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Abstract

Quantum vortices in superfluid Bose–Einstein condensates (BECs) are excellent candi-
dates for studying hydrodynamic phenomena, such as turbulence and chaos, due to the
quantization of vortex circulation and the absence of dissipation in BECs. Since the early
2000s, many experimental groups have successfully observed vortices in dilute atomic
BECs.

This work mainly focuses on creating quantum chaos with a few vortices in a two-
dimensional BEC of Rubidium−87. We use graphics processing unit (GPU) computing
methods to simulate our BEC trapped inside a harmonic potential with tight trapping in
one direction. The quantum vortices are created by rotating the condensate. After gen-
erating the ground state of the BEC with a small number of singly charged vortices with
positive phase winding, we imprint a 4π phase winding on top of one vortex in the opposite
orientation to that of the original vortex. This phase imprinting annihilates the preexisting
vortex and creates a new singly-charged vortex with negative phase winding. Due to the
high resolution of our system and an excellent vortex tracking algorithm, the location of
phase imprinting can be delicately controlled.

Both the individual vortex dynamics and the dynamics of the entire system of vor-
tices after flipping a vortex have shown strong signs of chaos. This chaotic nature is
further confirmed both qualitatively and quantitatively by employing two chaos indicators
on our numerical results. These chaos indicators are the Lyapunov exponent spectrum
and the Smaller ALignment Index (SALI). The Lyapunov exponent remains positive and
converges to a positive value during an experimentally realistic time period, which is the
smoking gun for chaotic behaviour.
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Sammendrag

Kvantevirvler i superflytende Bose–Einstein kondensater er utmerkede kandidater for
forskning på hydrodynamiske fenomener, som for eksempel turbulens og kaos, siden de
har kvantisering av virvling og fravær av viskositet. Siden tidlig på 2000-tallet har mange
eksperimentelle grupper rapportert vellykkede observasjoner av virvler i fortynnede atom-
iske Bose–Einstein kondensater.

Dette studiet fokuserer hovedsakelig på å skape kaotisk oppfrsel ved hjelp av kvante-
virvler i to-dimensjonale Bose–Einstein kondensater av Rubidium-87. Vi benytter grafikkpros-
essorprogrammering for å effektivisere datasimulering. Vi simulerer et roterende Bose–
Einstein kondensat som befinner seg i et tre-dimensjonalt harmonisk potensiale hvor fangst-
frekvensen i en retning er mye hyere enn i de to andre retningene. Etter at grunntil-
standen av Bose–Einstein kondensater med få kvantevirvler er funnet ved hjelp av Fourier-
splittingmetoden, avsettes en fase av 4π i motsatt retning av den originale virvelen, også
kjent som virvelvending. Dette vil annihilere den originale virvelen og danne en ny kvan-
tevirvel med motsatt sirkulasjon. På grunn av hy opplsning på systemet vårt og en utmer-
ket algoritme for virvelsporing, kan posisjonen til faseavsettingen bli kontrollert med stor
nyaktighet.

Vi studerer bevegelsen av virvlene i det samtroterende referansesystemet i noen tidspe-
rioder etter at virvelvendingen har funnet sted. Både dynamikken av individuelle kvan-
tevirvler og dynamikken til hele systemet av kvantevirvler har vist tegn til kaos. Denne
kaotiske oppfrselen er bekreftet både kvalitativt og kvantitativt ved å benytte to kaosindika-
torer på våre numeriske resultater. De benyttede kaosindikaterene er Lyapunov eksponent
spektrum og den mindre justeringsindeksen. Lyapunov eksponent spektrum har vært det
determinderende beviset for kaotisk oppfrsel av få kvantevirvler i Bose–Einstein konden-
sater fanget i et harmonisk potensiale.
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Chapter 1
Introduction

The motivation behind this work is to study the dynamics of few vortex systems in Bose–
Einstein condensates and to identify whether the vortex dynamics induced by a pertur-
bation to their initial position, is chaotic or not. Our analyses are based on the numerical
solutions of the time dependent Gross-Pitaevskii equation, whose nonlinearity makes solv-
ing the equation analytically very challenging. This project is conducted as a part of the
Master program in Applied Physics at the Norwegian University of Science and Tech-
nology (NTNU). The research for this dissertation has been carried out at the Okinawa
Institute of Science and Technology Graduate University (OIST).

