ, where θκ = θκ(r, θ) is the polar angle of the point (r, θ, φ) with respect
to coordinate system κ. Similarly, the variable rκ = rκ(r, θ) is the distance to
the point (r, θ, φ) from the origin of coordinate system κ. Both depend on the
variable of integration x, since x = cos θ.

Using that ξ−1
0,1X

m
1 (ξ0,1) ' 1, the linear systems of equations in Eqs. (3.104)
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and (3.105), and Eq. (3.106) for the constant terms, may now be written as

M∑
`′=1

ζm``′R
−`′−2
s

[
Im(2s−1)
``′ (t(s)r , ξ0,s)A
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]
+
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]
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√
4π

3
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δ`1 +

(
ε1
ε2
− 1

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ζ0
`1Q

0
`1(−1, t(1)

r )
]}
δm0 −

√
2π

3
sin θ0e−iφ0δ`1δm1

]
∀ s = 1, 2, 3, ..., S; ` = 1, 2, 3, ...,M ; m = 0, 1, (4.18)

M∑
l′=1

ζm``′R
−`′−2
s

[
ξ0,sJm(2s−1)

``′ (t(s)r , ξ0,s)A
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]
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4π

3
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`1Q
1
`1(−1, t(1)

r ) + ε2δ`1
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}
∀ s = 1, 2, 3, ..., S; ` = 1, 2, 3, ...,M ; m = 0, 1, (4.19)

and[
ψ

(2s+1)
0 − ψ(2s−1)

0
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01Q
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00Q
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∀ s = 1, 2, 3, ..., S, (4.20)
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where

Im(i)
``′ (t(s)r , ξ0,s) ' Ri

[
− Im``′ [Rs, µz,−`′ − 1](−1, t(s)r )

+ (−1)`
′+mIm``′ [Rs, µ̄z,−`′ − 1](−1, t(s)r )

+
2εi

εi − εi+1
Im``′ [Rs, µz,−`′ − 1](−1, 1)

]
, (4.21)

Km(i)
``′ (t(s)r , ξ0,s) ' Ri

[
− Im``′ [Rs, µz, `′](−1, t(s)r )

+ (−1)`
′+mIm``′ [Rs, µ̄z, `

′](−1, t(s)r )

+
2εi

εi − εi+1
Im``′ [Rs, µz, `

′](−1, 1)

]
, (4.22)

ξ0,sJm(i)
``′ (t(s)r , ξ0,s) ' εiRi

[
Jm``′ [Rs, µz,−`′ − 1](−1, t(s)r )

+ (−1)`
′+mJm``′ [Rs, µ̄z,−`′ − 1](−1, t(s)r )

+
2εi+1

εi − εi+1
Jm``′ [Rs, µz,−`′ − 1](−1, 1)

]
, (4.23)

and

ξ0,sLm(i)
``′ (t(s)r , ξ0,s) ' ε1Ri

[
Jm``′ [Rs, µz, `

′](−1, t(s)r )

+ (−1)`
′+mJm``′ [Rs, µ̄z, `

′](−1, t(s)r )

+
2εi+1

εi − εi+1
Jm``′ [Rs, µz, `

′](−1, 1)

]
. (4.24)

The above equations for the spherical limit agrees with the equations previ-
ously implemented in GranFilm. Even though the spheroidal equations are
a generalization, the equations in this section are still needed in practice since
the spherical limit of the spheroidal equations cannot be reached numerically
simply by letting ξ0 →∞, a→ 0, aξ0 → R.
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5. Numerics

This section begins by covering the numerical implementation of the results
derived in Sec. 3 as a part of the GranFilm software1. It then proceeds to
cover the results from the numerical tests performed to assess the correctness
of the implementation.

5.1. Implementation

The equations derived in Sec. 3 were implemented and integrated into the exist-
ing framework of the GranFilm 2.0 software, which already supported calcu-
lations on coated spherical islands, but not spheroidal ones. Equations (3.104)
and (3.105) are implemented in slightly modified dimensionless forms, as de-
tailed in App. A. Firstly, all the integrals up to multipole order M are cal-
culated based on the island geometry (see App. B). The associated Legen-
dre functions and their derivatives are calculated to arbitrary degree and or-
der through the recurrence relations in Eqs. (B.12) and (B.13), while using
the spheroidal coordinate transformations (Eqs. (3.25) and (3.26)) and their
derivatives (Eq. (B.8)). It is worth noting that the associated Legendre func-
tions of the second kind (Qm` ) had to be calculated with quadruple precision
to get good behavior when approaching the spherical limit, because of severe
roundoff errors when calculating Qm` (iξ) for large ξ.

When the integrals have been calculated, the systems of equations for m =
0 and m = 1 shown in Eqs. (A.6) and (A.7) are set up and solved for a
range of photon energies. The photon energy comes into play in the equations
through the frequency dependence of the dielectric functions ε for the different
materials.2 For an illustration on how the matrix is set up, see the example in
App. C. After solving these systems of equations one has a set of normalized

expansion coefficients Â
(i)
`m and B̂

(i)
`m for each photon energy. These are used to

calculate island polarizabilities through Eq. (A.2), which may then be corrected
for island-island interactions as shown in Sec. 3.5.1. The polarizabilities are
used to find the normalized first order surface susceptibilities γ̂ and β̂ (A.3),
which are finally used to find the amplitudes of reflection and transmission

1More technical details on the implementation may be found in the appendices.
2The photon energy also comes into play later as ω in the equations relating the surface

susceptibilities to the amplitudes of reflection and transmission (2.14) – (2.17).

61



through Eqs. (2.14) – (2.17).

Calculating and inspecting the SDRS spectrum is not enough to verify the
correctness of the implementation though. One should also inspect the poten-
tial in the near-field, to check whether or not the boundary conditions have
been sufficiently satisfied for the multipole order M chosen. As mentioned in
Sec. 3.4.1, the uniqueness theorem guarantees that a potential on the form of
a general solution which satisfies all the boundary conditions on the spheroidal
interfaces must be the one and only correct solution. Thus inspecting the po-
tential serves as the ultimate test for the correctness of the results, within the
chosen assumptions. To enable these tests, GranFilm 2.0 was expanded with
a module which may use the multipole coefficients of all orders up to M to
calculate the potential at any set of points the user specifies, at any photon
energy the user wishes to inspect the potential at. This allows for both plot-
ting of the potential in a plane and specifically calculating the errors in the
boundary conditions. See App. D for details involving the implementation of
this.

5.2. Numerical tests

In this section a test case consisting of truncated coated spheroidal islands
supported on a dielectric substrate is selected, and the newly expanded Gran-
Film software is used to simulate the SDRS response. The test case consists
of islands of shape R⊥,1 = 6.0 nm and R‖,1 = 8.0 nm arranged in a hexagonal
array with lattice constant L = 20 nm. The islands consist of an Ag core with
a size such that χ2 = 0.7, coated with Ag2O (See Sec. 6.1). The islands are

supported on an Al2O3 substrate and truncated by t
(1)
r = 0.25. The incoming

radiation is p-polarized, with incident angles θ = 45◦ and φ = 0◦. In this
test no finite-size corrections are made to the dielectric functions, nor are the
polarizabilities corrected for island-island interactions. These corrections are
not needed here as the point of this test is to verify the correctness of the code,
not to compare with experimental data.

The differential reflectivity (SDRS) calculated for this test case with a mul-
tipole order M = 16 may be seen in Fig. 5.1. Further, the calculated polariz-
abilities are presented in Figs. 5.2 (dipolar) and 5.3 (quadrupolar).

