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Abstract

This thesis explores the exciting new field of deep reinforcement learning (Deep
RL). This field combines well known reinforcement learning algorithms with
newly developed deep learning algorithms. With Deep RL it is possible to train
agents that can perform well in their environment, without the need for prior
knowledge. Deep RL agents are able to learn solely by the low level percepts,
such as vision and sound, they observe when interacting with the environment.

Combining deep learning and reinforcement learning is not an easy task, and
many different methods have been proposed. In this thesis I explore a novel
method for combining these two techniques that matches the performance of a
state of the art deep reinforcement learning algorithm [Clemente et al., 2017] in
the Atari [Mnih et al., 2013] domain for the game of Pong, while requiring fewer
samples.
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Chapter 1

Introduction

In the last decade there has been an noticeable increase in the effectiveness of
machine learning systems, and more specifically deep learning (DL) systems.
Krizhevsky et al. [2012] used a deep learning system to achieve the best top-5
error of 15.3% in image classification for the 2012 Large Scale Visual Recognition
Challenge [Russakovsky et al., 2014], surpassing the second place by 10.9%. This
event rekindled the machine learning community’s interest in neural networks.
Deep learning systems now represent the state of the art within image recognition,
image segmentation, speech recognition, and natural language parsing.

Recent advances in reinforcement learning (RL) have come from the combi-
nation of existing RL techniques with new deep learning techniques to obtain
superhuman performance in a multitude of complex, high-dimensional tasks such
as Go [Silver et al., 2016], Atari [Mnih et al., 2013] and VizDoom [Lample and
Singh Chaplot, 2016].

After the first wave of deep reinforcement learning algorithms appeared, there
have been many improvements to their computational efficiency [Mnih et al.,
2016], time efficiency [Nair et al., 2015] and sample efficiency [Schaul et al., 2015].
However, the environments in which these techniques can be applied is still very
limited.

In order to solve more complex problems with deep reinforcement learning,
such as self-driving cars, conversational systems and high level problem solving,
these algorithms must significantly improve their sample efficiency. State of the
art models, even in simple domains [Wang et al. [2016], Clemente et al. [2017],
Pritzel et al. [2017]], require up to hundreds of millions of interactions with the
environment.

1



2 CHAPTER 1. INTRODUCTION

This thesis gives a thorough introduction into reinforcement learning, deep
learning and the state of the art within deep reinforcement learning. Finally, a
novel method of combining deep learning and reinforcement learning is proposed
and compared to a state of the art deep reinforcement learning algorithm in the
Atari domain.

1.1 Motivation

Current developments in deep reinforcement learning algorithms have lead to in-
creased sample efficiency, better performance, and reduced training time. Sample
efficiency and performance can be improved by storing experiences in a replay
memory [Mnih et al. 2013; Wang et al. 2016; Pritzel et al. 2017] and then using
them for off-policy updates [Mnih et al. 2013; Schaul et al. 2015; Wang et al. 2016]
or for other learning tasks [Jaderberg et al., 2016]. Training time is reduced by
either decreasing the time required to learn from each sample [Clemente et al.,
2017] or simply reducing the amount of samples required.
As deep rl progresses, we wish to apply it to more complex environments and
tasks, however it is clear that sample efficiency and training time must be greatly
reduced. I propose an innovative method for combining reinforcement learning
and deep learning to create more sample efficient deep reinforcement learning
algorithms.

1.2 Goals and Research Questions

This thesis has two main goals and one research question

Goal 1

Understand the state of the art in deep reinforcement learning.

Deep reinforcement learning is a combination of many fields of research, in-
cluding statistics, mathematics, and physics among others. To reason about how
and why these state of the algorithms work, it is essential to have a good under-
standing of these fields. With this knowledge in hand, an intuitive understanding
of the plethora of deep reinforcement learning algorithms can be achieved. Al-
lowing for the development of novel algorithms.
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Goal 1

Improve the sample efficiency of deep reinforcement learning algorithms.

Current reinforcement learning algorithms require hundreds of millions of in-
teractions with their environments to learn. If we wish to apply these algorithm
to real world problems, the amount of environment interactions must be vastly
reduced. This leads tot he main research question of this thesis.

Research question

Why do state of the art deep reinforcement learning algorithms require such a
large amount of environment interactions, and how can this be reduced.

To answer this question it is vital to gain a deep understanding of deep rein-
forcement learning algorithms, and find common factors across them.

1.3 Thesis structure

Chapter 2 provides the information required to understand the problem at hand.
Section 2.1 introduces reinforcement learning, Section 2.2 introduces deep learn-
ing and Section 2.3 describes what deep reinforcement learning is and the current
state of the art in the field.
Chapter 3 presents similar approaches.
Chapter 4 presents the proposed algorithm.
Chapter 5 contains the experiments performed to validate the proposed algo-
rithm.
Chapter 6 discusses the results of the experiments and their importance.
And finally chapter 7 concludes the thesis and provides some avenues for further
research.
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Chapter 2

Background Theory

Deep reinforcement learning is a newly born field of machine learning that arose
from the combination of decades of research in the field of reinforcement learning,
and the current advances within deep learning. I will first introduce reinforcement
learning, starting from the basics and work towards current techniques. I will then
introduce deep learning and its importance to reinforcement learning, and finally
I will show how we can, and why we would, combine the fields of reinforcement
learning and deep learning into deep reinforcement learning.

2.1 Reinforcement Learning

The goal of reinforcement learning is to create agents that by interacting with an
environment are able to learn a behaviour that maximizes its performance.
This system is formally modelled as a finite Markov Decision Process (MDP).
This MDP is defined with a 3-tuple (S,A, p(s′, r|s, a)) where S is the set of all
possible states, A is the set of all available actions and p(s′, r|s, a) is the proba-
bility of transitioning to state s′ and receiving rewards r when being in state s
and taking action a. An agents in this model observes the current state st ∈ S of
the environment at time t and chooses an action at ∈ A according to its policy
π. The actor’s policy is a function that maps the environment’s state to actions
probabilities such that π(at|st) is the probability of taking action at. The chosen
action is then applied to the environment, which in turn generates a new state
st+1 and a scalar reward rt+1. The agent-environment interaction is shown in
Figure 2.1.

The performance of an agent is measured by the expected sum of future
discounted rewards given the current state st and following the current policy π.

5



6 CHAPTER 2. BACKGROUND THEORY

Agent

Environment

state
rewardaction

Figure 2.1: Reinforcement learning problem

This is referred to as the return, and is defined as

Rt =
∑
a′

π(a′|st)
∑

(s′,r′)

r′p(s′, r′|at, st) + γRt+1 (2.1)

Rt = Eπ
[ ∞∑
k=0

γkrt+k+1

]
(2.2)

To motivate the usage of a discount factor, we may consider an alternative
definition of return:

R′t = Eπ
[ T∑
k=0

rt+k+1

]
where T is the final time-step, at which the the environment is at its terminal

state. However, not all environments have a terminal state, some may continue
for eternity and will therefore result in R′t being unbounded. In order to optimize
the policy with regard to the return, the return must be bounded. The addition
of a discount solves this issue by giving an upper bound on Rt:

∞∑
k=0

γk =
γ

1− γ

Rt = Eπ
[ ∞∑
k=0

γk · rt+k+1

]
≤
∞∑
k=0

γk · rmax

Rt ≤
γ

1− γ · rmax (2.3)

where rmax is the maximum obtainable reward in any given state.
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The goal of a reinforcement learning agent is to learn an optimal policy, that
maximizes the expected return η(π), abbreviated ηπ, for all possible starting
states given by

ηπ = Es0 [R0] (2.4)

This policy is called an optimal policy and is defined as

π∗ = arg max
π′

ηπ′ (2.5)

We can now use these definitions to introduce the concept of value functions.

2.1.1 Value functions

It is often helpful in the context of reinforcement learning, to have some estimate
of how valuable it is for an agent to be in a state. A state-value function, often
referred to as a value function, maps states to the expected return by following a
given policy policy π. In other words, it represents how valuable it is for an agent
to be in a given state, where value is defined in terms of return. The rewards an
agent receives are directly affected by its policy, therefore it only makes sense to
speak of the value of a state given a specific policy. Formally a value function is
defined as:

v(st|π) = Rt = Eπ[rt + γrt+1 + γ2rt+2 + . . . |st] (2.6)

We can devise a recursive formulation for v by observing the value of the next
state

v(st+1|π) = Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |st+1] (2.7)

we can then combine Equation (2.6) and Equation (2.7) to present the Bellman
equation

v(st|π) = Eπ[rt + γv(st+1|π)|st] (2.8)

We can similarly define a state-action-value function, referred to as a Q func-
tion, that maps state action pairs to expected return. It represents the return
an agent obtains in expectation by taking action at while being in state st, and
then following the policy π for all future time-steps:

q(st, at|π) = Eπ[rt + γv(st+1|π)|st, at] (2.9)
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2.1.2 Learning an optimal policy

There are many algorithms designed to learn optimal policies, however I will limit
the scope of the algorithms I present to the families of Temporal Difference (TD)
methods and Policy Gradient methods for control.

