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Abstract

Motivation: Cartilage is a robust but flexible connective tissue found in most joints of
the body. The collagen fibres present in the extracellular matrix of cartilage contribute to
its tensile strength and stiffness. The purpose of this study is to develop and implement
methods to determine the orientation and anisotropy of collagen fibres in 3-D images gen-
erated with multi-photon microscopy. The motivation behind developing these techniques
is to improve the foundation for further studies on understanding the characteristics of
the cartilage matrix. This in turn would give a better foundation for developing artificial
matrices and mechanical models, as well as improve diagnostics.

Material and methods: The two methods developed in this study are based on analysing
the frequency domain. One is an expansion of a previous developed method by Chaudhuri
et al. [1]. This method is based on evaluating the average intensity at different directions
in the frequency domain. The direction with the least average intensity is equivalent to
the direction of the fibres. The other method is based on thresholding the frequency
domain according to intensity followed by fitting an ellipsoid to the remaining data set.
The direction of the collagen fibres is equivalent to the direction of the shortest axis of
the ellipsoid. These methods are called the sector and ellipsoid method, respectively. To
determine how robust these methods are a series of tests were developed. The focus of
these tests was to determine if the methods are rotational invariant and if the results
are influences by different preprocessing techniques. These preprocessing techniques are:
median filtering, deconvolution and skeletonization of the original image containing the
collagen fibres. It is also important to determine the sensitivity of the ellipsoid method
according to the chosen threshold value. In addition data generated fibres and frequency
domains were made to determine the accuracy of the methods.

Results and conclusion: The sector method was not very robust. For most cases there
is not one specific direction that has the least average intensity in the frequency domain.
Instead there is a quite large minimum area. The ellipsoid method shows promising
results. It managed to find the correct direction both for the data generated data sets,
but also for the real images. It seems like no preprocessing nor frequency filtering, except
for thresholding, is needed to still find the correct direction and its anisotropy. The only
remark is that the automatically chosen threshold value was to low for one of the samples.
This can probably be improved by making a slight change in the process for choosing a
threshold value.





Sammendrag

Motivasjon: Brusk er et robust men fleksibelt bindevev tilstede i de fleste ledd i krop-
pen. Det er kollagenfibrene i den extracellulærmatrisen til brusk som gir den sin strekk-
fasthet og stivhet. Målet med dette studiet er å utvikle og implementere metoder for å
bestemme retningen til kollagen fiber i 3-D bilder avbildet med multifoton mikroskopi.
Motivasjonen bak utviklingen av disse metodene er å forbedre grunnlaget for videre forsk-
ning p̊a å forst̊a egenskapene til brusk. Dette vil igjen gi et bedre fundament for å utvikle
kunstig brusk og mekaniske modeller, samt forbedre diagnostikk.

Materialer og metode: De to metodene utviklet i dette studiet er basert p̊a å analysere
frekvensdomenet. Et av de er en videreføring av en tideligere utviklet metode laget av
Chaudhuri et al.[1]. Denne metoden er basert p̊a å evaluere gjennomsnittsintensiteten av
frekvensdomenet i forskjellige retninger. Retningen med minst gjennomsnittsintensitet er
ekvivalent med retningen til kollagenfibrene. Den andre metoden er basert p̊a terskling av
frekvensdomenet basert p̊a intensitet, fulgt av å tilpasse en ellipsoide til det gjenværende
datasettet. Retningen til kollagenfibrene er lik retningen til den korteste aksen av ellip-
soiden. Disse metodene vil henholdvis bli kalt sektor- og ellipsoidemetoden. En serie av
tester er utviklet og implementert for å bestemme hvor robuste disse metodene er. Målet
av disse testene var blant annet å finne ut om disse metodene er rotasjons invariante og om
resultatene blir p̊avirket av forskjellige forbehandlingsteknikker. Disse forbehandlingstek-
nikkene er et median filter, dekonvolusjon og skeletonization av originalbildet. Det er ogs̊a
viktig å vite hvor avhengig resultatene til ellipsoide metoden er av terskelsverdien. I til-
legg har det blitt laget data genererte fibre og tilhørende frekvensdomener for å bestemme
presisjonen til metodene.

Resultater og diskusjon: Sektormetoden er ikke veldig robust. For de fleste tilfellene
er det ikke kun en retning som har den minste gjennomsnittelige intensiteten i frekvens
domenet, men et helt omr̊ade. Ellipsoidemetoden viser veldig lovende resultater. Den finner
riktige retningen b̊ade for de data genererte prøvene, men ogs̊a for de virkelige bildene. Det
ser ut til at den trenger verken forbehandling av bildene eller filtrering av frekvensdomenet,
bortsett fra terskling, for å komme fram til riktig resultat. Den eneste anmerkningen er at
den fant fram til feil intensitet som terskelverdi for en av prøvene. Dette kan sannsynligvis
bli forbedret ved en liten endring i prosessen som bestemmer terskelverdien.
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Chapter 1

Introduction

Cartilage is a solid, firm, but at the same time flexible connective tissue, and is amongst
others present in joints, the rib cage and the nasal cavity. Even though cartilage can
handle a considerable amount of pressure, once damaged it has weak ability to heal itself.
This can be a problem in cardiothoracic surgery when the hyaline cartilage connected to
the ribs has to be cut to enter the chest. It is also related to osteoarthritis, which is a
degenerative joint disease associated with ageing and injury of cartilage in joints, often
causing chronic pain, deformity of the joint, and deterioration of the cartilage [2, 3].

Hyaline cartilage consists of chondrocytes surrounded by an matrix consisting of col-
lagen fibres, proteoglycan aggregates, multiadhesive glycoproteins and intercellular water.
The high amount of water and its mobility in the matrix contributes to the load bearing
capacity. It is the collagen fibres that give cartilage its tensile stiffness and strength, and
their orientation plays an important part in this. The chondrocyte produce the extracellu-
lar matrix. Their low mobility and limited ability to reproduce rapidly is one of the main
reasons why cartilage can hardly repair itself [2, 4, 5].

A better knowledge about the characteristics of the extracellular matrix of hyaline car-
tilage would give a deeper understanding of the cartilage function and would for example
give a more solid foundation for making artificial matrices to replace damaged cartilage,
develop mechanical models and improve diagnostics.

For this purpose it is important to develop a quantitative method to determine the
collagen fibre orientation in cartilage. Some imaging techniques, like second harmonic
generation polarimetry [6], magnetic resonance imaging with T2 relaxation [7] and small
angle light scattering [8], can obtain the orientational distribution of the collagen fibres
directly. Other imaging techniques produce images of the collagen structure, and thereby
require quantitative analytical methods to determine the orientation of collagen fibres in
images. Previous work on this topic has already provided several methods. Most of these
were developed for 2-D images [1, 9, 10], but also some for 3-D [11], using a variety of
techniques, like the use of the Hessian matrix [10], Hough transform [12], gradient vectors
[13] and analysis of the frequency domain [1, 9, 14, 15, 16]. Many of these techniques were
developed not specifically to determine the collagen fibre orientation in cartilage, but for
example in the skin [16], or maybe for a complete different field like the fibre orientation
of paper [15].

A variety of imaging techniques can be used to image cartilage. Bulk samples can be
imaged by the use of magnetic resonance imaging [7, 17] and X-ray diffraction [18, 19],
with the disadvantage of not being able to resolve individual collagen fibres. Imaging
techniques with higher resolution but where the tissue has to be sectioned are electron
microscopy [20, 21], multi-photon microscopy [10, 22] and polarised light microscopy [23].
The only non-invasive imaging technique mentioned is magnetic resonance imaging. In
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this study multi-photon microscopy is used for imaging. The advantages of using multi-
photon microscopy are high resolution, no need for sample preparation before imaging and
the possibility of 3-D imaging.

The aim of this study is to develop and implement techniques to quantitatively de-
termine the orientation of collagen fibres in 3-D images and degree of anisotropy. These
methods are based on analysing the frequency domain. One of these is an expansion of a
previous developed method [1, 14, 15], where the intensity distribution of the frequency
domain is evaluated at different angles. The other is based on fitting an ellipsoid to the
thresholded frequency domain. In addition a series of tests were developed and performed
to determine the robustness of these techniques.
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Chapter 2

Theory

2.1 Cartilage

Part of the aim of this study is to develop a method to determine collagen orientation in
cartilage. Cartilage is a flexible but robust connective tissue. It is an essential part of the
human body and is found in most joints. The problem with cartilage is its inability to
repair itself [2, 24, 25].

There are three types of cartilage: hyaline, elastic and fibrocartilage. In this study
the matrix of hyaline cartilage is examined. The extracellular matrix of hyaline cartilage
is a complex tissue with spaces that contain chondrocytes. The matrix itself consists
of collagen, proteoglycan aggregates, multiadhesive glycoproteins and intercellular water
[2, 24].

The orientation of the collagen fibres in articular cartilage depend on depth from
articular surface and there are three distinct layers. These layers are named the superficial,
middle and deep layer, where the superficial layer is the closest to the articular surface. In
the superficial layer the collagen fibres are oriented parallel to the surface. In the middle
layer they are oriented randomly, in coils or aligned in radial bundles. The fibres are
oriented normal to the surface in the deepest layer [25, 26]. The chondrocytes within the
matrix are shaped in a similar fashion. In the superficial and deep layer they are elongated
and respectively oriented parallel and orthogonal to the surface. In the middle layer they
have a round appearance [24, 25]. Only samples from the superficial layer are examined
in this study. An example is given in figure (2.1)

(a) xy-plane (b) xz-plane

Figure 2.1: Illustrates an image of collagen fibres in hyaline cartilage generated with
multi-photon imaging.
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2.2 Image properties and imaging

2.2.1 Second harmonic generation microscopy

In this study the multi-photon process called second harmonic generation (SHG) is used
to image cartilage. This is a nonlinear photon process whereby two photons of a certain
frequency are combined to a photon of twice the energy. It requires an incoming electric
field that is strong enough to cause non-symmetric molecules to create an oscillating field at
twice the frequency of the incoming field. Within the cartilage matrix the collagen fibres
have a strong second-order susceptibility due to their organised, non-centrosymmetric
structure [27, 28, 29].

The multi-photon microscope uses a pulsed titanium:sapphire (Ti:sapphire) laser with
a centre wavelength of 800 nm. The laser has to have a high flux density in order to induce
the SHG. Using a pulsed laser reduces the total power required by the system, as well as
reducing the average power applied to the sample [27, 30].

Most of the signal generated in the sample propagates in the same direction as the
incoming beam. This part of the signal will always be in phase, since the phase of the
molecules in the sample depends on the phase of the exciting beam [27].

SHG only occurs at the focus of the microscope. It is only here the flux density is high
enough to induce SHG. Therefore the observed signal must come from the focal spot of
the microscope [27, 31]. By moving the sample relative to the focal spot a 3-D image of
the sample can be generated.

To filter the excited light from the incoming beam a dichroic beam splitter is used.
An advantage of this imaging technique is that the SHG has no energy dissipation to

the sample. This means that the sample receives no energy, as opposed to fluorescence
microscopy, and thereby no bleaching of SHG signal [27, 29].

2.2.2 Point spread function

Images created by a microscope is a convolution between the “perfect”image of the object,
I(x, y, z), and the point spread function (PSF), h(x, y, z), of the microscope,

I ′(x, y, z) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

I(x+ k, y + l, z +m)h(k, l,m) dk dl dm,

I ′ = I ⊗ h.
(2.1)

⊗ denotes convolution [30, 32].
The PSF of a microscope describes the smallest object that the microscope can resolve.

For a confocal microscope, as opposed to the conventional microscope, the size and shape
of the PSF is not only determined by the size and shape of the volume where the signal
generation occurs. In addition a pinhole limits the signal to that generated in the focal
plane. This is useful for fluorescence microscopy since it removes out-of-focus light. In
multi-photon microscopy the signal is already limited in the axial direction, because it
is only around the focal spot that the flux density of the beam is high enough for SHG
[27, 31]. Accordingly no pinhole is needed and the confocal microscope is turned into a
conventional microscope by opening the pinhole fully.

The PSF are of interest is that the effects of the PSF on the image can be partially
removed by deconvolution (see section 2.5.1). A theoretical PSF can be calculated based
on the properties of the microscope. For a conventional microscope the PSF will be given
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by

h(v, u) =
∣∣h′ (v, u)

∣∣2p
=
∣∣∣∣∫ 1

0
e
iuρ2

2 J0(vρ)ρdρ
∣∣∣∣2p . (2.2)

Here J0 is a Bessel function of the first kind of the order zero. Depending on whether
it is a one, two or three photon process p is either one, two or three. The PSF, h, in
this equation is the same as the one in equation (2.1) but given as a function of other
coordinates. The connection between the optical radial and axial coordinates, v and u,
given in equation (2.2) and the real radial and axial coordinates, r and z, are

v =
2π
λ
rn sinα

u =
8π
λ
zn sin2(α/2).

(2.3)

Here n sinα is the numerical aperture and λ is the incident wavelength.
A theoretical PSF for the microscope can be generated as long as one knows the

numerical aperture, the index of refraction of the medium between the objective and its
focal point and the incident wavelength [33]. The PSF of the microscope used in this
study is illustrated in figure (2.2).

The reason a theoretical PSF is generated instead of measuring the PSF of the micro-
scope is that there are no approximate point sources that can induce SHG.

Figure 2.2: Illustrates the xz-plane of a theoretically generated PSF.

2.3 Spatial filters

The data sets used in this study contain noise. This noise might influence the process of
determining the orientation of collagen fibres. To remove the noise, different filters can be
applied. The ones used in this study are a median and a Savitzky-Golay filter.

2.3.1 Noise reducing median filter

A median filter is a noise reducing, nonlinear filter. Linear filters have the disadvantage
of not only removing noise but also reducing image quality and blurring the edges. The
median filter on the other hand is good at removing noise whilst mostly preserving the
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edges. This is due to the fact that every structure smaller than half the filter size is removed
whilst the rest is approximately unchanged. It excellently removes salt and pepper and
speckle noise, and works better than a Gaussian filter for small levels of Gaussian noise
[34].

A median filter replaces the intensity of every voxel in the three-dimensional image by
the median of the voxels within a surrounding region, R,

I ′(x, y, z) = median {I(x+ k, y + l, z +m)} , where (x+ k, y + l, z +m) ∈ R. (2.4)

If the intensities from the voxels within the region R are sorted in ascending order,
where Ii has a lower value than Ii+1, the median is defined as [35]

median {I0, I1, ..., In, ..., I2n} = In. (2.5)

(a) xy-plane (b) xz-plane

Figure 2.3: Illustrates the effect of applying a median filter to the sample from figure
(2.1).

2.3.2 Savitzky-Golay filter

The basic idea of the Savitzky-Golay filter is to fit a polynomial to subsections of the
image set and replace a chosen voxel within the subsection by the fitted value.

In this section the mathematics of the filter is first explained in one dimension, then
expanded to two dimensions. The extension to higher dimensions follows the same pattern.

There are two adjustable parameters in this filter, the window size, m and the order
of the polynomial, n. Table (2.1) illustrates a 1-D filter with a window size of nine pixels
where the centre pixel will be replaced.

Table 2.1: Example 1-D filter size. The local window coordinates are given by xi. Ij is
the intensity of the pixels within the analysed window.

xi
-4 -3 -2 -1 0 1 2 3 4
I1 I2 I3 I4 I5 I6 I7 I8 I9

The order of polynomial is based on which will fit the best with the given data set.
In general, for intensity plots similar to our own a fourth order polynomial with filter size
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similar to the fibres diameter is the best [36]. In this study a fourth order polynomial is
used and the appropriate filter size is determined experimentally.