Classical chaos and turbulence are very common hydrodynamic phenomena, however
they are hard to control or predict. How chaos behaves in quantum mechanics is a question
that has been raised since the early 1900s. An extensive study of quantum chaos wasn’t
performed until the second half of the 1900s when ultracold systems were realised exper-
imentally. Recently quantum chaos has been successfully observed with ultracold Erbium
atoms (Frisch et al. (2014)). Contrary to classical hydrodynamics, there exist quantum
fluids that are inviscid. This greatly simplifies the mechanics and may provide a shortcut
to understand the nature of chaos and turbulence in the classical world.

Chapter 2 contains some theoretical background of the system that we have stud-
ied, namely dilute atomic Bose–Einstein condensates. We will cover the derivation of
Bose–Einstein condensation, as well as how they were realised experimentally, the Gross-
Pitaevskii equation that governs the time evolution of Bose–Einstein condensates and the
formation of quantum vortices, which is the basis of this study on quantum dynamics in
Bose-Einstein condensates.

In Chapter 3, the numerical methods that have been used to simulate our system are
introduced. The Fourier split operator method is a numerical method for calculating the
time evolution of the Gross-Pitaevskii equation. We have been running our simulations
using Graphics prosessiing unit (GPU) computing techniques, which greatly speeds up the

1
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running time and allows us to run multiple simulations simultaneously. We implement a
very useful algorithm to track vortices. This allows us to keep track of the movement of
each individual vortex from one time frame to the next, which is crucial for the study of
vortex dynamics.

Chapter 4 covers the definition and general application of two chaos indicators, the
Lyapunov exponent and the small alignment indicator. We apply these chaos indicators in
order to qualitatively and quantitatively identify whether or not the vortex dynamics are
chaotic, when subject to perturbations in their initial conditions.

In Chapter 5 and 6, our results and the corresponding analyses performed on the sim-
ulation data are presented. We divide our results into two main branches, ordered and
chaotic dynamics. During the course of this project, we have studied few vortex systems
with up to 6 vortices, while our main focus is on systems with 4 vortices.

During this work, the possibility of alternative representations of Bose–Einstein con-
densates, useful for interpreting the simulated data, have been investigated. In particular,
we compute both the momentum distribution and the Wigner function, or quasi-probability
distribution of the condensate. These representations are presented in Chapter 7. We have
applied these representations to our numerical data, as well as an ansatz for the condensate
wavefunction with a vortex.

The last chapter summarises this work, and also presents an outlook on the potential
further development of this work in the future.
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Chapter 2
Background

Quantum vortices in Bose–Einstein condensates (BECs) are stable due to a conserved
topological phase. With their quantised circulation, quantum vortices make an excellent
system for studying turbulence and chaos compared to classical systems, where continu-
ity and dissipation complicate the dynamics significantly. The main goal of this work
is to study the dynamics of quantum vortices in a rotating quasi-two-dimensional Bose–
Einstein condensate of a dilute 87Rb gas, confined within a three-dimensional harmonic
trap where confinement in one direction is much tighter than in the other two. In this chap-
ter, we will start with an introduction to Bose–Einstein condensation and the creation of
quantum vortices. Later on in this chapter, we will also briefly cover superfluidity and its
defining features.

2.1 Motivation

The development of ultracold atomic physics sprouted in the late 1990s thanks to the ex-
perimental realisation of ultracold atoms followed closely by the creation of Bose–Einstein
condensates. In 1997 Steven Chu, Claude Cohen-Tannoudji and William D. Phillips re-
ceived the Nobel Prize in physics for their work on the cooling and trapping of atoms
with laser light (Nobelprize.org (1997)). In 2001 Eric Cornell, Wolfgang Ketterle and
Carl Wieman were awarded the Nobel prize in physics for the experimental realisation
of Bose–Einstein condensation in dilute gases of alkali atoms (Nobelprize.org (2001)).
Shortly after in 2003, Alexei A. Abrikosov, Vitaly L. Ginzburg and Anthony J. Leggett
were awarded the Nobel prize in physics for their contribution to the theory of supercon-
ductors and superfluids (Nobelprize.org (2003)). Ever since, research in ultracold atomic
physics has been extensively explored across a range of wide applications, from quantum
information technologies to the study of elementary physics laws.

