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Vacuum Evaporation of Pure Metals

JAFAR SAFARIAN and THORVALD A. ENGH

Theories on the evaporation of pure substances are reviewed and applied to study vacuum
evaporation of pure metals. It is shown that there is good agreement between different theories
for weak evaporation, whereas there are differences under intensive evaporation conditions. For
weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor
velocity as a function of the pressure is calculated applying several theories. If a condensing
surface is less than one collision length from the evaporating surface, the Hertz-Knudsen
equation applies. For a case where the condensing surface is not close to the evaporating
surface, a pressure criterion for intensive evaporation is introduced, called the effective vacuum
pressure, peff. It is a fraction of the vapor pressure of the pure metal. The vacuum evaporation
rate should not be affected by pressure changes below peff, so that in lower pressures below peff,
the evaporation flux is constant and equal to a fraction of the maximum evaporation flux given
by Hertz-Knudsen equation as 0.844 _nMax. Experimental data on the evaporation of liquid and
solid metals are included.
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I. INTRODUCTION

THE kinetics of materials’ evaporation in vacuum is
important in many areas such as materials’ processing
and materials’ application in vacuum and space systems.
In metallurgical processes, the kinetics of materials’
evaporation is important when mass transfer occurs
from a condensed phase to a gas phase. Developing
basic knowledge of the evaporation kinetics of pure
metals is crucially important. The distillation of metals
and vacuum refining for eliminating the impurities are
typical processes in which the application of low
pressures is the key process. Studying the mass transport
phenomena in such processes, where the evaporation is
taking place from a multicomponent condensed phase,
requires basic knowledge of the evaporation of the
single component systems. For instance, in the vacuum
refining of metals, useful information about the mass
transfer coefficient of the volatile impurity in the gas
phase can be determined from the gas velocity above the
melt, which mainly consists of the solvent metal vapor,
and is relatively close to the vapor velocity of the pure
solvent metal. The vacuum removal of phosphorus (P)
from liquid silicon (Si) is a typical case in which very low
concentrations of P such as 10 ppmw are eliminated
from Si to achieve the concentrations required for the
fabrication of silicon solar cells, i.e., below 0.1 ppmw.[1]

Considering the above points, the vacuum evaporation
of pure elements is studied in this paper as follows.

II. KINETIC THEORIES OF EVAPORATION

In a perfect vacuum condition, the maximum
molar flux of substance Me from the condensed form
to its gaseous form is expressed by the Hertz-Knudsen
equation.[2]

_nMax ¼
p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRT
p ½1�

where M is the molecular weight, R is the universal
gas constant, and T is the absolute temperature at the
evaporating surface. p� is the standard vapor pressure
of the substance Me, which is a function of the abso-
lute temperature[3]

log p� ¼ A

T
þ B logTþ CTþD ½2�

The coefficients A, B, C, and D are constants. When
perfect vacuum is not used, the net flux of Me from the
condense phase to its vapor is expressed as

_nevap: ¼
p� � p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRT
p ½3�

where p is the pressure above the condensed phase.
Equation [3] is based on considering a certain distribu-
tion function of velocity for the gas particles (full
range Maxwellian), where the particles do not interact
with each other, but move freely between collisions.[4]

Schrage[4] introduced a simple correction to take the
continuum into account and argued that the Maxwell-
ian due to the mass movement of the vapor must be
shifted by the mean velocity of the gas. According to
Schrage, Eq. [3] becomes

_nevap: ¼
p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRT
p � Cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRTg

p ½4�
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where Tg is the vapor temperature far from the evapo-
ration interface. C recognizes the effect of the vapor
mass flow (vg)

