
Discrete event dataflow as a formal approach to specification of
industrial vision systems*

Oleksandr Semeniuta1 and Petter Falkman2, Member, IEEE

Abstract— The need for more flexible manufacturing systems
stimulates the adoption of industrial robots in combination
with intelligent computing resources and sophisticated sensing
technologies. In this context, industrial vision systems play a
role of inherently flexible sensing means that can be used for
a variety of tasks within automated inspection, process control
and robot guidance. When vision sensing is used within a large
complex system, it is of particular importance to handle the
complexity by introducing the appropriate formal methods.
This paper overviews the challenges arising during design,
implementation and application of industrial vision systems,
and proposes an approach, dubbed Discrete Event Dataflow
(DEDF), allowing to formally specify vision dataflow in the
context of larger systems.

I. INTRODUCTION

Machine vision is a technological field applying computer
vision methods for industrial needs. The latter include auto-
matic inspection, process control, and robot guidance [1],
[2], [3], [4]. Compared to other types of sensors, vision
systems are highly reconfigurable and able to measure a
wide range of characteristics. Despite the envisioned oppor-
tunities, vision systems in the industrial environment possess
numerous challenges such as a number of factors influencing
the algorithms, quality of system calibration, complexity of
system development and high processing time.

Any vision system starts its work by acquiring an image
or a set of images from cameras or data storage devices.
After the original images are loaded into computer memory, a
vision system exerts a certain set of operations upon them in
order to obtain the final application-dependent information.
The operations typically constitute the well-known image
processing or computer vision algorithms, and their sequence
resembles a pipeline, starting at the image acquisition phase
and ending with obtaining the desired result. As an example,
Figure 1 shows a sequence of operations that are common
to many vision systems applications. In such general system,
a camera acquires an image, which is then enhanced to
simplify the later processing steps. After that, certain parts of
the image are segmented, and the obtained parts are further
used to detect the desired features.

Similar pipelines as described in Figure 1 are presented
in numerous literature sources (including [2], [3], [4]) in
order to visualize the principles of the particular vision

*This work was supported by the Norwegian Research Council
1Oleksandr Semeniuta is with Faculty of Technology, Economy

and Management, Gjøvik University College, 2815 Gjøvik, Norway
oleksandr.semeniuta@hig.no

2Petter Falkman is with Department of Signals and Sys-
tems, Chalmers University of Technology, Göteborg, Sweden
petter.falkman@chalmers.se

Image acquisition

Scene

Image 
enhancement

Original 
image

Image 
segmentation

Enhanced 
image

Feature detection

1 or more 
regions or 
contours

Geometric primitives 
parameters or feature points

Fig. 1. Simple vision pipeline

systems. These pipelines may be more or less abstract, and
may include additional graphical elements, such as flow-
chart conditionals, parameter lists etc. In any case, the major
reason for depicting the pipelines lies in providing a bet-
ter understanding of the respective vision system concepts.
Despite being a proper visual aid, the traditional pipeline
diagrams lack the possibility of applying formal modeling,
specification and analysis methods.

Formal methods, originated in the areas of computer
science and systems engineering, are based on the idea that
a system can be described as a formal model, which can be
used for the purposes of system optimization, verification
and synthesis. The need for using formal methods often
arises in complex systems design, where the correct behavior
is critical. Additionally, the unambiguity of formal repre-
sentation allows for ensuring common understanding and
fostering the creation of the appropriate algorithmic meth-
ods. In manufacturing, formal methods are used for system
modeling, simulation, control, performance evaluation and
fault diagnosis [5].

This paper presents a concept of Discrete Event Dataflow
(DEDF), a dynamic dataflow formalisms enhanced by dis-
crete event semantics. The goal of DEDF is to provide a
formal apparatus for specification of vision systems in the
context of larger systems utilizing computer vision as one
of their sensing means. The proposed specification language
should (1) provide an unambiguous understanding of the
working principle of the modeled vision system, (2) be
technology-agnostic, i.e. not tailored to specific hardware
or software, and (3) provide the ability to integrate vision
models with the models of the larger controlled system.

This paper is organized as follows. Section II overviews
the background literature on the topics of industrial ap-
plication of vision and the existing approaches of formal
modeling of vision systems. Section III presents the proposed
formalism of Discrete Event Dataflow (DEDF) and formal
notation for common vision data types. Section IV applies
DEDF to modeling of a camera calibration system and
passive stereo vision system. Section V provides a discussion



about the presented method, including its limitations and
perspectives for future development.