Temporal Difference Methods for Control

Temporal difference methods belong to the family of value-based reinforcement
learning algorithms, which learn a state-action-value function Q(st, at) ≈ q(st, at)
by interacting with the environment using some policy π and observing some
experience. TD methods update their Q function to give better return esti-
mates for the current state and action. With a Q function available, it is possi-
ble to produce a policy by examining all available actions for the current state
and choosing the one that generates the maximum accumulated future reward
π(at|st) = arg maxa′∈At Q(st, at).

Intuitively, TD methods learn by updating the Q function as to reduce the
error given by Rt − Q(st, at). Given that Rt is an expectation over all possible
rewards and states by following the policy π, it is often not possible to compute it
for non-trivial problems. Calculating the return for a simple environment with 5
possible states and 5 possible actions that always terminates after 100 timesteps
would take time in the order of (5 ·5)100, more than there are atoms in the known
universe. Additionally p(s′, r|s, a) may not be known. The most intuitive way
of estimating Rt is by simply interacting with the environment and storing all
rewards. Once the episode is over, the return R̃t for that episode can be cal-
culated. R̃t is an unbiased estimator of Rt, that does not require knowing the
probability distribution of states and rewards. With this approach however, the
agent must reach the a terminal state of the environment, which may require a
long time or may not be possible at all. The TD methods I will present estimate
Rt by bootstrapping from a combination of the values of the current Q function
and observed rewards.

The simplest form of TD learning is an on-policy algorithm called Sarsa [Sut-
ton and Barto, 1998]. In this algorithm the agent observes the current state of
the environment st, and generates an action at following its behaviour policy
π(at|st) = f(At, st, Q) for some function f . Generally f is chosen to have some
stochasticity to ensure that things learned early in training do not limit the por-
tions of the state and action space that are explored. The agent learns by taking
an action at in its environment and observing the next state st+1 and reward
rt+1. Then a new action at+1 is chosen from the same policy. In Sarsa Rt is

estimated with the one-step return given by R̃
(1)
t = rt+i + γQ(st+1, at+1). The
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Q function in then updated using this estimate

Q(st, at)← Q(st, at) + α
[
Rt −Q(st, at)

]
(2.10)

Q(st, at)← Q(st, at) + α
[
rt+i + γQ(st+1, at+1)−Q(st, at)

]
(2.11)

The off-policy version of Sarsa is called Q-learning and follows the same proce-

dure to generate actions. However, it estimates R̃
(1)
t = rt+i + γmaxa′ Q(st+1, a

′)
and applies the update

Q(st, at)← Q(st, at) + α
[
rt+i + γmax

a′
Q(st+1, a

′)−Q(st, at)
]

(2.12)

where α the learning rate, hyperparameter that regulates how fast the Q function
changes.

The slight difference in the estimates of the return between Sarsa and Q-
learning illustrates the contrast between on-policy and off-policy learning. In
on-policy learning the estimate of future rewards is done assuming future actions
will be drawn from the current policy, while off-policy learning assumes that fu-
ture actions are chosen from the greedy policy π(at|st) = arg maxa′∈At Q(st, a

′).
Q-learning and Sarsa are equivalent when the behaviour policy is the greedy pol-
icy.

One-step estimates of the return bootstrap from the Q value of other state-
action pairs while grounding itself a single time step of reality, in the form of the
reward observed. Bootstrapping can be beneficial because it allows algorithms
to update their estimates on-line without having to observe the full return.

One-step methods are a special case of the general class of n-step methods in
which the estimate of the return is grounded on one or more time-steps

R̃
(n)
t

.
= rt + γrt+1 + . . .+ γn−1Q(sn, an) (2.13)

n-step methods offer a parameter n to determine the bias-variance trade-off that
is commonly encountered in machine learning. Higher values of n will give a
better estimate of the true return and therefore reduce the bias. On the other
hand lower values of n will have lower variance. In practice the optimal value
of n depends on the problem and resides in the range n ∈ [1, T ]. At n = T we
have Monte Carlo learning, which does no bootstrapping and simply calculates
the return with all observed rewards once the episode is over.

The simplest implementation of Q learning or Sarsa is with a lookup table.
The table maintains an entry for each state-action pair, which contains the Q
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value of that pair. The Q values are then updated with Equation 2.10 or 2.12.
This approach however is not well suited for problems with large, or even con-
tinuous, state or action spaces. As we shall later see, these approaches can be
combined with powerful function approximators to address this issue.

Policy Gradient Methods

Policy gradient methods are fundamentally different from the value based meth-
ods presented previously. Instead of estimating a value function and deriving
a policy from it, policy gradient methods directly learn a parametrized policy
function π(at, st; θ) for some parameters θ. Although policy gradient methods
do not use value functions to choose actions, they may still make use of them to
learn the policy.
Theoretically the only requirement for the function that parametrizes the policy
is that it is differentiable with respect to its parameters. However in practice it
is generally required that the policy always assigns some non-zero probability to
all available actions on all states to ensure exploration.

The goal with these methods, as with all reinforcement learning methods, is
to devise a policy that maximizes the expected return η. The policy gradient
theorem [Sutton et al., 1999] provides a way of directly calculating the gradient
of ηπθ with respect to the policy parameters θ.

∇θηπθ =
∑
s′∈St

∞∑
t=0

γtp(st = s′|s0, t, π)
∑
a′∈At

q(s′, a′|π)∇θπ(a′|s′θ) (2.14)

where p(st = s′|s0, t, π) is the probability of s′ being the state at time step t given
an initial state s0 by following the policy π.

The simplest of policy gradient methods called REINFORCE [Williams, 1992]
approximates Equation (2.14) by using sample estimates. This adaptation is done
by first replacing the probability of current state by the expectation of sampled
states given the current policy

∇θηπθ = Est∼πθ
[
γt
∑
a′∈At

q(st, a
′|π)∇θπ(a′|st, θ)

]
(2.15)

then similarly the sum over actions is replaced by the expectancy of the chosen
action at given the current policy
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∇θηπθ = Est∼πθ
[
γt
∑
a′∈At

π(a′|st, θ)q(st, a′|π)
∇θπ(a′|st, θ)
π(a′|st, θ)

]
(2.16)

∇θηπθ = E(st,at)∼πθ
[
γtq(st, at|π)

∇θπ(at|st, θ)
π(at|st, θ)

]
(2.17)

finally using Equation (2.9) we can replace q with the return

∇θηπθ = E(st,at)∼πθ
[
γtRt

∇θπ(at|st, θ)
π(at|st, θ)

]
(2.18)

Given that ∇θ log π(at|st, θ) = ∇θπ(at|st,θ)
π(at|st,θ) we can rewrite the above as

∇θηπθ = E(st,at)∼πθ
[
γtRt∇θ log π(at|st, θ)

]
(2.19)

The true gradient can now be estimated using the Monte Carlo estimate of the
return R̃t, which results in a way of calculating the gradient of the metric η we are
trying to optimize with respect to the parameters θ that affect it. REINFORCE
uses this gradient to perform gradient ascent on the policy weights with the
update

θi+1 ← θi + αγtR̃t∇θ log π(at|st, θ) (2.20)

Actor-critic algorithms estimate the return Rt with a learned Q function
Q(st, at|θQ) ≈ q(st, at|π), so that

∇θηπθ = E(st,at)∼πθ
[
γtQ(st, at|θQ)∇θ log π(at|st, θ)

]
(2.21)

The policy gradient theorem can be extended to include a baseline b(st)
[Williams, 1992] that is a function of the state

∇θηπθ =
∑
s′∈St

∞∑
t=0

γtp(st = s′|s0, t, π)
∑
a′∈At

(q(s′, a′|π)− b(s′))∇θπ(a′|s′θ) (2.22)

The addition of this baseline does not affect the expectation of ∇η, but can
reduce the variance of the updates [Sutton and Barto, 1998]. To illustrate the
usefulness of a baseline function we consider an environment in which the true
value of a state is given by v(s) = 1000 + φ(s) for φ(s) ∈ (−1, 1). The value of a
state-action pair q(s, a) will then be in the range (999, 1001), meaning that the
value of best and worst possible actions can only differ by upto 0.2%. Choosing
b(s) = 1000 will in this case result in [q(s, a)− b(s)] ∈ (−1, 1) where the relative
difference in value of the best and worst action is upto 100%. This has been
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shown to significantly increase learning performance [Sutton and Barto, 1998].

