
Automatic License Plate Recognition
using Deep Learning Techniques

Hogne Jørgensen

Master of Science in Computer Science

Supervisor: Asbjørn Thomassen, IDI

Department of Computer Science

Submission date: July 2017

Norwegian University of Science and Technology

Abstract
Context: Automatic license plate recognition (ALPR) is used in many domains, such
as parking, border control and motorway road tolling. Its importance has increased
the recent years, with many new applications. High prediction accuracy and speed of
ALPR is vital. Recent improvements in deep learning have increased its ability to solve
complex visual recognition task. Using deep learning to improve the accuracy and speed
of solving the ALPR task is for this reason promising.

Goal: The goal of this thesis is to propose a method using deep learning techniques
solving the ALPR task and evaluate its processing speed and prediction accuracy.

Method: The research was divided into two stages. The first stage consisted of re-
viewing publications on the ALPR task, and reviewing and evaluating deep learning
techniques, aiming at proposing a suitable method. The second stage consisted of eval-
uating the proposed method. The main criteria in the evaluation was processing speed
and prediction accuracy. The dataset used to evaluate the prediction accuracy consisted
of parked cars with mostly Norwegian license plates.

Results: A method using two object detection convolutional neural networks (CNNs)
was proposed for the purpose of solving the ALPR task. The first network was retrained
to detect license plates, and the second network to segment and recognize characters
within the license plates detected by the first network. Both networks used the YOLOv2
architecture, as it was believed to be significantly faster and have slightly higher accuracy
compared to the other reviewed architectures. To our knowledge, the proposed method
is new and has never been evaluated on the ALPR task before.

The evaluation of the proposed method resulted in an overall prediction accuracy of
97.6%, significantly outperforming other methods tested on the same dataset. The li-
cense plate detection achieved an accuracy of 99.8%, and the character detection an
accuracy of 97.8%. When running the proposed method on a GPU, it used on average
17ms to perform plate detection on an image and on average 16ms to perform character
detection on a plate, giving an overall processing time of 33ms per image. This is to our
knowledge faster than all other methods described in the literature, even substantially
faster than most of them. It is also fast enough to run on real-time video streams run-
ning in up to 30 FPS without the need to drop any frames.

Conclusion: This thesis is the first evaluation of a method using deep object detection
CNNs to solve the ALPR task. The proposed method achieved very high prediction
accuracy and outperformed all other methods considering processing speed when using
a GPU. This suggests that using deep object detection CNNs is a good solution for the
ALPR task.

i

Sammendrag
Kontekst: Automatisk nummerskiltgjenkjenning (ALPR) brukes innenfor en rekke om-
råder som parkering, grensekontroll og bompengeinnsamling. Dens viktighet har økt de
siste årene med mange nye bruksområder, og høy prediksjonsnøyaktighet og fart er viktig.
Nylige gjennombrudd innenfor dyp læring har økt muligheten til å løse komplekse bilde-
gjenkjenningsproblemer. Muligheten til å bruke dyp læring for å forbedre nøyaktighet
og fart ved løsing av ALPR-problemet er derfor lovende.

Mål: Målet til denne masteroppgaven er å foreslå en metode som bruker teknikker
innenfor dyp læring til å løse ALPR-problemet, og evaluere metodens prosesseringsfart
og prediksjonsnøyaktighet.

Metode: Forskningsarbeidet var delt inn i to steg. Første steg bestod av å gjennomgå
publikasjoner om ALPR-problemet og å gjennomgå og evaluere teknikker innenfor dyp
læring med mål om å foreslå en passende metode. Andre steg bestod av å evaluere
den foreslåtte metoden. Hovedkriteriene for evalueringen var høy prosesseringsfart og
prediksjonsnøyaktighet. Datasettet brukt for å evaluere prediksjonsnøyaktighet bestod
av parkerte biler med for det meste norske nummerskilt.

Resultater: En metode som bruker to konvolusjonelle nevrale objektdeteksjonsnettverk
var foreslått for å løse ALPR-problemet. Det første nettverket var trent til å detektere
nummerskilt og det andre nettverket til å segmentere og gjenkjenne bokstaver og tall på
nummerskiltet detektert av det første nettverket. Begge nettverkene brukte YOLOv2-
arkitekturen siden den er antatt å være signifikant raskere og ha litt høyere nøyaktighet
sammenlignet med de andre arkitekturene som ble vurdert. Så vidt vi vet, er den
foreslåtte metoden ny og har aldri blitt evaluert på ALPR-problemet før.
Evalueringen av den foreslåtte metoden resulterte i en prediksjonsnøyaktighet på

97.6%, signifikant bedre enn andre metoder testet på det samme datasettet. Num-
merskiltdeteksjonen oppnådde en nøyaktighet på 99.8% og bokstavsegmenteringen og
-gjenkjenningen oppnådde en nøyaktighet på 97.8%. Når den foreslåtte metoden kjører
på en GPU bruker den i gjennomsnitt 17ms på å utføre nummerskiltdeteksjon og 16ms
på å utføre bokstavsegmentering og -gjenkjenning, som totalt gir en prosesseringstid på
33ms. Dette er, til vårt kjennskap, raskere enn alle andre metoder beskrevet i litterat-
uren, til og med vesentlig raskere enn de fleste av dem. Det er også raskt nok til å kjøre
på videostrømmer i sanntid kjørende i opptil 30 FPS uten behov for å hoppe over noen
bilder (frames).

Konklusjon: Denne masteroppgaven er den første evalueringen av en metode som
bruker dype objektdeteksjonsnettverk til å løse ALPR-problemet. Den foreslåtte met-
oden oppnår svært høy prediksjonsnøyaktighet og er bedre enn alle andre metoder med
tanke på prosesseringsfart når den kjøres på en GPU. Dette antyder at bruk av dype
objektdeteksjonsnettverk er en god løsning på ALPR-problemet.

ii

Preface
This Master’s thesis is the final deliverable of the Computer Science Master’s program
at the Department of Computer and Information Science (IDI), Norwegian University
of Science and Technology (NTNU). The work described in this thesis was carried out
during the Spring 2017.

I would like to thank my supervisor Asbjørn Thomassen for guidance and valuable
feedback throughout the project. I would also like to thank my family for all their
support throughout my years in Trondheim.

iii

Contents
1 Introduction 1

1.1 Background and Motivation . 1
1.2 The Scope of the Project . 3
1.3 Goals and Research Questions . 5
1.4 Contributions . 7
1.5 Thesis Structure . 7

2 Background Theory 9
2.1 Feed-Forward Neural Networks . 9

2.1.1 Loss function . 10
2.1.2 Gradient descent . 11
2.1.3 Backpropagation . 11
2.1.4 Activation functions . 11
2.1.5 Learning rate . 13
2.1.6 Momentum . 13
2.1.7 Weight decay . 14
2.1.8 Stochastic and batch learning . 14
2.1.9 Dropout . 14
2.1.10 Batch normalization . 16
2.1.11 Data augmentation . 16
2.1.12 Convolution . 17

2.2 Convolutional Neural Networks . 17
2.2.1 Local receptive fields . 18
2.2.2 Shared weights . 19
2.2.3 Pooling . 19
2.2.4 Structuring convolutional architectures 20

2.3 Transfer Learning and Fine-Tuning . 21
2.3.1 Fixed feature extractors and fine-tuning 21
2.3.2 Factors that affect transfer learning 22

3 Related Work 23
3.1 License Plate Detection . 23

3.1.1 Edge-based approaches . 23
3.1.2 Color-based approaches . 24
3.1.3 Texture-based approaches . 25
3.1.4 Character-based approaches . 25
3.1.5 Approaches combining two or more features 26

v

Contents

3.2 Character Segmentation . 26
3.2.1 Projection-based approaches . 26
3.2.2 Pixel-connectivity-based approaches 27

3.3 Character Recognition . 27
3.3.1 Template matching approaches . 27
3.3.2 Learning-based approaches . 27

3.4 Object Classification Convolutional Architectures 28
3.4.1 Traditional CNNs . 28
3.4.2 DeepCNNs . 28
3.4.3 Very deep CNNs . 29
3.4.4 Residual CNNs . 30

3.5 Object Detection Convolutional Architectures 30
3.5.1 Region-based CNNs . 31
3.5.2 Fast R-CNN . 33
3.5.3 Faster R-CNN . 34
3.5.4 Mask R-CNN . 34
3.5.5 You Only Look Once (YOLO) . 36
3.5.6 YOLOv2 . 38
3.5.7 Using YOLO to predict traffic signs 40

4 Architectural Choices 41
4.1 Training Data . 41

4.1.1 Small high-quality dataset (real data) 41
4.1.2 Large lower-quality dataset (generated data) 42
4.1.3 Choice and justification . 42

4.2 System Pipelines . 42
4.2.1 Detect characters . 42
4.2.2 Detect plates, detect characters . 43
4.2.3 Detect plates, segment characters, recognize characters 43
4.2.4 Choice and justification . 43

4.3 Convolutional Architectures . 44
4.3.1 Comparison . 44
4.3.2 Choice and justification . 44

5 System Architecture 47
5.1 Overview . 47
5.2 Module Architecture . 47
5.3 Training Configuration . 50
5.4 Controlling the Negatives/False Positives-ratio 52

5.4.1 The impact of negatives and false positives on the modules 52
5.4.2 Use of confidence scores . 52
5.4.3 Handling foreign license plates . 53

5.5 Video Functionality . 53
5.6 System Requirements and Project Setup 53

vi

Contents

5.7 Generating Training Data . 54

6 Experimentation and Results 57
6.1 Iterations . 57

6.1.1 Definition of a correct prediction and overall accuracy 57
6.1.2 First iteration . 58
6.1.3 Second iteration . 61

6.2 Experimenting with the Confidence Threshold Value 63
6.3 Experimenting with Generated Data . 67
6.4 Summary of Experimental Results . 68
6.5 Speed Testing the System . 69

6.5.1 GPU speed . 71
6.5.2 CPU speed . 71

6.6 Experimenting with Video . 72

7 Evaluation and Conclusion 73
7.1 Evaluation . 73
7.2 Discussion . 76

7.2.1 Prediction accuracy requirements 76
7.2.2 Processing speed requirements . 76
7.2.3 Adaptation requirements . 77

7.3 Contributions . 77
7.4 Future Work . 78

Bibliography 81

vii

List of Figures

1.1 Example of a Norwegian license plate. 3
1.2 Examples of images of captured license plates that have challenging con-

ditions. 5

2.1 Feed-forward neural network . 10
2.2 The three main activation functions. 12
2.3 Before and after dropout. a) A fully-connected network with two hidden

layers. b) The produced network after dropout is applied. Crossed units
have been dropped. [1] . 15

2.4 Brief overview of the properties: local receptive field, shared weights and
pooling in a CNN. [2] . 18

2.5 Max pooling with a stride of 2 and filter size 2-by-2. [3] 20

3.1 LeNet5s architecture used for digits recognition. [4] 29
3.2 AlexNets multi-GPU implementation. [5] 29
3.3 A module in InceptionV1. The yellow 1x1 convolution blocks reduces the

input size before being fed into more expensive 3x3 and 5x5 convolutions.
[6] . 30

3.4 Model of a skip connection in ResNet. In parallel, the input x is fed into
F(x), representing two layers, and bypasses it through a skip connection.
[7] . 31

3.5 Bounding boxes in the lower images is proposed based on groups of ad-
jacent pixels identified as objects by the selective search method in the
upper images. [8] . 32

3.6 Overview of R-CNN. 1. An input image is given. 2. Region proposals are
extracted. 3. Feature vector is computed. 4. Each region is classified. [9] 33

3.7 The Region Proposal Network slides a window over the feature map. For
each window, k anchor boxes represented by four coordinates and two
scores per anchor box is proposed. [10] . 35

3.8 Results from Mask R-CNN. Masks are shown in color. [11] 36
3.9 Overview of YOLO. The input image is divided into an S × S grid and

each grid cell predicts B bounding boxes, confidence for those boxes and
C class probabilities. [12] . 37

ix

List of Figures

5.1 The flow of the system. 1. Input image given to the first module. 2. The
plate network detects plates in the image. 3. Plates found are cropped
based on bounding boxes and given as input to the second module. 4.
The character network detects and predicts characters in the image. 5.
Full license plate predicted based on the order of the bounding boxes. . . 48

5.2 The process of generating training images containing license plates 55
5.3 Examples of generated license plate images 55

6.1 The three mistakes done by the plate network in the first iteration 59
6.2 6 of the 16 mistakes done by the character network in the first iteration . 60
6.3 Number of undetected plates occurred versus false positives occurred for

the plate network with different confidence threshold values in the range
[30, 95]. 64

6.4 Number of mistakes in each category for the character network with con-
fidence threshold values in the range [30, 85]. 65

6.5 Number of mistakes due to classification errors versus the number of ab-
stained predictions for the character network with different confidence
threshold values in the range [30, 85]. 66

6.6 2 of the 43 mistakes done by the character network after adding generated
data . 67

6.7 Examples of plate detection and character detection by the final system
in challenging conditions. 70

6.8 Snapshots of the processed video . 72

x

List of Tables
3.1 Comparison of license plate detection approaches 24
3.2 Comparison of character segmentation approaches 26
3.3 Comparison of character recognition approaches 27
3.4 Iterative improvements implemented from YOLO to YOLOv2. Each

column represents iterations with new improvements. 39
3.5 Speed and accuracy results from YOLOv2 with different resolutions trained

on VOC 2007 on a GeForce GTX Titan X. 40

4.1 Comparison of the R-CNN and YOLO architectures 45

5.1 Layer architecture of the plate network . 51

6.1 Summary of the experimental results for the plate network. 68
6.2 Summary of the experimental results for the plate network. Best result

in bold. 69
6.3 Processing time per image when ran on GeForce GTX 1070 8GB GPU . . 71
6.4 Processing time per image when ran on Intel Core i5 2.67GHz CPU . . . 71

7.1 License plate detection performance . 74
7.2 Character detection performance (character segmentation and recognition

performance combined) . 75

xi

1 Introduction
This chapter gives an introduction to this thesis. Section 1.1 introduces the automatic
license plate recognition (ALPR) task and gives motivation to why it is important to
solve. Section 1.2 addresses the scope of this project and Section 1.3 describes the goal
of this thesis. Lastly, Section 1.5 gives a brief overview of the structure of this thesis.

1.1 Background and Motivation

Automatic License Plate Recognition (ALPR) helps to identify vehicle license plates in
an efficient manner without the need for major human resources and has become more
and more important the recent years. There are several reasons why their importance
have increased. There are a growing number of cars on the roads and all of them have
license plates. The rapid development in digital image processing technology has also
made it possible to detect and identify license plates at a fast rate. The whole process
may be done in less than 50 ms [13]. This gives 20 frames per second which is enough
to process real-time video streams.

Identification of vehicles is useful for many different operators. It can be used by
government agencies to find cars that are involved in crime, look up if annual fees are
paid or identify persons who violate the traffic rules. U.S., Japan, Germany, Italy,
U.K and France are all countries that have successfully applied ALPR in their traffic
management [14]. Several private operators may also benefit from ALPR systems. One
such use-case and the inspiration behind the system developed in this project relates
to a parking payment system created by the Trondheim localized company WTW AS
and used by several major parking companies in Norway. The system allows the users
to register the license plate number of their cars either through a mobile application or
through SMS along with the parking time they want to pay for. If the parking attendant
wants to check if a car has a valid parking ticket, the attendant must manually enter the
license plate number to look it up in a database. Each entry takes no more than a few
seconds, but since this is the main task of the attendant and executed hundreds of times
during a workday, this becomes a major burden. There is also an upper limit of how
many cars a parking attendant can check during a working day. A proposed system to
solve this problem and increase the efficiency is to mount cameras on vehicles that can
drive around the parking lot and photograph or film the parked cars’ license plates. The
ALPR system’s task is to recognize the license plate from the image or video stream,
look it up in a database and see if the parking ticket is valid. The requirement for such
an ALPR system is high accuracy when reading the license plates and reasonably fast
processing time. If the system fails to recognize all license plates, it should also provide

1

1 Introduction

an indicator of how certain it is for a particular classification to avoid false positives.
Classifications of high uncertainty will be checked manually by the parking attendant
afterwards.
As ALPR has been such an important task to solve the last thirty years, a number

of ALPR systems already exist with varying degree of accuracy and speed. Larger
surveys by Du et al.[15] and Patel et al.[16], both published in 2013, have tried to cover
and compare the most recent publications in the field. Many of the systems covered
claim an overall accuracy above 90%. However, the claimed accuracy is in most cases
incomparable to other systems as different test sets are used and there exist no accepted
universal test set. The complexity in recognizing license plates in the different test
sets will significantly impact the accuracy making direct comparisons of the accuracy
without considering the complexity meaningless. As pointed out by the authors of [13],
it is inappropriate to declare which method gives the highest performance because of
the lack of uniform ways to evaluate them. Comparing the speed performance is easier,
even though there are factors impacting it, especially the pixel resolution of the license
plate images.
A typical ALPR system can be split into three major stages:

1. License plate detection - detect the plate in the captured image

2. Character segmentation - extract the alphanumeric characters from the plate

3. Character recognition - recognize each individual character

Each stage have been implemented using various machine learning techniques and
these are further elaborated in Chapter 3. Traditional machine learning techniques
employ features chosen by humans to represent the underlying features of the image.
These techniques require sophisticated human-designed models to translate raw input
pixels into useful recognition responses.
This thesis will present an alternative approach by using deep learning to automatically

recognize license plates. Deep learning techniques do not use hand-engineered features,
but automatically select the features themselves. They are designed to learn low-level
representations of the underlying data by modifying filters and have experienced suc-
cess in many fields within computer vision, such as hand-writing recognition [17] and
visual object recognition [18]. The strongest deep learning methods involve Convolu-
tional Neural Networks (CNNs). CNNs hierarchical neural networks are based on sparse
connections and weight sharing giving them an immense representational capacity and
high learning potential. The biggest challenges of CNNs are their high computational
cost and demand for large amounts of training samples.
In recent years, CNNs have become immensely more powerful as clever solutions to

reduce the computational cost and amount of training samples have been discovered.
Since they currently are state-of-the-art in a number of tasks within the field of visual
recognition it is believed that they should also be state-of-the-art within ALPR.

2

1.2 The Scope of the Project

Figure 1.1: Example of a Norwegian license plate.

1.2 The Scope of the Project
The ALPR problem is a complex task with many variations. Images may be taken by
either a color, black and white or infrared camera. Furthermore, nations have different
standards for license plates allowing different background colors or distracting patterns
on the plate. The number of letters, numbers and spaces, their position and the font
used are other variations differing among nations. Some of these variations are also
found within nations.
The scope of this project is to be able to detect license plates appearing on Norwegian

roads. This means that the most important part of the system is to be able to detect
Norwegian license plates with a high accuracy. An example of a Norwegian license
plate is shown in Figure 1.1. However, foreign plates and other plates not following the
standardized pattern of Norwegian license plates is also within the scope of this project
as they appear on Norwegian roads. These plates may be harder to detect for the ALPR
system as the training set may not contain many similar cases, and is seen as a test of
how well the system is able to generalize beyond standard Norwegian license plates. Even
though most cases will be of Norwegian license plates, there are a number of variations
causing challenges when detecting and recognizing these plates listed below.