II. BACKGROUND LITERATURE

A. Industrial vision

In the industrial context, computer vision is often used as
a sensing means in control systems that provide actuation
function on the mechanical components. The processes in
which machine vision takes part include automatic inspec-
tion, process control, and robot guidance. Vision in the
context of automatic inspection is particularly useful in cases
when the parts are inaccessible otherwise, when a large
number of small features has to be measured, or when
the parts have complex shapes [6]. In robot control, vision
systems provide flexibility of robot operation and reduce the
necessity of fixed-point robot motion programming.

The inspected features of industrial product or process that
are measured by vision systems include dimensional quality,
structural quality, surface quality, and operational quality [2].

The use of vision systems is a non-trivial field, asso-
ciated with a number of problems and challenges. There
exist numerous factors that influence the accuracy of vision
algorithms, including the measured object characteristics
(size, shape, color, texture), camera characteristics (camera
resolution, quality of lenses), environment characteristics
(pose, illumination) [2], [7]. In addition, the way the vision
algorithms is developed plays a significant role for the quality
of measurement.

Since machine vision is used for controlling mechanical
equipment such as robots, real-world measurements are often
required. Camera calibration, extrinsic calibration and stereo
vision system calibration processes provide the necessary
parameters and rigid transformations making possible to
operate in real-world space. The quality of the applied
calibration methods directly impacts the precision of robot
operations, and therefore have to be acceptable.

Other challenges include expensive software development
and high processing time [7].

B. Dataflow and actor model

One way to model cyber-physical systems is by applying
an actor-oriented design approach [8], [9]. Actors consti-
tute distinct concurrently-run computational components that
communicate through signal ports. The interaction rules
between actors are defined by the respective models of
computations (MoCs), which include discrete events, finite
state machines, continuous time, synchronous reactive, and
dataflow [9].

The dataflow model of computation is particularly suitable
for streaming applications, where signals are routed through
computations [10], [11]. As presented in figure 2, in the
dataflow model, a concrete signal produced by the output
port of actor Ai and consumed by the input port of actor A j
is modeled as a token. The firing rule of an actor specifies
how many tokens are required on the input port in order for
the actor to fire. If for actor A j this number is M j, then, when
firing, the actor consumes M j tokens from its input buffer.

𝐴𝑖 𝐴𝑗

𝑞𝑖

𝑀𝑖 𝑁𝑖 𝑀𝑗 𝑁𝑗

𝑞𝑗

Fig. 2. Two actors in a dataflow model of computation

There exist dataflow models of different varieties [11].
In the synchronous dataflow (SDF) [12], the number of
produced and consumed tokens are specified for each actor
in advance. To avoid buffer overflow, for each pair of actors
(Ai,A j), the following balance equation must be satisfied:

qiNi = q jM j (1)

where qi,q j are the firing rates of actors Ai and A j
respectively, Ni is the number of tokens actor Ai produces
when firing, M j is the firing rule for actor A j.

In the dynamic dataflow (DDF), the firing rules can specify
different number of tokens for each firing, whereas in SDF
the required number of input tokens is fixed. DDF is a
fully dynamic model, i.e. all actor firing are determined
at runtime. Structured dataflow enhances DDF with the
structured programming concepts such as loops and condi-
tions. The LabVIEW programming environment is one of
the commercially available examples of structured dataflow
implementations [11].

In [13], the authors propose a Parametrized Synchronous
Dataflow (PSDF) model. PSDF tackles the modeling data-
dependent dynamic DSP systems, but in addition allows
constructing efficient quasi-static schedules. The latter are
created as a result of compile-time analysis, and restrict the
number of runtime decisions.

In [14], Homogeneous Parametrized Dataflow (HPDF)
graphs are introduced as a means of image processing appli-
cations modeling. HPDF model is based on the Parametrized
Synchronous Dataflow (PSDF), with the restriction on the
number of tokens along dataflow graph edges. To model
typical image processing applications, in HPDF the data
production and consumption rate is the same along dataflow
graph edges. In [14], the vision algorithms of gesture recog-
nition and face detection were modeled using HPDF, and
in [15], the HPDF model was used for mapping a gesture
recognition algorithms onto an FPGA board.

