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Abstract

The NTNU Test Satellite (NUTS) is a double CubeSat satellite developed by students
at the Norwegian University of Science and Technology (NTNU) with the intention of
eventually launching it into low earth orbit. The goal of the project is primarily to
establish two way communication between the satellite and a ground station on earth
and to transmit telemetry data from onboard sensors and images from the onboard
camera module.

This thesis aims to implement the JPEG2000 image compression format on an FPGA
on the camera module of the satellite using the VHDL programming language. The
purpose of image compression is to reduce the amount of data needed to store the
images, which in turn reduces the amount of data which has to be transmitted down
to earth through the limited downlink. The wavelet transform based JPEG2000 format
was selected because of its superior quality at low bit rates and its robustness to bit
errors compared to the cosine transform based JPEG format.

The JPEG2000 compression system was partially implemented in VHDL, with the
final encoding stages of the system remaining incomplete due to time constraints. The
current system consists of six independent modules: a demosaicing module, a gamma
correction module, an intercomponent transform module, a wavelet transform module,
a quantization module and finally the incomplete encoding module.

The demosaicing module transforms raw Bayer encoded images into RGB images,
while the gamma correction module performs gamma correction to account for dis-
tortion effects added by the image sensor on the camera module. The intercomponent
transform module performs an irreversible color transform on the image, while the
wavelet transform module performs a multi-level discrete wavelet transform on the
image before it is scalar quantized in the quantization module. Afterwards the re-
sult would have been encoded in the encoding module, which is only partially imple-
mented.

Each module was tested against MATLAB implementations in addition to tests per-
formed in Xilinx Vivado. The tests indicated that the modules performed as expected
and that they were synthesizable with an acceptable hardware resource usage. Timing
Analysis tests also show that the maximum operating speed of the compression system
is 63 MHz, which makes it able to process a 2592x1944 resolution image in around 866
ms when not accounting for the encoding process of the system.
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Sammendrag

NTNU Test Satellite (NUTS) er en dobbel CubeSat satellit utviklet av studenter ved
Norges teknisk-naturvitenskapelige universitet (NTNU) med intensjonen om å sende
den i opp i lav jordbane. Målet med satellitten er hovedsakelig å få opprettet toveis
kommunikasjon mellom satellitten og en bakkestasjon samt å kunne sende telemetri-
data fra sensorer om bord og bilder fra kameramodulen.

Målet med denne avhandlingen er å implementere JPEG2000 bildekomprimering i
VHDL for bruk på en FPGA som inngår i kameramodulen til satellitten. Målet er å
komprimere bilder tatt av en kamerasensor for å redusere datamengden som trengs
får å sende bildet til bakkestasjonen. Dette er hovedsakelig på grunn av satellittens
begrensede båndbredde. Det wavelet transformasjonsbaserte JPEG2000 formatet ble
valgt fordi den gir bedre komprimering ved lavere bitrate og er mer robust med tanke
på bit feil enn det diskret cosine transformasjonsbaserte JPEG formatet.

Resultatet ble en delvis implementering av JPEG2000 komprimeringssystemet i VHDL,
med en ukomplett encoding-del på grunn av tidsbegrensninger. Det implementerte
systemet består av seks moduler: en demosaicingmodul, en gammakorreksjonsmodul,
en interkomponent transform modul, en wavelet transform modul, en kvantifiserings-
modul og en delvis implementert encodingmodul.

Demosaicingmodulen transformerer et Bayerkodet råbilde fra kamerasensoren til et
RGB bilde, mens gammakorreksjonsmodulen foretar en gammakorrigering av bildet
som gjør det mulig å fjerne eventuelle artefakter forårsaket av kamerasensoren. In-
terkomponent transform modulen utfører en irreversibel fargetransformasjon, mens
wavelet transform modulen foretar en multi-level diskret wavelet transformasjon på
bildet før resultatet blir skalarkvanfitisert i kvantifiseringsmodulen. Resultatet ville
deretter ha blit kodet i encoding-modulen, som i dette prosjektet kun er delvis imple-
mentert.

Alle modulene ble testet mot en MATLAB implementasjon med samme funksjon-
alitet, samt tester utført i Xilinx Vivado. Testene indikerer at alle modulene fungerer
som forventet og at de kan konstrueres i hardware. Tidsanalyser viste at systemet
kunne kjøre med en klokkefrekvens på 63 MHz, som gjør det mulig å prosessere et
bilde med en resolusjon på 2592x1944 piksler i løpet av 866 ms når man utelukker
encodingdelen.
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Problem description

The NTNU Test Satellite is a CubeSat satellite being developed by students at the Nor-
wegian University of Science and Technology. The satellite is divided into hardware
modules, where each module has its own specific purpose.

The purpose of the camera module is to be able to capture, compress and store images
while the satellite is in low earth orbit. A prototype hardware implementation of the
camera module has already been developed, but the image compression aspect has yet
to be completed.

The purpose of this task will be to develop a JPEG2000 image compression system
which is to be implemented on an FPGA located on the camera module. The image
compression system will take raw images from a camera sensor and compress it to
reduce the space required to store the image. The work will be a continuation of work
previously conducted on the camera module.

Key tasks will be:

• Test and verify the functionality of the previously developed parts of the com-
pression system.

• Design and implement a JPEG2000 compression system in VHDL or Verilog to be
used on the onboard FPGA of the camera module.

• The compression rate and other factors should be configurable after the satellite
has been launched.

• The compression system should have a minimum operating frequency of 50 MHz.

• Test various aspects of the system, such as operating speed, hardware resources
required, different compression rates, etc.
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1 Introduction

This chapter introduces the Norwegian University of Science and Technology Test Satel-
lite (NUTS) project, selected previous work conducted for NUTS which is relevant to
the thesis and an outline of the thesis structure.

1.1 Project background

The purpose of the NTNU Test Satellite (NUTS) program is to design, build and even-
tually deploy a miniaturized satellite following the double CubeSat standard[3] into
low earth orbit.[4] The project was started in 2010, and consists of contributions made
by both master and volunteer students from NTNU. Although no complete satellite has
been build or launched yet from the program, an engineering module is scheduled to
be finished by September 2017. From the beginning, the main goal of the NUTS pro-
gram has been to provide students with an opportunity to learn about satellites and
other space related technology.

Goals related directly to the NUTS satellite itself is to establish a two way commu-
nication between the satellite and a ground station once the satellite has reached low
earth orbit, to be able to control the attitude of the satellite, to receive telemetry data
from onboard sensors and to receive images taken from outer space by the camera
module.

1.2 The NTNU Test Satellite

The NUTS satellite is a double CubeSat satellite which is built up from several sub-
modules. Each module is designed to perform a specific set of tasks, such as power
management, attitude control and radio communication. These modules interact with
each other through a backplane, as is illustrated in Figure 1.1

Figure 1.1: Overview of the NUTS Cubesat modules.
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The backplane links the modules together and provides the them with power from
the electric power system (EPS) module. The EPS module is responsible for charging
the onboard batteries through solar panels mounted on the outside of the satellite, as
well as to provide regulated power to the other modules.

The onboard computer (OCB) module is the brain of the satellite and is responsible
for monitoring the other modules and receive commands from the ground station back
on earth. The instructions are received through the ultra high frequency (UHF) and
very high frequency (VHD) radio modules, which provides communication between
the satellite and the ground station. The communication itself is performed through
the antenna module, which contains the antennas needed for UHF and VHF communi-
cation. The housekeeping module is integrated in the backplane and ensures that the
modules connected to the backplane behaves as they should. The attitude determina-
tion and control system (ADCS) provides telemetry about the attitude of the satellite.
Through an electromagnetic attitude control system the orientation of the satellite can
be changed through the ADCS. The Payload module, which is the focus of this thesis is
covered in the next section.

1.2.1 The Payload module

One of the primary goals of the satellite is to be able to capture images from outer space
and transmit them back to earth. Originally it was intended for the payload module
to be a camera module with an infrared camera that would be capable of observing
atmospheric gravitational waves.[5] However this idea was scrapped due to the expense
of the IR camera itself.

It was decided that the camera module would instead consist of a normal image sen-
sor capable of capturing light in the visible spectrum. The images would then be stored
on the camera module until requested by the ground station, upon which the image
would be transmitted down to earth. Figure 1.2 shows an overview of the components
of the payload camera module.

Figure 1.2: Overview of the camera module.
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As shown in Figure 1.2, the module consists of four main components. The camera
sensor captures raw images which are stored in the memory component. The current
sensor used in the previously developed camera module is the MT9P031 5 megapixel
image sensor with a resolution of 2592x1944.[6] The purpose of the microcontroller is
to interface the camera module with the rest of the satellite. Lastly, the intended pur-
pose of the FPGA is to compress the images taken by the camera sensor in order to re-
duce the space required to store and transmit the images. The field programmable gate
array (FPGA) is a hardware unit which can be programmed using hardware descriptive
languages (HDLs) such as VHDL and Verilog. The purpose of this thesis is to develop
the compression system which is to be used on the FPGA. It was previously determined
that JPEG2000 was the best suited image compression format for this application. [7]
The goal is therefore to implement the JPEG2000 image compression format in VHDL.

1.3 Previous work

This section presents a brief summary of the most recent and relevant work conducted
on the payload camera module for the NTNU Test Satellite, which provides the foun-
dation for this thesis.

1.3.1 Demosaicing module

In 2016 a demosaicing module was developed for the FPGA which was intended to
convert the raw Bayer pattern image from the camera sensor into an RGB image.[1] The
work also included a gamma correction module and color transform module, which is
needed when performing image compression using JPEG2000. It was intended to use
these modules as part of the compression system developed in this thesis, however it
was decided early on to develop new modules from scratch instead, with the reasoning
behind this decision detailed in Section 3.1.

1.3.2 Prototype camera module

In 2016 a new prototype camera module was developed.[8]. It improved upon the pre-
vious camera module[9] and addressed noise issues experienced when operating the
module at high frequencies. Controlling the camera module is an Spartan-6 FPGA[10]
running a MicroBlaze[11] softcore microprocessor, which contains the necessary soft-
ware framework to interface both the camera sensor and an external microcontroller
with the FPGA. The framework was developed in 2014 as part of a separate project.[12]
Although the prototype camera module and the software framework is not used di-
rectly in relation to this thesis, it nevertheless forms the platform which the compres-
sion system is to be implemented on.
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1.4 Thesis outline

Chapter 2 covers the theory relevant to the thesis. It includes basic image compression
metrics and an exposition of the JPEG2000 image compression standard, which covers
topics such as image demosaicing, the wavelet transform, quantization and encoding.
Chapter 3 details the hardware implementation of the compression system in VHDL.
It includes flow charts, module architectures, and implementation and timing analysis
results.
Chapter 4 presents the testing strategy used to test the compression system and presents
the results obtained.
Chapter 5 discusses the results obtained in Chapter 4 and presents suggestions for fu-
ture work.
Chapter 6 presents the conclusion of the thesis.
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2 Theory

This chapter covers the theory related to the implementation of the JPEG2000 com-
pression system. Several sections make use of an image of Lena Söderberg[13], which
is a well known test image often used in image processing studies.

2.1 Image compression

The purpose of image compression is to reduce the amount of data space needed for
either storage or transmission of an image. The compression can be done either lossless
or lossy. Lossless image compression means that none of the information contained in
the image is lost during the compression process, and a perfect reconstruction of the
original image is possible. This is in contrast to lossy image compression, where only an
approximation of the original image can be reconstructed from the compressed image.
This is because some information contained in the original image is sacrificed to achieve
a higher rate of compression, which in turn reduces the data capacity needed to store
the compressed image. The amount of compression performed on an image is often
given as the compression ratio, where for instance a compression ratio of 1:40 means
a 40 times reduction in the size of the compressed image compared to the original.
Another metric used is bits per pixel (bpp), which is the average number of bits needed
to represent a single pixel in an image. For an uncompressed 8-bit image the bpp is
8, while a compressed image can have a bpp in the range of 0.05-1, as is illustrated in
Section 2.11.

Lossless image compression is the process of removing what is known as redundant
information from the image. One way to achieve this is by exploiting spatial redun-
dancy often found in images, which is the fact that neighboring pixels often have the
same pixel intensity. Compression algorithms such as run-length encoding can use
this to represent the image with less information, as illustrated in Figure 2.1, and still
reconstruct a perfect image.

Figure 2.1: Lossless compression achieved by exploiting spatial redundancy through
run-length encoding.
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As Figure 2.1 illustrates, a pixel sequence of the colors [b,b,b,b,r,r,r,g,g,y,y,y,o] can be
represented simply as [4b,3r,2g,3y,1o], which requires less data to store. This gives a
simplified idea of how lossless image compression is achieved.

When performing lossy compression, both the redundant and irrelevant information
in an image is removed. Irrelevant information is information in the image which is
not considered important and can therefore be discarded in the compression process.
Which aspects of an image that is considered to be important or not varies, but it is
usually chosen to give the most optimal viewing experience for a human observer. For
instance, the human eye can usually not discern small differences in intensities between
two spatially close pixels in an image. If the difference is small enough, the intensity of
the two pixels can be changed to the average of the two pixel intensities instead. The
two pixels are now equal in terms of pixel intensity, which makes them spatially redun-
dant, which again can then be exploited with for instance run-length encoding. This
reduces the overall data storage needed to store the two pixels. However, the original
information in the two pixels are now lost, meaning that they can not be reconstructed
perfectly when the compressed image is decompressed. This is what makes the process
lossy.

2.1.1 Image quality

As outlined in the previous section, lossy image compression aims to compress an im-
age at the cost of the quality of the reconstructed image. The quality in this case is
defined as the perceived or mathematically calculated difference between the original
image and the compressed image after after it has been decompressed. In terms of per-
ception, since most images are meant to be viewed by a human observer there is no
perfect way to assess the quality of the reconstructed image, as the perceived quality
is usually subjective. A mathematically calculated difference gives an objective mea-
surement of the quality, but is not always reflective of the subjective quality given by a
human observer. The mathematically determined difference can nevertheless provide
an insight into the efficiency of an image compression or image manipulation process.

When judging image quality a term often used is the peak signal-to-noise ratio (PSNR)
between the original image and the reconstructed image. The PSNR of a grayscale im-
age can be defined through the mean squared error (MSE) between the original and
reconstructed image. The MSE of an m x n image O compared to an image R of equal
size is defined as

MSE =
1
mn

m−1∑
i=1

n−1∑
j=1

[O(i, j)−R(i, j)]2 (2.1)

From which the PSNR in dB is defined as

P SNR = 10 · log10

(MAX2
O

MSE

)
(2.2)
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Where MAXO is the maximum pixel intensity in the original image, which for an
8-bit image is 255. For an RGB image the same definition of PSNR is used, but the
MSE is calculated by summing the differences between the three image components
and dividing the result by three. Simply determining the signal-to-noise (SNR) ratio
can also be used to indicate image quality, but it is more common to express the quality
using PSNR.

With lossy image compression, a common value for the PSNR between an original
image and reconstructed image is generally between 30 and 50 dB, with the higher
value generally providing a better image quality but also generally resulting in a lower
rate of compression. An example of comparative compression quality and PSNR is
shown in Section 2.11.

2.2 Overview of JPEG2000 compression

JPEG2000 is an image compression standard developed by the Joint Photographic Ex-
perts Group which was intended to supplant the already successful JPEG compression
standard. Wavelet-transform based JPEG2000 offers several advantages over the dis-
crete cosine transform based JPEG with regards to bit-rate performance and robustness
to bit errors.[14] Figure 2.2 shows the building blocks of the JPEG2000 compression
system. [15] It should be noted that the demosaicing part in the preprocessing block is
not strictly a part of the JPEG2000 format, however, the raw image has to be converted
into RGB before the compression process starts. The demosaicing process is further
explained in Section 2.3.2.

Figure 2.2: The components that make up the JPEG2000 compression system.

The JPEG2000 compression system can broadly be divided into five stages:

• Preprocessing - Prepares the raw image for compression.

• Component transform - Performs color transformation and a wavelet transform
of the image.

• Quantization - Quantizes the transformed image using scalar quantization.

• Tier 1 Encoding - Encodes the quantized wavelet coefficients using Embedded
Block Coding with Optimized Truncation (EBCOT) coding and binary arithmetic
(MQ) coding.
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• Tier 2 Encoding - Packages the encoded image into a compressed image.

The rate control block controls the compression rate by adjusting parameters for
the quantization and encoding steps of the compression process. All the stages of the
process are covered in the subsequent sections. To decompress a compressed image, the
system is simply run in reverse, with the exception of the demosaicing process which
is then omitted.

2.3 Preprocessing

Preprocessing is any manipulation of the raw image data from the camera sensor before
the actual JPEG2000 compression begins. In this project, the image has to go through
image tiling, demosaicing, gamma correction, dynamic range adjustment and bit depth
reduction before the compression can begin. This section will deal with the theory
behind each of these steps in order.

2.3.1 Image tiling

Image tiling is a process in which the image is broken down into rectangular tiles which
are compressed separately. This reduces the internal memory and processing power
required of the compression system since only parts of the image is processed at a time.
The JPEG2000 compression standard allows tile sizes of NxN with N being a power of
2 and ranging from 1 to 4096.[16] Figure 2.3 shows a 512x512 image divided into 16
tiles, with each tile consisting of 128x128 pixels.

Figure 2.3: Tiling of a 512x512 image into 128x128 tiles.

Since a tile can be up to 4096x4096 pixels, it is possible to process the whole image as
a tile. This would naturally require far more hardware resources to accomplish, which
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is why a system with limited hardware resources benefits from processing the image
as separate tiles. Once the image has been divided into tiles, the tile is split into its
constituent components, which in this case is the red, green and blue layer. Figure 2.4
illustrates the components which make up the tile to be processed.

Figure 2.4: Tiling of the three color components.

Each component tile of the original tile is then processed separately. It should be
noted that usually all the tiles that make up a color component are processed in order,
meaning that all the tiles of the red component are processed, then all the tiles of the
green, etc. This is not the case in this project, since the demosaicing module reads in
a 128x128 Bayer pattern tile from the external memory, and the resulting red, green
and blue component tiles are stored internally. If the system were to process each color
component separately, it would have to first perform the demosaicing process on the
entire Bayer pattern image, store the color components on the external memory and
then read back each component and compress them in turn. This intermediate storage
of the demosaiced image can be avoided if the compression of the color components
is done out of order. Because each tile is treated as a separate image in the JPEG2000
standard, this reordering of the tiles will not affect the performance of the system.
However, this means that the JPEG2000 decoding system would have to be designed to
rearrange the tiles back into the correct order once the image has been received, or the
tiles has to be numbered accordingly in the encoding part of the compression system.

As mentioned, the size of the tiles affect the memory and resource requirements of
the compression system, with a larger tile size requiring more hardware resources in
general. However, tile size also has an effect on the quality of the decompressed image.
Choosing a smaller tile size introduces blocking artifacts similar to those seen in images
compressed using the JPEG standard. Figure 2.5 shows a comparison of different tile
sizes and the resulting image quality.

The images were compressed with JPEG2000 using the image compression program
VCDemo, with a bitrate of 0.3 bpp and a 5-level wavelet transform. This program is
covered more thoroughly in Section 2.13. The only difference between the images seen
in Figure 2.5 was the tile sizes. As can be seen, a 32x32 tile size causes a significant drop
in image quality, with blocking artifacts clearly visible in the image. The difference
between the 128x128 and 64x64 tile size is not as visible, but the PSNR is 1.5 dB higher
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Figure 2.5: The effects of tiling on the compressed image.

with the larger tile size. In the end its a choice between higher image quality or smaller
memory footprint, with a 128x128 tile size yielding good results without requiring too
much hardware resources to implement.

2.3.2 Demosaicing

A typical image sensor used in modern photography consists of thousands upon thou-
sands of small pixel sensors arranged in a grid like pattern. Each pixel sensor is capable
of measuring light intensities with a resolution determined by the ADC of the camera,
which is usually somewhere in the range of 8 to 12 bits depending on the application.
The camera sensor used in this project, the MT9P031[6], has an internal ADC with a
12 bit resolution, giving each pixel a value between 0 and 4096 which translates to the
brightness of the light hitting the sensor. A value of 0 would indicate no light, while
4096 would indicate the highest possible brightness.

Since the pixel sensors only measures light intensities, the images they generate
would only be grayscale images, as they are unable to capture colors innately. In or-
der to capture images in color, a color filter array (CFA) is used. A CFA is a mosaic of
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color filters placed over the entire surface of the image sensor, where the size of each
filter corresponds to the size of the pixel sensor. The CFA is aligned in such a way that
one color filter covers a pixel sensor completely, meaning that the only light hitting the
sensor is the light that passed through that particular filter. This means that the pixel
sensor now measures the intensity of whatever color passed through the color filter in-
stead of light from the whole color spectrum. This is what allows the capturing of color
information.