3
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2.1.1 Experimental background on ultracold atoms

Ultracold atoms are typically referred to as atoms at a temperature range around nano-
Kelvin. At this temperature, the quantum mechanical properties of atoms are very pro-
nounced, hence very crucial for their behaviour. Cooling atoms to nano-Kelvin tempera-
tures requires advanced experimental techniques. We are going to introduce some basic
experimental techniques that have been used to cool down atoms to almost absolute zero.

Laser cooling is the most commonly used technique for atomic cooling. This technique
utilises the fact that atoms absorb photons which are on resonance with the energy differ-
ence between two energy states and re-emit a photon in a random direction afterwards.
In practice, one uses two counter-propagating laser beams to slow down atomic clouds

Figure 2.1: (a) An atom with velocity v encounters a photon with momentum ~k = h/λ; (b)
After absorbing the photon, the atom is slowed by ~k/m; (a) After re-emitting a photon ~k in a
random direction, on average the atom is slowed down by ~k/m relative to (a). Figure reprinted
from Phillips (1998).

in one direction. For three dimensional (3D) cooling, three pairs of counter-propagating
laser beams are needed. The laser beam is slightly red-detuned compared to the energy
difference between the two hyperfine states of the atoms, so that atoms moving towards
the laser source get slowed down. This type of laser cooling is also known as Doppler
cooling. The lasers are on resonance with the atoms when the atoms are moving towards
the laser source and hence slow down atoms in that direction, as depicted in figure 2.1.

Most of the time, cooling and trapping both need to be present for the realisation of
ultracold atoms. There are multiple traps available today, such as Ioffe–Pritchard traps
(Pritchard (1983)), optical dipole traps (Grimm et al. (2000)) and magneto-optical traps
(Steane et al. (1992)). Furthermore, in order to reach Bose–Einstein condensation, evap-
orative cooling techniques have been put into use to depopulate the atoms in higher mo-
mentum states to further cool the atomic cloud. Many experiments have proven ultracold
atoms to be useful for a range of applications, for instance Bloch et al. (2008), Fläschner
et al. (2016) and Suchet et al. (2016).
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2.2 Bose–Einstein condensation

2.2 Bose–Einstein condensation
The existence of Bose–Einstein condensates was first proposed in the 1907 by Einstein,
following the work of Bose on the statistics of photons. Experiments with superfluid He-
lium (4He) were considered as the first realisation of BEC. However the strong interatomic
interactions among He atoms makes the occupancy number at zero-momentum level low,
even at 0K. Searches for alternative candidates targeted alkali atoms, such as 1H, 39K and
85Rb. In particular, H atoms were initially a popular candidate, due to their low mass and
hence high condensation temperature. The first successful experiment realising BEC in a
dilute gas was performed by Anderson et al. (1995).

2.2.1 Ideal Bose gas
Bosons, which refer to particles with integer spins, are not constrained by the Pauli exclu-
sion principle. More than one boson can occupy the same quantum state. Their occupation
number in different quantum states are governed by Bose statistics, with the mean occu-
pation number of state ν expressed as

f0(εν) =
1

e(εν−µ)/kBT − 1
, (2.1)

where εν is the energy at state ν, kB is the Boltzmann constant and µ is the chemical
potential defined as µ = ∂E

∂N . Two other important quantities that can be derived from this
are the mean energy

E =
∑
ν

ενf
0(εν), (2.2)

and the mean particle number
N =

∑
ν

f0(εν). (2.3)

In the case of an abundance of available quantum states, we can replace the finite sized
summation over energy with an infinitesimal integration

N =

∫ ∞
0

dεf0(ε)g(ε), (2.4)

where g(ε) is the density of states at energy ε. Let us now look closely at the density
of states of bosons in three-dimensional space. The total number of states available with
energy less than ε = p2