C ¼ exp �S2
� �

�
ffiffiffi

p
p

S 1� erf(SÞð Þ ½5�

where

S ¼
ffiffiffiffiffiffiffiffiffiffiffi

M

2RTg

s

vg ½6�

The dimensionless parameter S is called external
speed ratio. Based on several investigations on the
kinetics of evaporation,[5–8] it is generally believed that
the velocity distribution function at the vapor–liquid
interface may deviate from a Maxwellian, and a
transition to continuum flow occurs in a layer, which
is known as the Knudsen layer. Thus, the vapor space
may be divided into two regions: a Knudsen layer and
an outer region with gas dynamic flow. The Knudsen
layer is only a few mean-free paths in thickness. For
instance, an extent of 20 mean-free paths has been
obtained from the Monte Carlo simulation.[5] The
Knudsen layer expands with increasing bulk gas velocity
away from the interface surface. For vapor velocities
greater than the velocity of sound, expansion occurs
outside the Knudsen layer in the continuum flow.
Ytrehus and Østmo[9] studied the basic fluid flow and
thermodynamic aspects of interphasial processes in
single-component condensed-vapor systems employing
kinetic theory. According to them, the net evaporated
mass flux is given as

_nevap: ¼
p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRT
p � Cbp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRTg

p ½7�

where b is a non-equilibrium backscattering factor[9]

and is a function of the vapor mass flow

b ¼
2ð2S2 þ 1Þ

ffiffiffiffi

Tg

T

q

� 2
ffiffiffi

p
p

S

Cþ
ffiffiffiffi

Tg

T

q

ð2S2 þ 1Þð1� erfSÞ � 2S
ffiffi

p
p expð�S2Þ

� �

½8�

The ratio of
Tg

T is the ratio of the gas temperature over
the temperature at the liquid–gas interface. According to
several studies,[7–11] this temperature ratio can be
expressed as

ffiffiffiffiffiffi

Tg

T

r

¼ �
ffiffiffi

p
p

8
Sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p
64

S2

r

½9�

In order to evaluate the coefficients C and b in Eqs. [4]
and [7], these parameters were calculated against S and
the results are shown in Figure 1. It is observed that C
decreases with increasing vapor velocity. In contrast, b
increases with increasing S, and this increase is signif-
icant at S values larger than S � 0.5. The change of Cb
against S is, however, different and it decreases with
increasing of the gas phase velocity to a minimum of
Cb = 0.53 around S = 0.55, and then it increases with
increasing of the gas velocity.

Theories of evaporation and condensation, which are
applied to a wide range of non-equilibrium conditions
such as the above-mentioned studies, are mostly based
on assumptions regarding the form of the velocity
distribution function of vapor molecules at the surface.
According to Algie,[12] however, the distribution func-
tion describing vapor molecules moving away from the
surface is not the same as for the emission of molecules
from the condensed phase. Algie[12] extended Crout’s
approach[13] for evaporation (where vapor near the
evaporating surface is considered as non-isotropic) and
obtained an expression for the

_nevap:
_nMax

, where an evapora-
tion coefficient a is taken into account

UAlgie ¼
_nevap:
_nMax

¼ a

1þ a h
2S� 1
� � ½10�

where

h ¼ expð�S2Þ
ffiffiffi

p
p þ Sð1þ erfðSÞÞ ½11�

According to Algie,[12] of the molecules which would
leave the surface in the absence of surface constraints,
only the fraction a actually leaves the surface. Algie does
not seem to specify how to determine a.
In spite of extensive studies on evaporation, the

Hertz-Knudsen expression is still widely used due to its
simple form, in particular for practical applications.
Considering the temperature difference on the evapora-
tion interface and the bulk gas phase, and introducing
an apparent evaporation coefficient (g), Eq. [3] becomes

_nevap: ¼ g
p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRT
p � p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRTg

p

 !

½12�

For weak evaporation (p/p� fi 1), the S value is small
and negligible, and the Schrage’s expression reduces to
Eq. [12] with g = 2.[12,14] This differs by a factor of 2
from the Hertz-Knudsen equation.[3] Evaporation in a
semi-infinite space has been studied through the devel-
opment of a linear kinetic theory of condensation and

Fig. 1—Relationship between the coefficients in Eqs. [4] and [7] with
the dimensionless external speed ratio.
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evaporation at small Knudsen numbers using the
Navier–Stokes and Fourier equations by Muratova
and Labuntsov.[15] They obtained an evaporation coef-
ficient for weak evaporation conditions g ¼ a