The CFA most often used is the Bayer filter mosaic, which is a pattern of red, green
and blue filters arranged in a square pattern consisting of two green filters, one red
and one blue filter. Figure 2.6 shows such a pattern and how it is used to construct the
Bayer filter mosaic.

Figure 2.6: The principle of a Color Filter Array.

Here, "GBRG" stands for "green, blue, red, green", which is simply the ordering of
the color filters from left to right, top to bottom. There exists several different patterns,
which uses the same color combination but in different order. Figure 2.7 shows what
a color coded raw Bayer encoded image would look like. The image was generated in
MATLAB and is color coded for visual clarity, as in reality a Bayer encoded image is
visually simply a grayscale image where each pixel is mapped to a particular color.

There exists various algorithms to transform the Bayer encoded image into an RGB
image, which is what is referred to as demosaicing, an essential part of the prepro-
cessing step of the JPEG2000 compression pipeline. However, they are all based on
interpolation of the red, green and blue pixel values based on the neighbouring pixels.
The simplest demosaicing algorithm is the nearest-neighbor interpolation algorithm,
which simply copies the nearest neighboring pixel of the same color.
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Figure 2.7: Color coded Bayer encoded image using the ’GBRG’ pattern.

One such algorithm was proposed by Malvar et.al [17], and is based on weighted
bilinear interpolation. It works by using a weighted average of several neighboring
pixels, which yields better results than nearest-neighbour interpolation or unweighted
average bilinear interpolation. The values for the weights and which of the neighbour-
ing pixels that are used to perform the interpolation depends on which color in Bayer
pattern image that is currently being processed. For a more in-depth explanation of
the algorithm, it is recommended that the reader refer to the original article by Malvar
et.al[17] Using the pattern and CFA from Figure 2.6, and the two nearest neighbouring
pixels there are four different combinations of adjacent colors, as shown in Figure 2.8.

Figure 2.8: The four Bayer image color combinations.
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As is shown in Figure 2.6 each combination forms a 5x5 array of pixels. For these
four combinations, Malvar et.al suggested the weights as shown in Figure 2.9.

Figure 2.9: The weights used for interpolation, here multiplied by a factor of 8 to reduce
the number of fractions.

From Figure 2.9 the weights attributed to the different pixels in the array gives rise
to the four equations

RRGR
BR

 =

 8P2,2
−P0,2 + 2P1,2 − P2,0 + 2P2,1 + 4P2,2 + 2P2,3 − P2,4 + 2P3,2 − P4,2

−3P0,2 + 4P1,1 + 4P1,3 − 3P2,0 + 12P2,2 − 3P2,4 + 4P3,1 + 4P3,3 − 3P4,2

 ·  1/8
1/8

1/16

 (2.3)

RGBGGB
BGB

 =

−2P0,2 − 2P1,1 + 8P1,2 − 2P1,3 + P2,0 + 10P2,2 + P2,4 − 2P3,1 + 8P3,2 − 2P3,3 − 2P4,2
16P2,2

P0,2 − 2P1,1 − 2P1,3 + P2,0 + 8P2,1 + 10P2,2 + 8P2,3 + P2,4 − 2P3,1 − 2P3,3 + P4,2

 · 1/16
1/8

1/16


(2.4)

RGRGGR
BGR

 =

 P0,2 − 2P1,1 − 2P1,3 − 2P2,0 + 8P2,1 + 10P2,2 + 8P2,3 − 2P2,4 − 2P3,1 − 2P3,3 + P4,2
8P2,2

−2P0,2 − 2P1,1 + 4P1,2 − 2P1,3 + P2,0 + 10P2,2 + P2,4 − 2P3,1 + 8P3,2 − 2P3,3 − 2P4,2

 · 1/16
1/8

1/16


(2.5)

RBGB
BB

 =

−3P0,2 + 4P1,1 + 4P1,3 − 3P2,0 + 12P2,2 − 3P2,4 + 4P3,1 + 4P3,3 − 3P4,2
−P0,2 + 2P1,2 − P2,0 + 2P2,1 + 4P2,2 + 2P2,3 − P2,4 + 2P3,2 − P4,2

8P2,2

 · 1/16
1/8
1/8

 (2.6)

From the equations, the R, GB, GR and B notations indicate the color of the center
pixel from which the interpolation is made. GB and GR stands for green center, blue
on the left and green center, red on the left respectively. Some of the weight have also
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been multiplied in order to make them integers instead of fractions, and therefore the
subsequent scaling is also adjusted. As can be seen, the scaling is done by dividing the
weights by a power of 2, in this case either 8 or 16. Because of this, the division can be
accomplished in hardware using simple bit shifting, which makes the operation trivial
compared to division by numbers which are not a power of 2. All the weights are also
integers, which greatly simplifies the multiplication as well and removes the need for
fixed or floating point arithmetic in the demosaicing part of the JPEG2000 pipeline.
This also means that the resulting values from the interpolation equations will have to
be rounded to integers, which naturally introduces some small rounding errors in the
demosaicing process. It should also be noted that the interpolated pixel values have to
be clipped to ensure that they do not go outside the dynamic range of the bits used to
represent them. In the case of 8 bits, the valid range is 0 to 255 for unsigned and -128
to 127 for signed.

A special case which has to be handled during the demosaicing process is dealing
with the edges of the image. The weights and subsequent interpolation equations de-
rived from Figure 2.9 expects a 5x5 array of valid pixels. This is obviously not possible
when handling the edges if the images, and doubly so for the corners. The pixels lo-
cated in the corners of the image only have 3x3 valid pixels instead of 5x5, as the other
pixels are located "outside" the image. One way to handle these cases is to simply set
the pixel values that end up outside the image to 0. Naturally this is not an optimal
solution, as it will cause the interpolated pixels to appear darker than they actually are,
as shown in Figure 2.10.

Figure 2.10: Comparisons of demosaicing with and without image edge handling.

A better way to deal with edges and corners is to treat them as special cases and
reconfigure the interpolation equations accordingly. This essentially means changing
the scaling part of the equations to reflect the number of "valid" pixels in the 5x5 pixel
array. If a pixel is outside the image, it is treated as an "invalid" pixel and excluded from
the equation. From the interpolation equations, we see that sum of the edge weights
divided by the scaling factor equals 1. Once a weighted pixel becomes invalid, the
scaling factor should be adjusted so that the sum of the valid weights multiplied by the
new scaling factor equals or nearly equals 1. Figure 2.11 shows the valid pixels and
their weights at the upper left corner of the image assuming that the center pixel is
blue.
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Figure 2.11: Weighted pixels for a blue center pixel at the corner of the image.

From Figure 2.11, if the pixel weights when interpolating the red pixel value is
summed, the result is 5. The scaling factor therefor has to be adjusted from 1/16 to
1/10 in order to get a result of 1, and a similar re-scaling is done on the other interpo-
lation equations as well, as shown in Equation 2.7.


RB
GB
BB

 =


12P2,2 − 3P2,4 + +4P3,3 − 3P4,2

4P2,2 + 2P2,3 − P2,4 + 2P3,2 − P4,2
8P2,2

 ·

1/10
1/6
1/8

 (2.7)

As can be seen from the equation, the scaling factor no longer has a divisor which
is a power of 2. Therefore, an approximation of the scaling factor is performed, which
adjusts the scaling factors divisor to the closest integer which is a power of 2. The
scaling factors in Equation 2.7 is therefore adjusted to 1/8, 1/8 and 1/8. This introduces
a small error in the demosaicing process around the edges, but the error is considered
to be acceptable when compared to the hardware cost of implementing proper division.

Figure 2.12 shows the result of a 512x512 RGB image which was transformed to a
Bayer pattern image, and then demosaiced using the Malvar et.al bilinear interpolation
algorithm using MatLab.

Figure 2.12: Original image vs image transformed to Bayer pattern and then demo-
saiced.
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The demosaiced image in Figure 2.12 shows that the bilinear approach produces
good results given its simplicity and the ease of which it can be implemented in hard-
ware. It is also hard to see if there are any artifacts caused by the demosaicing process
as well, because the image has an overall low frequency, meaning that there are few
very sudden changes in pixel intensities. Figure 2.13 shows the same demosaicing pro-
cess performed on another image which contains more abrupt changes from one color
to another. The image was generated using a test image script from an earlier project
for NUTS.[1]

Figure 2.13: Example of visible demosaicing artifacts in high frequency regions of an
image.

It is now easy to see that the demosaicing does indeed introduce some zipping arti-
facts around high frequency areas of the image. Other demosaicing algorithms, such
as bicubic interpolation or a Lanczos resampling based demosaicing algorithm might
have produced a result with a lesser degree of artifacts. It is however expected that the
image taken by the camera module will be so called "natural" images, which are im-
ages of nature scenes, which are in general low frequency images. The hardware cost
of implementing the more complex algorithms would also be far greater.

2.3.3 Gamma correction

Gamma correction is a process in which the perceived brightness of an image is cor-
rected using the power law expression

Y = AXγ (2.8)

where X is the pixel value to be corrected, Y is the corrected pixel value, A is a con-
stant and γ is the gamma value, usually in the range γ = (0,1). The constant A is
usually set to 1, but it can also be set to a value in the range A = [0,1] and act as a
scaling constant.
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Figure 2.14 shows an example of gamma correction being used on a grayscale image.
The gamma correction were performed in MATLAB by implementing Equation 2.8 to-
gether with different constants, which causes the brightness and contrasts of the image
to change.

Figure 2.14: Gamma corrections on a grayscale image.

When gamma correction is performed on a multicomponent image, such as an RGB
color image, the process is performed on each color component independently. The
gamma correction of a RGB image can be performed using the equations


YR
YG
YB

 =


AR ·XRγR
AG ·XGγG
AB ·XBγB

 (2.9)

where the R, G and B subscripts indicate the red, green and blue components. By using
the scaling factor A and gamma factor γ , one can manipulate the colors of the image,
making each color appear brighter or darker. This can then for instance be used to re-
duce the influence one color has on the image. This is useful when using camera sensors
where the sensitivity of the pixel sensors are stronger for one color than another. This
would cause that color to "tint" the image in that specific color, and gamma correction
could be used to remove or reduce this effect.
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Figure 2.15 shows some examples of gamma correction being used to alter the colors
of an image. The gamma correction was performed using Matlab with an implementa-
tion of Equation 2.9. Since the original image in this case needed no gamma correction,
the "corrected" images will appear to be tinted in a particular color.

Figure 2.15: Gamma corrections on a RGB image.

2.3.4 Zero-centered dynamic range

Each pixel in the raw image from the camera sensor used on the camera module has
a bit depth of 12 bits. This means that every pixel is represented using 12 bits. Each
pixel thus has a decimal value in the range

[0, 2bitdepth − 1] = [0, 4095] (2.10)

This means that the minimum value a pixel can have is 0, which corresponds to black,
and the maximum value is 4095, which corresponds to white. The nominal dynamic
range is in this case therefore centered around the middle of the minimum and maxi-
mum value, which equals 2047. The JPEG2000 codec however expects a nominal dy-
namic range centered around zero.[16] In order to shift the centering to a zero-centered
dynamic range, a bias of 2bitdepth−1 − 1 is subtracted from each sample, and the sample
is also converted from unsigned to two’s compliment signed.
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This shifting of the dynamic range is later undone in when the image is decom-
pressed. The shift results in the new zero-centered decimal range of

[−2047, 2048] (2.11)

for each pixel, which is now centered around 0. This process is also known as DC
level shifting.

2.3.5 Bit depth reduction

Bit depth reduction reduces the number of bits needed to represent a pixel in an image.
The MT9P031 image sensor, which is the sensor used in the prototype payload module,
has an ADC resolution of 12 bits, which means that each pixel in the image is repre-
sented using 12 bits. If the raw output from the image sensor was a gray-scale image,
that means that the pixels in the image can have 216 different intensity levels.

After demosaicing, each pixel of the raw image is now represented as a combination
of red, green and blue samples. This corresponds to the layers of an RGB image, which
naturally is the output of the demosaicing module. The red, green and blue compo-
nents are also represented using 12 bits per sample. Consequently, without bit depth
reduction, each pixel in the demosaiced image needs 36 bits in total since each color
component uses 12 bits each. This means that the image can have a total of 236 differ-
ent colors, or over 68 billion colors. Naturally, this is far more colors than the camera
sensor itself is actually capable of capturing, and also far more colors than the human
eye can discriminate, which is around 10 million. [18]

Thus, in order to reduce the bits needed to store the three color layers, all the samples
are downscaled from 12 bits to 8 bits after the demosaicing stage of the compression
pipeline. This gives the color component samples, red, green and blue, a total of 28

intensity levels each, which is a decimal range of

[0, 255] (2.12)

Now, the total number of bits needed to represent a pixel using the three color com-
ponents is 24, and the amount of colors that can be represented in the picture is 224,
or just under 17 million. This bit depth reduction of the color components reduces
the total storage needed for the components by 1/3, which again reduces the hardware
resources needed for the rest of the JPEG2000 compression pipeline.
Before demosaicing, a raw image from the MT9P031 image sensor, which is the sensor
used in the prototype payload module, has a size of 2592x1944 pixels, which with 12
bits per pixel results in 7 588 kB of storage needed for each raw image. After demosaic-
ing, and without bit depth reduction each color component has the same dimensions
as the raw image and has the same 12 bit resolution, which translates to three times the
size of the raw image in total, or 22 764 kB. With bit depth reduction from 12 to 8 bits,
the size is reduced to 15 116 kB. It is however possible to downscale further, reducing
the size further, although at a cost of image quality. Figure 2.16 shows the result of
reducing the bit depth of a grayscale image further.
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Figure 2.16: Different bit depths for an grayscale image.

As can be seen Figure 2.16, reducing the bit depth in order to save on data storage
space has a big impact on the picture quality. The same is true for RGB images, as
shown in Figure 2.17.

Figure 2.17: Different bit depths for an RGB image.

Here, the R, G and B components are each represented by a bit depth 8, 4, 2 or 1 bit.
This makes the total bits needed per pixel 24, 12, 6 and 3 bits respectively. Although
the storage space required can be reduced by simply reducing the bit depth of the color
components, it is not advisable to do so below 8 bits per color component, as the trade-
off between picture quality and storage space is too great. Further reduction in the
image data size is accomplished during the JPEG2000 compression.
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2.4 Color transform

The color transform part of the compression pipeline transforms the demosaiced image
from the RGB color space to the YCbCr color space. This transformation can improve
the PSNR of the decoded image compared to the original by as much as 1.5 dB [15].
There are two types of transformations specified in the JPEG2000 compression format,
the reversible color transform (RCT) and the irreversible color transform (ICT)[19].
The RCT can be used with both lossless and lossy compression, and is primarily used
together with the CDF 5/3 wavelet transform, as this transform is also reversible. The
ICT can only be used in lossy compression, since rounding errors are introduced when
performing the transformation, which causes a loss of information. The ICT is best
suited together with the CDF 9/7 wavelet transform, since it too is irreversible in the
same way. In the equations in the subsequent sections the subscripts R, G and B corre-
sponds to the red, green and blue components of the image respectively while Y is the
luminance, while Cb and Cr are the blue-difference and red-difference chroma compo-
nents respectively.

2.4.1 The Reversible Color Transform

The reversible color transform (RCT) is considered reversible because it is an integer
based operation, meaning that performing the transform and reverse transform sev-
eral times on the same image will not incur any additional losses in information. The
forward RCT is defined as[16]


Y
Cb
Cr

 =


R+2G+B

4
B−G
R−G

 (2.13)

While the reverse RCT, which transforms the image back from YCbCr to RGB, is de-
fined as


R
G
B

 =


Cr +G
Y − Cb+Cr

4
Cb+G

 (2.14)

Because the RCT is based on integer arithmetic, and because the division is constant
and a power of two, its implementation in hardware is trivial. There is no need to
implement floating-point or fixed-point arithmetic to perform the RCT. Although the
process is called reversible, some rounding occurs when the luminance component Y
is calculated, as it involves a division by 4. Figure 2.18 shows the output of an Matlab
implementation of the RCT.
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Figure 2.18: Conversion from the RGB color space to YCbCr using the reversible color
transform.

2.4.2 The Irreversible Color Transform

The irreversible color transform (ICT) is considered irreversible because its equations is
based on fractional numbers as opposed to the reversible color transform. This means
that when implemented in hardware, the transform loses precision due to rounding er-
rors caused by imprecise fixed or floating-point notations. The forward ICT is achieved
by means of Equation 2.15, which is a six decimal digits of precision variant of the ICT
defined in the ITU-T T.871 standard for JPEG images [20].


Y
Cb
Cr

 =


0.299 0.584 0.114
−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131

 ·

R
G
B

 (2.15)

While reverse ICT is achieved using the equation


R
G
B

 =


1.0 0 1.402
1.0 −0.34413 −0.71414
1.0 1.772 0

 ·

Y
Cb
Cr

 (2.16)

Figure 2.19 shows ICT performed on a image using a Matlab implementation of Equa-
tion 2.15. As can be seen, the resulting YCbCr color space image differs from the one
achieved using RCT.

Implementing the ICT is far more costly in terms of hardware resources than the RCT
because of the fractional arithmetic needed to perform the transformation. In order to
perform the arithmetic needed in Equation 2.15 either fixed-point or floating-point
representation has to be implemented. Fixed-point or floating-point arithmetic, in this
case multiplication, addition and subtraction also has to be implemented. If the ICT of
a red, green and blue pixel is to be performed in a single clock cycle, this correspond to
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Figure 2.19: Conversion from the RGB color space to YCbCr using irreversible color
transform.

a large amount of hardware resources. Using floating-point notation, it would require
3 conversions of integer to floating-point, 9 floating-point multiplications, 3 floating-
point additions and 4 floating-point subtractions. Performing all these operations in a
single clock cycle would obviously be require an substantial amount of the resources to
implement in hardware. This amount could be reduced by performing the arithmetic
sequentially, thereby reusing the multipliers, adders and subtracters needed, but at the
cost of processing speed as more clock cycles would be needed to perform the ICT.

To reduce the hardware resources required to perform the ICT, an integer approx-
imation of the transformation coefficients is proposed. The fractions numbers from
Equation 2.15 is multiplied by 256 and rounded to nearest integer. Thus, the proposed
integer ICT is achieved using the equation


Y
Cb
Cr

 =


76 151 28
−43 −85 128
128 −107 −21

 ·

R
G
B

 ·


1
256

1
256

1
256

 (2.17)

As the equation shows, the fractional numbers have been replaced with integers, re-
moving the need to implement fixed-point or floating-point number representation
and its associated arithmetic operations. The scaling factor of 256 was chosen because
its a power of two, meaning that the integer division can be achieved using bit shifting,
making the operation trivial. Figure 2.20 shows a side by side comparison of the real
number ICT and the integer ICT, both having been implemented in MATLAB. Here, the
original image is first transformed using one of the ICT methods, and then transformed
back using the inverse ICT as outlined in Equation 2.16. The mean square error (MSE)
and peak signal-to-noise ratio are determined by comparing the result of the inverse
ICT with the original image.
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Figure 2.20: Comparison between real number ICT and integer number ICT.

As Figure 2.20 shows, the fractional number ICT results in a MSE of 0 and a PSNR of
infinity, which is to be expected since the implementation was done in MATLAB using
double precision floating-point numbers, which only introduce very small rounding
errors which are not noticeable in this example. By using the integer ICT described
in Equation 2.17, a MSE of 0.348 and PSNR of 52.7 dB is achieved. This demon-
strates that the proposed integer ICT only introduces minor errors while removing the
need for fixed or floating-point implementation in the color transformation stage of the
JPEG2000 pipeline. In JPEG2000, the color transformation stage is also referred to as
the intercomponent stage.

2.5 Wavelet transform

The discrete wavelet transform is an essential part of the JPEG2000 image compression
pipeline. The wavelet transform is similar to the Fourier transform in that it transforms
incoming data to a different representation, however in this case consisting of wavelets.
Wavelets are a relatively new concept, with the first wavelet being discovered by Alfréd
Haar in 1909.[21] Subsequent research on wavelets led to Ingrid Daubechies work on
orthogonal wavelets in 1988 and biorthogonal wavelets in 1992.[22] This led to the de-
velopment of the Cohen–Daubechies–Feauveau (CDF) family of wavelets, of which the
CDF 5/3 and CDF 9/7 wavelets form the basis for lossless and lossy image compression
respectively in the JPEG2000 standard.[23] A MATLAB implementation of the CDF 9/7
wavelet transform using the lifting scheme, developed by Pascal Getreuer, is used as a
"golden standard" to verify the implementation of the wavelet transform in this project.
[24] This MATLAB implementation is also used to generate some of the images used in
the subsequent theoretical discussion on the wavelet transform in this section.
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The purpose of the wavelet transform is to split the incoming image into multiple fre-
quency bands, called subbands, in a process called decomposition. Each subband con-
sists of either high or low frequency coefficients from the incoming image.