2m can be described as

G(ε) =
V

(2π~)3

4

3
πp3, (2.5)

where V is the volume of the system in real space confined in a three-dimensional box,
and (2π~)3 is the unit volume per quantum state in 3D momentum space, derived from
Heisenberg’s uncertainty principle. Therefore the energy density of states is

g(ε) =
dG

dE
= V

2π(2m)3/2V

(2π~)3

√
ε. (2.6)
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2.2.2 Derivation of Bose–Einstein condensation
By integrating the Bose–Einstein distribution over energy,

N =
2π(2m)3/2V

h3

∫ ∞
0

E1/2

e(E−µ)/kBT − 1
dE, (2.7)

one obtains the occupation number

N =
(2πmkBT )3/2V

h3
g3/2(z), (2.8)

where z = eµ/kBT and gβ(z) =
∑∞
p=1 z

p/pβ , obtained from∫ ∞
0

xα

ex/z − 1
dx = Γ(α+ 1)gα+1(z). (2.9)

The maximum value of g3/2(z) is reached when z = 1 (corresponding to µ = 0, which
is the maximum value of the chemical potential, which is always non-positive to avoid
negative occupation numbers), giving g 3

2
(1) = ζ( 3

2 ) ' 2.612. Plugging this into equation
(2.8), we have

Nc =
(2πmkBT )3/2V

h2
ζ(

3

2
), (2.10)

which is the critical occupation number of the ground state. The corresponding critical
temperature is

Tc =
h2

2πmkB

( N

ζ(3/2)
V
)3/2

. (2.11)

When T < Tc (and N > Nc), the excited states are largely suppressed. This implies that
the fluid will undergo a phase transition and occupy the ground state, creating a Bose–
Einstein condensate. In order to identify the fraction of condensed atoms, we use the
expression

N0

N
= 1− Nex

N
, (2.12)

where N = N0 + Nex, N0 is the number of particles in the ground state and Nex is
the number of particles occupying excited states. The condensate fraction can also be
expressed in terms of temperatures as

N0

N
= 1− T

Tc

3/2

. (2.13)

Particle wave nature

Using the definition of particle density, n = N/V , the criterion for BEC according to
equation (2.8) becomes

n > ζ
(3

2

)(2πmkBT

h3

) 3
2

. (2.14)
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2.2 Bose–Einstein condensation

The de Broglie wave length of a particle with mass m is defined as λdB = h/p, and for a
thermal particle

p =
√

2πmkBT ⇒ λdB =

√
h2

2πmkBT
. (2.15)

Hence equation (2.14) can be written as

nλdB > ζ(
3

2
) ' 2.618. (2.16)

This implies that the interparticle spacing (d = n−1/3) must be smaller than the spatial
spread of the particles wavefuncion. This overlap of wave packets is crucial for the for-
mation of a BEC, where a macrostate wavefuntion which describes all particles in a BEC
collectively exists.

2.2.3 Gross-Pitaevskii equation
Since solving the full many body dynamics of system of many quantum particles is an
intractable problem, it is necessary to identify appropriate schemes to gain useful insight
into these systems. In the low temperature regime, the typical particle densities of atomic
condensate lie in the range of 1012 − 1015cm−3, giving a mean spacing of ∼ 0.1− 1µm.
The van der Waals interaction on the other hand has a range of the order of nm, rendering
the effect very small. This allows us to model atomic condensate using mean field theory.

In a real dilute many particle system, the interparticle interactions (even though weak)
should be included, which makes the Schrödinger equation a nonlinear equation.
N interacting atoms inside an external potential, Vext, can be described by a many-body
Hamiltonian given in second quantisation (occupation number representation) as

Ĥ =

∫
drΨ̂†(r)

{
− ~2

2m
∇2 + Vext(r)+

1

2

∫
dr ′̂̂Ψ†(r′)V (r − r′)Ψ̂(r′)

}
Ψ̂(r), (2.17)

where V (r − r′) is the inter-particle interaction and Ψ̂†(r) and Ψ̂(r) are the creation
and annihilation operators, respectively, of the Bose field. These field operators create
(annihilate) a particle at a particular position in space. They are obtained by performing
a basis transformation of creation and annihilation operators (â†, â) on the occupation
number of a certain state,

âν |n1, n2, · · ·, nν , · · ·〉 =
√
nν |n1, n2, · · ·, nν − 1, · · ·〉, (2.18)