In [16], data flows in vision systems are proposed to be
formalized with the means of meta-modeling, a method that
allows to describe a system with the appropriate well-defined
(machine-readable) language.

C. Communicating Sequential Processes

Communicating Sequential Processes (CSP) [17] is a
process algebra formalism, used for modeling concurrency.
A process behavior in CSP is defined as a trace of actions in
which the process is engaged. The concurrent processes can
communicate and share resources. The algebraic nature of
CSP allows creating new processes from the existing ones.

In [18], the authors adapted the stream algebra formalism,
used within the database community for modeling relational



streams, in order to tackle the problem of image stream
processing. The proposed algebra includes stream operators
for image processing and flow control, and is defined in terms
of Communication Sequential Processes (CSP) and Stream
Processing.

D. Supervisory control of discrete-event systems

To control a complex system, one needs to specify the
operation sequence leading to the desired system’s outcome.
An operation in this context is a specification of an action or
task executed by the system. This specification can be made
on various levels of details. For example, in an automation
system, operations can model a complete assembly of a
product or sending a signal to an actuator [19]. In the
Supervisory Control Theory [20], the controlled systems is
modeled in a form of finite automata. A finite automaton
consists of a set of states and a set of events leading to tran-
sition from one system state to another. To control a system
modeled as a finite automaton, a discrete event supervisor is
implemented. The latter, which plays a role of a closed-loop
controller, responds to a sequence of asynchronous events
and produces control output aimed at establishing the desired
event sequence.

Based on the theoretical foundation of the Supervisory
Control Theory and the formalism of Extended Finite Au-
tomata (EFA) [21], in [22], a graphical language dubbed
SOP (Sequence of Operations) was proposed. Using SOP,
the developer created individual self-contained operations,
with all the product- and process-related logic expressed
in the operations’ pre- and post-conditions. The underlying
EFA-based description was preserved, allowing for using
the created models for formal verification and synthesis.
As presented in Figure 3, an operation Ok can be formally
described as an automaton with three states: initial state Oinit

k ,
execution state Oexec

k , and finishing state Ostop
k . Ok begins

its execution when the starting condition C↑k is satisfied and
starting event O↑k occurs. The same logic holds for finishing
condition C↓k and finishing event O↓k .

𝑂𝑘
𝑖𝑛𝑖𝑡 𝑂𝑘

𝑒𝑥𝑒𝑐 𝑂𝑘
𝑠𝑡𝑜𝑝

𝑂𝑘

𝑂𝑘
↑/𝐶𝑘

↑ 𝑂𝑘
↓/𝐶𝑘

↓

Fig. 3. Operation automaton

E. Limitations of the existing approaches

Dataflow models, especially the constrained SDF, PSDF
and HPDF, are particularly suitable for describing hardware,
such as digital signal processors and field-programmable gate
arrays (FPGAs). This is the reason why the dataflow research
is largely done within the embedded systems community.
Though [14] and [15] apply dataflow modeling techniques
to computer vision applications, the target use-case remains
the design of image processing hardware, and therefore one
requires strict formal properties, such as bounded memory
requirements and efficient synthesis solutions [15], which

restrict the expressiveness of the dataflow models. Dynamic
dataflow models therefore seem more suitable for describing
more complex data-dependent computer vision applications.

A limitation of dataflow in general is its reliance solely
on data tokens as the only actor triggering mechanism. This
may be sufficient for many vision applications and necessary
for hardware specification. However, when industrial appli-
cations of vision are considered, one would benefit from the
ability to apply event-based semantics in system design.

The formalisms and techniques of the Supervisory Control
Theory allow to model and control system dynamics in terms
of instantaneous discrete events. The EFA/SOP approach
allows visualizing operation sequences in visually appealing
way, somewhat similar to the actor diagrams. However, the
signal paths and signals themselves are not represented in
the discrete event systems frameworks.

Communicating Sequential Processes has proven to be a
powerful formalism for describing concurrent systems, but
they lack an expressive graphical representation, which may
be poorly perceived by people outside the area of computer
science, e.g. manufacturing engineers.

III. FORMAL SPECIFICATION OF VISION SYSTEMS

A vision system is a system that acquires visual data
and processes it to obtain a meaningful information or
a new visual representation. A mono vision system uses
one camera. A stereo vision system applies two or more
cameras sharing the same view, which allows to reconstruct
3D information from the perceived scene. In the industrial
context, vision systems are often used to control robots and
various transportation systems. Therefore, it is required to be
able to both describe the dataflow inside the vision system
and consider the vision task in the context of a larger cyber-
physical system.