1. Character pattern: Standard pattern for Norwegian license plates are

XX_Y Y Y Y Y

where X is a letter, Y is a number and _ is a space. However, license plates for
trailers, motorcycles and some other special vehicles differ from this pattern. Some

3

1 Introduction

plates are also double lined meaning the letters are located above the numbers
instead of adjacent to them.

2. Background color: White is most commonly used as background color. However,
special vehicles may have other background colors. Green is used for vans, orange
is used for military vehicles and blue is used for diplomatic vehicles. Only green
and white plates exist in the training and test set.

3. Font: Newer license plates use Myriad as font, but older plates use a number of
different fonts.

Since the image of the license plate is not captured perfectly, a number of other variations
to the plate may appear. These are listed below.

1. Location: The plate may be located in different parts of the image.

2. Size: The size of the plate compared to the full captured image differs based on
camera distance and zooming.

3. Rotation: The plate may be tilted based on the angle the image is taken

4. Occlusion: The plate may be obscured by additional noise, such as dirt or snow.

5. Image quality: The image quality may be low because of blur or poor camera
equipment.

6. Quantity: An image may have captured none, one or multiple plates.

7. Miscellaneous: The plate may contain screws, frames and stickers. Norwegian
license plates used to contain stickers showing if the yearly vehicle fee was paid,
but this practice stopped in 2012. However, many license plates still have them
attached.

Lastly, a number of environmental variations given by the following list may also be a
challenge.

1. Background: The background of the captured image may contain patterns similar
to plates. Text and text-like patterns elsewhere in the image may be confused with
the plate.

2. Interfering objects: Objects may interfere and partly cover the plate.

3. Illumination: The illumination may differ based on environmental light, camera
light or vehicle light.

4. Shadows: Objects close by may cast shadows on the license plate making the
illumination on part of the plate differ from the rest.

Figure 1.2 shows a number of images of captured license plates that have challenging
conditions the ALPR system would need to handle.

4

1.3 Goals and Research Questions

Figure 1.2: Examples of images of captured license plates that have challenging condi-
tions.

1.3 Goals and Research Questions

The research goal is as follows:

Goal Propose and develop an ALPR system suitable for real world applications using
deep learning techniques and evaluate to what extent it meets the processing speed
and prediction accuracy requirements of the ALPR task.

The overall goal of this project is to develop an ALPR system using deep learning
techniques usable for real world applications and evaluate it by comparing it to existing
methods. The evaluation metrics are processing speed and prediction accuracy. In addi-
tion, to make such a system viable for real world applications, it should not only detect
and recognize license plates, but also handle cases with high uncertainty. A system with
high overall prediction accuracy, but no way of warning the user if a prediction is made
with low confidence, may in the worst case be useless as the user is forced to manually
check all predictions to avoid wrongly predicted plates, false positives. Therefore, the
system developed will calculate the confidence and avoid making a prediction in cases
with high probability of giving a false positive.
This goal is further divided into three research questions:

Research question 1 Does the proposed system meet the prediction accuracy requirement
to solve the ALPR task?

The prediction accuracy is the number of correctly predicted license plates divided
by the total number of images evaluated. Cases where the system avoids making a full

5

1 Introduction

prediction even though there are license plates in the image, are considered incorrect
predictions.
Since the system developed in this project is made considering a real world application,

the rate of false positives will also be evaluated. The false positives rate is the number of
license plates where the system made a full prediction, but the prediction was incorrect
divided by the total number of images evaluated. Cases of false positives are more
serious in the context of a parking payment system than cases where the system avoided a
prediction. When a prediction is avoided, it implies only minor extra work for the parking
attendant as he has to manually check the plate prediction’s correctness. However, in
cases where he is not warned about an incorrect prediction, the wrong car may be fined as
the parking attendant believes the system has predicted the plate correctly even though
it has not.
For the prediction accuracy to be sufficient, it should be close to or equal to human-

level accuracy. There are no studies conducted on how accurate humans are able to
predict license plates and the accuracy will depend on the difficulty of the dataset used.
The human level accuracy of reading house number seen from the street has been tested
and is about 98% [19]. Reading characters on vehicle license plates may be easier as
there are less variations of fonts, sizes and colors than house numbers. However, every
character in a license plate needs to be predicted correctly to make a full prediction
of the plate. Even though most license plates follow the same pattern of numbers and
letters, the numbers and letters often have low correlation to each other, increasing the
probability of humans making mistakes. This thesis will operate with a requirement of
99% prediction accuracy to reach human-level accuracy.
Another way to make the system suitable for real-world applications is to make it able

to warn when human-assistance is needed. If it successfully asks for human-assistance
when needed, the prediction accuracy requirement may be lowered.

Research question 2 Does the proposed system meet the processing speed requirement to
work with real world applications?

The processing speed is determined by the total time the system uses from inputting
an image to the license plate is predicted. It is often measured by either frames per
second (FPS) or processing time per image evaluated. The speed requirements differ
based on which applications it will be used for. Two different types of applications will
be considered. The first is an application where images need to be processed as they are
taken by humans such as the parking payment system described earlier. Considering
the response time humans would expect, a processing time of a couple of seconds would
be sufficient. The second type of application is real-time video streams. Real-time video
streams often run at 30 FPS, but in most cases only processing every second or third
frame is sufficient. Therefore the minimum requirement to run in real time is often set
to a speed of about 10-15 FPS.

Research question 3 Does the proposed system adapt to a range of different real-world
applications?

6

1.4 Contributions

The underlying architecture of the proposed system should not be developed to solve
a specific use-case of the ALPR task, but be developed to solve any use-case of the
ALPR task. This does not mean the system needs to be general purposed and solve all
use-cases even though this is the ideal scenario. It means that the system, given a new
training set representing a new use-case, should be able to adapt itself to solve the new
task well. Essentially, the prediction accuracy of the system should only be dependent
on how well the training set represents the test set and not any hand-crafted features
developed specifically to solve a use-case.

1.4 Contributions
The following contributions has been made in this thesis:

• The main contribution of this thesis is a new method consisting of retraining two
deep convolutional neural networks initially developed for the purpose of general
visual recognition tasks, to solve the ALPR task. The first CNN detects the license
plate in the image while the second CNN detects the characters in the license plate.
This method is very different all other methods previously used to solve the ALPR
task.

• The proposed method uses on average 33ms to recognize a license plate independent
of image resolution, faster than all other methods in the literature and fast enough
to run on real-time video streams recording in up to 30 FPS without dropping
frames.

• With a small training set of 559 images, the proposed method achieves a prediction
accuracy of 97.8% on the test set of parked cars provided by WTW AS, which is
significantly better than other methods previously tested on the same dataset.

1.5 Thesis Structure
The thesis is divided into seven chapters. Chapter 1 motivates, describes the scope and
describes the research questions of this work. Chapter 2 explains the background theory
necessary for this project. Chapter 3 presents relevant research. Chapter 4 presents and
discusses architectural choices regarding the system implemented. Chapter 5 explains the
system architecture. Chapter 6 presents the experimental design and results. Chapter
7 discusses the results and concludes.

7

2 Background Theory
This chapter presents the background theory on neural networks. Section 2.1 describes
feed-forward neural networks including a number of commonly used regularization meth-
ods used with them and Section 2.2 describes convolutional neural networks (CNNs).
Section 2.3 describes transfer learning.

2.1 Feed-Forward Neural Networks

To understand convolutional neural networks, it is necessary to understand the more
basic neural networks. Given a scenario with a training set of labeled data (xi, yi),
where xi and yi denote the ith feature and corresponding label. The goal is to learn
the underlying pattern to fit the data. In this case we can look at the neural network
as a high-level way of representing the nonlinear function fW (x), where x is the input
feature and W is a matrix that can be parametrized to fit the data. In Figure 2.1 a
simple neural network is shown. Because all connections are directed towards the output
layer it is also a feed-forward neural network. It has two input neurons, denoted x11 and
x12, and two output neurons y31 and y32. The output of the network can be denoted as
(y31, y31) = fW (x11, x12). General neural networks have multiple layers: An input layer,
zero, one or multiple hidden layers, and an output layer. Except for the neurons in the
input layer, each neuron is a computational unit taking input values from the previous
layer and outputting a value to the next layer. A neuron hj computes the weighted
linear combination of the given inputs to the neuron. This also includes adding a bias
bj . Formally the computation is given by

oj =
n∑

i=1
wjixi + bj

where wji is the weight connection between hj and xi. The last step is to put oj into
a nonlinear activation function f . There exist multiple activation functions for neural
networks and the most common ones will be discussed in Section 2.1.4. The final formula
for calculating hj is given by

hj = f(oj) = f(
n∑

i=1
wjixi + bj)

Since each neuron only depends on the calculation of the previous layer, we can cal-
culate the activation layerwise, until the output layer is reached. The final result is

9

2 Background Theory

Figure 2.1: Feed-forward neural network

obtained from the output neurons y = fW (x). The result will depend on the given
weights and biases for the neural network.

2.1.1 Loss function

Given the training set (xi, yi) earlier, the classification y of x is based on the weight
matrix W . To reduce the classification error by modifying these parameters, a loss
function is needed. This function gives a measure of how inaccurate the output is
compared to the desired class of the training data. Overall it gives the error rate of the
neural network and is often normalized to a score between 0 and 1 to represent how
likely the network will misclassify a training sample.

The most common loss function in use for regression problems is the Mean Square
Error (MSE) and for classification problems the cross entropy loss function [20] is the
most used. MSE is given by

E(W) = 1
N

N∑
i=1
||ti − yi||2

and cross entropy is given by

E(W) = 1
N

N∑
i=1

[ti log yi + (1− ti) log(1− yi)].

In both formulas above, the W is the weight matrix and yi and ti are the guessed and
true class of the ith training sample.

10

2.1 Feed-Forward Neural Networks

2.1.2 Gradient descent

The goal through training, is to minimize the loss function E(W) by modifying the
weight space. This is normally computed iteratively by a process called gradient descent.
For each step, a small change is made in the weight space by adding a ∆W , notated
W t+1 = W t + ∆W t, where t is the iteration step. The values of ∆W t are defined by
the specific optimization algorithm used. The corresponding change to the loss function
will be

∆E ≈ ∆W T∇E(W).

By looking at the formula for ∆E we can see that if the gradient ∇E(W) becomes 0, ∆E
also becomes 0 and we have reached a local optimum. Thus, we also know that if each
iterative step always reduces ∇E(W), it will approach a local minimum. For the loss
function E(W), this means that as ∇E(W) approaches 0, the error rate also approaches
0. The optimization algorithm will stop if ∇E(W) meets a certain threshold or after a
predefined number of iterations.

2.1.3 Backpropagation

Backpropagation is used in conjunction with gradient descent when a neural network
has more than two layers. If a neural network only has an input layer and an output
layer, it is easy to adjust the weights based on the error between the output value and
the desired value computed by the loss function. However, if the network has one or
more hidden layers, the error needs to be propagated backwards through the network.
The error gradient ∇E(W) is calculated for each layer and the weights and biases is
adjusted accordingly.
Backpropagation is almost always preferred over other alternatives as the method for

supervised training when the desired output is known. The advantage of this process is
that the hidden layers between the input and output layer adjusts themselves in such a
way that the different neurons are able to recognize different patterns about the input
vectors. When the training is finished and a new unseen input vector containing noise
is given to the network, the neurons in the hidden layers will fire if the new input vector
contains a pattern the network learned to recognize during training. This pattern may
be part of a larger feature characteristic for one of the classes the network tries to classify.
A limitation of gradient descent with backpropagation is that it cannot guarantee

to find the global minimum, may find local minimums instead. This is caused by the
non-convexity of the error function used and was thought to be a major drawback of the
method. However, a review article in 2015 by LeCun et. al argues that in many practical
problems, including problems similar to the ALPR problem, this is not the case [21].

2.1.4 Activation functions

The activation function is an important part of a neural network as it defines the output
of a node given a set of inputs. It can be seen as a switch that may turn on or off a

11

2 Background Theory

Figure 2.2: The three main activation functions.

neuron depending on the given input. Simple linear functions such as the identity func-
tion f(x) = x may be used, but to make the neural network capable to also approximate
non-convex functions, it is a necessity to use a non-linear activation function. There are
mainly three non-linear activation functions, all shown in Figure 2.2.

Sigmoid The sigmoid function is given by

f(x) = 1
1 + e−1

and returns a value between 0 and 1. It is a good imitation of a neuron turning on
or off as it most often returns values close to 0 or 1. The main problem is that the
gradient on the tails is vanishing. Thus, the backpropagation algorithm hardly modifies
the parameters and the training is slowed down.

Hyperbolic Tangent (TanH) The TanH function is given by

f(x) = tanh(x) = 2
1 + e−2x

− 1

and returns a value between -1 and 1. It has many of the same properties as the sigmoid
function, but also the same main problem.

Rectified Linear Unit (ReLU) The ReLU is given by

f(x) = max(0, x)

and returns 0 or a positive real value. The ReLU function has seen much use the last
years as it has some important advantages compared to the sigmoid and tanh function.
It does not suffer from vanishing gradients. Thus, it converges faster and accelerates
the training. It also involves cheaper operations as it does not calculate the expensive
exponential function. However, because of the removal of all negative values, it does not
fit all architectures or datasets.

12

2.1 Feed-Forward Neural Networks

Parametric/Leaky ReLU Parametric ReLU is given by

f(x) = max(ax, x)

where a ≤ 1 is the leakage coefficient. It allows a small non-zero gradient when the
neuron is not active. It performs nearly identical to normal ReLU, but is shown to
converge slightly faster.

2.1.5 Learning rate

Learning rate is an important parameter determining the rate of convergence of a neural
network. In practice, the gradient descent algorithm when used with backpropagation
will often change the weights too much for each iteration. The weights will "overcor-
rect" themselves and miss the local minimum resulting in an actual increase of the loss
function. To avoid this, the gradient of the loss function ∇E(W) is multiplied with the
learning rate parameter µ, such that

∆W t+1 = µ∇E(W t)

where ∆W t+1 is the change in the weight space in the iteration step t+ 1.
Intuitively, the learning rate determines the step size used in each iteration. With a

high learning rate the process of reaching a local minimum is speed up, but the step size
may be too large "overshooting" the actual minimum. Thus, a low as possible learning
rate while the training process still uses a reasonable amount of time is often preferred
as it stabilizes the convergence process.

2.1.6 Momentum

By introducing a variable inertia term α, the momentum, the weight adjustment ∆W t is
also dependent on weight adjustments done in the previous iteration, ∆W t−1 such that

∆W t+1 = (1− α)µ∇E(W t) + α∆W t−1

The momentum α is defined as a value in the range [0, 1] meaning if the momentum
is 0, the weight changes is solely dependent on the gradient of the loss function while
if the value is 1, it is only dependent on the last weight adjustment. A commonly used
value is 0.9 [5; 6; 22], significantly speeding up the learning process while the stability
of the convergence is kept reasonably intact.
Intuitively, momentum helps the gradient descent algorithm to not get stuck on flat

"plateaus" and small local minima as the gradient of the loss function gets very small and
"decelerates" the gradient descent. The momentum helps delay this deceleration process
such that plateaus and small local minima are faster to overcome without increasing the
overall learning rate.

13

2 Background Theory

2.1.7 Weight decay

Weight decay is an easy and common way to regularize the loss function. A zero mean
Gaussian prior over the weights is introduced, effectively changing the loss function to

Ẽ(W) = E(W) + λ

2W
2

where E(W) is the old loss function and λ is the weight decay parameter. When applying
the new loss function to the gradient decent algorithm with momentum we get that

∆W t+1 = (1− α)µ∇E(W t) + α∆W t−1 − µλW t

The new term −µλW t shows how weights are penalized proportional to its size de-
pendent on the value of λ. Since the penalty is proportional to the size of the weights,
large weights are penalized the most, forcing the network to find a solution only using
small-magnitude parameters, consequently limiting the number of free parameters in the
model. With the reduction in freedom in the model, it avoids overfitting and is forced
to generalize more, benefiting the network by the principle of Occam’s razor, i.e., that
the simplest solution with the fewest assumptions often is the best one. Values ranging
between 0.0005 − 0.002 for the weight decay parameter λ is the most common in deep
neural networks [5; 6].

2.1.8 Stochastic and batch learning

When backpropagation with gradient descent is used there are two different modes of
learning to choose between, stochastic and batch learning. In stochastic learning, the
weights are updated after each propagation, while in batch learning the weights are
updated after many propagations using the accumulated errors over the samples in the
batch. The advantage of stochastic learning is that it naturally introduces "noise" as
it calculates local gradients from single data samples, reducing the probability of the
network getting "stuck" in local minima. However, batch learning is much faster as it
updates the weights only once per batch size. It also yields a more stable descent towards
local minima as it uses the average errors over the batch samples.
Most modern applications use a compromise between the two modes called mini-

batches. Mini-batches, is batch learning, but the batch size is chosen to be small and
the data samples are stochastically selected.

2.1.9 Dropout

Dropout is a regularization method which forces the network to learn different repres-
entations of the same data. At each training stage in a mini-batch, individual nodes
are "dropped out" of the network with a probability 1− p. Only the remaining reduced
network is trained on the data in that stage. Figure 2.3 shows the network before and
after dropout. Afterwards the removed nodes are reinserted into the network unchanged

14

2.1 Feed-Forward Neural Networks

Figure 2.3: Before and after dropout. a) A fully-connected network with two hidden
layers. b) The produced network after dropout is applied. Crossed units
have been dropped. [1]

by the last training stage. At test time the whole network is used, but with scaled-down
weights and works as an average of all the reduced networks.

To understand why dropout is an effective method it helps to view dropout as a form
of ensemble learning. In ensemble learning a number of "weaker" classifiers is trained
separately. During test time, the average of the response from all the ensemble members
is used to produce classification predictions. Since each classifier is trained separately,
they will have learned different aspects of the training data and make different kinds
of errors. However, when combining all the classifiers, the produced classifier will be
stronger than any of the individual classifiers.

One of the commonly used ensemble variants is called bagging. In bagging each en-
semble member is trained on different subsets of the training data, thus only learning
a subset of the possible feature space. Dropout can be seen as an extreme version of
bagging. At each training stage in a mini-batch, a new network is created by reducing
the whole network and trained with only one data sample.

Dropout reduces overfitting of the network as not all nodes are used during the train-
ing. It also significantly improves the training speed and the network learns robust
features, generalizing better. The only major drawback is that it does not have all
the same benefits for convolutional layers as the neurons are not fully connected. The
method is still frequently used in deep neural networks, also convolutional ones.

15

2 Background Theory

2.1.10 Batch normalization

Batch normalization is a regularization step executed to solve a problem called internal
covariate shift. Internal covariate shift is the phenomena that the distribution of network
activations changes due to the change in network parameters. When weights in a specific
layer are updated, the distribution of output vectors from that layer is also changed.
These output vectors are input vectors for the next layer forcing it to adapt to the drift
in input distribution slowing down the learning. A small perturbation such as an outlier
in the initial layers may lead to a large change in the later layers resulting in the network
requiring more training epochs to compensate for the outlier.

Batch normalization solves this problem by making it look like all layer inputs are
normalized. The normalization step uses a linear transformation of the vectors called a
whitening transformation. All variables are changed such that their covariance matrix is
the identity matrix resulting in all underlying correlated data to be eliminated. Instead
of performing full whitening of every layers input which is very costly, the mean is set
to 0 and the variance of all the vectors is set to 1 after each mini-batch meaning only
the scalar features need normalization.