Advantage actor-critic algorithms are on-policy policy gradient algorithms
similar to REINFORCE, that use a specially chosen baseline function so that
b(s) = v(s). Given this choice of a baseline function, we can interpret the differ-
ence q(s, a)− b(s) as the advantage function, which can be defined as

adv(s, a) = q(s, a)− v(s) (2.23)

and represents the value lost by choosing an action that is not the optimal ac-
tion [Baird III, 1993].
We can then follow the same steps used to derive (2.19) with (2.22) as the starting
point, resulting in the update

θi+1 ← θi + αγt[Rt − b(st)]∇θ log π(at|st, θ) (2.24)

In addition to this choice of the value function as a baseline, advantage actor-
critic algorithms estimate the return Rt by bootstrapping from current estimates
of the very same value function V (s; θv)

.
= v(s) used as a baseline, similar to TD

methods. Using the one-step estimate R̃
(1)
t

.
= Gt would yield the update for the

policy parameters

θi+1 ← θi + αγt[R̃
(1)
t − V (st; θv)]∇θ log π(at|st, θ) (2.25)

θi+1 ← θi + αγt[rt + γV (st+1; θv)− V (st; θv)]∇θ log π(at|st, θ) (2.26)

The value function parameters can be also updated using R
(1)
t as its target

with the update given by

θv,j+1 ← θv,j + α[(rt + γV (st+1; θv,j)− V (st; θv,j)] (2.27)

Advantage actor-critic methods can be extended, similarly to TD methods,
to use different estimates of the return, for example the n-step return.

An off-policy version of the policy gradient theorem was presented by Degris
et al. [2012] and is given by

∇θηπθ = E(st,at)∼β

[
π(at|st, θ)
β(at|st)

Rt∇θ log π(at|st, θ)
]
. (2.28)

This estimates allows the usage of experiences sampled from a behavioural
distribution β to improve the current policy πθ, opening the door for off-policy
policy algorithms.
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2.1.3 Importance Sampling

While importance sampling is a general technique not limited to reinforcement
learning, it is vital to understand off-policy reinforcement learning algorithms.

Importance sampling is a technique used to estimate an expectation under
one distribution from samples from a different distribution. Suppose we wish to
find the expectation of a function x̃ = Ex∼χ[f(x)] with samples of x gathered
from the distribution Ω. The expectation can be written as the integral

x̃ = Ex∼χ[f(x)] =

∫
f(x)p(x|x ∼ χ)dx (2.29)

x̃ =

∫
f(x)p(x|x ∼ χ)

p(x|x ∼ Ω)

p(x|x ∼ Ω)
dx (2.30)

x̃ =

∫
f(x)p(x|x ∼ Ω)

p(x|x ∼ χ)

p(x|x ∼ Ω)
dx (2.31)

(2.32)

The integral can then be transformed back to the expectation

x̃ = Ex∼Ω

[
f(x)

p(x|x ∼ χ)

p(x|x ∼ Ω)

]
(2.33)

where the term p(x|x∼χ)
p(x|x∼Ω) is referred to as the importance sampling ratio.

Given that both p(x|x ∼ χ) and p(x|x ∼ Ω) fall in the range [0, 1], the importance
sampling ratio falls in the range [0,∞).

The expectation can then be estimated from the samples of x with

x̃ = Ex∼Ω

[
f(x)

p(x|x ∼ χ)

p(x|x ∼ Ω)

]
≈ 1

N

N∑
i=1

f(xi)
p(xi|xi ∼ χ)

p(xi|xi ∼ Ω)
(2.34)

In reinforcement learning algorithms, importance sampling is used to esti-
mate expectations under the current policy, with samples gathered by executing
a different policy. Given that the importance sampling ratio can be infinitely
large, the use of importance sampling can lead to infinitely large updates causing
instability or even catastrophic divergence under training. Due to this, special
techniques must be used alongside importance sampling to achieve stable learn-
ing.
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2.2 Deep learning

Deep learning is a sub-field of machine learning that is concerned with function
approximation through the learning of meaningful hierarchical representations of
data. It involves techniques from the fields of mathematics, statistics, physics,
psychology and neuroscience. Function approximation is of vital importance for
reinforcement learning. Consider the game of chess, this game has approximately
1047 distinct states. If we were to represent the value of each state with a single
bit we would require approximately 1036 GB of memory. To put this number into
perspective, the combined storage capacity currently available in the world is un-
der 1013 GB. Function approximation allows us to approximate value and policy
functions for a reinforcement learning problem using a number of parameters
much smaller than the amount of states in the problem.

2.2.1 Artificial Neural Networks

All deep learning models are some variation of artificial neural networks (ANN).
ANNs are computational models loosely inspired by a biological brain. The
goal of an artificial neural network is to approximate some function f∗(xi) that
maps the input xi ∈ X for the dataset X ∼ X to their corresponding target
yi = f∗(xi) ∼ Y. This is done by learning a parametrized function f(x; θ) ≈ f∗

with parameters θ. In the case where Y is a finite set this is a task of classifica-
tion, and when Y is not finite it is a task of regression.

Σ(zj) Φ()

zj,0

zj,1

zj,2

Figure 2.2: Simple artificial neuron with three inputs and an output
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ANNs are composed of a large collection of simple processing units, referred
to as artificial neurons, which receive some inputs and then perform some com-
putation on them to produce an output. Figure 2.2 shows a simple neuron which
takes 3 inputs and applies a function to them to produce an output.

There are a set of special neurons referred to as input units which receive
inputs to the ANN, output units in turn are connected to the output of the
ANN, all other neurons are hidden units. A depiction of an ANN is presented in
Figure 2.3.

1

0

2

3

x0

x1

...

xq

y0

y1

...

yp

Figure 2.3: Simple artificial neural network

Moving away from the biological view, we can regard each neuron j as a
processing unit that produces the output

oj = φj(w
T
j zj + bj) (2.35)

by performing a linear combination of its input vector zj with the learned weight
vector wj adding a bias bj , and then applying the activation function φj . Common
activation functions include the hyperbolic tangent function which maps real
values to the range (−1, 1), the logistic function φ(z) = 1

1+e−z maps to the
range (0, 1), and the rectified linear unit (ReLU) [Nair and Hinton, 2010] φ(z) =
max(0, z) maps to the range [0,+∞). These three activation functions are shown
in Figure 2.4.

ANNs can be connected in arbitrary ways, so that any neuron can be an
input, output and/or hidden unit, and can be arbitrarily composed to that the
output of a neuron can be the input to an other neuron or itself. Different con-
nection schemes will afford networks with different properties and trade-offs, in
the following sections I will present two of the most widely used.
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Figure 2.4: Three common activations. In order hyperbolic tangent, logistic
function and rectified linear unit.

2.2.2 Feedforward Neural Networks

Feedforward neural networks (FFN) are a constrained type of ANN in which
neurons are organized into layers, and each layer receives inputs from the previous
layer and produces outputs, that in turn are the inputs for following layers, in
the direction from input to output. Figure 2.5 shows a simple FNN.

x0

x1

...

xq

y0

y1

Figure 2.5: Fully connected feedforward neural network with 4 input units, 4
hidden units and 2 output units.

The most basic of feedforward neural networks is the fully connected FFN, in
which all neurons in a layer receive the output of all neurons in the previous layer
as an input. The first layer is composed of input units, the final layer is composed
of output units and all layers in between are composed of hidden units.
Each layer Ll of the network is simply a set of neurons. It is common for all



2.2. DEEP LEARNING 17

neurons in a layer Ll to use the same activation function, so that φi = φl ∀i ∈ Ll,
additionally all neurons in a layer usually receive the same input zi = zl ∀i ∈ Ll.
Each layer can then be thought of as implementing a function hl(zl; θl) where

hl(zl; θl) = φl(W
T
l zl +Bl) (2.36)

where Wl ∈ R|zl|,|Ll| is a matrix in which the columns are the weight vectors of its
neurons, and the elements of the vector Bl ∈ R|Ll| are the biases of its neurons,
for Wl, Bl ∈ θl. The function φl is applied element-wise to the resulting vector.

The FFN as a whole implements the function f(x; θ) = hL(...h1(h0(x; θ0); θ1)...; θL)
as a composition of all layers in the network. The different layers in a FNN can
be thought of as representing the input at different levels of abstraction, starting
from the raw input and gradually creating higher abstractions of it.