The proposed approach, dubbed Discrete Event Dataflow
(DEDF) extends the dynamic dataflow model with event-
based semantics. It allows mapping between dataflow and
discrete event models and accounting for typical signals
conveyed in vision systems.

Before presenting the DEDF concept, the common vision
data types are formally presented in terms of sets and signals.

A. Common signals and data types

Depending on the application, vision systems can process
either individual images or video streams, where the latter
constitute streams of distinct image frames. An image is
often modeled as a signal in which an intensity is distributed
over rectangular space. In this paper, a functional notation
for signals is used. As described in [23], [24], any signal can
be represented as a function f from domain D to co-domain
C:

f : D→C (2)

An image acquired by the digital camera constitutes a
two-dimensional array of pixels, each having (in case of a
grayscale image) an intensity value in the range from 0 to
255. Thus, the range of intensity values can be defined as a



set Intensity= {0,1, ...255}. A digital image with h rows and
w columns can be formally defined as a signal from discrete
image space DISpace = {0,1...h− 1} × {0,1, ...w− 1} ⊂
Z×Z to a set of intensity values [23], [25]:

Image : DISpace→ Intensity (3)

In certain cases, continuous image space CISpace =
{0,h−1}×{0,w−1} ⊂ R×R needs to be considered, for
example, for subpixel-precise measurements.

Function Image in (3) maps each tuple in the image space
to the corresponding level of intensity. For the color images,
the analogous function maps to the triple of intensities of
red, green, and blue spectrum [23], [25]:

ColorImage : ImageSpace→ Intensity3 (4)

A subset of image space that is obtained as a result of im-
age segmentation, is referred to as space relation. Depending
on the application, one can consider discrete (DSpaceRel ⊂
DISpace) or continuous (CSpaceRel ⊂ DISpace) space re-
lation. The graphical representation of image spaces and the
correspoding space relations are provided in Figure 4.

ℤ × ℤ ⊂ ℝ ×ℝ 𝐷𝐼𝑆𝑝𝑎𝑐𝑒 ⊂ 𝐶𝐼𝑆𝑝𝑎𝑐𝑒

𝐷𝑆𝑝𝑎𝑐𝑒𝑅𝑒𝑙 ⊂ 𝐶𝑆𝑝𝑎𝑐𝑒𝑅𝑒𝑙

Fig. 4. Continuous and discrete space sets

A space relation does not convey any image-related infor-
mation, and should therefore be distinguished from a region,
that represents a part of the image belonging to the particular
space relation:

Region : SpaceRelation→ Intensity (5)

Geometric primitives can easily be formalized having the
definition of continuous image space. For instance, a point
p∈CISpace; a circle c, parametrized by its center and radius:
c∈CISpace×R; an ellipse e, parametrized by the center and
the major and minor radii: e ∈CISpace×R2.

B. Discrete Event Dataflow

A generic dataflow graph, as described in [26], can be
formally represented as a triple G:

G = (A,L,P) (6)

where A= {a1,a2, ...am} is a set of actors, L= {l1, l2, ...ln}
is a set of links, and P⊆ (A×L)∪ (L×A) is a set of ports.

The above representation is very similar to a Petri net: the
links are treated as special-case graph vertices (analogous

to actors, but responsible for data transfer), whereas ports
connect actors to links (output ports, set A×L) and links to
actors (input ports, set L×A).

The definition (6) is very basic and accounts only for the
structure of the dataflow graph. The Discrete Event Dataflow
(DEDF) is introduced in order to achieve a more expressive
semantic.

DEDF can semantically be regarded as an extension of
dynamic dataflow. It is aimed to account for the discrete
event behavior, the tokens number specification, and actor-
based event generation.

Discrete event behavior is important to consider in the
context of industrial vision systems, since the controlled
process is often modeled as a discrete event system. The
concept of an actor can easily be mapped to the concept of
operation, and it is therefore possible to associate each actor
with an automaton model having three states and two events,
see Figure 3.

The meaning of the number of tokens per dataflow graph
port is analogous to the one in other models. In DEDF,
however, the graph ports are divided into two sets: those
with a fixed number of tokens, Pconst , and those with variable
number of tokens, Pvar. For each port in Pconst , the respective
number of tokens should be specified. To assure predictable
actors behavior, it is clear that the actors’ input ports should
be specified with only fixed number of tokens, i.e. Pconst ⊆
L×A.