Batch normalization massively speeds up the training process as the learning rate can
be increased without destabilizing the training process. Applied to a state-of-the-art
image classification model, it achieved the same accuracy with 14 times fewer training
steps [23]. It introduces more flexibility on the mean and variance values for every
layer reducing the overfitting and regularizing the network in the same way as dropout.
Since batch normalization fulfills most of the same goals as dropout, dropout may often
be removed speeding up the training process even more without experiencing increased
overfitting.

2.1.11 Data augmentation

Data augmentation is a regularization method used to avoid overfitting. It works by
increasing the size of the training set such that the neural network is not able to memorize
and overfit it. The way the size of the training set is increased, is by creating new samples
from the original samples by changing factors the neural network should be invariant to.
For instance if the training set consists of images, a common way to create new training
samples is to vary the brightness and saturation in the image. Other methods commonly
used on images are to horizontally reflect, randomly crop or geometrically distort them
by scaling and skewing them. The methods may be used separately or together when
a new image is created to the training set. In addition, to avoid overfitting, the new
data may learn the neural network new invariances making it more robust when the
same factors are changed in the test data, improving the predictions given by the neural
network.

16

2.2 Convolutional Neural Networks

2.1.12 Convolution

Convolution is a mathematical operation on two functions. The convolution between
functions f and g is normally denoted f ∗g. Convolution produces a third function given
by the integral of the pointwise multiplication of the two functions as a function of the
amount that one of the original functions is translated. Formally written, it is notated
as

(f ∗ g)(t) =
∫ t

0
f(τ) ∗ g(t− τ)dτ

where t may represent time and f and g may represent two signals.
When working with image processing, we cannot use this formula directly. Digital

images are pixel-based and non-continuous, so we need to use the discrete form of con-
volution for f and g given by

(f ∗ g)[n] =
I∑

i=−I

f [n− i] ∗ g[i]

Convolution is done over two finite sets −I,−I + 1, · · · , I − 1, I and gives convolution
in one dimension. The extended formula for convolution in two dimensions is given by

(f ∗ g)[m,n] =
J∑

j=−J

I∑
i=−I

f [m− i, n− j] ∗ g[i, j]

This gives convolution over two finite matrices

Ki,j =

k−I,−J k−I+1,−J · · · kI,−J

k−I,−J+1 k−I+1,−J+1 · · · kI,−J+1
...

...
k−I,J k−I+1,J · · · kI,J

.
In image processing it is normal that one of the matrices is part of the image, and the

other is a kernel. The kernel is defined based on the operation it should perform on the
image.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are biologically inspired neural networks first
proposed by LeCun [4]. Based on early work by Hubel and Wiesel [24] on the cat’s
visual cortex, we know that the visual cortex has cells with small sensitive sub-regions,
called local receptive fields. The cells work as local filters over the input space and
respond differently based on their cell types.
With supervised training on a large number of examples, the CNN may learn complex

patterns mapped to high dimensional useful features. CNN has seen much success within

17

2 Background Theory

Figure 2.4: Brief overview of the properties: local receptive field, shared weights and
pooling in a CNN. [2]

the field of computer vision. Object detection [25], object recognition, optical character
recognition [4], face detection and license plate recognition [26] are all tasks where using
CNNs have achieved state-of-the-art results.
Normally the raw pixels of an image are given as input to a CNN. Consequently,

CNNs require minimal amounts of preprocessing, which is a huge advantage to other
machine learning techniques. The drawback to this is that CNNs usually are extremely
computationally intensive for large data-sets. Without preprocessing, we need more
perceptrons to see patterns. This raises the time per training sample and the number of
epochs to reach convergence. Thus, it is in some cases beneficial to do some preprocessing
to reduce the computation time though it may reduce the theoretical accuracy of the
network. The output is a classification of the image, and can be improved by defining a
loss function and minimize it through training.
In general, there are three properties that makes the CNN different from standard

feed-forward neural networks described in Section 2.1: local receptive fields, shared
weights and pooling. The following subchapters will explain these three properties in
context of the different layers. Figure 2.4 gives a brief overview of how the properties
are connected.

2.2.1 Local receptive fields

In Figure 2.1, a fully connected neural network is shown. All neurons in one layer are
connected to all neurons in the subsequent layer. This is not a computational problem

18

2.2 Convolutional Neural Networks

for a small network, but for each extra neuron added to the network, the number of
connections increases exponentially. Consequently, it is computationally extremely hard
to train large fully connected neural networks.
However, in visual problems, it is normally not necessary to use a fully connected

neural network. Pixels in an image are normally highly correlated to adjacent pixels
and less correlated to pixels elsewhere in the image. This fact is exploited in CNNs.
A neuron, representing a pixel, may for instance only depend on the window of n-by-n
adjacent pixels surrounding it and will not have connections to any other neurons. This
is often called the receptive field of the neuron, as it works exactly as the receptive fields
in the visual cortex. The receptive field is local because it only accounts for pixels nearby
as shown in Figure 2.4. The projectile from the input image to the convolutional layer
represents the connections and the squared n-by-n areas in the input image represent
the pixels accounted for in the computation of the new neuron in the convolutional layer.
When we look at the next neuron in the convolutional layer, the n-by-n window of pixels
slides c pixels to the right (or down). The c is called the stride length. Stride length 1
is the most common, but other stride lengths works too.
When looking at other visual recognition algorithms with hand-crafted feature extrac-

tion, the feature extraction is also based upon local features [27; 28]. This is a strong
indication that local features should also be important to CNNs.

2.2.2 Shared weights

In Section 2.1, we recall that each neuron computes the weighted linear combination of
its inputs. This calculation was based on the weight matrix W and the bias vector b.
In feed-forward neural networks there are no restrictions on what weights and biases are
used based on which neuron is computed. If desired, weights and biases can be defined
differently for every neuron. CNNs differs that all weights and biases are shared and
used independently of which n-by-n pixel window is evaluated. The shared weights and
biases for a layer may be defined as kernels, also called filters. When the n-by-n window
is evaluated, it is convolved with respect to the filter. The result is a convolutional
response map which is given as input to the next layer.
By using the same filter for all parts of the image, it is effectively detecting the same

features indifferent to location in the image. If a CNN learns to respond to eyes on
the left part of a face, the filter will also respond to eyes on the right part of a face.
This property is called translation invariance. Filters may also learn other invariances
as rotation invariance, indifference to the rotation of an object.

Another advantage of shared weights is that it massively reduces the number of para-
meters used by the CNN. This gives more effective training and reduces overfitting.

2.2.3 Pooling

After the convolution step it is normal to use a pooling function on the resulting con-
volutional response map. The pooling function works by sampling sub-regions of the
convolutional response map to a smaller response map.

19

2 Background Theory

Figure 2.5: Max pooling with a stride of 2 and filter size 2-by-2. [3]

The most common pooling function is max pooling. This function simply returns the
maximum value in each sub-region in the convolutional response map. In Figure 2.5,
an example of max pooling with a 4-by-4 response map is shown. It uses a 2-by-2 filter
and the stride is 2. The filter is the area being considered by each pooled response and
the stride is the number of pixels the filter will slide each step. The resulting pooled
response map in Figure 2.5 is downsampled to a 2-by-2 matrix. Another commonly used
pooling function is average pooling. It works in the same way as max pooling, except
that it returns the average value of each sub-region instead of the maximum value.
The benefits of using pooling are that it reduces the amount of parameters and also

slightly regularizes the CNN. In the recent years, people have been more critical to the
use of pooling layers and have proposed to discard it in favor of convolutional layers
using larger stride [29]. However, pooling layers are still used in most CNNs.

2.2.4 Structuring convolutional architectures

A CNN’s architecture is normally made up of three types of layers: Convolutional layers,
pooling layers and fully-connected layers. The most common way to organize layers is
to stack a few convolutional layers followed by a pooling layer. This pattern is repeated
until the size of the input image is reduced sufficiently. The last layer is usually a
fully-connected layer giving the final outputs, the classification scores.
It is preferable to use many small convolutional filters compared to fewer larger filters

[30]. Intuitively, the filters in the early convolutional layers provide a low-level encoding
of the input image. The filters may detect edges and other simple shapes. As the image
progresses through the network, the filters learn more complicated structures. Therefore,
having many small filters increases the representational power of the CNN. It will also
need fewer parameters. The downside of using smaller filters is that it increases memory

20

2.3 Transfer Learning and Fine-Tuning

usage because more memory is needed to hold intermediate convolutional layers while
training the CNN. Relevant convolutional architectures for this project is described in
Section 3.4.

2.3 Transfer Learning and Fine-Tuning

It is usually hard to train an entire CNN from scratch. A completely untrained CNN will
have completely random weight matrices and biases and to learn something, it will need
a huge dataset for training. However, as briefly mentioned in section 2.2.4, the early
convolutional layers often train general filters. These filters learn to detect simple, low-
level patterns which appear not be specific to any particular dataset [31] (e.g. color blob
detection and edge detection). This means that it may be useful to transfer this learning
to other similar tasks. Deep CNNs are good candidates for transfer learning because they
are usually trained on general tasks and have many adjustable layers. Unfortunately,
the many layers make them computationally expensive to train from scratch. Modern
deep CNNs usually take 2-3 weeks to train across multiple GPUs. To build a deep CNN
is out of the scope for this project, but it may be beneficial to take advantage of existing
deep CNNs by using transfer learning.

2.3.1 Fixed feature extractors and fine-tuning

There are two main strategies when using transfer learning:

1. CNN as fixed feature extractor. For this strategy, only the last classifier layer
is replaced. The rest of the CNN is treated as a fixed feature extractor for the
new dataset. The second last layer is usually a fully-connected layer. This layer
will compute N -dimensional vectors called CNN codes for each image. These CNN
codes contain which neurons were activated in the fully-connected layer. They can
also be seen as the features extracted from the image. With CNN codes from a
pretrained CNN working as fixed features extractors, the only step needed is to
train a new linear classifier designed for the new dataset.

2. Fine-tune the CNN. The other alternative, in addition to replacing the last
classifier layer, is to retrain the whole or parts of the pretrained CNN. This is
done by retraining the pretrained CNN with the new dataset without changing
the architecture or reinitialize the weights. The existing weights are said to be
fine-tuned. The early layers detecting generic features are barely changed. It
is also possible to keep the early layers unchanged due to overfitting concerns.
Compared to the first strategy, the feature extractors are not fixed, but changed
to represent the new dataset better. Fine-tuning takes a longer time, but gives
a significantly higher potential representational power of the data. However, the
potentially higher representational power may be a problem if it is not sufficient
data due to overfitting concerns.

21

2 Background Theory

2.3.2 Factors that affect transfer learning

When deciding if transfer learning should be used for a task, there are mainly two factors
to consider. The size of the new dataset, and the similarity between the dataset for the
new task and the original dataset used by the pretrained CNN. The two factors combined
gives four scenarios:

1. Small dataset and low similarity. This scenario is the hardest, and it is difficult
to get good results. Fine-tuning may give overfitting problems because the small
dataset is insufficient. If instead a new classifier is trained on top of the CNN, the
features for the CNN codes will not represent the new dataset well because of the
low similarity between the new and original dataset. The only alternative which
may work, is to train a classifier on top of an earlier, more generic layer.

2. Small dataset and high similarity. Even with a high similarity it is not re-
commended to use fine-tuning with small datasets. However, since the similarity is
higher, a linear classifier can be trained directly on top of the last fully-connected
layer giving better results than the first scenario.

3. Large dataset and low similarity. With a larger dataset, fine-tuning should
be considered because it will not overfit the data. The low similarity may still be
a problem, but if the pretrained CNNs architecture is similar to what is desired,
fine-tuning can be a good option. Another option is to only use parts of the
architecture. However, this is not a straight-forward task. The last option is to
train a CNN from scratch. This option is affordable since the dataset is sufficiently
large and it gives the most freedom of choice considering the architecture.

4. Large dataset and high similarity. The last scenario is the most desirable.
Fine-tuning is efficient because of the large dataset and the high similarity assures
that the learned features for the original dataset are also useful for the new dataset.

22

3 Related Work
This chapter presents works related to this project. Much effort has been devoted to
the ALPR problem the last thirty years and there exist much research on the field. The
sections 3.1-3.3 provide brief overviews of the main approaches used in the three main
ALPR steps: license plate detection, character segmentation and character recognition.
It is not put too much emphasis on each approach’s reported accuracy as these are hard
to compare. Instead, comparisons considering advantages and disadvantages with each
approach are conducted. The studies referenced is based on the state-of-the-art reviews
published in 2013 by Du et al.[15] and Patel et al.[16]. In addition, a literary search
for promising studies published after 2013 has been done. The two last sections present
different convolutional architectures. Section 3.4 presents the most common convolu-
tional architectures used for object classification and Section 3.5 presents convolutional
architectures used for object detection.

3.1 License Plate Detection

The license plate detection step greatly influences the accuracy of the next steps. The
input is an image containing none, one or multiple license plates and the output should
be the portion of the image containing the license plates only. A plethora of algorithms
have been proposed the last years to solve this challenging problem. The accuracy has
been improved the recent years, but locating a license plate in captured images from
an arbitrary viewpoint with multiple factors as occlusion and illumination affecting the
process is still a challenge. The brute-force approach of processing every pixel in an image
gives a very high processing time. Instead, the common approach is to use prominent
features in the license plate and only process the pixels having these features reducing
the processing time considerably. Existing algorithms have been categorized based on
their approaches [15; 32; 33]. The five main approaches which will be presented here
are: edge-based, color-based, texture-based, character-based and combinations of two
or more features. A summary of the advantages and disadvantages of each approach is
given in Table 3.1.

3.1.1 Edge-based approaches

Edge-based approaches detect license plates by exploiting the fact that license plates
are rectangular with a known aspect ratio. By using the color transition between the
license plate and the background, the boundary of the plate can be found. In [34] and
[35], a Sobel filter is used to detect potential edges. Regions with a high density of edges

23

3 Related Work

Table 3.1: Comparison of license plate detection approaches
Approach Advantages Disadvantages
Edge-based Simple and fast Returns too many candidates

when image has many edges
and has trouble when image
is blurry

Color-based Not affected by inclined or de-
formed plates

Limited results when used
alone

Texture-based Not dependent on the license
plates having regular shapes

Computationally complex
when input image has many
edges or different illumination

Character-based High recall rate and robust to
rotation

Has trouble when image con-
tains other text

Combining two or
more features

Very robust and effective Very computationally com-
plex

are seen as potential license plates and both horizontal and vertical edge detection can
be performed to suggest candidate regions. Zheng et al. [34] uses only vertical edge
detection because horizontal edge detection has shown to give a higher error because the
horizontal edges of the license plates can easily be confused with the horizontal edges of
the car bumper [36]. Furthermore, only rectangles with the same aspect ratio as license
plates are considered to exclude more candidates and improve the overall result. The
reported detection rate is 99.7%. Hough transform can also be used to detect license
plates in an image by detecting straight lines [37]. The advantage of the Hough transform
is that it can detect straight lines with up to 30◦ inclination. However, it is a time and
memory consuming process.
In general, edge-based methods are the simplest and fastest way to implement plate

detection. However, they experience problems when the input image is complex. They
may return too many candidates if the input image contains too many edges or have
problems finding the license plate if the image is blurry.

3.1.2 Color-based approaches

Color-based approaches use colors to detect the license plates. The license plate usually
has a different color compared to the background and this may be used to find the plate.
The color combination of the plate and its characters are rarely found other places than in
the plate region. A genetic algorithm is used in [38] to learn how to recognize these color
combinations. By training in different conditions of illumination it learns what colors
it should look for. With the average brightness of each region it is able to differentiate
license plate regions from other regions. The authors report an accuracy of 92.8%. The
mean shift algorithm is used in [39] to segment regions based on the different colors.
To find the license plate within a candidate region, edge-based methods are used. The

24

3.1 License Plate Detection

claimed license plate detection rate is 97.6%. The execution time is not mentioned.
Color-based methods are often used in combination with other approaches, but may

be used alone. They are not affected by inclined or deformed license plates. However,
color-based methods may have limited results when used alone since they only consider
the illumination condition.

3.1.3 Texture-based approaches

Texture-based approaches use the unconventional pixel density distribution inside the
license plate to detect license plates in an image. The characters on the license plate
contrast the rest of the plate and may be detected by different texture-based methods.
In [33], a method using sliding concentric windows was proposed. The license plates are
seen as an irregularity in the texture of the image. The sudden changes in the texture are
used to detect potential license plates. Kaushik et al. [40] proposes a method combining
the sliding concentric windows and histograms, increasing the accuracy. In [41], a method
using both global statistical features and local Haar-like features is proposed. The global
features exclude most of the background area while the local Haar-like features make
the method robust against changes in brightness, color, size and position of the license
plates.
Because texture-based approaches are not dependent on the license plates having

regular shapes and works even when the boundary of the license plates are deformed,
they can detect more than color and edge characteristics. The disadvantage with texture-
based methods is that they are computationally complex. If the input image has many
edges or different illumination, the processing time may be high.

3.1.4 Character-based approaches

Character-based approaches handle license plates as strings of characters. These meth-
ods examine the image for the presence of characters. Regions where characters are
found are proposed as potential regions containing a license plate. Matas et al. [42] use
a region-based method. A neural network is used to classify the regions in the image
based on how character-like the regions are and a license plate is detected if linear com-
binations of character-like regions are found. Li et al. [43] takes this approach one step
further by detecting all characters in the image using a 37-way output convolutional
neural network (CNN) and then use a new CNN is used to eliminate the false posit-
ives. The process is rather slow taking about 5s per image, but eliminates the need of
character segmentation.
In [44], a method based on image saliency is used. First the method detects characters

only and segments them out using an intensity saliency map giving a high recall rate.
Then a sliding window is used on the segmented characters and license plates are detected
based on related saliency features.
Character-based approaches usually have a high recall rate and are also robust to

rotated plates. However, these approaches may give a high error when other text is
found in the image. The methods also tend to be time-consuming.

25

3 Related Work

Table 3.2: Comparison of character segmentation approaches
Approach Advantages Disadvantages
Projection-based Simple and robust to rotation Require prior knowledge,

sensitive to font changes and
noise affect the result

Pixel-
connectivity-
based

Simple and robust to rotation Broken and joined characters
are a big problem

3.1.5 Approaches combining two or more features

When affordable, combining multiple features are an effective way to detect license
plates. Porikli et al. [45] uses a covariance matrix containing statistical and spatial
information extracted from the license plate. A neural network was then able to detect
license plates by training on the covariance matrix and non-license plate regions. In
[46], two time-delay neural networks (TDNN) were used. The first TDNN analyses the
colors of the license plate while the second analyses the texture. The outputs of the two
are then combined to find candidate regions. Their reported detection rate is at 100%
on a dataset containing 1000 video sequences from toll-gates. CNNs performing general
object detection will also fall into this category (Further described in Section 3.5).
Approaches combining two or more features are often more reliable and effective than

approaches using a single feature. However, the methods are more computationally
complex compared to single-feature approaches.

3.2 Character Segmentation

Before recognizing the characters, a segmentation of the characters is often needed.
Usually preprocessing is performed before this step to avoid problems caused by rotation
of the plate or changes in brightness across the plate. Primarily, existing algorithms fit
two main categories: projection-based and pixel-connectivity-based. Both require the
input image to be binarized. A summary of the advantages and disadvantages of each
approach is given in Table 3.2.