In this example a fourth order polynomial will be used

f(xi) = a0 + a1xi + a2x
2
i + a3x

3
i + a4x

4
i . (2.6)

We want to minimise the error, ε, in the following equation

f(xi) = Ii + ε or X~a = ~I + ε. (2.7)

Here ~Xi = [1 xi x2
i x3

i x4
i ], X = [ ~X1

~X2 ... ~X9]T , ~a = [a0 a1 a2 a3 a4]T and
~I = [I1 I2 ... I9]T .

To find the optimal coefficients, ~a, the least squares fitting is applied

~a = (XTX)−1XT ~I. (2.8)

Now everything is given to calculate ~a. (XTX)−1XT is universal for all sections of
the image and depends only on how we define the window and which polynomial is fitted.
Equation (2.6) shows that it is the easiest to find the approximated intensity of the pixel
at the position where xi = 0, since it will be given by a0. For the given case the first row
of (XTX)−1XT is illustrated in table (2.2). a0 can be found by multiplying this row with
the image section, ~I.

Table 2.2: The first row of (XTX)−1XT for the window illustrated in table (2.1) and a
polynomial of forth order.

Savitzky-Golay coefficients
0.0350 -0.1282 0.0699 0.3147 0.4172 0.3147 0.0699 -0.1282 0.0350

By the use of the Savitzky-Golay filter also the first derivative can be found. It will
be given by a1 for the position xi = 0, see equation (2.6). a1 is found by multiplying the
second row of (XTX)−1XT with the image section, ~I.

At the edges of the image one can not define the window in the same manner, since it
will lead to boundary effects. The way we have chosen to solve this problem is by keeping
the window size, but moving the position of the pixel that will be replaced. For example if
the value of the first pixel in the image has to be fitted the window is defined like the one
shown in table (2.3). This will alter the value of (XTX)−1XT , but the procedure remains
the same [36].

Table 2.3: Example of a window defined for the first pixel in an image. The local window
coordinates are given by xi. Ij is the intensity of the pixels within the analysed window.

xi
0 1 2 3 4 5 6 7 8
I1 I2 I3 I4 I5 I6 I7 I8 I9

Applying a 2-D Savitzky-Golay filter is quite similar to applying the 1-D filter.
Table (2.4) illustrates an 5×5 window where the centre pixel is the one that is fitted.
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Table 2.4: Example filter size 2-D. The local window coordinates are given by xi and yi.
Ij is the intensity of the pixels within the analysed window.

xi
-2 -1 0 1 2

yi

-2 I1 I2 I3 I4 I5
-1 I6 I7 I8 I9 I10

0 I11 I12 I13 I14 I15

1 I16 I17 I18 I19 I20

2 I21 I22 I23 I24 I25

To keep things simple a second order polynomial is fitted in the 2D case, given by

f(xi, yi) = a00 + a10xi + a01yi + a20x
2
i + a11xiyi + a02y

2
i . (2.9)

We still want to minimise the error, ε, in

X~a = ~I + ε. (2.10)

Which is approximated by
~a = (XTX)−1XT ~I. (2.11)

The rest of the equations just need some minor adjustments. Xi = [1 xi yi x
2
i xiyi y

2
i ],

X = [X1 X2 ... X25]T , ~a = [a00 a10 a01 a20 a11 a02]T and ~I = [I1 I2 ... I25]T [37].
In the same manner the 2-D filter can be expanded to a 3-D filter.

(a) xy-plane (b) xz-plane

Figure 2.4: Illustrates the effect of applying a Savitzky-Golay filter to the sample from
figure (2.1).

2.4 The frequency domain

2.4.1 Discrete Fourier transform

In this study the frequency domain is analysed to obtain the direction of the collagen
fibres.
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The discrete Fourier transform (DFT) decomposes a signal into its frequency compo-
nents. The one dimensional DFT of an Nth-order sequence is given by [38]

F (k) =
N−1∑
x=0

f(x)e−
i2πk
N

x. (2.12)

To expand the DFT to three dimensions the fact that it is a separable function is applied.
Separability means that a three dimensional DFT can be expressed as the outer product
of three one dimensional DFTs [39],

F (kx, ky, kz) =
Nx−1∑
x=0

Ny−1∑
y=0

Nz−1∑
z=0

f(x, y, z)e−i2π
“
kx
Nx

x+
ky
Ny

y+ kz
Nz

z
”

=
Nx−1∑
x=0

e−
i2πkx
Nx

x
Ny−1∑
y=0

e
− i2πky

Ny
y
Nz−1∑
z=0

e−
i2πkz
Nz

zf(x, y, z).

(2.13)

The computation of the DFT can be very time consuming especially since the size of
the image, (Nx, Ny, Nz), often is large. There are techniques to reduce the total number
of calculations. The use of symmetry attributes of the DFT for certain size dimensions,
for example when N is a power of two, is one of these. The application of these techniques
to decrease the computational time is called the fast Fourier transform (FFT) [40].

Spectral leakage is an important source of noise in Fourier images. These are caused
by the DFT assuming that the image repeats itself periodically in all directions. The
transition from one side of the image to the other might not be gradual. This gives
amongst others rise to a strong signal along the main axes in the Fourier space [41].

To reduce this effect a window can be applied. Windowing means making the borders
of the image continuous by gradually reducing the intensity of the image to zero at the
edges [41]. In this study a Hann window is used for this purpose (see figure (2.5)) [42].

Figure 2.5: Hann window.

2.4.2 Frequency filtering and interpretation

Fibre orientation in the spatial domain can be determined by analysing the frequency
domain. Therefore it is important to understand how structures in the spatial domain
affect the frequency domain. To get a deeper understanding of the relation between the
spatial domain and the frequency domain some 1-D examples of intensity distributions
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and their Fourier transform are examined as well as an expansion to 2-D and 3-D. This is
followed by a discussion about the frequency filtering used in this study.

All the computer generated figures in this section are designed in such a way that there
is no spectral leakage (section 2.4.1) and therefore no windowing is used.

Lets start by looking at a 1-D line normal to the fibre direction. Assume that the
distance between fibres is constant and equal to the diameter of the fibres. The intensity
will then have a distribution somewhat like the sinusoidal function illustrated in figure
(2.6a). A sine function has a specific wavelength and thereby corresponds to a single
frequency, as illustrated in figure (2.6b). The signal in the middle corresponds to the DC
component of the image, the frequency domain is symmetric around this point. When the
distance between fibres decreases compared to image dimensions, the wavelength becomes
shorter. In the frequency domain this action causes the frequency components to move
further from the centre (see figure (2.7)).

(a) Spatial domain (b) Frequency domain

Figure 2.6: The images represent the spatial and frequency domain for 1-D fibres with a
diameter equal to the distance between them.

(a) Spatial domain (b) Frequency domain

Figure 2.7: The images represent the spatial and frequency domain for 1-D perfect fibres
with a diameter equal to the distance between them. Here the distance between fibres is

smaller compared to the image size than in figure (2.6).

What will happen if the fibre diameter is larger than the given distance between them?
Physically this is not possible. However blurring of the image increases the apparent
fibre thickness, giving rise to the possibility of overlapping intensities. The new intensity
distribution has the same wavelength but a decreased amplitude (see figure (2.8a)). As a
consequence the same frequencies are present in the frequency domain but with a reduced
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(a) Spatial domain (b) Frequency domain

Figure 2.8: The images represent the spatial and frequency domain for 1-D fibres where
the distance between fibres is smaller than the diameter of the fibres.

amplitude, as can be seen in figure (2.8b). This can be understood from the 1-D DFT,
given by equation (2.12). To explain this lets say that the initial intensity distribution
is given by 0.5 + 0.5 sin(x) and for the overlapping fibres it is 0.75 + 0.25 sin(x). The
frequency domain for the original image is

F (k) =
N−1∑
x=0

(0.5 + 0.5 sin(x))e−
i2πk
N

x

= 0.5
N−1∑
x=0

e−
i2πk
N

x + 0.5
N−1∑
x=0

sin(x)e−
i2πk
N

x.

(2.14)

The frequency domain for the overlapping fibres will be given by

F (k) =
N−1∑
x=0

(0.75 + 0.25 sin(x))e−
i2πk
N

x

= 0.75
N−1∑
x=0

e−
i2πk
N

x + 0.25
N−1∑
x=0

sin(x)e−
i2πk
N

x.

(2.15)

The DC component has increased, whilst the signal in the frequency domain generated
by the sin(x) wave has decreased. Thereby the frequency components of interest have a
reduced intensity.

If the diameter is smaller than the distance between fibres the signal becomes more
complex. High frequencies become increasingly important as the diameter shrinks. This
is because high frequencies are required to constitute the sharp edges in the signal (see
figure (2.9)). This causes the frequency domain to spread and high frequencies become
more dominant as the diameter of the fibres decreases.
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(a) Spatial domain (b) Frequency domain

Figure 2.9: The images represent the spatial and frequency domain for 1-D fibres where
the distance between fibres is larger than the diameter of the fibres.

In reality the distance between fibres is not constant (see figure (2.10a)). From the
previous discussion it is clear that a variety of frequencies are present in this signal (see
figure (2.10b)). Even more so if the diameters of the fibres are allowed to vary as well (see
figure (2.11)).

(a) Spatial domain (b) Frequency domain

Figure 2.10: The images represent the spatial and frequency domain for 1-D fibres with a
variating distance between them.

(a) Spatial domain (b) Frequency domain

Figure 2.11: The images represent the spatial and frequency domain for 1-D fibres with a
variating the distance between fibres but also a variating fibre thickness.
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Lets return to the neatly organised fibres and add a second dimension. The dimension
that is added is the one along the length of the fibres (see figure (2.12a)). If the fibres
stretch over the full length of the image, along the fibre direction there will only be a
DC component. The direction along the thickness of the fibres on the other hand will be
represented by the 1-D signal discussed above. This means that the frequency domain
will consist of the 1-D frequency components distributed over a line normal to the fibre
direction, as illustrated in figure (2.12b).

(a) Spatial domain (b) Frequency domain

Figure 2.12: The images represent the spatial and frequency domain for 2-D perfect
fibres.

In 3-D, neatly organised fibres, as the one in figure (2.13a), consists of a few specific
frequency components in the plane orthogonal to the fibre direction figure (2.13b).

The collagen fibres are not organised as perfect (see figure (2.1)). Similarly to the 1-D
case (figure (2.11)) the distance between fibres is not constant, neither is the overall fibre
diameter. In addition noise is present in the image. This causes a spread of the frequency
components around the dc-component in the plane orthogonal to the fibre direction.

(a) Spatial domain (b) Frequency domain

Figure 2.13: The images represent the spatial and frequency domain for 3-D perfect
fibres.

Due to the anisotropy of the PSF (see section 2.2.2) fibres are not round but stretched
in the z-direction (see figure (2.1)). In the direction where the fibres are stretched only low
frequencies are present, similar to the 1-D case (see figure (2.8)). In the direction where the
fibres are not stretched each fibre is distinct, similar to figure (2.9), thereby high frequency
components are present in this direction. This causes the frequency components not to be
spread like a disc around the dc-component, but like an ellipse (see figure (2.14b)).
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(a) xy-plane (b) xz-plane

Figure 2.14: Illustrates the frequency domain of the sample from figure (2.1) with
frequency filtering.

Last but not least the fibres do usually not point perfectly in the same direction, there
might be some slight changes in intensity along their length, or they might not run through
the whole image. This gives rise to frequency components not laying solely in the plane
orthogonal to the fibre direction. The more anisotropic the orientation of the fibres are,
the more high frequencies will be present in the fibre direction.

Overall this causes the frequency domain to resemble an ellipsoid, where the short axis
is in the fibre direction, the medium axis in direction where the diameter of the fibres are
stretched, and the long axis is in the direction where the diameter is not stretched (see
figure (2.14)). From now on this pattern in the frequency domain will be referred to as an
ellipsoid.

As the fibre direction becomes more anisotropic the short axis of the ellipsoid will
increase. If the fibres are completely randomly organised the frequency domain will be
approximately a sphere.

The two methods for determining fibre orientation developed in this study are based
on finding the direction of the shortest axis of the ellipsoid in the frequency domain. To
make these methods less computationally demanding frequency components that are not
of interest are removed from the frequency domain. The highest frequency of interest is
the one representing the diameter of the fibres. Thereby all frequency components that
are higher can be removed, leaving a spherical data set. The radius of this spherical data
set is approximately the same length as the longest axis of the ellipsoid. The same can be
done for low frequencies. Low frequencies representing half the image size or more are not
of interest. These two filtering processes are a standard in this study. It will be specified
if they are not applied.

One of the mentioned techniques involves fitting an ellipsoid to the frequency domain
(see section 2.6.3). The problem with this technique is that it only considers the coordi-
nates of each data point and not the intensity. Thus to be able to apply this technique the
data points representing the ellipsoid must be extracted. For this purpose segmentation is
applied, since the data points belonging to the ellipsoid in general have an higher intensity
than the surrounding data points (see figure (2.14)). The appropriate threshold value is
approximated by finding the maximal intensity on the surface of the spherical data set.
It will be here that the ellipsoid intersects the frequency filtered sphere, and thereby this
value will represent the lowest intensity on the ellipsoid.
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2.5 Image structure enhancement

As mentioned in section 2.4.2, the stretched shape of the fibres due to the anisotropic PSF
causes the ellipsoid in the frequency domain to have a short, medium and long axis instead
of resembling a disc. This might cause the medium and short axis to become too similar
in length, making it difficult to extract the correct direction of the fibres and it might
influence the measurement of the directional anisotropy. As an attempt to reduce/remove
the anisotropic effect of the PSF deconvolution and skeletonization are implemented.

2.5.1 Deconvolution

Images created by a microscope are a convolution of a perfect image, I, and the PSF, h,

I ′ = I ⊗ h. (2.16)

Deconvolution, which is the reverse of convolution, can remove the blurring caused by the
PSF to a certain degree.

An easy way of applying deconvolution would be by first applying the DFT. A convo-
lution in the spatial domain becomes a multiplication in the frequency domain. Therefore
deconvolution becomes a division in the frequency domain,

F{I} =
F{I ′}
F{h}

. (2.17)

A problem is that there is always noise present in images generated by microscopes.
The conversion from photons to electric signal is accompanied by noise, as well as the
conversion from an analog to digital signal. In addition there is photon noise, for weak
signals the resulting flux might vary due to the quantal nature of light. Noise is amplified
by the deconvolution method described above to such a degree that this method gives
useless results [30].

(a) xy-plane (b) xz-plane

Figure 2.15: Illustrates deconvolution applied to the sample from figure (2.1).

To overcome this problem more sophisticated deconvolution algorithms have been de-
veloped. The one that has been applied in this study is an iterative deconvolution algo-
rithm.

The iteration process works by

1. A start image I0 is guessed.

2. Convolution of the PSF to the estimate is applied and compared with the image
from the microscope I.
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3. Based on the error between the last estimate and the image from the microscope a
new image is estimated.

4. Any negative voxels are put to zero and any other given restrictions are applied.

5. When the stop criterion is reached, this process is terminated. If not step 2 and
onwards is repeated.

Both the start estimate and how the new estimate is generated vary between the
different deconvolution techniques.[30, 43]

2.5.2 Skeletonization

Over the years several techniques have been developed to find the skeleton of 3-D im-
ages. Many of them are developed for binary images [44, 45, 46, 47], methods have been
developed for grayscale images as well [48, 49, 50, 51].

In this study we will expand and implement the 2-D method described by Yu and
Bajaj [52] to 3-D.