1�0:4a, where
a is a constant smaller than unity. A similar expression
for weak evaporation was also obtained later with
another approach by Labuntsov and Kryukov.[16] Con-
sidering the evaporation coefficient a as unity,
g = 1.667 is obtained. Algie[12] indicated that for weak
evaporation, g ¼ a

1�0:355a, and this gives g = 1.55 for
a = 1. Koffman et al.[14] applied the kinetic theory
approach with continuum flow in gas between a hot
liquid surface and a cold liquid surface. They also
challenged the physics of the Knudsen layer. For weak
evaporation, they calculated g = 1.665, which is in
agreement with the above-mentioned studies. Ytrehus
and Østmo obtained g = 1.668 for weak evaporation, in
which the results are linearized into the simple formulae,
Eq. [12]. Considering the above studies under weak
evaporation conditions (S fi 0), Tg � T, Eq. [12] for
weak evaporation becomes

_nweak ¼
1:66ðp� � pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pMRT
p ½13�

The rate of intensive evaporation relative to the
maximum rate of evaporation ( _nintensive

_nMax
) has been studied

in the literature. For instance, evaporation flux ratios
0.92,[17] 0.82,[9,18] 0.85,[19] and 0.8 to 0.85[16] have been
reported. The reason for the smaller evaporation flux
than the maximum attainable can be the backscattering
of some of the particles that leave the surface.[9]

III. VAPOR VELOCITY

To study vacuum evaporation processes, when the
condensing surface is far from the evaporating surface,
we consider a pure liquid substance at constant temper-
ature T in equilibrium with its vapor in a wide and long
cylinder with a frictionless piston (Figure 2(a)). The

piston starts to move away from the liquid with a
constant velocity of vg (Figure 2(b)). The piston con-
stant velocity causes a continuous pressure drop above
the melt and simultaneous mass transfer from the liquid
to the gas phase. A constant pressure p is reached after a
while. Then, the gas velocity above the melt and along
the cylinder is constant (vg) at pressure p and vapor
temperature Tg(Tg <T), which also gives a constant
molar flux. Under steady state conditions, the temper-
ature at the liquid surface is constant and lower than the
temperature of the bulk liquid due to the endothermic
evaporation reaction at the surface. Here, we assume
that there is no temperature gradient in the melt, which
is a fair approximation, if we have a small latent heat of
evaporation or rapid stirring of a large amount of liquid,
while sufficient heat is given to the system to keep the
liquid at constant temperature. The vapors of most
metals are monatomic with close to ideal gas behavior.
Thus, the molar flux in the gas phase in steady state
conditions is

_ng ¼
vg
RTg

p ½14�

With substitution of the dimensionless external speed
ratio S from Eq. [6] in Eq. [14], we obtain

_ng ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

MRTg

s

p ½15�

Assuming negligible accumulation of the atoms in the
melt/gas interface and in the gas phase, we have
_nevap: ¼ _ng. Then, from Eqs. [12] and [15]

1þ 2
ffiffiffi

p
p

S

g

� �

ffiffiffiffiffiffi

T

Tg

s

¼ p�

p
½16�

Similarly, setting _nevap: in Eqs. [4], [7], and [10] equal
to _ng, the following relationships between S and p�/p
ratio are obtained from Schrage,[4] Ytrehus and
Østmo,[9] and Algie[12]

Cþ 2
ffiffiffi

p
p

S
� �

ffiffiffiffiffiffi

T

Tg

s

¼ p�

p
½17�

Cbþ 2
ffiffiffi

p
p

S
� �

ffiffiffiffiffiffi

T

Tg

s

¼ p�

p
½18�

2
ffiffiffi

p
p

S

ffiffiffiffiffiffi

T

Tg

s

�
1þ a h

2S� 1
� �

a
¼ p�

p
½19�

Figure 3 shows the relations between S and p/p� ratio
obtained from Eqs. [16] to [19]. Calculations for Eq. [16]
were made for g equal to 1.0 and 1.66 and calculations
for Eq. [19] made for a values smaller than unity. In
addition, the previously calculated curves by Ytrehus