3.2.1 Projection-based approaches

Projection-based approaches use the fact that characters and the background of the
license plate have different colors giving opposite values after binarization of the image.
In [46], the binary image is first projected vertically to find start and end positions of
each character. Then the image is projected horizontally to segment each character by
itself. This resulted in a segmentation rate of 97.5%.
The method of vertical and horizontal projection is simple and commonly used. It

works independently of character positions and works even though the license plate is

26

3.3 Character Recognition

Table 3.3: Comparison of character recognition approaches
Approach Advantages Disadvantages
Template-
matching-based

Simple Require template for each font
and does not work with ro-
tated and broken characters

Learning-based Robust Computationally complex

slightly rotated. However, it requires prior knowledge of the alphanumerical characters
which makes it sensitive to font changes. Noise also affects the result.

3.2.2 Pixel-connectivity-based approaches

Pixel-connectivity-based approaches [47] perform segmentation by labeling all connected
pixels in the binary image. The pixels having the same properties as the characters are
considered part of the character.

The method is simple and robust to rotation. However, it fails to segment correct
when characters appear broken or joined together.

3.3 Character Recognition
The last step is to recognize each segmented character also known as optical character
recognition (OCR). This can be seen as an image classification problem with one class
per alphanumerical character. In total there are 36 possible classes when analyzing most
western license plates, 26 letters and 10 digits. Existing methods can be split into two
categories: template-matching-based and learning-based approaches. A summary of the
advantages and disadvantages of each approach is given in Table 3.3.

3.3.1 Template matching approaches

Template matching approaches are simple and work by comparing the similarity of the
character and a template. The template most similar to the character is chosen. In [37]
and [46], this template method is used on binary images. Several similarity measures
have been proposed including Mahalanobis distance, Jaccard value [46] and Hamming
distance. The recognition rate of [46] is about 97.2%.
The template method is simple, but limited. It requires a template for each font,

assumes a fixed size and does not work on rotated or broken characters. It is vulnerable
to noise and moderately slow because it processes many pixels not important to the
classification task and compares it to every template.

3.3.2 Learning-based approaches

Learning-based approaches use machine learning techniques to discriminate characters
based on one or multiple features. Jiao et al. [48] uses a neural network that learns to

27

3 Related Work

discriminate based on image density. A number of CNN architectures also work well to
this approach (Section 3.4). CNNs use multiple features and they are not required to
define the features in advance. In [43], a pretrained 9-layer CNN model sliding across
the bounding boxes is used giving a prediction accuracy of 97.6%.
The method is robust to any distortions and the recognition part is fast since there

are fewer features than pixels. However, feature extraction takes time and if non-robust
features are chosen, problems may occur. A learning-based approach fits this project
using CNNs to solve the character recognition problem.

3.4 Object Classification Convolutional Architectures
Different convolutional architectures have been developed from the 1990’s. This section
will look at some of the most notable architectures. As we will see, many of the revolu-
tionizing architectures were built for and submitted to the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) [49]. This is a yearly competition where the goal is
to get the lowest classification error on a given dataset containing over ten million images
and above 1000 classes. This competition has the last years been the driving factor for
the further development of CNNs. All architectures presented solve the general tasks of
classifying objects within an image and may be good candidates for transfer learning to
fit the needs for this project. They are also an important part of most object detection
convolutional architectures (Section 3.5). The architectures will be presented by date.

3.4.1 Traditional CNNs

LeNet5 [4], developed by Yann LeCun, was a pioneering CNN that accelerated research
on deep learning. It was used to recognize zip codes and digits. The architecture has
inspired later CNNs, but it differs fundamentally from modern CNNs because GPUs
were not available for training at the time and the CPUs were much slower. Thus, only
a brief summary of the architecture is presented.

LeNet5s architecture is shown in Figure 3.1. It alternately used convolution and
pooling layers with fully-connected layers as final classifiers. As non-linear activation
function, hyperbolic tangent or sigmoid was used and average pooling was used as pool-
ing function. It had sparse connections between the layers to reduce the number of
dimensions. Mean squared error was used as loss function.

3.4.2 DeepCNNs

AlexNet [5] competed in the ILSVRC 2012 and won by a significant margin (84%
accuracy top5 versus 74% for the runner-up). It is based on LeNet, but is much deeper
and wider with a total of 60 million parameters. Because of the number of parameters,
it was implemented to utilize multiple GPUs to satisfy the memory requirements. The
multi-GPU implementation is shown in Figure 3.2. Its contributions to the field were:

• the use of the rectified linear unit (ReLU) as activation function.

28

3.4 Object Classification Convolutional Architectures

Figure 3.1: LeNet5s architecture used for digits recognition. [4]

Figure 3.2: AlexNets multi-GPU implementation. [5]

• a method of stacking multiple convolutional layers before the pooling layer

• the use of max pooling, to avoid problem with the average pooling

• the use of GPUs to reduce training time

3.4.3 Very deep CNNs

GoogLeNet [6], also called Inception, won the ILSVRC 2014. Inspired by VggNet [30],
it used much smaller 3-by-3 filters in each convolutional layer instead of 5-by-5 or 7-by-7
filters. This idea opens the possibility to increase the number of layers and build deeper
networks. Its own contribution was to dramatically reduce the number of parameters
used. This was achieved by using cheap 1-by-1 filters before expensive parallel blocks,
referred to as a bottleneck. Figure 3.3 shows a module in Inception version 1 using this
technique. To further reduce the number of parameters, average pooling was used as
classifiers instead of fully connected layers. Development of Inception has continued and
the most recent version is InceptionV4 [50] most notably inspired by ResNet [7] described
in the next subsection.

29

3 Related Work

Figure 3.3: A module in InceptionV1. The yellow 1x1 convolution blocks reduces the
input size before being fed into more expensive 3x3 and 5x5 convolutions.
[6]

3.4.4 Residual CNNs

ResNet [7] won the ILSVRC 2015 and represents a new revolutionizing way of building
CNNs, called residual CNNs. It consists of 152 layers, an extreme increase compared to
previous architectures. This was achieved by using skip connections modeled in Figure
3.4. A skip connection is a connection used by the input signal to bypass a number
of layers. With this technique, CNNs with over 1000 layers are trainable. Insights of
why this is working so well are still being researched. Empiric research has shown that
ResNet operates with blocks of only moderate depth of about 20-30 layers acting in
parallel, instead of a serial flow of the entire network [51]. Thus, the behavior can be
compared to ensembles of relatively shallow networks. In addition, when the output is
fed back recursively, as in RNNs, it can be seen as a biologically-plausible model of the
ventral stream in visual cortex [52].
Residual CNNs remain the state-of-the-art (June 2017) within the field of general

object classification as no revolutionary architectures were submitted to the ILSVRC
2016.

3.5 Object Detection Convolutional Architectures

Convolutional architectures used for object detection differ from classification CNNs that
also try to determine the location of the object. This is a harder task, but accomplishes
more as it may be used to both detect, segment and classify objects in an image. Pascal

30

3.5 Object Detection Convolutional Architectures

Figure 3.4: Model of a skip connection in ResNet. In parallel, the input x is fed into
F(x), representing two layers, and bypasses it through a skip connection. [7]

Visual Object Classes (VOC) challenge [53] is a yearly competition in object detection.
Their published datasets including images of objects belonging to different classes with
location annotations are often used to compare detection networks. Mean average pre-
cision (mAP) is used as a standard evaluation metric.

Until recent years, object detection algorithms had a low accuracy considering cor-
rectly locating and classifying objects. Support vector machines (SVMs) using HOG
features [54] and deformable part models (DPMs) using root and part templates were
the state-of-the-art, but did not achieve high accuracies. One of the best HOG-based
DPMs only achieved a mAP score of 33.7 on the VOC 2007 dataset [55].
The discovery of region-based CNNs (R-CNN) and the following improvements of

R-CNNs revolutionized the field of object detection by dramatically improving the ac-
curacy. The newer one-shot architectures have further improved the lack of processing
speed in R-CNNs by removing the sequential pipeline of region-proposals and object
classification and treating the overall problem as a regression problem while maintaining
about the same prediction accuracy. The following subsections will present the most
relevant architectures and consider their prediction accuracy and processing speed.

3.5.1 Region-based CNNs

Girshick et al. constructed a region-based CNN (R-CNN) in 2014 [9] to detect objects
in an image. It improved detection relative to previous best results on the VOC 2007
dataset by more than 50% and achieved a mAP score of 66. The speed is rather slow and

31

3 Related Work

Figure 3.5: Bounding boxes in the lower images is proposed based on groups of adja-
cent pixels identified as objects by the selective search method in the upper
images. [8]

processing time per image is 20 seconds. Overall, the system consists of three modules.
The first module generates category-independent region proposals, also called bound-

ing boxes, with the approach proposed in [56]. The occlusion boundaries are labeled
using traditional edge and region-based approaches together with methods extracting
3D surface and depth features [57]. A 3D interpretation of the image is reconstructed
and with supervised learning, it is able to propose category-independent regions. A se-
lective search[8] is performed to avoid exhaustive search while still having a diversified
search. At a high level, this selective search looks at the image with different window
sizes and each size tries to group together adjacent pixels based on their color, intensity
and texture to identify objects. Figure 3.5 shows examples of pixel groups the selective
search proposes and the corresponding bounding boxes proposed.
The second module is a large convolutional network extracting a fixed 4096-dimensional

feature vector. It consists of five convolutional layers followed by two fully connected
layers using the same network architecture as GoogleNet described earlier [6]. Since
the network only allows a fixed size input, all images are warped and converted to a
227-by-227 vector.
The last module inputs the fixed feature extractor into a linear SVM classifying each

region into predefined categories. Figure 3.6 illustrates the process from input image to
each region is classified.
The final step of the R-CNN after the regions is classified is to see if it is possible to

improve and tighten the bounding boxes found. This is performed by a simple linear
regression model where the sub-regions corresponding to objects is taken as input and
the new improved bounding box coordinates of the sub-regions is given as output.

32

3.5 Object Detection Convolutional Architectures

Figure 3.6: Overview of R-CNN. 1. An input image is given. 2. Region proposals are
extracted. 3. Feature vector is computed. 4. Each region is classified. [9]

3.5.2 Fast R-CNN

Fast R-CNN [58] (2015) is an improved and simplified version of the existing R-CNN
model by Girshick et al. The improvements resulted in improved speed and accuracy.
Fast R-CNN achieved a mAP score of 70.0 on the VOC 2007 with a processing time of
2 seconds per image, 10 times faster than R-CNN.

A significant weakness of the R-CNN is that it requires a forward pass through the
CNN for every single region proposal. These proposals invariably overlap each other
causing the CNN to perform the same computation multiple times. The solution imple-
mented in Fast R-CNN is to share the computations with RoIPool (Region of Interest
Pooling), a technique closely related to spatial pyramid pooling networks [59]. The RoI-
Pool only computes a single shared convolutional feature map on the entire input image
and a fixed-length feature vector is extracted from the feature map for each object pro-
posal, This cuts down the number of forward passes from about 2000 to a single forward
pass, massively improving the speed of the network.

The other weakness of R-CNN is the number of modules. R-CNN uses three different
modules in addition to the linear regression model used to tighten the bounding boxes.
This makes the sequential pipeline very hard to train. Fast R-CNN improves this aspect
by combining all the modules into a single network. Training is converted to a single-
stage process, combining learning to classify objects and object location. This improves
the speed of training. The feature vectors are fed into a sequence of fully connected layers
branching into two output layers. One returns the probability of each object class and the
second returns four values representing the corners of the location estimated. A linear
regression layer is introduced. This automatically tightens the bounding boxes within
the network. Lastly, the SVM classifier is replaced by a softmax classifier. Another
advantage of the single module network is that network layers may be updated during
training which was not possible in R-CNN, improving the accuracy.

33

3 Related Work

3.5.3 Faster R-CNN

Faster R-CNN [10] (2016) is a result of further improvements to the Fast R-CNN by
completely changing the region proposer. Both speed and accuracy were improved.
Faster R-CNN achieved a mAP score of 73.2 with a processing time of 140 ms per image
This is over 10 times faster than Fast R-CNN and over 100 times faster than R-CNN.
An even higher mAP score of 76.4 is achieved by changing the underlying architecture
from VGGnet to the ResNet.
Faster R-CNN contributes to Fast R-CNN by swapping the selective search with a

Region Proposal Network (RPN) massively speeding up the region proposal step. RPN
is a fully-connected convolutional network taking an image as input and outputting
rectangular region proposals. It works by sliding a window over the feature map. At
each location k anchor boxes with 4 coordinated are proposed as well as two confidence
scores for each anchor box, one score for the accuracy of the region bounds and one for
the objectness of the object found within the anchor box. An anchor box is a selectively
chosen bounding box. Intuitively, when a network is trained to detect humans, we want
rectangular bounding boxes resembling the shape of a human. Tall and thin bounding
boxes will appear often while wide and low bounding boxes will rarely appear. The
RPN tries to exploit this fact by only suggesting anchor boxes with common aspect
ratios improving the location accuracy and reducing the number of region proposals.
This improves the speed. Figure 3.7 shows an overview of the RPN process.

The region proposals are then given to the Fast R-CNN network detecting and clas-
sifying objects within the regions. The RPN network and the Fast R-CNN network are
trained independently using backpropagation and stochastic gradient descent. For the
Fast R-CNN network to fully utilize the region proposals given by the RPN, the two
networks need to share features. To manage this, two steps are introduced after the two
networks have finished training independently. First, the Fast R-CNN network is used
to initialize the RPN network, but the shared convolutional layers are kept fixed while
the unique layers to RPN are fine-tuned. Second, the unique layers of Fast R-CNN are
fine-tuned. The shared convolutional layers are still kept fixed. By sharing convolutional
features, the region proposal step is now nearly cost free, removing a large bottleneck in
the network, greatly improving the speed.

3.5.4 Mask R-CNN

Mask R-CNN [11] (2017) is an extension to Faster R-CNN, transforming it into an image
segmentation network not only predicting bounding boxes around the objects, but also
segmenting the objects from the surrounding background with a mask. It achieves a
mask average precision of 35.7 which is not comparable to the mAP scores of the other
R-CNNs as it solves a harder task. However, Mask R-CNN is the state-of-the-art within
image segmentation outperforming all other existing models. It is also able to predict
bounding boxes on the same level Faster R-CNN in addition to the masks. Mask R-CNN
only adds a small overhead to Faster R-CNN, meaning the speed is only slightly reduced.
However, it is still able to work with a processing time below 200 ms per image. Results

34

3.5 Object Detection Convolutional Architectures

Figure 3.7: The Region Proposal Network slides a window over the feature map. For
each window, k anchor boxes represented by four coordinates and two scores
per anchor box is proposed. [10]

35

3 Related Work

Figure 3.8: Results from Mask R-CNN. Masks are shown in color. [11]

from Mask R-CNN are shown in Figure 3.8.
Mask R-CNN is able to carry out pixel level segmentation by adding a new branch on

top of the feature map parallel to the classification and bounding box regression network
of Faster R-CNN. This branch is a fully convolutional network (FCN) outputting a binary
mask telling whether or not a given pixel is part of an object.
Another small adjustment from the original Faster R-CNN was necessary for the Mask

R-CNN to work as intended. RoIPool finds Regions of Interest in the original image and
maps it onto the feature map in Faster R-CNN. It is not precise enough to be used
in image segmentation that requires more fine-tuned features. To understand why, we
might imagine a 128-by-128 pixel image mapped to a 25-by-25 feature map. If the Region
of Interest is a 15-by-15 pixel area this would correspond to a square in the feature map
with sides of 15∗ 25

128 = 2.93 pixels. When RoIPool is used, this number is rounded down
resulting in a 2-by-2 feature space slightly misaligning the Region of Interest. To avoid
the rounding RoIAlign is introduced. RoIAlign uses bilinear interpolation, a resampling
method using the the distance-weighted average of the four nearest pixels, to estimate
pixel values between pixels giving a precise idea of what a 2.93-by-2.93 feature space
would be. Thus, it avoids misalignment of Regions of Interest resulting in more precise
segmentation.

3.5.5 You Only Look Once (YOLO)

You Only Look Once (YOLO) [12] (2015) was the first successful one-shot CNN architec-
ture working significantly different from the R-CNN framework. The process of one-shot
architectures is simpler as it only processes the image once into a single CNN eliminating
the need of region and object proposals. The result is much faster object detection. The
processing time of YOLO is only 22ms per image, about 6-7 times faster than Faster R-
CNN. This equates to 45 frames per second, fast enough to perform real-time detection
of objects in video streams. However, it only achieves a mAP score of 63.4 on the VOC
2007 dataset, significantly worse than the R-CNN family. A faster version, Fast YOLO,

36

3.5 Object Detection Convolutional Architectures

Figure 3.9: Overview of YOLO. The input image is divided into an S × S grid and each
grid cell predicts B bounding boxes, confidence for those boxes and C class
probabilities. [12]

runs even faster at a rate of 155 frames per second, but the trade-off is that the mAP
score is lowered to 52.7.
YOLO unify the separate components of R-CNNs into a single neural network. The

network uses features from the entire image to predict bounding boxes across all classes.
This means that the network reasons about all the objects in the image globally and
may find correlations between objects far away from each other.
The input image is divided into an S×S grid. Each grid cell predicts B bounding boxes

and a confidence score for each box, Pr(Object)∗IOU truth
pred . This confidence score consists

of a term determining the probability of an object existing within the bounding box,
Pr(Object), and a term calculating how accurate the bounding box is predicted by taking
the intersection over union between the predicted box and the ground truth, IOU truth

pred .
Each grid cell also predicts C conditional class probabilities Pr(Classi|Object). Only
one set of class probabilities is predicted per cell, even though there may be a number
of boxes predicted. At test time, the class probabilities are multiplied with a confidence
score of each box giving the class-specific confidence score

Pr(Classi|Object) ∗ Pr(Object) ∗ IOU truth
pred = Pr(Classi) ∗ IOU truth

pred

encoding both the probability of a class appearing in the box and how well the box fits
the object. Figure 3.9 shows the full model.

37

3 Related Work

The network architecture is inspired by GoogleNet which consists of 24 convolutional
layers followed by two fully-connected layers. The Fast YOLO only uses 9 convolutional
layers. The 20 first layers are pretrained on ImageNet and then converted to perform
detection by adding 4 convolutional layers and two fully-connected layers with randomly
initialized weights. The input resolution is doubled from 224 × 224 to 448 × 448 as
detection requires more fine-grained features than classification. In the final layer, the
class and bounding box coordinates are normalized to predict width and height between
0 and 1. The final layer uses a simple linear activation function while all the other layers
uses the parametric ReLU with leakage coefficient a = 0.1.
Mean Square Error (MSE) is used as loss function as YOLO solves a regression problem

and not a classification problem as the R-CNNs. To avoid that the loss function weights
localization errors equally with classification errors which causes instability in the model
during training, the loss from bounding box coordinate predictions is increased and loss
from boxes not containing objects is decreased. Another problem with MSE is that errors
in large and small bounding boxes are weighted equally. To partially avoid this problem,
the square root of the width and height of the bounding box is predicted instead of the
actual width and height.
To reduce overfitting, dropout and extensive data augmentation are used. After the

first fully-connected layer, a dropout layer is inserted randomly "dropping" input nodes
with probability p = 0.5. The data augmentation is performed on the original input
image randomly scaling and translating it up to 20%. Hue and saturation of the image
are also adjusted by up to a factor of 1.5 of the original values in the HSV color space.