â†ν |n1, n2, · · ·, nν , · · ·〉 =
√
nν + 1|n1, n2, · · ·, nν + 1, · · ·〉, (2.19)

where nν ∈ [0,∞) for bosons. They satisfy the following lower boundary condition

â†|0〉 = |1〉, â|0〉 = 0, (2.20)

where |0〉 denotes the state of the vacuum (occupation number).
First we recall a single particle with state |ν〉

φν(r) = 〈r|ν〉, (2.21)
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Chapter 2. Background

then we project this onto the spatial coordinate basis

φ(r) =
∑
ν

âν〈r|ν〉 =
∑
ν

âνφν(r) (2.22)

φ†(r) =
∑
ν

〈ν|r〉â†ν =
∑
ν

φ∗ν(r)â†ν . (2.23)

(2.24)

Recalling equation (2.36), the number density operator of a many-body system is repre-
sented as

n̂(r) = Ψ̂†(r)Ψ̂(r), (2.25)

and the total number of the system is

N̂ =

∫
drΨ̂†(r)Ψ̂(r). (2.26)

The creation and annihilation field operators satisfy the commutation relations

[Ψ̂(r), Ψ̂†(r′)] = δ(r − r′), [Ψ̂†(r), Ψ̂†(r′)] = 0 and [Ψ̂(r), Ψ̂(r′)] = 0. (2.27)

Interatomic interactions typically depend strongly on interatomic distances. For dilute
gases, this interaction can be described as an effective interaction in the form of a contact
potential

V (r − r′) = gδ(r − r′), (2.28)

where g is the interaction strength. In the low-momentum frame, the s-wave scattering
dominates the scattering kinetics described by a single parameter, namely the scattering
length

as =
mr

2π~2

∫
drV (r), (2.29)

where mr is the reduced mass. If the two colliding atoms are of the same species, mr =
m/2. This expression is the Born approximation for the scattering length. Hence the
interaction strength can be expressed as

g =
4π~2as
m

. (2.30)

Plugging this into equation (2.17), one gets

Ĥ =

∫
drΨ̂†(r)[− ~2

2m
∇2 + Vext(r)]Ψ̂(r) +

1

2
g

∫
drΨ̂(r)n̂(r)Ψ(r). (2.31)

The Heisenberg equation, which is an alternative description in quantum mechanics, states

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ], (2.32)

which gives the time evolution of Ψ̂(r, t) = eiĤt/~Ψ̂(r)e−iĤt/~. By plugging equation
(2.17) into equation (2.32) and exploiting the commutation relation, one gets

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∇2 + Vext(r) +

∫
dr′Ψ̂†(r′, t)n̂(r′)Ψ(r′, t)

]
Ψ̂(r, t). (2.33)
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Due to the macroscopic occupation of atoms in the ground state, the quantum field opera-
tor, Ψ̂ can be expressed as

Ψ̂ = Ψ + δΨ̂, (2.34)

where Ψ = 〈Ψ̂〉 is the classical field order parameter (condensate) and δΨ̂ is the quantum
fluctuation operator (non-condensate) and is negligible in the description of BECs. Thus
replacing the quantum field operator, Ψ̂, with the classical field order parameter, Ψ, one
gets the time-dependent Gross-Pitavskii equation (GPE),

i~
∂

∂t
Ψ(r, t) = − ~2

2m
∇2Ψ(r, t) + Vext(r)Ψ(r, t) + g|Ψ(r, t)|2Ψ(r, t). (2.35)

The Hartree–Fock method (Slater (1951)) has been shown to be a good approximation
for the wave function as a solution of the many-body Schrödinger equation, where low
density and weak interparticle interactions apply. For these conditions, the correlations
between particles are weak and hence a mean-field theory is justified. The Hartree–Fock
(HF) approximation is formulated as

Ψ(r1, r2, · · ·, rN ) =

N∏
i=1

φ(ri), (2.36)

where φ is the wave function of a single particle and Ψ is the total wave function of N
particles. The HF approximation assumes that the wave function of each individual particle
is independent of the location of the other particles. The standard normalisation condition
for a single-particle wave function is∫

dr|φ(r)|2 = 1. (2.37)