Figure 2.21 illustrates how a 1-dimensional discrete wavelet transform decomposes
an image of size N x N into two sub-bands, each with a size N x N/2. In the figure,
L represents the low-frequency coefficients and H represents the high-frequency coef-
ficients. The low-frequency coefficients are also referred to as the approximate coeffi-
cients or smoothing coefficients, while the high-frequency coefficients are also referred
to as the detail coefficients.

Figure 2.21: The decomposition of a 1D discrete wavelet transform.

The wavelet transformed used in JPEG2000 is 2-dimensional, meaning that it oper-
ates in both the x and y plane of an image. While a 1D wavelet transform only processes
the rows of an image, a 2D transform also processes the columns. Therefore, to perform
a 2D transform, all that is needed is to perform the 1D transform on an the rows of the
image, then perform the 1D transform again on columns of the decomposed image.
Figure 2.22 illustrates a 2D wavelet transform consisting of two 1D wavelet transform
stages.

Figure 2.22: The dyadic decomposition of a 1 level 2D discrete wavelet transform.
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As Figure 2.22 shows, performing the 2D discrete wavelet transform on an image re-
sults in four sub-bands, each with a size N/2 x N/2. This is also known as a 1 level 2D
DWT. By performing the DWT several times on the resulting lowest frequency compo-
nent subband (LL), the image can be decomposed into even more sub-bands, exempli-
fied by Figure 2.23.

Figure 2.23: The dyadic decomposition of a 5 level 2D discrete wavelet transform.

In Figure 2.23, a 5 level 2D DWT has been performed on an image. This is achieved
by first performing a 1 level 2D DWT on the image, then performing a 1 level 2DWT
on the resulting LL subband of the decomposition. This process is repeated three
more times, which results in the dyadic decomposition illustrated in Figure 2.23. The
JPEG2000 standard does not set a specific number on how many decomposition levels
which should be used in the wavelet transform stage of the compression pipeline.[16]
In general, the wavelet transform decreases the information content, or entropy level,
of the image. In other words, the subbands can be more easily compressed in the encod-
ing part of the compression pipeline. The entropy level of an image and its relevance
is more thoroughly explored in Section 2.7. Performing multiple levels of the wavelet
transform also increases the dynamic range of decomposition coefficients. Table 2.1
shows the relationship between wavelet decomposition levels and the dynamic range
when performed on a grayscale version of Lena.

Table 2.1: Comparison between decomposition levels and dynamic range
Level Dynamic range Dynamic range level shifted

0 25 to 245 -103 to 117
1 -64 to 484 -208 to 228
2 -238 to 915 -394 to 403
3 -366 to 1819 -803 to 795
4 -688 to 3480 -1632 to 1432
5 -1201 to 6760 -2610 to 2664
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The dynamic range of a level shifted image is also shown, meaning that the dynamic
range of the original image is shifted before the transformation take place in the same
way outlined in Section 2.3.5. As Table 2.1 shows, the dynamic range of the decomposi-
tion coefficients quickly grows after each transform. The original image had a dynamic
range from 25 to 245, which is typical for a grayscale image, which has a maximum dy-
namic range of 0 to 255, or 256 intensity levels. This means that each pixel can be rep-
resented using 8 bits. After performing a single transformation, the dynamic range has
increased to -64 to 484, which means that we need a minimum of 10 bits to store each
coefficient. After 5 levels, the dynamic range has increased to -1201 to 6760, meaning
that each coefficient now requires 14 bits of storage. This increase in dynamic range
is something that has to be taken into consideration when implementing the wavelet
transform in hardware. When level shifting is employed, the dynamic range after 5
transforms is -2610 to 2664, meaning that 12 bits is required to store the coefficients,
which is 2 bits less than without level shifting. As mentioned, the JPEG2000 standard
does not specify a preferred composition level, but a common number given is between
4 and 6 levels.[14] The transform level chosen is transmitted as part of the code stream
in the encoding part of the compression pipeline as detailed in Section 2.9.

Figure 2.24 shows the result of a 1D DWT performed on the image of Lena, which
decomposes the image into two subbands. The left subband contains the low frequency
coefficients of the original image, while the right subband contains the high frequency
coefficients. The brightness of the image has been adjusted to clearly show the high-
frequency coefficients, as they would otherwise be nearly invisible.

Figure 2.24: An image decomposed into high frequency and low frequency components
using the 1D discrete wavelet transform.

As can be seen from Figure 2.24, the low frequency subband appears to be a resized
version of the original image, while the high frequency subband appears to be an out-
line of the original image. This is because a "natural" image, such as Lena, is essentially
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a low frequency image. This means that abrupt changes between colors is statistically
unlikely. An abrupt change in color would be a high-frequency event, and this is ex-
actly what the high frequency subband shows.

Figure 2.25 show the result of a 1 level 2D DWT on the same image of Lena. Again,
the brightness of the image has been adjusted. The image has now been decomposed
into four subbands, each with a different frequency range.

Figure 2.25: An image decomposed into high frequency and low frequency components
using the 2D discrete wavelet transform.

The wavelet transform can be implemented in hardware in several ways, but the most
common methods is either convolution-based or lifting-based, which is the subject of
the following sections.

2.5.1 Convolution-based DWT

One way to perform the DWT is through the means of convolution. It is based on
Mallat’s pyramid algorithm, and works by passing the image through two finite im-
pulse response (FIR) filters placed in parallel, which acts as high-pass and low-pass
filters.[25][26]

The result of the transform is a decomposition of the input signal S[n] into two sub-
band coefficients, the detail coefficients D[n] and the approximation coefficients A[n],
as expressed by the equations

A[n] =
l−1∑
k=0

g[k]S[2n− k] (2.18)

D[n] =
j−1∑
k=0

h[k]S[2n− k] (2.19)
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Where h(k) and g(k) are the high-pass and low-pass filter coefficients and j and l are
the length of the filters respectively. Figure 2.26 shows the basic building blocks that
make up a 1D DWT based on Mallat’s pyramid algorithm. As can be seen, each sample
is sub-sampled by a factor of two.

Figure 2.26: A 1D forward wavelet transform based on convolution.

Similarly, the inverse discrete wavelet transform is achieved by first up-sampling the
detail and approximate coefficients and filtering them through high-pass and low-pass
filters, as shown in Figure 2.27.

Figure 2.27: A 1D inverse wavelet transform based on convolution.

By cascading the filter bank outlined in Figure 2.26, one can achieve a higher level
decomposition of the image. Performing the convolutions necessary to perform the
wavelet transform requires a significant amount of resources in terms of hardware and
processing time. This is because the convolution process itself requires a relatively
large amount of multiplications and additions, with the former being a fairly costly
process when it comes to hardware and processing. The process also requires a signifi-
cant amount of storage. In order to reduce the number of multiplications and additions
needed to perform the transformation, a different technique was proposed called the
lifting scheme. The lifting scheme is the preferred method to perform the transform in
this project, and will be discussed in the next section.

2.5.2 Lifting-based DWT

The lifting scheme, also referred to as the second-generation wavelet transform, was
first introduced by Wim Sweldens in 1996.[27] He proposed performing the wavelet
transformation through a number of split, predict, update and scaling steps as shown
in Figure 2.28.
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Figure 2.28: A 1D forward wavelet transform based on the lifting scheme.

In Figure 2.28, the Lazy Wavelet Transform block (LWT) splits the incoming samples
x[n] into odd and even samples as shown in the equation

xodd = x[2n+ 1]

xeven = x[2n]
(2.20)

The prediction step computes a prediction for the detail signal samples based on the
even samples. This prediction is then subtracted from the odd samples. Following this
step is an updating step where the resulting odd predicted samples update the even
samples. A final scaling step is used to normalize the resulting samples, resulting in
the detail d[n] and approximation s[n] wavelet coefficients.

The inversion of the lifting steps can be achieved by using the same structure but
with the sign of the addition and subtraction changed as shown in Figure 2.29.

Figure 2.29: A 1D inverse wavelet transform based on the lifting scheme.

An implementation of the wavelet transform using the lifting scheme can have an
arbitrary number of predict and update steps depending on the filter coefficients em-
ployed in the transform. This is exemplified with the reversible 5/3 and irreversible
9/7 transform, which requires 2 and 4 steps respectively.
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2.5.3 Reversible Wavelet Transform

The CDF 5/3 wavelet transform was developed in 1992 in a cooperation between Co-
hen, Sweldens and Feauveau.[23] A lifting scheme implementation of the wavelet trans-
form based on one prediction, one update and no scaling step was developed in 1998
by Calderbank, Sweldens and Daubechies, where they expressed the transformation
lifting scheme using the equations[28]

d[n] = x[2n+ 1] +
[
α
(
x[2n+ 2] + x[2n]

)]
(2.21)

s[n] = x[2n] +
[
β
(
d[n] + d[n− 1]

)
+

1
2

]
(2.22)

And specified the constants α and β as α = −1
2 and β = 1

4 . One simplified hardware
implementation of this lifting scheme based wavelet transform is illustrated in Figure
2.30. Here, the D blocks illustrate delay blocks which delays the input samples by a
predefined number of samples depending on the delay caused by the arithmetic entities
in the architecture.

Figure 2.30: 1D discrete wavelet transform lifting scheme block diagram for the 5/3
transform.

The CDF 5/3 wavelet is specified as the preferred wavelet transform when perform-
ing lossless image compression in the JPEG2000 standard.[15] One significant advan-
tage of the CDF 5/3 wavelet transform is that because it uses simple fractions it is
possible to implement without resorting to real number arithmetic, which requires the
fixed of floating point numbers in hardware. This could for instance be achieved by
multiplying the α and β constants by a scaling factor, perform the predict and update
steps, and then divide the result by the same scaling factor. As long as the factor re-
mains a power of two, the division is trivial to implement in hardware.
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2.5.4 Irreversible Wavelet Transform

The CDF 9/7 wavelet transform was also developed in 1992 by Cohen, Daubechies and
Feauveau and was described in the same paper as the CDF 5/3 wavelet transform.[23]
A lifting implementation of this wavelet transform was proposed by Sweldens and
Daubechies in 1998. [29] The lifting implementation uses two prediction, two update
and two scaling steps to achieve the wavelet transform, for a total of six steps. The
lifting process can be expressed with the equations

d0[n] = x[2n+ 1] +α
(
x[2n+ 2] + x[2n]

)
(2.23)

s0[n] = x[2n] + β
(
d0[n] + d0[n− 1]

)
(2.24)

d1[n] = d0[n] +γ
(
s0[n+ 1] + s0[n]

)
(2.25)

s1[n] = s0[n] + ε
(
d1[n] + d1[n− 1]

)
(2.26)

s[n] = ks1[n] (2.27)

d[n] =
1
k
d1[n] (2.28)

And with the constants α, β, γ , ε and k which can be approximated as α = −1.586134,
β = −0.052980, γ = 0.882911, ε = 0.443506 and k = 1.149604.[19] It is referred to
as irreversible because the constants are irrational numbers and not simple fractions
as with the CDF 5/3 transform. This means that some information is lost because
of rounding of numbers, hence then name irreversible. Although the process can be
reversed with an inverse wavelet transform, the resulting image is not reconstructed
perfectly. Figure 2.31 shows a simple hardware implementation of the lifting scheme
based CDF 9/7 wavelet transform.

Figure 2.31: 1D discrete wavelet transform lifting scheme block diagram for the CDF
9/7 transform.
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The D blocks again acts as delay registers which delays the samples a specified
amount in order to pipeline the process. This hardware implementation is very similar
to the one shown in Figure 2.30, and it is possible to modify it to perform the CDF 5/3
by simply setting γ = 0, ε = 0, k = 1 and α = −1

2 and β = 1
4 . This means that by im-

plementing the CDF 9/7 in hardware, it is easy to switch over to the CDF 5/3 instead.
The CDF 9/7 is the recommended wavelet transform for lossy image compression in
the JPEG2000 standard.[15]

Unlike the CDF 5/3 wavelet transform, the coefficients for the CDF 9/7 can not be ex-
pressed as simple fractions, meaning that either fixed or floating point numbers have to
be implemented to perform the arithmetic of the lifting process. It is however possible
to avoid this by multiplying the constants by a scaling factor, rounding them, perform
the lifting process and then divide the result by the same scaling factor. As an exam-
ple, with a scaling factor of 256, the resulting rounded constants would be α = −406,
β = −14, γ = 226, ε = 114 and k = 294. The resulting wavelet coefficients would then be
divided by 256 after the scaling step in the lifting scheme. Since 256 is a power of 2, im-
plementing this division in hardware is trivial. This method removes the need for fixed
or floating point numbers, but introduces significant rounding errors, especially when
a multilevel wavelet transform is performed. It would also increase the dynamic range
of the intermediate samples in the wavelet transform pipeline considerably, meaning
that more bits is needed to store the values in the pipeline.

2.5.5 Symmetric signal extension

Symmetric signal extension is used when dealing with the edges of the tiles during the
wavelet transform. This is because the lifting scheme algorithm will require samples
which are "outside" the tile once it reaches the edge of the tile. By extending the signal
symmetrically, distortions around the edge of the image is kept to a minimum. Figure
2.32 illustrates how the samples are extended when at the edge of a tile.

Figure 2.32: Illustration of symmetric signal extension on a tile corner.
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A more mathematical representation of symmetric signal extension of a tile row is
shown in Figure 2.33, which shows the extension of a N sample tile row.

Figure 2.33: A more mathematical representation of the signal extension. Here, X rep-
resents a pixel in a row or column and the vertical bars represents the
image boundaries.

The same symmetric extension also applies to tile columns when transposed. From
Figure 2.33, each row and column of a tile component is extended at the start of the
of the image and at the end of the image in a process named pre-extension and post-
extension respectively. The amount of extension needed depends on the wavelet trans-
form and on the number of lifting stages employed. The 9/7 irreversible wavelet trans-
form needs an extension of two samples at the edges during the transformation.

As mentioned, symmetric signal extension is important during the wavelet transform
to avoid distortion of the edges around the image. If the extension is not employed, the
resulting coefficients from the wavelet transform will be based on undefined values,
namely values "outside" the tile component. Figure 2.34 shows the effect that sym-
metric signal extension has on an image which have been forward and inverse wavelet
transformed using the 9/7 transform.

Figure 2.34: A comparison of the DWT with and without symmetric signal extension.

As is apparent in Figure 2.34, a significant border artifact appears around the image
when no signal extension is used.
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2.6 Rate control

The rate control of the JPEG2000 compression pipeline is what determines the level of
compression done to the image, which ultimately also determines the resulting quality
of the decompressed image. The rate control determines the resolution of the quantiza-
tion performed in the quantization step of the compression system. The quantization
rate is determined by the scalar quantization stepsizes for the subbands of the decom-
posed image after the wavelet transform. A larger stepsize results in a higher compres-
sion rate, at the cost of image quality. Quantization is further elaborated in Section 2.7.
The rate control also influences the encoding part of the compression system, meaning
that some parts of the encoded image can be removed in order to reduce the final size
of the compressed image, although at the cost of image quality. This is explained more
fully in Section 2.8.

2.7 Quantization

Quantization is a process which maps a large set of numbers into a smaller set of num-
bers. It is an irreversible and inherent non-linear operation, because information about
the original signal is lost during the process. By reducing the precision of the origi-
nal signal through quantization, the amount of information contained in the image is
reduced, which makes it more compressible in the encoding part of the compression
pipeline. Quantization is the essentially the process which decides if the compression
is done lossless or lossy, as information is lost during the quantization process. If the
quantization process is skipped, then the compression of the image is can be made
lossless if one disregards the losses caused by the irreversible color transform and the
irreversible 9/7 wavelet transform and no data is discarded during the encoding pro-
cess. A simple quantization scheme used in the JPEG2000 standard is uniform scalar
quantization with a dead-zone centered about the origin. The standard also offers more
sophisticated quantization schemes, such as trellis coded quantization (TCQ) and vari-
able dead-zone quantization, however these will not be covered in this report.

Uniform scalar quantization is performed on the wavelet coefficients resulting from
the discrete wavelet transform of the pixel samples from the after the color transform
step. Figure 2.35 illustrates the uniform scalar quantizer with a stepsize designated as
∆.

Figure 2.35: Uniform scalar quantizer with a dead-zone around origin and stepsize ∆.

The coefficients which appears on the line are mapped to the nearest point which is
a multiple of ∆, rounded down. While the wavelet coefficients are usually fractional
numbers, the resulting quantized digits are rounded down to integers. This then leads
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to some information being lost, even with a step-size ∆ of 1, because the coefficients are
rounded down. As can also be seen from Figure 2.35, the coefficients that are within
the interval (-∆, +∆) are mapped to zero. This is what is known as the dead-zone of the
quantizer, which we see is centered around the origin.

Mathematically, uniform scalar quantization can be expressed using the equation

Vb(x,y) = sgn(Ub(x,y))
⌊
|Ub(x,y)|

∆b

⌋
(2.29)

Here, Vb(x,y) represents the quantized wavelet coefficients, Ub(x,y) is the incoming
wavelet coefficient, and ∆b is the step-size. The subscript b specifies the subband of
the decomposed image. This is because the different subbands can be quantized using
different stepsizes, which means that several different stepsizes can be employed in the
quantization process. The variables x and y denotes the location of the coefficient in
the sub-band. The "sgn" function is the sign function, which simply extracts the sign
from the real number, and which is defined as

sgn(x) :=

 -1 if x < 0,
0 if x = 0,
1 if x > 0

(2.30)

The floor function bxc maps the real number x to the greatest integer less than or
equal to x, while |x| simply returns the magnitude of x. Equation 2.31 shows how
the quantization indices are dequantized to produce an approximation of the original
signal.

Ûb(x,y) = (Vb(x,y) + r · sgn(Vb(x,y))) ·∆b (2.31)

Here, Ûb(x,y) represents the approximated original signal, and r is a parameter. The r
is a user selectable bias parameter within the range 0 6 r < 1 and is set to a value which
provides the best result at the reconstruction of the original image. The parameter is
typically set as r = 0.5, but it depends on the particular decompression implementation.
The parameter value itself is not specified in the JPEG2000 standard. The r parameter
can cause the image to gain or lose several dB when dequantization takes place, which
means finding an optimal value for it is paramount.

The JPEG2000 standard does place certain limitations on the step-size ∆.[19] This is
because it is represented as a two-part quantity (εb,µb) in the codestream later in the
encoding part of the standard. The two quantities are used by the decoder to determine
the individual step-sizes for the different sub-bands.
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The quantities are chosen such that

∆b =
(
1 +

µb
211

)
2Rb−εb (2.32)

Here, εb is a 11 bit unsigned integer and µb is a 5 bit unsigned integer.[19] Rb is the
predicted bit-depth of the wavelet coefficients. For instance, with an expected bit-depth
Rb = 16, a step-size of ∆b = 1 would result in εb = 16 and µb = 0. This is important since
it limits the number of available stepsizes to be used in the quantization step.

Figure 2.36 illustrates how a set of integers are mapped into quantization indices, and
then dequantized back into an approximation of the original integers. U represents the
original integers, V is the quantization indices and Û is the reconstructed integers.

Figure 2.36: Uniform scalar quantization of integers with ∆ = 1, ∆ = 2, ∆ = 3 and ∆ =
4.

As Figure 2.36 illustrates, the quantization process introduces quantization errors
which are dependent on the quantization step-size. The Mean Square Quantization
Error (MSQE) of the quantizer can be determined using the equation

MSQE =
k∑
i=1

∫ ti

ti−1

(x − qi)2p(x)dx (2.33)

Here, qi is the quantized value of an input value x, ti−1 and ti is the lower and upper
threshold for the input values respectively, k is the level of quantization and p(x) is
the probability density function for x. For the examples in Figure 2.36, we assume an
uniform distribution for the input values. This results in a pdf(x) = 0.1 for −5 6 x 6 5.
This results is a MSQE of 0, 38, 68 and 78 for the four examples. Although it is a small
sample size, it is easy to see how the quantization error grows as the step-size increases.
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The main purpose of performing quantization is to reduce the overall entropy in the
wavelet coefficients. The entropy is a measurement of the amount of information con-
tained in the image, and is defined by the equation

E = −
M−1∑
k=0

pklog2(pk) (2.34)

Here, M is the intensity levels of the pixels in the image, which is 256 for an 8-bit
grayscale image, while pk is the probability if each intensity level occurring. The en-
tropy gives a crude estimate on the number of bits per pixel (bpp) required to encode
an image without distortion. Although probably not very accurate in this instance, it
nevertheless puts a number on the efficiency of the quantization process. Figure 2.37
shows the entropy of two images.

Figure 2.37: The entropy difference in a random image and uniform image.

As Figure 2.37 shows, the image on the left, which is a image with random intensity
levels, has an entropy of 8, while the black image has an entropy level of 0. What this
illustrates is that the random image is incompressible, with each pixel requiring 8 bits
per pixel, which is equivalent to the number of bits required to represent the intensity
levels of the image. With an entropy level of 0, very little data is needed to represent
the whole image.