To assess whether or not these results may be trusted, a number of inspec-
tions and numerical tests will follow. This section will mainly define the tests
and present their results, while most of the interpretations and discussions will
be left for Sec. 7. In Sec. 5.2.1 the potential is inspected at key energies to
verify that its continuity looks reasonable. In Sec. 5.2.2 concrete measures of
the errors in the boundary conditions at a given point on one of the spheroidal
interfaces are defined. These measures Eψ and E∂nψ are used in following sec-
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Figure 5.1.: The SDRS curve calculated for the test case.

tions to analyze the errors in a more rigorous way than simple inspection. In
Sec. 5.2.3 the precise values for ψ and ε∂nψ at the main resonance on both sides
of the spheroidal interfaces are shown, as well as the corresponding boundary
condition errors. How the average of these errors develop as the multipole
order M of the calculation increases is examined in Sec. 5.2.4. The magnitude
of these errors depends greatly on whether or not one is at a resonance energy.
Section 5.2.5 examines this behavior across the energy range of interest. In
Sec. 5.2.6, it is verified that the SDRS curve calculated for spheroidal islands
agrees with what one gets from the existing code for spherical islands, as the
islands get more and more spherical.

5.2.1. Inspecting the potential

In this section the potential in the y = 0 plane is plotted for photon energies
where one or more of the polarizabilities have an especially large magnitude
(see Figs. 5.2 and 5.3). This is done to reveal what kind of resonances create
the features of the polarizability curves, and thus eventually the measurable
SDRS curve.

Figure 5.4 shows the real part of the potential at the energy of the peak
positive value of the real part of the parallel dipolar polarizability (2.225 eV).
This also coincides with the peak of the real part of the parallel quadrupolar
polarizability. Figure 5.5 shows real part of the potential at the energy of
the peak negative values of the same two polarizabilities (2.380 eV), which
corresponds to the same resonance, but with reversed polarization. Figure 5.6
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Figure 5.2.: The (a) parallel and (b) perpendicular dipolar island polarizabili-
ties calculated for the test case, normalized as shown in Eq. (A.2).

shows equivalent plots for the resonance of the perpendicular polarizabilities
(2.660 eV and 2.880 eV).

At the center of the frequency area of the resonance, the imaginary part of
the corresponding polarizability has its peak value. The imaginary part of the
potential at the energy of the peak value of the imaginary part of the parallel
and perpendicular polarizabilities are plotted in Figs. 5.7 and 5.8 respectively.

The lack of any notable quadrupolar excitations visible in most of the po-
tential plots raises the question of whether this was caused by the elongated
spheroidal shape of the island. To answer this, a spherical case which is similar
to the above test case is run, where both radii are 6 nm. A visibly quadrupolar
response in Re[ψ] for this spherical case may be seen in Fig. 5.9.

5.2.2. Measures of error in boundary conditions

Since a potential which satisfies the boundary conditions (3.29) everywhere at
all the spheroidal interfaces is theoretically the one and only correct potential,
the degree to which the boundary conditions are satisfied by a calculation
to a finite multipole order M is a measure of the calculation’s correctness.
In this section a nondimensional measure of the errors in the two boundary
conditions at a point on one of the spheroidal interfaces will be introduced.
They are similar to the measures used in [28], though here generalized for use
with coated islands as well. The measures of errors for the first (3.29a) and
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Figure 5.3.: The parallel and perpendicular quadrupolar island polarizabilities
calculated for the test case, normalized as shown in Eq. (A.2).

second (3.29b) boundary conditions are as follows:

Eψ(rs) =
ψ+(rs)− ψ−(rs)

maxr1 |ψinc(r1)|
,

E∂nψ(rs) =
ε+∂nψ+(rs)− ε−∂nψ−(rs)

maxr1 |ε1∂nψinc(r1)|
, (5.1)

where rs is a point on spheroidal interface s (ξ = ξ0,s). The subscripts +
and − indicate quantities just outside and just inside the spheroidal interface
respectively. The fact that the incident potential ψinc is used to construct
denominators does not make Eψ and E∂nψ any measures of relative error, but
they are nondimensional measures which are independent of the strength of
the incident field E0, and are useful for examining e.g. convergence.

The question now is how one may calculate these denominators. If t
(1)
r > 0,

which will be the case for all these tests, the point on the island with the
largest value of ψinc will have the coordinate η equal to:

ηmax = − ξ0,1 cos θ0√
sin2 θ0 + ξ2

0,1

. (5.2)

This is found as the point on the spheroidal surface above the substrate where
the unit vector η̂ [26] is perpendicular to E0. The first denominator in Eq. (5.1)
can then be found to be:

maxr1 |ψinc(r1)| = |rmax ·E0|
= |E0 (xmax sin θ0 cosφ0 + ymax sin θ0 sinφ0 + zmax cos θ0)| ,

(5.3)
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Figure 5.4.: The equipotential lines of Re[ψ] at photon energy E = 2.225 eV,
which is the position of the peak values of Re
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where xmax, ymax, zmax are found from the transformations in Eq. (3.13) using
ξ = ξ0,1, η = ηmax (5.2) and φ = φ0.

Since the incident electric field is constant, the gradient of ψinc is also con-
stant and equal in magnitude to E0. The quantity |∂nψinc(r1)| reaches its
maximum at the point defined in Eq. (5.2), when the gradient of the incident
potential is perpendicular to the interface. This maximum value is E0, and
thus the second denominator in Eq. (5.1) is given by:

maxr1 |ε1∂nψinc(r1)| = |ε1|E0. (5.4)

5.2.3. Errors in boundary conditions

Using the new module for calculating the potential at an arbitrary set of points,
the error measures may now be evaluated approximately at points along the
spheroidal interfaces. The quantity Eψ is found by calculating ψ at two points,
one just outside the interface and one just inside the interface. The quantity
E∂nψ is found by calculating ψ at four points, two just outside the interface and
two just inside, enabling the evaluation of ∂nψ at both sides of the interface
through a finite-difference approximation. Using a finite-difference approxima-
tion should not really be necessary, as the expansions are known analytically
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Figure 5.5.: The equipotential lines of Re[ψ] at photon energy E = 2.380 eV,
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given the expansion coefficients. However, the finite-difference approximation
was found to be very well behaved, so it was not deemed necessary to spend
extra time implementing the exact approach.

To examine the errors in this test case, the quantities ψ, ε∂nψ, Eψ and E∂nψ
are evaluated along the spheroidal interfaces in the y = 0 plane at points evenly
spaced in arccos η. The multipole order used in the calculations is M = 16.
Here the errors at the energy corresponding to the peak of α‖ (2.225 eV) are
examined, as this is the main resonance and thus a energy where the most
significant error may be expected. Figures 5.10 and 5.11 display the errors in
both boundary conditions at the outer air-Ag2O interface (s = 1). Figures 5.12
and 5.13 show the same, but now evaluated at the inner Ag2O-Ag interface
(s = 2). These four groups of figures may be compared with Fig. 5.4, as the
latter is taken from the exact same simulation case, and also plotted in the
y = 0 plane. Only the real parts are shown here, but both real and imaginary
components of the error will be considered in Sec. 5.2.4.

67



15 10 5 0 5 10 15

10

5

0

5

10

-16.5

-13.2

-9.8

-6.5

-3.1

0.2

3.6

6.9

10.2

13.6

(a)

15 10 5 0 5 10 15

10

5

0

5

10
-13.9

-10.5

-7.1

-3.6

-0.2

3.2

6.6

10.1

13.5

16.9

(b)

Figure 5.6.: The equipotential lines of Re[ψ] at photon energy a) E = 2.660 eV
and b) E = 2.880 eV, which are the positions of the peak positive
and negative values, respectively, of Re [αz] and Re[α10

z ].