Fig. 2—Schematic of (a) equilibrium of a liquid with its vapor in a
long cylinder, (b) constant molar flux of liquid with its vapor under
constant piston velocity.
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and Østmo[9] and Rose[20] are included in this figure. It is
worth noting that Rose used a modified form of the
Schrage function for the distribution of vapor molecules
adjacent to the surface. As observed, for weak evapo-
ration (p/p� values close to unity), gas velocities
obtained from Eq. [17], Eq. [18], Eq. [16] for g = 1.66
and Eq. [19] for a = 1 are nearly the same. For intensive
evaporation at small p/p� values, Eq. [16] for g = 1 is
relatively close to the results by Ytrehus and Østmo[9]

and Rose.[20] Figure 3 shows that Eq. [18] gives a curve
very near that being given by Ytrehus and Østmo. The
above-given equations can be used for calculating the
vapor velocities in vacuum evaporation.

IV. EFFECTIVE VACUUM PRESSURE

According to the above model, lower vacuum chamber
pressures are obtained with higher piston velocities,
determined by the pumping power of the vacuum system.
Equations [16] to [19] are valid for pressures in a range
of peff < p< p�. In pressures lower than peff, the veloci-
ties exceed the attainable velocity of the vapor. The
velocity limit of the vapor is considered to be the speed
of sound[5–9] in which the Mach number is unity
(Mach = vg/c = 1).The velocity of sound is expressed as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

c
RTg

M

r

ðMach No: ¼ 1Þ ½20�

where c is the ratio of specific heats and for mon-
atomic vapor such as for the vapor of metals, it is
c ¼ Cp

Cv
¼ 5

3.
[8] Substitution of c instead of vg into Eq. [6]

gives a critical external speed ratio of Scr = 0.913. A

critical temperature ratio
ffiffiffiffi

Tg

T

q

� �

cr

¼ 0:818 corresponds

to this critical gas velocity, which gives Tg = 0.67T.
The effective vacuum pressure is determined putting
these critical values into Eq. [16]

peff ¼
1

1:22þ 3:95
g

p� ½21�

It is a fair approximation to take the evaporation
coefficient g as unity for pressures relatively lower than
p� which yields peff ¼ 0:193p�. Scr = 0.913 gives effec-
tive vacuum pressures equal to 0.243 p� and 0.207 p�
from Eqs. [17] and [18], respectively. Effective vacuum
pressures 0.244 p�, 0.22 p�, and 0.197 p� are obtained
from Eq. [19] for a = 1, 0.9, 0.8, respectively. Ytrehus
and Østmo[9] gave p = 0.21 p� as the critical pressure
when the Mach number is unity. As we see, the effective
vacuum pressures obtained using evaporation theories
are in a narrow range of 0.19 p� to 0.24 p�. According to
Eq. [21], there is a decrease in the effective vacuum
pressure with decreasing of the evaporation coefficient.
The obtained peff in this study is close to that determined

by Ytrehus and Østmo using another approach. The
advantage of Eq. [21] here for determining peff is that it
distinguishes between amolecule’s emission from the surface
and its entry into the vapor phase by the parameter g. In
order to indicate the importance of considering the evapo-
ration coefficient, the extensionof this approach for studying
vacuum evaporation from multicomponent systems can be
mentioned. For these systems, the physico-chemical prop-
erties of the melt components at the evaporating surface are
different compared to the pure substances, and therefore
different evaporation fluxes are expected. The evaporation
coefficient g can help us to consider the effect of such
physico-chemical properties in the melt. Hence, the theories
which consider theproperties of the condensedphase suchas
the Algie approach and the present study are beneficial.

V. EVAPORATION FLUX

A dimensionless evaporation flux similar to Eq. [10]
can be calculated by dividing Eq. [12] by the maximum
evaporation flux _nMax which yields

UHK ¼ g 1� p

p�

ffiffiffiffiffiffi

T

Tg

s
 !

