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Abstract

This work focuses on the large effect of small secondary stresses on the

compressive strength of concrete. The strength and especially the ductility

of structural concrete members depend on local triaxial stress conditions that

inevitably develop in the compressive zone just prior to failure. A failure cri-

terion for concrete, which accounts for the effect of a reduced density of the

concrete on the strength under fully compressive triaxial stress states, is pro-

posed. The criterion was derived by curve-fitting mathematical expressions to

axisymmetric strength data from a test programme on concretes of different

weights previously published. For the purpose of evaluation, it was compared

to other triaxial compressive strength data for lightweight aggregate concrete

available in the literature; and to the failure criterion in fib Model Code 2010.

It was found that, contrary to the Model Code criterion, the failure criterion

presented in this paper generally provides safe lower bound estimates for the

strength levels attained in the experimental tests.
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1. Introduction

Lightweight aggregate concrete (LWAC) has been used as a construction

material for many decades, with the main objective for using LWAC normally

being to reduce the dead weight of structures. Thus, with a low weight, the

dimensions of the foundations in buildings can be reduced in areas with low

bearing capacities, while the inertia actions are reduced in seismic regions, and

it also enables an easier handling and transportation of precast elements. Even

with the major advantage of a reduced weight and the high strength-to-weight

ratio of the material compared to conventional concrete, the use of LWAC is

still limited as a mainstream construction material in the building industry.

However, for large and advanced structures such as high-rise buildings, bridges

and offshore structures, it has been applied with great success [1, 2, 3, 4, 5]. The

major disadvantage of LWAC is the brittleness in compression at the material

level compared to normal weight concrete (NWC). However, the strength and

especially the ductility of structural concrete members depend on local triaxial

stress conditions that inevitably develop in the compressive zone just prior to

failure.

Today non-linear finite element analysis (NLFEA) is often used in design

and verification of reinforced concrete structures. However, various analysts

often obtain widely diverting results when modelling the same structure using

the same FE code due to the uncertainty connected to many of the material

parameters going into the analyses [6]. The response is significantly affected

by parameters describing mechanisms such as: compression softening due to

transverse cracking, confinement effects, tension softening, tension stiffening

and rebar bond slip. There are two main reasons for this lack of generality

and objectivity when the FE method is applied to concrete structures. Firstly,

the material models employed by many analysts do not realistically describe
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concrete as a material and, secondly, cracking of concrete may lead to numer-

ical instabilities of the analyses if not adequate precautions are taken. In this

respect it is interesting to note that remarkable good numerical results have

been reported when applying a brittle triaxial material model which takes into

account the increased transverse expansion of the concrete prior to failure [7]

The density dependent failure criterion presented in this paper was part of

a research project where the goal was to get a better understanding of the ulti-

mate behaviour of lightweight aggregate concrete at both the material and the

structural level [8]. The working hypothesis was that the three key material

characteristics generally dictating the ultimate response of concrete structures

was: the large effect small secondary stresses have on the compressive strength;

the abrupt increase of the transverse expansion at a stage close to, but not

beyond, the peak stress level; and the rapid unloading of the material beyond

the peak stress level. As a consequence of these features, the strength and espe-

cially the ductility of structural concrete members depend on local triaxial stress

conditions that inevitably develop in the compressive zone just prior to failure

rather than stress-redistributions owing to post-peak material characteristics as

commonly believed. Confinement effects introduce the secondary stresses which

increases the ductility of concrete as well as enhancing the concrete strength.

Additionally, an active confinement from external stresses is more effective than

a passive confinement, which is mobilized by an opposing transverse deforma-

tion from the Poisson effect. In reinforced concrete, the passive confinement

from transverse reinforcement is the most common, and numerous researchers

have investigated the effect of ordinary transverse steel reinforcement and the

effect of adding fibres on the confinement in normal density concrete, both ex-

perimentally and theoretically [9, 10, 11].For lightweight aggregate concrete,

similar effects have been reported [12, 13, 14]. The hypothesis in this work has
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previously been used with success to predict and explain the behaviour of nor-

mal weight concrete in the ultimate limit state [15, 16]. Hence, when applied

to lightweight aggregate concrete, a failure criterion, which accounts for the ef-

fect of a reduced density on the strength under fully compressive triaxial stress

states was needed.