The basic idea behind this method of skeletonization is to define a vector field of the
image, diffuse it in the areas that do not belong to the centre of the fibres, followed by
finding the skeleton strength map (SSM) of the remaining vector field.

From the normal gradient field it is not possible to determine where the fibres are
located. For this reason the vector field is defined as the vector from each voxel to the
nearest neighbour with the lowest intensity. This way all the vectors point away from the
centre of the fibres. Mathematically this vector field is defined as

g(~r) = (I(~r)− I(~rmin))
~rmin − ~r
| ~rmin − ~r |

. (2.18)

Here I(~r) is the intensity of the voxel with location ~r and ~rmin is the location of one of
the 26 nearest neighbours with the lowest intensity.

The goal of the diffusion is to preserve those vectors that are close to the centre of the
fibres whilst smooth those that are not. For this reason anisotropic diffusion, equation
(2.19), is applied instead of isotropic diffusion, equation (2.20).

du

dt
= ∇ · (µ(~r, t)∇u)

dv

dt
= ∇ · (µ(~r, t)∇v)

dw

dt
= ∇ · (µ(~r, t)∇w)

(2.19)

du

dt
= µ∇2u

dv

dt
= µ∇2v

dw

dt
= µ∇2w

(2.20)

In these equations (u, v, w) are the components of the current vector field. At t = 0
these are equal to the components of g, equation (2.18). For isotropic diffusion µ is the
diffusion constant, whilst for anisotropic diffusion it determines the degree of diffusion at
each location. In the regions where µ is close to one diffusion occurs, whilst where it is
close to zero no diffusion occurs [53].
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An appropriate function for collagen images would be

µ(~c,~s) =

{
e
K

“
~c·~s
|~c||~s|−1

”
if ~c 6= 0 and ~s 6= 0,

0 if ~c = 0 or ~s = 0.
(2.21)

Here µ is defined as a function of the central vector, ~c, and one of the 6 surrounding
vectors, ~s. In this study we used the surrounding vector that has the most different
direction compared to the central vector. K is an experimentally determined constant,
which in this study is set to the value of one. When ~c and ~s point away from each other,
as they do near the centre of the fibres, µ is close to zero and thereby little diffusion will
occur. If they point in a similar direction, as they will near the edges of the fibres, µ is
close to one and diffusion will occur.

Yu and Bajaj [52] do not describe how to rewrite equation (2.20) to its discrete form.
Perona and Malik [53] do show this transition in their article. They use a simplified
version to reduce the computational time. We choose not to follow their lead, since they
use a different weighing function made for finding edges in the image. Rather we rewrite
equation (2.19) as direct as possible to a discrete version.

ut+1
i,j,k = uti,j,k + λ[µi,j,k(uti+1,j,k + uti−1,j,k + uti,j+1,k + uti,j−1,k

+ uti,j,k+1 + uti,j,k−1 − 6uti,j,k)

+ (µi+1,j,k − µi−1,j,k)(uti+1,j,k − uti−1,j,k)/
√

2

+ (µi,j+1,k − µi,j−1,k)(uti,j+1,k − uti,j−1,k)/
√

2

+ (µi,j,k+1 − µi,j,k−1)(uti,j,k+1 − uti,j,k−1)/
√

2].

(2.22)

Here µi,j,k is the value of equation (2.21) for voxel (i, j, k). According to the Courant-
Friedrichs-Lewy step-size restriction 0 ≤ λ ≤ 1/4 has to be fulfilled for the diffusion to be
stable [53, 54]. As a standard in this study λ is set to 1/4. Equation (2.22) will be similar
for for the other two components of the vector field, v and w.

This diffusion method is an iterative process and can therefore be applied several times.
Due to the anisotropic property of the diffusion the skeleton will become more distinct
when the number of iterations increases, but if taken to far the skeleton will be smoothed
as well.

The final step is to find the SSM by using

S(~r) = max

0,
∑

~rn∈N(~r)

gt(~rn) · (~rn − ~r)
| ~rn − ~r |

 (2.23)

Here N(~r) is the set of the 26 nearest neighbours to ~r.
Yu and Bajaj [52] continue with thresholding the SSM according to Canny’s method.

Since our purpose is not finding a binary image, but just removing the effects of the
anisotropic PSF this last step is not necessary.
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(a) xy-plane (b) xz-plane

Figure 2.16: Illustrates skeletonization applied to the sample from figure (2.1).

2.6 Directional analysis

The two methods developed in this study for determining the orientation and anisotropy of
the fibres are based on (1) evaluating the intensity within different sectors of the frequency
domain (see section 2.6.2), and (2) fitting an ellipsoid to the segmented frequency domain
(see section 2.6.3). For further reference they will be denoted the sector and ellipsoid
method, respectivly.

2.6.1 Euler rotation

The sector method (see section 2.6.2) requires rotation of the data set. To do so Euler
rotation is applied. Euler’s rotation theorem states that any rigid body rotation can be
described in terms of three rotations around three axes, not necessarily three different
axes. If Rα, Rβ and Rγ are the rotational matrices corresponding to the angles α, β and
γ, respectively, the full rotation can be described by

R = RαRβRγ . (2.24)

It is important to understand that the order of the rotational matrices determines the
order of which the rotations are applied. In the example above γ is applied first, followed
by β and then α, and is thereby not the same as [55]

R = RγRβRα. (2.25)

In this study the Euler angles that represent rotation around the x, y and z-axis, often
called the xyz convention or pitch-roll-yaw, will be used. The rotational matrices around
the x, y and z-axis are given by

Rα =

 1 0 0
0 cosα − sinα
0 sinα cosα

 (2.26)

Rβ =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 (2.27)

Rγ =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 , (2.28)
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respectively. All of these rotations are in a counter-clockwise direction [55].
In this study it is particularly useful to know how to rotate the direction given by

the spherical coordinates θ and φ such that it is oriented along the z-axis. This can be
achieved by using the roll, pitch and yaw convention mentioned above. By first rotating an
angle −φ around the z-axis (γ = −φ) such that the direction of interest is in the xz-plane.
Followed by rotating the new direction an angle of −θ around the y-axis (β = −θ). This
gives the rotational matrix

R =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


=

 cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ

 .
(2.29)

To examine if this causes the desired rotation lets apply the rotational matrix to the
direction ~x = [sin θ cosφ, sin θ sinφ, cos θ]T . The result should be the unit vector ~x′ =
[0, 0, 1]T .

~x′ = R~x

=

 cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ

 sin θ cosφ
sin θ sinφ

cos θ


=

 sin θ cos θ cos2 φ+ sin θ cos θ sin2 φ− sin θ cos θ
− sin θ sinφ cosφ+ sin θ sinφ cosφ
sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ


=

 0
0
1

 .

(2.30)

2.6.2 Sector method

Chaudhuri et al. [1] determined the orientation of fibres in 2-D images by isolating angle
bands of the frequency domain. These were transformed to the spatial domain. The
directional distribution of the fibres were determined by measuring the abundance of the
fibres within one angle band.

One can analyse the frequency domain directly to determine the orientation of the
fibres, instead of transforming sections to the spatial domain. This has been done before
in 2-D [14, 15]. The method developed and implemented in this study is not only an
expansion of these methods to 3-D but is also slightly different in execution.

In short the method used in this study is based on dividing the frequency domain into
different angles and evaluating a conic region around each angle to determine in which
direction the average intensity is the least. This direction will be the same as the fibre
orientation.

The first obstacle is to define angles that are approximately at equal distance from each
other. In the θ-direction the distance is defined as Rdθ. In the φ-direction the distance
should be equal to the one in the θ-direction, giving

R dθ = R sin θ dφ. (2.31)

The value of R is not of interest, since the sectors are cones and thereby the distance from
the centre of the image has no meaning. The distance between sectors in the θ-direction
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is chosen to be dθ, meaning that the distance in the φ-direction should be dφ=dθ/ sin θ.
As a standard in this study a dθ of 10◦ was used.

To evaluate how many data points are in a given direction the whole data set is rotated
such that the direction is laying along the z-axis. This is done by the use of Euler rotation
(see section 2.6.1). If the data point has an angle θ in the rotated system that is smaller
than dθ/

√
2 it is within the respective cone and its intensity is added to that direction.

The reason the angle dθ/
√

2 is used is because
√

2 dθ is the largest angle between two
directions, thereby all data points will at least be within one cone.

The total intensity in one direction is normalised according to the number of data
points within the cone. The normalised intensities are plotted in a matrix (see figure
(2.17a)). The minimum in this image will determine the orientation of the fibres. To
reduce the possibility of an incorrect answer due to noise a Savitzky-Golay filter is applied
(figure (2.17b)). There are several ways to define how the anisotropy of the fibres should
be calculated. In this study we choose to use the difference between the maximum and
minimums value as well as the maximum value of the derivative found with the Savitzky-
Golay filter as an indicator. It is important to understand that the difference between the
maximum and minimums intensity as well maximum value of the derivative decrease in
value as the anisotropy of the fibres increases.

(a) No post processing (b) After Savitzky-Golay filter

Figure 2.17: Intensity distribution of the frequency domain displayed by the use of the
sector method.

2.6.3 Least squares ellipsoid specific fitting

This method is based on the method described by Li et al. [56]. In short, the least squares
method is applied to find the quadric surface that best matches the data set. To ensure
that the quadric surface found is an ellipsoid, ellipsoid specific constraints are added to
the least squares fitting.

In general a quadric surface is given by

ax2 + by2 + cz2 + 2fyz + 2gxz + 2hxy + 2px+ 2qy + 2rz + d = 0. (2.32)

We can define I, J , K and L that are invariant under rotation and translation and are
given by

I = a+ b+ c (2.33)

J = ab+ bc+ ac− f2 − g2 − h2 (2.34)

K =

∣∣∣∣∣∣
a h g
h b f
g f c

∣∣∣∣∣∣ (2.35)
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L =

∣∣∣∣∣∣∣∣
a h g p
h b f q
g f c r
p q r d

∣∣∣∣∣∣∣∣ (2.36)

Equation (2.32) represents an ellipsoid when the invariants satisfy: [57]

KI > 0, J > 0 and L < 0. (2.37)

There exists a forth inequality that is fulfilled for k = 4 if the quadratic surface is
indeed an ellipsoid. This inequality is given by

kJ − I2 > 0. (2.38)

Here k tells us something about the relation between the shortest and longest axis of the
ellipsoid. For k = 3 the quadric surface is a sphere. If k = 4 the condition guarantees
that the surface is an ellipsoid, but it represents only the subset of ellipsoids where the
length of the short axis is at least half of the long axis. Generally for any ellipsoid there
should exist a k ≥ 4 that satisfies equation (2.38). The problem is that not all k > 4 give
solution that is an ellipsoid. So ideally a k should be found that is as large as possible
with a solution that still is an ellipsoid.

The goal with this model is to find a quadric equation with the smallest error according
to the least squares fitting method whilst fulfilling the inequalities that determines if the
solution is an ellipsoid.

First all data points are collected in a matrix D, given by

D = [X1 X2 ... Xn], (2.39)

where Xi is the vector

Xi = [x2
i y

2
i z

2
i 2yizi 2xizi 2xiyi 2xi 2yi 2zi 1]T (2.40)

and xi, yi and zi are the coordinates of point i. In total there are n datapoints.
To be able to find v, which is given by the constants in equation (2.32)

v = [a b c f g h p q r d]T , (2.41)

the least squares fitting model is applied with the constraint given in equation (2.38),

min ‖ Dv ‖2 subject to kJ − I2 = 1. (2.42)

It would be better if the constraint in equation (2.42) depended on v instead of J and
I. To be able to do so the matrix C1 is introduced

C1 =



−1 k
2 − 1 k

2 − 1 0 0 0
k
2 − 1 −1 k

2 − 1 0 0 0
k
2 − 1 k

2 − 1 −1 0 0 0
0 0 0 −k 0 0
0 0 0 0 −k 0
0 0 0 0 0 −k

 , (2.43)

which is part of a larger matrix

C =
[

C1 06×4

04×6 04×4

]
. (2.44)
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Now the constraint can be rewritten to

kJ − I2 = vTCv. (2.45)

After this the Lagrange multiplier method can be applied to solve the problem given
by equation (2.42). The Lagrange multiplier method is a method for finding the extrema
of a function, f(x), which is constrained by the set of equations gi(x) = 0. The critical
points of the function

F (x) = f(x)− λigi(x), (2.46)

found by solving
∂F

∂xj
= 0 and

∂F

∂λi
= 0, (2.47)

are the extrema of the function f(x) while fulfilling the set of equations gi(x) = 0. The
numbers λi are called the Lagrange multipliers [58].

In our case f(x) is vTDDTv, there is only one constraint vTCv − 1 = 0 and thereby
only one Lagrange multiplier is needed, λ. Equation (2.47) is then given by

DDTv = λCv (2.48)

vTCv = 1. (2.49)

Equation (2.48) can be simplified by observing that C consists of large areas with only
zeros. By dividing DDT and v into subsections given by

DDT =
[
S11 S12

ST12 S22

]
and v =

[
v1

v2

]
, (2.50)

where the size of the matrices S11, S12 and S22 and vectors v1 and v2 are given by 6× 6,
6× 4, 4× 4, 6 and 4, respectively, equation (2.48) becomes

(S11 − λC1)v1 + S12v2 = 0 (2.51)

ST12v1 + S22v2 = 0 (2.52)

Rearranging equation (2.52), v2 will be given by

v2 = −S−1
22 S

T
12v1. (2.53)

Substituting for v2 and rewriting equations (2.51) gives

C−1
1 (S11 − S12S

−1
22 S

T
12)v1 = λv1, (2.54)

where the solution for v1 will be given by the eigenvectors of the equation.
This provides a method for finding v which is the constants of the quadric surface,

equation (2.32), but the optimal value for k, which is used to express C1, is still not found.
The optimal value is given by the largest value which still provides an ellipsoid solution
for v.

This value is found by an iterative searching process. First k is set to a very large
positive number, if the solution for the quadric surface is an ellipsoid according to the
inequalities (2.37) the solution is accepted, if not k is divided by half until an ellipsoid is
found. It is not certain that this solution is on the boundary of the feasible region. An
interval is created where the highest value is set to be twice the value of k, which will be
a solution that is not an ellipsoid, and the lowest value is set to k, which is an ellipsoid.
Now a new k is approximated to be in the middle of the interval, if this gives a solution
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that is an ellipsoid the lowest value of the interval is set to be k, else the highest. This
way we are narrowing the interval around the border of the feasible area, until the interval
is acceptable small.

Now a quadric surface, which represents an ellipsoid, has been approximated from the
data set and the only thing that remains is finding the length and direction of the principle
axis. The quadric equation is equal to

(X−X0)TA(X−X0) = 1 (2.55)

where A represents the rotation of the ellipsoid and is a positive definite and symmetric
matrix, X is (x, y, z)T and X0 is the centre of the ellipsoid. According to the principle axis
theorem the eigenvectors of A are the principle directions of the ellipsoid and one divided
by the square root of the eigenvalues the corresponding radius of these. For the quadric
surface given in equation (2.32) A is [57]

A =

 a h g
h b f
g f c

 . (2.56)

In this study this method is used to fit an ellipsoid to the frequency domain (see figure
(2.18)). The direction of the shortest axis will be the same as the direction of the collagen
fibres. As an indicators of the anisotropy of the image the ratio between the shortest and
longest axis is used.