2.2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are a type of feedforward neural network,
that excel at processing data in which adjacent points within a data sample are
correlated. For example, in an image adjacent pixels are strongly correlated.
Similarly in a video, there is correlation between frames in the time dimension,
in addition to the spatial correlation present in images.
CNNs are defined to be neural networks that use a convolution operation, instead
of matrix multiplication in at least one of their layers [Goodfellow et al., 2016].
When working with a discrete space, the two-dimensional convolution between
the tensors I and K at point i, j is defined as

(I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.37)

In the case of a CNN, I could be a three dimensional tensor containing im-
age data, and K the three dimensional tensor containing some learned weights,
referred to as the kernel or filter. In Figure 2.6 the input I is convolved with the
kernel K0 of size k× k by computing the sum of the element-wise product of the
first k × k × k section of the input image with the kernel, then the second one,
and so on, producing an output matrix of size (h− k+ 1)× (w− k+ 1). Kernels
are assumed to have the same depth as their input, so it usually omitted when
describing the dimensions of a kernel.

A convolutional neuron can be reasoned about as a standard feedforward layer
in which each neuron is only connected to a subset of the layer’s input, and all
neurons in the layer share the same set of weights. From this view it is clear
that CNNs require much fewer parameters than a fully connected FNN, at the
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Figure 2.6: Convolution of two locations of a volume of size h × w × d with a
kernel of size k × k.

expense of reduced expressive power. When the assumption of correlation be-
tween adjacent points holds, CNNs can outperform a fully connected FNN while
requiring orders of magnitude fewer parameters. A fully connected layer with m
inputs and m− k + 1 outputs requires m× (m− k + 1) weights, while a convo-
lutional layer of the same dimensions requires only k weights for a kernel of size k.

Convolutional layers are usually composed of multiple kernels, and their out-
put matrices are concatenated to produce a tensor. The output tensor of a layer
can then be used as the input for the next layer, resulting in a hierarchy of layers.
It has been shown that the first few layers of a CNN usually learn to detect edges
and similar low level features, the following layers then learn to detect meaningful
combinations of edges, like corners, deeper layers learn higher level features, for
example human faces, or cats.

2.2.4 Learning in Artificial Neural Networks

Learning in the setting of ANNs is done by modifying the set of weights θ of
the network in order to improve its performance on a given set of data S =
{(x0, y0), (x1, y1), ...(xn, yn)} generated from some distribution S. The perfor-
mance we are trying to improve is usually defined to be the minimization of the
true cost

L∗(θ) = E(X,Y )∼S

[
l(f(X; θ), y)

]
(2.38)

which is a metric of how different f is from f∗ on the true distribution of the data
S. In general it is difficult, or even intractable to compute the full expectation in
Equation (2.38), so the true cost is approximated with the empirical risk given
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by

L(θ) =
1

|S|
∑

(x,y)∈S

l(f(x; θ), y) (2.39)

The difference between the true cost and the empirical risk is referred to as the
generalization error. Given that calculating the true cost is usually not possible
in practice, it is approximated as the empirical risk using a test set Stest ∼ S for
Stest∩S = ∅. The test sect acts as a proxy for the true distribution S, and should
not be used to train. The case in which an algorithm has a high generalization
error is referred to as over-fitting, shown in Figure 2.7, and can for example arise
when a model has more parameters that the size of the dataset it is trained on.
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Figure 2.7: Over-fitting of a learning algorithm.

Stochastic Gradient Descent

The task of minimizing a loss function relative to some parameters, is by definition
one of optimization. Currently the most common optimization algorithms used
to train neural networks are some variant of stochastic gradient descent, or SGD.
SGD algorithms iteratively update the model parameters θ in the direction, in
parameter space, that most quickly reduces the empirical risk L. This direction
is given by the negative of the gradient of the loss with respect to the model
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parameters, where

∇θL(θ) =
1

|S|
∑

(x,y)∈S

∇θl(f(x; θ), y) (2.40)

The model parameters are then modified using the update

θi+1 ← θi − α∇θiL(θi), (2.41)

where α ∈ (0,+∞) is a parameter referred to as the learning rate, used to scale
the magnitude of the gradient. In order to guarantee the convergence of SGD the
value of α must be reduced throughout the optimization procedure by following

some schedule so that
∞∑
k

αk =∞ and
∞∑
k

α2
k <∞.

This variant of SGD is usually referred to as batch SGD. The empirical risk
and the necessary gradient can be calculated in O(S) time. As the size of current
datasets approach the billions samples, it becomes very inefficient to pay such
a high computational cost for each parameter update. Due to this and several
other reasons that will be discussed shortly, batch SGD is rarely used in practice.
In general, deep learning methods tend to be optimized using minibatch SGD,
often referred to simply as SGD. In SGD the empirical risk is estimated by using
a minibatch S′ of samples drawn uniformly from S with

∇θL(θ) =
1

|S′|
∑

(x,y)∈S′
∇θl(f(x; θ), y) (2.42)

The size of S′ is usually in the range between 1 and a few hundred and is
independent of S, resulting in a computational cost for estimating the loss in the
order of O(S′)� O(S).

The choice of batch size n = |S′| can have profound effects on the performance
of the learning algorithm. Increasing n by a factor of k, reduces the variance of
the estimate of the gradient proportional to 1

k [Bottou et al., 2016]. Having
a better estimate of the direction of the gradient allows the algorithm to take
larger steps in that direction by increasing the learning rate, however this step
size is limited by some constant dependant on the continuity of f [Bottou et al.,
2016]. This increase in batch size will increase the time required to calculate
the loss by a factor of k′. Intuitively, given that our estimate of the gradient
is limited to be a line, regardless of how good our estimate of the gradient is
at some point, the estimated gradient is only valid in locations relatively close
to our point of evaluation. Figure 2.8 shows the difference between computing
the estimate of the gradient at a single point with high accuracy and taking a
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large step, compared to taking two smaller steps by computing more inaccurate
estimates of the gradient twice.

It is therefore more computationally efficient to calculate multiple noisy esti-
mates of the gradient than calculating the gradient exactly at one point [Wilson
and Martinez, 2003], this is illustrated in Figure 2.8.

Point of 
evaluation

Gradient
estimate

Loss
function

Point of 
evaluation

Gradient
estimates

Loss
function

Figure 2.8: Comparison of a single gradient estimate and update, with two gra-
dient estimates and updates.

Thanks to the parallel capabilities of modern compute hardware the time re-
quired to calculate the loss for a given batch size usually scales sub-linearly with
batch size, meaning that k′ ≤ k. The choice of n and α leads to a trade-off
between computational efficiently and sample efficiency in which we attempt to
maximize both by choosing n and α to simultaneously maximize k

k′ and minimize
L. These hyper-parameters are usually found empirically by experimenting with
multiple values, either using random search, grid search, or heuristic search.

Loss Functions

The loss function used to measure the quality of f directly defines the objective
of the network. For example for a network concerned with identifying whether
a picture contains a cat or not one might devise a loss function that gives a loss
of 0 for a correct identification and 1 for an incorrect identification (0-1 loss);
for a network designed to estimate the current temperature given a history of
temperatures an intuitive loss function may be the difference in the predicted
temperature and the actual temperature.
However not all loss functions have useful derivatives, for example the 0-1 loss
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has a gradient of either zero or undefined at all points. It is not always straight-
forward to design a loss function that correctly captures the desired dynamics
and simultaneously provides meaningful gradients for learning, there are however
a few that are widely used.

For regression tasks it is common to use the mean squared error (MSE) given
by

MSE(x, y) =
1

N

∑
n

(f(xn; θ)− yn)2 (2.43)

For classification tasks it is common to use the cross-entropy

H(y, x) = −
∑
n

yn log(f(xn; θ)). (2.44)

2.3 Deep Reinforcement Learning

The human brain is a finely tuned learning machine, we are able to interpret
very high-dimensional observations such as images and sounds, learn from very
sparse reward signals, and perform calculated and precise actions in the world.
It has been shown that human learning can be modelled as a combination of
model-based and model-free reinforcement learning [Dayan and Berridge, 2014],
while deep learning systems can reach human-like performance in image clas-
sification [He et al., 2015], and speech recognition [Xiong et al., 2016] tasks.
Combining these approaches may lead to algorithms that more closely resemble
human learning, our best example of intelligence.

Recent successes in the field of reinforcement learning have been a result
of combining standard reinforcement learning techniques that allow an agent
to learn from experience, with modern deep learning techniques which allow
the extraction of meaningful features from high dimensional data. However this
combination presents some important challenges:

• Deep learning requires thousands or millions of samples, in reinforcement
learning these sample must be generated by interacting with the world or
an emulator and is time-consuming.

• The learning rates used in deep learning must be small to ensure training
stability.

• The distribution that generates encountered samples is directly influenced
by the policy being learned, meaning that the network may never recover
from a bad update to the policy.
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• The supervised learning algorithms currently used to train deep neural net-
works assume that all training examples are independent from each other
and identically distributed (i.i.d.). In reinforcement learning the sequences
of states that an agent encounters are strongly correlated.

I will now present the current state-of-the-art within deep reinforcement learn-
ing, and how these challenges are addressed.