Since DEDF is a dynamic and event-based model, the
actor has the ability to initiate events. To express this ability,
an event generator is introduced as a pair (ai,e j) meaning
that actor ai can initiate event e j.

The Discrete Event Dataflow model is a 7-tuple:

G = (A,L,Pconst ,Pvar,C,Σ,S) (7)

where
A = {a1,a2, ...am} is a set of actors
L = {l1, l2, ...ln} is a set of links
Pconst is a set of ports with constant number of tokens, Pvar

is a set of ports where the number of tokens varies during
runtime. P = Pconst ∪Pvar, with P⊆ (A×L)∪ (L×A) as the
set of all ports

C : Pconst→Z is the vector/function specifying the number
of tokens in each element of Pconst

Σ is a set of events
S is a set of event generators, S⊆ A×Σ

An actor ak in the dataflow model can be described as an
operation Ok. The execution of Ok (state Oexec

k ) is triggered
by event O↑k when condition C↑k is satisfied. In the case of
dataflow actor, this condition can be formulated as follows:

C↑k = Firek ∧Speck (8)

where Speck is a general application-specific condition
for an operation, and Firek is a condition specific to the
actor/token semantics. Thus, if for actor ak there exist m
input ports {p1, p2, ...pm} ⊂ L× A, the firing condition is
specified as follows:



Firek = (Bp1 =Cp1)∧ (Bp2 =Cp2)∧ ...∧ (Bpm =Cpm) (9)

where B is a vector/function specifying the current (at
runtime) number of tokens per each port, i.e. B : P→ Z,
and Cpk is number of tokens requirement per port k.

Definition (7) is generic in the sense that it does not
specify the typing of the links and other characteristics. This
means that DEDF can be applied in many different contexts
by simply extending the model with appropriate vectors. For
example, if typing information is important for the analysis,
one can extend the DEDF graph G with a set of types
T and vector/function specifying types for each link, i.e.
LinkTypes : L→ T . In the same manner, it is possible to
introduce some performance characteristics metrics for either
actors or links.

IV. CASE STUDIES

A. Camera calibration
In most of the industrial cases, it is crucial to obtain

measurements from a vision system that are expressed in
real-world coordinates. This requires transforming pixel mea-
sures into metric values such as millimeters. To perform
such transformation, the knowledge of the appropriate rigid
transformations and intrinsic parameters of the cameras need
to be obtained.

In this paper, the calibration method described in [27] and
[28] is considered. The details of computing camera intrinsic
parameters are omitted, and only the high-level view on the
algorithm is presented. This calibration method, with certain
modifications, is implemented in the OpenCV library, and
can be described as follows:

1) The camera acquires an image of a rectangular planar
calibration object with easily identifiable features, such
as a chessboard.

2) All the corners of the chessboard are identified.
3) The corners identification results are filtered. If iden-

tification of the corners is unsuccessful, the results,
along with the respective image, are discarded.

4) The previous steps are repeated until c1 ”good” chess-
board corners results are obtained.

5) c1 batches of chessboard corners results and the re-
spective c1 images are used for camera calibration.

The sequence above can be formally modeled as a DEDF
depicted in Figure 5.

The Operator actor represents a human, supervising
the calibration process, or some automated system.
The vision system in this case is represented as
a Calibrator actor, composed of a set of lower-
level actors with self-explainable names: A =
{AcquireIm,a2,FindCorners,FilterCorners,Calibrate}.
Actor a2 is a splitter that sends the same signal to two
different links. Each link possesses a type specified on each
respective arc on the figure.

The types of tokens passed through the data flow include
images (I), chessboard corners sets (Corners), and calibration
results (CalibRes).

AcquireIm FindCorners FilterCorners

Calibrate

𝐼

𝐶𝑎𝑙𝑖𝑏𝑅𝑒𝑠

𝐼

𝐼

𝐶𝑜𝑟𝑛𝑒𝑟𝑠

𝐼 𝐶𝑜𝑟𝑛𝑒𝑟𝑠

𝑐 1

𝑆𝑡𝑎𝑟𝑡

𝑆𝑡𝑎𝑟𝑡

𝑐 1

𝑐 1 𝑐 1

Operator

Calibrator

Fig. 5. DEDF model of camera calibration process

For each port p ∈ Pconst , if Cp 6= 1, its number is specified
on the diagram; if Cp = 1, the number 1 is omitted. In Figure
5, c1 defines some constant specification. If a port p ∈ Pvar,
it is specified by a symbol v. In Figure 5, there is no such
port that belongs to Pvar.

