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Abstract. Three properness conditions for actions of locally compact groups
on C⇤-algebras are studied, as well as their dual analogues for coactions. To
motivate the properness conditions for actions, the commutative cases (actions
on spaces) are surveyed; here the conditions are known: proper, locally proper,
and pointwise properness, although the latter property has not been so well
studied in the literature. The basic theory of these properness conditions
is summarized, with somewhat more attention paid to pointwise properness.
C⇤-characterizations of the properties are proved, and applications to C⇤-
dynamical systems are examined. This paper is partially expository, but some
of the results are believed to be new.

1. Introduction

In our recent study of C⇤-covariant systems (A,G,↵) and crossed product al-
gebras between the full crossed product A o↵ G and the regular crossed product
Ao↵,r G, it turns out that various generalizations of the concept of proper actions
of G play an important role. We therefore start by taking a closer look at this
concept, and it turns out that even for a classical action of G on a space X we
made what we believe to be new discoveries.

Classically (going back to Bourbaki [Bou60]), a G-space X is called proper if
the map from G⇥X to X ⇥X given by

(s, x) 7! (x, sx)

is proper, i.e., inverse images of compact sets are compact.
We call the action pointwise proper if the map from G to X given by

s 7! sx

is proper for each x 2 X.
There is also an intermediate property: X is locally proper if each point of X

has a G-invariant neighbourhood on which G acts properly.
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Apparently the above terminology is not completely standard. For a discrete
group, [DV97] uses the terms discontinuous, properly discontinuous, and strongly
properly discontinuous instead of pointwise proper, locally proper, and proper, re-
spectively. Palais uses Cartan instead of locally proper. And [Kos65] uses the
terms P2, P1, and P , respectively. A characteristic property of properness (see
Lemma 2.3 below) is sometimes referred to as “compact sets are wandering”.

It is folklore that for proper G-spaces X the full crossed product C0(X)o↵ G
is isomorphic to the reduced crossed product C0(X) o↵,r G (see [Phi89] for the
second countable case). In Proposition 6.12 (perhaps also folklore) we show that
this carries over to locally proper actions. We will show in Theorem 6.2 (believed to
be new) that this is true also if X is first countable, but the action is only assumed
to be pointwise proper.

We propose the following as natural generalizations of properness to a general
C⇤-covariant system (A,G,↵):

Definition.

• (A,G,↵) is s-proper if for all a, b 2 A the map

g 7! ↵g(a)b is in C0(G,A).

• (A,G,↵) is w-proper if for all a 2 A, � 2 A⇤ the map

g 7! �(↵g(a)) is in C0(G).

This is consistent with the classical case, for A = C0(X) we have

(X,G) is proper () (C0(X), G) is s-proper

(X,G) is pointwise proper () (C0(X), G) is w-proper.

One indication that w-properness is an interesting property is the following

Proposition. Suppose (A,G,↵) is w-proper, ⇡ a representation of A, and
s 7! Us a continuous map into the unitaries (but not necessarily a homomorphism)
such that ⇡(↵s(a)) = Us⇡(a)U⇤

s . Then for all ⇠, ⌘ in the Hilbert space the coe�cient
function s 7! hUs⇠, ⌘i is in C0(G).

We treat the classical situation of a G-space X in Sections 2 and 3, and discuss
general C⇤-covariant systems in Section 4.

For a C⇤-covariant system (A,G,↵), there are various definitions of properness
(by Rie↵el and others) involving some integrability properties. We show in Sec-
tion 5 that they imply s- or w-properness. The main purpose of these integrability
properties is to define a suitable fixed point algebra in M(A), so our properness
definitions are too general for this purpose.

The natural dual concept of a C⇤-covariant system is that of a coaction. As we
briefly describe in Section 7, it turns out that s- and w-properness can be defined
in a similar way for coactions, and we describe some of the relevant results.

In Section 8 we describe a general construction of crossed product algebras
between A o↵ G and A o↵,r G. We claim that the interesting ones are obtained
by first taking as our group C⇤-algebra C⇤(G)/I where I is a small ideal of C⇤(G)
(i.e. I is �G-invariant and contained in the kernel of the regular representation �
of C⇤(G)). We showed in [KLQ13] that I is a small ideal of C⇤(G) if and only if
the annihilator E = I? in B(G) is a large ideal, in the sense that it is a nonzero,
weak* closed, and G-invariant ideal of the Fourier-Stieltjes algebra B(G). There
are various interesting examples, see [BG] and [KLQ13].
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Now to a C⇤-covariant system (B,G,↵) and E as above one can define an E-
crossed product B o↵,E G between the full and the reduced crossed product. In
[KLQ13] we show that if the coaction is w-proper then there is a Galois theory
describing these crossed products.

Finally we mention the work by Kirchberg, Baum, Guentner, andWillet [BGW]
on the Baum-Connes conjecture. They have shown that there is a unique minimal
exact and Morita compatible functor that assigns to a C⇤-covariant system (A,G,↵)
a C⇤-algebra between A o↵ G and A o↵,r G. At least one of the authors doubts
that this minimal functor is an E-crossed product for some large ideal E, although
this remains an open problem.

In Sections 2–6 we give a fairly detailed exposition, in particular proofs of
results we believe to be new. Sections 7–8 will be more descriptive, referring to the
literature for details and proofs.

2. Actions on spaces

Throughout, G will be a locally compact group, A will be a C⇤-algebra, and
X will be a locally compact Hausdor↵ space. We will be concerned with actions
↵ of G on A, and we just say (A,↵) is an action since the group G will typically
be fixed. If G acts on X then we sometimes call X a G-space, and the associated
action (C0(X),↵) is defined by

↵s(f)(x) = f(s�1x) for s 2 G, f 2 C0(X), x 2 X.

Recall that, since the map (s, x) 7! sx from G⇥X toX is continuous, the associated
action ↵ is strongly continuous in the sense that for all f 2 C0(X) the map s 7!
↵s(f) from G to C0(X) is continuous for the uniform norm.

The following notation is borrowed from Palais [Pal61]:

Notation 2.1. If G acts on X, then for two subsets U, V ⇢ X we define

((U, V )) = {s 2 G : sU \ V 6= ?}.

Note that if U and V are compact then ((U, V )) is closed in G.
Much of the following discussion of actions on spaces is well-known; we present

it in a formal way for convenience. We make no attempt at completeness, but
at the same time we include many proofs to make this exposition self-contained.
When a result can be explicitly found in [Pal61], we give a precise reference, but
lack of such a reference should not be taken as any claim of originality. In much
of the literature on proper actions the spaces are only required to be Hausdor↵, or
completely regular; in the proofs we will take full advantage of our assumption that
our spaces are locally compact Hausdor↵.

Definition 2.2. A G-space X is proper if the map � : X⇥G ! X⇥X defined
by �(x, s) = (x, sx) is proper, i.e., inverse images of compact sets are compact.

The following is routine, and explains why properness is sometimes referred to
as “compact sets are wandering” (e.g., [Rie82, Situation 2]):

Lemma 2.3. A G-space X is proper if and only if for every compact K ⇢ X the
set ((K,K)) is compact, equivalently for every compact K,L ⇢ X the set ((K,L))
is compact.
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Example 2.4. If H is a closed subgroup of G, then it is an easy exercise that
the action of G on the homogeneous space G/H by translation is proper if and only
if H is compact.

The following result is contained in [Pal61, Theorem 1.2.9].

Proposition 2.5. A G-space X is proper if and only if for all x, y 2 X there
are neighborhoods U of x and V of y such that ((U, V )) is relatively compact.

Proof. One direction is obvious, since if the action is proper we only need to
choose the neighborhoods U and V to be compact.

Conversely, assume the condition involving pairs of points x, y, and let K ⇢ X
be compact. To show that ((K,K)) is compact, we will prove that any net {si}
in ((K,K)) has a convergent subnet. For every i we can choose xi 2 K such that
sixi 2 K. Passing to subnets and relabeling, we can assume that xi ! x and
sixi ! y for some x, y 2 K. By assumption we can choose compact neighborhoods
U of x and V of y such that ((U, V )) is compact. Without loss of generality, for all i
we have xi 2 U and sixi 2 V , and hence si 2 ((U, V )). Thus {si} has a convergent
subnet by compactness. ⇤

Definition 2.6. A G-space X is locally proper if it is a union of open G-
invariant sets on which G acts properly.

Palais uses the term Cartan instead of locally proper. The forward direction
of the following result is [Pal61, Proposition 1.2.4].

Lemma 2.7. A G-space X is locally proper if and only if every x 2 X has a
neighborhood U such that ((U,U)) is compact.

Proof. First assume that the action is locally proper, and let x 2 X. Choose
an open G-invariant set V containing x on which G acts properly. Then choose
a compact neighborhood U of x contained in V . Then ((U,U)) is compact by
properness.

Conversely, assume the condition involving compact sets ((U,U)). Choose an
open neighborhood V of x such that ((V, V )) is relatively compact, and let U = GV .
We will show that the action of G on U is proper. Let y, z 2 U . Choose s, t 2 G
such that y 2 sV and z 2 tV . Then we have neighborhoods sV of y and tV of z,
and

((sV, tV )) = t((V, V ))s�1

is relatively compact. ⇤
The following result displays a kind of semicontinuity of the sets ((V, V )), and in

also of the stability subgroups. The forward direction is [Pal61, Proposition 1.1.6].