The following normalisation condition is then satisfied;∫
dr|Ψ(r)|2 = N , where Ψ(r) =

√
Nφ(r). (2.38)

The expectation value of the Hamiltonian in equation (2.35) is

E =

∫
dr
[ ~2

2m
|∇Ψ(r)|2 + Vext(r)|Ψ(r)|2 +

N − 1

2N
g|Ψ(r)|4

]
. (2.39)

The time-evolution of the Hamiltonian operator in the Heisenberg representation brings
the system from the state |N〉 to |N − 1〉,

ψ(r, t) = 〈N − 1|ψ̂(r)|N〉 ∝ e−i(EN−EN−1)t/~. (2.40)

When N � 1,

EN − EN−1 ≈ µ ≡
∂E

∂N
, (2.41)

hence the time-dependent wave function can be expressed in the following way

Ψ(r, t) = ψ(r)e−iµt/~. (2.42)
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Plugging the equation above into the time-dependent GPE in equation (2.35), gives us the
time-independent GPE{

− ~2

2m
∇2 + Vext(r) + g|ψ(r)|2

}
ψ(r) = µψ(r). (2.43)

In cases where the interparticle interactions are absent, µ = E.

The ground state for trapped bosons

Assuming a three dimensional isotropic harmonic trap with V = mω2
0r

2/2 and the kinetic
energy term, K = ~2/2mr2, the total energy of a particle is at its minimum when V =
K. This leads to an expression for the characteristic quantum mechanical length for the
harmonic oscillator,

aosc =
( ~
mω0

)1/2

. (2.44)

2.2.4 The Thomas-Fermi approximation
The Thomas–Fermi approximation neglects the kinetic term in the GPE in equation (2.43),
which is a reasonable assumption for repulsive interatomic interactions in the ultracold
atom regime (∼ 0K) when the interaction energy is much larger than the kinetic energy.
Making the Thomas–Fermi approximation, equation (2.43) then becomes

[V (r) + g|ψ(r)|2]ψ(r) = µψ(r). (2.45)

Inside the atomic cloud radius (non-zero atomic density Ψ(r) > 0), this gives us

n(r) = |ψ(r)|2 =
µ− V (r)

g
. (2.46)

We defined n(r) = 0 (Ψ(r) = 0) for V (r) > µ. The potential of a harmonic trap is,

V (r) =
∑

i=x,y,z

1

2
mω2

i r
2
i . (2.47)

By plugging the equation above into the boundary condition, the extension of the cloud,
or condensate radius, can be obtained to be

Ri =

√
2µ

mω2
i

, i = x, y, z, (2.48)

and the geometric mean of the cloud extension is

R̄ =

√
2µ

mω̄2
, (2.49)
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where ω̄ =
∏
i=x,y,z ω

1
3
i is the geometric mean of the trap frequencies. When ωz � ω⊥,

the condensate is much more tightly confined in the z−direction and has a pancake shape.
One can rewrite the 3D complex order parameter Ψ(r) = Ψ(x, y, z) as Ψ(r) = Ψ(x, y)
describing two-dimensional (2D) BECs by integrating over the z-direction,

Ψ(r) = ψ(x, y)Φ(z). (2.50)

Correspondingly, the strength of mean field potential due to interatomic interactions, g2D,
can be obtained by integrating g in the z−direction and taking the ground state wave
function φ(z) to be in the form of a Gaussian distribution,

Φ(z) =
( 1

πa2
z

) 1
4

exp(− z2

2a2
z

), (2.51)

where az =
√

~
mωz

, is the characteristic harmonic oscillator length in the z-direction. The
resulting interaction strength g2D, is then

g2D ≡ g
∫ ∞
−∞

dz|Φ(z)|4 =
g√

2πaz
=

√
8π~2as
maz

, (2.52)

and we have used that ∫ ∞
−∞

dz
( 1

πa2
z

)
e−2z2/a2z =

1√
2πaz

. (2.53)