3.5.6 YOLOv2

YOLO version 2 [60] (2016), also called YOLO9000, is an improved version of the original
YOLO network. Since it uses a multi-scale training method, it can run in different sizes
and offer a trade-off between speed and accuracy. The version that runs at 67 frames per
second (FPS) achieves a mAP score of 76.8 on VOC 2007, while a slower version that
runs at 40 FPS achieves a mAP of 78.6. YOLOv2 slightly outperforms Faster R-CNN
with ResNet when only considering the prediction accuracy. However, YOLOv2 greatly
outperforms Faster R-CNN considering speed, running over 8 times faster.

A number of improvements is implemented to YOLO to end up with YOLOv2. Espe-
cially low recall and a high number of localization errors were problems YOLOv2 tried
to fix. A summary of the improvements and results is given in Table 3.4.
The first improvement is to add batch normalization to all the convolutional layers

regularizing the model, significantly improving the convergence rate and avoid overfit-
ting. This increased the mAP score of more than 2%. Dropout is also removed from the
model as the need to reduce overfitting is eliminated by batch normalization.
The second improvement is an introduction of a high resolution classifier. The original

YOLO trains its classifier network at 224× 224 resolution and increases it to 448× 448
for the detection part. By fine-tuning the classifier network at the full 448 × 448, the
pre-training on ImageNet is slower, but the resulting filters is better adjusted. This
improves the mAP score with almost 4%.

38

3.5 Object Detection Convolutional Architectures

Table 3.4: Iterative improvements implemented from YOLO to YOLOv2. Each column
represents iterations with new improvements.

Improvements YOLO YOLOv2
Batch normalization X X X X X X X
High-res classifier X X X X X X
Anchor boxes X

BB-dimension priors X X X X
Passthrough layer X X X
Multi-scale training X X
Highest-res detector X
VOC2007 mAP 63.4 65.8 69.5 69.2 74.4 75.4 76.8 78.6

The introduction of anchor boxes was not a success as it was in Faster R-CNN. There-
fore, it is not used in the final YOLOv2. Instead YOLOv2 uses a k-means clustering
algorithm on the training set to automatically find good priors for the bounding box
dimensions. The distance metric used is given by

d(box, centroid) = 1− IOU(box, centroid)

where IOU is the intersection over union between the ground truth and the predicted
bounding box. A distance metric using IOU is chosen. It is independent of the size of
the box compared to for instance Euclidian distance which would generate a larger error
for large boxes compared to smaller boxes. As a trade-off between model complexity and
high recall, k = 5 is chosen. The resulting mAP score improvement is almost 5%. This
is mainly because the model starts off with better representations of bounding boxes,
making the detection task easier.

A passthrough layer is added to improve the networks ability to localize smaller ob-
jects. The layer brings finer grained features in from earlier layers with high resolution
features and concatenates it with lower resolution features by stacking adjacent features
into different channels. The mAP score increases by 1% as a result of this improvement.
To make YOLOv2 more robust running on images of different sizes, multi-scale train-

ing is introduced. The standard input resolution for YOLOv2 is 416×416 meaning every
image will immediately be downsized to this resolution. During multi-scale training this
resolution is not kept fixed and the network randomly chooses a new resolution every
10 batches from the set {320, 352, ..., 608} as it downsamples with a factor of 32. This
forces the network to predict well across a variety of input resolutions making it more
robust to changes in image size.
Lastly, YOLOv2 may choose between different resolutions in test time. The resolution

works as a trade-off between speed and accuracy. A higher resolution gives a better mAP
score, but fewer frames are processed per second. At 544× 544, the mAP is the highest
with 78.6 running in 40 FPS. At 288× 288, the mAP is the lowest with 69.0 running in
91 FPS. Speed and accuracy results from five different resolutions are given in Table 3.5

39

3 Related Work

Table 3.5: Speed and accuracy results from YOLOv2 with different resolutions trained
on VOC 2007 on a GeForce GTX Titan X.

Resolution mAP FPS
288× 288 69.0 91
352× 352 73.7 81
416× 416 76.8 67
480× 480 77.8 59
544× 544 78.6 40

3.5.7 Using YOLO to predict traffic signs

YOLO has already been used in a very similar use-case to this project detecting traffic
signs [61]. The original YOLO (not YOLOv2) was trained and tested on a Belgium
Traffic Sign Dataset to analyze the costs and benefits of YOLO compared to Fast and
Faster R-CNN. Unfortunately, the experiment was largely unsuccessful as the highest
accuracy achieved using an ensemble of the two models was a mAP score of 33.6 on the
test data. Their error analysis and saliency maps of the predictions showed that the
model had problems discriminating between spatially small object classes that are not
correlated with their environment. This is caused by YOLO using global and not local
features to predict classes and bounding boxes. As traffic signs are both small and often
largely uncorrelated with the environment, they concluded that YOLO did not work
well as an object detector in the traffic sign domain without major changes.

40

4 Architectural Choices
This chapter presents and discusses architectural choices. Section 4.1 concerns the use
of training data, Section 4.2, the choice of system pipeline and Section 4.3 the choice of
convolutional architecture.

4.1 Training Data

An important part when using neural networks to solve a problem is the training data.
Even if the neural network is extremely well designed, it will not achieve good results if
the training data does not reflects the test data. In this project, images of license plates
and the classification of them will be the training data. In addition, it helps to have
annotations of the location of the license plates in the images for the detection part.

Two approaches are considered to solve this problem. The first approach is to use rel-
atively small amounts of high-quality data. The second approach is to generate massive
amounts of lower-quality data.

4.1.1 Small high-quality dataset (real data)

A dataset of about 750 images of license plates was provided from an earlier project
on ALPR using AdaBoost [62]. Later in the project, the dataset increased to about
1500 images. In the context of CNNs, this is a small dataset. However, a dataset of
this size works well for transfer learning. In Section 3.4 and 3.5, a handful of existing
convolutional architectures for object classification and object detection were described.
Most of them were trained on very large datasets such as ImageNet and VOC. Even
though these CNNs are built for general object classification and detection tasks it is
possible to retrain them to classify and detect other objects such as license plates and
plate characters. The best way to utilize the existing CNN would be to use them as a
fixed feature extractor and only replace the last layer with the task of classifying objects.
The advantage of this approach is that already existing state-of-the-art CNNs are

easier to utilize than a specialized CNN built from scratch. Even though the networks are
not specifically built for the ALPR problem, it has been shown that transfer learning is
an effective training method, almost always boosting the result [63]. Some of the object
detection networks’ processing time are also fast enough to work on video streams.
However, there is less room to modify the process and explore alternative methods than
when building the process from scratch.

41

4 Architectural Choices

4.1.2 Large lower-quality dataset (generated data)

When training a CNN from scratch or fine-tuning a full network, massive amounts of
image examples are usually needed. Since it is only possible to gather a limited amount
of real captured images of Norwegian license plates for this project, a solution could be to
generate data instead. Generating license plate images is an easier task than generating
many other kinds of object images. By knowing the aspect ratio of the plate and the
font, it would be possible to generate images containing license plates with different
positions, viewpoints and conditions of illumination.
This approach enables building a CNN specialized in detecting and classifying license

plates. In general, there are few limitations except for the training data, and utilizing
factors such as font type and standardization of the license plate is easy. It would also be
easier to combine such an approach with other machine learning methods compared to
approaches using real data. The disadvantage is that it is hard to generate high quality
images of license plates.

4.1.3 Choice and justification

The choice for this project is to use the small dataset of existing license plate data. In
addition, a combination of the existing data and generated data will be tested to see if
it improves the accuracy. The small existing dataset seems to fit this project best as the
plan is to utilize existing object detection CNNs. However, it might not be robust enough
to support learning to detect license plates in images with conditions rarely seen. The
generated data may consequently complement the existing data and make the system
more robust. More data often means better results as the CNN has more information
to learn features from even though the similarity between the training and test set will
decrease.

4.2 System Pipelines

A system pipeline in this context defines how the task is split into separate modules.
Each module handles input data from the previous module and outputs data to the next
module. The first module takes raw image data as input and the last module outputs
a prediction of the number of license plates the image contains and a prediction of the
characters on each plate.
There are many different ways to solve the ALPR problem and thus many different

system pipelines. However, only a few are considered for this project. Each pipeline is
considered based on how well it would fit existing deep learning techniques presented in
the previous chapters.

4.2.1 Detect characters

A possible pipeline with only one step would be to detect the characters directly from
the image. An object detection CNN is retrained on a dataset of characters from license

42

4.2 System Pipelines

plates and the features learned are used to detect and recognize characters in the image.
Although no specific segmentation and recognition step is included, segmentation and
recognition will be performed as part of the detection step.
The advantage of this pipeline is that it is simple and fast. Only a single object

detection CNN is needed, reducing the complexity and increasing the processing speed
of the system. However, the approach may be too simple. Other characters may exist
in the image confusing the CNN and the features learned from the characters may not
be enough to confidently find all plate characters in the image. This will lead to a low
prediction accuracy.

4.2.2 Detect plates, detect characters

This pipeline divides the task into two steps. The first step will detect the license plate
and the second will try to detect the characters on the plate and recognize them. Both
steps may be solved using the same or two different object detection CNNs retrained on
license plates and characters respectively. Segmentation of both the license plate and
the characters are a part of the detection processes.
This pipeline would perform better than the pipeline detecting characters directly

since it will only need to search for characters in the regions where license plates are
found. Another advantage is that both steps may be solved by the same object detection
architecture simplifying the implementation. The disadvantage of this approach is that
having two steps doubles the processing speed compared to the first pipeline.

4.2.3 Detect plates, segment characters, recognize characters

The most used pipeline to solve the ALPR task divides the task into three steps. The
first step detects the license plate, the second step segments characters on the plate and
the last step recognizes each individual character. The detection step may be solved
by an object detection CNN retrained to detect license plates. Multiple alternatives
exist for the segmentation step. A CNN may learn one or more specific features such as
pixel-connectivity and box each character based on that. The recognition step fits an
object classification CNN retrained to recognize the possible characters.
As this is the most complex pipeline, the pipeline also has the highest potential for high

prediction accuracy. The detection and recognition steps fit existing CNNs described in
previous chapters and will most likely work well, but the segmentation step will require
a special CNN architecture not researched in depth in this thesis. The processing speed
will also most likely be higher because it has to do character segmentation in addition
to the license plate detection and character recognition.

4.2.4 Choice and justification

The choice of pipeline for this project is the "detect plates, detect characters"-pipeline,
because it appears to be the best compromise between processing speed, complexity and
prediction accuracy of the pipelines evaluated.

43

4 Architectural Choices

A doubling in the processing time compared to the the single step pipeline does not
impact the speed considerably compared to the choice of object detection architecture
that would impact the speed by an order of magnitude. If the speed becomes a concern,
choosing a less processing intensive architecture would have much more impact than
changing the pipeline.
The complexity of the "detect plates, detect characters"-pipeline is not that much

higher than the "detect characters"-pipeline because the same architecture may be chosen
to both steps. The "detect plates, segment characters, recognize characters"-pipeline
would be more complex because it would need a different architecture for the segment-
ation part.
The prediction accuracy of the selected pipeline may be lower than the more complex

"detect plates, segment characters, recognize characters"-pipeline. This is because it
does not have a CNN specifically assigned to segment the characters. However, the seg-
mentation will be performed as part of the detection and the prediction accuracy should
not suffer too much even though segmentation is not specifically built for characters.

4.3 Convolutional Architectures
With the "detect plates, detect characters"-pipeline chosen as pipeline, two object de-
tection CNNs are needed. One to detect the license plate and another to detect the
characters. The same architecture may be used for both. Processing speed and pre-
diction accuracy are the most important measures when comparing the architectures.
However, the networks are compared based on their performance on the VOC 2007 data-
set which is different from the license plate dataset used in this project. Therefore, it
should also be considered how well the networks will convert to the license plate dataset.

4.3.1 Comparison

Six different convolutional architectures used for object detection is examined in Section
3.5: R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO and YOLOv2. Table
4.1 shows a comparison of all six architectures, comparing the time it takes to process
an image and the prediction accuracy given by the mAP score on the VOC 2007 dataset.
Since Faster R-CNN is an improved version of R-CNN and Fast R-CNN and YOLOv2
is an improved version of YOLO, only Faster R-CNN, YOLOv2 and Mask R-CNN are
considered for this project. In addition, different versions of Faster R-CNN and YOLOv2
need to be compared to each other.

4.3.2 Choice and justification

YOLOv2 416 × 416 is the selected architecture for both plate detection and character
detection for this project. The main reasons why YOLOv2 is preferred over the other
alternatives are that it is fast enough to handle real-time video streams and at the same
time offer very high prediction accuracy. The 416 × 416 version is chosen because it
works as a compromise between speed and accuracy and is the best version running

44

4.3 Convolutional Architectures

Table 4.1: Comparison of the R-CNN and YOLO architectures
Architecture mAP FPS Mask seg?

R-CNN 66.0 0.05
Fast R-CNN 70.0 0.5

Faster R-CNN with VggNet 73.2 7
Faster R-CNN with ResNet 76.4 5

Mask R-CNN 73.2 5 X
YOLO 63.4 45

YOLOv2 288× 288 69.0 91
YOLOv2 352× 352 73.7 81
YOLOv2 416× 416 76.8 67
YOLOv2 480× 480 77.8 59
YOLOv2 544× 544 78.6 40

above the highest FPS requirements needed. Real-time video streams often run in 30
FPS and if the goal is that the two networks should run in sequence and not in parallel,
the networks will have to run above 60 FPS to theoretically not drop any frames. As
the tests were done on a GTX Titan X GPU, the network might still drop frames on
a slower GPU, but as long as it does not drop too many frames this is not considered
a problem. Even with a significantly slower GPU it will be well within the minimum
acceptable speed which as mentioned earlier was around 10 FPS.

A concern with the YOLO architecture is the experiments on Belgium traffic signs
which were largely unsuccessful (Section 3.5.7). The main problems found were that
YOLO had problems detecting small objects and used global features. However, this
might not be concerns in the context of the ALPR problem. The license plate images
used in this project are larger than the traffic signs they used. Also the characters, after
the image is cropped takes up a substantial part of the image. The detection of small
objects was also improved in YOLOv2. The use of global features is not viewed as a
problem either. It might even be an advantage, especially for the character detection.
After cropping the image, the letters will appear on the same places in the image every
time making it easy for the network to find the characters when global features are used.
The license plates also appear on about the same place in every image.
Mask R-CNN is an interesting alternative as it solves a harder task, but the mask

segmentation it does is somewhat unnecessary to solve the ALPR problem. License
plates already are rectangular fitting bounding boxes well. Characters would benefit
from masks, but the mask segments would have to reliably isolate the characters from
intersected objects to not confuse the classifier. Overall, the mask technique does not
seem to be reliable enough as Mask R-CNN had a high error rate and scored low on
mask average precision. Mask R-CNN is much slower than YOLOv2 and is unable to
support the option of running the system in real-time.

45

5 System Architecture
This chapter describes the final implementation of the system architecture. Section 5.1
gives a brief overview of the whole system before the architecture for each module is
described in more depth in Section 5.2. Section 5.3 specifies the configurations used for
training the modules, Section 5.4 describes how the number of false positives is kept to
a minimum, Section 5.5 briefly describes the video functionality and Section 5.6 states
the system requirements and setup for this project. The last Section 5.7 describes how
generated training data may be used as supplement to the data augmentation.

5.1 Overview
Based on the assessments done in the previous chapter, the system architecture uses a
"detect plates, detect characters"-pipeline with both steps using the YOLOv2 architec-
ture. Both steps are given a dedicated module that runs independently of each other.

The first module, the plate network, takes the full raw image as input. This module
detects plates in the image, crops the image to only contain the detected plates based
upon their bounding boxes and outputs the cropped images to the second module. To
avoid that cropping the plate too tight leads to the exclusion of important characters,
the cropped image is cropped with an extra margin around the plate.
The second module, the character network, is only given the cropped image as input.

This module detects and recognizes the 36 possible alphanumerical character classes
in the cropped image. The training data consists of characters specifically used on
plates, meaning it will not recognize other types of characters found on or around the
license plates, for instance letters specifying the nation the license plate is registered in.
The position of the bounding boxes determines the order of each character and a final
prediction is given. The full system flow is shown in Figure 5.1.
Both modules in the final system used only real images as training data as this ap-

proach gave the best results. The final system used 559 license plate images (approxim-
ately 3900 characters) to train both the plate network and the character network.

5.2 Module Architecture
Both the plate network and character network are based on the improved YOLOv2
architecture with some modifications and parameter choices differing from the original
implementation to fit the two new datasets. Only the differences from the original
architecture will be explained as the YOLOv2 architecture is already described in Section
3.5.6 and in the original paper [60] by Redmon et al.

47

5 System Architecture

Figure 5.1: The flow of the system. 1. Input image given to the first module. 2. The
plate network detects plates in the image. 3. Plates found are cropped
based on bounding boxes and given as input to the second module. 4. The
character network detects and predicts characters in the image. 5. Full
license plate predicted based on the order of the bounding boxes.

48

5.2 Module Architecture

The first change to the architecture is done to fit a different number of output classes.
The original architecture was built to predict 1000 classes from Imagenet. Our networks,
the plate network and the character network, should predict one and 36 possible classes
respectively. The final number of output nodes O is determined by

O = S ∗ S ∗ (B ∗ 5) ∗ C

where S∗S is the number of grids the image is divided into, B is the maximum number
of bounding boxes predicted within each grid cell and C is the number of possible classes.
Each bounding box B is multiplied by 5 to predict x, y, w, h and confidence. (x, y) is
the coordinates of the center of the bounding box and w and h is the width and height of
the bounding box relative to the whole image. Lastly, confidence is a score ranging from
0% to 100% reflecting how confident the model is of the bounding box containing an
object and how accurate the box is drawn, same as in the original YOLO architecture.
The confidence score is very important to our system to control the false positives rate
compared to the overall prediction accuracy explained in Section 5.4.2.
The best way to determine the number of grids S ∗S is by training different networks

with different S-values. However, since training a single network takes a lot of time
and other improvements are more important, we will instead determine S by studying
the training and test data. For the plate network, we know that all training and test
examples only contain a single license plate we want to detect. Although there may be
more license plates appearing in the background we almost always only want to detect
the closest plate meaning we could set S = 1. However, since it is not a problem to
have a slightly higher false positives rate for plates, the default value of S = 13 is chosen
to make it less likely the network misses a plate. A larger S also helps the network to
detect smaller plates relative to the total size of the image.
The character network needs a larger S as we want it to detect 7 characters per plate

image. Ideally, the number of grids along the x- and y-axis should be chosen individually
because of the rectangular shape of a plate, but this is not possible without major changes
to the architecture. Instead S is determined by the need in the x-axis. S = 7 is the
minimum dimension to be chosen to detect all 7 characters, but as the spaces between
each character are not equally large we may miss characters close together. Therefore
S = 13 is chosen for this network too.
B, the number of bounding boxes per grid is easier to determine. As neither license

plates nor characters overlap each other in our data set we will choose B = 1 for both
networks. Lastly, C = 1 for the plate network and C = 36 for the character network
as they have one and 36 possible object classes. Using the formula above gives us
13 ∗ 13 ∗ 30 = 5070 output nodes for the plate network and 13 ∗ 13 ∗ 205 = 34645 output
nodes for the character network.
The second change made was to downsize the networks to make the whole system

fit in the memory of an 8GB GPU. After the downsizing, each module uses 3.25GB of
memory, in total 6.5GB. This leaves about 1.5G unused memory and the system will not
have to compete for memory with the graphics running on the desktop screen or other
tasks done by the GPU simultaneously.