Proposition 2.8. A G-space X is locally proper if and only if for all x 2 X,
the isotropy subgroup Gx is compact and for every neighborhood U of Gx there is a
neighborhood V of x such that ((V, V )) ⇢ U .

Proof. First assume that the action is locally proper. We argue by contra-
diction. Suppose we have x 2 X and a neighborhood U of Gx such that for every
neighborhood V of x there exists s 2 ((V, V )) such that s /2 U . Fix a neighborhood
R of x such that ((R,R)) is compact. Restricting to neighborhoods V of x with
V ⇢ R, we see that we can find nets {si} in the complement U c and {yi} in R such
that
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• siyi 2 R for all i,
• yi ! x, and
• siyi ! x.

Then si 2 ((R,R)) for all i, so passing to subnets and relabeling we can assume
that si ! s for some s 2 G. Then siyi ! sx, so sx = x. Thus s 2 Gx. But then
eventually si 2 U , which is a contradiction.

Conversely, assume the condition regarding isotropy groups and neighborhoods
thereof, and let x 2 X. SinceGx is compact, we can choose a compact neighborhood
U of Gx, and then we can choose a neighborhood V of x such that ((V, V )) ⇢ U .
Then ((V, V )) is relatively compact, and we have shown that the action is locally
proper. ⇤

The following result is contained in [Pal61, Theorem 1.2.9].

Proposition 2.9. A G-space X is proper if and only if it is locally proper and
G\X is Hausdor↵.

Proof. First assume that the action is proper. Then it is locally proper, and
to show that G\X is Hausdor↵, we will prove that if a net {Gxi} in G\X converges
to both Gx and Gy then Gx = Gy. Since the quotient map X ! G\X is open, we
can pass to a subnet and relabel so that without loss of generality xi ! x. Then
again passing to a subnet and relabeling we can find si 2 G such that sixi ! y.
Choose compact neighborhoods U of x and V of y, so that ((U, V )) is compact
by properness. Without loss of generality xi 2 U and sixi 2 V for all i. Then
si 2 ((U, V )) for all i, so by compactness we can pass to subnets and relabel so that
{si} converges to some s 2 G. Then sixi ! sx, so sx = y, and hence Gx = Gy.

Conversely, assume that the action is locally proper and G\X is Hausdor↵. Let
x, y 2 X. By assumption we can choose a compact neighborhood U of x such that
((U,U)) is compact. Now choose any compact neighborhood V of y. To show that
the action is proper, we will prove that ((U, V )) is compact. Let {si} be any net
in ((U, V )). For each i choose xi 2 U such that sixi 2 V . By compactness we
can pass to subnets and relabel so that xi ! z and sixi ! w for some z 2 U and
w 2 V . Then by Hausdor↵ness we can write

Gz = limGxi = limGsixi = Gw,

so we can choose s 2 G such that w = sz. Then sixi ! sz, so

s�1sixi ! z.

Without loss of generality, for all i we can assume that s�1sixi 2 U , so that
s�1si 2 ((U,U)). By compactness we can pass to subnets and relabel so that
s�1si ! t for some t 2 G. Thus si ! st, and we have found a convergent subnet
of {si}. Thus ((U, V )) is compact. ⇤

Example 2.10. It is a well-known fact in topological dynamics that there are
actions that are locally proper but not proper, e.g., the action of Z on

[0,1)⇥ [0,1) \ {(0, 0)}

generated by the homeomorphism (x, y) 7! (2x, y/2), where any compact neigh-
borhood of {(1, 0), (0, 1)} meets itself infinitely often. This action is locally proper
because its restriction to each of the open sets [0,1)⇥ (0,1) and (0,1)⇥ [0,1),
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which cover the space, are proper. A closely related example is given by letting R

act on the same space by s(x, y) = (esx, e�sy).

Definition 2.11. A G-spaceX is pointwise proper if for all x 2 X and compact
K ⇢ X, the set ((x,K)) is compact.

The above properness condition does not seem to be very often studied in the
dynamics literature, and the term we use is not standard, as far as we have been
able to determine.

It is obvious that the above definition can be reformulated as follows:

Lemma 2.12. A G-space X is pointwise proper if and only if for every x 2 X
the map s 7! sx from G to X is proper.

Proposition 2.13. If a G-space X is pointwise proper then orbits are closed,
and hence G\X is T1.

Proof. Let x 2 X, and suppose we have a net {six} in the orbitGx converging
to y 2 X. Choose a compact neighborhood U of y. Without loss of generality, for
all i we have six 2 U , and hence si 2 ((x, U)). This set is compact by pointwise
properness, so passing to a subnet and relabeling we can assume that si ! s for
some s 2 G. Then six ! sx, so y = sx 2 Gx. ⇤

Notation 2.14. For x 2 X let Gx denote the isotropy subgroup.

Proposition 2.15. A G-space X is pointwise proper if and only if for all x 2 X
the isotropy subgroup Gx is compact and the map s 7! sx from G to Gx is relatively
open, equivalently, the action of G on the orbit Gx is conjugate to the action on
the homogeneous space G/Gx.

Proof. First assume that the action is pointwise proper, and let x 2 X. Then
Gx is trivially compact. By homogeneity it su�ces to show that the map s 7! sx
from G to Gx is relatively open at e. Let W be a neighborhood of e. Suppose that
Wx is not a relative neighborhood of x in the orbit Gx. Then we can choose a
net {si} in G such that six /2 Wx and six ! x. Choose a neighborhood U of x
such that ((U,U)) is compact. Without loss of generality, for all i we have six 2 U ,
and so si 2 ((x, U)). By compactness we can pass to a subnet and relabel so that
si ! s for some s 2 G. Then six ! sx. Thus sx = x, and so s 2 Gx. But then
eventually si 2 WGx, which is a contradiction because WGxx = Wx.

The converse is obvious, since if Gx is compact the action of G on G/Gx is
proper. ⇤

We will show that pointwise properness is weaker than local properness, but
for this we need a version of Proposition 2.13 for local properness. The following
result is contained in [Pal61, Proposition 1.1.4].

Lemma 2.16. If a G-space X is locally proper then orbits are closed.

Proof. Let x 2 X, and suppose we have a net {si} in G such that six ! y.
Choose an open G-invariant subset U containing y on which G acts properly. Then
the action of G on U is pointwise proper, so the orbit Gx is closed in U , and hence
y 2 Gx. ⇤

Corollary 2.17. If a G-space X is locally proper then it is pointwise proper.
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Proof. Let x 2 X. Choose an open G-invariant set U ⇢ X such that the
action of G on U is proper. Let K ⇢ X be compact, and put L = K \Gx. Then L
is compact because Gx is closed, and L ⇢ U . Thus ((x,K)) = ((x, L)) is compact
because {x} and L are compact subsets of U and G acts properly on U . ⇤

Example 2.18. This example is taken from [DV97, Example 5 in Section 2].
Recall that in Example 2.10 we had an action of Z on the space

X =
�
[0,1)⇥ [0,1)

�
\ {(0, 0}

generated by the homeomorphism (x, y) 7! (2x, y/2). We form the quotient of X
by identifying {0}⇥ (0,1) with (0,1)⇥ {0} via

(0, y) ⇠ (1/y, 0).

Then the action descends to the identification space, and the quotient action is
pointwise proper but not locally proper.

With suitable countability assumptions, there is a surprise:

Corollary 2.19 (Glimm). Let G act on X, and assume that G and X are
second countable, and that every isotropy subgroup is compact. Then the following
are equivalent:

(1) the action is pointwise proper;
(2) for all x 2 X the map sGx 7! sx from G/Gx to Gx is a homeomorphism;
(3) G\X is T0;
(4) G\X is T1;
(5) every orbit is locally compact in the relative topology from X;
(6) every orbit is closed in X.

Proof. Because we assume that the isotropy groups are compact, we know
(1) () (2). Glimm [Gli61, Theorem 1] proves that, in the second countable
case, (2) () (3) () (5). We also know (1) ) (6) ) (4). Finally, (4) ) (3)
trivially. ⇤

3. C⇤-ramifications

Let X be a G-space, and let ↵ be the associated action of G on C0(X). In
this section we examine the ramifications for the action ↵ of the various properness
conditions covered in Section 2. For the state of the art in the case of proper
actions, see [EE11].

Notation 3.1. If  : X ! Y is a continuous map between locally compact
Hausdor↵ spaces, define  ⇤ : C0(Y ) ! Cb(X) by  ⇤(f) = f �  .

It is an easy exercise to show:

Lemma 3.2. For a continuous map  : X ! Y between locally compact Haus-
dor↵ spaces, the following are equivalent:

(1)  is proper
(2)  ⇤ maps C0(Y ) into C0(X)
(3)  ⇤ maps Cc(Y ) into Cc(X).

Proposition 3.3. The G-space X is proper if and only if for all f, g 2 C0(X)
the map s 7! ↵s(f)g from G to C0(X) vanishes at infinity.
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Proof. First assume that the action is proper. Since Cc(X) is dense in C0(X),
by continuity it su�ces to show that for all f, g 2 Cc(X) the map continuous
s 7! ↵s(f)g from G ! C0(X) has compact support. Define f ⇥ g 2 Cc(X ⇥X) by

f ⇥ g(x, y) = f(x)g(y).