Within structural concrete, the stresses frequently act in more than one di-

rection [17, 18]. Hence, since the pioneering work of Richart, Brandtzæg and

Brown [19], a large amount of research has been undertaken to describe the

strength properties of concrete under combined states of stress. This has led to

several acceptable formulations for the failure of concrete under general short-

term loading. However, none of them account for the density of the concrete.

Admittedly, the criterion implemented in fib Model Code 2010 (MC-10) [20] dif-

ferentiates between normal weight concrete and lightweight aggregate concrete,

although the density of the concrete is not a parameter. For normal density

concrete the strength under multiaxial stress can be expressed with the uni-

axial compressive strength since the failure can be considered as a function of

the strength of the mortar. However, for lightweight concrete the influence of

the aggregate must be taken into account since the failure can be governed by

splitting of the aggregates. The most common and easiest available parameter

for LWAC is the mass density of the concrete, which can be an input parameter

in the formulation for the failure. Another option could be to make the failure

dependent on e.g. the porosity of the aggregate.

Only a few researchers have examined the behaviour of LWAC under com-

bined states of stress [21, 22, 23, 24, 25, 26, 27]. The most comprehensive

investigation is a study performed by Hanson in 1963 [21], in addition a not so

well-known test programme conducted at ‘Ente Nazioanale per l‘Energia Elec-

trica’ (ENEL) in 1984 [26]. Since the latter forms the basis for the strength
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criterion proposed in this paper and the results are not so easily accessible, it is

briefly summarized in the next section.

2. The ENEL test programme

2.1. Experimental details

The result from this test programme were first presented at the ’International

conference on concrete under multiaxial compression’ held in Toulouse in 1984

[26]. The laboratory at ENEL was part of a joint test programme [28, 29]

were it proved to provide reliable results. Four different types of concretes were

examined: one heavyweight, one normalweight and two types of LWAC. The

composition of the mortar was the same for all concretes, i.e. only the weight of

the coarse aggregate particles varied. For all concretes, approximately 40 % of

the total volume consisted of coarse aggregate, while the remaining 60 % of the

volume was occupied by the mortar. The observed differences in strength and

deformational behaviour could therefore solely be attributed to the properties

of the aggregate. The heavyweight aggregate was a crushed mineral with a

high specific density (Barite); the normal weight aggregate was from a natural

source of alluvial gravels (Vailata), while the lightweight aggregate was either

sintered pulverized fuel-ash (Lytag) or expanded clay (Leca). The details of the

mix design are given in Table 1. The total weight and the uniaxial compressive

strengths established from the triaxial compression tests with zero confining

pressure are also included in the table.

The strength and deformational behaviour under axisymmetric triaxial com-

pression were studied by bringing 100mm of cubical specimens to failure by

following two different load paths: a hydrostatic loading up to a predetermined

load level with a subsequent increase of the stress in either the vertical direction

(triaxial compression) or equally in the two horizontal directions (triaxial ex-
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Table 1: Composition of the different concretes and the reference mortar utilized in the test
programme [26].

Barite Vailata Lytag Leca Mortar
(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3)

Portland cement 425 350 350 350 350 583
Effective water 175 175 175 175 292
Absorbed water - - 80 45 -
Sand 700 700 700 700 1167
Aggregate (8− 15 mm) 1850 1150 625 250 -

Total weight (kg/m3) 3075 2375 1930 1520 2042
Concrete strength (MPa) 41.6 40.2 38.7 15.5 44.5

tension). The load was applied through steel platens, which were lubricated by

polyethylene sheets with grease in-between to minimize friction, a test method

that has earlier been proven to provide reliable results [28, 29]. Four different

confining stress levels were examined for each load path, with three replications

of each, resulting in a total number of 120 test specimens in the test program.

Obviously, a confining stress level equal to zero leads to the special cases; uni-

axial compression and equibiaxial compression for load path 1 and load path 2

respectively.