5.2.4. Convergence tests

Theoretically the calculated potential should be an exact solution of the Laplace
equation (3.27) if one lets the multipole order of the calculation M approach
infinity. Doing this is obviously impossible in practice, but one should be able
to observe convergence towards an exact solution as M is made larger. Firstly
one may verify that the response seen in the far-field (SDRS signal) converges
towards a single curve. Such a test is shown in Fig. 5.14, where it is found that
the SDRS signal appears to converge quite well within reaching a multipole
order of M = 10.

Convergence of the SDRS curve is no guarantee that the calculated potential
converges towards an exact solution however. Convergence of the latter kind
would appear through a decrease in the average absolute errors in both bound-
ary conditions at all spheroidal interfaces as M is increased. This is tested for
this case at two different energies by examining the evolution of the quantities
〈|E|〉, which is the average of the absolute values of the indicated complex error
measure from Eq. (5.1). The average is found by summing the absolute errors
at points along the spheroidal interface (in the y = 0 plane) evenly spaced in
arccos η, and dividing by the number of measured points. Firstly the conver-
gence is examined at the main resonance, specifically at E = 2.225 eV where α‖
has its peak value. This result is shown in Fig. 5.15. Secondly, the same test is
performed at E = 4.5 eV, an energy with some distance from any resonances.
This result is shown in Fig. 5.16.
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Figure 5.7.: The equipotential lines of Im[ψ] at photon energy E = 2.296 eV,
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5.2.5. Errors as a function of photon energy

As seen when comparing Figs. 5.15 and 5.16, the magnitude of the errors in
the boundary conditions appears to vary greatly depending on which photon
energy the calculation is done at. How the errors depend on energy across the
entire spectrum is shown in Fig. 5.17. As seen it is verified that the magnitudes
of the errors depend greatly on the photon energy, and they appear to peak
at values where the polarizabilities were also found to peak.

5.2.6. The spherical limit

It is useful to verify that the simulation implemented here agrees with the re-
sults from the code for the spherical special case, in the case when the spheroids
are made to approach the spherical limit. The test case used here is a 6 nm
spherical Ag island, truncated and supported by an Al2O3 substrate. The

amount of truncation is t
(1)
r = 0.5. The SDRS curve for this case is simulated

using the code for the spherical special case. This island is then flattened
and made gradually more spheroidal, while keeping the silver coverage (3.121)
constant. The SDRS curves for these cases are simulated using the new code
for the spheroidal case, and compared with the spherical case as implemented

69



15 10 5 0 5 10 15

10

5

0

5

10

-8.6

-6.9

-5.1

-3.4

-1.6

0.1

1.9

3.6

5.4

7.1

Figure 5.8.: The equipotential lines of Im[ψ] at photon energy E = 2.775 eV,
which is the position of the peak values of Im [αz] and Im[α10

z ].

in GranFilm 2.0. The results from these tests can be seen in Figs. 5.18a
(no coating) and 5.18b (with oxide coating). The calculations were done to
a multipole order M = 16. Using a high multipole order while going too far
into the spherical limit was found to cause numerical problems, but before
this happens an agreement with the purely spherical simulation is apparent.
Neither finite-size corrections nor corrections for island-island interactions are
used in this test, as it is done to test the spherical limit of the algorithm, not
to compare with experimental data.

As seen in Fig. 5.18, the SDRS curve from the spheroidal simulations meet
up nicely with the curve from the spherical simulation in the R⊥ → R‖ limit.
Note that if one were to include finite-size corrections to the dielectric function
of Ag, the increase in peak SDRS signal while flattening the island will not be
so great. This is so because the electron mean free path is calculated based
on R⊥ (see Sec. 2.3), and as demonstrated in Fig. 2.2b, one of the effects of
introducing finite-size corrections to silver is to decrease the magnitude of the
SDRS signal.

70



15 10 5 0 5 10 15

10

5

0

5

10

-16.2

-12.9

-9.6

-6.3

-3.1

0.2

3.5

6.8

10.0

13.3

Figure 5.9.: The equipotential lines of Re[ψ] from a spherical version of the
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71



0.0 0.5 1.0 1.5 2.0 2.5 3.0
arccos(η)

15
10

5
0
5

10
15

R
e[
ψ
]/
E

0

+
-

(a)

0.00.51.01.52.02.53.0
arccos(η)

15
10

5
0
5

10
15

R
e[
ψ
]/
E

0

+
-

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
arccos(η)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

R
e[
E ψ

]

(c)

0.00.51.01.52.02.53.0
arccos(η)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

R
e[
E ψ

]

(d)

Figure 5.10.: Plots of the real part of ψ just outside (+) and inside (-) the
outer spheroidal interface (s = 1), on both the a) φ = 0 half and
the b) φ = π half of the y = 0 plane. Also shown is the real part
of the error measure Eψ at the corresponding points. The dashed
vertical lines show the point of truncation for this interface. The
calculations are done at E = 2.225 eV.

72



0.0 0.5 1.0 1.5 2.0 2.5 3.0
arccos(η)

20

10

0

10

20

R
e[
ε
n
ψ
]/
E

0

+
-

(a)

0.00.51.01.52.02.53.0
arccos(η)

20

10

0

10

20

R
e[
ε
n
ψ
]/
E

0

+
-

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
arccos(η)

10

5

0

5

10

R
e[
E

n
ψ
]

(c)

0.00.51.01.52.02.53.0
arccos(η)

10

5

0

5

10

R
e[
E

n
ψ
]

(d)

Figure 5.11.: Plots of the real part of ε∂nψ just outside (+) and inside (-) the
outer spheroidal interface (s = 1), on both the a) φ = 0 half
and the b) φ = π half of the y = 0 plane. Also shown is the
real part of the error measure E∂nψ at the corresponding points.
The dashed vertical lines show the point of truncation for this
interface. The calculations are done at E = 2.225 eV.
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Figure 5.12.: Plots of the real part of ψ just outside (+) and inside (-) the
inner spheroidal interface (s = 2), on both the a) φ = 0 half and
the b) φ = π half of the y = 0 plane. Also shown is the real part
of the error measure Eψ at the corresponding points. The dashed
vertical lines show the point of truncation for this interface. The
calculations are done at E = 2.225 eV.
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Figure 5.13.: Plots of the real part of ε∂nψ just outside (+) and inside (-) the
inner spheroidal interface (s = 2), on both the a) φ = 0 half
and the b) φ = π half of the y = 0 plane. Also shown is the
real part of the error measure E∂nψ at the corresponding points.
The dashed vertical lines show the point of truncation for this
interface. The calculations are done at E = 2.225 eV.
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Figure 5.14.: Convergence test of the SDRS curve calculated for the test case
with increasing multipole order M . a) Close up view of the SDRS
curves at the main 2.3 eV resonance, where the error is found to be
the largest. b) Difference between the SDRS curve calculated for
the indicated multipole order M and the “correct” curve gotten
from a calculation at M = 24.
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Figure 5.15.: Convergence of the average absolute errors in boundary con-
ditions for both spheroidal interfaces in the test case, at
E=2.225 eV. The average absolute value of errors in the boundary
conditions a) (3.29a) and b) (3.29b) are plotted against multipole
order M .
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Figure 5.16.: Convergence of the average absolute errors in boundary condi-
tions for both spheroidal interfaces in the test case, at E=4.5 eV.
The average absolute value of errors in the boundary conditions
a) (3.29a) and b) (3.29b) are plotted against multipole order M .
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Figure 5.17.: The average absolute errors in the boundary conditions a) (3.29a)
and b) (3.29b) for both spheroidal interfaces in the test case, plot-
ted against photon energy. Calculations are done with a multi-
pole order M = 16.