Figure 2.38 shows the entropy of an image and its wavelet coefficients. As can be
seen, the wavelet transformation has significantly reduced the entropy in the image,
meaning that theoretically far fewer bpp is needed to encode the image than for the
untransformed image. This makes it clear why the wavelet transform is performed in
the first place, as lossless compression skips the quantization step and simply encodes
the wavelet coefficients directly. Performing the wavelet transform multiple times on
the image reduces the entropy level further.
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Figure 2.38: The entropy difference of an image and its 1 level DWT decomposition.

The quantization process reduces the entropy level of the wavelet decomposition
further, but at the cost of the precision of the wavelet coefficients. The reduction of the
entropy depends on the chosen stepsize ∆, with a higher stepsize resulting in a bigger
reduction in entropy. Figure 2.39 shows scalar quantization with various step-sizes
performed on the wavelet coefficients of an image.

Figure 2.39: Scalar quantization performed on a 1L 2D DWT with different stepsizes
and comparing entropy levels.
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The image in Figure 2.39 has been enhanced to more clearly show the effect of the
quantization process. The image, and most of the subsequent images were generated
by implementing Equation 2.29 and Equation 2.31 in MATLAB. As is seen, the stepsize
is uniform for all the sub-bands in a decomposition, and a bigger stepsize causes a
significant reduction in the entropy of the wavelet coefficients, which translates to a
higher compression ratio during encoding. However, as mentioned quantization will
cause a distortion in the image during reconstruction, and a bigger step-size increases
the level of distortion. Figure 2.40 shows the reconstructed image from the quantized
wavelet decompositions shown in Figure 2.39.

Figure 2.40: The resulting image after dequantization and inverse wavelet transform.

As Figure 2.40 shows, the PSNR of the reconstructed image compared to the original
decreases as the step-size increases. The images have been reconstructed with r = 0.5.
Once the stepsize reaches ∆ = 20, the distortion caused by quantization begins to be-
come visible. One of the features of the JPEG2000 standard is that it allows the different
subbands of the wavelet decomposition to be quantized with different stepsizes. This
means that the LL band can be quantized with a small stepsize, while the HL, LH and
HH bands can be quantized with a larger stepsize. Essentially, this means that the more
important subbands, the low frequency subbands, can be quantized with a higher fi-
delity, leading to a higher quality reconstructed image while still reducing the entropy
of the wavelet coefficients.
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Figure 2.41 shows the wavelet decomposition subbands being quantized with differ-
ent stepsizes and then dequantized and reconstructed.

Figure 2.41: Quantization and reconstruction using different stepsizes for the sub-
bands.

As Figure 2.41 shows, by quantizing the LL subband with a lower stepsize and quan-
tizing the other subbands with a higher stepsize, the entropy level is slightly lower
compared to when all the subbands are quantized with a fixed stepsize of ∆ = 10. As
can be seen in Figure 2.40, a constant stepsize of ∆ = 10 resulted in a reconstructed im-
age with a PSNR = 34.30 dB. The reconstructed image with varying stepsizes results in
a PSNR = 36.11 dB, which is close to a 2 dB increase in the PSNR. The stepsizes here are
chosen relatively arbitrarily, and a different picture might yield a different PSNR for the
same stepsizes, but it illustrates the merit of separate quantization stepsizes for each
sub band. The reconstruction was done with r = 0.5. By changing r = 0.15, the PSNR
of the reconstructed image in Figure 2.41 increases to 37.46 dB. This section has ex-
plained how quantization is performed on a single-component grayscale image. If the
image has more components, such as for a RGB image, the quantization is performed
on each component separately.
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2.8 Tier 1 Encoder

After the quantization is complete the quantized wavelet coefficients are then encoded
using a bit plane coder (BPC) and a binary arithmetic coder (BAC). For JPEG2000
the BPC chosen is the Embedded Block Coding with Optimized Truncation (EBCOT)
coder, which was developed by David Taubman in 2000 and later adopted for the
JPEG2000 standard.[30] The BAC used is the Matrix Quantizer coder (MQ), which is a
multiplication free, low complexity arithmetic encoder also adopted for the JPEG2000
standard.[31]

The purpose of encoding the image is to reduce the amount of data needed to store
the information of the quantized wavelet coefficients even further. Before encoding
takes place, the quantized subbands are divided into precincts and code blocks. Figure
2.42 shows how a wavelet decomposition is divided into precincts and code blocks.

Figure 2.42: The division of a 3 level wavelet decomposition into precincts and code
blocks.

The size of the code block has to be a power of two, and also has to be smaller than
the size of the precinct. The precincts must also stay within a sub-band, which means
that a single precinct can not be present in two sub-bands. The importance of the code
blocks and precincts will be further elaborated in the subsequent sections. Figure 2.43
shows the building blocks which makes up the Tier 1 Encoder for JPEG2000. A code
block is passed to the EBCOT encoder which generates a symbol and context label that
is then transmitted to the MQ coder. The result form the MQ coder is an encoded
bitstream which is then packetized by the Tier 2 Encoder as detailed in Section 2.9.

Figure 2.43: Overview of the Tier 1 Encoder containing the EBCOT encoder and MQ
encoder.
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2.8.1 Embedded Block Coding with Optimized Truncation

The Embedded Block Coding with Optimized Truncation (EBCOT) coder encodes each
code block within a precinct independently. As mentioned, it is a bit plane coder (BPC),
which means that it operates on the bit planes of the code blocks. Each bit plane is
encoded through three coding passes, resulting in an embedded code for each code
block which consists of multiple coding passes. To illustrate the concept of bit planes,
Figure 2.44 shows the bit planes of a grayscale version of Lena with a bit depth of 8
bits.

Figure 2.44: A grayscale 8 bit version of Lena split into its constituent bit planes.

From Figure 2.44, Bit Plane 1 is created from the most significant bits (MSBs) of
each pixel in the image, which results in a bit plane with the same dimensions as the
original image but with each pixel only having a value of either 0 or 1. The same
process is repeated for every bit used to represent the pixel, resulting in the final Bit
Plane 8, which forms a bit plane consisting of the least significant bits (LSBs) of the
image. The same process is used to divide the code blocks into bit planes, with the
number of bit planes depending on the number of bits used to represent the samples
in the code block. The bit planes are then processed starting with the most significant
bit plane and then the second most significant bit plane. This continues until the least
significant bit plane is reached. Figure 2.45 shows how samples within a code block are
used to construct a bit plane.

A code block of size 8x8 consists of 64 wavelet coefficient samples. The number of
bit planes formed by the code block depends on the minimum number of bits needed
to represent the samples. If the samples can be represented using 12 bits the result
is 12 bit planes each with a size of 8x8 bits. Each bit plane is further divided into
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Figure 2.45: Structuring of bit planes from code blocks.

vertical "strips" of four bits each, as shown on the left in Figure 2.46. The numbers
represents the order in which the bits are processed. This is not to say that the four
bits are processed at once, but simply in what order the bits are processed. In fact, each
bit is processed using information about its 8 neighbouring bits, which forms a sliding
window as illustrated on the right in Figure 2.46.

Figure 2.46: Wavelet coefficient sample processing order of a 8x8 code block and the
sliding window operation.
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The bits obtained from the sliding window is organized as shown in Figure 2.47,
with each position in the window labeled from D0 to D8 and D4 being the bit which is
currently being processed.

Figure 2.47: The neighborhood of samples formed by the sliding window. Samples out-
side the code block is set to 0.

At the edges and corners of the bit plane, parts of the sliding window moves outside
of the bit plane where there are no valid bits. When this happens, those bits are simply
treated as if they are zero. From the 3x3 bit array formed by the sliding window, the
value of the neighbouring bits are used to code the middle bit. This is performed during
three distinct coding passes performed on each bit plane. One pass refers to when the
sliding window has processed all the bits in the bit plane. The three coding passes are
referred to as the Significance Pass (SP), the Magnitude Refinement Pass (MRP) and the
Cleanup Pass (CP). During each pass only part of the bit plane is coded, with each bit
only coded once during the three coding passes. To summarize, the bit planes of a code
block is coded using the three coding passes once for each bit plane, except for the most
significant bit plane, which is only coded with the Cleanup Pass. This is because the
Significance Pass and Magnitude Refinement Pass relies in information from previous
bit planes. For the other planes, the order of the coding passes are first SP, MRP and
lastly CP.

The 3x3 bit pattern formed by the sliding window forms what is called a context.
A total of 19 contexts is used to describe the different bit patterns, with each context
belonging to a particular coding method. The definition of the contexts for some of the
methods also varies depending on which subband the code block belongs to. The con-
text tables for the various coding primitives is supplied by the JPEG2000 standard.[19]
For the three coding passes, each bit in the bit plane can be coded using four different
coding primitives: Zero Coding (ZC), Sign Coding (SC), Magnitude Refinement Cod-
ing (MRC) or Run Length Coding (RLC). The four different coding primitives are used
during one or more of three coding passes, depending on the current coding pass and
the context of the sliding window. The three coding passes perform the following:

1. Significance Pass (SP) - The Significance Pass encodes all insignificant bits that
have one or more significant neighbour in the sliding window.

2. Magnitude Refinement Pass (MRP) - The Magnitude Refinement Pass encodes
the bits which became significant in the previous bitplane.
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3. Cleanup Pass(CP) - The Cleanup Pass is the last pass and is used to encode the
bits that were not encoded during the other passes. The Cleanup Pass is always
the first pass in a new code block.

The resulting encoded symbols and the context formed by the sliding window is
then transmitted to the MQ-encoder. The EBCOT coding scheme requires a significant
amount of memory as information about the processed bit planes must be stored be-
tween the coding passes because coding primitives such as the MRP requires that the
significant bits of the previous bit planes are known. It also requires significant pro-
cessing times, as each bit plane except the first is encoded using three coding passes.

2.8.2 MQ-encoder

The MQ-encoder is an arithmetic encoder which takes the symbol and context label
generated by the EBCOT coder and produces an encoded bitstream which is then trans-
mitted to the Tier 2 Encoder of the compression system. The basis of binary arithmetic
coding in the MQ-encoder is the recursive probability interval subdivision associated
with Elias coding. Using the incoming context and symbol, the encoder relies on a pre-
computed probability lookup table to establish a more probable symbol (MPS) and less
probable symbol (LPS). The precomputed probability lookup table is supplied with
the JPEG2000 standard.[19]. The MPS and LPS are then used to create a special par-
titioned interval denoted as A. The interval A is represented using a fixed precision
format and is set to be within the range 0.75 ≤ A ≤ 1.5. The incoming symbols and
contexts are then used to partition the interval A which results in an partition which
can be decoded to reproduce the incoming symbols and contexts. The bits needed to
store this partition is less than the incoming symbol and contexts, which is how the in-
formation is compressed. Figure 2.48 shows a simplified overview of the MQ encoder
architecture.[16]

Figure 2.48: An overview of the MQ encoding process.

From the architecture in Figure 2.48, the Context States block contains the lookup
table with probabilities which are then mapped to each incoming context. After the
arithmetic encoding process the encoded intervals are stored in the byte buffer, which
is flushed once all the bit planes in a code block has been processed. The content of the
byte buffer is then transmitted to the Tier 2 Encoder.
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2.9 Tier 2 Encoder

The Tier 2 Encoder packetizes the resulting encoded samples from the Tier 1 Encoder
into properly formatted JPEG2000 packets. This process also packages information
about the color transform used, the type of wavelet transform, the stepsize for each
subband utilized in the quantization step and all other information relevant to decom-
pressing the compressed image. This information is vital for the JPEG2000 decompres-
sor for it to be able to decode the encoded image properly.

2.9.1 Packetization

The packetization process ensures a universal format for the JPEG2000 compressed im-
ages, which makes it possible for any JPEG2000 decompressor to properly decompress
a compressed image from any JPEG2000 compression system given that they follow the
strict guidelines for how a compressed image is packetized. The JPEG2000 code stream
structure is divided into segments as illustrated in Figure 2.49.[19]

Figure 2.49: The JPEG2000 code stream structure.
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Each of the segments consists of a 16-bit type description, a 16-bit length specifier
and a parameter with a length defined by the length specifier. This is shown in Figure
2.50.

Figure 2.50: The marker segment structure.

The type description in the segment describes the content of the segment, and the
most common segments used in the JPEG2000 code stream structure is shown in Table
2.2.[19] The actual encoded bitstream from the Tier 1 Encoder is placed right after the
SOD marker segment, and is terminated by the EOC marker segment. The rest of the
segments describe characteristics about the compressed image.

Table 2.2: The the most commonly used marker segments.
Type Description

Start of code stream (SOC)
The first marker segment in a code stream.
Used to signal the start of a code stream.

End of code stream (EOC)
The last marker segment in a code stream. Used
to signal the end of a code stream.

Start of tile-part (SOT)
Used to indicate the start of a tile-part header.
Must always appear first in a tile-part header.

Start of data (SOD)
Used to indicate the end of the tile-part header
and also indicate the beginning of the tile body.

Image and tile size (SIZ)

Conveys the primary image characteristics
such as image/tile size, number of components,
bit depth of sample values, and other tiling pa-
rameters. Must follow immediately after SOD.

Coding style default (COD)
Conveys the default coding parameters such
as color transformation, wavelet transform and
encoding parameters.

Coding style component (COC)
Conveys coding parameters for a single compo-
nent only.

Quantization default (QCD)
Conveys default quantization parameters such
as quantization type used and step-sizes.

Quantization component (QCC)
Conveys quantization parameters such as
quantization type used and step-sizes for a sin-
gle component.

Region of interest (RGN) Conveys region of interest coding parameters.
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After the JPEG2000 code stream structure consisting of marker segments has been
constructed, a final step wraps the code stream into the final JPEG2000 file format
structure, as shown in Figure 2.51. [19]

Figure 2.51: The JPEG2000 file format structure.

The file format structure consists of boxes, which like the marker segments contains
information about the image and also the code stream structure itself. The box struc-
ture is shown in Figure 2.52.

Figure 2.52: The box segment structure.

The LBox field specifies the total length of the box in bytes. The TBox field specifies
the type of box. The XLBox field is only used if the length of the box is larger than
specified by the LBox field. The last field DBox contains the data specific to the TBox
box type. The different box types used are shown in Table 2.3.[19]

Table 2.3: The different box segments.
Type Description

JPEG2000 Signature
Appears first in the file and marks the file as being the
JP2 format.

File Type Defines the version of the JP2 format.

JP2 Header
Provides information about the image besides the coded
image itself. This is defined as a "superbox".

Image Header Defines the size and other characteristics of the image.
Color Specification Defines the color space which the image belongs to.
Contiguous Code Stream Contains the code stream.
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2.10 Half-precision floating-point

This section will cover the basic theory behind the implementation of the half-precision
floating-point format, which is needed in order to perform arithmetic operations on
fractional numbers. This is needed for both the wavelet transform and scalar quantiza-
tion performed in the JPEG2000 image compression system.

2.10.1 Floating-point format

In order to use fractional values in the wavelet transform operation, half-precision
floating-point arithmetic is used. The half-precision floating-point representation em-
ployed is modeled after the IEEE 754 standard[32], however with some exceptions.
The standard defines certain special values which can occur when performing floating-
point arithmetic, such as "Infinity" and "NaN", which occurs when dividing by zero or
dividing zero by zero. Instead of returning "Infinity" or "NaN", the arithmetic functions
in this implementation returns the highest possible integer value for a half-precision
floating-point which is 65504 in place for "Infinity", and 0 in place for "NaN". In ad-
dition, the strict rounding definitions specified by the IEEE standard is not enforced.
Figure 2.53 shows the format for the half-precision floating-point standard.

Figure 2.53: The half-precision floating-point format.

Figure 2.54 illustrates the conversion from the floating point to the decimal system.
Note the explicit bit and the exponent bias which is equal to 15 being subtracted from
the exponent.

Figure 2.54: Conversion between the half-precision floating-point and the decimal sys-
tem.

Opting for the half-precision floating-point representation instead of the more pop-
ular single or double precision representation has both advantages and disadvantages.
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The primary advantage is that half-precision only requires 16 bits to represent the for-
mat, while single and double precision requires 32 and 64 bits respectively. The fewer
number of bits required, the less hardware resources is needed to perform the floating-
point arithmetic. The disadvantage is a loss in precision when using less bits to rep-
resent the floating-point number. In addition, the maximum and minimum value that
can be represented also changes. For half-precision, the maximum and minimum rep-
resentable numbers are ±65 504, while its around ± 3.4 × 1038 for single precision and
±1.8 x 10308 for double precision when not accounting for ± infinity.

The main reason for using the half-precision floating-point format to represent frac-
tional numbers in this project is because it makes it possible to implement most of the
floating-point arithmetic as purely combinational circuits without requiring too much
hardware resources. This means that the arithmetic can be performed in a single clock
cycle, rather than using several clock cycles. The downside of using the half-precision
floating-point format as opposed to single-precision or double-precision is, as the name
implies, a loss in precision. In other words, the end results become more inaccurate be-
cause some precision is lost when performing floating-point arithmetic due to rounding
errors.

It should be noted that the amount of resources and the timing delay introduced by
the floating-point arithmetic depends heavily on which operation that is performed.
For instance, performing division on floating-point numbers is far more expensive in
terms of resources and time compared to multiplication, addition or subtraction. This
is especially true when performing the operation in a single clock cycle. The delay in-
troduced by the combinational circuits is manageable however due to the relatively low
clock speed of 50 MHz. If the clock speed was to be increased, it would most likely be
better to implement the floating point arithmetic as multi-clock cycle operations. The
next sections discuss the basic operation behind floating-point addition, subtraction,
multiplication and division. As mentioned, the floating point arithmetic implemented
in this project is only loosely based upon the IEEE 754 standard, which makes the arith-
metic less complex. This is especially true when the strict rounding operation specified
in the IEEE standard is not followed completely.

2.10.2 Floating-point conversion

Converting from normal binary numerical representation to floating-point and vice
versa is an important operation in the compression system. This is because some mod-
ules operates on normal binary while others are dependent on the floating point for-
mat. A 16-bit signed binary integer can be converted to a half-precision floating-point
format as shown in Figure 2.53 by performing the following steps in order:

1. If the input is zero, return zero.

2. If input is negative, invert the input and set sign bit to 1, else set sign bit to 0.

3. Set the exponent to log2 of the input and add the exp bias.
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4. If the input is between 1 and 211 − 1, set mantissa to input - 2exponent−exp bias, and
left-shift the mantissa depending on the exponent.

5. If the input is between 211 and 212−1 then subtract 211 from the input, right shift
it once and set the result as the mantissa.

6. If the input is between 212 and 213−1 then subtract 212 from the input, right shift
it twice and set the result as the mantissa.

7. If the input is between 213 and 214−1 then subtract 213 from the input, right shift
it three times and set the result as the mantissa.

8. If the input is between 214 and 215−1 then subtract 214 from the input, right shift
it four times and set the result as the mantissa.

9. If the input is between 215 and 216−1 then subtract 215 from the input, right shift
it five times and set the result as the mantissa.

10. If the input is higher, set all the bits in the mantissa to 1.

11. Return the sign bit, exponent and mantissa as a 16-bit binary integer.

Where the exp bias for the half-precision floating-point format is 15. The reason for
checking the range of the input is because of the limited precision of the format. Lower
numbers can be represented more accurately, while higher numbers are lose some of
their least significant digits in the process. In order to convert a number back from half
precision floating point to signed binary, the following procedure can be performed in
order:

1. Separate the sign bit, exponent and mantissa.

2. If the exponent is lower than 14, return zero.

3. If the exponent is 14, return 1.

4. If the exponent is between 15 and 25, right shift the mantissa (25-exponent) num-
ber of times and add 2exponent−exp bias.

5. If the exponent is between 26 and 29, right shift the mantissa (exponent-25) num-
ber of times and add 2exponent−exp bias.

6. For any higher exponent, set output to 215 − 1.

7. If the sign bit is 1, invert output.

8. Return output.

Both the conversion to and from floating point is implemented in VHDL, as is shown
in Section 3.7.2. Converting from floating point to signed binary will naturally round
the result. The IEEE standard has strict definitions for how the rounding is to be per-
formed, but these definitions are not adhered to in this instance and the result is simply
rounded down to nearest whole number.
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2.10.3 Floating-point addition and subtraction

Floating-point addition and subtraction is, surprisingly, more complex than multipli-
cation or division. Floating-point subtraction can be performed using the same method
as for floating-point addition by simply changing the sign bit of the floating-point. This
is true because mathematically, a−b = a+(−b). Floating-point addition/subtraction be-
tween two floating-point numbers input A and input B into an output C can be done
with the following steps performed in order:

1. If input A is zero, return input A for addition and for subtraction negate the sign
of input B and return the result.

2. If input B is zero, return input A.

3. Extract sign A, exponent A and mantissa A from input A, and extract sign B,
exponent B and mantissa B from input B.

4. If subtraction is performed, invert sign B.

5. Add implicit bit to mantissa A and mantissa B. (Set bit 10 of mantissa to 1.)

6. Shift the mantissa and the exponent of the input with the lowest exponent until
it match the higher exponent. Set exponent C to resulting exponent.