The corresponding Hamiltonian of a 2D BEC can then be expressed as

i~
∂

∂t
ψ(x, y) =

[
− ~2

2m
∇2
⊥ + V (x, y) +

g√
2πaz

]
ψ(x, y), (2.54)

where∇2
⊥ = ∂2

x +∂2
y . In the Thomas–Fermi-approximation regime, the atomic density of

the quasi-2D trapped BEC inside a quadratic trap has a very simple solution

n(r) = n(0)
(

1−
∑
i

r2
i

R2
i

)
, i = x, y, (2.55)

where n(0) = µ
g2D

. By applying
∫
d
Rx,Ry
0 rn(r) = N , we can obtain the following ex-

pression for the chemical potential

µ =
3Ng2D

RxRy
. (2.56)

2.3 Rotating condensate
For a rotating BEC confined inside a harmonic trap, instead of working in the laboratory
frame, we change our reference system to co-rotate with the external trapping potential.
The GPE then has the following form

i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∇2 + V (r)−Ω · L̂+ g|Ψ(r, t)|2

)
Ψ(r, t), (2.57)
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where Ω is the angular velocity of the external trap relative to the lab frame and L̂ is the
angular momentum operator. The corresponding energy of the GPE in the rotating frame
(where the rotating axis is along the z-direction, Ωx = Ωy = 0) is

E =

∫
dr
[ ~2

2m
|∇Ψ(r)|2 + V (r)|Ψ(r)|2 +

1

2
g|Ψ(r)|4 − ΩzΨ

∗(r)L̂zΨ(r)
]
. (2.58)

According to this equation, for nonzero Ωz , the system favours nonzero angular momen-
tum in the z-direction. That is, the nucleation of quantum vortices is preferable in rotating
BECs. The angular momentum of the quasi-2D rotating atomic cloud is denoted as

〈L̂z〉 = i~
∫
drΨ∗

(
y
∂

∂x
− x ∂

∂y

)
Ψ, (2.59)

where L̂z = yp̂x − xp̂y .

2.3.1 Quantum vortices
Quantum vortices are a type of elementary excitation in a superfluid, as well as a character-
istic signature of superfluidity. In 2000, quantum vortices were observed experimentally
in a stirred atomic 87Rb BEC (Madison et al. (2000)). Analytically, their existence can
be understood from the time-dependent GPE. In order to understand better the rule the
complex wave function, Ψ, plays for quantum vortices and to connect the condensate to
the physics of fluids, it is instructive to use the Madelung transformation, Ψ =

√
neiθ, to

recast equation 2.35 in terms of the atomic density distribution n(r, t) = |ψ(r, t)|2, and
the phase of the wavefunction, θ(r, t) = =(Ψ(r, t))/<(Ψ(r, t)).
The continuity equation can be derived from the time-dependent GPE by multiplying it by
ψ∗ and then subtracting the complex conjugate of the resulting equation. We then get the
Euler equation,

∂

∂t
|Ψ|2 +

~
2mi
∇(Ψ∗∇Ψ−Ψ∇Ψ∗) = 0. (2.60)

The continuity equation typically takes the following form, which is also known as the
mass conservation law,

∂

∂t
n+∇(nv) = 0, (2.61)

where v is the flow velocity in the fluid. By comparing this to equation (2.60), we see that
the velocity field of the condensate can be expressed as

v =
~

2mi

Ψ∗∇Ψ−Ψ∇Ψ∗

|Ψ|2
. (2.62)

The velocity field in equation (2.62) is then

v =
~
m
∇θ. (2.63)

Note that∇× v = 0, meaning that the flow is irrotational.
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The circulation along a closed curve C is defined as

Γ =

∮
C

v · dl. (2.64)

If v is a continuously differentiable vector field, then the following applies;

Γ =

∮
A

∇× vdA =
~
m

∮
A

∇×∇θdA = 0. (2.65)

This means that the BEC can not contain rotational flow, unless there’s a singularity in the
vector field. The circulation around a singularity is

Γ =
~
m

∮
C

∇θdl =
~
m

(θ2 − θ1) =
~
m

∆θ, (2.66)

where ∆θ is the change of the phase of the wave function after circulating around a sin-
gularity in a closed curve. Due to the single valuedness of the condensate wave function
,

∆θ = 2πl, l ∈ Z. (2.67)

In the case of an homogeneous rotation along the z−direction, the azimuthal velocity is of
the most interest, as

vϑ =
~
m
∇θ =

~
m

1

r

∂

∂ϑ
θ =

~
m

l

r
∝ 1

r
, (2.68)

where r is the scalar radius from the vortex core. The kinetic term of a vortex is then∝ n
r2

and this means that in order to prevent divergence of the kinetic energy to infinity when
we approach the vortex core (r = 0), the atomic density has to be zero there.