2.2. Experimental strength data

Figure 1 depicts the strength data from the triaxial compression tests (upper

points) and the triaxial extension tests (lower points), with the data normalized

by the uniaxial compressive strength fc (established from the triaxial compres-

sion tests with zero confining pressure). Every strength value is the mean of

three tests conducted after 56 days of curing [26].

Normalized results usually leads to strength data that tend to fall onto a

single curve. This is a very convenient feature, since it allows the failure en-

velopes to be singly expressed as a function of fc. However, as the density of the

concrete decreases, the envelopes deviate toward the hydrostatic axis. Hence,

in order to capture the behaviour of the lightweight concretes, the effect of the

increased porosity of the aggregates must somehow enter into the expressions.
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4.3 Strength data from the ENEL tests

4.3.1 Axi-symmetric representation of the strength
data

Figure 4.1 depicts the strength results for the various con-
cretes and the reference mortar in the axi-symmetric stress
plane. The strength data are made dimensionless by dividing
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Figure 4.1: Failure envelopes in the axi-symmetric stress plane [65].
The upper set of curves results from tests under load path 1 (triaxial
‘compression’), while the lower set of curves results from tests under
load path 2 (triaxial ‘extension’).

107

Figure 1: Strength data in the axisymmetric stress plane.

Failure envelopes are often described mathematically by the variation of the ax-

ial stress σ1/fc as a function of the confining stress σ2/fc = σ3/fc. The ENEL

researchers followed this tradition and proposed the following equations for the

upper and lower set of curves respectively.

σ1

fc
= 1 + k1

(
σ2

fc

)k2

(1)

σ1

fc
=

[
1
k3

(
σ2

fc
− k5

)]k4

(2)

The parameters k were chosen as functions of the porosity of the aggre-

gates through second-degree polynomial expressions. It is interesting to note

the resemblance of Equation 1 to the linear expression σ1/fc = 1 + 4.1(σ2/fc)

proposed by Richart,Brandtz æg and Brown as the main outcome of their clas-

sical triaxial cylinder tests [19]. The second constant k2, added by the ENEL

researchers take on values below 1.0 and, thus allow for the curvature of the

envelopes towards the hydrostatic axis.
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2.3. Experimental deformational data

Figure 2 depicts the deformational data from the triaxial compression tests

(solid lines) and the triaxial extension tests (dotted lines). The deformational

data stem from the same tests that led to the strength data in Figure 1. The

results are presented as the the volume variation ∆V/V versus the applied

stress σ (normalized by the stress at failure fu). The figure presents curves for

each aggregate at four different confining stress levels. The maximum confining

stresses are 75% of the uniaxial compressive stress for the triaxial compression

tests and 30% for the triaxial extrension tests. In Figure 2 there is an increase

in the initial hydrostatic stress level from left to right. The far left unbro-

ken and dashed curves represent the special cases of uniaxial and equibiaxial

compression, respectively. As expected, the volume compaction increases with

an increasing stress level. However, it is more interesting to note that as the

porosity of the aggregate decreases, there is a tendency towards a continuous

volume compaction of the concrete. This is in contrast to the dense aggregate

concretes, for which the initial volume compaction is always followed by a sub-

sequent volume expansion, even for the fully compressive triaxial stress states.

Hence, for concretes with porous aggregates, the triaxial compressive strength

may be limited by the crushing of the aggregate. As a result, the failure surface

in the stress space will be close-ended. This can be modelled by introducing

a cap function in the description of the failure surface. Nevertheless, its shape

and intersection with the hydrostatic axis can not currently be assessed since

there is no triaxial compressive strength data for LWAC in the lower density

range or in the upper density range under moderate-to-high confining pressures,

for which this may become relevant.
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Figure 2: Deformational data presented as the volume variation versus the applied stress
normalized by the failure stress.