2.3.1 Deep Q Learning

Mnih et al. [2013] introduced Deep Q-Networks (DQN), which represent a Q-
function as a convolutional neural network. They are able to train a reinforcement
learning agent that learns to play seven different Atari 2600 games directly from
screen input. DQN uses the Q-learning algorithm presented in 2.1.2 with a few
very important changes. DQN makes use of a target network with parameters θ−

to generate targets for Q function, and replaces the update in Equation (2.12)
with

Q(st, at; θ)← Q(st, at; θ) + α
[
rt+i + γmax

a′
Q(st+1, a

′; θ−)−Q(st, at; θ)
]

(2.45)

The weights θ− are update with the weights θ every few thousand updates,
and kept fixed otherwise, which helps stabilize the learning algorithm.
They use experience replay, in which the 4-tuple representing agent’s experiences
(st, at, rt, ss+1) is stored in a database of a fixed size, referred to as a replay
memory. The agent then learns by uniformly sampling experiences from the
replay memory and applying the Q-learning update in Equation (2.45) to the
sampled data. This presents several benefits over standard on-line Q-learning:

1. experiences are potentially used in more than one update

2. the correlation between samples uses to update the Q-network is broken

3. removing the feedback loops between policy updates and the distribution
of encountered states

4. learning can be parallelized

Experience replay comes with a few drawbacks, it can only be used with off-policy
learning algorithms that can update from data generated by a different policy,
and it requires more memory and computation per experience.

The CNN used in DQN uses two convolutional layers, the first has 16 8 × 8
filters with a stride of 4 and applies a ReLU non-linearity, the second layer has 32
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filters of size 4×4 and a stride of 2 with a ReLU non-linearity. The convolutional
layers are followed by a fully connected layer with 256 hidden units and a ReLU
non linearity, finally the output layer is a fully connected layer with one linear
output for each valid action, as shown in Figure 2.9.
The input to the network is a 84 × 84 × 4 tensor of the last four frames in the
Atari emulator resized to 84 × 84 pixels and transformed to grayscale. DQN
agents required 12-14 days of training on a powerful GPU.

Figure 2.9: Illustration of the architecture used by Mnih et al. [2013].

Prioritized Experience Replay

Significant improvements over DQN can be achieved by sampling experiences
from the replay memory in a non-uniform way. Schaul et al. [2015] assign a
probability P (i) to all samples in the replay memory, where

P (i) =
pαi∑
k p

α
k

(2.46)

for some constant α. The authors experiment with pi = |δi|+ ε and pi = 1
rank(i) ,

where δi is the td error for that experience, and rank(i) is the rank of that
experience given by it’s td error.
This technique significantly improves the sample efficientcy and performance of
the algorithm in the Atari domain. To this date, some of the scores presented
remain as the state-of-the-art.
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General Reinforcement Learning Architecture

Nair et al. [2015] present the Gorila, a distributed architecture for deep reinforce-
ment learning. The architecture is divided into four main components: multiple
actors with their corresponding environment instances with each actor main-
taining a replica of the centralized Q-network, a local per-actor replay memory
and globally shared replay memory shared amongst all actors, a set of parameter
servers that maintain a distributed representation of the Q-network, and multiple
learner processes that sample experiences from the replay memory and update
the parameters of the Q-network. Nair et al. [2015] follow the same model ar-
chitecture presented in Mnih et al. [2015]. Their system is implemented using
100 actors distributed across 100 machines, in addition to 30 machines used as
parameter servers. They are able to reach the performance of Mnih et al. [2015]
in 38 games within 36 hours of training, and achieve their final performance after
4 days of training.

2.3.2 Deep Policy Gradient Algorithms

Policy gradient algorithms can also be adapted for use with deep learning models,
and have been shown to outperform value based methods in some domains.

Deep Deterministic Policy Gradients

The notion of combining actor-critic algorithms with deep learning models was
first explored in Lillicrap et al. [2015]. In this paper the authors present DDPG,
an off-policy actor-critic algorithm featuring a deterministic policy, and deep
neural networks to approximate the value function and policy. Following the
techniques from Mnih et al. [2013], DDPG has slowly evolving target networks
for both the value function and the policy which improves training stability, as
well as a replay memory from which it samples experiences for learning. The
critic is a Q function and is updated with the MSE of the Q learning target. The
critic is updated with the deterministic policy gradient [Silver et al., 2014]

∇θη = Es∼πθ [∇θπ(st|θ)∇atQ(st, at)] . (2.47)

DDPG achieves strong results in multiple continuous control tasks.

Asynchronous Advantage Actor-Critic

Mnih et al. [2016] combine deep neural networks with an on-policy advantage
actor-critic algorithm with a stochastic policy. The actor network parameters are
updated with RMSProp by following the direction of greatest ascent of the policy
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gradient, while the critic network parameters follow the direction of greatest
descent given by the gradient of the MSE loss of the value function. For both
the actor and the critic, the return is estimated with the n-step return given by

R̃
(n)
t =

n−1∑
i=0

γirt+1 + γnV (st+n; θv). (2.48)

The A3C algorithm is implemented with an asynchronous framework that
shares many similarities with Nair et al. [2015], but is implemented on a single
machine. Each actor is run on a separate CPU thread, and has access to its
own environment instance, in addition to a copy of the model parameters. The
framework maintains a central copy of the model parameters that the different
actors can asynchronously update and synchronize from.

They show that the multiple parallel actors have a stabilizing effect on the
training process, and are able to successfully train a one-step Q-learning agent
(DQN), an n-step Q-learning agent, a one-step Sarsa agent without the need for
experience replay.

A3C is able to achieve state-of-the-art performance on 19 Atari 2600 games
by training for 4 days on a 16 core CPU. A3C is tested with two different CNN
architectures. The first architecture is similar to DQN [Mnih et al., 2013], where
the output layer for the Q-network is modified to output the policy and an out-
put layer for the value function is added. The authors motivate the shared layers
between the policy and the value network by noting that the features the network
must learn in order to decide the best action, and to estimate the value of a state
are probably similar. The second architecture experimented with in A3C includes
a recurrent layer of 256 LSTM neurons placed between the final fully connected
layer and the policy and value network layers. The recurrent architecture is able
to outperform the feedforward architecture by a large margin in most games.

Parallel Advantage Actor-Critic

Clemente et al. [2017] introduce an advantage actor-critic algorithm that can
be efficiently implemented on a GPU, allowing for reduced training times. The
algorithm maintains a set of ne environments and a singe neural network. Actions
for all environments are queried simultaneously from the policy, and applied to
all environments in parallel. The experience from all environments is gathered
and used to calculate the gradient to update the network.
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Actor-Critic with Experience Replay

Wang et al. [2016] introduce ACER, an off-policy advantage actor-critic algorithm
based on A3C [Mnih et al., 2016] that is able to reuse old experiences by main-
taining a replay memory, similar to the one used in in DQN [Mnih et al., 2013].
Targets are calculated in a similar fashion to A3C, but the return is estimated
using the n-step off-policy algorithm Retrace [Munos et al., 2016]

Qret(st, at) = rt+γmin

(
c,
π(at+1|st+1)

β(at+1|st+1)

)[
Qret(st+1, at+1)−Q(st+1, at+1)

]
+γV (st+1)

(2.49)
where c is a constant, Q(s, a) is the current estimate of the Q function, V (s) =∑
a′
Q(s, a′)π(a′|s) and β is the policy that generated the samples. The Q function

is then updated with Qret as a target, and the policy is updated with the gradient

∇θηπθ ≈ min

(
c′,
π(at|st)
β(at|st)

)
[Qret(st, at)− V (st)]∇θ log π(at|st, θ) (2.50)

where c′ is a constant.
The min used above limits the importance sampling ratio to the range [0, c]
which reduces the variance of the estimates, however they introduce a bias. This
is addressed by using a bias correction term to the policy gradient.
ACER further constrains the policy gradient so that DKL[π(·|st, θa)||π(·|st, θ)] ≤
δ where δ is a constant, θa is the policy parameters after updating the policy
using the policy gradient. DKL is the Kullback-Leibler divergence given by

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(2.51)

which is a measure of how one probability distribution diverges from another.
When tested on the Atari domain, ACER is able to outperform both A3C and
DQN, while requiring significantly fewer samples.