7. If sign A is negative, convert mantissa A to two’s compliment. If sign B is negative,
convert mantissa B to two’s compliment.

8. Add mantissa A with mantissa B and form mantissa C. If the result is negative,
invert the result and set sign C to 1.

9. Normalize the result, which means shifting the leftmost bit of mantissa C until
it reaches the 10th bit position. The shift can be either left or right, depending
on the position of the leftmost bit. The exponent C is also adjusted accordingly
depending on which direction the mantissa is shifted.

10. Check for exponent C underflow. If an underflow is present, return zero.

11. Check for exponent C overflow. If an overflow is present, return maximum value
possible together with sign C.

12. Return sign C, exponent C and mantissa C as a 16 bit binary integer.

The maximum value possible in step 11 is defined as the maximum value repre-
sentable with a half precision floating point number, which is ±65504.
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2.10.4 Floating-point multiplication/division

Floating-point multiplication and division is simpler in terms of complexity compared
to addition and subtraction, but generally requires more hardware resources to per-
form. Floating-point division, just like normal division, is the most expensive and time
consuming operation to perform in hardware. The exception for normal division is if
the divisor is a power of two, for then the division can be performed by simply right
shifting the dividend. For floating-point division, the numerical value of the dividend
or divisor has little impact on run-time or hardware complexity. The multiplication or
division between two floating point numbers input A and input B, resulting in output
C can be achieved by the following steps performed in order:

1. If input A or input B is zero, return zero.

2. Extract sign A, exponent A and mantissa A from input A, and extract sign B,
exponent B and mantissa B from input B.

3. Add implicit bit to mantissa A and mantissa B. (Set bit 10 of mantissa to 1.)

4. Sign c is equal to sign A xor sign B.

5. Add exponent A with exponent B and subtract the exp bias. This forms exponent
C.

6. Multiply or divide mantissa A with mantissa B. This forms mantissa C.

7. Normalize the result, which means shifting mantissa C until the leftmost bit is in
20th bit position. Adjust exponent C as mantissa C is shifted.

8. Check for exponent C underflow. If an underflow is present, return zero.

9. Check for exponent C overflow. If an overflow is present, return maximum value
possible together with sign C.

10. Return sign C, exponent C and mantissa C as a 16 bit binary integer.

The only difference in the procedure from floating-point multiplication or division
is in step 6. The most hardware intensive part of the floating-point multiplication
or division process is the multiplication/division of the 10 bit mantissas. Performing
this operation in a single clock cycle would naturally incur a substantial cost in terms
of hardware. Changing it to a multi-clock cycle operation would then naturally reduce
the hardware overhead required to implement it, although at the cost of increased com-
putation time.
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2.11 JPEG vs JPEG2000

As previously mentioned, JPEG2000 offers several advantages over JPEG. One of the
main advantages is the superior compression ratio that JPEG2000 offers, especially
at low bit rates. Figure 2.55 shows images compressed using JPEG at different bit
rates with the standard Y quantization table, standard VLC Huffman encoding and no
smoothing effects. The images were compressed using the image compression program
VCDemo.[33]

Figure 2.55: Comparison of different JPEG compression rates.

As is seen in Figure 2.55 the quality of the picture deteriorates quickly as the bit rate
drops. The blocking artifacts characteristic of JPEG begins to become visible at 0.2 bits
per pixel (bpp), and is especially egregious at 0.1 bpp. Clearly the lowest acceptable bit
rate for JPEG with this picture in particular is 0.2 bpp.
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Figure 2.56 compares different bit rates for JPEG2000. The compression was also
done using VCDemo, with a 5-level wavelet transform and no tiling of the image. At
0.3 bpp the compressed image is visually nearly identical to the original. Even at 0.05
bpp it is still possible to discern details in the image.

Figure 2.56: Comparison of different JPEG2000 compression rates.

Comparing Figure 2.55 and Figure 2.56 it is clear to see that JPEG2000 offers superior
quality over JPEG at low bit rates. When comparing the results at 0.1 bpp it is especially
clear that JPEG2000 is superior at low bit-rates compared to JPEG.

56



2.12 Xilinx Vivado Design Suite

Vivado Design Suite[34] is a program created by Xilinx to aid in the development and
testing of HDL designs. It is a complete solution which enables simulation, synthesis
and implementation of both Verilog and VHDL based designs in both SoC and purely
FPGA based systems. Previous work done for NUTS make use of the MicroBlaze[11]
softcore microprocessor developed by Xilinx, as well as an Numato Lab Xilinx Spartan-
6 development board[35], making Vivado the natural choice of development tools for
this project.

2.12.1 Synthesis and Timing Analysis

Vivado Design Suite offers several features to verify the functionality of a design. As
mentioned, designs can be synthesized and thereafter the hardware resources required
by the design can be determined. This makes it possible to verify if the design fits
certain resource requirements, or if a chosen FPGA has the hardware capacity for it to
be implemented. Hardware resources for an FPGA refers to the configurable hardware
resources available on an FPGA, such as look-up tables (LUTs), registers (REGs), mul-
tiplexers (MUX), block random access memory (BRAM) and digital signal processors
(DSP). The features and hardware resources offered by an FPGA varies depending on
the manufacturer and model.

Vivado also offers a Timing Analysis function which verifies that a signal is able to
propagate through the logic elements of the module in time for the result to become
available during the subsequent clock cycle. The analysis also tests various other timing
issues that might be present in a design. Failure to meet the timing criteria means
that the module is unable to operate at the specified clock frequency. To remedy this,
the clock frequency has to be reduced or the implementation redesigned. The Timing
Analysis feature can also be used to determine the maximum operating frequency of
the system. The Timing Analysis determines the slack of a signal.

The slack of a signal is defined as the difference between the required time and the
actual time it takes for a signal to propagate. The Worst Negative Slack (WNS) is the
signal path with the highest slack, while the Total Negative Slack (TNS) is the sum
of all signal paths with a slack. If the WNS and TNS are negative, the design fails to
meet the timing requirements because the signal arrives after the required time. If it is
positive, then the design passes the timing requirement. Worst Hold Slack (WHS) and
Total Hold Slack (THS) indicate that a signal is not present long enough on an input
or output for the module to be able to read it properly during an active clock cycle.
An Input and Output Delay is also often specified, which time it takes for a signal to
become valid at an input or output port in relation to the clock of the transmitting or
receiving module. FE stands for Failing Endpoint, and indicates how many of the total
paths a signal can take that fails the timing test. If a design fails the Timing Analysis,
the design itself must either be modified or the design clock speed has to be reduced.
The Timing Analysis is used extensively in Section 3.
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2.13 VCDemo

VCDemo is an interactive video and image compression software developed by Delft
University of Technology.[33] It includes several of the most used image and video
compression schemes, including JPEG and JPEG2000. It allows for customization of
the compression systems, such as changing tile sizes, transform levels, quantization
levels and bit-rate. This makes it easy to compare JPEG with JPEG2000, in addition to
showing the impact small changes in the image compression system has on the final
compressed image. Several of the comparisons done in this report was based on results
from the VCDemo software, such as in Section 2.11.
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3 Implementation

This section will go into detail about how the JPEG2000 compression system was imple-
mented in hardware. The compression system is split into a number of smaller mod-
ules, each with its own purpose such as demosaicing, wavelet transformation, scalar
quantization and so forth. The following sections will detail the purpose of each mod-
ule, its method of operation and how it was implemented in hardware and the design
decisions made for each module. Each module is represented using a flowchart un-
less the module control system is too large or complex to be practically displayed as a
flowchart. In this case it is represented using a simplified system overview. In addi-
tion, a section is devoted to the previously developed modules and why it was decided
to develop new modules. Synthesis and Timing Analysis results are also included in
this section due to their importance in the implementation procedure. It should be
noted that no proprietary IP cores or external designs were used in this project, mean-
ing that all modules were designed from the ground up using only the the features
offered by the VHDL language and the Xilinx Vivado Design Suite. A description of
the connection interface of each module is included in Appendix B.

3.1 The previous work

This section will give a brief overview of the previous work done on the JPEG2000
compression system and why it was decided to not implement the previously developed
modules and rather create new modules instead. Three relevant modules had been
developed which were considered for implementation in this project[1]:

• A demosaicing module

• A color transform module

• A gamma correction module

The following sections will cover each of the previously developed modules in turn.
Each section will check the functionality of the module, if the module is synthesizable,
the resources required to implement the module and finally a Timing Analysis to verify
that the module meets all timing requirements to operate at a minimum of 50 MHz.

3.1.1 Previous demosaicing module

Several versions of the previous demosaicing module exists as part of previous work
conducted for NUTS.[1] This section will deal with the most recent version. In order to
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test the functionality of the previous demosaicing module, a test image in Bayer format
was created. As explained in Section 2.3.2, the purpose of demosaicing is to convert an
image from the Bayer format to RGB. Figure 3.1 shows a section of the test image used.

Figure 3.1: Bayer formatted test image (left) and expected demosaiced image (right)
using MATLABs demosaicing function.

The image on the left in Figure 3.1 shows the Bayer formatted test image, while the
image on the right shows the result expected after the demosaicing process. This result-
ing demosaiced image was generated in MATLAB using the inbuilt demosaic function.
This image will serve as a reference used to verify the output of the previous demo-
saicing module. It was specified in the report for the old demosaicing module that it
had several known faults of unknown origin. By running the supplied testbench for
the module, the resulting output is shown in Figure 3.2.

Figure 3.2: The result from the previously developed demosaicing module.

As Figure 3.2 shows, the resulting image from the module contains a high level of
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unexpected artifacts in the form of horizontal lines. Some of the colors also appear to
be slightly misaligned. These errors were mentioned in the previous report, but the
author had been unable to determine the source of the artifacts.

When attempting to synthesize the module, Xilinx Vivado is unable to complete the
synthesis, even after attempting to complete the process for several days. The reason
behind this is not known definitively, but one hypothesis is the massive memory arrays
initialized internally in the module failing to synthesize properly. [36] The module
works by first loading in the first five horizontal lines of the entire Bayer image, per-
forming demosaicing on these lines, writing them to the output port, then reading the
next five horizontal lines and starting the operation over again. The issue with this
method is that it requires one array to store the incoming Bayer image lines and three
arrays to store the red, green and blue interpolated values temperately. Because the
expected raw image from the camera sensor has a width of 2592 pixels, each array is
initialized as a 2592 x 5 2D array, with each data point in the array containing a 16-bit
pixel sample. This translates to 207 360 bits, or 25.92 kB per array. For four arrays, this
equals 103.68 kB of internal storage needed when implementing the arrays in hard-
ware.

Although this requires a significant amount of resources to store, it can easily be
achieved by implementing the array as block RAM (BRAM) in hardware. This means
that the demosaicing process has to access the array as if it was a RAM module, mean-
ing that data is accessed one sample at a time. However, the demosaicing process of the
previous demosaicing module is implemented in such a way that it accesses multiple
values from the arrays simultaneously. This means that the arrays can not be synthe-
sized as BRAM, but has to be synthesized as LUT elements instead. Storing over 100kB
as LUT elements would require thousand upon thousand of elements, and far more
than the resources available on the FPGA considered for the camera module. Because
the module is not synthesizable, it is not possible to accurately determine the total re-
sources the module would use, or if the module would pass the Timing Analysis. The
module also makes extensive use of the mod-function, which is an expensive function
to implement in hardware for mod n unless n is a power of two. Because of this, and
in the light of the known faults in the demosaiced image produced by the module, it
was decided to design a new demosaicing module from scratch rather than attempt to
troubleshoot the old module.

3.1.2 Previous color transform module

The previous color transform module implements a reversible color transform (RCT)
as described in Section 2.4.1. The RCT equation is reproduced here for convenience


Y
Cb
Cr

 =


R+2G+B

4
B−G
R−G

 (3.1)

The previous module accepts 16-bit RGB samples in and returns 16-bit YCbCr sam-
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ples out. A testbench which was supplied with the module testes a small set RGB
samples to verify the output. This small set of samples show that the output of the
module is equal to the expected output, as shown in Figure 3.3. The input and output
are shown in unsigned integer format, with Db and Dr being used to represent Cb and
Cr respectively.

Figure 3.3: Testbench results from the previous color transform module.

As can be seen from the results in Figure 3.3, an input of R = 4095, G = 3840 and
B = 15 results in a Y = 2947, Cb = 61711 and Cr = 255. In signed notation, Cb = −3825.
Mathematically, following the equation for the RCT, this result is correct. However,
this is not accounting for the fact that the dynamic range of the output must be equal
to the dynamic range of the input. In this case, the input has a dynamic range of
[0,65535], which means that the output can not be a negative number. An underflow
therefore causes the high value of 61711 for Cb, which should in reality have been 0.
This problem is relatively easy to fix, and a simple check which sets negative numbers
to zero would have sufficed. The module is synthesizable, with Table 3.1 showing the
resources required to implement the module in hardware.

Table 3.1: Previous color transform module resource usage
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

49 0 0 0 0 0

As Table 3.1 shows, the hardware implementation requires relatively few resources.
A Timing Analysis was also conducted on the module, as shown in Table 3.2. An Input
Delay and Output Delay of 1 ns was added to the analysis.

Table 3.2: Timing analysis of the previous color transform module
Clock WNS TNS FE WHS THS FE

50 MHz 11.676 ns 0.000 ns 0/48 4.104 ns 0.000 ns 0/48

The result of the Timing Analysis shows that the module passes all tests. The bottom
line is that the previous color transform module can be utilized in the current design
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if the dynamic range issue is addressed. However, as explained in Section 2.4, the
most suitable color transform for lossy compression is the irreversible color transform
(ICT), and not the reversible color transform (RCT) as is used in this module. Due to
the differences between the transforms, it was decided to create a new color transform
module with the ICT instead rather than attempt to modify the previous module.

3.1.3 Previous gamma correction module

The previous gamma correction module implemented a fixed gamma correction of the
form

Z = XY (3.2)

Where Z is the gamma corrected output rounded to nearest integer, X is the input
sample and Y is the gamma correction variable. The gamma correction variable in this
case was fixed to 1/2, meaning that the gamma correction is essentially a square root
operation of the input X. The square root function is implemented using what appears
to be a non-restoring square root algorithm, although this is not fully explained in
the original report. A testbench feeding the module with seemingly random values
indicates that the module works as intended by squaring the incoming values.

Although a gamma correction variable of 1/2 is close to the recommended gamma
correction value for raw images in general (1/2.2)[37], this module does not allow for
color specific gamma correction or gamma correction using variables other than 1/2,
which might be necessary depending on the camera sensor used. The module is syn-
thesizable, and Table 3.3 shows the resources used by the module.

Table 3.3: Previous gamma correction module resource usage
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

87 0 0 0 0 0

As Table 3.3 shows, this module utilizes relatively few hardware resources. However,
the module is implemented in such a way as to perform the square root function in a
single clock cycle. It is therefore important to run a Timing Analysis on the module to
ensure that the module is able to operate at the specified frequency of 50 MHz. For the
tests, an Input and Output Delay of 1 ns was added, which indicates the rise time of
signals entering and exiting the module. It should be noted that this is a rather opti-
mistic value for the Input and Output Delays. Table 3.4 shows the result of a Timing
Analysis of the module at both 50 MHz and a lower clock frequency of 44.95 MHz.

The results in Table 3.4 shows that the module fails to meet the timing requirements
with a clock frequency of 50 MHz. Only by lowering the frequency to 44.95 MHz does
the module pass the Timing Analysis. Based on these results, and the fact that the
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Table 3.4: Timing analysis of the previous gamma correction module
Clock WNS TNS FE WHS THS FE

50 MHz -2.425 ns -3.680 ns 2/8 4.041 ns 0.000 ns 0/8
44.95 MHz 0.000 ns 0.000 ns 0/8 4.041 ns 0.000 ns 0/8

module only utilizes a fixed gamma correction variable, it was decided that the module
should not be used in the current design, at least not without significant modifications.
The timing issue could possibly been resolved by adding some delays into the squaring
process.

3.2 Camera module system overview

It is intended for the JPEG2000 compression module to be implemented as a module
in a larger control system on the camera module FPGA. This control system has not
yet been fully developed, but the current system consists of a softcore microproces-
sor which interfaces the camera sensor with an external microcontroller on the camera
module circuit board. It will be the task of the softcore processor to interface the exter-
nal microcontroller, camera sensor and external memory with the compression module.
A proposed system overview is shown in Figure 3.4.

Figure 3.4: System overview of the payload camera module.

From the system overview, the MCU is an external microcontroller which handles
the communication with the rest of the satellite via I2C. In order to reduce the power
consumption of the camera module, the MCU will power down the FPGA and camera
sensor when not in use.

The FLASH Memory is used to store raw Bayer encoded images from the camera sen-
sor, and its capacity has to be large enough to enable storage of multiple images. The
FLASH Program is used to store the FPGA configuration program. In order to start the
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compression, the MCU moves the picture to be compressed to the RAM and powers
up the FPGA. By communicating with the internal Microblaze softcore microprocessor,
the MCU can provide the JPEG2000 module with information about the raw image and
adjust parameters such as the bit rate. After compression is initiated, the compression
module operates autonomously from both the external MCU and internal softcore mi-
croprocessor. The raw Bayer encoded image is read from the external RAM one tile at
a time, compressed, and then written back to a dedicated part of the external RAM.
After compression is complete, the external MCU moves the compressed tiles to the
flash memory or transmits them to another storage location on the satellite.

3.3 The JPEG2000 top module

The purpose of the JPEG2000 top module is to control the flow of data through all the
other internal modules in the system. It also acts as a communication point with the
external systems of the FPGA, or eventually a softcore microprocessor internally on
the FPGA itself. Figure 3.5 shows a system overview of the module with the internal
modules and the external systems which the top module communicates with.

Figure 3.5: The JPEG2000 top module system overview.

The top module instructs the demosaicing module which tile to process. The de-
mosaiced tile then passes through the other modules sequentially. The top module
monitors the other modules and initiates the correct module in the right order. As is
seen from the top module overview in Figure 3.5, the encoding module is only partly
implemented. This was due to time limitations associated with the completion of the
thesis, and the partial implementation is further expanded upon in Section 3.9. The
compression system is designed to operate on all three color components of the image
concurrently.

It should also be noted that the overview looks different from the JPEG 2000 com-
pression overview shown in the theory from Section 2.2. In the VHDL implementation,
the different modules perform the following operations:
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1. Demosaicing Module - Image tiling, demosaicing.

2. Gamma Correction Module - Gamma correction, bit depth reduction.

3. Intercomponent Transform Module - DC level shifting, color transform.

4. Wavelet Transform Module - Wavelet transform.

5. Quantization Module - Scalar quantization.

6. Encoding Module - Tier 1 Encoding (EBCOT and MQ coder), Tier 2 Encoding
(Packetization). Module is not fully implemented.

Each of the modules are treated in separate sections in this chapter.

3.3.1 Hardware synthesis and Timing Analysis

The JPEG2000 top module, and subsequently the submodules which constitutes it, syn-
thesizes successfully in Xilinx Vivado. Table 3.5 shows the hardware resources required
to implement the newly developed JPEG2000 compression system with gamma correc-
tion enabled and including the partly implemented encoding module.

Table 3.5: JPEG2000 top module hardware resource usage.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

14325 2902 37 72 72 35

A Timing Analysis was also performed on the top module, with an Input and Output
Delay of 5ns and a clock frequency of 50 MHz. The results of the Timing Analysis is
shown in Table 3.6.

Table 3.6: Timing analysis of the JPEG2000 top module.
Clock WNS TNS FE WHS THS FE

50 MHz 4.257 ns 0.000 ns 0/7922 0.059 ns 0.000 ns 0/7922

As can be seen from the results of the analysis, the top module passes the Timing
Analysis. By adjusting the clock frequency until the analysis failed, the top frequency
of the JPEG2000 compression system was determined to be 63.5 MHz. Synthesis results
and Timing Analysis results from all the submodules in the JPEG2000 compression
system is shown in the subsequent sections.

3.4 The demosaicing module

The demosaicing module performs two operations on the raw image from the camera
sensor. It divides the image into tiles and performs the demosaicing process on each
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tile from the external RAM memory as instructed by the JPEG2000 top module. Figure
3.6 shows the a simplified flowchart for the demosaicing module. The demosaicing
process itself is further elaborated upon later in this section.

Figure 3.6: Simplified flowchart of the demosaicing module.

3.4.1 Image tiling

The demosaicing module is designed to operate on a tile size of 128x128 Bayer encoded
pixels. The demosaicing module itself does not store an entire tile at once, but rather
just the pixels required to perform the demosaicing process. The tile size was chosen
as a compromise between the resulting image quality of the decompressed image and
FPGA resources required to perform the compression. As outlined in Section 2.3.1, the
tile size has a direct impact on image quality, with a smaller tile size causing clearly
visible blocking artifacts. As will be detailed in the following sections, the tile size also
affects the hardware resources used on the FPGA, as the system is designed to not store
intermediate data on the external RAM of the camera module. This means that when
a tile is read, it will be stored internally on the FPGA until the compression process is
finished.