3. Failure criteria for concrete

3.1. The underlying theory

When establishing a failure criterion for concrete, it is usually assumed that

the material is homogeneous and isotropic. For an isotropic material, a general

state of stress (σx, σy, σz, τxy, τxz, τyz) can uniquely be defined by the princi-

pal stresses (σ1, σ2, σ3). Because the principal stresses are independent of the

coordinate system, they could in theory form the basis for the description of

the failure surface. However, for computer applications the failure criterion can
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conveniently be translating the stress state into its hydrostatic and deviatoric

components as shown in Figure 3.
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Figure 2: Deformational data presented as the volume variation versus the applied stress
normalized by the failure stress.
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Figure 3: Relationship between the Cartesian coordinates (σ1, σ2, σ3) and the octahedral
coordinates (ξ, ρ, θ).

It can be seen that alternatively to the normal Cartesian coordinates (σ1, σ2, σ3),

the stress state P can be described by a vector ON lying on the hydrostatic

axis, a vector NP on the deviatoric plane, and the angle θ of the latter vector

on the deviatoric plane. The lengths of the vectors are given by

ξ = |ON| · e =
1√
3
I1 and ρ =

√
|NP| · |NP| =

√
2J2 (3)

Further, the trigonometrical identity cos 3θ = 4 cos3 θ − 3 cos θ, combined with

the relation NP · i = ρ cos θ, yields the following expression for the rotational

variable θ on the deviatoric plane

cos 3θ =
3
√

3J3

2J
3/2
2

(4)
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In the above equations, I1 is the first invariant of the stress tensor and J2

and J3 are the second and third invariants of the deviatoric part of the stress

tensor. Moreover, as an alternative to represent the failure criterion in the

principal stress space, the octahedral stress space is often used as a coordinate

system. The hydrostatic and deviatoric components of the stress tensor are

then expressed in terms of the normal octahedral stress σo and shear octahedral

stress τo, which are defined as

σo =
ξ√
3

and τo =
ρ√
3

(5)

Since concrete may be considered to be isotropic before the failure surface

is attained, i.e. six-fold symmetry of the failure surface can be assumed, the

strength data from these load paths is sufficient to fully define the deviatoric

plane. Hence, if such strength data are determined for an adequate number of

hydrostatic stress levels, mathematical expressions for the entire failure surface

can be derived. Meridians represents the intersection curves between the fail-

ure surface and a plane containing the hydrostatic axis with θ being constant.

The state of stress on the meridians have two equal principal stresses. On the

compressive meridian (θ = 60◦) they are greater than the third, on the tensile

meridian (θ = 0◦) they are smaller.

The advantage of adopting an octahedral formulation of the material data

is that the same relations can be used to express uniaxial, biaxial and triaxial

concrete behaviour, i.e. the material model can be used to describe the be-

haviour of concrete under generalised states of stress [29]. The strength and

constitutive relations are obtained directly by fitting curves to material data

from multiaxial tests. Obviously, this requires a lot of testing at the material

level. However,for concrete, this seems to be the best option since, as stated in

11



the CEB-FIP state of the art report on finite element modelling of reinforced

concrete structures [6], ‘concrete is a complex and stubborn material that some-

times refuses to act according to accepted rules of mechanics’. Hence, it can be

argued that empirical fitted curves are to prefer over the classical continuum

mechanics formulations, since the latter seems to be to much of a straightjacket

for the mathematical descriptions and, moreover, does not seem to provide a

sound theoretical foundation for the material behaviour.

3.2. Octahedral representation of the strength data

Figure 4 shows the failure envelopes from the ENEL test programme in the

octahedral stress plane, thus, the strength data have been replotted in terms

of σo and τo. From this kind of representation, it can clearly be seen that the

compressive meridian and the tensile meridian of the failure surface generally do

not coincide, with the tensile meridian normally being closer to the hydrostatic

axis. This indicates that the strength of concrete not merely is a function of

the state of stress at failure (σo,τo), but also depends on the load path taken to

reach that particular combination of stresses. However, as the hydrostatic stress

component increases and the density of the concrete decreases, the envelopes

tend toward a single curve. This means that the state of stress at failure become

less dependent on the rotational variable θ, i.e. the shape of the deviatoric plane