Figure 2.18: The ellipsoid that was fitted to the frequency domain by the use of the
ellipsoid method. The frequency domain is in red, the fitted ellipsoid in blue.
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Chapter 3

Materials and methods

3.1 Image acquisition

In this study hyaline cartilage from the knee joint of chickens was examined. The cartilage
was sliced with a vibratome to samples with a thickness of 100µm and placed directly
between the microscope slide and cover slip without fixation. The samples were stored at
4◦C.

The equipment used for imaging was a pulsed Ti:sapphire laser (Mira, Coherent) at a
wavelength of 800 nm in combination with a confocal microscope (LSM 510 model, Zeiss)
with the pinhole fully opened. The laser beam was focused to the sample through an
objective with ×40 magnification, water immersion and a numerical aperture of 1.2. The
filter used during imaging was a band-pass filter with a range of 385-420nm. The image
stacks were generated with different image and voxel sizes, these are specified in section
3.2.

3.2 Image analysis

The image analysis was done by using the computer programs Amira (Visage Imaging,
Richmond, Australia) and Matlab (MathWorks, Natick, Massachusetts, U.S.A.). The
Matlab code of interest is included in appendix B.

The purpose of this study was to develop and implement methods for determining the
orientation of collagen fibres in 3-D images. Basically two methods were developed and
their flow chart is illustrated in figure (3.1). Lets start by explaining the different stages
in the flow chart and their purpose.

It might be natural to start with the preprocessing, but the purpose of this step is
easier to explain at the end. Therefore we will start at step 3, the Fourier transform.
Both techniques for determining the direction of the collagen fibres are based on analysing
the frequency domain and therefore the Fourier transform of the image has to be taken
(see section 2.4.1). This is followed by high and low frequency filtering of the frequency
domain, as described in section 2.4.2.

The sector method is the left column in the directional analysis. This method produces
a plot of the average intensity at different directions in the frequency domain, step 5 (see
section 2.6.2). From this plot the direction of the minimum average intensity is extracted.
To make this less sensitive to noise a Savitzky-Golay filter is applied to the intensity plot,
step 6 (see section 2.3.2).

The ellipsoid method is the right column in the directional analysis. The basic idea
is to fit an ellipsoid to the frequency domain, as described in section 2.6.3. To do so the
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Figure 3.1: Flow chart of the sector and ellipsoid method. The sector method is the left
column in the directional analysis. The ellipsoid method is the right. The different

preprocessing techniques are optional.

frequency domain has to be thresholded. The determination of the appropriate threshold
value is described in section 2.4.2.

As for the preprocessing. The images generated by the microscope are influenced by
the anisotropic effect of the PSF (see section 2.2.2) and noise. These will also influence
the frequency domain, as explained briefly in section 2.4.2. The median filter, step 1,
can remove the noise from the image (see section 2.3.1). Deconvolution, step 1, does not
completely remove the effect of the anisotropic PSF but sharpens the image (see section
2.5.1). In this study we wanted to test if the process of skeletonization (see section 2.5.2)
could remove the effect of the PSF. The results of this are demonstrated in the first section
of the results.

Unless otherwise specified, no preprocessing has been used.
Some steps require input parameters which might vary from study to study. Many

of these are already mentioned in chapter 2, to give an overview table (3.1) has been
included.

Table 3.1: All the defined values of parameters used in this study.

Process Step Parameter Value Reference

Savitzky-Golay filter
1

Filter size 9× 9× 9 voxels

Section 2.3.2
Polynomial 4th order

6* Filter size 9× 9 pixels
Polynomial 4th order

Skeletonization 2
K 1 Equation (2.21)
λ 1/4 Equation (2.22)

Iterations 10 Section 2.5.2
Sector method 5 dθ 10◦ Section 2.6.2

* The filter is not adapted at the image borders as described in section 2.3.2.
The image area comes from a sphere and can thereby continue infinite (see
figure (3.2)).
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Figure 3.2: This figure illustrates that the intensity plot generated by the sector method
(see figure (2.17a)) repeats itself periodically.

To determine the robustness of the sector and the ellipsoid method a series of tests
were developed and executed. These are described in the following sections. For test
number 1, 2, 3 and 5, samples from two different data set were used. An overview of the
size of the samples and voxel dimensions is given in figure (3.3) and (3.4).

(a) Sample 1 (o),
251× 251× 251 voxels

(b) Sample 2 (o),
151× 151× 151 voxels

(c) Sample 3 (o),
51× 51× 51 voxels

(d) Sample 4 (r),
101× 101× 101 voxels

(e) Sample 5 (r),
51× 51× 51 voxels

Figure 3.3: Set 1, 73× 73× 73 nm voxel dimensions. In each row the upper image is the
xy-plane in the middle of the sample stack and the lower image the middle xz-plane. The

samples that are orderly arranged are labeled with (o), those that are more randomly
arranged with (r). They will be marked similarly in section 4 and appendix A.
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(a) Sample 1 (o),
49× 49× 49 voxels

(b) Sample 2 (o),
49× 49× 49 voxels

(c) Sample 3 (r),
49× 49× 49 voxels

Figure 3.4: Set 2, 98× 98× 98nm voxel dimensions. The upper image is the xy-plane in
the middle of the sample stack and the lower image the middle xz-plane. The samples

that are quite orderly arranged are labeled with (o), those that are more randomly
arranged with (r). They will be marked similarly in section 4 and appendix A.

3.2.1 Test 1: Rotational invariance

To test if both methods are rotationally invariant the direction and its anisotropy was
found after:

• no rotation.

• a 90◦ anti-clockwise rotation in the xy-plane.

• a 90◦ clockwise rotation in the xz-plane.

To rotate the samples the rotational matrices described in section 2.6.1 were used.

3.2.2 Test 2: Threshold value dependency

The results generated with the ellipsoid method might be influenced by the thresholding
value (step 5 thresholding in figure (3.1)). To investigate how sensitive the results are
to the threshold value, plots of the direction and the directional anisotropy versus the
threshold value were made.

3.2.3 Test 3: Logarithm versus low frequency filtering

As a standard for all images in this study low frequency filtering is used to remove the low
frequencies with a high intensity in the frequency domain (step 4 figure (3.1)). Taking the
logarithm of the frequency domain may be an alternative to reduce the relative intensity
of the low frequency components. To determine which alternative is better the direction
and its anisotropy of the samples were found using both the logarithm and low frequency
filtering.

3.2.4 Test 4: Computer generated ellipsoids and fibres

To determine the accuracy of the sector and ellipsoid method, computer generated ellip-
soids and fibres were made. These represent the frequency and spatial domain, respec-
tively. A series of different tests, listed below, were executed to explore the limits of both
methods.
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• Discs with increasing thickness: To determine if the measured anisotropy is as ex-
pected discs were generated with increasing thickness. Discs are ellipsoids where the
two longest axis are the same length, meaning that the fibres in the spatial domain
are round (see section 2.4.2). The measured direction and its anisotropy was plotted
against the ratio between the shortest and longest axis of the disc. For an example
see figure (3.5a).

• Ellipsoids with decreasing difference between the medium and shortest axis: This
test was generated to explore if the methods can still find the direction and its
anisotropy even if the two longest axes of the ellipsoid are not equal, i.e. if the fibres
are not round (see section 2.4.2). The direction and its anisotropy are now plotted
against the ratio between the medium and short axis.

• A disc with increasing level of noise: To determine how sensitive both methods are
to noise in the frequency domain increased levels of Gaussian noise were added to
an image containing a disc. The resulting direction and its anisotropy were plotted
against the variance of the Gaussian noise. For an example see figure (3.5b).

• Round fibres with increasing directional anisotropy: The relation between the spa-
tial domain and the frequency domain is very complicated (see section 2.4.2). The
measured direction and its anisotropy were plotted against increasing level of direc-
tional anisotropy of the fibres in the spatial domain. This is done to examine if the
measured directional anisotropy is as expected and if the general direction can still
be determined. To increase the level of directional anisotropy the fibre angle θ was
chosen randomly between 0◦ and n90◦, where n is a number between zero and one,
according to the level of anisotropy. For an example see figure (3.6a).

• Fibres with increasing level of noise: To determine if noise in the spatial domain
influences the results generated by both methods, increased levels of noise was added
to perfectly aligned fibres. The measured direction and its anisotropy was plotted
against the variance of the Gaussian noise. For an example see figure (3.6b).

(a) Ellipsoid (b) Ellipsoid with
noise

Figure 3.5: Example of computer generated ellipsoids.
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(a) Fibres with high
directional
anisotropy

(b) Fibres with noise

Figure 3.6: Example of computer generated fibres.

3.2.5 Test 5: Preprocessing techniques

The different preprocessing methods used in this study (preprocessing figure (3.1)) do not
remove the anisotropic effect of the PSF and thereby does not make the fibres round (see
figure (3.7)). But they do influence the spatial domain, thereby altering the frequency
domain and maybe even the measured results. This might influence the process positively
by reducing the effects of noise, and increasing the ratio between the medium and short
axis in the frequency domain. But it might also cause the relative stretch of the fibres
to increase, and thereby decreasing the ratio between the medium and short axis in the
frequency domain.

(a) Original (b) Median filter (c) Deconvolution (d) Savitzky-Golay
filter and

skeletonization

Figure 3.7: Data set 2, sample 1, imaged after different preprocessing techniques. The
upper row is a section in the xy-plane, and the lower in the xz-plane.
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Chapter 4

Results

The main results are presented here. The complete results are given in appendix A.

4.1 Skeletonization

As mentioned in section 3.2 skeletonization is applied to remove the effects of the anisotropic
PSF before Fourier transforming (see figure (3.1)). Figure (4.1) illustrates how a Savitzky-
Golay filter (step 1 figure (3.1)) influences the results of the skeletonization. The resulting
fibres are more smooth and the image contains less noise.

The fibres are not round after one iteration (see figure (4.1d)). As the number of
iterations increases the fibres become less stretched (see figure (4.2)). After a certain
amount of iterations this effect stagnates and the fibres start to fade (see figure (4.2d)).
All in all it looks like the relative stretch of the fibres is larger when skeletonization is
applied (see figure (4.2b)) than when nothing is done to the image (see figure (4.1a)).

(a) Original (b) Skeletonization (c) Savitzky-Golay
filter

(d) Savitzky-Golay
filter and

skeletonization

Figure 4.1: Data set 2, sample 1. Illustrates the difference in the results for the
skeletonization when a Savitzky-Golay filter is applied. Only one iteration is done in the

diffusion process. The upper row is a section in the xy-plane, and the lower in the
xz-plane.
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(a) One iteration (b) Ten iterations (c) Twenty iterations (d) Fourty iterations

Figure 4.2: Data set 2, sample 1. Illustrates how the number of iterations in the diffusion
process influence the shape of the fibres. The upper row is a section in the xy-plane, and

the lower in the xz-plane.

4.2 Sector and ellipsoid method

The results of the tests mentioned in section 3.2 are given here.

4.2.1 Test 1: Rotational invariance

The results of the rotational test for the sector method are given in table (4.1). These
results are not constant when the data set is submitted to rotation. The anisotropy as
defined by the difference between the maximum and minimum average intensity is very
high for all samples. It should not be able to have a value larger than one. The Savitzky-
Golay filter (step 1 figure (3.1)) can influence the intensity plot to contain negative values,
causing the difference to become larger than one.

The results from the ellipsoid test are given in appendix A. These results remain
the same when the data set is rotated and thereby illustrate that the ellipsoid method is
rotationally invariant.

Figure (4.3) has been included to explore why the sector method is not rotationally
invariant. This figure shows the intensity plots generated by the sector method after no
rotation and 90◦ rotation in the xy- and xz-plane. The maximum is very clear in each of
these plots, whilst the minimum is more difficult to extract.

(a) No rotation (b) 90◦ rotation in the
xy-plane

(c) 90◦ rotation in the
xz-plane

Figure 4.3: Intensity distribution generated with the sector method for data set 2,
sample 1 (o).
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Table 4.1: Rotational test: results sector method.

Data set 1 2
Sample 1 (o) 2 (o) 3 (o) 4 (r) 5 (r) 1 (o) 2 (o) 3 (r)

D
ir

ec
ti

on θ
No rotation 50◦ 40◦ 60◦ 30◦ 0◦ 30◦ 60◦ 30◦

xy-plane 50◦ 40◦ 60◦ 30◦ 0◦ 50◦ 60◦ 30◦

xz-plane 60◦ 67◦ 64◦ 31◦ 22◦ 67◦ 80◦ 36◦

φ
No rotation 150◦ 150◦ 160◦ 290◦ 290◦ 220◦ 270◦ 210◦

xy-plane 150◦ 150◦ 150◦ 290◦ 200◦ 160◦ 160◦ 220◦

xz-plane 270◦ 160◦ 164◦ 109◦ 26◦ 160◦ 260◦ 211◦

A
ni

so
tr

op
y Difference†

No rotation 0.99 0.99 0.95 0.95 0.97 0.96 1.01 0.96
xy-plane 1.00 0.98 0.96 0.95 0.98 1.00 1.01 0.95
xz-plane 0.99 0.99 0.96 0.95 0.93 0.98 0.99 0.93

Derivative‡
No rotation 0.17 0.17 0.14 0.23 0.19 0.16 0.19 0.15

xy-plane 0.16 0.17 0.15 0.20 0.19 0.17 0.19 0.15
xz-plane 0.18 0.20 0.18 0.17 0.15 0.19 0.22 0.16

* LFF stands for low frequency filtering.
†Difference between the maximum and minimum value in the intensity plot generated
by the sector method.
‡The maximum value of the derivative of the intensity plot generated by the sector
method.

4.2.2 Test 2: Threshold value dependency

The threshold value dependency was very similar for most samples, and an example of
a typical curve is given in figure (4.4). This figure shows a nice and flat area where the
results are the same, independent of variation in the threshold value.

Some artifacts were observed and these are illustrated in figure (4.5) and (4.6). The
first has similar results for θ and the anisotropy as the other samples, but φ is oscillating.
The last has also an oscillating φ, but in addition the estimated threshold value, the green
curve, is in an area where the results change rapidly as a function of the threshold value.

(a) θ (b) φ (c) Anisotropy

Figure 4.4: Threshold test: data set 2, sample 3 (r). The green curve shows which
threshold value would have been chosen by the program itself.
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(a) θ (b) φ (c) Anisotropy

Figure 4.5: Threshold test: data set 1, sample 2 (o). The green curve shows which
threshold value would have been chosen by the program itself.

(a) θ (b) φ (c) Anisotropy

Figure 4.6: Threshold test: data set 1, sample 3 (o). The green curve shows which
threshold value would have been chosen by the program itself.

4.2.3 Test 3: Logarithm versus low frequency filtering

The results for the sector method using the logarithm versus low frequency filtering are
given in table (4.2). Not only do the results vary between the two, but θ is constant for
all samples at a value of 30◦ when using the logarithm.

To illustrate the difference between using no filter and a low frequency filter, the
intensity distribution of a disc aligned with the z-axis is given in figure (4.7a). In these
images there is no noise present to influence the intensity plot and the correct direction is
known. As can be seen the minimums intensity point is not at a θ of 0◦ when no filtering
is applied, even though the intensity of the low frequency voxels is not much higher than
the rest of the frequency domain.

The direction found with the ellipsoid method is constant and is given in appendix A.
The only variation is in the directional anisotropy, which has a difference of 0.01 ± 0.01
between the use of a low frequency filter and the logarithm.
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Table 4.2: Logarithm vs low frequency filter: results sector method.