Dashed lines specify event generators. In Figure 5, actor
FilterCorners is able to generate event AcquireIm↑ if there
has not been c1 ”good” images with the identified corners
accumulated, and actor Operator invokes the start of the
calibration process by generating Calibrator↑. In both cases,
the events belong to the respective actors.

B. Passive stereo vision

The passive stereo vision process uses two images of
the same scene acquired at the same moment by two or
more cameras to reconstruct the 3D coordinates of points
of interest. The reconstruction is done by triangulation of
the matching pairs of the identified features, having the
rigid transformation between two cameras and the cameras’
intrinsic parameters [29].

Figure 6 shows a high level DEDF model of a passive
stereo vision system. A composite actor StereoMatcher
is started by an external system. Within StereoMatcher
there are two source actors - AcquireIm1 and AcquireIm2-
those having no input ports. This implies that when event
StereoMatcher↑ occurs, it leads to immediate occurrence of
both AcquireIm1

↑ and AcquireIm2
↑.

When the images from each cameras have been acquired,
they are processed by an algorithm in FindFeatures1 and
FindFeatures2 that extracts the features of interest. The
triangulation is performed by actor Compute3D that is
parametrized by stereo vision systems parameters from the
ExternalSystem. A variable number of 3D points is then fed
back to the ExternalSystem.

V. DISCUSSION AND CONCLUSION

Motivated by the increasing complexity of the contempo-
rary industrial systems and the challenges in implementing



AcquireIm1

AcquireIm2

FindFeatures1

FindFeatures2

Compute3D

ExternalSystem
𝑆𝑡𝑎𝑟𝑡

3
𝐷
𝑃
𝑜
𝑖𝑛
𝑡

𝑣 1

𝐼

𝐼

𝑣 1

𝑣 1

𝑣 1

𝑣 1

𝑣 1

2𝐷𝑃𝑜𝑖𝑛𝑡

2𝐷𝑃𝑜𝑖𝑛𝑡

StereoMatcher

Fig. 6. DEDF model of a passive stereo system

machine vision applications, a formal approach, Discrete
Event Dataflow (DEDF), was presented in this paper. DEDF
aims at capturing both the nature of streaming applications
and the discrete event behavior of larger industrial systems.
The DEDF formalism is generic and can be used for mod-
eling applications other than vision, such as digital signal
processing, sensor fusion, and general data flow.

A graphical representation of DEDF was presented with
two examples, camera calibration and passive stereo vision
system. It is important to note, however, that a complete spec-
ification of DEDF diagrams is yet to be developed, which
includes the graphical representation of actor-independent
events.

More thorough formal analyses of DEDF ought to be
performed in the future. Because dataflow graphs are in many
respects analogous to Petri nets, it is of interest to conduct
a comparison study between these two formalisms, with
the addition of events semantics. In addition, the analysis
algorithms for DEDF are yet to be developed. Another aspect
that has to be clarified in the future is the semantics of
feedback data flow.

The practical side of DEDF in general and implementation
of vision systems in particular was not considered in this
paper. An appropriate software framework, together with the
additional synthesis methods are required.

The idea of variable number of tokens per link was
presented. However, in reality it is useful to be able to
constrain this number with a specified limit. Therefore, a
constraint extension of DEDF shall be formally defined in
the future.

REFERENCES

[1] C. Steger, M. Ulrich, and C. Wiedemann, Machine Vision Algorithms
and Applications, ser. Wiley-VCH Textbook. Wiley-VCH, 2007.

[2] E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J.-D.
Legat, “A survey on industrial vision systems, applications and tools,”
Image and Vision Computing, vol. 21, no. 2, pp. 171–188, 2003.

[3] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision. Thomson-Engineering, 2007.

[4] H. Golnabi and A. Asadpour, “Design and application of industrial
machine vision systems,” Robotics and Computer-Integrated Manu-
facturing, vol. 23, no. 6, pp. 630–637, 2007.

[5] J. Campos, C. Seatzu, and X. Xie, Formal Methods in Manufacturing,
ser. Industrial Information Technology. CRC Press, 2014.