becomes more circular. This is probably due to the strength being limited by the

compressibility of the aggregate. The deformational data from Figure 2 supports

this. For the normalweight and the heavyweight concrete, where the mortar gov-

erns the overall behaviour, the initial volume compaction of the material was

always followed by subsequent volume dilation before failure, also for fully com-

pressive triaxial stress states. However, as the weight of the aggregate decreased

and the hydrostatic stress level increased, a stage was eventually reached where

there was no volumetric strain reversal before failure, which clearly indicates
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a collapse of the aggregate phase. Hence, it may be sufficient to test for only

axi-symmetric states of stress, or maybe even only the ‘compressive’ ones. It

should be reminded that by ‘compressive’ ones is meant the entire ‘compres-

sion’ meridian, which includes both the T-T-C (Tension-Tension-Compression)

and the C-C-C regime. In this respect, it is also convenient to be aware of the

fact that the T-T-C or the T-C-C regime of concrete generally tend to be quite

similar [15].

the failure envelopes in the octahedral stress plane. From this
kind of representation, it can clearly be seen that the ‘com-
pression’ meridian and the ‘extension’ meridian of the failure
surface generally do not coincide, with the ‘extension’ meridian
normally being closer to the hydrostatic axis. This indicates
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Figure 4.2: Failure envelopes for in the octahedral hydrostatic-
octahedral deviatoric stress plane [65].
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However, as the hydrostatic stress component increases and
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Figure 4: Failure envelopes in the octahedral stress plane.

3.3. The density-dependent failure criterion

The proposed density-dependent failure criterion in this work [30], is a modi-

fication of the criterion proposed by Kotsovos [31]. By decomposing the response

of biaxially and triaxially loaded test specimens into octahedral stresses and

strains, simple expressions for secant and tangent bulk and shear moduli were

developed which are only dependent on stress level and compressive strength.

Assumptions in this model were that the deviatoric deformation due to pure

hydrostatic loading is negligible and pure deviatoric loading results in both de-

viatoric and volumetric deformation [15]. The state of strain corresponding to
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any state of stress can thus be calculated from Hookes law using the secant

moduli for that particular state of stress and a coupling term for the volumetric

response to deviatoric loading. The simple expressions for the failure surface

are given for the the compressive meridian (θ = 60◦) and the tensile meridian

(θ = 0◦) as

τoc

fc
= k1

(
σo

fc
+ 0.05

)k2

where k1 = 0.944 , k2 = 0.724 (6)

τoe

fc
= k3

(
σo

fc
+ 0.05

)k4

where k1 = 0.633 , k2 = 0.857 (7)

Furthermore, the meridians for any θ intermediate between 0◦ and 60◦ may be

described by the interpolating function given in Equation 8 [32]. Hence, once

the variations of τoc and τoe with σo are determined, the entire failure surface

is defined (assuming six-fold symmetry, i.e. isotropic behaviour).

τou =
2τoc(τ2

oc − τ2
oe) cos θ + τoc(2τoe − τoc)

√
4(τ2

oc − τ2
oe) cos2 θ + 5τ2

oe − 4τocτoe

4(τ2
oc − τ2

oe) cos2 θ + (τoc − 2τoe)2

(8)

For both the heavyweight and normal weight concrete, the curves are drawn

according to Equations 6 and 7 without modifications. However, in order to

capture the behaviour of the two lightweight concretes, the constants in the

expressions were made functions of the density of the concrete ρ through sec-

ond degree polynomial expressions. A regression analysis led to the following

relationships:
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k1(ρ) = −5.7378 · 10−9ρ2 + 0.0003710ρ + 0.0866

k2(ρ) = −1.1194 · 10−7ρ2 + 0.0009045ρ− 0.8020

k3(ρ) = −6.5941 · 10−8ρ2 + 0.0003387ρ + 0.1999

k4(ρ) = −3.5656 · 10−7ρ2 + 0.0018014ρ− 1.4125

These parameters are only valid in the fully compressive region of the failure

surface. In the tensile regions, it is assumed that Equations 6 and 7 can be

used in their original form due to a lack of relevant experimental data. Figure

5 compares strength data to the proposed density-dependent failure criterion

in the octahedral stress space, showing the difference in the compressive and

tensile meridian.