77



2.0 2.5 3.0 3.5 4.0 4.5
Photon energy [eV]

1

0

1

2

3

4

5

6

∆
R
/
R

Sphere
R =5.8

R =5.5

R =5.0

R =4.5

R =4.0

R =3.5

R =3.0

(a)

2.0 2.5 3.0 3.5 4.0 4.5
Photon energy [eV]

0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
R
/R

Sphere
R ,1 =5.95

R ,1 =5.9

R ,1 =5.8

R ,1 =5.7

R ,1 =5.6

R ,1 =5.5

(b)

Figure 5.18.: Comparison of the SDRS curve from a spherical simulation (R =
6 nm) with curves from spheroidal simulations, while R‖ is kept
constant. The arrows show the trend with increasing eccentricity.
a) Ag island with no coating. b) Ag island with Ag2O coating.
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6. Oxidation of silver nanoparticles

It is not enough for the equations to be numerically well behaved though, they
should also be able to at least qualitatively reproduce some experimental data.
Some preliminary experiments have been performed by Rémi Lazzari from the
Paris Institute of Nanosciences, where a 0.5 nm equivalent thickness deposit
of Ag nanoparticles on an Al2O3 substrate was exposed to O2. This could
be expected to oxidize the outer layers of the silver particles, creating Ag2O
coated Ag islands, which could be a useful testing ground for the algorithm
for coated islands derived and implemented here.
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Photon energy [eV]

0.1

0.0

0.1

0.2

∆
R
/
R

Low P
High P

Figure 6.1.: Experimental SDRS data from the O2 exposure of Ag nanoparti-
cles supported on a Al2O3 substrate. As indicated, the O2 pres-
sure was increased at one point during the experiment. The arrows
show the trend for increasing time of exposure.

The O2 exposure was done in two stages: First at a low O2 pressure, and
then at a higher (P > 10 mbar) pressure. During exposure SDRS spectra were
measured using p-polarized light at θ = 45◦, and this data is presented in
Fig. 6.1. Unfortunately the data on the time and pressure corresponding to
each curve is not very precise since this is a preliminary experiment, but at
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Figure 6.2.: Data reconstructed from equations and fitted parameters in [29].
a) Refractive index and extinctive coefficient of Ag2O. b) Real
and imaginary part of the dielectric function of Ag2O.

least a qualitative trend is apparent.

The purpose of this section is to investigate whether the equations imple-
mented here can reproduce the trend displayed in Fig. 6.1. Firstly, the issue of
the complex dielectric function of the Ag2O coating will be covered in Sec. 6.1.
Then Sec. 6.2 will go through how the fraction of Ag oxidated relates to the
input parameters of the algorithm, mainly the parallel and perpendicular radii
of the two spheroidal interfaces. Finally Sec. 6.3 will present the resulting
SDRS trends from a simulated oxidation process.

6.1. The complex dielectric function of Ag2O

While all other materials needed here have their complex dielectric functions
in the database included in GranFilm, this is not the case for Ag2O. The
values are obviously needed for a realistic simulation, so data from the work of
Gao et al. [29] is used here. This is a triple Tauc-Lorentz model with param-
eters fitted to spectroscopic ellipsometry measurements. The film was created
by magnetron sputtering, which is not the case for the process simulated here,
but it should be close enough to find a qualitative trend. The functions re-
constructed from the equations and parameters in [29] can be seen in Fig. 6.2.
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M ρ

Ag 0.1079 kg mol−1 10 500 kg/m3

Ag2O 0.2317 kg mol−1 7100 kg/m3

Table 6.1.: The molecular/atomic weights and densities of silver and silver ox-
ide [30].

6.2. Relating the fraction oxidized to geometry
parameters

When simulating the oxidation process of the silver nanoparticles, one can
not simply add a growing layer of Ag2O on the outside and keep the Ag core
constant. When creating the oxide, metallic silver will be consumed, while at
the same time new matter is added to the islands in the form of oxygen atoms.
Exactly how the volume of oxide and silver evolves will depend on the density
and atomic weights of both materials, as well as the stoichiometry of the oxide.

Let us first define a parameter fox, which is the fraction of silver which has
been oxidized at a given time. Also, let ρAg and ρAg2O denote the densities
of Ag and Ag2O respectively. Similarly let MAg and MAg2O denote their
atomic/molecular weights. The values of ρ and M for these two materials may
be found in Tab. 6.1. Let Vi be the initial volume of the Ag island, such that
the volume of the remaining Ag core at a given time is (1− fox)Vi.

The issue now is to figure out what the parameters of the two spheroidal
interfaces in the model must be for a given value of fox. First of all one might
calculate how much volume of oxide is created compared to the volume of
silver lost to the oxidation process. This process is outlined in the following
equations:

Moles of Ag oxidized =
ρAg · Vi · fox

MAg

Moles of Ag2O created =
ρAg · Vi · fox

2 ·MAg

Volume of Ag2O created =
MAg2O · ρAg · Vi · fox

2 · ρAg2O ·MAg

Volume of Ag lost = Vi · fox

Volume of Ag2O created

Volume of Ag lost
=

MAg2O · ρAg

2 ·MAg · ρAg2O
≈ 1.59 (6.1)

To get from this ratio of volumes to an appropriate set of parameters, one
must make some assumptions. Here is is assumed that both the Ag-Ag2O
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and the Ag2O-Air interfaces stay spheroidal, centered in the origin and with
the same focal radius a during the entire oxidation process. Now, since the
volumes of both the Ag core and the Ag2O coating are known, the values
of R⊥,1 and R⊥,2 may be found. This is done by using Eq. (3.115) for the
volume contained inside spheroidal interface s.1 Given a certain volume, and
the above assumptions, Eq. (3.115) may be solved for a corresponding ξ0 using
an iterative root finding method. The values of R⊥ may easily be found from
values of ξ0, and through the assumption of a known and constant value of

a, R‖,1 and R‖,2 may be found. The truncation ratios t
(1)
r and t

(2)
r are found

through the assumptions of a constant center of the spheroids compared to the
substrate, i.e. a constant d.

To do these calculations it is necessary to have some parameters for the
initial islands of pure Ag. As mentioned, it is known from the experiment that
the deposited amount of Ag corresponds to an equivalent thickness of teq =
0.5 nm. Using a contact angle for silver on alumina of 125◦−130◦ [22] gives an
initial truncation ratio of approximately tr = 0.6. Assuming hexagonal packing
and a lattice constant of L = 10 nm, the given equivalent thickness demands
that R⊥R

2
‖ ≈ 11.5 nm3. A somewhat arbitrary choice which satisfies this is

R⊥ = 2.0 and R‖ = 2.4, which will be used in this attempt to qualitatively
reproduce the experiment.
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Figure 6.3.: The perpendicular and parallel radii of the two spheroidal inter-
faces in the simulated oxidation process as calculated in Sec. 6.2,
plotted against the fraction of silver oxidized.

Given all the above assumptions and calculations, the radii of the spheroidal
interfaces may be found as a function of fraction oxidized, as displayed in

1In this case, VAg = V2 and VAg2O
= V1 − V2.
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Figure 6.4.: Cross sections of the islands at certain points during the simulated
oxidation process, as calculated in Sec. 6.2. The numbers below
the islands show the corresponding values of fox, the fraction of
the original Ag which has been oxidized.

Fig. 6.3. The same oxidation process is also illustrated as cross sections of
islands in Fig. 6.4, to give a better impression of how the geometry evolves
under these assumptions.