Unsupervised Reinforcement and Auxiliary Learning

Jaderberg et al. [2016] is another A3C based algorithm that improves sample effi-
ciency by storing experiences in a replay memory and reusing them a clever way.
In addition to performing policy gradient learning on the policy and value func-
tion regression, UNREAL performs four additional learning tasks on the same
data. All tasks share most of the parameters with the policy network, in addition
to task-specific parameters.
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The simplest task is Value Function Replay, in which a set of experiences are
sampled from the replay memory and used to perform off-policy value function
regression. The second task is Reward Prediction, where the network is given
three consecutive frames and must predict whether the next frame will result in
a positive, negative or zero reward. For this task the sampled experiences are
skewed, so that rewarding and non-rewarding experiences are encountered with
the same probability. The final two tasks are quite similar and only one of them
is used for a given configuration. For Pixel Control each frame is divided into a
20× 20 grid of non-overlapping 4× 4 cells. Then 20× 20 Q functions are trained
where the instantaneous reward for that cell is given by the average absolute dif-
ference in value from the previous frame, where the average is taken over pixels
and channels in the cell. The motivation of this task is for the network learn how
its actions affect the world. Feature Control learns a Q function for each unit of
a specific hidden layer, where the reward is given as a function of the activation
of that unit. The motivation behind this task is to help the network learn the
effect its actions have on its own activations.

Pixel Control alone greatly improves upon the sample efficiency and perfor-
mance of A3C. Reward Prediction also gives a significant improvement, while
value function replay results in only a modest improvement.



Chapter 3

Related Work

Similar approaches to the one I propose have been used for policy distillation
and transfer learning. Policy distillation is when a dataset of state action pairs is
available, and the task is to create a system that is able to emulate the observed
behaviour and hopefully generate reasonable actions for states the system has
never seen. Transfer learning is the task of using the knowledge a system has
acquired when trained for a task to improve the training of the system on a
different, but usually related, task.
Rusu et al. [2015] use a trained DQN [Mnih et al., 2015] network to generate
a dataset ST = {(si,qi)}Ni=0 of state and q-value tuples. Then train a neural
network with parameters θ with supervised learning on this dataset. The authors
test three different objectives:

Minimizing the negative log-likelihood of the best action a∗i = argmax(qi)

LNLL(ST , θ) = −
|ST |∑
i=1

logP (ai = a∗i |si, θ) (3.1)

Minimizing the mean squared error with the q values

LMSE(ST , θ) =

|ST |∑
i=1

||qi −Q(·, si|θ)||22 (3.2)

Minimizing the KL divergence with temperature τ

LKL(ST , θ) =

|ST |∑
i=1

softmax(
qi
τ

) log
softmax(qi

τ )

softmax(Q(·, si|θ))
(3.3)

29



30 CHAPTER 3. RELATED WORK

The KL divergence loss achieved the best performance closely followed by the
negative log-likelihood loss and both matched or surpassed the performance of
the original network. The mean squared error loss produced the worst perfor-
mance.
The authors also try policy distillation during training, and are able to match
the performance of DQN.

Parisotto et al. [2015] use a set of teacher DQN network trained on different
tasks to generate a dataset ST = {(si,qi,hi)}Ni=0 where si and qi are as in Rusu
et al. [2015], and hi is the vector of activations of a given layer in the teacher
network. The authors then train two neural networks, a q network with paramters
θ and a feature regression network with parameters θf .
The q network is trained to minimize the cross entropy

LCE(ST , θ) = −
|ST |∑
i=1

softmax(qi) log (softmax(Q(·, si|θ))) (3.4)

and the feature regression network fi(h(si|θ); θf ) attempts to predict the
teacher hidden states hi from the activations h(si|θ) of a given hidden layer of
the q network. The feature regression network is trained to minimize the squared
error

LF (θ, θf ) = ||fi(h(si|θ); θf )− hi||22 (3.5)

and the gradients are backpropagated back to the q network. These two losses en-
courage the q network to not only match the same policy as the teacher networks,
but also to encode similar information as the teacher networks in its activations.
Without the feature regression network, the q network is able to match the per-
formance on 7 out of the 8 Atari games of the teacher networks using 10% of
samples required to learn a single teacher network. The use of the feature re-
gression network was shown to help in some games, but hinder learning in others.

Pritzel et al. [2017] present fully differentiable semi-tabular deep q learning
agent that greatly increases sample efficiency. The agent uses the same convo-
lutional neural network presented by Mnih et al. [2015] with the output layer
removed. In addition, the agent maintains a dictionary Di mapping keys h to q
values q for each available action, where i is the index of the action.

Learning is quite different from other deep q learning algorithms. When a
new state is encountered it is passed through the neural network to produce a
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key h. Then the q value for all actions is calculated by

Qi =
∑
qj∈Di

wjqj (3.6)

where wj is the weight given by

wj =
k(h, hj)∑

m
k(h, hm)

(3.7)

and k(h, hj) is an appropriate similarity metric between two keys. Meaning that
the q value for a given state-action pair is the weighted average of all the q values
of that action.

If a key h is already present in the dictionary, then its value is updated with
the standard tabular q learning rule

Qi ← Qi + α(Q(N)(s, a)−Qi) (3.8)

where Q(N)(s, a) is the n-step estimate of the q value. If the key is not in the
dictionary, then the key and value pair is simply appended to it. In order to
make the agent scalable with an increasing dictionary, the similarity metric is
computed the all elements of the dictionary and only the p most similar entries
are used in Equation 3.6.
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Chapter 4

Model

In this section a novel algorithm to combine reinforcement learning and deep
learning is introduced.

Standard deep policy gradient methods represent the policy and the value
functions as neural networks. Samples are gathered by interacting with the en-
vironment. Stochastic gradient ascent in used to train the policy network by
following the direction given by the policy gradient theorem

∇θη = Rt(st|θv)∇θ log π(at|st; θ) (4.1)

and the value network is trained with stochastic gradient descent by following
the gradient of a

∇θvη = ∇θvLv(Rt(st|θv), Rtarget
t ) (4.2)

I propose to divide the policy into two parts. First a neural network with
parameters θ using the current state as input generates a parameter vector
f(st|θ) = φt. Then, the policy is obtained by applying a deterministic func-
tion σ to φt so that π(·|st, φt) = σ(φt). With this parametrization, reinforcement
learning can be used to find the vector of parameters

φ′t = φt + αφ∇φη (4.3)

that improves the current policy. Above, η is the return of the policy. Supervised
learning in the form

θ ← θ − αθ∇θL(φt, φ
′
t) (4.4)
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is used to train the neural network with φ′t as its target.

Network targets φ′ can be stored in a buffer and reused multiple times with-
out importance sampling. However as the policy improves, the targets stored in
the buffer no longer improve the current policy. Due to this, targets must be
removed from the buffer after a certain number of timesteps.

This optimization procedure also allows αφ to be much larger than αθ since
no gradients are backpropagated into the network when calculating φ′, which can
lead to a faster evolving policy. Additionally, expensive methods can be used to
calculate ∇φη since in general φ is several orders of magnitude smaller than θ.

This method can be motivated in multiple ways. It can be seen as policy
distillation, where the teacher policy is the current policy after one step of SGD.
Alternatively it can be thought of as a semi-tabular method, where the network
targets φ′ in the buffer are a tabular representation of the policy and supervised
learning is performed on the network to match the tabular policy.

4.1 Parametrizing the policy

The naive way of parametrizing the policy would be to use a vector φt = βs, so
that π(a|s, βs) = βs,j where j is the index of the selected action. For convenience
I will write βs as β below.

The policy gradient with respect to βs is then given by



4.1. PARAMETRIZING THE POLICY 35

∇βη = A(at, st)∇β log(π(at|st, β)) (4.5)

∇βη = A(at, st)∇β log(βj) (4.6)

∇βη =
A(at, st)

βj
∇ββj (4.7)

For index j 4.5 becomes (4.8)

∇βjη =
A(at, st)

βj
∇βjβj (4.9)

∇βjη =
A(at, st)

βj
(4.10)

∇βi6=jη =
A(at, st)

βj
∇βiβj (4.11)

∇βi6=jη = 0 (4.12)

This can be written in vector notation as (4.13)

∇βη = A(at, st)ej · β−1 (4.14)

where

ej,l =

{
1, if l = j

0, otherwise

and [β−1]l = 1
βl

for all βl ∈ β.

The range of ∇βjη is [−∞,∞]. In addition, only the probability of the chosen
action is updated. This means that using this estimate of the policy gradient to
update the policy may change the policy infinitely, and even worse, result in a
policy that is no longer a probability distribution.

The parametrization I have chosen to use, is to represent the policy as the
softmax of a vector φt ∈ [−∞,∞] , which I will write as φ, for each state so that

π(at|st, φ) =
eφj∑
n e

φn
(4.15)

π(at|st, φ) = σ(φ)j (4.16)

The vector φ is referred to as the logits of the softmax. As I will later show, this
parametrization results in a policy that is always a valid probability distribution,
and gradients that are bound to a specific range.
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4.2 Optimizing the Weights of the Neural Net-
work

With the chosen parametrization in mind, multiple methods for optimizing θ may
be devised. I will focus mainly on two methods; using the vector φ′ directly as the
target for the network, and using the target policy π(·|st, φ′) = σ(φ′) generated
from the target vector as the network target.