½22�

Similar dimensionless evaporation fluxes can be
obtained considering Eqs. [4] and [7]. The relationship
between F values and the corresponding S values is
shown in Figure 4 for the above-mentioned theories.
The curve for FHK has been calculated for g = 1. The
calculated curve for the Algie approach in Figure 4 is
for the case of a = 1. Although there is some agreement
between all the results for weak evaporation (S fi 0),
differences are observed under intensive evaporation
conditions. A good agreement is observed between the
curves employing the Schrage and Algie approaches. A
reasonable agreement is seen between the curve given by
Eq. [22] and the results of Ytrehus and Østmo when the
temperature difference between the two phases is con-
sidered. According to Figure 4, the Schrage and Algie
approaches give the maximum evaporation rates as
0.972 _nMax and 0.966 _nMax, respectively. The maximum
evaporation rate obtained by Eq. [22] is 0.844 _nMax,
which is close to the calculated maximum evaporation
rates in the literature mentioned above.[9,16,18,19] Algie[21]

presented a quantitative theory for the evaporation from

Fig. 3—Relationship between the external speed ratio S and p/p�
ratio determined by Eqs. [16] to [19] and the literature.
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finite surface into a vacuum and stated that the net
evaporation rate is equal to the rate of phase transition
only if the characteristic dimension of the surface is less
than about half the mean-free path in the corresponding
equilibrium vapor or if a condensing surface is placed
very close to the evaporating surface. According to
Algie, when the characteristic dimension of the surface is
much larger than about half the mean-free path, the
evaporation rate of 0.838 _nMax is obtained for g = 1,
which is in agreement with the present study’s result. In
conclusion, we may argue that approximately 84.4 pct of
the number of the emitted molecules from the surface
leaves the surface, and 15.6 pct of them return to the
surface and condense.

Experimental data from the literature for the evapo-
ration of pure metals Zn, Fe, Ag, and Si are shown in
Figure 4. The S values corresponding to the measured
p/p� values[22–25] were determined by Eq. [16] for
g = 1.0 and by Eq. [18]. Although the points related
to the evaporation of zinc are scattered, they show some
agreement with the theoretic approaches in weak evap-
oration. Under intensive evaporation conditions, the Zn
evaporation rate is much lower than that given by
theory. The reason is as stated by Clair and Spenlove[22]

that the surface temperature during rapid evaporation is
much lower than the average temperature of the metal
due to the large amount of the heat extracted from the
surface by the evaporating molecules. In addition, in
their experimental design, a cylindrical cooling surface
parallel to the crucible wall was located above the
crucible which causes rapid temperature drop shortly
above the melt, and it provides zinc deposition on the
condenser surface. This is supported by the observation
of condensed zinc droplets on the condensation surface
by Clair and Spendlove.[22] Hence, the lower Zn evap-
oration rates than theory in their experiments can also
be attributed to the partial return of these condensed
fine zinc particles to the melt. In principle, higher Zn
evaporation rates are expected through installation of
the condenser surface in a different way. The mentioned
theories and present calculations in this study consider
only the evaporation phenomenon and not the mass

transfer back to the condensed phase. Although the
selection of the Zn evaporation data[22] may not be
adequate here, it shows that the design of the experi-
mental set-up for studying the evaporation of materials
is very important and there are specific requirements
with physical explanations to be considered to obtain
reliable results. Figure 4 shows that there is good
agreement between Fe, Ag, and Si evaporation and the
theoretic approaches under intensive evaporation con-
ditions. The surface temperature was measured with
high accuracy in these experiments. Moreover, the
condensing surface was less than the mean-free path
from the evaporating surface, and no mass transfer back
to the melt is expected regarding the experimental
set-ups.