6.3. Simulation of the oxidation process

Given the values for the dielectric function of Ag2O presented in Sec. 6.1, and
the calculations and assumptions in Sec. 6.2, it is possible to use the newly
extended GranFilm software to simulate the evolution of the SDRS response
during the oxidation process. The results from calculations done at a multipole
order of M = 20 may be seen in Fig. 6.5. Finite-size corrections (Sec. 2.3) were
used for the dielectric function of the Ag core, using the parameters listed in
the caption of Fig. 2.2. Island-island interactions were corrected for to dipolar
order (Sec. 3.5.1), and first order surface susceptibilities were used to calculate
the differential reflectance. The degree of agreement with the experimental
data will be discussed in Sec. 7.
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Figure 6.5.: SDRS curves from the simulated oxidation of truncated Ag
nanoparticles supported on an Al2O3 substrate. The inset shows
the values of fox for a given curve, and the arrows point in the
direction of increasing time, i.e. increasing fox.
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7. Discussion

Since the main goals of this thesis are the analytical derivation and numerical
implementation of the equations in Sec. 3, one of the most important questions
to discuss is whether this has been completed without error. As shown in
Sec. 4, the analytical results agree with the work of others when reduced to two
important special cases. While this is not proof of correctness, it is certainly
a good sign.

Analytical correctness does not guarantee that the numerical implementa-
tion in GranFilm is without error though. The code was checked for errors
thoroughly, and subjected to numerical tests presented in 5.2. Firstly one may
note that the SDRS curve (Fig. 5.1) and polarizabilities (Figs. 5.2 and 5.3)
look reasonable compared to what one might find in the literature [19]. Also,
the cross section plots of the real part of the potential in Figs. 5.4 – 5.8 look
like what one would expect from a polarization response in such a particle,
with a reasonably continuous Re[ψ].

Looking reasonable is not a very rigorous test however. A proper test
should look more closely at exactly how closely the two boundary conditions
in Eq. (3.29) are satisfied. In fact, if they are completely satisfied, the calcu-
lated potential is the one and only correct one (cf. the uniqueness theorem).
Exactly how closely they are satisfied in the test case, and how the errors vary
along the spheroidal interfaces, is examined in Sec. 5.2.3. Figures 5.10 – 5.13
show the errors in both boundary conditions along both spheroidal interfaces
of the test case in the y = 0 plane. Some things may be noted about these
results. First of all, the values of ψ appear to be more continuous across the
interfaces than ε∂nψ. In other words the first condition (3.29a) appears quali-
tatively to be better satisfied than the second condition (3.29b). Besides this,
the errors have some common behavior: They oscillate along the interface, and
they have a peak value at the point of truncation, i.e. where the spheroidal
interfaces meet the substrate surface. As seen in Figs. 5.4, 5.10 and 5.12, these
are also approximately the points where the potential has the largest value at
the main resonance. With a finite multipole order it is reasonable to expect
the errors to be largest where the response is the most dramatic.

Another test of correctness is shown in Sec. 5.2.6 (Fig. 5.18), where it is
verified that the SDRS results from the new code for the spheroidal case ap-
pears to agree with the results from the existing code for the spherical case.
However, it was found that one cannot push the new spheroidal code too far
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into the spherical limit, as the limit ξ → ∞, a → 0 is not that well behaved
numerically. Still, the test verifies the expected agreement when reasonably
far into the limit.

Since the calculations are expected to yield the correct potential as M →∞,
convergence towards this as M increases is tested in Sec. 5.2.4. As shown in
Fig. 5.14, the simulated far field SDRS response converges towards a single
curve quite quickly. At M = 10, the curve appears to have converged well
within the accuracy needed to compare with experimental data (Fig. 5.14a),
though the errors are not completely gone, as seen in Fig. 5.14b. A convergence
test checking the potential itself, and not only its far field effects, is presented
in Figs. 5.15 and 5.16. It is seen that the average absolute errors in both
boundary conditions decrease every time the multipole order M is increased.
Note that most of the errors apparently do not disappear until around M = 20,
which is much higher than what appeared to be needed for convergence of the
SDRS curve. This means that while there are still quite a lot of errors in the
boundary conditions at M = 10, the dipolar (` = 1) expansion coefficients are
quite correct already. Increasing M beyond 10 has the effect of adjusting the
higher order coefficients to make the potential more correct, while only slightly
modifying the dipolar coefficients.

It may be tempting to increase M to the thirties or even forties to ensure
that everything is correct. Besides making the calculations take an unnecessary
amount of time, this may also introduce round-off errors when calculating
the needed integrals. This is a purely numerical effect, caused by the way a
computer does arithmetics. The consequence is that while one analytically
expects the results to become better and better indefinitely as M is increased,
in practice one or both of the average errors are seen to increase abruptly as
M reaches a value in the area of 30. Exactly at which value of M this happens
at depends on the test case.

Convergence is observed at both a resonance energy (Fig. 5.15) and an energy
where nothing special happens (Fig. 5.16). Note however that the magnitude
of the errors may differ by as much as an order of magnitude between the two
energies. In fact, by comparing Fig. 5.17 with Figs. 5.2 – 5.3, the errors have
a tendency to peak at the same energies as where the polarizabilities peak.
This is not surprising, as more accurately representing the dramatic potential
response at a resonance energy is expected to require a higher multipole order
M .

Now that it as been verified that both the analytical derivations and the
numerical implementation seem correct and well behaved, what might be said
about the potential plots resulting from the test case? One apparent issue is
that the potential plots appear to be dominated by a dipolar response. With
a spherical case (Fig. 5.9), a clearly quadrupolar response can be found close
to the main resonance. No such quadrupolar potential can be found in the
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real part of the potential close to the main resonance in the spheroidal case.
It might appear that the elongated shape promotes dipolar responses, and
suppresses most of the quadrupolar responses. In fact, it is observed that the
quadrupolar response in Fig. 5.9 gradually changes into a more pure dipolar
response as the island eccentricity is increased.

The final goal of this work was to use the newly implemented code in an
attempt to reproduce some experimental data. These efforts are detailed in
Sec. 6. Comparing the experimental data in Fig. 6.1 to the simulation in
Fig. 6.5, it is clear that at least the major features could be reproduced: As
the oxidation proceeds, the magnitude of the SDRS signal decreases while the
main peak moves to lower energies. However, in the low pressure phase of the
experimental data, the shift to lower energies is not as fast compared to the
decrease in magnitude. The simulation appears to be slightly more consistent
with the high pressure data in this respect. Another discrepancy is the fact
that the valley at approximately 3.7 eV moves in opposite directions: In the
experimental data it moves to lower energies, while in the simulation results
it moves to higher energies. These discrepancies may exist because the real
oxidation process does not necessarily happen according to the assumptions in
Sec. 6.2 used to calculate the geometry at a given fraction oxidized. There is
not really any reason why the focal radius a should stay constant, but some
assumptions have to be made at this stage to arrive at a result.

Note also from Fig. 6.5 that as the oxidation proceeds a small feature ap-
pears at approximately 3.4 eV which can not be seen in the experimental data
(Fig. 6.1). The location of this feature is where the dielectric function of Ag2O
used in the simulation (Fig. 6.2) has a sudden increase in magnitude. The
fact that this feature is absent in the experimental data may be an indication
that the dielectric function used may not be appropriate for the oxide layer
expected in the experiment.

Discrepancies may also arise because of distributions in parameters which
in the simulation are assumed to be constant across the island film. The
islands are probably not arranged in a perfect hexagonal array, they may not
all be of the same size, and they may not all be truncated to the same degree.
These distributions in parameters are expected to give a broadening effect
however [22], and may not explain the valley of the SDRS curve moving in the
wrong direction along the energy scale.

87





8. Conclusion

The first main part of this work was to derive the integrals and sets of equa-
tions needed to solve Laplace’s equation for a system containing spheroidal
islands/nanoparticles with an arbitrary number of coatings, truncated and
supported on a substrate surface. Solving Laplace’s equation for a quasi static
case enables the calculation of the optical properties of a film consisting of
many such islands, including the SDRS curve.