For the most part increasing the tile size only increases the amount of block RAM
tiles utilized by the design. The total internal memory needed to store the tile specifi-
cally for this implementation is given by
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M =
N2 ·B ·C ·K

1000
(3.3)

Where M is total memory in Kb, N is the tile size, B is the bit depth of each pixel, C
is the number of color components for each tile and K is the total number of memory
modules needed in the compression system. The bit-depth B is set to 16-bit because
of the need to store half-precision floating point numbers, while C is set to 3 compo-
nents because the image is RGB. K is set to 3, as two memory modules is needed for
the DWT module and one is needed in the encoding module. The equation simplifies to

M = 0.144N2 (3.4)

Table 3.7 shows a comparison between tile sizes, memory required and the difference
in PSNR between images compressed with the specific tile size as shown in 2.3.

Table 3.7: Tile size impact on internal memory and compressed image PSNR.
N M PSNR Gain
32 148 Kb 27.8 dB NA
64 590 Kb 32.9 dB 5.1 dB

128 2360 Kb 34.4 dB 1.5dB
256 9438 Kb ca 34.9 dB ca 0.5 dB

No tiling 967458 Kb 34.9 dB ca 0 dB

As shown by the table, there is a considerable gain when increasing the tile size
from 32x32 to 64x64, and also when increasing the size further to 128x128. Beyond
that point the gain becomes vanishingly small while the memory requirement grows
exponentially. From this, the tile size of the implemented solution was set to 128x128.
If the amount of internal memory needed becomes a significant issue, the tile size can
be lowered to 64x64, but at the cost of a reduction in the PSNR of a decompressed
image of around 1.5 dB.

3.4.2 Demosaicing

Each tile read from the external memory is demosaiced using the Malvar et.al algo-
rithm described in Section 2.3.2, which results in three tiles of red, green and blue
components. Because the algorithm is based on interpolation of neighboring pixels, to
demosaic a tile requires that some of the pixels in neighboring tiles are also read.

As described in the theory, the demosaicing process requires that a 5x5 array of pix-
els is read to determine the RGB components of a single pixel, as shown in Figure 3.7.
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Figure 3.7: The demosaicing process.

The demosaicing module reads pixel samples from the external RAM where the
Bayer encoded image from the camera sensor is stored. The module also determines
the RAM addresses for the correct pixel samples based on the address of the first pixel
in the image, which tile it is processing, and which pixel in the tile it needs to access.
The tiles that constitutes the entire image is processed from left to right, and from top
to bottom in a similar fashion to the scanning order of pixels in a tile block as shown in
Figure 3.8. This means that tile 0 is in the upper left corner, tile 1 is on the right of tile
0 and so forth.

Figure 3.8: The demosaicing scan order within a tile block.

The JPEG2000 top module only has to provide the start RAM address for the first
pixel of the image and which tile it wants demosaiced and the demosaicing module will
handle all memory accessing and processing by itself. With no storage of intermediate
pixel samples, the demosaicing module has to access on average 25 samples for every
pixel in the image. For a single tile, this corresponds to over 400,000 external memory
accesses. This would constitute a serious bottle neck for the entire JPEG compression
system. If assuming that it takes 10 clock cycles to request and receive a sample from
the external RAM, and assuming a clock frequency of 50MHz, it would take 80ms to
perform demosaicing of one tile. One way to reduce the amount of external memory
accesses is to exploit the fact that the interpolation of neighboring pixels make use of
some of the same pixel samples. In fact, by simply shifting all the elements in the pixel
array one position to the left, and only updating the rightmost column, the adjacent
pixel can be interpolated. This process is illustrated in Figure 3.9.

By storing intermediate pixel samples, the processing time of a tile is reduced by
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Figure 3.9: Array shifting to reduce external memory access and processing time.

around 80%, but at the cost of a higher complexity control system and an increase in
hardware resources utilized by the module. Once the array is filled with the needed
pixel samples, the demosaicing process is designed to perform the interpolation in a
single clock cycle. This requires more hardware resources, as the multiplication part
of the algorithm is done using combinational circuitry instead of sequential circuitry.
On the other hand, it reduces the complexity of the control circuit and increases the
running speed of the module. The resulting demosaiced pixel samples are then trans-
mitted to the wavelet transform module.

3.4.3 Hardware synthesis and Timing Analysis

The demosaicing module synthesizes successfully in Xilinx Vivado, and the hardware
resources required by the module is shown in Table 3.8.

Table 3.8: Demosaicing module hardware resource usage.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

979 395 0 0 0 8

As is shown, the module requires 8 digital signal processors (DSP) and a noticeable
amount of other hardware resources. This is primarily due to the complex control
system designed to reduce the number of external memory accesses as much as possi-
ble, and additionally the combinational nature of the multiplication logic. A Timing
Analysis was also performed on the module, with a clock frequency of 50 MHz and a
conservative Input and Output Delay of 5ns, with the result shown in Table 3.9.

Table 3.9: Timing analysis of the demosaicing module.
Clock WNS TNS FE WHS THS FE

50 MHz 5.224 ns 0.000 ns 0/1099 0.118 ns 0.000 ns 0/1099

By adjusting the frequency until the Timing Analysis test fails, it was determined
that the maximum operating frequency of the demosaicing module is 67.5 MHz.
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3.5 Gamma correction module

The gamma correction module performs bit depth reduction and gamma correction on
the demosaiced image samples from the demosaicing module. The module operates on
three pixel samples at once because the demosaicing process produces a red, green and
blue pixel sample simultaneously. Figure 3.10 shows the operation of the module.

Figure 3.10: Simplified flowchart of the gamma correction module.

3.5.1 Bit depth reduction

The bit depth of the pixels from the demosaicing module is 12 bits. This is reduced to
8 bits in order to reduce the computational complexity associated with the gamma cor-
rection step and to save hardware resources. Doing this has a negligible impact on the
image quality, but reduces the information content of each pixel by 50%. The reduction
is performed by doing a simple right shift operation four times on the incoming pixel
samples, which is equivalent to a division by 16. After the depth reduction, the pixel
samples are gamma corrected.
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3.5.2 Gamma correction

The gamma correction process exponentiates the incoming pixel sample by a constant
exponent 0 < γ ≤ 1 and multiplies the result by a constant 0 < A ≤ 1, as outlined in
Section 2.3.3. The exponent γ and constant A is considered constant as they are in-
tended to correct for artifacts introduced by the camera sensor, which means that there
is no need to change them during the operation of the camera module. By considering
them constant, the computational complexity of the gamma correction module can be
reduced considerably, as exponentiation by an arbitrary fraction is a non-trivial opera-
tion to do in hardware. Certain limitations have been imposed on the gamma correction
constants to simplify its implementation in hardware. That is,

A = 0.1n, n = 1,2,3 ... 10 (3.5)

γ = 0.1n, n = 1,2,3 ... 10 (3.6)

In other words, the constants are limited to 10 different values each, which greatly
simplifies the mathematical operations. The multiplication of the constant A is per-
formed through a shift-multiplication procedure. This entails multiplying the pixel
sample with another constant A

′
which is then right shifted k number of times to pro-

duce an approximate result. By performing the shift operation 8 times, the operation
is equivalent to a division by 256.

A ·X ≈ A
′ ·X
2k

=
A
′ ·X
28 (3.7)

A
′

= 10 ·A · 2k = 10 ·A · 28 ≈ 260 ·A (3.8)

By multiplying A by 260, it results in A
′

being a natural number for the whole range
of A. This is crucial to avoid fractional multiplications, which is the point of performing
the shift-multiplication procedure. The multiplication by a fraction A has been reduced
to a multiplication of the natural number A

′
and a 8 right shift operations. The result

is only approximate, with an average error of 8.6% in the resulting value. The simplest
way to perform the fractional exponentiation in hardware is to use look-up tables. This
is a simple method which consists of a look-up table of precalculated values which are
then mapped to the value of X. The downside of using look-up tables is that the size of
the look-up table scales as a function of the dynamic range of the pixel input X. Because
of the bit-depth reduction performed before the gamma correction operation, the dy-
namic range of the pixel values are [0,255], or 256 levels. With γ remaining constant,
the look-up table has to store 256 values. If no bit-depth reduction had been performed,
the dynamic range of X would be 4096 levels, which corresponds to a table with 4096
values, which naturally requires more hardware resources. Because X is always a nat-
ural number, the look-up table can be initialized as an array with X corresponding to
the index in the array as shown partially in in Table 3.10. The resulting values from the
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Table 3.10: Part of the look-up arrays for the fractional exponentiation in the gamma
correction process.

Index (X) γ = 0.1 γ = 0.2 γ = 0.3 . . . γ = 0.8 γ = 0.9 γ = 1
0 0 0 0 . . . 0 0 0
1 1 1 1 . . . 1 1 1
2 1 1 1 . . . 2 2 2
3 1 1 1 . . . 2 3 3
...

...
...

...
...

...
...

...
252 2 3 5 . . . 84 145 252
253 2 3 5 . . . 84 145 253
254 2 3 5 . . . 84 146 254
255 2 3 5 . . . 84 146 255

exponentiation is rounded so that they can be represented as natural numbers. This
also introduces some error in the exponentiation process.

One way to reduce the error between the computer and expected result would be to
implement floating- or fixed-point arithmetic. However, to do so would increase the
hardware cost of the gamma correction module considerably, and was decided that the
introduced error is acceptable.

3.5.3 Hardware synthesis and Timing Analysis

The gamma correction module is fully synthesizable, and the hardware resources re-
quired by the module when performing gamma correction on all incoming pixel sam-
ples is shown in Table 3.11.

Table 3.11: Gamma correction module resource with gamma correction.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

159 24 35 12 0 0

If gamma correction is disabled, meaning that the constants A = 1 and γ = 1,
then the look-up table is not synthesized, and samples merely pass through the module
without the need for arithmetic operations. Table 3.12 shows the resulting resource use
in this configuration.

Table 3.12: Gamma correction module resource without gamma correction.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

0 24 0 0 0 0

Hardware resources can be saved by disabling the gamma correction feature and
instead perform it when the image is received back on earth.
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Table 3.13 shows the result of a Timing Analysis performed on the module. The clock
speed is set to 50 MHz, and a conservative 5 ns Input and Output Delay is added to the
ports of the module.

Table 3.13: Timing analysis of the gamma correction module.
Clock WNS TNS FE WHS THS FE

50 MHz 9.306 ns 0.000 ns 0/72 4.121 ns 0.000 ns 0/72

By adjusting the clock speed until the Timing Analysis fails, it was found that the
maximum operational clock frequency of the module is 93.4 MHz. The synthesis report
and Timing Analysis indicates that the module can in all likelihood be implemented
without issues.

3.6 Intercomponent transform module

The intercomponent transform module performs two operations on the pixel samples
from the gamma correction module. First the samples are DC level shifted before being
color transformed using the ICT as described in Section 2.4.2. Just as with the gamma
correction module, the module performs the operation on three pixel samples simulta-
neously and performs it in a single clock cycle. Figure 3.11 illustrates how the module
operates.

Figure 3.11: Simplified flowchart of the intercomponent transform module.

As seen from the flowchart, the flow of the module is relatively simple and similar to
the gamma correction module.
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3.6.1 DC level shifting

The DC level shifting process on the intercomponent module simply shifts the middle
value of the pixel sample to zero. For a pixel sample with a dynamic range [0, 255],
the shift results in a dynamic range of [-128, 127]. Negative numbers are represented
in the two’s compliment format, and the DC level shifting is performed by subtracting
128 from each pixel sample, as is described in Section 2.3.4. After being level shifted,
the pixel samples are color transformed.

3.6.2 Color transform

The color transform process uses the integer based irreversible color transform as out-
lined at the end of Section 2.4.2. This reduces the transform to a simple multiplication
and shift operation rather than fractional multiplication, although some error is intro-
duced by this approximation similarly to in the gamma correction module. After the
color transform, the pixel samples are transmitted to the wavelet transform module.

3.6.3 Hardware synthesis and Timing Analysis

The intercomponent transform module is fully synthesizable using Xilinx Vivado, with
the hardware resources required to implement the module shown in Table 3.14.

Table 3.14: Intercomponent transform module hardware resource usage.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

573 24 0 0 0 0

As seen in Table 3.14, the module requires a noticeably large amount of resources.
Similarly to the demosaicing module, this is due to the module performing the op-
eration in a single clock cycle, making the hardware logic combinational. A Timing
Analysis was also performed on the module, with a clock frequency of 50 MHz and an
Input and Output Delay of 5ns. The results of the analysis is shown in Table 3.15.

Table 3.15: Timing analysis of the intercomponent transform module.
Clock WNS TNS FE WHS THS FE

50 MHz 4.610 ns 0.000 ns 0/72 4.329 ns 9.500 ns 0/72

The maximum operating frequency of the module is determined to be 64.9 MHz
based on Timing Analysis results.
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3.7 Wavelet transform module

The wavelet transform module is one of the more complex parts of the compression
system and the module requiring the most hardware resources due to heavy usage of
floating point arithmetic. The wavelet transform module performs the CDF 9/7 DWT
as described in Section 2.5. Figure 3.12 shows a basic overview of the module.

Figure 3.12: Overview of the wavelet transform module.

The input pixels are converted from signed binary to the half-precision floating-point
in the module before being written to the Memory 1 memory. The pixels are then
transformed in the DWT architecture, which performs a 1D transformation. Thereafter
the wavelet coefficients are transposed, stored in Memory 2 and then transformed again
before a second transposition occurs. The content of Memory 1 is now a 1 level 2D
DWT of the incoming tile. To perform a multi-level transform, the lowest frequency
subband in Memory 1 is run through the same process several times depending on the
level wanted.

3.7.1 The lifting scheme architecture

The components that make up the lifting scheme architecture as described in Section
2.5.2 is shown in Figure 3.13. The lifting scheme architecture is the component marked
as DWT in the system overview shown in Figure 3.12.

Figure 3.13: The lifting scheme hardware architecture.
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The architecture consists of a total of 6 floating-point multipliers, 8 floating-point
adders and 9 delay registers, which are described in more detail in the subsequent
section. Odd and even samples from the tile components stored internally inside the
wavelet transform module is fed into the architecture at one sample per clock cycle.
The resulting low pass and high pass components are stored in another part of the
internal memory of the module. The delay registers in the architecture ensures that the
pipelining of the pixel sample are correctly synchronized through the entire process.
The floating point arithmetic operations requires a single clock cycle to complete an
calculation, which is also compensated for by the delay register. Table 3.16 shows the
length of the delay registers.

Table 3.16: The delay register lengths.
D(n) Delay (clock cycles)

0 1
1 3
2 5
3 1
4 1
5 6
6 5
7 1
8 3

Table 3.17 shows the value of the constants used in the architecture as was described
in Section 2.5. Some additional rounding of these constants takes place as they are
converted to the half-precision floating-point format.

Table 3.17: The constants used in the lifting scheme architecture for the 9/7 CDF DWT.
Constant Value

α -1.5859375
β -0.0529785
γ 0.8828125
ε 0.443359375
k 1.154455289473
1
k 0.86962890
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3.7.2 Floating-point arithmetic

The floating-point multipliers and adders used in the lifting scheme architecture is
based on the theory discussed in Section 2.10.1. These are the most important building
blocks of the architecture, and also the parts requiring the most resources, especially
because the operations are designed to be performed in a single clock cycle. In addition,
units converting to floating point from signed binary and vice versa also constitutes a
part of the wavelet transform module. A simplified flowchart in Figure 3.14 shows how
floating point conversion is achieved in accordance with theory from Section 2.10.1.

When converting from floating point to signed binary, the output range is from -
32,768 to 32,767. Any floating point number outside this range is rounded up or down
to the minimum or maximum output. In addition, fractional numbers are rounded
down to the nearest whole number. Since only floating point multiplication and ad-
dition/subtraction were needed in the architecture, floating-point division is not il-
lustrated with a flowchart. Floating-point division was implemented and tested, but
it was determined that the division can not be performed in a single clock cycle at 50
MHz while still passing Timing Analysis tests. A simplified flowchart for floating-point
addition/subtraction is shown in Figure 3.15.

From the flowchart in Figure 3.15, the most expensive operation in terms of hardware
resources is the addition between the mantissas and the normalization of the result. By
changing the addition and normalization to a multi-clock cycle operation, a significant
amount of hardware resources could be saved, and the operation could have been per-
formed at a higher clock speed. On the downside, this would also have increased the
number of clock cycles to perform the operation. As can be seen, the only difference
between addition and subtraction is a negation of the sign of input B. In similar fash-
ion, a simplified flowchart for the floating point multiplication procedure is shown in
Figure 3.16.

In the floating point multiplication flowchart, the mantissa multiplication and nor-
malization of the result requires the most hardware resources of the procedure. Just as
with the addition/subtraction procedure, by changing the multiplication and normal-
ization operation to a multi-clock cycle operation, a significant reduction in hardware
resources utilized for the operation would have been achieved.
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Figure 3.14: Simplified flowchart of the floating point conversion in the wavelet trans-
form module.
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Figure 3.15: Simplified flowchart of the floating-point addition/subtraction procedure
in the wavelet transform module.
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Figure 3.16: Simplified flowchart of the floating point multiplication procedure in the
wavelet transform module.
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3.7.3 Hardware synthesis and Timing Analysis

Both the lifting scheme architecture and the rest of the wavelet transform module is
synthesizable in hardware. Table 3.18 shows the hardware resources required by the
lifting scheme architecture.

Table 3.18: The lifting scheme architecture hardware resource usage.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

3458 400 0 0 0 8

As Table 3.18 shows, the architecture requires a substantial amount of hardware re-
sources to implement. This can be attributed to the architecture containing 6 floating-
point multipliers and 8 floating-point adders, all of which perform their operation in
a single clock cycle. The resource usage could have been reduced significantly if the
floating point arithmetic were changed to single clock cycle operations to a multi-clock
cycle operation, though at the cost of significantly longer processing time and con-
trol complexity. As mentioned, the wavelet transform module is designed so that the
three components that make up an RGB tile are processed simultaneously, meaning
that three such lifting architectures are run in parallel. The total hardware resource
use for the module is shown in Table 3.19.

Table 3.19: The wavelet transform module hardware resource usage.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

11702 1990 0 0 48 24

The large amount of resources from Table 3.19 is primarily from the three lifting
scheme architectures and the internal memory modules used to store the intermedi-
ate results of the wavelet transform. Both block RAM and other hardware resources
could have been reduced substantially by only processing one tile component at once,
meaning that the red, green and blue tile component would have been processed se-
quentially rather than in parallel. This would naturally have increased the processing
time of the wavelet transform module, but at the same time would have reduced the
hardware resource usage by around two thirds.

A Timing Analysis was performed on the module, with a clock frequency of 50 MHz
and an Input and Output Delay of 5ns. The results of the analysis is shown in Table
3.20.

Table 3.20: Timing analysis of the wavelet transform module.
Clock WNS TNS FE WHS THS FE

50 MHz 4.257 ns 0.000 ns 0/5140 0.059 ns 0.000 ns 0/5140

The maximum operating frequency of the wavelet transform module was determined
to be 63.49 MHz.
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3.8 Quantization module

The quantization module is implemented based on the theory described in Section 2.7.
Two distinct versions of the module were developed, with the second version deemed
superior to the first. While both versions perform the same task of quantizing the
wavelet coefficients, the second version is faster, requires less hardware resources to
implement and is far less complex. On the other hand, the first version can operate
independently of the second version, which makes it possible to perform the wavelet
transform of the next tile while still quantizing the previous tile. The scalar quanti-
zation itself in both versions is performed through half-precision floating-point multi-
plication of the wavelet coefficient with the reciprocal of the selected stepsize for the
current subband. By using the reciprocal of the stepsize, floating-point multiplication
can be used instead of floating-point division. Both versions are capable of quantizing
each subband of a wavelet decomposition with a different stepsize.

3.8.1 Version 1

Version 1 of the quantization module is constructed in a similar fashion to the wavelet
transform module. Pixel samples from the wavelet transform module are first loaded
into internal memory modules before the quantization process starts. The quantization
is performed by reading a sample from the internal memory, quantizing the sample,
and then writing the sample back to the internal memory. After all the samples have
been quantized, they are converted from half precision floating point to signed binary.
Figure 3.17 shows a system overview of version 1 of the module.

Figure 3.17: Overview of version 1 of the quantization module.

Further explanation of the quantization process itself is provided in Section 3.8.3.
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3.8.2 Version 1 hardware synthesis and Timing Analysis

Version 1 of the quantization module is fully synthesizable, and the resulting hardware
resources required to implement the module is shown in Table 3.21.

Table 3.21: Quantization module version 1 hardware resource usage.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

948 346 0 0 24 3

As can be seen, because of the storage of tile components internally in the module, a
total of 24 block RAM units are required in the implementation. The primary reason for
the relatively high resource requirement for the module is the floating-point arithmetic
performed when quantizing the pixel samples. A Timing Analysis was also performed
on the module, with the results shown in Table 3.22. The clock frequency was set to 50
MHz, with the Input and Output Delay set to 5 ns.