49

5 System Architecture

Specifically, the downsizing was done by halving some of the later layers. The general
architecture is held intact, meaning that the changes do not have much impact on the
accuracy and speed of the system. However, the changes make the system run slightly
faster and the prediction slightly less accurate. The layer architecture for the plate
network is shown in Table 5.1. The route and reorganize layers represent the passthrough
layer in the YOLOv2 architecture. The fine-tuned features are routed from the 16th
layer, turned into 13 × 13 resolution and concatenated with the features from the 24th
layer.

The layer architecture for the character network is exactly the same except for the
number of output nodes in the final layer.

5.3 Training Configuration

The convolutional network Darknet19 [60] pretrained on ImageNet is used as base for
the transfer learning. Darknet19 represents the 24 first layers in the layer architecture
shown in Table 5.1, 19 convolutional layers and 5 maxpooling layers. Since we are using
a small training dataset with high similarity to the test dataset, fine-tuning the whole
network is not feasible. Instead a strategy similar to a fixed feature extractor is used.
The last layer of Darknet19 is removed, but instead of only training a linear classifier
on top of it, which would only take a couple hours on a CPU, three new convolutional
layers are introduced. Then, only the three new convolutional layers are fine-tuned with
the available training data working as a more advanced non-linear classifier.

Both the plate network and character network were trained for 45000 batches with a
batch size of 64 images which is over 5000 epochs with our small dataset. The number of
epochs is very high and only after 100 epochs the networks started to work satisfyingly
meaning it is possible to dramatically cut down the training time if necessary. However,
the high number of epochs is chosen because only the developer will be impacted by the
longer training time and not the end-user of the system. Also, the networks will not
overfit the training data since data augmentation and batch normalization are used to
effectively regularize the model, meaning there is no harm to extend the training period.

During training, the learning rate starts at 0.001, but is already after 100 batches raised
to 0.01. The reason for starting with a lower learning rate, is to avoid that the model
diverges due to unstable gradients. More specifically, the confidence score in certain
grids not containing any objects may be pushed too fast towards 0, and overpower grids
nearby containing objects, a known weakness in the YOLO architecture important to
be aware of. After 25000 and 35000 batches the learning rate is divided by 10 to avoid
substantial changes in the network weights late in the training process. The momentum
is set to 0.9 and the weight decay to 0.0005. A screenshot of the current network is saved
every 1000 batches.

50

5.3 Training Configuration

Table 5.1: Layer architecture of the plate network
Layer Type Filters Size/Stride Output
0 Convolutional 32 3 x 3 / 1 416 x 416 x 32
1 Maxpool 2 x 2 / 2 208 x 208 x 32
2 Convolutional 64 3 x 3 / 1 208 x 208 x 64
3 Maxpool 2 x 2 / 2 104 x 104 x 64
4 Convolutional 128 3 x 3 / 1 104 x 104 x 128
5 Convolutional 64 1 x 1 / 1 104 x 104 x 64
6 Convolutional 128 3 x 3 / 1 104 x 104 x 128
7 Maxpool 2 x 2 / 2 52 x 52 x 128
8 Convolutional 256 3 x 3 / 1 52 x 52 x 256
9 Convolutional 128 1 x 1 / 1 52 x 52 x 128
10 Convolutional 256 3 x 3 / 1 52 x 52 x 256
11 Maxpool 2 x 2 / 2 26 x 26 x 256
12 Convolutional 512 3 x 3 / 1 26 x 26 x 512
13 Convolutional 256 1 x 1 / 1 26 x 26 x 256
14 Convolutional 512 3 x 3 / 1 26 x 26 x 512
15 Convolutional 256 1 x 1 / 1 26 x 26 x 256
16 Convolutional 512 3 x 3 / 1 26 x 26 x 512
17 Maxpool 2 x 2 / 2 13 x 13 x 512
18 Convolutional 1024 3 x 3 / 1 13 x 13 x1024
19 Convolutional 512 1 x 1 / 1 13 x 13 x 512
20 Convolutional 1024 3 x 3 / 1 13 x 13 x1024
21 Convolutional 512 1 x 1 / 1 13 x 13 x 512
22 Convolutional 1024 3 x 3 / 1 13 x 13 x1024
23 Convolutional 1024 3 x 3 / 1 13 x 13 x1024
24 Convolutional 1024 3 x 3 / 1 13 x 13 x1024
25 Route 16
26 Reorganize / 2 13 x 13 x2048
27 Route 26 24
28 Convolutional 1024 3 x 3 / 1 13 x 13 x1024
29 Convolutional 30 1 x 1 / 1 13 x 13 x 30
30 Detection - Softmax

51

5 System Architecture

5.4 Controlling the Negatives/False Positives-ratio

Real-world ALPR applications cannot just focus on the overall prediction accuracy
without distinguishing between positives, negatives and false positives. In our case,
a positive is a plate detected or read correctly, a negative is a plate not detected or
read and a false positive is a non-plate object detected or a plate read incorrectly. Both
negatives and false positives count as a failed prediction, but depending on the module,
we prefer one above the other.

5.4.1 The impact of negatives and false positives on the modules

The goal of the first module, the plate network, is to detect all plates in the input
image. If a plate is not detected, a negative, there is no other backup methods to find
the undetected plate. The network will not warn the user, and the only way to find
the error is by manually looking through all the images, defeating the purpose of the
system. However, if a non-plate object is detected as a plate, a false positive, it does
not have as negative consequences. The wrongly detected plate-like object is sent to the
second module that will most certainly not find all the characters required to classify it
as a plate. The result is that only the single false positive would have to be manually
checked to make sure that the system not discarded a real plate.
For the second module, the character network predicting the characters in the license

plate, it is completely the opposite. If one or more characters are not found, a negative, it
would only result in that specific plate would have to be manually interpreted. However,
if the character network returns a valid, but incorrect prediction, a false positive, there is
no way to discover the error except manually checking all the predictions, undermining
the purpose of the system.

5.4.2 Use of confidence scores

As previously explained, YOLO returns a confidence score for each bounding box it
predicts. In our modules, 13 ∗ 13 = 169 bounding boxes are always predicted. However,
only if the confidence score to a bounding box is above a certain threshold, the bounding
box will show up in the final prediction. By changing this threshold value, we can directly
impact the negatives/false positives-ratio.
If the threshold is high, the network will sometimes withstand making a prediction

when it is not confident enough, resulting in a failed prediction. However, the system
knows the prediction is wrong, resulting in a negative and not a false positive. On the
other hand, when the threshold is low, the system will more freely make predictions
resulting in more false positives, but less negatives. Taking into account what was
explained in the previous section, the threshold value for the plate network should be
high and the threshold value for the character network should be low. Experimentation
with different threshold values is described in Section 6.2.

52

5.5 Video Functionality

5.4.3 Handling foreign license plates

In this project, we assume that all license plates to be predicted are Norwegian with the
standard character pattern XX_Y Y Y Y Y where X is a letter, Y is a number and _ is a
space. If a plate does not follow this pattern, the system will assume that its prediction
is wrong and request the user to manually inspect the plate to avoid a false positive.
Both the training and the test dataset contain some foreign license plates with other
patterns than the Norwegian. In a real-world application it would not make sense to
remove these plates from the dataset as they will appear in the real world too. Instead
the character network will try to predict the foreign license plates and warn the user that
they do not follow the standard character pattern and should be manually inspected.
This is arguably a good way to handle foreign plates for several reasons:

1. The foreign plates are rare in the test data, meaning they will not add much extra
manual inspection work.

2. The foreign plates are rare in the training data and have a lot more variations
compared to Norwegian plates, meaning that we should expect the system to have
more trouble predicting them and that they would often need manual inspection
anyways.

3. If the foreign plates were not handled in this way, the existing false positives-
detection. The false positives-detection is based on differentiating correct and
incorrect predictions by examining if the prediction follows the standard Norwegian
plate pattern. If all foreign plate patterns was allowed, the system would have
trouble knowing for instance if a prediction is missing a character or the license
plate predicted follows a pattern with one less character in it.

5.5 Video Functionality

As the system has shown to be fast enough to take real-time video streams as input
(Section 6.5), functionality to do this has been implemented. Due to limited time, the
video functionality only covers the first module detecting the plate and not the second
module detecting the characters. Every frame is processed through the plate network
and the result is shown immediately. The video module works both with real-time web
cameras and already recorded videos in the most common video formats. If it runs on a
real-time video stream from a web camera and the processing speed is too low to process
all frames, functionality to drop frames is implemented.

5.6 System Requirements and Project Setup

The chosen approach is computationally complex as it uses two large CNNs. Each
trained CNN uses about 270MB of space and, counting all relevant code the system,
uses a slightly less than 500MB. To run both modules, 6.5GB available space on a GPU

53

5 System Architecture

is necessary. The modules may also run separately cutting the GPU requirements in
half. Darknet and YOLO are the main dependencies of the work. OpenCV is also a
dependency, but it is only used in the video function, meaning the main functionality
will still work without it.
The environmental setup used for this project is a computer running Ubuntu 16.04.

The computer specifications are Intel Core i5 2.67GHz CPU, 4GB RAM and Geforce
GTX 1070 8GB GPU. The solely most important hardware part dictating the processing
speed is the GPU. Initially the smaller and older GPU GTX 660 1.6GB was used, but
caused much trouble as it was not supported by all the newest software and the modules
were too large to fit in its memory. OpenCV also caused problems as version 3 is not
well supported by Darknet and in the final configuration the older OpenCV 2.8 is used.

5.7 Generating Training Data
As it was unknown if generated data would improve the overall prediction accuracy, an
existing script to generate license plate images [64] was modified to generate standard
Norwegian license plates. However, this script is not part of the final ALPR system as
experimentation (described in Section 6.3) showed that the generated training data did
not benefit the system at all. The generation process is still briefly explained here as it
was an important part of the experimentation.
The four steps used to generate plates are shown in Figure 5.2 and explained below.

Figure 5.3 shows some examples of generated license plate images.

1. The license plate is generated by randomly picking letters and digits in the pattern
XX_Y Y Y Y Y where X is a letter, Y is a digit and _ is a space. The font used is
Myriad and remains the same for all license plates generated. The brightness also
varies to imitate different conditions of illumination.

2. The license plate generated is randomly rotated, resized and placed in a black
image. This is done to make the license plates appear to be viewed from different
angles. Screws and other objects sometimes found in license plates are not added.

3. A random background image is added. The background images are retrieved from a
big database of various background images not related to cars. This unfortunately
limits the CNN to only learn license plate related features and not vehicle related
features. No interfering objects are added either.

4. Noise is added to the image. This has two purposes. It simulates occlusion due to
environmental properties obscuring the view and it helps the CNN to not overfit
the data. With noise-injection the CNN will have to depend less on sharp edges
and learn other features.

54

5.7 Generating Training Data

Figure 5.2: The process of generating training images containing license plates

Figure 5.3: Examples of generated license plate images

55

6 Experimentation and Results
In this chapter, the experiments and their results will be presented. Section 6.1 gives
the details on the iterations needed to improve the system. Section 6.2 describes the
experimentation with the selection of the confidence threshold value and Section 6.3
describes experimentation with generated data. Section 6.4 compares and summarizes
all the experimental results from the three previous sections. Section 6.5 tests the speed
of the system on both CPU and GPU. Section 6.6 tests the video functionality.

6.1 Iterations

The prediction accuracy is highly dependent on the amount of training data and ideally
thousands of license plates should be used as training samples. However, annotating
license plates is tedious work. Annotating 100 plates for both networks takes about 5
hours of work, as all the bounding boxes needs to be placed manually. Since the goal
of this project is to show what the implemented system is capable of, and not make an
ALPR system ready for commercial use, the focus is instead on showing the potential of
the system with a relatively small and selective training set. By studying the weaknesses
of the system in the first iteration, we can more selectively choose the additional training
data for the next iteration removing the weaknesses of the system without having to
annotate hundreds of addition license plates. An example of a weakness would be if
certain characters appear rarely or never in the training data, but does appear in the
test data. In the first iteration, the ALPR system would have a hard time predicting
it. However, after selectively including a couple of more license plates containing the
particular characters missing in the intitial training set, the ALPR system will most
likely be able to predict them correctly.

The networks were trained in parallel on the 8GB GeForce GTX 1070 for the maximum
number of 45000 batches for each iteration. The training time of the plate network was
about a week per iteration while the character network trained for about three days per
iteration. The character network finished training faster as it uses smaller images as
input data.

6.1.1 Definition of a correct prediction and overall accuracy

A correctly detected plate by the plate network is defined as a plate where the bounding
box is placed in such a way that the character network would be able to detect all
characters within it. This means that if the bounding box is slightly misplaced cutting
off parts of a character, but the character network is still able to detect the character

57

6 Experimentation and Results

correctly, the plate detection is also counted as a correct prediction. In the case where
the character is cut off by the bounding box, and the character network is not able to
predict the character, the mistake is accounted the plate network and not the character
network. As explained earlier, the plate module adds an extra margin to the cropped
image it sends to the character network. The bounding boxes shown in the figures
below may appear too tightly predicted, but the character network still had no problem
predicting the characters within them because of the extra margin added.
A correctly predicted plate by the character network is defined as a plate where all

characters are predicted correctly with a confidence over a certain threshold value. If the
confidence is lower than the threshold, the network will abstain from making a prediction
to reduce the risk of making a false positive. The value of 70% was chosen initially as
threshold value, as it seemed to work well with the data not making too many false
positives while still predicting most characters correctly. A more experimental approach
to determine the ideal threshold value for the final system is described later in Section
6.2.
The overall prediction accuracy is calculated by the following formula

Accuracy = TP

TP + FP + FN

where TP is true positives, FP is false positives and FN is false negatives. True
negatives does not exist in the test set as every image contains a license plate.

6.1.2 First iteration

For the first iteration, a training set of 517 license plates was used for both networks.
The plates found in the training set were the only plates available at an early stage of
the project,all of them from the test set of an earlier project [62]. Later in the project
a larger dataset of license plates was made available. The test set used in the first and
second iteration contains 410 license plates randomly picked from the larger dataset
keeping the rest to further improvements and testing. None of the images in the test
set is used as training. Most of the images are taken with a professional camera with
dimensions 2464× 1632 pixels.

The plate network

The plate network was able to correctly detect 408 out of the 410 license plates with
one false positive, i.e., 99.5% (408/410) of the plates were detected with a false positive
rate of 0.24% (1/410), or an overall accuracy of 99.3%. Most predictions were spot on
with a high confidence score of 96-97%. Many of the plates in difficult conditions had
a confidence score in the lower 90% showing the network was less confident, but the
detection was still correct. The two incorrectly predicted plates and the false positive
are shown in Figure 6.1. One of the incorrectly predicted plates was not detected at all
by the ALPR system and the other was misplaced so much that the character network
was not able to predict the cut characters. The misplaced plate and the false positive

58

6.1 Iterations

(a) False positive (b) Misplaced bounding box (c) Undetected plate

Figure 6.1: The three mistakes done by the plate network in the first iteration

would have to be manually handled only imposing minor extra work. However, the
undetected plate is a major problem as the system is not able to pick up the mistake
and the plate will stay undetected.
Both incorrectly predicted plates were double-lined indicating a weakness in the sys-

tem. Upon further investigation, this is not a surprising weakness as the training data
includes no double-lined plates and consequently the network had never seen double-
lined plates before. However, it still managed to detect two other double-lined plates
showing its versatility and ability to learn general features it may transfer to similar situ-
ations. An improvement which was implemented in the next iteration, was to include
double-lined plates in the training set.
As for the false positive there may not be any good solutions. The most practical

solution may be to raise the confidence threshold value as the prediction had a relatively
low confidence score. However, this is not a good solution as it may result in more
undetected real plates which may be more problematic for the use of the system. Since
similar cases rarely appear and imposes minor extra work, no improvement will be done
to remove similar false positives.

The character network

The character network was able to correctly predict 393 out of the 409 license plates.
This gives a prediction rate of 96.1%. Overall, the system seemed to be highly robust
in correctly predicting hard cases, including snow, dirt, rotation and poor image quality
with high confidence and seldom made mistakes. Out of the 16 mistakes, only 1 was a
false positive, a plate predicted with correct standard Norwegian pattern, but which is
still incorrect. As the plate was technically legal, the system did not warn the user to
manually check it. All other mistakes resulted in warning, due to illegal plates. In one
case, a character was predicted two times resulting in an illegal 8-character long plate.
In another case, a number was predicted for a letter also resulting in an illegal plate. In
all the other cases one or more characters were missing as the system was not confident
enough to make a prediction. The described mistakes are shown in Figure 6.2.
After analyzing the mistakes, it was clear that the green plates were overrepresented.

5 out of the 19 green plates in the test set were not correctly predicted resulting in a
prediction accuracy of green plates of only 73.7% compared to the overall prediction

59

6 Experimentation and Results

(a) Missing letter

(b) Missing number

(c) D predicted as both D and 0

(d) Complete failure

(e) A predicted as 4

(f) A predicted as R - False positive

Figure 6.2: 6 of the 16 mistakes done by the character network in the first iteration

60

6.1 Iterations

accuracy of 96.1%. This is not surprising, as the training set which was available early
in the project did not contain any green plates. Thus, a simple improvement to the next
iteration is to include green plates in the training set.
Certain characters also seemed to be more problematic than others. In general, the

network struggled more when predicting letters compared to numbers. This is expected
as the ALPR system has been trained on more examples of numbers than letters. Each
license plate contains 5 numbers, but only 2 letters meaning throughout the 517 license
plates the network was trained on approximately 2500 numbers and 1000 letters. Also,
the numbers are divided into only 10 classes compared to the 26 classes of letters meaning
on average the system will have seen each number 250 times and each letter less than 40
times. Another reason making it hard to predict certain letters is that the appearance
of letters is not uniformly distributed as the letters in Norwegian license plates depends
on the place the car was first registered. Since most of the images are taken in the
Trondheim area, some letters appear very often while others are very rare.
The system was not able to classify the letter W as the training set did not include

any examples of it, thus examples of it will be included in the next iteration. The letters
A and R are found in a couple of different variations and seem to be mixed up more
often than other letters. The training set contained 15-20 examples of the letters A and
R. Since there seems to be a prediction weakness related to these letters, more examples
of these letters should be included in the next iteration.
Characters covered in dirt or with interfering objects, such as screws in front of it

were most of the time correctly predicted, but sometimes caused problems. The number
of such mistakes will in general decrease with more training data, but there is no easy
way to select training data to prevent these kinds of mistakes. A naive solution, which
would only partially benefit the system, would be to include more plates with similarly
interfering objects in the training dataset. However, the pretrained Darknet19, which
this network is based on, is already robustly trained to ignore irrelevant parts. Also,
during training only the top three convolutional layers is fine-tuned, meaning there are
minimal changes to how objects are fundamentally separated from each other as this is
defined in the earlier layers.