This first part was apparently completed successfully, resulting in the sys-
tems of equations needed to calculate the multipole coefficients, which could
be used to calculate either the quasi-static potential or the optical properties
of an island film. To ensure their correctness, the derivations were thoroughly
checked for errors, as well as compared with special cases calculated by others.
In order to be useful, the new equations had to be integrated into the existing
framework of the GranFilm software, a process which was the second main
part of this work. Numerical tests verified the probable correctness of this, as
the errors in boundary conditions appeared low, and converged as expected
when the multipole order of the calculation was increased.

The third main part was to use the new algorithm to reproduce experimental
SDRS data from the oxidation of a film of silver islands. While the main
features of the SDRS curve’s evolution could be reproduced, there were some
discrepancies. This may be explained by the fact that much is unknown about
the oxidation process, and thus it is hard to make correct assumptions about
the evolution of the geometry in the simulation. Also, the experiment used for
comparison was quite preliminary, and some parameters were unknown or not
under strict control.

Future improvements to the derived equations could attempt to relax some
of the assumptions made, such as requiring all spheroidal interfaces of an island
to have the same focal radius. This was an assumption which simplified the
calculations, but did not really have any physical justification. Future attempts
to reproduce experimental data from a silver oxidation process could attempt
to use different sets of assumptions regarding the evolution of the geometry, as
there was only time to try one in this work. This may uncover the reasons for
the discrepancies, as well as possibly enabling a more quantitative analysis of
the data. One could also try to obtain new and better data on the dielectric
function of the silver oxide film, as the data used here was obtained from a
magnetron sputtered film, which might not have been appropriate in this case.
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A. Normalization used in the code

The GranFilm code does not implement the equations derived in Sec. 3 ex-
actly, but rather in slightly modified dimensionless forms. For completeness,
and for assistance while reading the code, these alternate forms are detailed in
this section.

First of all, note that the expansion coefficient A`m has units of V m`+1,
while B`m has units of V m−`. The numerical implementation instead solves
for dimensionless expansion coefficients, defined by:

Â
(i)
`m ≡

R−`−2
⊥,1
E0

A
(i)
`m

B̂
(i)
`m ≡

R`−1
⊥,1
E0

B
(i)
`m. (A.1)

It also calculates dimensionless polarizabilities, defined by:

α̂z ≡
2πε1√
π/3 cos θ0

Â
(1)
10 = R−3

⊥,1αz

α̂‖ ≡ −
4πε1√

2π/3 sin θ0 exp(−iφ0)
Â

(1)
11 = R−3

⊥,1α‖

α̂10
z ≡

πε1√
π/5 cos θ0

Â
(1)
20 = R−4

⊥,1α
10
z

α̂10
‖ ≡ −

4πε1√
6π/5 sin θ0 exp(−iφ0)

Â
(1)
21 = R−4

⊥,1α
10
‖ , (A.2)

and dimensionless surface susceptibilities, defined by:

γ̂ ≡ ρ̂α̂‖ = R−1
⊥,1γ

β̂ ≡ ρ̂α̂z/ε21 = R−1
⊥,1β

δ̂ ≡ ρ̂
[
̂|d− µz|

(
α̂z + α̂‖

)
−
(
α̂10
z + α̂10

‖

)]
= R−2

⊥,1δ

τ̂ ≡ ρ̂
[
̂|d− µz|α̂‖ − α̂10

‖

]
= R−2

⊥,1τ. (A.3)

Here the normalized density is given by

ρ̂ ≡ R2
⊥,1ρ, (A.4)
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and the normalized substrate-multipole distance by:

̂|d− µz| ≡ R−1
⊥,1|d− µz|. (A.5)

The dimensionless versions of Eqs. (3.104) and (3.105) implemented in the
code, in terms of the new dimensionless expansion coefficients, is given by:

M∑
`′=1

ζm``′χ
−`′−2
s

[
Im(2s−1)
``′ (t(s)r , ξ0,s)Â

(2s−1)
`′m − Im(2s+1)

``′ (t(s)r , ξ0,s)Â
(2s+1)
`′m

]
+

M∑
`′=1

ζm``′χ
`′−1
s

[
Km(2s−1)
``′ (t(s)r , ξ0,s)B̂

(2s−1)
`′m −Km(2s+1)

``′ (t(s)r , ξ0,s)B̂
(2s+1)
`′m

]
= δs1

[
cos θ0

√
4π

3

{
ε1
ε2
δ`1 +

(
ε1 − ε2
ε2

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ζ0
`1Q

0
`1(−1, t(1)

r )
]}
δm0 −

√
2π

3
sin θ0e−iφ0

√
ξ−2

0,1 + 1δ`1δm1

]
∀ s = 1, 2, 3, ..., S; ` = 1, 2, 3, ...,M ; m = 0, 1, (A.6)

and

M∑
l′=1

ζm``′χ
−`′−2
s ξ0,s

[
Jm(2s−1)
``′ (t(s)r , ξ0,s)Â

(2s−1)
`′m − Jm(2s+1)

``′ (t(s)r , ξ0,s)Â
(2s+1)
`′m

]
+

M∑
l′=1

ζm``′χ
`′−1
s ξ0,s

[
Lm(2s−1)
``′ (t(s)r , ξ0,s)B̂

(2s−1)
`′m − Lm(2s+1)

``′ (t(s)r , ξ0,s)B̂
(2s+1)
`′m

]
= δs1

{√
4π

3
ε1 cos θ0δ`1δm0

−
√

2π

3
sin θ0e−iφ0

1√
ξ−2

0,1 + 1

[
(ε1 − ε2)ζ1

`1Q
1
`1(−1, t(1)

r ) + ε2δ`1

]
δm1

}

∀ s = 1, 2, 3, ..., S; ` = 1, 2, 3, ...,M ; m = 0, 1. (A.7)

Note how Eq. (A.7) also has been multiplied by ξ0,s as compared to Eq. (3.105).
This was done to enable simpler comparison with the code for non-coated
spheroids in an old version of GranFilm.
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B. Integrals

This appendix is devoted to details surrounding the calculations of the various
integrals needed to solve the systems of equations in Eqs. (3.104) and (3.105).
The required integrals are

V m
``′ [κz, ξ](η1, η2) ≡

∫ η2

η1

dηPm` (η)Pm`′ (ηκ(ξ, η))Zm`′ (ξκ(ξ, η)), (B.1)

and

Wm
``′ [κz, ξ](η1, η2) ≡

∫ η2

η1

dηPm` (η)Pm`′ (ηκ(ξ, η))Xm
`′ (ξκ(ξ, η)), (B.2)

and their derivatives which may be expressed as:

∂

∂ξ
{V m

``′ [κz, ξ](η1, η2)}|ξ=ξ0 =

∫ η2

η1

dηPm` (η)

{
∂ηκ
∂ξ

∂Pm`′ (ηκ)

∂ηκ
Zm`′ (ξκ)

+
∂ξκ
∂ξ

∂Zm`′ (ξκ)

∂ξκ
Pm`′ (ηκ)

}∣∣∣∣∣
ξ=ξ0

, (B.3)

and

∂

∂ξ
{Wm

``′ [κz, ξ](η1, η2)}|ξ=ξ0 =

∫ η2

η1

dηPm` (η)

{
∂ηκ
∂ξ

∂Pm`′ (ηκ)

∂ηκ
Xm
`′ (ξκ)

+
∂ξκ
∂ξ

∂Xm
`′ (ξκ)

∂ξκ
Pm`′ (ηκ)

}∣∣∣∣∣
ξ=ξ0

. (B.4)

The coordinates ξκ and ηκ are give by

ξκ = ξ′[∆z = κz](ξ, η)

ηκ = η′[∆z = κz](ξ, η), (B.5)

where the functions ξ′ and η′ are given by Eqs. (3.25) and (3.26). The subscript
κ is a placeholder for either µ (∆z = µz) or µ̄ (∆z = 2d− µz).