4.2.1 Logit Target

The network weights can be updated to minimize the mean squared error be-
tween φ and φ′. However this is equivalent, within a constant factor, to simply
performing gradient descent on the negative policy gradient. The proof of this
can be seen in Appendix A. This method would be exactly the same as standard
policy gradient methods used in deep reinforcement learning [Mnih et al. [2016],
Wang et al. [2016], Clemente et al. [2017]].

4.2.2 Policy Target

The network weights can alternatively be updated to minimize the cross-entropy

H(π(·|st, φ′), π(·|st, φ)) = −
∑
i

π(ai|st, φ′) log π(ai|st, φ) (4.17)

between the current policy π(·|st, φ) and target policy π(·|st, φ′).

The standard approach is to use the policy gradient to update network pa-
rameters directly. This can result in infinitely large updates, while the use of this
cross-entropy target results in gradients bounded to the range [−1, 1].

The policy gradient with respect to the vector φ is then given by

∇φtη = A(at, st)∇φt log(σ(φt)j) (4.18)

By expanding the gradient we find

∇φη =
A(at, st)

σj
∇φσ(φj) (4.19)

(4.20)
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The derivative of the softmax function is given by

∇φσ(φ)j = σ(φ)j(ej − σ(φ)) (4.21)

the proof of this is shown in Appendix B.

∇φη =
A(at, st)

σ(φj)
σ(φj)(ej − σ(φ)) (4.22)

∇φη = A(at, st)(ej − σ(φ)) (4.23)

(4.24)

By applying gradient ascent using the policy gradient we define

φ′ = φ+ α∇φη (4.25)

We can then use φ′ as a target policy given the current state, and train the
neural network with the cross entropy loss given by H(σ′, σ).

For brevity I will write σ′(φ) as σ′ and σ(φ) as σ

H(σ′, σ) = −
∑
j

σ′j log(σj) (4.26)

∇φH(σ′, σ) = −∇φ
∑
j

σ′j log(σj) (4.27)

∇φH(σ′, σ) = −
∑
j

log(σj)∇φσ′j + σ′j∇φ log(σj) (4.28)

∇φH(σ′, σ) = −
∑
j

log(σj)∇φσ′j −
∑
j

σ′j
∇φσj
σj

(4.29)

∇φH(σ′, σ) = −
∑
j

log(σj)∇φσ′j −
∑
j

σ′j
σj(ej − σ)

σj
(4.30)

∇φH(σ′, σ) = −
∑
j

log(σj)∇φσ′j −
∑
j

σ′jej + σ
∑
j

σ′j (4.31)

∇φH(σ′, σ) = −
∑
j

log(σj)∇φσ′j + σ − σ′ (4.32)

(4.33)
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When calculating ∇φH(σ′, σ), σ′ is considered to be a constant relative to σ,
from this follows that

∂φ′

∂φ
= 0 (4.34)

and therefore

∂σ′

∂φ
= 0 (4.35)

By substituting this above, we can reduce the equation to

∇φH(σ′, σ) = σ − σ′ (4.36)

The range of both σ′ and σ is [0, 1], from this it follows that

0 ≤ ∇φH(σ′, σ) ≤ 1 (4.37)

The range of A(at, st) is [−∞,∞], and the range of σi is [0, 1], therefore

−∞ ≤ ∇φη ≤ ∞ (4.38)

4.3 Proposed Algorithm

I propose a deep reinforcement learning algorithm that optimizes the weights of
the neural network by using the target logits φ′ directly. Algorithm 1 is a general
algorithm, where any policy gradient estimate ∇φη and any loss functions L and
Lv could be used.
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Algorithm 1

Initialize timestep counter N = 0, policy weights θ and value weights θv
Initialize buffer B
Sample initial state s0
for i ∈ {0,1,...,Tmax} do

Sample action at from the policy π(·|st; θ)
Perform action at and observe state st+1 and reward rt+1

Calculate target φ′
t = φt + αφ∇φη

Add (st, φ
′
t) to buffer B

Update θ ← θ − απ∇θL(φ, φ′)
Update θv ← θv − αv∇θvLv(θv)
for j ∈ {0,1,...,nr} do

Sample M (s, φ′) tuples from B

Update θ ← θ − απ′ 1
M

M∑
m=0

∇θL(φm, φ
′
m)

end for
end for
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Chapter 5

Experiments

Throughout this section I will explore the performance of the proposed method
with varying hyper-parameters, and compare it to other similar approaches.

5.1 Setup

All experiments are based on the open source PAAC [Clemente et al., 2017]
implementation provided at https://github.com/Alfredvc/paac.
Experiments are run using TensorFlow version 1.0.1, and Python version 3.5.2.
The experiments will be run using the Arcade Learning Environment [Bellemare
et al., 2013], an Atari 2600 emulator. A frame from the emulator is shown in

Figure 5.1: Sample frame from the game of Pong.

Figure 5.1. The game of Pong was chosen for all experiments. This is because
this environment is significantly more challenging than other common benchmark
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reinforcement learning benchmark, such as Cart Pole and Mountain Car, while
only requiring a few hours of training.

5.2 Implementation

To test the proposed algorithm I will implement an advantage actor-critic algo-
rithm based on PAAC [Clemente et al., 2017]. The policy and value networks
are implemented as a single convolutional neural network, with a softmax output
layer for the policy and a linear output layer for the value. The first layer of the
network has 16 filters of size 8× 8× 4 and a stride of 4. The second layer has 32
filters of size 4 × 4 × 16 and a stride of 2. The policy layer has 4 units, one per
action. And the value layer has a single unit.
Following the procedure of Clemente et al. [2017] each action is repeated 4 times,
and the per-pixel maximum value from the two last frames is used as the input to
the neural network. The emulator provides frames of size 210× 160 and 3 color
channels. The frames are rescaled to 80×80 pixels and the colors are transformed
to grayscale.

Figure 5.2: Sample input to the network.

The value function parameters θv are updated with stochastic gradient decent,
following the gradient given by

∇θvLv(θv) = ∇θv
(
Q(5)(st, at; θ, θv)− V (st; θv)

)2
(5.1)

where Q(5) is the 5-step estimate of the Q function, and the policy parameters
are updated by stochastic gradient descent, following the gradient given by

∇θL(φt, φ
′
t) = H(π(·|st, φ′), π(·|st, φ)) (5.2)
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5.2.1 Experience Replay

The algorithm I propose reuses information gathered from previous experiences
to aid learning and increase sample efficiency. In reinforcement learning, this is
referred to as experience replay. In order to compare my method to standard
experience replay, I implement an off-policy version of PAAC [Clemente et al.,
2017]. Experiences are used for on-policy updates when they are experienced,
and then stored in a replay memory to be reused in the future.

This novel implementation takes inspiration from the work of Wang et al.
[2016], using truncated importance sampling and Retrace [Munos et al., 2016]
estimates of the value function. Below, π is the current policy and β is the policy
that generated the sample. The truncated importance sampling ratio is given by

pt = min

(
1,
π(at|st; θ)
β(at|st)

)
(5.3)

and the off-policy n-step estimate of the value function is given by

V (N)(st) =

t+N∑
τ=t

rτγ
τ−t

τ∏
i=t

pi + γNV (st+N ; θv) (5.4)

Finally, the policy is updated in the direction of greatest ascent given by the
truncated off-policy policy gradient

∇θη = min

(
10,

π(at|st; θ)
β(at|st)

)
∇θ log π(at|st; θ)[V (N)(st)− V (st; θv)] (5.5)

5.3 Results

In this section I start by evaluating the proposed algorithm’s performance, then
the effect of the hyperparameters introduced in the algorithm, and finally com-
pare its performance to the PAAC algorithm. All tests are performed on the
game of Pong.

First I performed a grid search across multiple orders of magnitude to find
an appropriate learning rate for the policy loss απ, and the learning rate of the
targets αφ. The learning rate for the value network αv is kept the same as in
Clemente et al. [2017].

The best performing hyperparameters were απ = 0.1 and αφ = 1.0. During
the hyperparameter search, it was discovered that different learning rates must
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be used for updates with on-policy and off-policy data. This introduced a new
hyperparameter απ′ that is the learning rate for the policy loss when using tar-
gets from the replay memory. The best value found for this hyperparameter was
0.01. The average of 3 runs using these hyperparameters can be seen in Figure 5.3.

Figure 5.3: Average performance of three runs with the best found hyperparam-
eters.

Targets are reused by sampling (s, φ′) tuples from the the replay memory,
and updating the network with the sampled tuples. This is done nr times per
iteration of the algorhtm. To understand the usefulness of reusing targets, tests
were run with nr ∈ {0, 1, 2, 4, 8, 16}. As can be shown in Figure 5.4 more off-
policy updates reduces the amount of timesteps needed for reach a given average
rewards, however doing this more than once per iteration results in diminishing
returns. The best sample efficiency is observed when performing 16 off-policy
updates per iteration.