6.1.3 Second iteration

In the second iteration, 42 additional license plate images were included in the training
dataset, increasing the total number of training images to 559 for both networks. The
42 additional license plate images contained 32 green plates, 3 double-lined plates, 10
occurrences of the letter A, 7 occurrences of the letter R and 1 occurrence of the letter
W . Preferably, we would want more examples of each situation, especially double-lined
plates and the letter W . However, no more examples were easily available.

The plate network

After extending the training dataset, the plate network was able to detect all of the 410
license plates with the one false positive still appearing. Both the double-lined plates,

61

6 Experimentation and Results

making problems in the first iteration, were correctly detected. This gives a prediction
rate of 100% with a false positive rate of 1 in 410 or an overall accuracy of 99.8%.
However, this does not mean that the network will be able to detect every plate in the
future. It indicates that the network is very robust with a prediction accuracy close to
100% on license plates similar to the test set, but to get a more precise prediction rate,
more test data is needed.
Some of the lowest confidence scores were given when the two double-lined plates were

located with a score of 80% and 93% indicating that the network is more prone to make
mistakes when double-lined plates are appearing. Even though the predictions were
correct, further iterations should include more double-lined plates in the training set.

The character network

After extending the training dataset, the character network was able to detect 400 of the
410 license plates reducing the number of mistakes from 16 to 10. This gives a prediction
rate of 97.6%. The largest improvement was that only one green plate were incorrectly
predicted compared to the 5 mistakes in the first iteration. Unfortunately, this green
plate was a false positive as it switched the letter C with aD, predicting an incorrect, but
technically legal license plate. The previous false positive from the first iteration had,
on the other hand, disappeared. Also, all of the letters R or A were correctly predicted
which was one of the main goals of the training of the network. Overall, the dataset
improved the character network, reducing the number of mistakes with 38% (from 16 to
10).
Only one of the two double-lined plates were correctly predicted, not surprising as

the training set only included three examples of it. The character network also failed
to learn to recognize the letter W from the single additional training image including
a W . Further iterations should try to include even more examples of these cases. As
the number of mistakes is few, it is harder to find common weaknesses for this iteration.
The letter D seems like a weakness and could be improved by including more examples
in a new iteration, but overall there are few similar mistakes appearing multiple times.
To further improve the character network, the test set should probably be increased
or switched to make it easier to find correlations between the mistakes. However, for
this project the character network works satisfyingly and no more training data will be
included.

An interesting observation is that 2 of the 10 mistakes of the newly trained character
network did not appear in the first iteration. Even though we only included more
examples not removing anything, the network was unable to learn the same as it did
the first time and hence failed to predict cases it successfully predicted in the previous
iteration. The reason may be due to the sensitive training process. In both iterations, the
character network has been trained with the same pretrained network as initial weights,
but the process is not the same every time. Because of randomness in the training
process, the networks has learned to recognize the same features in different ways on
the neuron level which may affect what the network is able to learn. This may indicate
that making an ensemble of multiple networks may be an effective way to improve the

62

6.2 Experimenting with the Confidence Threshold Value

results further.

6.2 Experimenting with the Confidence Threshold Value

The confidence threshold value is the lower bound of confidence scores which will appear
as a prediction. Initially, the threshold value was set to the default value of 70% for both
networks. This has been working well, but there may be other values giving even better
results. The definition of waht is the best result depends on what is the most important
feature. Some applications would accept more plates to remain unpredicted given that
the system is more secure against mispredicted plates while other applications would
just prefer a system focusing on keeping the total number of mistakes at a minimum.
To analyze the impact of different confidence threshold values, experiments with both
networks were done where every prediction in the test set with a confidence score of 30%
and above was analyzed. The data collection was done with a script automating the
process.

The plate network

For the plate network, two variables were analyzed for each threshold value level. The
number of undetected plates and the number of false positives. The resulting graph
plotting the two variables for each threshold value is shown in Figure 6.3.
As expected, the highest number of false positives occurs when the threshold value is

low, while the number of undetected plates increases when the threshold value becomes
high. The graph is cut at 95% as the number of undetected plates becomes very high
after that. When observing the graph, the network seems very stable. Even with a
threshold value of 30%, the network only finds 12 false positives and almost none of the
plates remain undetected before the threshold value increases above 90%. Unfortunately,
it is impossible to avoid both false positives and undetected plates simultaneously, but
in the range [67, 83] only one false positive is found while no plates are undetected. This
range seems to be the best choice for this test set. However, it is hard to know how
many undetected plates and false positives would be found on each level if a different
test set was used. Thus, if the goal of a system is to prevent undetected plates at all
cost, an even lower threshold value would be recommended.

The character network

As there are no restrictions on the number of characters the character network predicts,
the networks mistakes’ are divided into four categories for this analysis. The first cat-
egory includes all cases where too few characters are predicted, assuming that one or
more characters are missing. The second category includes all cases where too many
characters are predicted, for instance if a character is predicted as two different charac-
ters. The third category includes plates with illegal sequences of numbers and letters.
Finally, the fourth category includes false positives, i.e., legal sequences of numbers and

63

6 Experimentation and Results

Figure 6.3: Number of undetected plates occurred versus false positives occurred for the
plate network with different confidence threshold values in the range [30, 95].

64

6.2 Experimenting with the Confidence Threshold Value

Figure 6.4: Number of mistakes in each category for the character network with confid-
ence threshold values in the range [30, 85].

letters predicted wrongly. The number of occurrences of each category for different
threshold values is given in Figure 6.4.

The most obvious observation is that the number of occurrences where too many
characters are predicted is at its highest when the threshold value is low, and that the
number of occurrences where too few characters are predicted is at its highest when the
threshold value is high. The graph is cut at 85% as the number of occurrences where
too few characters were predicted becomes very high with threshold values above 85%.
The total number of mistakes is at its lowest for the range [57, 60] with only 9 mistakes,
i.e., values in this range are the best threshold values for this test set if a low number
of mistakes were the only concern. Notice however, that the larger range [53,73] has a
relatively low number of mistakes.
A surprising observation is that the number of false positives never goes above two

cases regardless of threshold value. This may be coincidental as mistakes falling under
the categories "too many characters" and "illegal plates" also includes classification errors
on character level which could have resulted in a false positive. Instead of looking at all
four classes above, a more useful way of representing the mistakes if we want to avoid
false positives is to divide the mistakes into the following two categories: Mistakes with
classification errors on character level, and mistakes with no such errors. The mistakes

65

6 Experimentation and Results

Figure 6.5: Number of mistakes due to classification errors versus the number of ab-
stained predictions for the character network with different confidence
threshold values in the range [30, 85].

66

6.3 Experimenting with Generated Data

(a) Upper part of Z predicted as 7

(b) Lower parts of A and R predicted as H

Figure 6.6: 2 of the 43 mistakes done by the character network after adding generated
data

with character classification errors may be seen as potential false positives where the
network was "lucky" not to create a false positive. This represents a behavior we want to
avoid from the network. The other category, the mistakes without character classification
errors, may be seen as mistakes that avoid a false positive by abstaining from making
a prediction on one or more of the characters, representing desired network behavior.
Figure 6.5 shows the relation between the two categories for each threshold value. This
may be useful when we want to determine a threshold value to avoid a high number
of false positives on other test sets. The number of classification errors starts levelling
off at around a threshold value of 60, but to almost fully prevent classification errors,
the threshold value needs to be close to 85 and a high number of abstained predictions
must be accepted. The number of abstained predictions seems to accelerate when the
threshold value is above 70% indicating that a default threshold value of 70% might be
a good choice. The network has at this point a relatively low number of classification
errors while the number of abstained predictions is not too high.

6.3 Experimenting with Generated Data

The main limitation of gaining an even higher prediction accuracy of the ALPR system
is the amount of training data. Gathering and annotating real images of license plates
is a slow process. If we could generate our own training data we could skip this manual
process. The YOLO architecture learns generalizable representations of objects much
better than other currently existing detection networks [12]. It is possible that it may be
able to learn from the generated, presumably lower quality, training data and generalize
its knowledge between the training and testing domains. There are two main factors,
working in different directions, influencing the actual prediction accuracy of the network
when using generated data. The first factor is that the generated data will decrease the

67

6 Experimentation and Results

Table 6.1: Summary of the experimental results for the plate network.
Description Training set Threshold Mistakes False pos Accuracy

First iteration 517 70% 2 1 99.3%
Second iteration 559 70%-80% 0 1 99.8%

Avoid false positives 559 90% 1 0 99.8%

similarity between the training set and the test set decreasing the prediction accuracy.
The second factor is that it would be possible to increase the size of the training set and
by this way improve the prediction accuracy. To find out which factor influences the
network the most, a new network was retrained with generated data. Since a working
solution using real images of license plates already existed, the generated data was used
in addition to the real data to see if it would improve the results. 10 000 new plates were
generated using the technique explained in Section 5.7. Only the character network was
retrained.
The ALPR system trained with the additional generated data did not improve the

prediction accuracy, but actually made it worse. The retrained character network was
able to detect only 367 out of the 410 license plates decreasing the prediction rate to
89.5%. The new network, learning from generated data, seemed to more often correctly
predict double-lined plates than the original network and did not struggle with any
specific characters. However, the prediction of all other number plate characteristics
were worse. The main problem was that it more often predicted too many characters as
it found new characters within parts of other characters. In Figure 6.6a, the upper part
of the Z is predicted as a 7 and in Figure 6.6b the lower parts of both the A and the R
are predicted as H. The bounding boxes seemed to be more randomly placed cutting
characters or included additional spaces on one or more of the sides of the characters.
Therefore, more characters were not predicted at all as the confidence score was lowered
by the additional data. In conclusion, the decrease in similarity between the training
and test sets seemed to have impacted the system more negative than the increase in
training data benefited it. Using generated data is not considered a viable solution for
our system unless the similarity with the real data is significantly improved.

6.4 Summary of Experimental Results
A summary of the experimental results for the plate network is given in Table 6.1.
The best results were achieved with the network trained on the extended training set
including green and double-lined plates with a threshold between 70% and 80%. This
network predicted every license plate correctly with one false positive and achieved an
overall accuracy of 99.8%. To avoid false positives, a threshold of at least 90% is required,
but then a new mistake is appearing.
A summary of the experimental results for the character network is given in Table

6.2. The extended training set used with a threshold around 60% gave the best accuracy
with only 9 out of 410 plates not correctly predicted resulting in a prediction rate of

68

6.5 Speed Testing the System

Table 6.2: Summary of the experimental results for the plate network. Best result in
bold.

Description Training set Threshold Mistakes False pos Accuracy
First iteration 517 70% 16 1 96.1%
Second iteration 559 70% 10 1 97.3%

Adjusted threshold value 559 60% 9 1 97.6%
Avoid false positives 559 75% 12 0 97.1%
Added generated data 10559 70% 43 2 89.5%

97.8%. The 9 mistakes include one false positive resulting in a false positives rate of
0.24%. To avoid false positives, the threshold value would have to be increased to 75%.
The number of mistakes would then increase to 12. Adding generated data substantially
decreased the accuracy.
The best total prediction accuracy of the entire system is 97.6%. This is achieved

with the extended training set without generated data, a threshold value of 70-80% for
the plate network and 60% for the character network. This is the configurations used
for the final system. Figure 6.7 gives examples of predictions of plates captured in four
different challenging conditions made by the final system. All the conditions are within
what we wanted the system to be able to handle, mentioned in the scope of the project
in Section 1.2.

6.5 Speed Testing the System
Normally, the speed of different visual recognition methods are highly dependent on
the resolution of the input image as this determines the number of pixels needed to be
processed. This is not the case for our system. Since the networks downsize all input
images to 416 × 416-resolution before they are inserted to the first layer, the speed is
almost independent of the size of the input image. Therefore, the processing speed
will be about the same for both the plate network and character network in spite of
processing much larger images. In practice, the plate network will be slower as it saves
larger images unnecessarily to the disk for visual purposes. However, this could have
been avoided if the images were sent directly to the character network. If the networks
are not already loaded into memory, this will also take a couple seconds. All speed tests
performed in this project disregard the time it takes to save images to disk and load the
networks into memory. Only the processing time used by the networks is measured.
In addition to high average speed, a predictable speed with small variations in the

time it takes to process a frame is very important when real-time video streams are
processed. If the speed is not stable, the system may drop frames from the video stream
even though the average speed seems to be sufficient as the network may run slower than
average for a couple frames.
All tests performed in this section are done with the setup described in Section 5.6.

The results will naturally depend on the setup and will be different when using other

69

6 Experimentation and Results

(a) Successful prediction with interfering object. (b) Successful prediction with dirt occlusion.

(c) Successful prediction with screws and snow
obstructing the view.

(d) Unsuccessful prediction in blurry image. The
wrongly predicted extra R has the lowest con-
fidence of 67% and does not appear if the
threshold is above that level.

Figure 6.7: Examples of plate detection and character detection by the final system in
challenging conditions.

70

6.5 Speed Testing the System

Table 6.3: Processing time per image when ran on GeForce GTX 1070 8GB GPU
Fastest time Slowest time Average time FPS

Plate network 0.0167s 0.0184s 0.0173s 58
Character network 0.0129s 0.0178s 0.0159s 63

Table 6.4: Processing time per image when ran on Intel Core i5 2.67GHz CPU
Fastest time Slowest time Average time FPS

Plate network 13.89s 14.10s 13.95s 0.07
Character network 13.75s 13.88s 13.80s 0.07

computer specifications are used. Table 6.3 summarizes the speed results when running
on the GPU and Table 6.4 gives a summary of the speed results when running on the
CPU.

6.5.1 GPU speed

When running on the GeForce GTX 1070 8GB GPU, not interrupted by other processes
and the time used saving to disk is excluded, the plate network detected on average
a plate in 0.0173s and the character network detected and predicted all characters in
a plate on average in 0.0159s. The number of frames per second is about 60 for each
network, fast enough for real-time video streams without dropping frames even when
the networks run in sequence and the FPS count is halved to 30.
The processing time of the plate network has a very low variance and the difference

between the average and slowest processing time when all the 410 images in the test set
is processed is about 5%. The speed of the character network also has low variance with
a difference between average and slowest processing time of less than 12%. If a video
stream was processed through both networks in sequence with the given processing times,
the output stream would never fall below 28 FPS.

6.5.2 CPU speed

When running on the Intel Core i5 2.67GHz, the plate network processed on average
an image in 13.95s and the character network processed on average an image in 13.80s.
This is over 800 times slower than when using the GPU. The processing time is also too
slow to be acceptable for most end-users as it may be faster for the users to recognize
the license plate themselves instead of waiting for the ALPR system. The CPU used in
this experiment is not among the fastest CPUs on the market and more modern CPUs
may be able to improve the processing speed with a couple seconds, making the system
usable without a GPU.

71

6 Experimentation and Results

Figure 6.8: Snapshots of the processed video

6.6 Experimenting with Video
The video functionality was tested on videos recorded on an iPhone 5 with 29 FPS and
video dimensions 568 × 320, much lower than the dimensions of the original training
data. The videos demonstrate how a parking attendant may walk across a parking lot
recording all the license plates. Snapshots of one of the videos are shown in Figure 6.8.
As mentioned earlier, the video functionality is limited to only detect plates and not
characters.
The videos were processed with a processing speed of around 45 FPS, a bit slower

than the speed images are processed, but still faster than the 29 FPS the video runs
in meaning 1 minute of video is processed in 45 seconds if the initialization process of
the network is excluded. The confidence threshold value was set to 70%. The video
functionality was only tested on three videos.
Overall, the network seemed to detect plates almost as well in the low-resolution video

as in the experiments described in previous sections with high-resolution images. All
plates recorded in all three videos were detected, but not in every frame they should
have been. In one of the videos, the license plates appeared far away or from a very
sharp angle in the video recording, making it apparent that the bounding box around the
plates jumped in and out of frames as the confidence went under and over the threshold
value depending on how the plate was captured in the frame. The network was only able
to detect the license plate when all characters were visible which was not a problem and
in many cases is desirable. However, in some cases we want partial plates to be detected
too.
After the initial experiment, the threshold value was lowered to 30%. With the lowered

threshold value, the network was better to detect partial plates and plates far away. The
bounding boxes were not as tight around the plates as previously, but did not jump in
and out of frames. In general, the biggest drawback of lowering the threshold value is
that the number of false positives increases. Even though there were no problems with
false positives in the videos recorded for this experiment, the network is much more
prone to detect non-plate objects with a low threshold value, causing problems.

72

7 Evaluation and Conclusion
This chapter evaluates, discusses and concludes about the proposed method. Section 7.1
evaluates the proposed method and compares it to the methods reviewed in the literature.
Section 7.2 discusses the research questions stated in the introduction and Section 7.3
presents the contributions made in this thesis. Lastly, Section 7.4 lists possible further
development and experimentation of the proposed method.

7.1 Evaluation

Table 7.1 and 7.2 compares the performance of the proposed method to methods reviewed
in Section 3.1-3.3. Notice that the accuracy rates are highly dependent on the difficulty
of the test set and that a higher overall accuracy does not necessarily means the method
is better. The performance comparisons are, in spite of these limitations included, as
they may indicate the relative performance of our method. To put the performance
measures in context with the difficulty of the test set, the number of test images used
and a description of the image conditions is included for each method. The descriptions
of the image conditions are completed to the extent they are described in the referenced
papers.

The comparisons shows that our proposed method, when not adjusting for the diffi-
culty of the test sets, has a better combined speed and accuracy performance than all
other methods. License plate detection is performed well by most of the method, and
both the method by Zheng et al. [34] and the method by Kim et al. [46] detected almost
every plate in their respective test sets, similar to the results achieved by the proposed
method. However, the proposed method is the fastest, running at almost double the
speed of the second fastest method. Regarding character detection alone, the proposed
method is better than the other methods with a prediction accuracy of 97.6% compared
to the second best method by Kim et al. [46] using a learning-based approach with an
SVM recognizer achieving an accuracy of 94.8%. Most methods have magnitudes slower
speed than the proposed method. The only method running with a close to the same
speed as the proposed method is the method by Ringset [62] using statistical character
segmentation with an SVM recognizer. That method has a prediction accuracy of only
84.6%, much lower than the proposed method.
The most fair comparison of the proposed method is the comparison to the method by

Ringset [62]. This is the only other method that uses the same dataset as the proposed
method. The difference in resolution is due to Ringset decreasing the resolution from
the original 2464 × 1632 to 640 × 480 to increase the processing speed. This was not
necessary for the proposed method as the CNN uses its own procedure to automatically

73

7 Evaluation and Conclusion

Table 7.1: License plate detection performance
Methods (Authors) Test set size Image conditions Rate Avg speed
Edge detection with So-
bel filter (Zheng et al.)
[34]

755 images 384 × 288 pixels,
Chinese plates, parts of
the plates captured in
strong sunlight

99.7% 48ms

Mean shift region-based
detection (Jia et al.)
[39]

57 images Australian plates, cap-
tured in highway inter-
section

97.6% -

Character detection
with CNN (Li et al.)
[43]

2049 images 896 × 592 pixels,
Taiwanese plates,
application-oriented
license plate dataset,
various illuminations
and orientations

92.9% in
total for
all stages

2-5s in
total for
all stages

Time-delay neural net-
works (Kim et al.) [46]

1000 video
segments

640×480 pixels, Korean
plates, captured in toll-
gates and parking lots

100% -

Cascade classifier with
Haar-like features
(Ringset) [62]

546 images 640×480 pixels, Norwe-
gian plates, captured in
parking lots provided by
WTW AS, no green or
double-lined plates

98.9% 32ms

Proposed method 410 images 2464×1632 pixels, Nor-
wegian plates, captured
in parking lots provided
by WTW AS

99.8% 17ms

74

7.1 Evaluation

Table 7.2: Character detection performance (character segmentation and recognition
performance combined)

Methods (Authors) Test set size Rate Avg speed
CNN and LSTM (Li et
al.) [43]

2049 images 92.9% in total
for all stages

2-5s in total for
all stages

Learning-based ap-
proach with SVM
recognizer (Kim et al.)
[46]

1000 video
segments

94.8% 1s

Statistical character
segmentation with
SVM recognizer (Ring-
set) [62]

546 images 84.6% 18ms

Proposed method 410 images 97.8% 16ms

downsize every image to 416× 416 input neurons before it is further processed. Ringset
also excluded the green and double-lined plates making the task slightly easier. When
the proposed method is tested on the same test set used by Ringset, all license plates
are detected and the character detection only makes two mistakes out of the 546 test
images. This result in an overall accuracy of 99.6%, significantly better than overall
accuracy of 83.7% achieved by Ringset’s method.