The calculation of these integrals requires evaluations of the functions Xm
` (ξ)

and Zm` (ξ), which are defined by Eqs. (3.45) and (3.46) respectively. As seen,
the definitions contain factorials involving `. It is not practical to calculate the
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factorials separately when the arguments are large because of integer overflow,
so in practice the fractions are transformed into products as

Xm
` (ξ) ≡ im−` (`−m)!

(2`− 1)!!
Pm` (iξ) =


i−`
∏̀
j=1

(
j

2j − 1

)
P 0
` (iξ) m = 0

i1−` 1
`

∏̀
j=1

(
j

2j − 1

)
P 1
` (iξ) m = 1

(B.6)
and

Zm` (ξ) ≡ i`+1 (2`+ 1)!!

(`+m)!
Qm` (iξ) =


i`+1

∏̀
j=1

(
2j + 1

j

)
P 0
` (iξ) m = 0

i`+1 1
`+1

∏̀
j=1

(
2j + 1

j

)
P 1
` (iξ) m > 0

.

(B.7)
The derivatives of the transformed coordinates with respect to the coordinate
ξ in the main coordinate system may be found by

∂ξκ
∂ξ

=
1√
2

[
C7 +

ξ

2

(
C3 + C6

C5

C7

)]
∂ηκ
∂ξ

=
√

2

[
∆z

C7aξ2
− 1

2

(
η − ∆z

aξ

)(
C3 + C6

C5

C3
7

)]
(B.8)

where

C1 ≡ 1 +

(
∆z

aξ

)2

− 2
∆z

aξ
η − η2

ξ2

C2 ≡
2

ξ

(
∆z

aξ
− η
)

C3 ≡
∂C1

∂ξ
= −2

(
∆z

a

)2 1

ξ3
+ 2

(
∆z

a

)
η

1

ξ2
+ 2η2 1

ξ3

C4 ≡
∂C2

∂ξ
= −4

∆z

a

1

ξ3
+ 2η

1

ξ2

C5 ≡
√
C2

1 + C2
2

C6 ≡ C1C3 + C2C4

C7 ≡
√
C1 + C5. (B.9)

To evaluate the Legendre functions of first and second kind, Pm` and Qm` ,
recursion relations are used [26]. These relations require that the functions for
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(`,m) equal to (0, 0), (1, 0), (1, 1) and (2, 1) are known. These can be found
from the definitions in Eqs. (3.33) and (3.37), and are given by

Pmm (z) = (2m− 1)!!(1− z2)m/2

P 0
1 (z) = z

P 1
2 (z) = 3z

√
1− z2 (B.10)

for the Legendre functions of the first kind, and

Q0
0(iy) = −i arctan(1/y)

Q0
1(iy) = y arctan(1/y)− 1

Q1
1(iy) = −

√
1 + y2

[
arctan(1/y)− y

1 + y2

]
Q1

2(iy) = i
√

1 + y2

[
2 + 3y2

1 + y2
− 3y arctan(1/y)

]
(B.11)

for the Legendre functions of the second kind. All the other needed Legendre
functions are now found by

Pm` (x) =
1

`−m
[
x (2`− 1)Pm`−1(x)− (`+m− 1)Pm`−2(x)

]
Pm` (iy) =

1

`−m
[
iy (2`− 1)Pm`−1(iy)− (`+m− 1)Pm`−2(iy)

]
Qm` (iy) =

1

`−m
[
iy (2`− 1)Qm`−1(iy)− (`+m− 1)Qm`−2(iy)

]
, (B.12)

and their derivatives may also be found by recursion relations given by [26]

∂Pm` (x)

∂x
=

1

x2 − 1

[
(`−m+ 1)Pm`+1(x)− (`+ 1)xPm` (x)

]
∂Pm` (iy)

∂y
=
−1

y2 + 1

[
i (`−m+ 1)Pm`+1(iy) + (`+ 1) yPm` (iy)

]
∂Qm` (iy)

∂y
=
−1

y2 + 1

[
i (`−m+ 1)Qm`+1(iy) + (`+ 1) yQm` (iy)

]
. (B.13)
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C. Example: One coating, quadrupolar
order

To illustrate how the systems in Eqs. (3.104) and (3.105) are solved in Gran-
Film, and particularly how the matrix is set up, this section will go through
a relatively simple example. The example concerns an island with a single
coating (S = 2), and is illustrated in Fig. C.1. To make it feasible to show the
entire matrix for the system of equations, the example calculation is done with
a very low multipole order of M = 2. First of all, since multipole µ is inside

1
2

3
4

5
6 z = d

1

2

z x

µ

µ̄

Figure C.1.: An example of a truncated spheroidal island with a single coating
(S = 2). In this particular illustration, ξ0,1 ≈ 0.80. The spheroids
are labelled s = 1, 2 at the top, while the media are labelled 1 to
6 on the left side.

medium 5, Eq. (3.107) reduces to

B
(1)
`m = 0

A
(5)
`m = 0. (C.1)

The task now is to solve for the remaining unknown coefficients by solving
Eqs. (3.104) and (3.105). This is done by setting up and solving a matrix
equation:

Amxm = bm, (C.2)

for m = 0 and m = 1. The matrix Am may be set up in many different ways,
as long as the vector bm and the interpretation of the solution vector xm is
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adjusted accordingly. The matrix equation set up in the implemented code
will be presented here. First of all, some shorthands must be defined to make
it feasible to show the matrix:

Im,±``′,s ≡ ζ
m
``′χ
−`′−2
s Im(2s±1)

``′ (t(s)r , ξ0,s)

Jm±``′,s ≡ ζ
m
``′χ
−`′−2
s ξ0,sJm(2s±1)

``′ (t(s)r , ξ0,s)

Km±``′,s ≡ ζ
m
``′χ

`′−1
s Km(2s±1)

``′ (t(s)r , ξ0,s)

Lm±``′,s ≡ ζ
m
``′χ

`′−1
s ξ0,sLm(2s±1)

``′ (t(s)r , ξ0,s). (C.3)

The matrix may then be set up as

Am =



Im,−11,1 Im,−12,1 −Im,+11,1 −Im,+12,1 −Km,+11,1 −Km,+12,1 0 0

Im,−21,1 Im,−22,1 −Im,+21,1 −Im,+22,1 −Km,+21,1 −Km,+22,1 0 0

Jm,−11,1 Jm,−12,1 −Jm,+11,1 −Jm,+12,1 −Lm,+11,1 −Lm,+12,1 0 0

Jm,−21,1 Jm,−22,1 −Jm,+21,1 −Jm,+22,1 −Lm,+21,1 −Lm,+22,1 0 0

0 0 Im,−11,2 Im,−12,2 Km,−11,2 Km,−12,2 −Km,+11,2 −Km,+12,2

0 0 Im,−21,2 Im,−22,2 Km,−21,2 Km,−22,2 −Km,+21,2 −Km,+22,2

0 0 Jm,−11,2 Jm,−12,2 Lm,−11,2 Lm,−12,2 −Lm,+11,2 −Lm,+12,2

0 0 Jm,−21,2 Jm,−22,2 Lm,−21,2 Lm,−22,2 −Lm,+21,2 −Lm,+22,2


,

(C.4)
the dimensionless vector x is then

xm =



R−1−2
⊥,1 A

(1)
1m/E0

R−2−2
⊥,1 A

(1)
2m/E0

R−1−2
⊥,1 A

(3)
1m/E0

R−2−2
⊥,1 A

(3)
2m/E0

R1−1
⊥,1 B

(3)
1m/E0

R2−1
⊥,1 B

(3)
2m/E0

R1−1
⊥,1 B

(5)
1m/E0

R2−1
⊥,1 B

(5)
2m/E0


=



Â
(1)
1m

Â
(1)
2m

Â
(3)
1m

Â
(3)
2m

B̂
(3)
1m

B̂
(3)
2m

B̂
(5)
1m

B̂
(5)
2m


, (C.5)

while the right hand side vector is

bm =



bm,1
bm,2
bm,3
bm,4

0
0
0
0


. (C.6)
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In this case the elements of the vector bm are

bm,1 =

√
4π

3
cos θ0

{
ε1
ε2

+

(
ε1
ε2
− 1

)[√
3t(1)
r ζ0

10Q
0
10(−1, t(1)

r )