VI. EVAPORATION RATE OF PURE METALS

The evaporation rate ( _nevap:) by Eq. [12] for g = 1 vs
the experimentally measured evaporation rates ( _nexp) of
liquid metals is shown in Figure 5. The _nevap: values were
calculated employing the reported standard vapor pres-
sures for pure substances.[3] Considering the studies by
Clair and Spenlove[22] on Zn evaporation, it is found
that there is agreement between _nevap: given by Eq. [12]
and _nexp for the experiments below peff = 0.2 p�. A close
agreement between _nevap: and _nexp for the evaporation of
Fe[23] and Ag[24] is observed in which the applied
pressures are less than the effective vacuum pressure.
Also, the temperature measurements are reliable. A
majority of the measurements on the evaporation rates
of Si, Ni, and Ti in the electron beam vacuum furnace[25]

are greater than the calculated theoretic rates. The
temperatures are probably higher than those predicted
in the calculations of the temperature.
Two parameters may cause a slower evaporation rate

of a liquid metal than the theory: surface temperature
and impurities. As mentioned before, the melt surface
temperature is reduced due to the heat losses from the

Fig. 5—The evaporation rates of liquid metals by the Hertz-Knud-
sen equation (g = 1) vs the experimental measurements in the litera-
ture.[22–25] Zn data are from unit values; only bulk melt temperature
is measured.

Fig. 4—Relationship between F and S obtained in slightly different
theoretic approaches, and some experimental data on the vacuum
evaporation of liquid metals. Zn data are from unit values; only
bulk melt temperature is measured.
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surface and the endothermic evaporation reaction at the
surface. Clair and Spenlove[22] indicated that the surface
temperature in vacuum evaporation can be significantly
lower than the bulk melt. This temperature difference is
a very important parameter that has to be taken into
account since temperature in the bulk melt is usually
measured. Impurities on the melt surface in the form of
solid particles or dissolved elements may influence the
evaporation rate by affecting the physico-chemical
properties of the liquid surface.

The theories presented here can in general be extended
to the vaporization of solid metals. However, the
evaporation rate is affected by the crystallographic
faults and the surface atomic structure.[26,27] The theo-
retic evaporation rates of selected solid metals against
the measured evaporation rates are shown in Figure 6.
The solid Fe evaporation measurements in high vacuum
by Tsuchiyama and Fujimoto[28] show slightly slower
rates than the theoretic rates (¤ symbols). But, the
measurement by Xiong and Hewins (D symbol) is close
to the theoretic value.[29] Lowe[27] observed that the
evaporation rate of solid Ag is influenced by the surface
crystallographic planes at elevated temperatures. Lowe
determined the evaporation coefficients as 0.8, 0.85, and
0.9 for the evaporation from (111) plane, complex plane
crystal, and random polycrystal, respectively.[27] The
data presented for Ta evaporation in Figure 6 are from
the measurements performed by Langmuir and Malter[30]

at high temperatures and high vacuum conditions and
below the melting point of Ta. At very low pressures,
higher Ta evaporation rates than the theoretic rates are
observed.

VII. CONCLUSIONS

Vacuum evaporation of pure substances is studied
comparing the Hertz-Knudsen model and four newer
theories. Expressions for the velocity of vapor in the
vacuum evaporation process are derived. It is indicated

that the vapor velocity can be calculated for both weak
and intensive evaporation through consideration of the
evaporation coefficient in the Hertz-Knudsen equation.
An effective vacuum pressure as a function of saturated
vapor pressure and evaporation coefficient, Eq. [21], is
presented. The rate of evaporation should not be
affected by decreasing vacuum pressure below this
pressure. The experimental data on the vacuum evap-
oration of a majority of liquid and solid metals at low
pressures with the condensing surface close to the
evaporating surface are in agreement with the Hertz-
Knudsen formula, Eq. [12] with evaporation coefficient
unity.

ACKNOWLEDGMENT

The authors acknowledge the funding provided
through the BASIC project (191285/V30) by the Nor-
wegian Research Council. The authors also acknowl-
edge Professor Leiv Kolbeinsen and Professor Merete
Tangstad at NTNU for their support and advice for
the present work.

OPEN ACCESS

This article is distributed under the terms of the
Creative Commons Attribution License which permits
any use, distribution, and reproduction in any med-
ium, provided the original author(s) and the source are
credited.