Table 3.22: Timing analysis of the version 1 of the quantization module.
Clock WNS TNS FE WHS THS FE

50 MHz 4.785 ns 0.000 ns 0/1185 0.118 ns 0.000 ns 0/1185

The maximum frequency of version 1 of the module was found to be 65.7 MHz by
increasing the clock frequency until the analysis failed. One significant disadvantage of
version 1 of the module is its impact on the processing speed of the compression system.
By having to store the wavelet coefficients from the wavelet transform module into a
separate memory in the quantization module, perform quantization on the content in
the memory, and then write the quantized indices to the encoding module introduces
significant delay in the system.

3.8.3 Version 2

Version 2 of the quantization module performs the quantization on each sample "on-
the-fly" rather than first store them internally in the module, perform quantization on
them and then write the quantized coefficients to the encoding module. Figure 3.18
shows a simplified flowchart for version 2 of the module.

Wavelet coefficients are received from the wavelet transform modules. Using an in-
ternal counter, the quantization module determines which subband the current wavelet
coefficient pertains to. From Section 2.7, the stepsize δ has here been limited to an in-
teger between 1 and 50. In order to quantize the result, the wavelet coefficient is di-
vided by the stepsize. Performing division of a variable natural number which is not
a power of 2 is a relatively hardware expensive operation, especially when performing
it in a single clock cycle. In the wavelet transform module, the wavelet coefficients
were processed as half-precision floating point-numbers. When transferring the coef-
ficients from the wavelet transform module to the quantization module, they were on
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Figure 3.18: Simplified flowchart of version 2 of the quantization module.

purpose not converted back to signed integers. We can therefore perform floating-point
arithmetic on the incoming coefficients without having to convert them first. Since the
stepsizes are fixed in a range between 1 to 50, we can turn the division into a multipli-
cation by simply changing the step size delta to a range between 1/1 to 1/50. By using
a look-up table containing the new stepsizes in the floating-point format, the floating-
point multiplication can be performed efficiently. This also enables variable step sizes
for the different subbands. After determining which subband the coefficients belong
to, a second array containing the appropriate look-up table indexes allows individual
step sizes for the different subbands in the wavelet decomposition.

Once the appropriate stepsize has been retrieved from the look-up table it is floating-
point multiplied with the the wavelet coefficient before being converted back to signed
binary. This naturally rounds down the numerical value, as is required by the scalar
quantization equation specified in Section 2.7. The resulting quantized wavelet coeffi-
cients are then transmitted to the encoding module.
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3.8.4 Version 2 hardware synthesis and Timing Analysis

Version 2 of the quantization module is also fully synthesizable, and the results of the
synthesis is shown in Table 3.23.

Table 3.23: Quantization module version 2 hardware resource usage.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

910 288 0 0 0 3

Version 2 requires less hardware resources, especially with regards to block RAM be-
cause the samples are not stored internally in the quantization module in this version.
A Timing Analysis was also performed on the module, with the result shown in Table
3.24. The clock frequency was set to 50 MHz, with an Input and Output Delay of 5 ns.

Table 3.24: Timing analysis of the version 2 of the quantization module.
Clock WNS TNS FE WHS THS FE

50 MHz 4.525 ns 0.000 ns 0/646 0.124 ns 0.000 ns 0/646

It was shown that the maximum operating frequency of version 2 of the module is
64.6 MHz by increasing the frequency until the Timing Analysis fails.

3.9 Encoding module

The purpose of the encoding module was to perform the Tier 1 Encoding and Tier
2 Encoding of the JPEG2000 compression system as was outlined in Section 2.8 and
Section 2.9. However, due to time constraints the EBCOT and MQ coder were not in
a state were it could be implemented in the encoding module. Figure 3.19 shows the
both the implemented and planned components which would make up the encoding
module.

Figure 3.19: System overview of the partially implemented encoding module.
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The encoding module would have received quantized wavelet coefficients from the
quantization module and stored them in internal RAM modules. Once a code block
is needed, the required samples are read from the memory and converted from two’s
compliment to sign magnitude representation before being passed to the EBCOT coder.
Here, the code block would have been split into its constituent bit planes, with each bit
plane encoded using the three encoding passes in order to generate a symbol and con-
text label which would then be passed to the MQ coder which produces a probability
from a lookup table based on the incoming data which are then used to perform the
binary arithmetic encoding. The end result would have been an encoded bitstream.
This would have constituted the Tier 1 Encoder. The last step would be to perform the
packetization step of the Tier 2 Encoder, which would have taken place right after the
MQ coder. The result from the packetization would have been a compressed JPEG2000
image with the JP2 file extension.

3.9.1 Hardware synthesis and Timing Analysis

Although the module was not complete, both synthesis and Timing Analysis tests were
performed on the incomplete module. The module is synthesizable, and the hardware
resources required are shown in Table 3.25.

Table 3.25: The incomplete encoding module hardware resource usage.
Slice LUTs Slice REGs F7 MUXs F8 MUXs Block RAM DSP

198 217 0 0 24 0

As the synthesis results show, the current module requires few resources. This is
expected to grow significantly as the EBCOT and MQ encoders are implemented. The
Timing Analysis were performed with an Input and Output Delay of 5ns, and a clock
frequency of 50 MHz. The results of of the analysis is shown in Table 3.26.

Table 3.26: Timing analysis of the incomplete encoding module.
Clock WNS TNS FE WHS THS FE

50 MHz 9.306 ns 0.000 ns 0/1105 0.118 ns 0.000 ns 0/1105

The analysis succeeded at 50MHz. By increasing the clock frequency until the analy-
sis failed, the maximum operating frequency for the module was determined to be 93.4
MHz.
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4 Testing and results

This chapter contains the testing procedures and results for the individual modules in
the JPEG2000 compression system as well as for the system as a whole. It also measures
the performance of the individual modules and compares them to similar implemen-
tations in MATLAB. By examining the comparison, the functionality of the module can
be verified and evaluated.

4.1 Testing procedure

All the modules of the JPEG2000 compression system were tested either individually
or in combination with other modules. The results of the tests were either visually
inspected or compared against results acquired from MATLAB scripts designed to per-
form the same operation as the modules. We therefore designate the MATLAB results
as a "gold standard/reference" model upon which we compare the results of the mod-
ules. This allows us to verify individual modules and track down potential errors in
the operation of the compression system to a reasonable degree. The test scheme is
outlined in Figure 4.1.

Figure 4.1: The test strategy for the modules.

Four pictures of different size and content were used to test the modules, each with
three components R, G and B and with each component having a bit depth of 8 bits.
This is to test the effects of tiling and how the compression ratio changes based on the
content of the image, as well as to verify the functionality of the system. It also enables
certain parameters such as the quantization step sizes to be adjusted to better suit the
environment the camera module will be operating in.
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Figure 4.2 shows two images of Lena with different resolution used as test images.

Figure 4.2: The 512x512 LenaBig and 128x128 LenaSmall test images.

The purpose of LenaSmall is to verify that the compression system can handle a
single tile, as any image fed into the system is divided into equally sized tiles. The
LenaBig image tests how the system handles an image consisting of several tiles. When
it is processed, it will be divided into 16 tiles as illustrated in Section 2.3.1. These
two test images illustrates more natural and relatively low frequency images and is not
expected to be encountered in the environment the camera module will operate. Figure
4.3 shows the third test image used.

The HFBIG test image in Figure 4.3 is a computer generated image containing sev-
eral high frequency regions with abrupt changes from one color to another. This tests
the modules performance on high frequency images, although not the type of image
expected to be encountered in the normal application of the camera module. The last
test image used is shown in Figure 4.4.

The NASA image in Figure 4.4 is used to measure the performance of the system in a
similar environment to the one that the camera module is expected to operate in. The
four test images ought to give a sufficient foundation to determine the performance of
the system.
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Figure 4.3: The 2592x1944 HFBIG test image containing high frequency areas devel-
oped as part of a previous project.[1]

Figure 4.4: Cropped 2592x1944 NASA picture showing the release of Cubesats over
earth from outer space.[2]
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4.2 Testbench

A testbench developed in Xilinx Vivado is used to simulate an external memory module
containing a Bayer encoded test image. The external memory module is instantiated as
RAM, and the device under test (DUT) communicates with the memory in the same
way as real RAM memory. The testbench also provides the DUT with a start signal
to indicate that the DUT is to begin its operation. Parameters such as bitrate are also
supplied by the testbench. The output from the DUT is stored in a text file which is
later analyzed. The functionality of the testbench is illustrated in Figure 4.5.

Figure 4.5: The testbench functionality.

For all the modules in the compression system, the output are integer values indicat-
ing pixel intensities, wavelet coefficients or quantized coefficients. As these are stored
in a text file, a MATLAB script can analyze or construct an image from the output of the
module. This result is then used to verify the functionality of the module as outlined
in the previous section.

4.3 Demosaicing module

In order to test the demosaicing module, the test images are first converted to Bayer
encoded images using MATLAB. This is done by simulating a ’GBRG’ CFA over the
test images and recording the resulting pixel intensities in a new image as outlined in
Section 2.3.2. The result are 3 color component RGB test images turned into single
component Bayer encoded images, as was shown previously in Figure 2.6. As was also
shown in Section 2.3.2, seeing the result of the demosaicing process on a natural low
frequency image is difficult. Therefore, the HFBIG test image was the image primarily
used to verify the module. A cropped view of the demosaiced image is seen in Figure
4.6.
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Figure 4.6: Image from the demosaicing module vs the MATLAB result.

The PSNR of the demosaiced image produced by the module compared to the image
produced in MATLAB was 51.02 dB. This indicates that the module successfully per-
forms the demosaicing process. Figure 4.7 shows the result of processing the LenaBig
test image.

Figure 4.7: The test image LenaBig demosaiced with MATLAB and with the demosaic-
ing module.

Visually, there is no perceivable difference between the demosaiced image from MAT-
LAB and from the module. The other test images were also processed by both MATLAB
and the module, with the results shown in Table 4.1. Also shown is the time it takes the
module to process the test image. It is assumed that the external RAM can be accessed
in one clock cycle.
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Table 4.1: PSNR between MATLAB and the module for the demosaiced test images.

Image
MATLAB
vs Original

Module
vs Original

MATLAB
vs Module

DIFF
Module
run time

LenaSmall 28.06 dB 26.71 dB 49.25 dB 1.35 dB 1.98 ms
LenaBig 34.89 dB 33.37 dB 51.77 dB 1.53 dB 28.2 ms
HFBIG 31.73 dB 28.62 dB 47.93 dB 3.11 dB 596.2 ms
NASA 42.15 dB 41 dB 53 dB 1.15 dB 596.2 ms

As the results show, the demosaicing module produces images which are reasonably
close to the images produced by the MATLAB script. The results are slightly differ-
ent primarily because the module rounds the results from the demosaicing process in
order to represent them using unsigned binary, which is different from the MATLAB
implementation which does not round the result. The largest difference occurs in the
HFBIG test image, which contains a high proportion of high frequency areas, which
most demosaicing processes handles poorly.

4.4 Gamma correction module

Due to the time needed to run simulations in Xilinx Vivado, only LenaBig was used
to test the gamma correction module. The module was tested in sequence with the
demosaicing module, meaning that the Bayer encoded image is first demosaiced and
then gamma corrected. Only a few combinations of gamma correction constants were
used, but they are deemed sufficient to verify the functionality of the module. Figure
4.8 shows gamma correction performed by MATLAB and by the module.

Figure 4.8: Gamma correction performed by MATLAB and the module.
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Visually, the module appears to perform just as well as the MATLAB implementation.
Table 4.2 show the resulting PSNR between the gamma corrections performed by the
module and in MATLAB for the test image LenaBig.

Table 4.2: PSNR between MATLAB and module for gamma correction of LenaBig.
[Ar ,Ag ,Ab] [0.8,1.0,1.0] [1.0,0.9,0.9] [1.0,0.8,0.8] [1.0,1.0,1.0]
[γr ,γg ,γb] [0.1,0.8,0.8] [0.9,0.9,0.9] [1.0,0.6,0.8] [0.5,0.5,0.5]
Module vs
MATLAB

44.08 dB 46.22 dB 46.54 dB 52.78 dB

As the results show, there are some differences in the PSNR between the MATLAB
implementation and the module. This is attributed to the rounded look-up table for
the gamma correction constant and the shift-multiplication described in Section 3.5.2,
which are not used in the MATLAB implementation. In addition, since the gamma
correction is done in together with demosaicing, the PSNR is also lower due to the er-
rors incurred in the demosaicing process. Because the gamma correction is performed
mostly to appeal visually to a human observer, the results are deemed acceptable.

4.5 Intercomponent transform module

Just as with the gamma correction module, the test image LenaBig were used to test
the intercomponent transform module. The module was also tested in sequence with
the demosaicing module, but with no gamma correction enabled. The MATLAB imple-
mentation of the color transform employs the irreversible color transform, while the
module employs an integer version of the irreversible color transform as outlined in
Section 2.4. Since the "irreversible" color transform has to be reversed when an image
is decompressed, errors are introduced in the reconstructed image. This error increases
somewhat when the reversing of the color transform is not done using the exact same
process, which is the case when the MATLAB implementation reverses the color trans-
formation performed by the intercomponent transform module. Figure 4.9 shows the
ICT performed by the module and its reverse compared to the MATLAB implementa-
tion. Table 4.3 show the PSNR between the MATLAB implementation and the module.
The reduction in PSNR can be attributed to the same shift-multiply approximations as
were used in the gamma correction module.

Table 4.3: PSNR between MATLAB and module for the intercomponent transform of
LenaBig.

DUT PSNR
Module vs MATLAB 50.02 dB

Reverse of MATLAB vs original 109.34 dB
Reverse of module vs original 42.15 dB
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Figure 4.9: Irreversible color transform performed by the module and MATLAB. Re-
verse color transform performed in MATLAB for both the module and MAT-
LAB implementation.
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4.6 Wavelet transform module

The initial testing of the wavelet transform module was done using a grayscale variant
of the LenaBig test image. The initial tests were performed with the module separated
from the demosaicing, gamma correction and intercomponent transform module. In
addition, no tiling of the image was used during the initial tests, meaning that the
whole image was processed as a single tile. Figure 4.10 shows the result from the
module with a 1 level 2D DWT of a grayscale variant of the test image LenaBig.

Figure 4.10: The output of a 1 level 2D DWT from the wavelet transform module.

When visually comparing the result from the module with the expected result from
Section 2.5 they appear very similar. Figure 4.11 shows the result when performing the
inverse DWT on the image using MATLAB.

Figure 4.11: The resulting inverse DWT of the output of the wavelet transform module.

97



The resulting image after a 1 level 2D DWT followed by a inverse DWT now matches
closely to the result generated in MATLAB. The next test was to verify that the module
could perform multi-level 2D wavelet transform while producing a result which, when
inverse transformed, will yield a good result compared to the original. To investigate
this, the test image LenaBig was used, which consists of 16 tiles. Figure 4.12 compares
a 1 level 2D DWT performed by the MATLAB implementation vs the module.

Figure 4.12: The 1 level 2D DWT of LenaBig by the MATLAB implementation and the
module with a tile size of 128x128.

When performing the inverse wavelet transform on the result using MATLAB, the
result is as shown in Figure 4.13. As can be seen, visually the result from the MATLAB
implementation is identical to the result from the module.

Figure 4.13: The inverse transform of the 1 level 2D wavelet decomposition shown in
Figure 4.12.
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Table 4.4 shows the PSNR between the MATLAB implementation and module for a 1
level 2D DWT. In addition, the run time of the module to perform the transform is also
shown.

Table 4.4: PSNR between MATLAB and the module for the 1 level 2D wavelet trans-
formed test images.

Image
IDWT
MATLAB
vs Original

IDWT
Module
vs Original

DWT
MATLAB
vs Module

Module
run time

LenaSmall 113.64 dB 44.29 dB 48.04 dB 1.1 ms
LenaBig 107.12 dB 48.52 dB 53.47 dB 20.8 ms
HFBIG 115.2 dB 47.02 dB 50.94 dB 442.8 ms
NASA 117.2 dB 53.1 dB 58.58 dB 442.8 ms

As can be seen from Table 4.4, the the module performs well when comparing the
inverse of the module with the original image. A single tile is processed in 1.1ms, and
a full 2592x1944 image can be transformed in 442.8ms. The NASA test image has
the highest PSNR of 53.1 dB when compared to the original. It is expected that the
MATLAB wavelet transform will yield a far higher PSNR because of its use of double-
precision arithmetic.

For a 3 level 2D DWT transformation, the PSNR between the MATLAB implementa-
tion and the module is shown in Table 4.5. As is seen, the PSNR between the inverse
transform of the module result and the original has decreased somewhat for the mod-
ule. The PSNR of the NASA image has dropped around 3 dB compared to the 1 level
2D DWT. Again as expected, the MATLAB implementation retains its high PSNR due
to almost no rounding during the transformation.

Table 4.5: PSNR between MATLAB and the module for the 3 level 2D wavelet trans-
formed test images.

Image
IDWT
MATLAB
vs Original

IDWT
Module
vs Original

DWT
MATLAB
vs Module

Module
run time

LenaSmall 113.89 dB 43.73 dB 56.6 dB 1.53 ms
LenaBig 116.89 dB 47.17 dB 63.16 dB 24.49 ms
HFBIG 113.3 dB 46.32 dB 62.83 dB 514.3 ms
NASA 115.4 dB 50.15 dB 67.63 dB 514.3 ms

Tests were also conducted for a 5 level 2D DWT, with the results shown in Table 4.6.
This is the highest level achievable by the module with a tile size of 128x128. The LL5
sub-band in this instance is only 4x4 pixels.
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Table 4.6: PSNR between MATLAB and the module for the 5 level 2D wavelet trans-
formed test images.

Image
IDWT
MATLAB
vs Original

IDWT
Module
vs Original

DWT
MATLAB
vs Module

Module
run time

LenaSmall 112.64 dB 43.07 dB 62.24 dB 1.56 ms
LenaBig 113.92 dB 45.57 dB 72.94 dB 24.94 ms
HFBIG 103.2 dB 44.44 dB 74.76 dB 523.8 ms
NASA 112.6 dB 45.2 dB 72.4 dB 523.8 ms

To illustrate the multi-level transform ability of the module, a 1 to 5 level transform
of LenaSmall is shown in Figure 4.14. The result appear to match what was expected
from the theory in Section 2.5.

Figure 4.14: Test image LenaSmall transformed at different levels.
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4.7 Quantization module

The quantization module were tested in connection with the other modules in the sys-
tem. This means that when testing the module, the test images were first demosaiced
and then wavelet transformed before quantization took place. Gamma correction and
the intercomponent transformation was disabled for the test. Because the quantization
module is tested in combination with the demosaicing module, the errors measured
will be an accumulation of the errors in the demosaicing process as well.

Quantization can be performed with a uniform stepsize for all subbands, or with sub-
band dependent stepsizes. Figure 4.15 shows the result of performing demosaicing, a 5
level 2D DWT and quantization with an uniform step size using the implemented mod-
ules, before reversing the process in MATLAB through dequantization and the inverse
wavelet transform.

Figure 4.15: Reconstructed image after inverse wavelet transformation and dequanti-
zation with R=0.1.
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In Figure 4.15, the PSNR between the reconstructed test image and a demosaiced
version of the test image is shown. The comparison is done between a demosaiced
version of the test image because the quantized image was demosaiced before it was
quantized. The reconstruction was done with the constant R=0.1, and also shown is
the calculated entropy E of the 5 level wavelet decomposition of the image as described
in Section 2.7. Table 4.7 compiles the results of testing with multiple step sizes for the
same test image LenaBig.

Table 4.7: PSNR and entropy E for uniform sub-band step size ∆. Dequantized with
R=0.1 and the PSNR is between the reconstructed image and a demosaiced
version of the original test image.

Step-size ∆
Reconstructed image vs
demosaiced original

Entropy

1 42.27 dB 3.2137
5 40.06 dB 1.5125

10 37.53 dB 1.0364
20 34.56 dB 0.5775
35 33.30 dB 0.3377
50 32.83 dB 0.2491

From Table 4.7 it is clear to see that increasing the stepsize causes a reduction in
the overall entropy level of the wavelet decomposition, which is in agreement with the
theory outlined in Section 2.7.

4.8 Encoding module

Because parts of the encoding module were not implemented due to time constraints,
and because no MATLAB implementation of the EBCOT or MQ encoder were devel-
oped either there were little that could be tested in with regards to the encoding mod-
ule itself. The general control structure of the encoding module was tested, which
transferred wavelet coefficients form the wavelet module to the internal memory of the
encoding module. The sign magnitude conversion function was also tested, which con-
verts from two’s compliment format to sign magnitude format. Both were found to be
operating as expected. Beyond this there was nothing else that could be tested for the
encoding module.
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5 Discussion

This section will discuss the more significant results gathered during the testing de-
scribed in Section 4 and relate them to the design choices made when implementing
the design in as outlined in Section 3. Suggestions for future work is also included in
this section.