− ζ0
11Q

0
11(−1, t(1)

r )
]}
δm0 −

√
2π

3
sin θ0e−iφ0

√
ξ−2

0,1 + 1δm1, (C.7)

bm,2 =

√
4π

3
cos θ0

(
ε1
ε2
− 1

)[√
3t(1)
r ζ0

20Q
0
20(−1, t(1)

r )

−ζ0
21Q

0
21(−1, t(1)

r )
]
δm0, (C.8)

bm,3 =

{√
4π

3
ε1 cos θ0δm0

−
√

2π

3
sin θ0e−iφ0

1√
ξ−2

0,1 + 1

[
(ε1 − ε2)ζ1

11Q
1
11(−1, t(1)

r ) + ε2

]
δm1

}
(C.9)

and

bm,4 = −
√

2π

3
sin θ0e−iφ0

1√
ξ−2

0,1 + 1
(ε1 − ε2)ζ1

21Q
1
21(−1, t(1)

r )δm1. (C.10)

The system Amxm = bm should then be solved for m = 0 and m = 1. After

this, the constant terms of the potential may be calculated. Setting ψ
(1)
0 = 0

as usual, the first unknown constant term may be found by

ψ
(3)
0 =

R⊥,1E0

2
√
π

×

{
ζ0

01

(
I0(1)

01 (t(1)
r , ξ0,1)Â

(1)
10 − I

0(3)
01 (t(1)

r , ξ0,1)Â
(3)
10 −K

0(3)
01 (t(1)

r , ξ0,1)B̂
(3)
10

)
+ ζ0

02

(
I0(1)

02 (t(1)
r , ξ0,1)Â

(1)
20 − I

0(3)
02 (t(1)

r , ξ0,1)Â
(3)
20 −K

0(3)
02 (t(1)

r , ξ0,1)B̂
(3)
20

)
+ 2
√
π cos θ0

(
ε1
ε2
− 1

)
1

4

(
1− t(1)

r

)2
}
, (C.11)
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while the second may be found by

ψ
(5)
0 =ψ

(3)
0 +

R⊥,1E0

2
√
π

×

{
ζ0

01

[
χ−2

2 I
0(3)
01 (t(2)

r , ξ0,2)Â
(3)
10 +K0(3)

01 (t(2)
r , ξ0,2)B̂

(3)
10

−K0(5)
01 (t(2)

r , ξ0,2)B̂
(5)
10

]
+ ζ0

02

[
χ−3

2 I
0(3)
02 (t(2)

r , ξ0,2)Â
(3)
20 + χ2K0(3)

02 (t(2)
r , ξ0,2)B̂

(3)
20

− χ2K0(5)
02 (t(2)

r , ξ0,2)B̂
(5)
20

]}
. (C.12)
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D. Calculating the potential

Actually calculating the potential at a given point in space raises a few issues
which do not arise when one is simply interested in the polarizabilities of the
island. This mostly comes from the fact that the expressions for the potential,
Eqs. (3.59) and (3.60), contain terms with m = −1, which are not involved
when finding the polarizabilities.

The expressions for the potential in terms of the normalized multipole coef-
ficients presented in App. A are

ψi(r) = ψ
(i)
0

+ E0

′∑
`m

R`+2
⊥,1 Â

(i)
`m

[
Zm` (ξµ, a)Y m

` (arccos ηµ, φµ)

+ (−1)`+mRiZm` (ξµ̄, a)Y m
` (arccos ηµ̄, φµ̄)

]
+ E0

′∑
`m

R−`+1
⊥,1 B̂

(i)
`m

[
Xm
` (ξµ, a)Y m

` (arccos ηµ, φµ)

+ (−1)`+mRiXm
` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄)
]

+ δi,1ψinc(ξ, η, φ) (D.1)

for media above the substrate surface, and

ψi+1(r) = ψ
(i+1)
0

+ E0Ti
′∑
`m

[
R`+2
⊥,1 Â

(i)
`mZ

m
` (ξµ, a) +R−`+1

⊥,1 B̂
(i)
`mX

m
` (ξµ, a)

]
× Y m

` (arccos ηµ, φµ)

+ δi,1ψtr(ξ, η, φ) (D.2)

for media below the substrate surface.

The multipole coefficients Am` and Bm
` for m = −1 may be found through

Eqs. (3.102) and (3.103). What remains is to find the functions Xm
` , Zm` and

Y m
` . Using the definitions of Pm` and Qm` for negative m ((3.34) and (3.38))

and the definition of Xm
` (ξ, a) and Zm` (ξ, a) ((3.45) and (3.46)), it can easily
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be shown that

X−m` (ξ, a) = Xm
` (ξ, a)

Z−m` (ξ, a) = Zm` (ξ, a), (D.3)

which means that Xm
` and Zm` for any needed m may be found through the

usual means. The spherical harmonics Y m
` may be found for any of the needed

values of m by using the definition in Eq. (3.39):

Y 0
` (arccos η, φ) =

√
2`+ 1

4π
P 0
` (η)

Y 1
` (arccos η, φ) = (−1)

√
2`+ 1

4π`(`+ 1)
P 1
` (η)eiφ

Y −1
` (arccos η, φ) =

√
2`+ 1

4π`(`+ 1)
P 1
` (η)e−iφ. (D.4)

The constant terms in Eqs. (D.1) and (D.2) are found in terms of the normal-
ized multipole coefficients as[

ψ
(2s+1)
0 − ψ(2s−1)

0

]
= χsR⊥,1E0

{
1

2
√
π

M∑
`=1

ζ0
0`χ
−`−2
s

[
I0(2s−1)

0` (t(s)r , ξ0,s)Â
(2s−1)
`0 − I0(2s+1)

0` (t(s)r , ξ0,s)Â
(2s+1)
`0

]
+

1

2
√
π

M∑
`=1

ζ0
0`χ

`−1
s

[
K0(2s−1)

0` (t(s)r , ξ0,s)B̂
(2s−1)
`0 −K0(2s+1)

0` (t(s)r , ξ0,s)B̂
(2s+1)
`0

]
− δs1 cos θ0

(
ε1 − ε2
ε2

)
1

4

(
1− t(1)

r

)2
}

∀ s = 1, 2, 3, ..., S, (D.5)

where it has been used that

ξ−1X0
1 (ξ) = 1, (D.6)

ξ−1X1
1 (ξ) =

√
ξ−2 + 1, (D.7)

∂X0
1 (ξ)

∂ξ
= 1, (D.8)
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∂X1
1 (ξ)

∂ξ
=

1√
ξ−2 + 1

, (D.9)

and

1√
3
ζ0

01Q
0
01(−1, t(1)

r ) + t(1)
r

(
1− ζ0

00Q
0
00(−1, t(1)

r )
)

= −1

4

(
1− t(1)

r

)2
. (D.10)
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