Since the map � : G ⇥ X ! X ⇥ X given by g(s, x) = (sx, x) is proper, we have
�⇤(f ⇥ g) 2 Cc(G ⇥X), so there exist compact sets K ⇢ G and L ⇢ X such that
for all (s, x) /2 K ⇥ L we have

0 = �⇤(f ⇥ g)(s, x) = f ⇥ g(sx, x) = f(sx)g(x) =
�
↵s�1(f)g

�
(x).

Since s /2 K implies (s, x) /2 K ⇥ L, we see that the map s 7! ↵s(f)g is supported
in the compact set K�1.

Conversely, assume the condition regarding ↵s(f)g. To show that the action is
proper, we will show that the map � is proper, and by Lemma 3.2 it su�ces to show
that if h 2 Cc(X ⇥X) then �⇤(h) 2 Cc(G⇥X). The support of h is contained in a
product M ⇥N for some compact sets M,N ⇢ X, and we can choose f, g 2 Cc(X)
with f = 1 on M and g = 1 on N . Then h(f ⇥ g) = h, so it su�ces to show
that �⇤(f ⇥ g) has compact support. By assumption the support K of s 7! ↵s(f)g
is compact, and letting L be the support of g we see that for all (s, x) not in the
compact set K�1 ⇥ L we have

�⇤(f ⇥ g)(s, x) =
�
↵s�1(f)g

�
(x) = 0. ⇤

Proposition 3.4. The G-space X is pointwise proper if and only if for all
f 2 C0(X) and µ 2 M(X) = C0(X)⇤ the map

g(s) =

Z

X

f(sx) dµ(x)

is in C0(G).

Proof. First assume that the action is pointwise proper. Let f 2 C0(X) and
µ 2 M(X), and define g as above. Note that g is continuous since the associated
action (C0(X),↵) is strongly continuous. Suppose that g does not vanish at 1,
and pick " > 0 such that the closed set

S := {s 2 G : |g(s)| � "}
is not compact. It is a routine exercise to verify that we can find a sequence {sn}
in S and a compact neighborhood V of e such that the sets {snV } are pairwise
disjoint. Then for each x 2 X we have limn!1 f(snx) = 0, because for fixed x and
any � > 0 it is an easy exercise to see that the compact set {s 2 G : |f(sx)| � �} can
only intersect finitely many of the sets {snV }. Thus by the Dominated Convergence
theorem limn!1 g(xn) = 0, contradicting sn 2 S for all n.

The converse follows immediately by taking µ to be a Dirac measure and ap-
plying Lemma 2.12. ⇤

Proposition 3.5 below is the first time we need vector-valued integration. There
are numerous references dealing with this topic. We are interested in integrating
functions f : ⌦ ! B, where ⌦ is a locally compact Hausdor↵ space equipped with
a Radon measure µ (sometimes complex, but other times positive, and then fre-
quently infinite), and B is a Banach space. Rie↵el [Rie04, Section 1] handles con-
tinuous bounded functions to a C⇤-algebra using C⇤-valued weights. Exel [Exe99,
Section 2] develops a theory of unconditionally integrable functions with values
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in a Banach space, involving convergence of the integrals over relatively compact
subsets of G. Williams [Wil07, Appendix B.1] gives an exposition of the general
theory of L1(⌦, B), that in some sense unifies the treatments in [DS88, Chapter 3],
[Bou63], [FD88, Chapter II], and [HP74, part I, Section III.1]. However, Williams
uses a positive measure throughout, and we occasionally need complex measures;
this poses no problem, since the theory of [Wil07] can be applied to the positive
and negative variations of the real and imaginary parts of a complex measure. We
prefer to use [Wil07] as our reference for vector-valued integration, mainly because
it entails absolute integrability rather than unconditional integrability (see the first
item in the following list). Here are the main properties of L1(⌦, B) that we need:

• The map f 7!
R
⌦
f dµ from L1(⌦, B) to B is bounded and linear, where

kfk1 =
R
⌦
kf(x)k d|µ|(x).

• If f 2 L1(⌦, B) and ! is a bounded linear functional on B, then ! � f 2
L1(⌦) and

!

✓Z

⌦

f(x) dµ(x)

◆
=

Z

⌦

!(f(x)) dµ(x).

• If f 2 L1(⌦) and b 2 B then
Z

⌦

(f ⌦ b) dµ =

✓Z

⌦

f dµ

◆
b,

where (f ⌦ b)(x) = f(x)b.
• Every continuous bounded function from ⌦ to B is measurable, and is
also essentially-separably valued on compact sets, and so is integrable
with respect to any complex measure.

Of course, we refer to the elements of L1(⌦, B) as the integrable functions from ⌦
to B.

If X is a G-space, then C0(X) gets a Banach-module structure over M(G) =
C0(G)⇤ by

µ ⇤ f(x) =
Z

G

f(sx) dµ(s) for µ 2 M(G), f 2 C0(X), x 2 X.

Here we are integrating the continuous bounded function s 7! ↵s(f) with respect
to the complex measure µ.

The following is a special case of Proposition 4.6 below.

Proposition 3.5. The action on X is pointwise proper if and only if for each
f the map µ 7! µ ⇤ f is weak*-to-weakly continuous.

4. Properness conditions for actions on C⇤-algebras

Propositions 3.3 and 3.4 motivate the following:

Definition 4.1. An action (A,↵) is s-proper if for all a, b 2 A the map s 7!
↵s(a)b from G to A vanishes at infinity.

Taking adjoints, we see that the above map could equally well be replaced by
s 7! a↵s(b).

Definition 4.2. An action (A,↵) is w-proper if for all a 2 A and all ! 2 A⇤

the map
g(s) = !

�
↵s(a)

�
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is in C0(G).

We use the admittedly nondescriptive terminology s-proper and w-proper to
avoid confusion with the myriad other uses of the word “proper” for actions on
C⇤-algebras.

Remark 4.3. It is almost obvious that a G-space X is locally proper if and
only if there is a family of ↵-invariant closed ideals of C0(X) that densely span
C0(X) and on each of which ↵ has the property in Proposition 3.3. In fact, we will
use this in the proof of Proposition 6.12. This could be generalized in various ways
to actions on arbitrary C⇤-algebras, but since we have no applications of this we
will not pursue it here.

Propositions 3.3 and 3.4 can be rephrased as follows:

Corollary 4.4. A G-space X is proper if and only if the associated action
(C0(X),↵) is s-proper, and is pointwise proper if and only if ↵ is w-proper.

Remark 4.5. If an action (A,↵) is s-proper then it is w-proper, since by the
Cohen-Hewitt factorization theorem every functional in A⇤ can be expressed in the
form ! · a, where

! · a(b) = !(ab) for ! 2 A⇤, a, b 2 A.

On the other hand, Example 2.10 implies that ↵ can be w-proper but not s-proper.

If (A,↵) is an action then A gets a Banach module structure over M(G) by

µ ⇤ a =

Z

G

↵s(a) dµ(s) for µ 2 M(G), a 2 A.

Proposition 3.5 is the commutative version of the following:

Proposition 4.6. An action (A,↵) is w-proper if and only if for each a 2 A
the map µ 7! µ ⇤ a is weak*-to-weakly continuous.

Proof. First assume that ↵ is w-proper, and let a 2 A. Let µi ! 0 weak* in
M(G), and let ! 2 A⇤. Then

!(µi ⇤ a) = !

✓Z

G

↵s(a) dµi(s)

◆
=

Z
!(↵s(a)) dµi(s) ! 0,

because the map s 7! !(↵s(a)) is in C0(G).
Conversely, assume the weak*-weak continuity, and let a 2 A and ! 2 A⇤. If

µi ! 0 weak* in M(G), then
Z

G

!(↵s(a)) dµi(s) = !(µi ⇤ a) ! 0

by continuity. By the well-known Lemma 4.7 below, the element s 7! !(↵s(a)) of
Cb(G) lies in C0(G). ⇤

In the above proof we appealed to the following well-known fact:

Lemma 4.7. Let f 2 Cb(G). Then f 2 C0(G) if and only if for every net {µi}
in M(G) converging weak* to 0 we have

Z
f dµi ! 0.
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The properties of s-properness and w-properness are both preserved by mor-
phisms:

Proposition 4.8. Let � : A ! M(B) be a nondegenerate homomorphism that
is equivariant for actions ↵ and �, respectively. If ↵ is s-proper or w-proper, then
� has the same property.

Proof. First assume that ↵ is s-proper. Let c, d 2 B. By the Cohen-Hewitt
Factorization theorem, c = c0�(a) and d = �(b)d0 for some a, b 2 A and c0, d0 2 B.
Then

�s(c)d = �s(c
0�(a))�(b)d0

= �s(c
0)�
�
↵s(a)b

�
d0,

which vanishes at infinity because s 7! ↵s(a)b does and s 7! �s(c0) is bounded.
Now assume that ↵ is w-proper. Let b 2 B and ! 2 B⇤. We must show that

the function s 7! ! � �s(b) vanishes at 1, and it su�ces to do this for ! positive.
By the Cohen-Hewitt Factorization theorem we can assume that b = �(a⇤)c with
a 2 A and c 2 B. By the Cauchy-Schwarz inequality for positive functionals on
C⇤-algebras, we have

��! � �s(b)
��2 =

���!
�
�(↵s(a

⇤))�s(c)
����

2

 ! � �(↵s(a
⇤a))!(�s(c

⇤c)),

which vanishes at 1 since s 7! ! ��(↵s(a⇤a)) does and s 7! !(�s(c⇤c)) is bounded.
⇤

In Section 7 we will discuss properness for coactions, the dualization of actions.
Here we record an easy corollary of Proposition 4.8 that involves coactions, because
it gives a rich supply of s-proper actions. For now we just need to recall that if
(A, �) is a coaction of G, with crossed product C⇤-algebra Ao� G, then there is a
pair of nondegenerate homomorphisms

A
jA
// M(Ao� G) C0(G)

jG
oo

such that (jA, jG) is a universal covariant homomorphism. The dual action b� of G
on Ao� G is characterized by

b�s � jA = jA

b�s � jG = jG � rts,

where rt is the action of G on C0(G) by right translation.