Data set 1 2
Sample 1 (o) 2 (o) 3 (o) 4 (r) 5 (r) 1 (o) 2 (o) 3 (r)

D
ir

ec
ti

on θ
Logarithm 30◦ 30◦ 30◦ 30◦ 30◦ 30◦ 30◦ 30◦

LFF* 50◦ 40◦ 60◦ 30◦ 0◦ 30◦ 60◦ 30◦

φ
Logarithm 230◦ 330◦ 220◦ 20◦ 320◦ 150◦ 190◦ 210◦

LFF 150◦ 150◦ 160◦ 290◦ 290◦ 220◦ 270◦ 210◦

A
ni

so
tr

op
y

Difference†
Logarithm 0.26 0.25 0.32 0.28 0.35 0.30 0.30 0.26

LFF 0.99 0.99 0.95 0.95 0.97 0.96 1.01 0.96

Derivative‡
Logarithm 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.05

LFF 0.17 0.17 0.14 0.23 0.19 0.16 0.19 0.15
* LFF stands for low frequency filtering.
†Difference between the maximum and minimum value in the intensity plot generated
by the sector method.
‡The maximum value of the derivative of the intensity plot generated by the sector
method.

(a) No preprocessing (b) Low frequency filtering

Figure 4.7: Intensity distribution generated with the sector method for a perfect disc
without and with low frequency filtering. The short axis of the disc is aligned with the

z-axis. The arrow indicates where the minimum is located.

4.2.4 Test 4: Computer generated ellipsoids and fibres

4.2.4.1 Ellipsoids

The results for the computer generated ellipsoid with variable short axis, medium axis and
noise are given in figure (4.8), (4.9) and (4.10), respectively.

The ellipsoid method reacts as hoped for, i.e. the directional anisotropy increases when
short axis increases, whilst the direction remains constant (see figure (4.8)). The measured
direction and its anisotropy are not influenced much by the medium axis nor noise (see
figure (4.9) and (4.10), respectively).

The sector method has some aberrations in the measured direction when the short
axis is increased (see figure (4.8)). The true orientation of the short axis of the disc is
θ = 45◦ and φ = 45◦. So as long as the measured θ and φ vary between 40◦ and 50◦ the
results are approximately correct. For thin discs, i.e. a ratio between the thickness and
radius of the disc of 0.47 or less in figure (4.8a) and (4.8b), θ and φ are not correct. The
measured anisotropy decreases in value, which means that it measures a increase in the
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anisotropy of the fibre orientation, as it should be (see figure (4.8c)). To examine why the
sector method can not find the correct direction for slim discs the intensity distribution
generated with the sector method for a thin and a thicker disc have been included (see
figure (4.11)).

For a variable medium axis of the disc all the results generated with the sector method
remain constant (see figure (4.9)), which is positive.

When the frequency domain is subject to noise the measurement of θ remains constant
and correct (see figure (4.10a)), but φ varies (see figure (4.10b)). The anisotropy measured
by both the difference and the derivative decreases as the level of noise increases (see figure
(4.10c)).

(a) θ (b) φ (c) Anisotropy

Figure 4.8: Ellipsoid test, variable short axis. The difference is the difference between
the maximum and minimum value in the intensity plot generated by the sector method.

The derivative stands for the maximum value of the derivative of the intensity plot
generated by the sector method.

(a) θ (b) φ (c) Anisotropy

Figure 4.9: Ellipsoid test, variable medium axis. The difference is the difference between
the maximum and minimum value in the intensity plot generated by the sector method.

The derivative stands for the maximum value of the derivative of the intensity plot
generated by the sector method.
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(a) θ (b) φ (c) Anisotropy

Figure 4.10: Ellipsoid test, variable noise. The difference is the difference between the
maximum and minimum value in the intensity plot generated by the sector method. The
derivative stands for the maximum value of the derivative of the intensity plot generated

by the sector method.

(a) Small thickness (b) Larger thickness

Figure 4.11: Intensity distribution generated with the sector method for a tilted perfect
disc without noise.

4.2.4.2 Fibres

The results for the computer generated fibres with variable directional anisotropy and
noise are given in figure (4.12) and (4.13), respectively.

When increasing the directional anisotropy of the fibres the ellipsoid method has in-
creasing difficulty finding the correct overall direction (see figure (4.12a)). The sector
method does not find the correct direction even when the fibres are pointing in exactly
the same direction (see figure (4.12a) and (4.12b)). To examine why this is the case figure
(4.14) has been included. These images shows that the minimums area in the frequency
domain is large, and when applying a Savitzky-Golay filter to the intensity plot the mini-
mum ends up just outside the maximum.

The measured anisotropy should increase in value for the ellipsoid method and decrease
for the difference and derivative of the sector method when the directional anisotropy of
the fibres increases. In reality they remain fairly constant (see figure (4.12c)). The ellipsoid
method has a slight overall increase, but not nearly as much as expected. For complete
random fibres the anisotropy should be close to a value of one.

When the level of noise is increased in the spatial domain the direction and its
anisotropy measured with the ellipsoid method remains constant (see figure (4.13)). The
sector method does not measure the correct direction at all (see figure (4.13a)). The mea-
sured anisotropy decreases slightly when using the derivative and a lot when using the
difference (see figure (4.13c)).
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(a) θ (b) φ (c) Anisotropy

Figure 4.12: Fibre test, variable anisotropy. The difference is the difference between the
maximum and minimum value in the intensity plot generated by the sector method. The
derivative stands for the maximum value of the derivative of the intensity plot generated

by the sector method.

(a) θ (b) φ (c) Anisotropy

Figure 4.13: Fibre test, variable noise. The difference is the difference between the
maximum and minimum value in the intensity plot generated by the sector method. The
derivative stands for the maximum value of the derivative of the intensity plot generated

by the sector method.

(a) Without Savitzky-Golay filter (b) With Savitzky-Golay filter

Figure 4.14: Intensity distribution generated with the sector method of the frequency
domain of fibres aligned with the z-axis.
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4.2.5 Test 5: Preprocessing techniques

The results for the different preprocessing techniques for the sector and ellipsoid method
are given in table (4.3) and (4.4), respectively. For many of the samples the direction
measured with the sector method varies (see table (4.3)).

For the ellipsoid method the difference in measured anisotropy between no preprocess-
ing and the median filter, deconvolution and skeletonization is −0.03± 0.01, −0.04± 0.04
and 0.02 ± 0.10, respectively. The measured anisotropy in general increases for when a
median filter and deconvolution is applied. For skeletonization the images that contain
fibres that are orderly arranged the measured anisotropy decreases, whilst for those with
a random arrangement the measured anisotropy increases.

The measurements of data set 1, sample 3 are left out of the calculations, since the
wrong threshold value is estimated by the ellipsoid method (see figure (4.6)).

An example of how the frequency domain is influenced by different preprocessing tech-
niques is given in figure (4.15).

Table 4.3: Preprocessing techniques: results sector method.

Data set 1 2
Sample 1 (o) 2 (o) 3 (o) 4 (r) 5 (r) 1 (o) 2 (o) 3 (r)

D
ir

ec
ti

on

θ

Nothing 50◦ 40◦ 60◦ 30◦ 0◦ 30◦ 60◦ 30◦

Median filter 50◦ 40◦ 0◦ 0◦ 30◦ 30◦ 60◦ 30◦

Deconvolution 50◦ 40◦ 0◦ 0◦ 0◦ 30◦ 60◦ 0◦

Skeletonization 80◦ 80◦ 60◦ 30◦ 60◦ 60◦ 80◦ 30◦

φ

Nothing 150◦ 150◦ 160◦ 290◦ 290◦ 220◦ 270◦ 210◦

Median filter 150◦ 150◦ 200◦ 20◦ 220◦ 220◦ 270◦ 210◦

Deconvolution 150◦ 150◦ 110◦ 200◦ 110◦ 20◦ 270◦ 110◦

Skeletonization 260◦ 270◦ 320◦ 230◦ 280◦ 210◦ 260◦ 290◦

A
ni

so
tr

op
y Difference†

Nothing 0.99 0.99 0.95 0.95 0.97 0.96 1.01 0.96
Median filter 1.00 1.00 0.98 0.98 0.98 0.96 1.00 0.96

Deconvolution 1.01 1.02 0.99 0.99 1.00 0.98 1.03 0.99
Skeletonization 1.02 1.01 0.97 0.95 0.96 0.98 1.06 0.96

Derivative‡
Nothing 0.17 0.17 0.14 0.23 0.19 0.16 0.19 0.15

Median filter 0.17 0.17 0.14 0.24 0.18 0.16 0.18 0.15
Deconvolution 0.17 0.17 0.13 0.24 0.20 0.15 0.17 0.16

Skeletonization 0.17 0.19 0.17 0.19 0.20 0.17 0.18 0.17
* LFF stands for low frequency filtering.
†Difference between the maximum and minimum value in the intensity plot generated by
the sector method.
‡The maximum value of the derivative of the intensity plot generated by the sector method.
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Table 4.4: Preprocessing techniques: results ellipsoid method.

Data set 1 2
Sample 1 (o) 2 (o) 3 (o) 4 (r) 5 (r) 1 (o) 2 (o) 3 (r)

D
ir

ec
ti

on

θ

Nothing 82◦ 90◦ 54◦ 11◦ 9◦ 76◦ 72◦ 6◦

Median filter 79◦ 88◦ 7◦ 9◦ 9◦ 70◦ 72◦ 8◦

Deconvolution 69◦ 84◦ 4◦ 9◦ 10◦ 62◦ 71◦ 7◦

Skeletonization 83◦ 89◦ 89◦ 14◦ 20◦ 72◦ 72◦ 13◦

φ

Nothing 213◦ 214◦ 16◦ 288◦ 243◦ 215◦ 216◦ 266◦

Median filter 214◦ 215◦ 1◦ 289◦ 234◦ 217◦ 216◦ 272◦

Deconvolution 216◦ 214◦ 290◦ 286◦ 252◦ 217◦ 216◦ 294◦

Skeletonization 214◦ 215◦ 213◦ 307◦ 251◦ 217◦ 214◦ 293◦

Anisotropy

Nothing 0.07 0.06 0.83 0.23 0.37 0.20 0.19 0.33
Median filter 0.10 0.08 0.55 0.25 0.39 0.22 0.21 0.38

Deconvolution 0.16 0.11 0.44 0.26 0.46 0.22 0.16 0.37
Skeletonization 0.00 0.00 0.42 0.31 0.53 0.13 0.08 0.24

(a) Original (b) Median filter (c) Deconvolution (d) Skeletonization

Figure 4.15: Data set 2, sample 1. Illustrates how different preprocessing techniques
influence the frequency domain. The lack of intensity in the middle is due to low

frequency filtering. The upper row is a section in the xy-plane, and the lower in the
xz-plane.
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Chapter 5

Discussion

The discussion will start with evaluating the skeletonization technique. Subsequently,
the sector and ellipsoid method and the results from the different tests will be discussed
individually.

5.1 Skeletonization

The purpose of applying skeletonization (see section 2.5.2) is to remove the anisotropic
effect of the PSF, i.e. make the stretched fibres round.

Figure (4.1b) illustrates that the result of skeletonization is very noisy if applied to an
unprocessed images. The skeletonization process does not diffuse the image at maximum
intensity points in the image. Due to noise in the original image (see figure (4.1a)) these
maximum intensity points are not located solely at the centre of the fibres. By applying
a noise reduction filter this effect will be removed (see figure (4.1d)). In this study a
Savitzky-Golay filter is used for this purpose (see figure (4.1c)).

The Savitzky-Golay filter is not only chosen to remove noise. The intensity within one
fibre might vary, especially along the z-direction. This causes the skeletonization to find
planes instead of fibres. As an attempt to increase the diffusion in the z-direction the
Savitzky-Golay filter is used to remove these intensity fluctuations. It fits a polynomial to
the image, thereby smoothing these fluctuations, making the maximum intensity at the
centre of the fibres.

The desired result is that after skeletonization the fibres would be round, but unfor-
tunate they become planes (see figure (4.2a)). Increasing the number of iterations helps
slightly (see figure (4.2b) and (4.2c)). After a certain number of iterations the fibres start
to fade as well (see figure (4.2d)). All in all it may seem like the fibres become sharper
in the xy-direction when applying skeletonization, but remain equally stretched in the
z-direction.

Yuan et al. [51] developed an algorithm to extract the skeleton of dendrites and spines
from 3-D images of neurones made with confocal or multi-photon fluorescent microscopy.
Their algorithm is very complex, involving both deconvolution, smoothing using diffusion,
gray-scale skeletonization, some algorithms specific for the shape at hand and much more.
This indicates that even though skeletonization alone cannot remove the anisotropic effect
of the PSF, a combination of several techniques might.

A thing that might improve the results of the skeletonization is using a different weigh-
ing function, equation (2.21). The weighing function used in this study is the same as
developed by Yu and Bajaj [52]. There might be an equation that is better suited to
increases the diffusion in the z-direction more than in the xy-direction.
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5.2 Sector method

There are a few things that needs to be pointed out before discussing the results of the
tests. Most tests were preformed on images of fibres with no preprocessing. As pointed
out in section 2.4.2 the frequency domain will resemble an ellipsoid with a long, medium
and short axis instead of a disc, due to that the fibres are oval instead of round. Figure
(2.14) is a typical example. Here the long axis is distinct, whilst the two shortest axis are
similar in length. This is reflected in the intensity plot generated by the sector method
(see figure (2.17a)). The highest intensity is easy to extract, but the minimum intensity
is spread over a larger area. The Savitzky-Golay filter is meant to reduce the influence of
noise in the intensity plot, but it might influence the location of the minimum wrongfully,
as shown in figure (2.17b).

This can influence the results of the tests based on data sets generated with the multi-
photon microscope. Test 4 on the other hand is based on data sets containing data
generated fibres and ellipsoids, which are not affected by the PSF.

5.2.1 Test 1: Rotational invariance

This test is designed to determine if the sector method is rotational invariant.
Theoretically the sector method (see section 2.6.2) will never be one hundred percent

rotational invariant. Firstly the frequency domain can not be divided with an exact equal
distance between the cones. Secondly, the frequency domain is a discrete cubic area,
therefore each cone will never contain an equal amount of voxels. Thirdly, when making
the intensity plot a spherical area is stretched to fit a rectangle, i.e. stretching the area
where θ is zero, more than for higher θ-values.

To determine how much this influences the results of the sector method the rotational
test is applied (see table (4.1)). Unfortunately the sector method is not rotational invariant
for most samples. The intensity plots of a sample where the results were not rotationally
invariant is shown in figure (4.3). These figures show a clear maximum area, but the
minimum is very hard to extract. Thereby even a small diversity might influence the
results.

In other words, if there was a clear minimums point, the sector method might be more
robust, but for these samples the sector method is not rotational invariant.

5.2.2 Test 3: Logarithm versus low frequency filtering

In the frequency domain the dc-component and the surrounding low frequencies have a
much higher intensity than the rest of the frequency domain (see section 2.4.2). The cones
containing these voxels will have a much higher average intensity, causing incorrect results.

To remove this effect two techniques were used. The first is low frequency filtering,
which is the standard in this study. Here all frequency components within a radius of 2
voxels from the dc-component are set to zero. The second is taking the logarithm of the
frequency domain. The logarithm reduces the difference between low and high intensities,
thereby also increasing the effects of noise.

Table (4.2) contains the results for both these techniques. The results when using the
logarithm give a constant θ, which is strange.

Low frequency components cover just a few voxels, meaning that not every cone will
contain voxels representing these. As illustrated in figure (4.7a), this will influence the
intensity plot generated by the sector method even when their intensity is not much higher
than the rest of the frequency domain.
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For the results generated with the logarithm the effect of the low frequency components
is probably not reduced enough. The cones at certain directions where θ is 30◦ might
contain remarkable little low frequency components, thereby having a reduced average
intensity.