REFERENCES
1. J. Safarian and M. Tangstad: High Temp. Mater. Proc., 2012,

vol. 31, pp. 73–81.
2. S. Dushman and J.M. Lafferty: Scientific Foundations of Vacuum

Technique, 2nd ed., Wiley, New York, 1962.
3. O. Kubaschewski and C.B. Alcock: Metallurgical Thermo-Chem-

istry, 5th ed., Pergamon Press Ltd., New York, 1979.
4. R.W. Schrage: A Theoretical Study of Interphase Mass Transfer,

Columbia University, New York, 1953.
5. D. Sibold and H.M. Urbassek: Phys. Fluids A, 1993, vol. 5,

pp. 243–56.
6. M.N. Kogan and N.K. Makashev: Fluid Dyn., 1971, vol. 9,

pp. 913–20.
7. R. Kelly and R.W. Dreyfus: Surf. Sci., 1988, vol. 198, pp. 263–76.
8. I.J. Ford and T.-L. Lee: J. Phys. D, 2001, vol. 34, pp. 413–17.
9. T. Ytrehus and S. Østmo: Int. J. Multiph. Flow, 1996, vol. 22,

pp. 133–55.
10. C. Cercignani: in Rarified Gas Dynamics, Part 1, S.S. Fisher, ed.,

IAA, New York, 1981, pp. 305–20.
11. T. DebRoy, S. Basu, and K. Mundra: J. Appl. Phys., 1991, vol. 70,

pp. 1313–19.
12. S.H. Algie: J. Chem. Phys., 1978, vol. 69 (2), pp. 538–43.
13. P.D. Crout: J Math. Phys., 1936, vol. 15, pp. 1–54.
14. L.D. Koffman, M.S. Plesset, and L. Lees: Phys. Fluids, 1984,

vol. 27, pp. 876–80.
15. T.M. Muratova and D.A. Labuntsov: High Temp., 1969, vol. 7,

pp. 888–96.
16. D.A. Labuntsov and A.P. Kryukov: Int. J. Heat Mass Transf.,

1979, vol. 22, pp. 989–1002.
17. N.K. Makashev: Fluid Dyn., 1972, vol. 5, pp. 130–38.
18. F.G. Gheremisin: Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza,

1972, vol. 2, pp. 176–78.
19. J. Fischer: Phys. Fluids, 1976, vol. 19, pp. 1305–11.
20. J. Rose: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 3869–75.

Fig. 6—The evaporation rates of solid metals by the Hertz-Knudsen
equation (g = 1) vs the experimental measurements in the litera-
ture.[26–30]

752—VOLUME 44A, FEBRUARY 2013 METALLURGICAL AND MATERIALS TRANSACTIONS A



21. S.H. Algie: Vacuum, 1976, vol. 26, pp. 503–10.
22. H.W. St Clair and M.J. Spenlove: Trans. AIME, 1951, vol. 191,

pp. 1192–97.
23. P.N. Smith and R.G. Ward: Can. Metall. Q., 1966, vol. 5,

pp. 77–92.
24. C.T.EwingandK.H.Siern:J.Phys.Chem., 1975,vol. 79, pp. 2007–17.
25. Y. Ogasawara, T.S. Tabaian, and M. Maeda: ISIJ Int., 1998,

vol. 38, pp. 789–93.

26. J.P. Hirth and G.M. Pound: Acta Metall., 1957, vol. 5, pp. 649–53.
27. R.M. Lowe: Acta Metall., 1964, vol. 12, pp. 1111–18.
28. A. Tsuchiyama and S. Fujimoto: Proc. NIPR Symp. Antarct.

Meteorites, 1995, vol. 8, pp. 205–13.
29. Y. Xiong and R. Hewins: 63rd Annual Meteoritical Society

Meeting, 28 Aug–1 Sep 2000, Chicago, 5089.
30. D.B. Langmuir and L. Malter: Phys. Rev., 1939, vol. 55,

pp. 748–49.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 44A, FEBRUARY 2013—753


	Vacuum Evaporation of Pure Metals
	Abstract
	Introduction
	Kinetic Theories of Evaporation
	Vapor Velocity
	Effective Vacuum Pressure
	Evaporation Flux
	Evaporation Rate of Pure Metals
	Conclusions
	Open Access
	References