Corollary 4.9. Every dual action is s-proper.

Proof. If � is a coaction of G on A, then the canonical nondegenerate homo-
morphism jG : C0(G) ! M(Ao� G) is rt� b� equivariant. Thus b� is s-proper since
rt is. ⇤

[BG12, Corollary 5.9] says that if an action of a discrete group G on a compact
Hausdor↵ spaceX is a-T-menable in the sense of [BG12, Definition 5.5], then every
covariant representation of the associated action (C(X),↵) is weakly contained in a
representation (⇡, U), on a Hilbert spaceH, such that for all ⇠, ⌘ in a dense subspace
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of H the function s 7! (Us⇠, ⌘) is in c0(G). The following proposition shows that
w-proper actions on arbitrary C⇤-algebras have a quite similar property:

Proposition 4.10. Let (A,↵) be a w-proper action, let ⇡ be a representation
of A on a Hilbert space H, and for each s 2 G suppose we have a unitary operator
Us on H such that AdUs � ⇡ = ⇡ � ↵s. Then for all ⇠, ⌘ 2 H the function

s 7! hUs⇠, ⌘i

vanishes at infinity.

Proof. We can assume that ⇡ is nondegenerate. Then we can factor ⇠ = ⇡(a)⇠0

for some a 2 A, ⇠0 2 H, and we have

|hUs⇡(a)⇠
0, ⌘i| = |hUs⇠

0,⇡(↵s(a
⇤))⌘i|

 k⇠0kh⇡(↵s(aa
⇤)⌘, ⌘i1/2,

so we can appeal to w-properness with ! 2 A⇤ defined by

!(b) = h⇡(b)⌘, ⌘i. ⇤

Remark 4.11. Note that in the above proposition we do not require U to be
a homomorphism; it could be a projective representation.

Remark 4.12. Thus it would be interesting to study the relation between a-
T-menable actions in the sense of [BG12] and pointwise proper actions. As it
stands, the connection would be subtle, because an infinite discrete group cannot
act pointwise properly on a compact space.

Action on the compacts. The following gives a strengthening of a special
case of Proposition 4.10:

Proposition 4.13. Let H be a Hilbert space, and let ↵ be an action of G on
K(H). For each s 2 G choose a unitary operator Us such that ↵s = AdUs. The
following are equivalent:

(1) ↵ is s-proper;
(2) ↵ is w-proper;
(3) s 7! hUs⇠, ⇠i vanishes at infinity for all ⇠ 2 H.
(4) s 7! hUs⇠, ⌘i vanishes at infinity for all ⇠, ⌘ 2 H.

Proof. We know (1) ) (2) ) (3) by Remark 4.5 and Proposition 4.10, and
(3) ) (4) by polarization.

Assume (4). Let E(⇠, ⌘) be the rank-1 operator given by ⇣ 7! h⇣, ⌘i⇠. For
⇠, ⌘, �, 2 H, A routine computation shows

E(⇠, ⌘)↵s(E(�,)) = hUs�, ⌘iE(⇠,)U⇤
s ,

so ��E(⇠, ⌘)↵s(E(�,))
�� 

��hUs�, ⌘i
��kE(⇠,)k,

which vanishes at infinity. Thus s 7! a↵s(b) is in C0(G,K(H)) whenever a and b
are rank-1, and by linearity and density it follows that ↵ ia s-proper. ⇤

In Proposition 4.13, when U can be chosen to be a representation of G, we have
the following:
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Corollary 4.14. Let U be a representation of G on a Hilbert space H, and let
↵ = AdU be the associated action of G on K(H). Suppose that ⇠ is a cyclic vector
for the representation U . If s 7! hUs⇠, ⇠i vanishes at infinity, then ↵ is s-proper.

Proof. As in [BG12, Remark 2.7], it is easy to see that for all ⌘, in the
dense subspace of H spanned by {Us⇠ : s 2 G} the function s 7! hUs⌘,i vanishes
at infinity. Then for all ⌘, 2 H we can find sequences {⌘n}, {n} such that
k⌘n � ⌘k ! 0, kn � k ! 0, and for all n the function s 7! hUs⌘n,ni vanishes
at infinity. Then a routine estimation shows that the functions s 7! hUs⌘n,ni
converge uniformly to the function s 7! hUs⌘,i, and hence this latter function
vanishes at infinity. The result now follows from Proposition 4.13. ⇤

5. Rie↵el properness

We will show that if an action (A,↵) is proper in Rie↵el’s sense [Rie90, Defini-
tion 1.2] (see also [Rie04, Definition 4.5] then it is s-proper. Rie↵el’s definitions of
proper action in both of the above papers involve integration of A-valued functions
on G, and we have recorded our conventions regarding vector-valued integration in
the discussion preceding Proposition 3.5. In [Rie90], Rie↵el defined an action (A,↵)
to be proper (and we follow [BE] in using the term Rie↵el proper) if s 7! ↵s(a)b is
integrable for all a, b in some dense subalgebra, plus other conditions that we will
not need.

Corollary 5.1. Let (A,↵) be an action.

(1) Suppose that there is a dense ↵-invariant subset A0 of A such that for all
a, b 2 A0 the function

(5.1) s 7! ↵s(a)b

is integrable. Then ↵ is s-proper in the sense of Definition 4.1.
(2) Suppose that there is a dense ↵-invariant subset A0 of A such that for all

a 2 A0 and all ! 2 A⇤ the function

s 7! !(↵s(a))

is integrable. Then ↵ is w-proper in the sense of Definition 4.2.

Proof. (1) Since the functions (5.1) are uniformly continuous in norm, it
follows immediately from the elementary lemma Lemma 5.2 below that s 7! ↵s(a)b
is in C0(G,A) for all a, b 2 A0, and then (1) follows by density.

(2) This can be proved similarly to (1), except now the functions are scalar-
valued. ⇤

In the above proof we referred to the following:

Lemma 5.2. Let B be a Banach space, and let f : G ! B be uniformly contin-
uous and integrable. Then f vanishes at infinity.

Proof. Since the composition of f with the norm on B is uniformly contin-
uous, and kfk1 =

R
G
kf(s)k ds < 1 by hypothesis, so this follows immediately

from the scalar-valued case (for which, see [Car96, Theorem 1]), and which itself
is a routine adaptation of a classical result about scalar-valued functions on R,
sometimes referred to as Barbalat’s Lemma. ⇤
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In the commutative case, Corollary 5.1 (1) has a converse. First, following
[BE], we will call an action (A,↵) Rie↵el proper if it satisfies the conditions of
[Rie90, Definition 1.2].

Proposition 5.3. If A = C0(X) is commutative, then an action (A,↵) is
s-proper if and only if it is Rie↵el proper.

Proof. First assume that ↵ is s-proper. Then by Theorem 4.4 the G-space X
is proper, and then it follows from [Rie04, Theorem 4.7 and and its proof] that ↵
is Rie↵el proper.

Conversely, if ↵ is Rie↵el proper, then in particular it satisfies the hypothesis
of Corollary 5.1 (1), so ↵ is s-proper. ⇤

Remark 5.4. Thus, if the G-space X is proper, then by [Rie90, Theorem 1.5]
(for the case of free action, see also [Rie82, Situation 2], which refers to [Gre77])
there is an ideal of C0(X)or G (which is known to equal C0(X)oG in this case —
see Proposition 6.12 below) that is Morita equivalent to C0(G\X). This uses the
following: for f 2 Cc(X) the integral

bf(Gx) :=

Z

G

f(sx) ds

defines bf 2 Cc(G\X). If the action on X is just pointwise proper, the integralR
G
f(sx) ds still makes sense for f 2 Cc(X). It would be interesting to know what

properties persist in this case.

Example 5.5. Proposition 5.3 is not true for arbitrary actions (A,↵). For
example, let G be the free group Fn with n > 1, and let l be the length function.
Haagerup proves in [Haa79] that for any a > 0 the function s 7! e�al(s) is positive
definite.

For k 2 N define hk(s) = e�l(s)/k, and let Uk be the associated cyclic represen-
tation on a Hilbert space Hk, so that we have a cyclic vector ⇠k for Uk with

hUk(s)⇠k, ⇠ki = hk(s).

For each k, since hk vanishes at infinity the associated inner action ↵k = AdUk of
G on K(Hk) is s-proper, by Corollary 4.14.