To conclude low frequency filtering is necessary to remove the effect of low frequency
components, since the logarithm is not sufficient.

5.2.3 Test 4: Artificial ellipsoids and fibres

There are three particular properties of the frequency domain that might influence the
results of the sector method. These are the length of the shortest axis of the ellipsoid, the
length of the medium axis compared to the other two, and the level of noise.

The length of the shortest axis of the ellipsoid, i.e. thickness of the disc if the fibres
in the spatial domain are round, will represent the anisotropy of the fibres in the spatial
domain. This means that the value of the measured anisotropy should decrease with
the thickness, whilst the direction should remain constant. Figure (4.8) illustrates that
the anisotropy decreases as it should, but the direction is variable for thin discs. The
intensity plot generated with the sector method has a large minimums area for thin discs
and decreases as the disc becomes thicker (see figure (4.11)). Meaning that it is more
difficult to determine the direction for thin discs compared to thick ones.

The length of the medium axis of the disc will depend on how stretched the fibres are.
By varying the length of the medium axis one can examine if the direction can be found
even if the fibres are not round. Figure (4.9) shows that the correct direction is found.
The anisotropy determined by both the derivative and the difference are not influenced
by the length of the medium axis. This means that the sector method can determine the
direction and its anisotropy even if the fibres are not completely round.

The frequency domain is quite noisy. To determine how much noise influences the
results increased levels of Gaussian noise were added. Noise does both influence the found
direction and its anisotropy, (4.10).

The artificial fibres were made to examine how the results were influenced by changes
in the spatial domain. First the anisotropy of the fibres were decreased (see figure (4.12)).
The general direction is a θ of 0◦. For an anisotropy of 0 the fibres are perfectly aligned
with the z-axis, but the sector method measures a complete different direction. This is
due to the large minimum are in the intensity plot and the Savitzky-Golay filter (see figure
(4.14)). As a consequence it is difficult to say anything reasonable about these results,
except for that the anisotropy in general does not decrease with decreasing anisotropy.
The large minimum averages intensity area makes the sector method sensitive to noise in
the spatial domain (see figure (4.13))

5.2.4 Test 5: Preprocessing techniques

We would like to use this section not only to discuss how the different preprocessing
techniques influence the results but also if the results could be correct for the given samples.

For the samples that have a low level of anisotropy, i.e. data set 1, sample 1, 2, 3
and data set 2, sample 1 and 2 (see figure (3.3) and (3.4)), the fibres run approximately
in a direction of θ ≈ 90◦ and φ ≈ 45◦ or φ ≈ 225◦. The reason it does not look like a
φ of 45◦ in figure (3.3) and (3.4) is because the y-axis is zero at the top of the image
and increases downwards. The sector method does not find this direction for any of the
mentioned samples (see table (4.3)), except for data set 2, sample 2, when skeletonization
is applied to the image.
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The measured anisotropy defined by the difference between the maximum and mini-
mum value in the intensity plot is for all samples very high (see table (4.3)). Normally
it can not become larger than one, but the Savitzky-Golay filter (step 1 figure (3.1)), can
influence the image to containe negative intensities. Both the anisotropy defined by the
derivative and the difference are not lower for the images with high anisotropy compared
to those with a low anisotropy.

To sum up the sector method does not find the correct fibre direction and the anisotropy
does not behave as expected, even when different preprocessing techniques are applied.

5.3 Ellipsoid method

The effect of the anisotropic PSF on the data sets might also influence the results of the
ellipsoid method. If this is the case, it should appear in test 2, which determines the
threshold dependency, since it might cause the direction to become very variable. But
also in test 4, where the direction and its anisotropy has to be found for an ellipsoid with
a variable medium axis.

5.3.1 Test 1: Rotational invariance

Theoretically the ellipsoid method should be completely rotationally invariant. This is
because the threshold value is determined by finding the maximum intensity on the surface
of a sphere with a specific radius (see section 2.4.2). Also the fitting of an ellipsoid to the
thresholded data set (see section 2.6.3) should be independent of any rigid body rotation.

The results confirm this (see table (A.1)). A thing worth mentioning is the change in
φ for data set 1, sample 2. At a θ of 90◦ any angle of φ ± n180◦ (n = 0, 1, 2, ...) is the
same direction. Thereby it is still the same direction that is found, even though the value
of φ is not the same.

5.3.2 Test 2: Threshold value dependency

The weakest link of the ellipsoid method is the thresholding of the frequency domain (see
section 2.4.2). Including or excluding frequencies on account of intensity might be dubious.
This test was made to determine how dependent the results of the ellipsoid method are
on the chosen threshold value.

Most samples had results similar to figure (4.4). This means that for a range of thresh-
old values the results remains constant. For these samples the ellipsoid techniques has
chosen a threshold value within the constant area. At low threshold values the anisotropy
goes towards one, meaning that the data set is spherical. This is because the noise is
included to the thresholded data set making it spherical. At high threshold values only a
few frequency components remain, which causes the results to jump.

An exception is data set 1, sample 2 (see figure (4.5)). The results for φ does not
have a constant area, but varies between approximately 30◦ and 210◦. This is due to the
same reason as mention in the previous section, i.e. at a θ of 90◦ any angle of φ± n180◦

(n = 0, 1, 2, ...) is the same direction.
Data set 1, sample 3 (see figure (4.6)) has a distribution similar to set 1, sample 2.

The difference is that the chosen threshold values is in an area where still a lot of noise is
present, meaning that the program chose a too low threshold value. A value between 40
and 140 would be more appropriate, since the direction and its anisotropy would remain
fairly constant.
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To conclude, for every sample there is a range of threshold values where the results
will remain stable. The challenge is to let the program find a threshold value within this
region. The current technique is successful in most cases, but not all. This might be
because we chose a too high frequency for the high frequency filtering (see section 2.4.2).
Thereby will the longest axis of the ellipsoid be smaller than the radius of the remaining
data set, and a too low threshold value is chosen. The frequency used for high frequency
filtering in this study is the one corresponding to the diameter of the fibres. It might be
better to use the one corresponding to the distance between fibres. This will decrease the
radius of the remaining spherical data set and increasing the chosen threshold value.

5.3.3 Test 3: Logarithm versus low frequency filtering

Taking the logarithm of the frequency domain should not influence the results of the
ellipsoid method. The logarithm changes the scaling of the intensity distribution, but the
same voxel’s intensity will determine the threshold value. Thereby the same thresholded
data set will be fitted.

The reason there is a difference of 0.01 ± 0.01 between the anisotropy when low fre-
quency filtering is used compared to the logarithm, is that low frequency filtering removes
a few voxels in the centre of the data set. The missing voxels would usually draw the fitted
ellipsoid a bit more towards the centre of the frequency domain, hence the difference in
anisotropy.

This shows that the ellipsoid method actually needs no filtering or other processing of
the frequency domain, except for thresholding.

5.3.4 Test 4: Artificial ellipsoids and fibres

The ellipsoid method finds the correct direction of the short axis at different lengths of
this axis (see figure (4.8)). The anisotropy increases linearly with decreasing anisotropy
as wanted. The results are hardly influenced by the length of the medium axis nor noise
(see figure (4.9) and (4.10)). This means that the ellipsoid method can determine the
anisotropy and direction of round fibres, but also oval fibres, and is not sensitive to noise
in the frequency domain.

The fibre test shows that the ellipsoid method has increasing difficulty to determine
the overall direction when the anisotropy increases (see figure (4.12)). This is quite nat-
ural because the fibres are allowed to have a more randomly distribution with increasing
anisotropy, but it might be that one direction is more represented than others. The
anisotropy has a general trend of increasing, but not as much as expected. For fully ran-
dom orientated fibres the frequency domain should contain a sphere, meaning that the
anisotropy should be close to one. The spatial domain only contain ten fibres, and this is
probably not enough to cause complete anisotropy.

Noise in the spatial domain does not influence the results of the ellipsoid method (see
figure (4.13)). This means that no measurements need to be taken to remove noise from
the spatial domain before Fourier transforming.

5.3.5 Test 5: Preprocessing techniques

As mentioned in section 5.2.4 the measured direction for data set 1, sample 1, 2, 3 and
data set 2, sample 1 and 2 should be around θ ≈ 90◦ and φ ≈ 45◦ or φ ≈ 225◦. The
direction found by the ellipsoid method matches this (see table (4.4)). The exception is
data set 1, sample 3, but as mentioned in section 5.3.2 the program had chosen the an
incorrect threshold value.
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The measured anisotropy acts as expected, i.e. the value is low for the samples with
low anisotropy and high for the samples with high anisotropy.

The measured direction is not influenced much by the different preprocessing tech-
niques. The measured anisotropy on the other hand is decreased for the samples with
low anisotropy and increased for those with high anisotropy when applying skeletoniza-
tion. This can be explained by that the fibres become thinner in the xy-plane (see figure
(3.7)). Thereby increasing the length of the longest axis in the frequency domain (see
figure (4.15)). This reduces the value of the measured anisotropy, but images where the
fibres are randomly arranged the frequency domain is less affected.

The question is if the increased difference in anisotropy is worth the extra computa-
tional time accompanying skeletonization. To give an example, the largest sample used
in this study has an image size of 250× 250× 250 voxels. It took more than 12 hours to
find its skeleton. On the other hand this might be reduced by simplifying equation (2.22),
similarly to Perona and Malik [53].

5.4 Comparison between the sector, ellipsoid and previous
developed methods

The sector method has proven not to be very robust. This is a method that is an expansion
from a previous developed technique by Chaudhuri et al. [1]. In two dimensions one can
find the maximum intensity direction instead of the minimum and just add 90◦. In 3-
D it is not possible to use the maximum to determine the direction. As illustrated in
figure (2.17) and (4.3) the maximum intensity is more distinct than the minimum. If we
should guess, it is the same case in 2-D and therefore has the maximum been used to
determine the direction. The Savitzky-Golay filter seems to influence the intensity plot
wrongfully. When the minimum average intensity area is large, the Savitzky-Golay filter
seems to place the minimum directly next to the maximum (see figure (2.17) and (4.14)).
Therefore replacing this filter by an other might improve the results of the sector method.

The ellipsoid method on the other hand is working exactly as hoped for. We have not
seen any previous work on analysing the 3-D frequency domain nor fitting an ellipsoid to
the frequency domain.

An easier way of finding the principal directions of the frequency domain might be the
method developed by Denslow et at. [9]. In their study they used a variance-covariance
matrix of the intensity spectrum of the frequency domain to determine the direction and
its anisotropy of fibres in images. In the mentioned article it is used for 2-D images. This
method needs neither thresholding nor fitting, but we do not know how easy it would be
to expand this technique to 3-D.
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Chapter 6

Conclusion

In this study we have developed and implemented two methods to determine the direction
and its anisotropy of collagen fibres in 3-D images generated with multi-photon microscopy.
These are the sector and ellipsoid method.

Through a series of tests it was shown that the sector method was not very robust. This
is because the frequency domain does not contain one specific direction where the average
intensity is the least, but rather a quite large area. The maximum average direction is
limited to a much smaller area and is therefore much easier to extract. This is due to
the anisotropic effect of the PSF on the spatial domain. Even if the anisotropic effect of
the PSF is removed from the images before Fourier transforming, the minimum average
intensity might still not be at just one specific direction. This method was originally made
for 2-D, and the maximum average intensity was used to determine the direction of the
fibres [14]. Therefore is the method probably not working in 3-D. Changes that might
improve the results are plotting the average intensity distribution on a hemisphere instead
of stretching it to the shape of a rectangular (see figure (2.17)). Also it seems like the
Savitzky-Golay filter (step 6 figure (3.1)) influences the results wrongfully, therefore using
an other noise reduction filter might improve the results greatly.

The ellipsoid method showed very promising results. It was hardly effected by noise in
the frequency domain nor in the spatial domain. It managed to find the correct direction
for the data generated samples as well as what we assume is the correct direction for the
real samples. There seems to be no need to remove the anisotropic effect of the PSF, since
the ellipsoid method manages to find the correct direction and anisotropy. The process of
choosing the threshold value did not work for all samples, but with a slight change this
problem might be solved. For future research we recommend to test this method on a
larger range of samples to make sure this method is robust.
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Appendix A

Results

In this section the results are given that are not included in section 4.

A.1 Test 1: Rotational invariance

Table A.1: Rotational test: results ellipsoid method.

Data set 1 2
Sample 1 (o) 2 (o) 3 (o) 4 (r) 5 (r) 1 (o) 2 (o) 3 (r)

D
ir

ec
ti

on θ
No rotation 82◦ 90◦ 54◦ 11◦ 9◦ 76◦ 72◦ 6◦

xy-plane 82◦ 90◦ 54◦ 11◦ 9◦ 76◦ 72◦ 6◦

xz-plane 82◦ 90◦ 54◦ 11◦ 9◦ 76◦ 72◦ 6◦

φ
No rotation 213◦ 214◦ 16◦ 288◦ 243◦ 215◦ 216◦ 266◦

xy-plane 213◦ 214◦ 16◦ 288◦ 243◦ 215◦ 216◦ 266◦

xz-plane 213◦ 34◦ 16◦ 288◦ 243◦ 215◦ 216◦ 266◦

Anisotropy
No rotation 0.07 0.06 0.83 0.23 0.37 0.20 0.19 0.33

xy-plane 0.07 0.06 0.83 0.23 0.37 0.20 0.19 0.33
xz-plane 0.07 0.06 0.83 0.23 0.37 0.20 0.19 0.33

A.2 Test 2: Threshold value dependency

(a) θ (b) φ (c) order

Figure A.1: Threshold test: data set 1, sample 1 (o). The green curve shows which
threshold value would have been chosen by the program itself.
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(a) θ (b) φ (c) order

Figure A.2: Threshold test: data set 1, sample 4 (r). The green curve shows which
threshold value would have been chosen by the program itself.

(a) θ (b) φ (c) order

Figure A.3: Threshold test: data set 1, sample 5 (r). The green curve shows which
threshold value would have been chosen by the program itself.

(a) θ (b) φ (c) order

Figure A.4: Threshold test: data set 2, sample 1 (o). The green curve shows which
threshold value would have been chosen by the program itself.

(a) θ (b) φ (c) order

Figure A.5: Threshold test: data set 2, sample 2 (o). The green curve shows which
threshold value would have been chosen by the program itself.

54



A.3 Test 3: Logarithm versus low frequency filtering

Table A.2: Logarithm vs high frequency filter: results ellipsoid method.