[6] S. Kalpakjian and S. Schmid, Manufacturing Engineering & Technol-
ogy, 7th ed. Pearson Prentice Hall, 2013.

[7] M. Santochi and G. Dini, “Sensor technology in assembly systems,”
CIRP Annals - Manufacturing Technology, vol. 47, no. 2, pp. 503–524,
1998.

[8] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actor-oriented design
of embedded hardware and software systems,” Journal of Circuits,
Systems and Computers, vol. 12, no. 3, pp. 231–260, 2003.

[9] P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli, “Modeling cyber-
physical systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28,
2012.

[10] R. Stephens, “A survey of stream processing,” Acta Informatica,
vol. 34, pp. 491–541, 1997.

[11] E. A. Lee, S. Neuendorffer, and G. Zhou, “Dataflow,” in
System Design, Modeling, and Simulation using Ptolemy II,
C. Ptolemaeus, Ed. Ptolemy.org, 2014. [Online]. Available:
http://ptolemy.eecs.berkeley.edu/books/Systems/chapters/Dataflow.pdf

[12] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[13] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow
modeling for dsp systems,” IEEE Transactions on Signal Processing,
vol. 49, no. 10, pp. 2408–2421, 2001.

[14] M. Sen, S. S. Bhattacharyya, T. Lv, and W. Wolf, “Modeling im-
age processing systems with homogeneous parameterized dataflow
graphs,” in ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, vol. V, 2005, pp. 133–
136.

[15] M. Sen, I. Corretjer, F. Haim, S. Saha, J. Schlessman, T. Lv, S. S.
Bhattacharyya, and W. Wolf, “Dataflow-based mapping of computer
vision algorithms onto fpgas,” EURASIP Journal on Embedded Sys-
tems, vol. 2007, pp. 1–12, 2007.

[16] P. Trojanek, M. Stefańczyk, and T. Kornuta, “Modelling of data flow
in component-based robot perception systems,” Pomiary Automatyka
Robotyka, no. 2/2013, pp. 260–265, 2013.

[17] C. A. R. Hoare, Communicating sequential processes. Prentice Hall
International, Incorporated, 1985.

[18] M. A. Helala, K. Q. Pu, and F. Z. Qureshi, “A stream algebra for
computer vision pipelines,” pp. 800–807, 2014.

[19] K. Bengtsson, P. Bergagard, C. Thorstensson, B. Lennartson,
K. Åkesson, Y. Chengyin, S. Miremadi, and P. Falkman, “Sequence
planning using multiple and coordinated sequences of operations,”
Automation Science and Engineering, IEEE Transactions on, vol. 9,
no. 2, pp. 308–319, 2012.

[20] C. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems. Springer, 2008.

[21] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of discrete
event systems using finite automata with variables,” in Decision and
Control, 2007 46th IEEE Conference on, 2007, Conference Proceed-
ings, pp. 3387–3392.

[22] B. Lennartson, K. Bengtsson, Y. Chengyin, K. Andersson, M. Fabian,
P. Falkman, and K. Åkesson, “Sequence planning for integrated
product, process and automation design,” Automation Science and
Engineering, IEEE Transactions on, vol. 7, no. 4, pp. 791–802, 2010.

[23] E. A. Lee and P. Varaiya, Structure and Interpretation of Signals and
Systems, 2nd ed. LeeVaraiya.org, 2011.

[24] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A
Cyber-physical Systems Approach. Lulu.com, 2011.

[25] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. John Wiley & Sons New York, 2006.

[26] K. Kavi, B. Buckles, and U. Bhat, “A formal definition of data flow
graph models,” Computers, IEEE Transactions on, vol. C, no. 11, pp.
940–948, 1986.

[27] Z. Zhang, “A flexible new technique for camera calibration,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 11, pp. 1330–1334, 2000.

[28] P. F. Sturm and S. J. Maybank, “On plane-based camera calibration:
A general algorithm, singularities, applications,” in Computer Vision
and Pattern Recognition, 1999. IEEE Computer Society Conference
on., vol. 1, 1999, Conference Proceedings, p. 437 Vol. 1.

[29] Z. M. Bi and L. Wang, “Advances in 3d data acquisition and pro-
cessing for industrial applications,” Robotics and Computer-Integrated
Manufacturing, vol. 26, no. 5, pp. 403–413, 2010.