In Figure 6, the failure envelopes in the axisymmetric stress plane are pre-

sented together with the corresponding complete failure surfaces in the three-

dimensional stress space. In order to close the surfaces in tension, the tensile

hydrostatic stress is limited to 0.05fc. As seen in the figure the shape of the

failure surface in the deviatoric plane changes from almost triangular for low

hydrostatic stresses to approximately circular with increasing hydrostatic pres-

sure.

3.4. The failure criterion in Model Code 2010

The failure criterion employed in fib Model Code 2010 (MC-10) is based on

the Ottosen criterion [33] and is given by the equation

α
J2

f2
c

+ λ

√
2

fc
+ β

I1

fc
= 0 (9)
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Figure 5: Comparison of strength data to the proposed density-dependent failure criterion.

where the function λ depends on the deviatoric angle θ through the expres-

sion

λ = c1 · cos
[
1
3
· arccos(c2 · cos 3θ)

]
(10)

The factors α, β, c1 and c2 are material parameters assessed such that the

criterion fit the uniaxial compressive strength, the uniaxial tensile strength,

the biaxial compressive strength and a failure state (σo/fc, τo/fc)=(x, y) along

the compression meridian. In the original calibration the biaxial compressive

strength was taken as 1.16 × fc and the compression meridian was fitted to

pass through the point (−2.89, 2.31) (note that contrary to Figure 5,tensile
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Figure 6: Failure envelopes in the axisymmetric stress plane according to the proposed density-
dependent octahedral expressions together with the corresponding complete failure surfaces.

stresses are defined as positive). However, in MC-10 these values have been made

functions of fc. The biaxial compressive strength is taken as (1.2− 0.001fc)×fc,

whereas the fitting point on the compression meridian is given for NWC and

LWAC by:

(σ0, τ0) =
(
−240 , 185− 180

fc

100
+ 260

fc

100

2

− 84
fc

100

3)
(11)

(σ0, τ0) =
(
−60 , 250

fc

100
− 460

fc

100

2

+ 310
fc

100

3)
(12)

In Figure 7, the MC-10 criterion is compared to the proposed density-

dependent failure criterion. The tensile strength is chosen as 0.05 × fc in the

MC-10 criterion in an attempt to match the tensile regions of the two criteria. It

can be seen that the two criteria are quite similar, but that the MC-10 criterion

overestimates the strength in triaxial compression for both NWC and LWAC.
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Figure 7: The failure criterion in MC-10 and the proposed density-dependent criterion com-
pared to the strength data from the ENEL tests.

3.5. Comparison with other experimental data

It is not surprising that the proposed density-dependent criterion fits the

data used for its calibration. Hence, in Figure 8, the two criteria are compared

to other axisymmetric triaxial strength tests for LWAC performed by Niwa et

al. [22], Hobbs [25] and Hanson [21]. Contrary to the MC-10 criterion, it can

be seen that the proposed density-dependent criterion provide safe lower bound

values to all strength data. However, it is interesting to note from the Hanson

tests that if rounded lightweight aggregates with a dense outer shell are used

(black dots in the figure), the strength becomes more in accordance with the

MC-10 criterion and seems to depend less on the density, at least for the stress

levels examined in the tests.

4. Discussion

The strength of LWAC is governed by the properties of the mortar and

the aggregate and their interaction. In the ENEL test programme, the mortar

was kept constant, while the density of the coarse aggregate particles varied.
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Figure 8: Strength data in the axisymmetric stress plane according to tests

Nonetheless, in the Hanson tests the uniaxial compressive strength was kept

constant while the type of coarse aggregate particles varied. From Figure 8, it

can be seen that aggregates producing similar concrete density may lead to a

varying triaxial compressive strength, in which aggregates with a smooth dense

outer shell seem to perform better than aggregates with a porous surface. This

is probably due to an enhanced aggregate/mortar bond for the latter, since the

surfaces of a porous or pozzolanic character tend to improve the bond [34]. This

may have enabled these concretes to obtain the desired uniaxial compressive
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strength with a weaker mortar, as the aggregate will then have to take a greater

share of the load under triaxial compression.