We claim that not all these actions ↵k can be Rie↵el proper. Rie↵el shows
in [Rie04, Theorem 7.9] that the action ↵ is proper in the sense of [Rie04, Def-
inition 4.5] if and only if the representation U is square-integrable in the sense of
[Rie04, Definition 7.8]. This latter definition is somewhat nonstandard, in that
it uses concepts from the theory of left Hilbert algebras. Also, Rie↵el’s definition
of proper action in [Rie04] is somewhat complicated in that it involves C⇤-valued
weights. In this paper we prefer to deal with the more accessible definition of
Rie↵el-proper action in [Rie90, Definition 1.2], which Rie↵el shows implies the
properness condition [Rie04, Definition 4.5]. Actually, we need not concern our-
selves here with Rie↵el’s definition of square-integrable representations, rather all
we need is his reassurance (see [Rie04, Corollary 7.12 and Theorem 7.14] that a
cyclic representation of G is square-integrable in his sense if and only if it is con-
tained in the regular representation of G — so his notion of square integrability is
equivalent to the more usual one (as he assures us in his comment following [Rie04,
Definition 7.8]).
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Suppose that for every k 2 N the action ↵k of G on K(Hk) is Rie↵el proper.
Then, as noted above, ↵k is also proper in the sense of [Rie04, Definition 4.5], and
so the representation Uk is contained in the regular presentation �. Now we argue
exactly as in [BG12, proof of Proposition 4.4]: since the functions hk converge to
1 pointwise on the discrete group G, for all s 2 G we have

hUk(s)⇠k, ⇠ki ! 1,

and hence

kUk(s)⇠k � ⇠kk ! 0.

Thus the direct sum representation
L

k Uk weakly contains the trivial representa-
tion. But since each Uk is contained in �, the direct sum is weakly contained in �.
This gives a contradiction, since G = Fn is nonamenable.

6. Full equals reduced

Definition 6.1. Let (A,↵) be an action. We say the full and reduced crossed
products of (A,↵) are equal if the regular representation

⇤ : Ao↵ G ! Ao↵,r G

is an isomorphism.

It is an old theorem [Phi89] that if X is a second countable proper G-space
then the associated action (C0(X),↵) has full and reduced crossed products equal.
It is folklore that the second-countability hypothesis can be removed — see the
proof of Proposition 6.12 and Remark 6.14. We extend this to pointwise proper
actions and weaken the countability hypothesis:

Theorem 6.2. If X is a first countable pointwise proper G-space, then the full
and reduced crossed products of the associated action (C0(X),↵) are equal.

We need some properties of the “full = reduced” phenomenon for actions. First,
it is frequently inherited by invariant subalgebras:

Lemma 6.3. Let (A,↵) and (B,�) be actions, and let � : A ! M(B) be
an injective ↵ � � equivariant homomorphism. Suppose that the crossed-product
homomorphism

�oG : Ao↵ G ! M(B o� G)

is faithful. If the full and reduced crossed products of � are equal, then the full and
reduced crossed products of ↵ are equal.

Proof. We have a commutative diagram

Ao↵ G
�oG

//

⇤↵

✏✏

M(B o� G)

⇤�

✏✏

Ao↵,r G
�orG

// M(B o�,r G),

and the composition ⇤� � (�oG) is faithful, and therefore ⇤↵ is faithful. ⇤

Next, “full = reduced” is preserved by extensions:
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Lemma 6.4. Let (A,↵) be an action, and let J be a closed invariant ideal of A.
If the actions of G on J and on A/J both have full and reduced crossed products
equal, then the full and reduced crossed products of ↵ are equal.

Proof. Let � : J ,! A be the inclusion map, and let  : A ! A/J be the
quotient map. We have a commutative diagram

J oG
�oG

//

⇤J

✏✏

AoG
 oG

//

⇤A

✏✏

A/J oG

⇤A/J

✏✏

J or G
�orG

// Aor G
 orG

// A/J or G.

The argument is a routine diagram-chase. The vertical maps are the regular rep-
resentations, which are surjective, and moreover ⇤J and ⇤A/J are injective by
hypothesis. Since J is an ideal, the map �oG is an isomorphism onto the kernel of
 oG [Gre78, Proposition 12]. Further, since J is an invariant subalgebra, �or G
is injective. Let x be in the kernel of ⇤A. Then

0 = ( or G) � ⇤A(x) = ⇤A/J � ( oG)(x),

so x is in the kernel of  oG. Thus x 2 J oG, and

0 = ⇤A � (�oG)(x) = (�or G) � ⇤J(x),

so x = 0. ⇤

Next we show that “full = reduced” is preserved by direct sums:

Lemma 6.5. Let {(Ai,↵i)}i2I be a family of actions, and assume that the full
and reduced crossed products are equal for every ↵i. Then the direct sum action

 
M

i2I

Ai,
M

i2I

↵i

!

also has full and reduced crossed products equal.

Proof. By Lemma 6.4, the conclusion holds if I has cardinality 2, and by in-
duction it holds if I is finite. By [Gre78, Proposition 12], we can regard (

L
i2I Ai)o

G as the inductive limit of the ideals (
L

i2F Ai) o G for finite F ⇢ I. Similarly
(but not requiring the reference to [Gre78]), we can regard (

L
i2I Ai)or G as the

inductive limit of the ideals (
L

i2F Ai) or G. For every finite F ⇢ I we have a
commutative diagram

�L
i2F Ai

�
oG �

�
//

⇤F '
✏✏

�L
i2I Ai

�
oG

⇤I

✏✏�L
i2F Ai

�
or G

� �
//

�L
i2I Ai

�
or G,

where the vertical arrows are the regular representations. Thus ⇤I must be an
isomorphism, by properties of inductive limits. ⇤
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Corollary 6.6. Let (A,↵) be an action, let {(Ai,↵i)}i2I be a family of actions
for which the full and reduced crossed products are equal, and for each i let �i : A !
M(Ai) be an ↵� ↵i equivariant homomorphism. Let

� : A ! M

 
M

i2I

Ai

!

be the associated equivariant homomorphism. Suppose that
T

i2I ker�i = {0}, and
that the crossed-product homomorphism

Ao↵ G ! M

 ✓M

i2I

Ai

◆
o↵i G

!

is faithful. Then ↵ also has full and reduced crossed products equal.

Proof. This follows immediately from Lemmas 6.3 and 6.5. ⇤
We are almost ready for the proof of Theorem 6.2, but first we need to recall

the notion of quasi-regularity, and we only need this in the special case of closed
orbits:

Definition 6.7 (special case of [Gre78, Page 221]). Let G act on X, and
assume that all orbits are closed. Then the associated action of G on C0(X) is
quasi-regular if for every irreducible covariant representation (⇡, U) of (C0(X), G)
there is an orbit G · x such that

ker⇡ = {f 2 C0(X) : f |G·x = 0}.

In this case, ⇡ factors through a faithful representation ⇢ of C0(G ·x) such that
the covariant pair (⇢, U) is an irreducible representation of the restricted action
(C0(G · x),↵). By [Gre78, Corollary 19], the action is quasi-regular if the orbit
space G\X is second countable or almost Hausdor↵ in the sense that every closed
subset contains a dense relative open Hausdor↵ subset. Here we will prove a variant
of this result:

Proposition 6.8. If a G-space X is pointwise proper and first countable, then
the associated action of G on C0(X) is quasi-regular.

We first need a topological property of pointwise proper actions on first count-
able spaces:

Lemma 6.9. If a G-space X is pointwise proper and first countable, then each
orbit is a countable decreasing intersection of open G-invariant sets.

Proof. Since orbits are closed, the quotient space G\X is T1. Since the quo-
tient map is continuous and open, G\X is first countable. In particular, every point
is a countable decreasing intersection of open sets, and the result follows. ⇤

Remark 6.10. In Lemma 6.9 the first countability assumption could be weak-
ened to: every point in X is a G�.

It seems to us that the proof of Proposition 6.8 is clearer if we separate out a
special case:

Lemma 6.11. If a G-space X is pointwise proper and first countable, and if
there is an irreducible covariant representation (⇡, U) of (C0(X), G) such that ⇡ is
faithful, then X consists of a single orbit.
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Proof. We can extend ⇡ to a representation of the algebra of bounded Borel
functions on X, and we let P be the associated spectral measure (see, e.g., [Mur90,
Theorem 2.5.5] for a version of the relevant theorem in the nonsecond-countable
case; Murphy states the theorem for compact Hausdor↵ spaces, but it applies
equally well to locally compact spaces by passing to the one-point compactifica-
tion). Since (⇡, U) is irreducible, for every G-invariant Borel set E we have P (E)
= 0 or 1. In particular each orbit has spectral measure 0 or 1, and there can be at
most one orbit with measure 1.

Claim: every nonempty G-invariant open subset O of X has spectral measure
1. It su�ces to show that P (O) 6= 0. Since O 6= ?, we can choose a nonzero
f 2 C0(X) supported in O. Then

0 6= ⇡(f) = ⇡(f�O) = ⇡(f)P (O),

so P (O) 6= 0.
Let x 2 X. We will show that X = G · x. By Lemma 6.9 we can choose a

decreasing sequence {On} of open G-invariant sets with
T1

1 On = G · x. By the
properties of spectral measures, we have

P (G · x) = lim
n

P (On) = 1.

Thus every orbit has spectral measure 1, so there can be only one orbit. ⇤

Proof of Proposition 6.8. Let (⇡, U) be an irreducible covariant represen-
tation of (C0(X), G) on a Hilbert space H. Then ker⇡ is a G-invariant ideal of
C0(X), so there is a closed G-invariant subset Y of X such that

ker⇡ = {f 2 C0(X) : f |Y = 0}.