None of the reviewed methods is based on the same approach as the proposed method
which uses deep convolutional neural networks purposed for general visual recognition
for both plate and character detection. The method by Li et al. [43] also uses CNNs, but
with a very different approach and with fewer layers. In the method by Li et al., the first
CNN is used to detect characters directly in the image and then a second CNN eliminates
the false positives. The CNNs have a 9-layer architecture compared to the 24-layer
architecture used by the proposed method. The stated overall accuracy is 92.9% on the
application-oriented license plate dataset (AOLP) [65]. This is a hard test set and might
be at a higher difficulty level than the test set provided by WTW AS that the proposed
method uses. Even though both datasets include images with various illuminations
and orientations, the AOLP dataset has images captured from more viewpoints and
the images are captured both at night and day. Thus, the prediction rates of the two
methods are not comparable. However, the speed performance is comparable as the
proposed method runs with a constant speed independent of the image resolution. The
proposed method has a substantially better performance than the method by Li et al.
considering speed, processing images over a 100 times faster. Both methods run on a
GPU.

75

7 Evaluation and Conclusion

7.2 Discussion

The research goal of this thesis was to propose and develop an ALPR system using deep
learning techniques and evaluate if it meets the real-world application requirements of the
evaluation metrics, prediction accuracy and processing speed. The exact requirements
for an ALPR system depend on the application, but generally the requirements are
that it should have close to human-level prediction accuracy, stated earlier to be around
99% for our dataset, and preferably processing speed to run on real-time video streams
without dropping too many frames, i.e., a speed of at least 10-15 FPS. The prediction
accuracy requirement could be lowered if the system had a high accuracy in warning
when it needed human-assistance. The last part of the research goal of this work was to
evaluate if the system is able to meet the requirements of easily adapting to a selection
of different real-world applications.

7.2.1 Prediction accuracy requirements

The proposed method achieved an overall accuracy of 97.6% on our dataset. This is close
to human-level prediction accuracy, but does not fulfill the requirement of 99% accuracy
set earlier. However, the proposed method could be used in a human-assisted system.
In such a solution, two performance measures are interesting. The first is the rate of
license plate images the system needed human-assistance. This may also be calculated
as the human workload needed to assist the system. The second is the rate of incorrectly
predicted plates which the system did not ask for human-assistance (false positives). The
mistakes which went unnoticed by the system. Ideally, both rates should be low.
A human-assisted system using the proposed method would significantly reduce the

amount of manual work as only 8 out of the 410 images of the test set remained un-
predicted. Overall, the human workload would have been reduced to 2% of the original
workload. Only one plate was incorrectly predicted without calling for human assistance
which is a mistake rate of 0.024% (1 of 410). Such a system could arguably be useful in
many real-world applications requiring ALPR.

7.2.2 Processing speed requirements

The processing speed achieved by the proposed method is 33ms per image processed,
equivalent to about 30.3 FPS when running on a video. This is within the requirements
to run on real-time video streams and the method would be able to analyze a standard
stream of 30 FPS almost without dropping any frames. The potential of running the
method on videos has been demonstrated in this thesis on the first part of the ALPR
process, the license plate detection, achieving around 45 FPS. This is slower than the
59 FPS achieved without video processing. Running the same video process on both
parts would result in a speed around 22.5 FPS still within the speed requirements for
real-time video streams.
To achieve such high processing speeds, a relatively modern GPU is required. This

is not problematic for real-world applications with ALPR systems running on desktop

76

7.3 Contributions

computers or other large stationary devices, but real-world applications with ALPR sys-
tems running on mobile devices would struggle to achieve the processing speeds claimed
in this thesis. Also, the proposed method only runs on Linux and none of the mobile
operative system such as iOS and Android. However, the newest mobile devices do have
integrated GPUs which may be powerful enough to run the proposed method within the
speed requirements for real-time video streams, but further development and testing is
needed to confirm if this is true.

7.2.3 Adaptation requirements

The proposed method uses a very general method. The method could easily be adap-
ted to use-cases different from the dataset of parked cars by WTW AS, such as data-
sets of cars passing through tolling stations or border controls, or cars with different
plate design. The proposed method uses two independent 24-layer CNNs built after the
YOLOv2 architecture and pretrained on Imagenet, a general image dataset with over
5000 different classes.
The system does not use any hand-crafted features and detects an arbitrary number

of alphanumerical characters in the license plate. Thus, the proposed method could be
used to detect plates with patterns different from standard pattern of Norwegian plates
by simply changing the training set as long as only alphanumerical characters are used.
However, the human-assistance part of the system warning when a plate needs human
inspection does make assumptions about the plate pattern which would not fit other
plate designs. This part is not easily adapted between use-cases as it will need to be
changed every time a new plate design is used.

7.3 Contributions

This thesis has developed and evaluated a method to solve the ALPR task to a large
extent different from all other methods reported in the literature. The proposed method
solves the ALPR task in two parts by using two retrained deep convolutional neural
networks using the YOLOv2 architecture, a state-of-the-art convolutional detection ar-
chitecture. The first CNN detects license plates in the image, crops the image around
the license plates and sends them to the second CNN. Then the second CNN detects
each individual character and makes a prediction of the full license plate based on their
order.
The proposed method is, to our knowledge, the fastest of all methods reported in the

literature when running on a GPU. It complete license plate detection in, on average,
17ms and character detection, character segmentation and recognition combined, in, on
average, 16ms. In total, the whole process takes,on average, 33ms, which is predicted
to be fast enough to run on real-time video streams in up to 30 FPS without dropping
frames. The method runs with the same speed almost independent of initial image
resolution, in contrary to most other methods.
The proposed method achieved a prediction accuracy of 97.6% on a test set of 410

77

7 Evaluation and Conclusion

images with a small training set of 559 images. The license plate detection part of the
system detected every license plate with one false positive. The character detection did
9 mistakes out of the 410 test images. 8 of these mistakes were unpredicted plates while
one was an incorrectly predicted plate. The prediction accuracy is significantly better
than that of other methods tested on the same dataset as the proposed method, the
dataset of parked cars by WTW AS. The proposed method also has higher prediction
accuracy than all the methods in the literature, but the prediction accuracies may not
be comparable as the datasets used are different with different image conditions.
In recent years, general-purpose object detection CNNs such as YOLOv2 have signific-

antly changed multiple fields within visual recognition and become state-of-the-art. This
does not seem to be the case with ALPR, yet. Smaller CNNs have successfully been used
to solve the ALPR task before. The proposed method is however, to our knowledge, the
first method using deep CNNs pretrained on general object classes. The results suggests
that the proposed method performs well. It outperforms all other reported methods
regarding speed and possibly prediction accuracy. The method is computationally de-
manding and requires a modern GPU, but this may not be a problem unless the ALPR
system needs to be available on mobile devices. This thesis has shown the use of it in
one particular use-case, but the method is, we believe, easily generalized to many other
use-cases. With more training data, the proposed method may also work as a general-
purpose ALPR system recognizing license plates independent of the plate design.

7.4 Future Work

This thesis demonstrates a high potential of the proposed method. Possible directions
for further experimentation and development is given in the list below.

• Train and test the proposed method on other datasets. Since the proposed
method was only tested on the test set of parked cars provided by WTW AS, the
prediction accuracy was not comparable to most other methods. Even though there
are no universal datasets for license plates, the proposed method may be tested
on semi-universal datasets such as the AOLP dataset [65] to further compare its
performance to existing methods. Another possible direction would be to use
different training data to make a general-purpose ALPR system, This is likely
possible since the proposed method generalizes well between different plate designs.

• Complete and further develop the video functionality. In this thesis it was
shown that it is possible to use the proposed method to process video streams, but
only functionality for the license plate detection was implemented due to time-
constraints. To make this functionality more useful, character detection should
be performed to give a final prediction. It would also be possible to use recursive
algorithms on the video stream such as Kalman filter or Recurrent YOLO (ROLO)
[66] to further improve the accuracy above what is possible when only an image is
used.

78

7.4 Future Work

• Investigate possibility for a mobile system. Although the proposed method
is computationally complex, we believe it would be possible to port it to mod-
ern mobile devices with sufficient processing speed. Most modern mobile devices
have integrated GPUs available and by downsizing the system finding a trade-off
between prediction accuracy and processing speed, we believe an ALPR system
using the proposed method would work well on mobile devices.

• Compare it to other CNN detection architectures. The R-CNN family
architecture works considerably different from the YOLO family architecture used
in this thesis. A possible future work would be to compare how Faster R-CNN
or Mask R-CNN, the best alternatives from the R-CNN family would perform on
the ALPR task compared to YOLOv2, the best alternative from the YOLO family
considering speed and accuracy. YOLOv2 may also use different input resolutions
to adjust the trade-off between speed and accuracy which were not tested in this
thesis. It is also likely other alternatives will be available in the future as new and
revolutionizing CNN detection architectures have been published almost yearly the
last few years.

79

Bibliography
[1] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dro-

pout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn.
Res., vol. 15, pp. 1929–1958, Jan. 2014.

[2] Y. LeCun, “Convolutional neural networks local receptive fields weight sharing pool-
ing,” 1989.

[3] A. Karpathy, “Cs231n convolutional neural networks for visual recognition.,”
(Standford University).

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. IEEE, Nov. 1998.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.),
pp. 1097–1105, Curran Associates, Inc., 2012.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Computer Vision
and Pattern Recognition (CVPR), 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.

[8] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders,
“Selective search for object recognition,” International Journal of Computer Vision,
vol. 104, no. 2, pp. 154–171, 2013.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Computer Vision and
Pattern Recognition, 2014.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time ob-
ject detection with region proposal networks,” in Advances in Neural Information
Processing Systems (NIPS), 2015.

[11] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR,
vol. abs/1703.06870, 2017.

81

Bibliography

[12] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

[13] C.-N. Anagnostopoulos, I. Anagnostopoulos, I. Psoroulas, and V. Loumos, “License
plate recognition from still images and video sequences: A survey.,” IEEE Intell.
Transp. Syst., pp. 377–391, 2008.

[14] L. Xian, H. Bie, J. Sun, and Y. Hou, “License plate recognition algorithm for
passenger cars in chinese residential areas.,” Sensors (Basel), p. 8355–8370, 2012.

[15] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license plate re-
cognition (alpr): A state-of-the-art review,” IEEE Trans. Cir. and Sys. for Video
Technol., vol. 23, pp. 311–325, Feb. 2013.

[16] C. Patel, D. Shah, and A. Patel, “Automatic number plate recognition system
(anpr): A survey,” International Journal of Computer Applications (0975 – 8887),
2013.

[17] Z. Saidane and C. Garcia., “Automatic scene text recognition using a convolutional
neural network.,” In Workshop on Camera-Based Document Analysis and Recogni-
tion, 2007.

[18] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber, “High
performance neural networks for visual object classification.,” Technical Report
IDSIA-01-11, 2011.

[19] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning,” in NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011.

[20] G. E. Nasr, E. Badr, and C. Joun, “Cross entropy error function in neural networks:
Forecasting gasoline demand,” FLAIRS Conference, pp. 381–384, 2002.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 2015.

[22] J. Chen, R. Monga, S. Bengio, and R. Józefowicz, “Revisiting distributed synchron-
ous SGD,” CoRR, vol. abs/1604.00981, 2016.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[24] D. Hubel and T. Wiesel, “Receptive fields and functional architecture of money
striate cortex,” Journal of Physiology, pp. 215–243, 1968.

[25] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2014.

82

Bibliography

[26] R. Yang, H. Yin, and X. Chen, “License plate detection based on sparse auto-
encoder,” Proc. IEEE, 2015.

[27] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), pp. 886–893, 2005.

[28] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” D.G. In-
ternational Journal of Computer Vision, 2004.

[29] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller, “Striving for
simplicity: The all convolutional net,” CoRR, vol. abs/1412.6806, 2014.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” CoRR, vol. abs/1409.1556, 2014.

[31] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?,” in Advances in Neural Information Processing Systems 27
(Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
eds.), pp. 3320–3328, Curran Associates, Inc., 2014.

[32] W. Zhou, H. Li, Y. Lu, and Q. Tian, “Principal visual word discovery for automatic
license plate detection.,” IEEE Trans. Image Processing, vol. 21, no. 9, pp. 4269–
4279, 2012.

[33] C. N. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos, and E. Kayafas, “A
license plate-recognition algorithm for intelligent transportation system applica-
tions,” Trans. Intell. Transport. Sys., vol. 7, pp. 377–392, Sept. 2006.

[34] D. Zheng, Y. Zhao, and J. Wang, “An efficient method of license plate location,”
Pattern Recogn. Lett., vol. 26, pp. 2431–2438, Nov. 2005.

[35] C. Busch, R. Dörner, C. Freytag, and H. Ziegler, “Feature based recognition of
traffic video streams for online route tracing,” in Pathway to a Global Wireless
Revolution. CD-ROM, pp. 1790–1794, Zentrum für Graphische Datenverarbeitung
Darmstadt, 1998.

[36] F. Faradji, A. H. Rezaie, and M. Ziaratban, “A morphological-based license plate
location,” IEEE, 2007.

[37] A. N. S., Rasheed and I. O., “Automated number plate recognition using hough
lines and template matching,” in Proc. World Cong. Engin. Comp. Sci., pp. 199–
203, 2012.

[38] S. Kim, D. W. Kim, and H. J. Kim, “A recognition of vehicle license plate using a
genetic algorithm based segmentation,” in ICIP (2), pp. 661–664, 1996.

[39] W. Jia, H. Zhang, and X. He, “Region-based license plate detection,” J. Netw.
Comput. Appl., vol. 30, pp. 1324–1333, Nov. 2007.

83

Bibliography

[40] K. Deb, H.-U. Chae, and K.-H. Jo, “Vehicle license plate detection method based
on sliding concentric windows and histogram.,” JCP, vol. 4, no. 8, pp. 771–777,
2009.

[41] H. Zhang, W. Jia, X. He, and Q. Wu, “Learning-based license plate detection using
global and local features,” in Proceedings of the 18th International Conference on
Pattern Recognition - Volume 02, ICPR ’06, (Washington, DC, USA), pp. 1102–
1105, IEEE Computer Society, 2006.

[42] J. Matas and K. Zimmermann, “Unconstrained licence plate and text localization
and recognition,” in Intelligent Transportation Systems, 2005. Proceedings. 2005
IEEE, pp. 225–230, 2005.

[43] H. Li and C. Shen, “Reading car license plates using deep convolutional neural
networks and lstms,” CoRR, vol. abs/1601.05610, 2016.

[44] K.-H. Lin, H. Tang, and T. S. Huang, “Robust license plate detection using image
saliency.,” in ICIP, pp. 3945–3948, IEEE, 2010.

[45] F. Porikli and T. Kocak, “Robust license plate detection using covariance descriptor
in a neural network framework,” p. 107, in Proc. IEEE Int. Conf. Video Signal Based
Surveillance, 2006.

[46] K. K. Kim, K. Kim, J. Kim, and H. J. Kim, “Learning-based approach for license
plate recognition,” pp. 614–623, Proceedings of the IEEE Signal Processing Society
Workshop, Vol. 2, 2000.

[47] T. Nukano and M. Khalid, ““vehicle license plate character recognition by neural
networks,” pp. 771–775, in Proc. Int. Symp. Intell. Signal Process. Commun. Syst.,
2004.

[48] J. Jiao, Q. Ye, and Q. Huang, “A configurable method for multi-style license plate
recognition,” Pattern Recognition, vol. 42, no. 3, pp. 358 – 369, 2009.

[49] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-
Scale Hierarchical Image Database,” in CVPR09, 2009.

[50] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the
impact of residual connections on learning,” CoRR, vol. abs/1602.07261, 2016.

[51] A. Veit, M. J. Wilber, and S. J. Belongie, “Residual networks are exponential
ensembles of relatively shallow networks,” CoRR, vol. abs/1605.06431, 2016.

[52] Q. Liao and T. A. Poggio, “Bridging the gaps between residual learning, recurrent
neural networks and visual cortex,” CoRR, vol. abs/1604.03640, 2016.

[53] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospective,” Inter-
national Journal of Computer Vision, vol. 111, pp. 98–136, Jan. 2015.

84

Bibliography

[54] T. B. Dalal, N., “Histograms of oriented gradients for human detection,” pp. 886–
893, 2005.

[55] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detec-
tion with discriminatively trained part-based models,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, pp. 1627–1645, Sept. 2010.

[56] I. Endres and D. Hoiem, “Category independent object proposals,” in Proceedings
of the 11th European Conference on Computer Vision: Part V, ECCV’10, (Berlin,
Heidelberg), pp. 575–588, Springer-Verlag, 2010.

[57] D. Hoiem, A. A. Efros, and M. Hebert, “Recovering occlusion boundaries from an
image,” Int. J. Comput. Vision, vol. 91, pp. 328–346, Feb. 2011.

[58] R. Girshick, “Fast R-CNN,” in International Conference on Computer Vision
(ICCV), 2015.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” CoRR, vol. abs/1406.4729, 2014.

[60] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv preprint
arXiv:1612.08242, 2016.

[61] C. Y. Wang and R. Cheng-Yue, “Traffic sign detection using You Only Look Once
Framework,” (Stanford), 2016.

[62] P. Ringset, “Automatisk nummerskiltgjenkjenning for mobile enheter,” (NTNU),
2015.

[63] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?,” CoRR, vol. abs/1411.1792, 2014.

[64] M. Earl, “Using neural networks to build an automatic number plate recognition
system.” https://github.com/matthewearl/deep-anpr, 2016.

[65] G.-S. Hsu, J.-C. Chen, and Y.-Z. Chung, “Application-oriented license plate re-
cognition,” pp. 552–561, IEEE Transactions on Vehicular Technology (Volume: 62,
Issue: 2), 2012.

[66] G. Ning, Z. Zhang, C. Huang, Z. He, X. Ren, and H. Wang, “Spatially supervised
recurrent convolutional neural networks for visual object tracking,” arXiv preprint
arXiv:1607.05781, 2016.

85