Some researchers have suggested that the strength gain under triaxial com-

pression is a result of microcracks of a random orientation developing under

hydrostatic compression [35]. They act so as to inhibit the crack propagation

under subsequent deviatoric loading through the Cook-Gordon crack-stopping

mechanism [36]. Because increased aggregate/mortar bond results in a lower

degree of microcracking, this effect will diminish for the concretes with aggre-

gates with a porous surface. However, the concretes with aggregates with a

dense outer shell could behave more like a NWC. In fact, if the aggregates are

stronger and stiffer than the mortar, there might be no difference at all, since

the transfer of internal forces will be similar to that of a normal dense concrete

(see Figure 9). This implies that it is not merely the density that is impor-

Eaggregate > Emortar Eaggregate < Emortar

Figure 9: Internal stress transfer in concrete under a compressive load for either: a stiffer and
stronger aggregate embedded in a softer and weaker mortar; or a softer and weaker aggregate
embedded in a stronger and stiffer mortar [29].

5. Conclusions331

A failure criterion for concrete, which accounts for the effect of reduced332

density on the triaxial compressive strength, has been proposed. The criterion333

was derived by curve-fitting previously existing mathematical expressions for334

NWC [22] to axisymmetric strength data for concretes of varying density [17].335

Contrary to the MC-10 criterion [11], the proposed density-dependent criterion336

was found to provide safe lower bound estimates of the other triaxial compres-337

sive strength data for LWAC reported in the literature [12],[13],[16]. It should338

nonetheless be noted that that such data are scarce, and more data is needed339

to refine the criterion, e.g. with the inclusion of a cap function. Moreover, no340

data exists for tensile regions of the failure surfaces, which led to the (probably341

erroneous) assumption that these were similar to that of NWC.342

Acknowledgments343

Most of this work is based on the PhD thesis of H̊avard Nedrelid from the344

Norwegian University of Science and Technology. Sadly, he passed away in 2015.345

In his memory the author hopes he has been able to present the work with346

the respect and quality it deserves. The work was carried out with financial347

support from COIN, the Concrete Innovation Centre, which was a centre for348

18

Figure 9: Internal stress transfer in concrete under a compressive load for either: a stiffer and
stronger aggregate embedded in a softer and weaker mortar; or a softer and weaker aggregate
embedded in a stronger and stiffer mortar [37].

tant, but also the relative strength of the concrete compared to the density.

Hence, if a strong lightweight aggregate is used to produce an LWAC of modest

strength, the behaviour might correspond to that of an NWC [38], at least when
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an aggregate with a dense outer shell is used. However, if a light, and thereby

weak, aggregate is used to produce an LWAC of high strength (possibly utiliz-

ing the excellent bond characteristics of a lightweight aggregate with a porous

and pozzolanic surface), a very low triaxial strength gain is expected since the

aggregate will then be pushed to its limit even without a confining pressure,

and the amount of microcracking will then be reduced to a minimum.

5. Conclusions

A failure criterion for concrete, which accounts for the effect of reduced

density on the triaxial compressive strength, has been proposed. The criterion

was derived by curve-fitting previously existing mathematical expressions for

NWC [31] to axisymmetric strength data for concretes of varying density [26].

Contrary to the MC-10 criterion [20], the proposed density-dependent criterion

was found to provide safe lower bound estimates of the other triaxial compres-

sive strength data for LWAC reported in the literature [21, 22, 25]. It should

nonetheless be noted that that such data are scarce, and more data is needed

to refine the criterion, e.g. with the inclusion of a cap function. Moreover, no

data exists for tensile regions of the failure surfaces, which led to the (proba-

bly erroneous) assumption that these were similar to that of NWC. It is also

important to realise the complexity involved in defining a failure criterion for

concrete. This work is limited by taking into account only the density of the

concrete in the formulation. The type of aggregate influences highly the bond

between aggregate and mortar and plays and important role in distribution of

the internal stresses in the concrete. In some cases this factor can be more

relevant than the density of the aggregate.
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