5.1 Preprocessing and intercomponent transform modules

All the modules involved in preprocessing and the intercomponent transform module
were implemented without the use of floating-point or fixed-point arithmetic, despite
in many cases having to perform arithmetic involving fractional numbers as described
in Section 2.3 and Section 2.4. In order to accomplish this, approximations were used
to reduce the fractional arithmetic to whole number arithmetic. Naturally, these ap-
proximations introduce some errors in the result, depending on the degree of the ap-
proximation made. This was seen in Section 4 when the results from the modules were
compared to the results from a MATLAB implementation which did not rely on the
same approximations. The effects the approximations had on the results varied from
module to module.

The advantage of whole number arithmetic is a reduction in hardware complexity. To
reduce the errors introduced in these modules, either floating- or fixed-point arithmetic
would have to be implemented instead. This is a decision which would have to be made
once a final decision on the camera module FPGA is made. If sufficient resources are
available on the FPGA then improving the accuracy of the modules could lead to a
noticeable gain in the PSNR of the reconstructed images.

5.2 Wavelet transform module

The wavelet transform module in the most complex and resource intensive module
implemented, primarily attributed to the floating-point arithmetic needed to perform
the lifting scheme based wavelet transform.

5.2.1 Using half precision floating point numbers

Choosing to implement half-precision floating point numbers instead of either single-
precision or fixed-point numbers ultimately impacted both the hardware resources re-
quired and the accuracy of the results of the module. Since no literature could be
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found on similar implementations of the lifting scheme using the half-precision float-
ing point format there was no definitive way of knowing beforehand if the implemen-
tation would be successful or not.

From the testing performed on the module in Section 4.6, the graph shown in Figure
5.1 contains the result from performing the wavelet transform on the four test images
at different transform levels. The PSNR shown is between the original test image and
an inverse wavelet transform of the result from the wavelet transform module.

Figure 5.1: The PSNR of the reconstructed images after being wavelet transformed by
the wavelet transform module at different levels.

As Figure 5.1 shows, the PSNR is shown to decrease as a function of the transform
level for all the test images. This result can be attributed to the nature of the half-
precision floating point format. From Section 2.5, it was shown that the dynamic range
of the wavelet coefficients also increases as a function of the transform levels. As was
explained in Section 2.10.1, the accuracy of the floating point number decreases as the
numerical value of the number increases. Following this, an increase in the dynamic
range of the wavelet coefficients result in a loss of accuracy of the same coefficients.
It is this loss of accuracy that most likely accounts for the loss of PSNR seen as the
transformation level increase. This has an impact on the rate of which an image can be
compressed, as some PSNR is "wasted" on the wavelet transform process instead of on
reducing the information content of the image.

To reduce the losses incurred during the wavelet transform process, the transforma-
tion level would either have to be reduced or a different floating-point of fixed-point
number scheme would have to be implemented. For instance, the single-precision
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floating-point format has a far higher accuracy over a larger dynamic range than the
half-precision format. The disadvantage of the single-point format is a greater re-
quirement of hardware resources, and in all likelihood no effective way to perform the
floating-point arithmetic in a single clock cycle. The more probable candidate to im-
prove the module would be to implement the fixed-point format, where the precision
can be chosen arbitrarily by simply allocating more bits to the format. Either change
would require a major revamp of the wavelet transform module.

5.2.2 The lifting scheme architecture

The lifting scheme as outlined in Section 2.5.2 is implemented as explained in Section
3.7.1. It uses 6 floating point multipliers, 8 floating point adders and 9 delay registers.
From the way floating point arithmetic is implemented, this leads to a rather hard-
ware costly implementation of the architecture, but with the benefit of a relatively low
complexity control logic and fast processing. An alternative implementation aimed at
reducing the hardware cost would be to modify the architecture by exploiting the fact
that the predict and update stages performed in the 9/7 CDF lifting scheme are identi-
cal except for a difference in constants. This means that the current architecture could
be "cut in half", by running the samples through the first half twice with the appro-
priate constants. This would reduce the number of floating point multipliers to 4 and
floating point adders to 4, but at the expense of increased processing speed and con-
trol logic complexity. Figure 5.2 shows a concept architecture for a folded architecture
variant for the lifting scheme.

Figure 5.2: Concept folded lifting scheme architecture for reduced hardware cost.
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5.3 Quantization module

The quantization module performs scalar quantization using half-precision floating-
point multiplication of the wavelet coefficients with a reciprocal of the stepsize chosen
for that particular subband. This means that one is free to select individual stepsizes
for all the subbands in the wavelet decomposition for all three color components of
the tiles. The JPEG2000 standard does not define or recommend any specific stepsizes
to use in the quantization step, which makes selecting the appropriate stepsizes up to
the designer of the compression system. As was seen in both the theory from Section
2.7 and the implementation from Section 3.8.3, a larger step size leads to a potential
higher rate of compression at the cost of quality. The problem then becomes selecting
an appropriate stepsize which maximizes the quality of the reconstructed image and at
the same time maximizes the potential compression ratio. The optimal stepsizes might
also depend on the motive of the image captured by the image sensor, which means
that the when determining the best suited step sizes images from the expected operat-
ing environment of the camera should be used. This translates to pictures of the earth
from Low Earth Orbit (LEO) for the NUTS CubeSat satellite. Although there could be
multiple ways to determine the optimal stepsizes, one method would be to use a sim-
ple brute force approach where an image is quantized with all possible combinations
of stepsizes while the PSNR of the reconstructed image and the compression rate is
noted for each combination. This approach would naturally take a considerable time
to simulate, but would in all likelihood yield the most suitable stepsizes to achieve a
chosen compression rate.

5.4 Utilized hardware resources

From the implementation of the JPEG2000 compression system in VHDL from Section
3 it was found that the system required a significant amount of hardware resources.
In total, 35 DSPs, 72 BRAMs and over 14,000 slice LUTs is required to implement this
solution on an FPGA. As has been mentioned previously, the reasons for this large
expenditure of resources is attributed to several factors:

• Performing floating-point arithmetic in one clock cycle.

• Operating on tile sizes of 128x128 pixels.

• Processing all three color components of the tile simultaneously.

• No intermediate storage of data on the external RAM.

It is the floating-point arithmetic that requires the most amount of DSPs and slice
LUTs in the entire implementation. Changing the arithmetic to a multi-clock cycle
operation would massively reduce the amount of hardware resources required. Also,
since all three color components are processed at once, the wavelet transform module
requires three identical copies of the lifting architecture which contains most of the
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floating-point arithmetic. By modifying the entire compression system to operate on
just one tile component at a time instead of all three, the overall hardware resources
needed could in all likelihood be reduced to one third of the current cost. On the down-
side, this would cause the compression process to take three times longer. It would also
require the other color components from the demosaicing module to be stored on the
external RAM as they are not used immediately.

The use of internal BRAM modules can also be greatly reduced by relying more heav-
ily on the external RAM instead. By storing intermediate data on the external RAM,
the need for the massive memory modules in both the wavelet transform module and
the quantization module is removed. The downside is an increase in latency to retrieve
the data from the external RAM when compared to storing it internally. In addition,
this might make it hard to process the three color components at once, as the current
implementation requires that samples from each color component is read concurrently
from the internal memory modules. If the samples are stored on a single external RAM
module, it will most likely not be possible to read three memory locations at once.
This could possibly be remedied by having several small external RAMs on the camera
module, allowing the FPGA to access all the RAMs at once.

5.5 Future Work

This thesis has seen the VHDL implementation and testing of the JPEG2000 compres-
sion system up to the encoding section of the system. The next natural step would then
be to implement the encoding part and test the system as a whole. This would also in-
volve making a MATLAB or similar implementation of the encoder to act as a reference
to verify the functionality of the VHDL implementation.

Methods to improve the wavelet transform module can also be investigated, both in
terms of hardware resources needed and the accuracy of the transformation. To achieve
this, a folded lifting scheme architecture as explored in Section 5.2.2 or an improved
floating-point/fixed-point number format as detailed in Section 5.2.1 can be used.

In order to implement a proper compression rate control, optimal stepsizes for the
quantization module also has to be determined. It is also yet to be determined if the
stepsizes and subsequent compression rate is dependent on the motif of the images,
which should also be explored.

Once the complete JPEG2000 compression system is implemented it also has to be
tested together with the other systems on the camera module for the NUTS CubeSat.
This involves developing the Xilinx MicroBlaze softcore microprocessor to control the
compression system and the external MCU which serves as the communication link
between the camera module and the rest of the satellite.
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6 Conclusion

This thesis presents a partial VHDL implementation of the JPEG2000 compression sys-
tem which is intended to be used on the camera module for the NUTS CubeSat satellite.
In total the system is comprised of over 5000 lines of VHDL code. Due to time con-
straints, the encoding part of the compression system was only partially implemented.
Figure 6.1 shows the current status of the compression system. Here, the green mod-
ules represents the parts of the system that has been implemented and tested, while
the yellow modules represents the parts which have only been partially implemented.

Figure 6.1: The implemented parts of the JPEG2000 compression system.

The VHDL implementation of the compression system is divided into 6 modules:
the demosaicing module, the gamma correction module, the intercomponent trans-
form module, the wavelet transform module, the quantization module and the encod-
ing module. The demosaicing module converts the raw Bayer encoded image captured
by the image sensor on the camera module into an RGB image. It operates on one
128x128 pixel tile of the raw image at a time to reduce the internal memory overhead.
The gamma correction module performs gamma correction and bit depth reduction on
the RGB image tile from the demosaicing module. Then the intercomponent transform
module performs an irreversible color transform and DC level shift on the image tile.
The tile is then wavelet transformed using the CDF 9/7 irreversible discrete wavelet
transform in the wavelet transform module, before it is scalar quantized with a vari-
able stepsize in the quantization module. The quantized wavelet coefficients is then
transmitted to the encoding module, which was intended to perform the function of
the JPEG2000 Tier 1 and Tier 2 Encoder, which performs an EBCOT and MQ encoding
of the tile as well as a final packetization of the encoded bit stream into the JP2 file
format. The encoding module is only partially implemented due to time constraints.

Because of the scale of a project involving the implementation of a complete com-
pression system the focus was not on developing the most efficient implementation, but
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rather on establishing a baseline modular compression system in which each module
could be improved upon in subsequent work. As was discussed in Section 5 there are
some areas of the system which could be improved, one being the hardware resources
required by the implementation and the other being the accuracy of the wavelet trans-
formation.

Table 6.1 shows the required hardware resources to implement the developed com-
pression system on an FPGA using Xilinx Vivado. As is seen, the wavelet transform
module is responsible for the majority of the hardware resources required by the sys-
tem primarily due to the need for floating-point arithmetic operations.

Table 6.1: The hardware resources utilized by the implemented modules.
Module Slice LUTs Slice REGs F7 MUXs BRAM DSP
Demosaicing module 891 365 0 0 8
Gamma correction module 214 24 37 0 0
Intercomponent transform
module

576 24 0 0 0

Wavelet transform module 11539 1966 0 48 24
Quantization module 898 275 0 0 3
Encoding module 198 217 0 24 0

Total 14325 2902 37 72 35

From the testing performed in Section 4 it was determined that all the modules, with
the exception of the incomplete encoding module, performed as expected. The decision
to use half-precision floating-point arithmetic in the wavelet transform module caused
some loss of precision in the resulting wavelet coefficients, which in turn leads to a
slight loss of image quality depending on the transformation level used. This loss can
be avoided by choosing a format with higher precision than the half-precision floating-
point, such as a 20-bit fixed-precision or higher format. Table 6.2 shows the processing
time for a tile and for a 2592x1944 pixel image.

Table 6.2: The clock cycles and processing time required to process a tile and full image
at 50 MHz.

Number of tiles Clock cycles Total time
Single tile (128x128) 1 (per color component) 163,800 3.276 ms

Raw image (2592x1944) 336 (per color component) 55,036,800 1096 ms

From the test results gathered in Section 4 it was found that the maximum operating
speed of the compression system is currently around 63.5 MHz. At this speed, a full
image of 2592x1944 pixels could be processed in around 866.7 ms. With the encoder
completed the system will in all likelihood be able to compress the raw images from
the image sensor on the camera module effectively and reliably.
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Appendix A

Code repository

All the relevant code used in this thesis can be downloaded in ZIP format from the
online repository: https://bitbucket.org/Okhs/jpeg2000/downloads/JPEG2000.rar.
Included is the MATLAB scripts used to verify the functionality of the VHDL imple-
mentation, as well as the VHDL implementation itself. The VHDL implementation is
included as a Xilinx Vivado project named JPEG2000.
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Appendix B

Module Interface Reference

This reference document aims to document the connection interface of each module
in the VHDL implementation of the JPEG2000 compression system and describe the
inputs and outputs of each module.

A.1 JPEG2000 top module

Figure 6.2 shows the connection diagram for the JPEG2000 top module.

Figure 6.2: Connection interface of the JPEG2000 top module.
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Table 6.3 describes the inputs and outputs of the JPEG2000 top module.

Table 6.3: JPEG2000 top module port description.
Port Direction Description
clk Input Module clock input.

rst Input
Module reset. Resets the top module and
all internal modules to a default state.

jp2_ext_ram_addr_start Input

Indicates the start RAM address of the first
pixel of the image stored in the external
RAM. Supplied either by the MicroBlaze
microcontroller or the external MCU.

jp2_ext_ram_read Input Data input from the external RAM.

jp2_init Input
Initiates the compression process. Once
initiated, the module will process an image
stored in the external RAM.

jp2_rate Input
Specifies the compression rate. Currently
not implemented.

jp2_red_output Output
Outputs compressed tiles from the red
color component to the external RAM.

jp2_green_output Output
Outputs compressed tiles from the green
color component to the external RAM.

jp2_blue_output Output
Outputs compressed tiles from the blue
color component to the external RAM.

jp2_complete Output
Indicates that the compression process has
finished.

jp2_ext_ram_addr Output Address selection for the external RAM.
jp2_ext_ram_oe Output Output enable for the external RAM.
jp2_ext_ram_we Output Write enable for the external RAM.
jp2_ext_ram_write Output Data output for the external RAM.
jp2_ready Output Debugging output. Currently not used.

Figure 6.3 shows how the internal modules of the top module are connected. The
yellow boxes with "Top module control" indicates signals which are controlled through
the state machine in the top module.
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Figure 6.3: Internal module interconnection of the JPEG2000 top module.
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A.2 Demosaicing module

Figure 6.4 shows the connection diagram for the demosaicing module.

Figure 6.4: Connection interface of the demosaicing module.

Table 6.4 describes the inputs and outputs of the demosaicing module.
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Table 6.4: Demosaicing module port description.
Port Direction Description
clk Input Module clock input.

rst Input
Module reset. Resets the module to
a default state.

demosaicing_ext_ram_addr_start Input

Indicates the start RAM address of
the first pixel of the image stored
in the external RAM. Supplied ei-
ther by the MicroBlaze microcon-
troller or the external MCU.

demosaicing_ext_ram_read Input Data input from the external RAM.

demosaicing_init Input

Initiates the demosaicing process.
Once initiated, the module will
process an a tile stored in the ex-
ternal RAM.

demosaicing_tilenumber_h Input

Specifies the horizontal number of
a tile. Used to control which tile is
to be processed. Supplied by the
top module.

demosaicing_tilenumber_v Input

Specifies the vertical number of a
tile. Used to control which tile is
to be processed. Supplied by the
top module.

demosaicing_complete Output
Indicates that the demosaicing of a
tile has finished.

demosaicing_data_output_red Output
Outputs the demosaiced red color
component pixels.

demosaicing_data_output_green Output
Outputs the demosaiced green
color component pixels.

demosaicing_data_output_blue Output
Outputs the demosaiced blue color
component pixels.

demosaicing_ext_ram_oe Output
Output enable for the external
RAM.

demosaicing_ext_ram_addr Output
Address selection for the external
RAM.

demosaicing_ready Output

Indicates that a single pixel has
been demosaiced and will be trans-
mitted to the color component out-
puts.
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A.3 Gamma correction module

Figure 6.5 shows the connection diagram for the gamma correction module.

Figure 6.5: Connection interface of the gamma correction module.

Table 6.5 describes the inputs and outputs of the gamma correction module.

Table 6.5: Gamma correction module port description.
Port Direction Description
clk Input Module clock input.

rst Input
Module reset. Resets the module to a default
state.

gc_red_input Input
Pixels from the red color component to be
gamma corrected.

gc_green_input Input
Pixels from the green color component to be
gamma corrected.

gc_blue_input Input
Pixels from the blue color component to be
gamma corrected.

gc_red_output Output
Gamma corrected pixels from the red color
component.

gc_green_output Output
Gamma corrected pixels from the green color
component.

gc_blue_output Output
Gamma corrected pixels from the blue color
component.
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A.4 Intercomponent transform module

Figure 6.6 shows the connection diagram for the intercomponent transform module.

Figure 6.6: Connection interface of the intercomponent transform module.

Table 6.6 describes the inputs and outputs of the intercomponent transform module.

Table 6.6: Intercomponent transform module port description.
Port Direction Description
clk Input Module clock input.

rst Input
Module reset. Resets the module to a default
state.

ict_red_input Input
Pixels from the red color component to be in-
tercomponent transformed.

ict_green_input Input
Pixels from the green color component to be
intercomponent transformed.

ict_blue_input Input
Pixels from the blue color component to be in-
tercomponent transformed.

ict_Y_output Output
Intercomponent transformed pixels from the Y
color component.

ict_Cb_output Output
Intercomponent transformed pixels from the
Cb color component.

ict_Cr_output Output
Intercomponent transformed pixels from the
Cr color component.
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A.5 Wavelet transform module

Figure 6.7 shows the connection diagram for the wavelet transform module.

Figure 6.7: Connection interface of the wavelet transform module.

Table 6.7 describes the inputs and outputs of the wavelet transform module.

Table 6.7: Wavelet transform module port description.
Port Direction Description
clk Input Module clock input.
rst Input Resets the module to a default state.

DWT_Y_input Input
Pixels from the Y color component to be
wavelet transformed.

DWT_Cb_input Input
Pixels from the Cb color component to
be wavelet transformed.

DWT_Cr_input Input
Pixels from the Cr color component to be
wavelet transformed.

DWT_demosaicing_ready Input
Indicates that a sample has been demo-
saiced and transmitted.

DWT_init Input Initiates the wavelet transform process.

DWT_Y_output Output
Wavelet transformed pixels from the Y
color component.

DWT_Cb_output Output
Wavelet transformed pixels from the Cb
color component.

DWT_Cr_output Output
Wavelet transformed pixels from the Cr
color component.

DWT_complete Output
Indicates that the wavelet transform pro-
cess has finished.
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A.6 Quantization module

Figure 6.8 shows the connection diagram for the quantization module.

Figure 6.8: Connection interface of the quantization transform module.

Table 6.8 describes the inputs and outputs of the quantization module.

Table 6.8: Quantization module port description.
Port Direction Description
clk Input Module clock input.
rst Input Resets the module to a default state.

SQ_Y_input Input
Pixels from the Y color component to be quan-
tized.

SQ_Cb_input Input
Pixels from the Cb color component to be quan-
tized.

SQ_Cr_input Input
Pixels from the Cr color component to be quan-
tized.

SQ_DWT_ready Input
Indicates that the wavelet transform module is
transmitting samples. Currently not used.

SQ_init Input Initiates the quantization process.

SQ_rate Input
Indicates the compression rate. This affects
the quantization step-sizes. Currently not imple-
mented.

SQ_Y_output Output Quantized pixels from the Y color component.
SQ_Cb_output Output Quantized pixels from the Cb color component.
SQ_Cr_output Output Quantized pixels from the Cr color component.

SQ_complete Output
Indicates that the quantization process has fin-
ished.
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A.7 Encoding module

Figure 6.9 shows the connection diagram for the encoding module.

Figure 6.9: Connection interface of the encoding module.

Table 6.9 describes the inputs and outputs of the encoding module.

Table 6.9: Encoding module port description.
Port Direction Description
clk Input Module clock input.
rst Input Resets the module to a default state.
ENC_Y_input Input Pixels from the Y color component to be encoded.

ENC_Cb_input Input
Pixels from the Cb color component to be en-
coded.

ENC_Cr_input Input
Pixels from the Cr color component to be en-
coded.

ENC_DWT_ready Input
Indicates that the wavelet transform module is
transmitting samples. Currently not used.

ENC_init Input Initiates the encoding process.

ENC_rate Input
Indicates the compression rate. This affects the
encoding process. Currently not implemented.

ENC_Y_output Output Encoded tiles from the Y color component.
ENC_Cb_output Output Encoded tiles from the Cb color component.
ENC_Cr_output Output Encoded tiles from the Cr color component.
ENC_complete Output Indicates that the encoding process has finished.
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