As mentioned before, old targets must be thrown out after some time. To ex-
amine how long targets could be kept, tests were run where targets were kept for
10, 100, 1000, and 10000 timesteps and a single off-policy update was performed
per iteration. The tests shown in Figure 5.5 show that targets should be removed
from the replay memory after 100 timesteps.
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Figure 5.4: Average performance of three runs, using different amount of target
reuse.

Figure 5.5: Performance keeping targets for different amounts of timesteps
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5.3.1 PAAC Baseline

To evaluate how the proposed algorithm compares to current state of the art al-
gorithms, it is necessary to have a baseline algorithm to compare it to. Given that
the proposed algorithm’s implementation was based on PAAC [Clemente et al.,
2017], it was also used as a baseline. Tests were run on the game of Pong with
the standard hyperparameters presented in PAAC. Three tests were run with
this setup, the results are shown together with the proposed algorithm without
target reuse in Figure 5.6. Both algorithms show very similar performance, with
the proposed algorithm performing slightly better.

Figure 5.6: Performance of the proposed algorithm and PAAC on the game of
Pong.

One of the benefits of the proposed algorithm, is that it does not require
importance sampling in order to reuse old experiences. Standard off-policy rein-
forcement learning algorithms require importance sampling, since experiences are
aquired using a policy that is no longer the current policy. Importance sampling
can lead to instabilities, and techniques such as Retrace [Munos et al., 2016] and
truncation [Wang et al., 2016] must be used. To evaluate the effect of importance
sampling in standard reinforcement learning algorithms tests were run on my off-
policy PAAC implementation with different replay memory sizes, both with and
without importance sampling.
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Figure 5.7 shows the performance of off-policy PAAC with and without impor-
tance sampling. It is clear from these tests that importance sampling is essential
for the convergence of the algorithm. The best performance is achieved when
storing targets for over 1000 timesteps. PAAC is able to learn without impor-
tance sampling when experiences are only kept for up to 100 timesteps, and
catastrophic divergence if they are kept for any longer. This is because the pol-
icy changes slowly, therefore the current policy is still similar to the behavioural
policy.

Figure 5.7: Performance of off-policy PAAC without (left), and with (right)
importance sampling, for multiple replay memory sizes..
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Chapter 6

Discussion

In this section we explore the results of the experiments, and the importance
of these results. At the time of writing PAAC [Clemente et al., 2017], it was a
state of the art algorithm in the Atari domain. Both the proposed algorithm and
the off-policy version of PAAC implemented in this thesis offer between two and
three times the sample efficiency of the original PAAC algorithm.

It is clear from the results of the performed experiments that without reusing
targets the proposed algorithm can match and even surpass the performance of
on-policy PAAC. Off-policy PAAC does show better performance than the pro-
posed algorithm, even when reusing targets 16 times per iteration. While it may
seem that this indicates that off-policy PAAC is superior, that is not the case.
The target reuse in the proposed algorithm is conceptually different from the
off-policy updates performed with off-policy PAAC. When targets are generated,
they specify a point in policy space that is better than the current location of
the policy in policy space. In other terms, a target specifies a distribution over
actions for the current state that would lead to a higher return than the current
distribution over actions dictated by the current policy. When an update is per-
formed, the current policy is moved in a direction that is closer to the target,
and no changes are made to the target. The off-policy PAAC samples the raw
experiences, represented as (st, at, π(at|st), st+1, rt+1) 5-tuples and from this di-
rectly calculates a gradient that would steer the policy so that it leads to a higher
return after performing an update. This can be thought of as re-calculating the
targets on every update. The proposed algorithm is able to reuse targets without
re-calculating them.

Target reuse and off-policy updates can be combined to increase sample effi-
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ciency even further. Instead of only storing state-target tuples in the buffer, the
tuple representing the experience can be stored alongside the state-target tuple.
Once a target becomes stale, instead of removing it from the buffer the targets
can be generated once again with for example an off-policy estimate of the policy
gradient. The old state-target tuple can then be updated with the new target,
and used for updates until it becomes stale again.

The PAAC baseline uses standard policy gradient updates, which may re-
sult in gradients that are infinitely large. Due to this, gradient clipping must
be applied to the gradients before updating the network parameters. Gradient
clipping reduces the magnitude of the gradient across all its dimensions so that it
is below some threshold. This does lead to gradients that are bounded, however
information is lost in the process. Given that the magnitude of a vector is given
by

||v||2 =

√∑
i

v2
i (6.1)

even if only a single dimension of the gradient is excessively large, all the dimen-
sions of gradient must be scaled down by some factor. This means that after
the clipping is performed, almost all the information in the gradient will be lost,
except for the largest dimension. The proposed algorithm avoids this issue com-
pletely, as the gradients are guaranteed to be within the range [−1, 1].



Chapter 7

Conclusion and Future
Work

The proposed algorithm explores a novel way of combining reinforcement learning
algorithms with the powerful function approximation offered by deep learning.
Reinforcement learning is used to calculate policy targets that lead to better re-
turns, and then standard supervised learning methods can be used to train a
neural network to match the targets. The proposed algorithm is able to match
the performance of PAAC in the game of Pong, while requiring fewer interactions
with the environment.

Supervised learning in neural networks is well understood, there exists a mul-
titude of tools to aid in their training, and an abundance of documentation on
best practices and techniques to build successful models. Deep reinforcement
learning algorithms on the other hand are a relative new invention, they are
usually complex, and difficult to reason about. By decoupling the reinforcement
learning and deep learning components of these algorithms, it is possible to rea-
son about them in isolation.

This separation also provides a clean interface between the two components,
the policy targets. This allows for great flexibility when choosing both the re-
inforcement learning and the deep learning algorithm. Multiple reinforcement
learning algorithms could be used simultaneously under training to generate the
targets, something that would be difficult to do with standard deep reinforcement
learning algorithms.

This general algorithm could also be used in partially observable domains,
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where we wish to train an agent to perform well in an environment in which it
does not have access to the whole state. For example in the game of poker. A
reinforcement learning algorithm can be allowed full access to the state, in the
case of poker access to the other player’s cards, and use this information to gen-
erate optimal targets. A neural network can then be trained using a limited state
information, in the case of poker only the agent’s cards and the board, to match
the targets provided by the reinforcement learning algorithm with full state ac-
cess. The resulting algorithm is able to use knowledge of the full state to learn,
but act only using the partial state it as access to.
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Appendix A

The proof that using a mean squared error with logit targets is equivalent, within
a constant factor, to using the policy gradient directly is as follows

MSE(φ, φ′) =
1

N

∑
n

(φn − φ′n)2 (A.1)

∇φMSE(φ, φ′) =
1

N

∑
n

∇φ(φn − φ′n)2 (A.2)

∇φMSE(φ, φ′) =
2

N

∑
n

(φn − φ′n)∇φ(φn − φ′n) (A.3)

(A.4)

from Equation 4.25 we have that

φ′ = φ+∇φη (A.5)

∇φMSE(φ, φ′) =
2

N

∑
n

(φn − φn − α∇φη)∇φφn (A.6)

∇φMSE(φ, φ′) =
−2α∇φη

N

∑
n

en (A.7)

(A.8)

where

ej,l =

{
1, if l = j

0, otherwise

∇φMSE(φ, φ′) =
−2α

N
∇φη (A.9)

(A.10)
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Appendix B

The derivative of the softmax function can be derived as follows

σ(φ)j =
eφj∑
n e

φn
(B.1)

∇φσ(φ)j = ∇φ
(
eφj (

∑
n

eφn)−1

)
(B.2)

∇φσ(φ)j = (
∑
n

eφn)−1∇φeφj + eφj∇φ(
∑
n

eφn)−1 (B.3)

∇φσ(φ)j =
∇φeφj∑
n e

φn
− eφj

∑
n∇φeφn

(
∑
n e

φn)−2
(B.4)

(B.5)

the jth component of the gradient is given by

∂σ(φ)j
∂φj

=
eφj∑
n e

φn
− eφjeφj

(
∑
n e

φn)−2
(B.6)

(B.7)

using the definition of the softmax function

∂σ(φ)j
∂φj

= σ(φ)j(1− σ(φ)j) (B.8)

∂σ(φ)j
∂φi 6=j

= − eφjeφi

(
∑
n e

φn)−2
(B.9)

∂σ(φ)j
∂φi 6=j

= −σ(φ)jσ(φi) (B.10)

(B.11)
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this can be written in vector notation as

∇φσ(φ)j = σ(φ)j(ej − σ(φ)) (B.12)

where

ej,l =

{
1, if l = j

0, otherwise
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