We will show that Y consists of a single orbit. The restriction map f 7! f |Y
is a G-equivariant homomorphism of C0(X) to C0(Y ), and ker⇡ = C0(X \ Y ),
so ⇡ factors through a faithful representation ⇢ of C0(Y ) such that (⇢, U) is an
irreducible covariant representation of (C0(Y ), G). Then Y is a single orbit, by
Lemma 6.11. ⇤

Proof of Theorem 6.2. For each x 2 X, the orbit G·x is closed, the isotropy
subgroup Gx is compact, and the canonical bijection G/Gx ! G·x is an equivariant
homeomorphism. Thus Gx is in particular amenable, so it follows from the above
and [QS92, Corollary 4.3] (see also [Kas88, Theorem 3.15]) the associated action
of G on C0(G · x) has full and reduced crossed products equal. The restriction
map �x : C0(X) ! C0(G · x) is equivariant, and we get an equivariant injective
homomorphism

� : C0(X) ! M

 
M

x2X

C0(G · x)
!
.

By Proposition 6.8 the action of G on C0(X) is quasi-regular, so every irre-
ducible covariant representation of (C0(X), G) factors through a representation of
(C0(G · x), G) for some orbit G · x. It follows that the crossed-product homomor-
phism

�oG : C0(X)oG ! M

 ✓M

x2X

C0(G · x)
◆
oG

!

is faithful. Therefore the theorem follows from Corollary 6.6. ⇤
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The above strategy can also be used to prove the following folklore result, which
is a mild extension of Phillips’ full-equals-reduced theorem. Actually, we could not
find the following result explicitly recorded in the literature, but it seems to us that
it must have been noticed before.

Proposition 6.12. If a G-space X is locally proper then the associated action
(C0(X),↵) has full and reduced crossed products equal.

Note that there is no countability hypothesis on X.
We need the following, which will play a role similar to that of Corollary 6.6 in

the pointwise proper case:

Corollary 6.13. Let (A,↵) be an action, and let {Ji}i2I be a family of G-
invariant ideals that densely span A. If for every i the restriction of the action to
Ji has full and reduced crossed products equal, then the action on A has the same
property.

Proof. For each i let ↵i = ↵|Ji , let �i : A ! M(Ji) be the ↵ � ↵i equivari-
ant homomorphism induced by the A-bimodule structure on Ji, and let � : A !
M(
L

i2I Ji) be the associated equivariant homomorphism, Since A = spani2I Ji,
we have

T
i2I ker�i = {0}. Thus, by Corollary 6.6 we only need to show that

�oG : Ao↵ G ! M

 ✓M

i2I

Ji

◆
o↵i G

!

is faithful. Suppose that ker(� o G) 6= {0}. The ideals Ji o↵i G densely span
Ao↵ G, since the Ji’s densely span A. Thus we can find i 2 J such that

{0} 6= ker(�oG) \ (Ji o↵i G) = ker(�|Ji oG).

But �|Ji o G is faithful since �|Ji is faithful and Ji is a G-invariant ideal, so we
have a contradiction. ⇤

Proof of Proposition 6.12. First, if the G-space X is actually proper, then
G\X is Hausdor↵, so by [Gre78, Corollary 19] the action of G on C0(X) is quasi-
regular, so the conclusion follows as in the proof of Proposition 6.2. In the general
case, X is a union of open G-invariant subsets Ui, on each of which G acts prop-
erly. Then C0(X) is densely spanned by the ideals C0(Ui), so by properness the
associated actions ↵i have full and reduced crossed products equal, and hence the
conclusion follows from Lemma 6.13. ⇤

Remark 6.14. In the above proof we appealed to [Gre78, Corollary 19], whose
proof involved dense points in irreducible closed sets. In the spirit of the techniques
of the current paper, we o↵er an alternative argument: assume that X is a proper
G-space. To see that the action is quasi-regular, as in the proof of Proposition 6.8
we can assume without loss of generality that there is an irreducible covariant
representation (⇡, U) of (C0(X), G) such that ⇡ is faithful. We must show that
X consists of a single G-orbit. Suppose G · x and G · y are distinct orbits in X.
By properness, the quotient space G\X is Hausdor↵, so we can find disjoint open
neighborhoods of G · x and G · y in G\X, and hence nonempty disjoint open G-
invariant sets U and V in X. But, as in the proof of Lemma 6.11, letting P denote
the spectral measure associated to the representation ⇡ of C0(X), every nonempty
G-invariant open subset O of X has P (O) = 1. Since we cannot have two disjoint
open sets with spectral measure 1, we have a contradiction.
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The above methods quickly lead to another property of the crossed product.
Recall that a C⇤-algebra is called CCR, or liminal [Dix77, Definition 4.2.1], if
every irreducible representation is by compacts. In the second countable case, the
following result is contained in [Wil07, Proposition 7.31].

Proposition 6.15. Let X be a G-space. In either of the following two situa-
tions, the crossed product C0(X)oG is CCR:

(1) the action of G is locally proper;
(2) the action is pointwise proper and X is first countable.

Proof. (1) If the G-space X is actually proper, then this is well-known. To
illustrate how the above methods apply, we give the following argument. We have
seen above that the action is quasi-regular, and hence for every irreducible covariant
representation (⇡, U) of (C0(X), G) factors through an irreducible representation
of the restriction of the action to (C0(G · x), G) for some x 2 X. The G-spaces
G ·x and G/Gx are isomorphic, and C0(G/Gx)oG is Morita equivalent to C⇤(Gx)
by Rie↵el’s version of Mackey’s Imprimitivity Theorem [Rie74, Section 7]. Since
the isotropy subgroup Gx is compact, C⇤(Gx) is CCR, and hence the image of the
integrated form ⇢⇥ U , which equals the image of ⇡ ⇥ U , is the algebra of compact
operators.

In the general case, X is a union of open G-invariant proper G-spaces Ui, so
C0(X)oG is the closed span of the CCR ideals C0(Ui)oG. Since every C⇤-algebra
has a largest CCR ideal [Dix77, Proposition 4.2.6], C0(X)oG must be CCR.

(2) By Proposition 6.8 the action is quasi-regular, and it follows as in part (1)
that C0(X)oG is CCR. ⇤

Remark 6.16. As remarked in [AD02, Example 2.7 (3)], it follows from
[ADR00, Corollary 2.1.17] that if an action of G on X is proper then the action
is amenable (a condition involving approximation by positive-definite functions).
By [AD02, Theorem 5.3], if a G-space X is amenable then the associated action
↵ on C0(X) has full and reduced crossed products equal. This raises a question: is
every pointwise proper action amenable? It seems that amenability of the G-space
is closely related to equality of full and reduced crossed products: by [Mat14, The-
orem 3.3], for an action of a discrete exact group G on a compact space X, if ↵
has full and reduced crossed products equal then the action is amenable. Unfortu-
nately, this is of no help for our question, because a noncompact group cannot act
pointwise properly on a compact space.

7. Properness conditions for coactions

We will now dualize the properness properties of Definitions 4.1 and 4.2.
To motivate how this will go, we pause to recall some basic facts regarding

C⇤-tensor products, commutative C⇤-algebras, and actions.
For locally compact Hausdor↵ spaces X,Y we have the standard identifications

C0(X ⇥ Y ) = C0(X)⌦ C0(Y )

and
Cb(X) = M(C0(X)).

For a C⇤-algebra A we have

A⌦ C0(G) = C0(G,A)
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and
M(A⌦ C0(G)) = Cb(G,M�(A)),

where M�(A) denotes the multiplier algebra M(A) with the strict topology.
For an action (A,↵) we have a homomorphism

e↵ : A ! M(A⌦ C0(G))

given by
e↵(f)(s, x) = e↵(f)(s)(x) = f(sx) = ↵s�1(f)(x).

In fact, the image of e↵ lies in the C⇤-subalgebra fM(A ⌦ C0(G)), where for any
C⇤-algebras A and D

fM(A⌦D) := {m 2 M(A⌦D) : m(1⌦D) [ (1⌦D)m ⇢ A⌦D}.
Using the above facts, Corollary 4.4 can be restated as follows:

Lemma 7.1. An action (A,↵) is s-proper if and only if

e↵(A)(A⌦ 1M(C0(G))) ⇢ A⌦ C0(G),

and is w-proper if and only if for all ! 2 A⇤,

(! ⌦ id) � e↵(A) ⇢ C0(G).

Now consider a coaction (A, �) of G. The main di↵erence from actions is that
the commutative C⇤-algebra C0(G) is replaced by C⇤(G). Here we will use the
standard conventions for tensor products and coactions (see, e.g., [EKQR06, Ap-
pendix A], in particular, the coaction is a homomorphism

� : A ! fM(A⌦ C⇤(G)).

Definition 7.2. A coaction (A, �) is s-proper if

�(A)
�
A⌦ 1M(C⇤(G))

�
⇢ A⌦ C⇤(G),

and is w-proper if for all ! 2 A⇤ we have

(! ⌦ id) � �(A) ⇢ C⇤(G).

Remark 7.3. In [KLQ, Definition 5.1] we introduced the above properness
conditions, but in that paper we used the term proper coaction for the above s-
proper coaction, and slice proper coaction for the above w-proper coaction (be-
cause it involves the slice map ! ⌦ id). After we submitted [KLQ], we learned
that Ellwood had defined properness more generally for coactions of Hopf C⇤-
algebras [Ell00, Definition 2.4]. Indeed, Proposition 3.3 is essentially [Ell00, Theo-
rem 2.9(b)]. Definition 7.2 should also be compared with Condition (A1) in [GK03,
Section 4.1], which concerns discrete quantum groups and involves the algebraic
tensor product.