Data set 1 2
Sample 1 (o) 2 (o) 3 (o) 4 (r) 5 (r) 1 (o) 2 (o) 3 (r)

D
ir

ec
ti

on θ
Logarithm 82◦ 90◦ 54◦ 11◦ 9◦ 75◦ 72◦ 6◦

LFF* 82◦ 90◦ 54◦ 11◦ 9◦ 76◦ 72◦ 6◦

φ
Logarithm 213◦ 214◦ 16◦ 288◦ 243◦ 215◦ 216◦ 266◦

LFF 213◦ 214◦ 16◦ 288◦ 243◦ 215◦ 216◦ 266◦

Anisotropy
Logarithm 0.07 0.05 0.82 0.23 0.36 0.17 0.17 0.32

LFF 0.07 0.06 0.83 0.23 0.37 0.20 0.19 0.33
* LFF stands for low frequency filtering.
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Appendix B

Matlab code

B.1 Point spread function

This code generates a theoretical PSF as described in section 2.2.2.

function [PSFmatrix] = PSF(voxelSize, matrixSize)
%The voxel dimensions should be in nm
%The matrix dimensions in number of pixels
% Microscope parameters
lambda=800; % Wavelength in nm
NA=1.2; % Numerical aperture
n=1.33; % Refraction index
p=2; % p-photon process
%Creating the PSF
syms r;
syms z;
alpha=asin(NA/n);
deltaRho=0.01;
rho=0:deltaRho:1;
v=2*pi*r*n*sin(alpha)/lambda;
u=8*pi*z*n*(sin(alpha/2)∧2)/lambda;
J0=besselj(0, (v/p)*rho);
e=exp(1i*(u/p)*rho.*rho/2);
h=sum(e.*J0.*rho)*deltaRho;
PSF=(abs(h))∧(p);
maxV=(abs(sum(exp(1i*0*rho.*rho/2).*besselj(0, 0*rho).*rho)*deltaRho))∧(p);
PSFnorm=PSF/maxV;
PSFmatrix = zeros(matrixSize(1),matrixSize(2),matrixSize(3));
maxZ=ceil(matrixSize(3)/2);
for m=1:maxZ,

z=(m-maxZ)*voxelSize(3);
for k=1:matrixSize(1),

for l=1:matrixSize(2),
r=abs(((k-(ceil(matrixSize(1)/2)))*voxelSize(1))...

+1i*((l-(ceil(matrixSize(2)/2)))*voxelSize(2)));
t=eval(PSFnorm);
PSFmatrix(k,l,m)=t;
PSFmatrix(k,l,(2*maxZ)-m)=t;

end
end

end
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B.2 3-D Savitzky-Golay filter, 4th order polynomial

The Matlab code for the Savitzky-Golay filter applied before skeletonization (step 1 right
column in figure (3.1)) is given in this section. The theory of the Savitzky-Golay filter is
given in section 2.3.2.

function [filteredData] = SGfilter(data,FSx,FSy,FSz)
% FSx, FSy and FSz is the filter size in the x,y and z-direction.
[k,l,m]=size(data);
X=zeros(FSx*FSy*FSz,35);
hFSx=floor(FSx/2);
hFSy=floor(FSy/2);
hFSz=floor(FSz/2);
p=1;
for z=-hFSz:hFSz

for y=-hFSy:hFSy
for x=-hFSx:hFSx

X(p,1)=1;
X(p,2)=x;
X(p,3)=y;
X(p,4)=z;
X(p,5)=x∧2;
X(p,6)=x*y;
X(p,7)=x*z;
X(p,8)=y∧2;
X(p,9)=y*z;
X(p,10)=z∧2;
X(p,11)=x∧3;
X(p,12)=(x∧2)*y;
X(p,13)=(x∧2)*z;
X(p,14)=x*(y∧2);
X(p,15)=x*y*z;
X(p,16)=x*(z∧2);
X(p,17)=y∧3;
X(p,18)=(y∧2)*z;
X(p,19)=y*(z∧2);
X(p,20)=z∧3;
X(p,21)=x∧4;
X(p,22)=(x∧3)*y;
X(p,23)=(x∧3)*z;
X(p,24)=(x∧2)*(y∧2);
X(p,25)=(x∧2)*y*z;
X(p,26)=(x∧2)*(z∧2);
X(p,27)=x*(y∧3);
X(p,28)=x*(y∧2)*z;
X(p,29)=x*y*(z∧2);
X(p,30)=x*(z∧3);
X(p,31)=y∧4;
X(p,32)=(y∧3)*z;
X(p,33)=(y∧2)*(z∧2);
X(p,34)=y*(z∧3);
X(p,35)=z∧4;
p=p+1;

end
end

end
A=(transpose(X)*X)\ transpose(X);
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A0=zeros(FSx,FSy,FSz);
p=1;
for z=1:FSz

for y=1:FSy
for x=1:FSx

A0(x,y,z)=A(1,p);
p=p+1;

end
end

end
filteredData=zeros(k,l,m);
for x=1:k

for y=1:l
for z=1:m

if (x>hFSx && x<=k-hFSx && y>hFSy && y<=l-hFSy && z>hFSz && z<=m-hFSz)
for dz=-hFSz:hFSz

for dy=-hFSy:hFSy
for dx=-hFSx:hFSx

filteredData(x,y,z)=filteredData(x,y,z)+data(x+dx,y+dy,z+dz)...
*A0(dx+hFSx+1,dy+hFSy+1,dz+hFSz+1);

end
end

end
else

dxi=0;
dyi=0;
dzi=0;
if (x<=hFSx)

dxi=hFSx+1-x;
end
if (x>k-hFSx)

dxi=(k-hFSx-x);
end
if (y<=hFSy)

dyi=hFSy+1-y;
end
if (y>l-hFSy)

dyi=(l-hFSy-y);
end
if (z<=hFSz)

dzi=hFSz+1-z;
end
if (z>m-hFSz)

dzi=(m-hFSz-z);
end
Xn=zeros(FSx*FSy*FSz,35);
p=1;
for zi=-hFSz+dzi:hFSz+dzi

for yi=-hFSy+dyi:hFSy+dyi
for xi=-hFSx+dxi:hFSx+dxi

Xn(p,1)=1;
Xn(p,2)=xi;
Xn(p,3)=yi;
Xn(p,4)=zi;
Xn(p,5)=xi∧2;
Xn(p,6)=xi*yi;
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Xn(p,7)=xi*zi;
Xn(p,8)=yi∧2;
Xn(p,9)=yi*zi;
Xn(p,10)=zi∧2;
Xn(p,11)=xi∧3;
Xn(p,12)=(xi∧2)*yi;
Xn(p,13)=(xi∧2)*zi;
Xn(p,14)=xi*(yi∧2);
Xn(p,15)=xi*yi*zi;
Xn(p,16)=xi*(zi∧2);
Xn(p,17)=yi∧3;
Xn(p,18)=(yi∧2)*zi;
Xn(p,19)=yi*(zi∧2);
Xn(p,20)=zi∧3;
Xn(p,21)=xi∧4;
Xn(p,22)=(xi∧3)*yi;
Xn(p,23)=(xi∧3)*zi;
Xn(p,24)=(xi∧2)*(yi∧2);
Xn(p,25)=(xi∧2)*yi*zi;
Xn(p,26)=(xi∧2)*(zi∧2);
Xn(p,27)=xi*(yi∧3);
Xn(p,28)=xi*(yi∧2)*zi;
Xn(p,29)=xi*yi*(zi∧2);
Xn(p,30)=xi*(zi∧3);
Xn(p,31)=yi∧4;
Xn(p,32)=(yi∧3)*zi;
Xn(p,33)=(yi∧2)*(zi∧2);
Xn(p,34)=yi*(zi∧3);
Xn(p,35)=zi∧4;
p=p+1;

end
end

end
An=(transpose(Xn)*Xn)\ transpose(Xn);
A0n=zeros(FSx,FSy,FSz);
p=1;
for zi=1:FSz

for yi=1:FSy
for xi=1:FSx

A0n(xi,yi,zi)=An(1,p);
p=p+1;

end
end

end
for dz=-hFSz:hFSz

for dy=-hFSy:hFSy
for dx=-hFSx:hFSx

filteredData(x,y,z)=filteredData(x,y,z)...
+data(x+dx+dxi,y+dy+dyi,z+dz+dzi)...
*A0n(dx+hFSx+1,dy+hFSy+1,dz+hFSz+1);

end
end

end
end

end
end
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end

B.3 Fourier transform and frequency filtering

This section contains the Matlab code for step 3 and 4 in figure (3.1). The theory of
the Fourier transform and frequency filtering are presented in section 2.4.1 and 2.4.2,
respectivly.

B.3.1 3-D Fourier transform and low frequency filtering

function [FFTdata] = fft3DImage(data, windowYN, logYN,lffYN)
%windowYN is 1 if a window should be applied before transforming.
%logYN is 1 if the logarithm of the frequency domain should be taken.
%lffYN is 1 if low frequency filtering should be applied.
[k,l,m]=size(data);
if (windowYN==1)

if (mod(k,2)==1)
rmax=ceil(k/2);

else
rmax=k/2+0.5;

end
for x=1:k

for y=1:l
for z=1:m

r=sqrt((x-rmax)∧2+(y-rmax)∧2+(z-rmax)∧2);
if (r>rmax)

r=rmax;
end
data(x,y,z)=data(x,y,z)*(cos(r*pi/rmax)+1)/2;

end
end

end
end
FFTdata=abs(fftshift(fftn(data)));
if (logYN==1)

FFTdata=log(FFTdata+1);
end
if (lffYN==1)

for x=1:k
for y=1:l

for z=1:m
r=sqrt((x-rmax)∧2+(y-rmax)∧2+(z-rmax)∧2);
if (r<=2)

FFTdata(x,y,z)=0;
end

end
end

end
end
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B.3.2 High frequency filtering

function [filteredData] = HFF(data, voxelSize, fiberD)
%voxelSize and fiberD are in nm
%fiberD stands for fiber diameter
[k,l,m]=size(data);
fiberDvoxels=fiberD/voxelSize;
radiusImage=ceil(k/fiberDvoxels);
filteredData=subvolume(data,...

[ceil(k/2)-radiusImage, ceil(k/2)+radiusImage,...
ceil(l/2)-radiusImage, ceil(l/2)+radiusImage,...
ceil(m/2)-radiusImage, ceil(m/2)+radiusImage]);

[k,l,m]=size(filteredData);
for x=1:k

for y=1:l
for z=1:m

r=sqrt((x-(radiusImage+1))∧2+(y-(radiusImage+1))∧2+(z-(radiusImage+1))∧2);
if (r>radiusImage)

filteredData(x,y,z)=0;
end

end
end

end

B.4 Skeletonization

The following codes are the required steps to apply skeletonization as described by section
2.5.2. This is step 2, the right column, in figure (3.1).

B.4.1 Generates a vector field of an image

function [VF] = vectorField(data)
[k,l,m]=size(data);
VF=zeros(k,l,m,3);
data=data/max(max(max(data)));
for x=1:k

for y=1:l
for z=1:m

minV=inf;
for dx=-1:1

for dy=-1:1
for dz=-1:1

if (x+dx>0 && x+dx<=k && y+dy>0 && y+dy<=l &&...
z+dz>0 && z+dz<=m)

if (dx==0 && dy==0 && dz==0)
else

if (
minV>data(x+dx,y+dy,z+dz))
minV=data(x+dx,y+dy,z+dz);
dxi=dx;
dyi=dy;
dzi=dz;

elseif (minV==data(x+dx,y+dy,z+dz))
dxi=dxi+dx;
dyi=dyi+dy;
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dzi=dzi+dz;
end

end
end

end
end

end
if (dxi==0 && dyi==0 && dzi==0)
else

VF(x,y,z,1)=(data(x,y,z)-minV)*dxi/...
sqrt(dxi∧2+dyi∧2+dzi∧2);

VF(x,y,z,2)=(data(x,y,z)-minV)*dyi/...
sqrt(dxi∧2+dyi∧2+dzi∧2);

VF(x,y,z,3)=(data(x,y,z)-minV)*dzi/...
sqrt(dxi∧2+dyi∧2+dzi∧2);

end
end

end
end

B.4.2 Vector field diffusion

function [VF] = diffusion(VF, iterations)
for n=1:iterations

g=weighing(VF);
VF=vectorDiffusion(VF,g);

end

%WEIGING FUNCTION
function [g] = weighing(VF)
[k,l,m,dim]=size(VF);
g=zeros(k,l,m);
K=1;
for x=1:k

for y=1:l
for z=1:m

c=zeros(3,1);
for n=1:3

c(n)=VF(x,y,z,n);
end
if (c(1)==0 && c(2)==0 && c(3)==0)
else

c=c/sqrt(c(1)∧2+c(2)∧2+c(3)∧2);
minCos=Inf;
o=0;
for dx=-1:2:1

if (x+dx>0 && x+dx<=k)
s=zeros(3,1);
for n=1:3

s(n)=VF(x+dx,y,z,n);
end
if (s(1)==0 && s(2)==0 && s(3)==0)

o=1; else
s=s/sqrt(s(1)∧2+s(2)∧2+s(3)∧2);
d=(c(1)*s(1)+c(2)*s(2)+c(3)*s(3));
if (d<minCos)
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minCos=d;
sn=s;

end
end

end
if (y+dx>0 && y+dx<=l)

s=zeros(3,1);
for n=1:3

s(n)=VF(x,y+dx,z,n);
end
if (s(1)==0 && s(2)==0 && s(3)==0)

o=1;
else

s=s/sqrt(s(1)∧2+s(2)∧2+s(3)∧2);
d=(c(1)*s(1)+c(2)*s(2)+c(3)*s(3));
if (d<minCos)

minCos=d;
sn=s;

end
end

end
if (z+dx>0 && z+dx<=m)

s=zeros(3,1);
for n=1:3

s(n)=VF(x,y,z+dx,n);
end
if (s(1)==0 && s(2)==0 && s(3)==0)

o=1;
else

s=s/norm(s);
d=(c(1)*s(1)+c(2)*s(2)+c(3)*s(3));
if (d<minCos)

minCos=d;
sn=s;

end
end

end
end
if (minCos<Inf && o==0)

g(x,y,z)=exp(K*(((c(1)*sn(1)+c(2)*sn(2)+c(3)*sn(3))/...
(sqrt(c(1)∧2+c(2)∧2+c(3)∧2)...
*sqrt(sn(1)∧2+sn(2)∧2+sn(3)∧2)))-1));

end
end

end
end

end

%DIFFUSION
function [VFD] = vectorDiffusion(VF,g)
r=1/4;
[k,l,m,dim]=size(VF);
VFD=zeros(k,l,m,dim);
for x=1:k

for y=1:l
for z=1:m
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[xmin,xmax]=limitsDiff(x,k);
[ymin,ymax]=limitsDiff(y,l);
[zmin,zmax]=limitsDiff(z,m);
VFD(x,y,z,:)=VF(x,y,z,:)+r*(g(x,y,z)*[VF(xmin,y,z,:)...

+VF(xmax,y,z,:)+VF(x,ymin,z,:)+VF(x,ymax,z,:)...
+VF(x,y,zmin,:)+VF(x,y,zmax,:)-6*VF(x,y,z,:))...
+(g(xmax,y,z)-g(xmin,y,z))*(VF(xmax,y,z,:)-VF(xmin,y,z,:))...
/((xmax-xmin)∧2)...
+(g(x,ymax,z)-g(x,ymin,z))*(VF(x,ymax,z,:)-VF(x,ymin,z,:))...
/((ymax-ymin)∧2)...
+(g(x,y,zmax)-g(x,y,zmin))*(VF(x,y,zmax,:)-VF(x,y,zmin,:))...
/((zmax-zmin)∧2)];

end
end

end

%BOUNDARIES function [xmin,xmax] = limitsDiff(x,k)
if (x==1)

xmin=x;
xmax=x+1;

elseif (x==k)
xmin=x-1;
xmax=x;

else
xmin=x-1;
xmax=x+1;

end

B.4.3 Generates a skeleton strength map from a vector field

function [skeleton] = SSM(VF)
[k,l,m,dim]=size(VF);
skeleton=zeros(k,l,m);
for x=1:k

for y=1:l
for z=1:m

a=0;
for dx=-1:1

for dy=-1:1
for dz=-1:1

if (x+dx>0 && x+dx<=k && y+dy>0 && y+dy<=l &&...
z+dz>0 && z+dz<=m)
if (dx==0 && dy==0 && dz==0)
else

a=a+(VF(x+dx,y+dy,z+dz,1)*dx+...
VF(x+dx,y+dy,z+dz,2)*dy+...
VF(x+dx,y+dy,z+dz,3)*dz)/...
sqrt(dx∧2+dy∧2+dz∧2);

end
end

end
end

end
if (a>0)

skeleton(x,y,z)=a;
end
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end
end

end

B.5 Sector method

This section contains the Matlab code required to apply the sector method. The sector
method consists of step 5 and 6 in the left column of figure (3.1). The theory behind this
method can be found in section 2.3.2 and 2.6.2.