Remark 7.4. An action on C0(X) can be w-proper without being s-proper, and
a fortiori a coaction can be w-proper without being s-proper, even for G abelian.

Remark 7.5. (1) Just as every action of a compact group is s-proper, every
coaction of a discrete group is s-proper, because then we in fact have �(A) ⇢
A⌦ C⇤(G).

(2) For any locally compact group G the canonical coaction �G on C⇤(G) given
by the comultiplication is s-proper, because it is symmetric in the sense that

�G = ⌃ � �G,
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where ⌃ is the flip automorphism on C⇤(G)⌦ C⇤(G).

If (A, �) is a coaction, then A gets a Banach module structure over the Fourier-
Stieltjes algebra B(G) = C⇤(G)⇤ by

f · a = (id⌦ f) � �(a) for f 2 B(G), a 2 A.

In [KLQ, Lemma 5.2] we proved the following dual analogue of Lemma 4.6

Lemma 7.6. A coaction (A, �) is w-proper if and only if for all a 2 A the map
f 7! f · a is weak*-to-weakly continuous.

Proof. See [KLQ, Lemma 5.2]. ⇤

s-properness and w-properness are both preserved by morphisms. For w-
properness this is proved in [KLQ, Proposition 5.3], and here it is for s-properness:

Proposition 7.7. Let � : A ! M(B) be a nondegenerate homomorphism that
is equivariant for coactions � and ", respectively. If � is s-proper then " has the
same property.

Proof. We have

(B ⌦ 1)"(B) = (B�(A)⌦ 1)(�⌦ id)(�(A))"(B)

= (B ⌦ 1)(�(A)⌦ 1)(�⌦ id)(�(A))"(B)

= (B ⌦ 1)(�⌦ id)
�
(A⌦ 1)�(A)

�
"(B)

⇢ (B ⌦ 1)(�⌦ id)(A⌦ C⇤(G))"(B)

= (B ⌦ C⇤(G))"(B)

⇢ B ⌦ C⇤(G)). ⇤

Corollary 7.8. Every dual coaction is s-proper.

Proof. If (A,↵) is an action, then the canonical nondegenerate homomor-
phism iG : C⇤(G) ! M(A o↵ G) is �G � b↵ equivariant, where �G is the canonical
coaction on C⇤(G) given by the comultiplication. Thus b↵ is s-proper since �G is. ⇤

Recall that if (A, �) is a coaction then the spectral subspaces {As}s2G are given
by

As = {a 2 M(A) : �(a) = a⌦ s},
and the fixed-point algebra is A� = Ae.

Proposition 7.9. Suppose A \A� 6= {0}. Then the following are equivalent:

(1) � is s-proper;
(2) � is w-proper;
(3) G is discrete.

Proof. We know (1) implies (2) and (3) implies (1). Assume (2), and let
ae 2 A \A� be nonzero. Then

f 7!f · ae = (id⌦ f) � �(ae) = (id⌦ f)(ae ⌦ 1) = f(e)ae

is weak*-weak continuous from B(G) to A, so f 7! f(e) is a weak* continuous
linear functional on B(G), which implies e 2 C⇤(G), and hence G is discrete. ⇤
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Remark 7.10. Of course, the above proposition applies if A is unital. Also
note that when G is nondiscrete a coaction (A, �) can be s-proper and still have
nonzero spectral subspaces As (and hence nontrivial fixed-point algebra A�, but
these will be subspaces in M(A) that intersect A trivially.

For the next lemma, recall that if (A, �) is a coaction, then a projection p 2
M(A) is called �-invariant if p 2 A�, and in this case � restricts to a coaction �p
on the corner pAp:

�p(pap) = (p⌦ 1)�(a)(p⌦ 1) 2 M(pAp⌦ C⇤(G)) for a 2 A.

Lemma 7.11. Let (A, �) be a coaction, and let p be a �-invariant projection in
M(A). If (A, �) is s-proper, then so is the corner coaction (pAp, �p) defined above.

Proof. This is a routine computation:

�p(pAp)(pAp⌦ 1) ⇢ (p⌦ 1)�(A)(A⌦ 1)(p⌦ 1)

⇢ (p⌦ 1)(A⌦ C⇤(G))(p⌦ 1)

= pAp⌦ C⇤(G). ⇤
For the definitions of normalization and maximalization, we refer to [EKQR06,

Appendix A.7] and [EKQ04]. Normalizations and maximalizations always exist,
and are unique up to equivariant isomorphism.

Proposition 7.12. For any coaction (A, �), the following are equivalent:

(1) (A, �) is s-proper;
(2) The normalization (An, �n) is s-proper;
(3) The maximalization (Am, �m) is s-proper.

Proof. It follows from Proposition 4.8 that (1) implies (2) and (3) implies (1),
and a careful examination of the construction of the maximalization in [EKQ04]
(particularly Lemma 3.6 and the proof of Theorem 3.3 in that paper) shows that
(2) implies (3). ⇤

Remark 7.13. In case the above proof seems overly fussy, note that it would

not be enough to observe that the double-dual coaction
bb� is automatically s-proper

and the maximalization �m is Morita equivalent to
bb�, because s-properness is not

preserved by Morita equivalence — otherwise every coaction of an amenable group
would be s-proper!

Recall from [KMQW10, Proposition 3.1] that if A ! G is a Fell bundle then
there is a coaction �A of G on the (full) bundle algebra C⇤(A).

Proposition 7.14. Let A ! G be a Fell bundle. Then the coaction (C⇤(A), �A)
is s-proper.

Proof. We must show that for all a, b 2 C⇤(A) we have �(a)(b⌦1) 2 C⇤(A)⌦
C⇤(G), and by density and nondegeneracy it su�ces to take a 2 �c(A) and b of the
form f · b for f 2 A(G) \ Cc(G):

�(a)(f · b⌦ 1) =

Z

G

�
a(t)f · b⌦ t

�
dt

=

Z

G

�
a(t)b⌦ tf

�
dt (justified below)

2 C⇤(A)⌦ C⇤(G),
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because the integrand
t 7! a(t)b⌦ tf

is in Cc(G,C⇤(A)⌦ C⇤(G)). In the above computation we used the equality

a(t)f · b⌦ t = a(t)b⌦ tf for all t 2 G,

which we justify as follows: computing inside M(C⇤(A)⌦ C⇤(G)), we have

a(t)f · b⌦ t =
�
a(t)⌦ t

��
f · b⌦ 1

�

=
�
a(t)⌦ t

��
b⌦ f

�
(justified below)

= a(t)b⌦ tf,

where we must now justify the equality f · b⌦1 = b⌦f : both sides can be regarded
as compactly supported strictly continuous functions from G toM(C⇤(A)⌦C⇤(G)),
and for all s 2 G we have

(f · b⌦ 1)(s) = (f · b)(s)⌦ 1

= f(s)b(s)⌦ 1

= b(s)⌦ f(s) (since f(s) 2 C)

= (b⌦ f)(s). ⇤
Remark 7.15. Let A be a Fell bundle over G, and let

�rA = (id⌦ �) � �A : C⇤(A) ! M(C⇤(A)⌦ C⇤
r (G))

be the reduction of the coaction �A. [Bus10, Theorem 3.10] shows that �rA is
integrable in the sense that the set of positive elements a in A for which �rA(a) is
in the domain of the operator-valued weight id⌦ ' is dense in A+, where ' is the
Plancherel weight on C⇤

r (G).

Corollary 7.16 below is a dual analogue of Corollary 5.1 (1). To explain the
terminology, we recall a few things from Buss’ thesis [Bus07]. Buss worked with
reduced coactions, but as he points out in [Bus07, Remark 2.6.1 (4)], the the-
ory carries over to full coactions by considering the reductions of the coactions.
Throughout, (A, �) is a coaction of G.

Let ' be the Plancherel weight on C⇤(G), let M+
' = {c 2 C⇤(G)+ : '(c) < 1},

N' = {c 2 C⇤(G) : c⇤c 2 M'}, and M' = spanM+
' , so that M+

' is a hereditary
cone in C⇤(G), and coincides with both M' \ C⇤(G)+ and spanN ⇤

'N', and '
extends uniquely to a linear functional on M'.

Let id ⌦ ' denote the associated M(A)-valued weight on A ⌦ C⇤(G), with
associated objects M+

id⌦', Nid⌦', and Mid⌦', and characterized as follows: for

x 2 (A⌦ C⇤(G))+ we have x 2 M+
id⌦' if and only if there exists a 2 M(A)+ such

that
✓(a) = (id⌦ ')

�
(✓ ⌦ id)(x)

�
for all ✓ 2 A⇤+,

in which case (id ⌦ ')(x) = a. We have (id ⌦ ')(a ⌦ c) = '(c)a for all a 2 A and
c 2 M'.

Let ⇤ : N' ! L2(G) be the canonical embedding associated to the GNS
construction for ', so that ⇤(bc) = �(b)⇤(c) for all b 2 C⇤(G) and c 2 N'.

Let id⌦⇤ : Nid⌦' ! M(A⌦L2(G)) = L(A,A⌦L2(G)) be the map associated
to the KSGNS construction for id⌦ ', characterized by

(id⌦ ⇤)(x)⇤
�
a⌦ ⇤(c)

�
= (id⌦ ')

�
x⇤(a⌦ c)

�
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for all x 2 Nid⌦', a 2 A, and c 2 N'. We have (id ⌦ ⇤)(a ⌦ c) = a ⌦ ⇤(c) for all
a 2 A and c 2 N', and

(id⌦ ⇤)(xy) = (id⌦ �)(x)(id⌦ ⇤)(y)

for all x 2 M(A⌦ C⇤(G)) and y 2 Nid⌦⇤.
The weight ' extends canonically to M(C⇤(G)), and the associated objects are

denoted by M+

' , N', and M'. Similarly for the canonical extension of id ⌦ ' to

M(A⌦ C⇤(G)), M+

id⌦', etc.
Let

Asi = {a 2 A : �(aa⇤) 2 M+

id⌦'}.
Then the coaction � is square-integrable if Asi is dense in A. For a 2 Asi define

hha| 2 M(A⌦ L2(G)) = L(A,A⌦ L2(G))

by
hha|(b) = (id⌦ ⇤)

�
�(a)⇤(b⌦ 1)

�
,

then define |aii = hha|⇤ 2 L(A⌦ L2(G), A), and for a, b 2 Asi define

hha|bii = hha| � |bii 2 L(A⌦ L2(G)).

Then (A, �) is continuously square-integrable if there is a dense subspace R ⇢ Asi

such that
hha|bii 2 Ao� G ⇢ L(A⌦ L2(G)) for all a, b 2 Asi.

Corollary 7.16. Every continuously square-integrable coaction is s-proper.

Proof. Let (A, �) be a continuously square-integrable coaction. [Bus07, Sec-
tion 6.8 and Proposition 6.9.4] gives a Fell bundle A over G and a �A�� equivariant
surjective homomorphism  : C⇤(A) ! A. By Proposition 4.8, every quotient of
an s-proper coaction is s-proper, so the corollary follows from Proposition 7.14. ⇤

8. E-crossed products

To every action (B,↵) one can associate the full crossed product Bo↵G and the
reduced crossed product Bo↵,r G. But there are frequently many “exotic” crossed
products in between, i.e., quotients (Bo↵G)/J where J is a nonzero ideal properly
contained in the kernel of the regular representation ⇤. In [KLQ13], inspired by
work of Brown and Guentner [BG12], we introduced a tool that produces many
(but not all) of these exotica. Our strategy is to base everything on “interesting”
C⇤-algebras C⇤(G)/I between C⇤(G) and C⇤

r (G). We call a closed ideal I of C⇤(G)
small if it is contained in the kernel of the regular representation � and is �G-
invariant, i.e., the coaction �G descends to a coaction on C⇤(G)/I. In [KLQ13,
Corollary 3.13] we proved that I is small if and only if the annihilator E = I? in
B(G) is an ideal, which will then be large in the sense that it is nonzero, weak*
closed, and G-invariant, where B(G) is given the G-bimodule structure

(s · f · t)(u) = f(tus) for f 2 B(G), s, t, u 2 G.

Large ideals automatically contain the reduced Fourier-Stieltjes algebra Br(G) =
C⇤

r (G)⇤ [KLQ13, Lemma 3.14], and the map E 7! ?E gives a bijection between
the large ideals of B(G) and the small ideals I of C⇤(G). For a large ideal E the
quotient map

qE : C⇤(G) ! C⇤
E(G) := C⇤(G)/?E

is equivariant for �G and a coaction �EG .
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Example 8.1. E = B(G) \ C0(G) is a large ideal, and if G is discrete then G
has the Haagerup property if and only if E = B(G) [BG12, Corollary 3.5].

Example 8.2. For 1  p  1, Ep := B(G) \ Lp(G) is a large ideal. Of
course E1 = B(G). For p  2 we have Ep = Br(G) [KLQ13, Proposition 4.2]
(and [BG12, Proposition 2.11] for discrete G). If G = Fn for n > 1, it has
been attributed to Okayasu [Oka] and (independently) to Higson and Ozawa (see
[BG12, Remark 4.5]) that for 2  p < 1 the ideals Ep are all distinct.

Given an action (B,↵), we use large ideals to produce exotic crossed products
by involving the dual coaction b↵ on B o↵ G. As in [KLQ], the process is most
cleanly expressed in terms of an abstract coaction (A, �). An ideal J of A is called
�-invariant if � descends to a coaction on the quotient A/J . We call an ideal J
small if it is invariant and contained in the kernel of jA, where (jA, jG) is the
canonical covariant homomorphism of (A,C0(G)) into the multiplier algebra of the
crossed product A o� G. For the coaction (C⇤(G), �G), this is consistent with the
above notion of small ideals of C⇤(G).

Recall that A gets a B(G)-module structure by

f · a = (id⌦ f) � �(a) for f 2 B(G), a 2 A.

For any large ideal E of B(G),

J (E) = {a 2 A : f · a = 0 for all f 2 E}

is a small ideal of A [KLQ, Observation 3.10]. For a dual coaction (Bo↵G, b↵), we
call the quotient

B o↵,E G := (B o↵ G)/J (E)

an E-crossed product.
In the other direction, for any small ideal J of A,

E(J) = {f 2 B(G) : (s · f · t) · a = 0 for all a 2 J, s, t 2 G}

is an ideal of B(G), which is G-invariant by construction, and which will be weak*-
closed if the coaction is w-proper. The following is [KLQ, Lemma 6.4]:

Lemma 8.3. For any w-proper coaction (A, �), the above maps J and E form
a Galois correspondence between the large ideals of B(G) and the small ideals of A.

By Galois correspondence we mean that J and E reverse inclusions, E ⇢
E(J (E)) for every large ideal E of B(G), and J ⇢ J (E(J)) for every small ideal J
of A.

Since every dual coaction is s-proper, and hence w-proper, Lemma 8.3 is ap-
plicable to (B o↵ G, b↵) for any action (B,↵). In [KLQ, Theorem 6.10] we used
this Galois correspondence to exhibit examples of small ideals J that are not of
the form J (E) for any large ideal E. Buss and Echterho↵ [BE13, Example 5.3]
have given examples that are better in the sense that the coaction (A, �) is of the
form (B o↵ G, b↵). Consequently, there are exotic crossed products that are not
E-crossed products for any large ideal E.

However, the real goal is not to look at exotic crossed products one at a time,
but rather all at once: In [BGW], Baum, Guentner, and Willett define a crossed-
product as a functor (B,↵) 7! Bo↵,⌧G, from the category of actions to the category
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of C⇤-algebras, equipped with natural transformations

B o↵ G //

✏✏

B o↵,⌧ G

xx

B o↵,r G,

where the vertical arrow is the regular representation, such that the horizontal
arrow is surjective.

For a large ideal E of B(G), the E-crossed product

(B,↵) 7! B o↵,E G

gives a crossed-product functor in the sense of [BGW].
[BGW] defines a crossed-product functor ⌧ to be exact if for every short exact

sequence
0 ! (B1,↵1) ! (B2,↵2) ! (B3,↵3) ! 0

of actions the corresponding sequence of C⇤-algebras

0 ! B1 o↵1,⌧ G ! B2 o↵2,⌧ G ! B3 o↵3,⌧ G ! 0

is exact, and Morita compatible if for every action (B,↵) the canonical untwisting
isomorphism

(B ⌦KG)oG ' (AoG)⌦KG,

where KG denotes the compact operators on
L1

n=1 L
2(G), descends to an isomor-

phism
(B ⌦KG)o⌧ G ' (Ao⌧ G)⌦KG

of ⌧ -crossed products. [BGW, Theorem 3.8] (with an assist from Kirchberg) shows
that there is a unique minimal exact and Morita compatible crossed product, and
[BGW] uses this to give a promising reformulation of the Baum-Connes conjecture.

If E is any large ideal of B(G), the E-crossed product

(B,↵) 7! B o↵,E G

is a crossed-product functor in the sense of [BGW], and it is automatically Morita
compatible [BGW, Lemma A.5].

It is an open problem whether the minimal functor of [BGW] is an E-crossed
product for some large ideal E. The counterexamples of [BE13] do not necessarily
give a negative answer, because it is unknown whether they fit into a crossed-
product functor. The state of the art regarding E-crossed products is depressingly
meager at this early stage — we do not even know any examples other than B(G)
itself of large ideals E for which the E-crossed-product functor is exact for all G!
Of course, by definition the Br(G)-crossed product is exact for an exact group
G (where Br(G) = C⇤

r (G)⇤ denotes the reduced Fourier-Stieltjes algebra). But
nonexact groups are quite mysterious.
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7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scien-
tifiques et Industrielles, No. 1306, Hermann, Paris, 1963.

[BG12] N. P. Brown and E. Guentner, New C⇤-completions of discrete groups and related
spaces, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1181–1193.

[Bus07] A. Buss, Generalized fixed point algebras for coactions of locally compact quantum
groups, Ph.D. thesis, Westfälische Wilhelms-Universität-Münster, 2007.

[Bus10] , Integrability of dual coactions on Fell bundle C⇤-algebras, Bull. Braz. Math.
Soc. (N.S.) 41 (2010), no. 4, 607–641.

[BE] A. Buss and S. Echterho↵, Rie↵el proper actions, preprint, arXiv:1409.3977
[math.OA].

[BE13] , Universal and exotic generalized fixed-point algebras for weakly proper ac-
tions and duality, Indiana Univ. Math. J. 63 (2014), no. 6, 1659–1701.

[AD02] C. Anantharaman-Delaroche, Amenability and exactness for dynamical systems and
their C⇤-algebras, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4153–4178 (elec-
tronic).

[ADR00] C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies
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