B.5.1 Generates the intensity plot

function [I] = sector(data)
dtheta=10/180*pi;
ndtheta=pi/(2*dtheta);
dphi=zeros(ndtheta+1,1);
dphi(1)=2*pi;
for n=1:ndtheta

dphi(n+1)=2*pi/floor(2*pi/(dtheta/sin((n)*dtheta)));
end
rc=sqrt(2)*dtheta/2;
Ic=zeros(ndtheta+1,2*pi/dphi(ndtheta+1),2);
[k,l,m]=size(data);
r=ceil(k/2);
for x=1:k

for y=1:l
for z=1:m

if (data(x,y,z)>0)
rn=sqrt((x-r)∧2+(y-r)∧2+(z-r)∧2);
for n=0:ndtheta

for q=1:ceil(2*pi/dphi(n+1))
t=n*dtheta;
p=q*dphi(n+1);
R=[cos(t)*cos(p), cos(t)*sin(p), -sin(t);...

-sin(p), cos(p), 0;...
sin(t)*cos(p), sin(t)*sin(p), cos(t)];

d=[(x-r);(y-r);(z-r)];
dnew=R*d;
tnew=acos(dnew(3)/rn);
if (tnew>pi/2)

tnew=pi-tnew;
end
if (tnew<=rc)

Ic(n+1,q,1)=Ic(n+1,q,1)+data(x,y,z);
Ic(n+1,q,2)=Ic(n+1,q,2)+1;

end
end

end
end

end
end

end
I=zeros(ndtheta+1,2*pi/dphi(ndtheta+1));
for n=0:ndtheta
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for q=1:ceil(2*pi/dphi(n+1))
p=q*dphi(n+1);
for qn=1:ceil(2*pi/dphi(ndtheta+1))

pn=qn*dphi(ndtheta+1);
if (pn<=p && I(n+1,qn)==0)

I(n+1,qn)=Ic(n+1,q,1)/Ic(n+1,q,2);
end

end
end

end

B.5.2 Applies the Savitzky-Golay filter to the intensity plot

function [phi,theta,der,dif] = SGfilterSector(data,FSx,FSy)
%FSx is the filter size in the x-direction.
%FSy is the filter size in the y-direction.
[k,l]=size(data);
D=zeros(3*k-2,3*l);
hl=floor(l/2);
for x=1:k

for y=1:l
if (hl+y<=l)

ln=hl+y;
else

ln=y-hl;
end
D(x,y)=data(k-x+1,ln);
D(x,l+y)=data(k-x+1,ln);
D(x,2*l+y)=data(k-x+1,ln);
D(k+x-1,y)=data(x,y);
D(k+x-1,l+y)=data(x,y);
D(k+x-1,2*l+y)=data(x,y);
D(2*k+x-2,y)=data(k-x+1,ln);
D(2*k+x-2,l+y)=data(k-x+1,ln);
D(2*k+x-2,2*l+y)=data(k-x+1,ln);

end
end
D=D/max(max(D));
X=zeros(FSx*FSy,15);
nx=floor(FSx/2);
ny=floor(FSy/2);
p=1;
for y=-ny:ny

for x=-nx:nx
X(p,1)=1;
X(p,2)=x;
X(p,3)=y;
X(p,4)=x∧2;
X(p,5)=x*y;
X(p,6)=y∧2;
X(p,7)=x∧3;
X(p,8)=(x∧2)*y;
X(p,9)=x*(y∧2);
X(p,10)=y∧3;
X(p,11)=x∧4;
X(p,12)=(x∧3)*y;
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X(p,13)=(x∧2)*(y∧2);
X(p,14)=x*(y∧3);
X(p,15)=y∧4;
p=p+1;

end
end
A=(transpose(X)*X)\transpose(X);
F=zeros(FSx,FSy);
K=zeros(FSx,FSy);
L=zeros(FSx,FSy);
p=1;
for y=1:FSy

for x=1:FSx
F(x,y)=A(1,p);
K(x,y)=A(2,p);
L(x,y)=A(3,p);
p=p+1;

end
end
filteredData=zeros(k,l);
dataDX=zeros(k,l);
dataDY=zeros(k,l);
dataD=zeros(k,l);
for x=1:k

for y=1:l
for dy=-ny:ny

for dx=-nx:nx
filteredData(x,y)=filteredData(x,y)...

+D(k-1+x+dx,l+y+dy)*F(dx+nx+1,dy+ny+1);
dataDX(x,y)=dataDX(x,y)...

+D(k-2+x+dx,l+y+dy)*K(dx+nx+1,dy+ny+1);
dataDY(x,y)=dataDY(x,y)...

+D(k-2+x+dx,l+y+dy)*L(dx+nx+1,dy+ny+1);
end

end
dataD(x,y)=sqrt(dataDX(x,y)∧2+dataDY(x,y)∧2);

end
end
filteredData=filteredData./max(max(filteredData));
dtheta=10/180*pi;
ndtheta=pi/(2*dtheta);
dphi=zeros(ndtheta+1,1);
dphi(1)=2*pi;
for n=1:ndtheta

dphi(n+1)=2*pi/floor(2*pi/(dtheta/sin((n)*dtheta)));
end
[t,p]=find(filteredData==min(min(filteredData)));
phi=dphi(ndtheta+1)*p*180/pi;
theta=(t-1)*dtheta*180/pi;
phi=mean(phi);
theta=mean(theta);
if (theta>90)

theta=180-theta;
phi=phi-180;

end
if (phi<0)
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phi=360+phi;
end
der=max(max(dataD));
dif=max(max(filteredData))-min(min(filteredData));

B.6 Least squares ellipsoid specific fitting

The Matlab code in this section performs the ellipsoid method, which is step 5 and 6 in
the right column of figure (3.1). The theory behind this method can be found in section
2.4.2 and 2.6.3.

function [phi, theta, anisotropy] = LSESF(data)
[k,l,m]=size(data);
radiusSphere=floor(k/2);
threshold=0;
for x=1:k

for y=1:l
for z=1:m

r=sqrt((x-ceil(k/2))∧2+(y-ceil(l/2))∧2+(z-ceil(m/2))∧2);
if (radiusSphere<=r && data(x,y,z)>=threshold)

threshold=data(x,y,z);
end

end
end

end
n=0;
E=zeros(k,l,m);
for x=1:k

for y=1:l
for z=1:m

if (data(x,y,z)>threshold)
n=n+1;
E(x,y,z)=1;

end
end

end
end
D=zeros(10,n);
p=1;
for x=1:k

for y=1:l
for z=1:m

if (E(x,y,z)==1)
xi=(x-ceil(k/2));
yi=(y-ceil(l/2));
zi=(z-ceil(m/2));
D(1,p)=xi*xi;
D(2,p)=yi*yi;
D(3,p)=zi*zi;
D(4,p)=2*yi*zi;
D(5,p)=2*xi*zi;
D(6,p)=2*xi*yi;
D(7,p)=2*xi;
D(8,p)=2*yi;
D(9,p)=2*zi;
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D(10,p)=1;
p=p+1;

end
end

end
end
q=1048576;
s=0;
while (s==0 && q>=4)

[v1,v2]=quadricsurface(D,q);
if (verifyEllipsoid(v1,v2)==1)

s=1;
else

q=q/2;
end

end
if (s==0)

q=3.01;
[v1,v2]=quadricsurface(D,q);
if (verifyEllipsoid(v1,v2)==1)

s=1;
end

end
if (s==1)

if (q<1048576)
u=3;
v=2*q;
q=(u+v)/2;
s=0;
while (((v-u)>=0.1) && s==0)

if (verifyEllipsoid(v1,v2)==1)
u=q;
s=1;

else
v=q;
s=0;

end
q=(u+v)/2;

end
end

else
ans=’No ellipsoid is found.’

end
A=[v1(1), v1(6), v1(5); v1(6), v1(2), v1(4); v1(5), v1(4), v1(3)];
[eigvectors,eigvalues]=eig(A);
minV=eigvalues(1,1);
for x=2:3

if (eigvalues(x,x)¡minV)
minV=eigvalues(x,x);

end
end
maxV=max(max(eigvalues));
[ROW, COL]=find(maxV==eigvalues);
n=eigvectors(:,COL);
theta=acos(n(3));
phi=atan2(n(2),n(1));
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anisotropy=minV/maxV;

%FINDS v1 AND v2 WHEN THE DATA SET AND q ARE GIVEN
function [v1, v2] = quadricsurface(D, q)
%q is the same as k in section 2.6.3.
S=D*transpose(D);
S11=zeros(6,6);
for x=1:6

for y=1:6
S11(x,y)=S(x,y);

end
end
S12=zeros(6,4);
for x=1:6

for y=1:4
S12(x,y)=S(x,y+6);

end
end
S22=zeros(4,4);
for x=1:4

for y=1:4
S22(x,y)=S(x+6,y+6);

end
end
C1=zeros(6,6);
C1(1,1)=-1;
C1(2,2)=-1;
C1(3,3)=-1;
C1(1,2)=(q/2)-1;
C1(1,3)=(q/2)-1;
C1(2,1)=(q/2)-1;
C1(2,3)=(q/2)-1;
C1(3,1)=(q/2)-1;
C1(3,2)=(q/2)-1;
C1(4,4)=-q;
C1(5,5)=-q;
C1(6,6)=-q;
V=inv(C1)*(S11-(S12*(inv(S22)*transpose(S12))));
[eigvectors, eigvalues]=eig(V);
MAX=max(max(eigvalues));
[ROW, COL]=find(eigvalues==MAX);
v1=eigvectors(:,COL);
v2=-inv(S22)*(transpose(S12)*v1);
v1=v1/abs(v2(4));
v2=v2/abs(v2(4));
if (v1(1)¡0)

v1=-v1;
v2=-v2;

end

%VERIFIES THAT THE QUADRIC SURFACE FOUND IS AN ELLIPSOID
function [isEllipsoid] = verifyEllipsoid(v1, v2)
a=[v1(1), v1(6), v1(4), v2(1); v1(6), v1(2), v1(5), v2(2);...

v1(4), v1(5), v1(3), v2(3); v2(1), v2(2), v2(3), v2(4)];
A=det(a);
b=[v1(1), v1(6), v1(4); v1(6), v1(2), v1(5); v1(4), v1(5), v1(3)];
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B=det(b);
C=v1(1)+v1(2)+v1(3);
D=v1(2)*v1(3)+v1(3)*v1(1)+v1(1)*v1(2)-v1(5)∧2-v1(4)∧2-v1(6)∧2;
pos=0;
if (v1(1)>=0 && v1(2)>=0 && v1(3)>=0 && v2(4)<=0)

pos=1;
end
if (A<0 && B*C>0 && D>0 && pos==1)

isEllipsoid=1;
else

isEllipsoid=0;
end

B.7 Data generated ellipsoids and fibres

The Matlab code to make the data generated samples required in section 3.2.4 are given
here.

B.7.1 Generates an image containing an ellipsoid

function [D] = ellipsoid(imageSize, ellipsoidDim)
%imageSize is just one number, and the generated image is cubic.
%ellipsoidDim contains the length of the three axes.
D=zeros(imageSize,imageSize,imageSize);
r0=ceil(imageSize/2);
theta=-pi/4;
phi=-pi/4;
Ry=[cos(theta),0,-sin(theta);0,1,0;sin(theta),0,cos(theta)];
Rz=[cos(phi),-sin(phi),0;sin(phi),cos(phi),0;0,0,1];
R=Ry*Rz;
for x=1:imageSize

for y=1:imageSize
for z=1:imageSize

Xnew=[1/ellipsoidDim(1);1/ellipsoidDim(2);1/ellipsoidDim(3)]...
.*(R*[(x-r0);(y-r0);(z-r0)]);

E=transpose(Xnew)*Xnew;
r=sqrt((x-r0)∧2+(y-r0)∧2+(z-r0)∧2);
if (E<=1 && r>2)

D(x,y,z)=(cos(E*pi)+1)/2;
end

end
end

end

B.7.2 Generates an image containing fibres

function [F] = fibres(imageSize, radiusF, numberofF, anisotropy)
%radiusF = radius of the fibres
%numberofF = the number of fibres
F=zeros(imageSize,imageSize,imageSize);
for m=1:numberofF

x0=rand()*(imageSize-1)+1;
y0=rand()*(imageSize-1)+1;
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z0=rand()*(imageSize-1)+1;
theta=anisotropy*rand*pi/2;
phi=rand*2*pi;
R=[sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)];
for r0=-imageSize/max(R):imageSize/max(R)

for z=1:imageSize
for x=1:imageSize

for y=1:imageSize
if (((x-x0-(r0*R(1)))∧2+(y-y0-(r0*R(2)))∧2+((z-z0-(r0*R(3)))∧2)/4)...

<radiusF∧2)
if (cos(sqrt((x-x0-(r0*R(1)))∧2+(y-y0-(r0*R(2)))∧2...

+((z-z0-(r0*R(3)))∧2)/4)*pi/(2*radiusF))>F(x,y,z))
F(x,y,z)=cos(sqrt((x-x0-(r0*R(1)))∧2+(y-y0-(r0*R(2)))∧2...

+((z-z0-(r0*R(3)))∧2)/4)*pi/(2*radiusF));
end

end
end

end
end

end
end

B.8 Opening and saving 3-D images

To be able to open the images both with Amira and Matlab they have to be saved as
a stack of 2-D tif-files. Therefore a code to both open and save 3-D images as stacks of
tif-files had to be made.

function [matrixImage] = open3DImage(name, firstSlice, lastSlice)
%The filenames are based on the way they are stored by Amira
if (firstSlice<10)

firstName=[name ’.000’ num2str(firstSlice)];
elseif (firstSlice<100)

firstName=[name ’.00’ num2str(firstSlice)];
elseif (firstSlice<1000)

firstName=[name ’.0’ num2str(firstSlice)];
else

firstName=[name ’.’ num2str(firstSlice)];
end
[x y]=size(imread(firstName, ’tif’));
matrixImage=zeros(x,y,lastSlice-firstSlice+1);
z=1;
for (p=firstSlice:lastSlice)

if (p<10)
nameSlice=[name ’.000’ num2str(p)];

elseif (p<100)
nameSlice=[name ’.00’ num2str(p)];

elseif (p<1000)
nameSlice=[name ’.0’ num2str(p)];

else
nameSlice=[name ’.’ num2str(p)];

end
matrixImage(:,:,z)=imread(nameSlice, ’tif’);
z=z+1;

end
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function [] = save3DImage(data, saveName, startSlice)
%The files will be saved with numbering like in Amira
data=data/max(max(max(data)));
[k,l,m]=size(data);
for z=1:m

if (z-1+startSlice¡10)
name=[saveName ’.000’ num2str(z-1+startSlice) ’.tif’];

elseif z-1+startSlice¡100
name=[saveName ’.00’ num2str(z-1+startSlice) ’.tif’];

elseif z-1+startSlice¡1000
name=[saveName ’.0’ num2str(z-1+startSlice) ’.tif’];

else
name=[saveName ’.’ num2str(z-1+startSlice) ’.tif’];

end
imwrite(data(:,:,z), name,’tif’);

end
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