2.3.2 Creating quantum vortices experimentally
In a superfluid BEC, a vortex can nucleate as a form of excitations when the condensate’s
angular velocity exceeds the Landau critical velocity, although in practice, this value will
deviate somewhat from the analytically predicted one. It’s been shown in Madison et al.
(2000) that this is indeed realised for Rb BEC. Many other experimental groups have also
successfully demonstrated this ever since.

The healing length

Just as how the balance between the kinetic term and the external trapping potential de-
fines the spatial spread of the atomic density inside the cloud, the balance between the
kinetic term and the interatomic interaction term defines the depletion length over which
the density goes from zero at the vortex core to the bulk condensate density (far away from
the core). This distance is often referred to as the healing length, which is also in practice
the size of a vortex. The healing length at the centre of the condensate is

ξ =

√
~2

2mn0g
, (2.69)
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Figure 2.2: Transverse absorption images of a Bose–Einstein condensate stirred with a laser beam.
The rotation frequency Ω/2π is, respectively (c) 145 Hz (0 vortex), (d) 152 Hz (1 vortex), (e) 169
Hz (2 vortices), (f) 163 Hz (3 vortices) and (g) 168 Hz (4 vortices). In (a) and (b) the variation of the
optical thickness of the cloud along the horizontal transverse axis is shown for images (c) and (b).
This figure is reprinted from Madison et al. (2000).

where n0 = |Ψ(r = 0)|2 is the atomic density at the centre of the trapped atomic cloud
and g is to be replaced by g2D for a 2D BEC.

Properties of a single vortex

Consider a single vortex on the symmetry-axis with charge l. The wave function around
the vortex core can be expressed as

ψ(r) = f(ρ, z)eilθ, (2.70)

and accordingly the corresponding energy is

E =

∫
dr
{ ~2

2m

[(∂f
∂ρ

)2

+
(∂f
∂z

)2]
+

~2

2m
l2
f2

ρ2
+ V (ρ, z)f2 +

g2

2
f4
}
, (2.71)

where the second term is the kinetic energy term due to the azimuthal motion around the
axis and ~2l2f2/2mρ2 = mf2v2

ϑ/2. In addition we can plug equation (2.70) into the
time-independent GPE to get an expression for f ,

− ~2

2m

[1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+
∂2f

∂z2

]
+

~2

2mρ2
l2f + V (ρ, z)f + gf3 = µf. (2.72)

For an on-axis vortex in a harmonically trapped atomic cloud where the Thomas–Fermi
approximation is valid,

ξ0
R

=
~ω⊥
2µ

, (2.73)
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2.3 Rotating condensate

which means that the size of the vortex is much smaller than the extension of the atomic
cloud, or in other words, the energy contribution of the excitation due to the density varia-
tion around the vortex core and the interatomic interations are negligible compared to the
chemical potential. We only need to consider the azimuthal kinetic energy as the vortex
energy, which can be expressed as

εv '
∫ R

0

2πρdρ
l2~2n

2mρ2
' n(0)

πl2~2

m
ln

R

|l|ξ0
(2.74)

per unit length. This implies that l number of singly charged vortices are energetically
favourable over a single vortex with charge l. The total angular momentum of a singly
charged vortex within a 3D anisotropic harmonic potential (tight confinement in z−direction)
is expressed as

L = N~ = ~
∫
dn(r) = n(0, 0)~

∫ Z

−Z
dz

∫ R

0

2πρ
(

1− ρ2

R2
− z2

Z2

)
=

8π

15
n(0, 0)R2Z~,

(2.75)

where Z is the extension of the atomic cloud in the z-direction. As we will discuss later,
one way of creating vortices experimentally is with a rotating trap. In this case, instead
of working in the laboratory frame, it’s more convenient to work in the frame co-rotating
with the trap potential. The energy in this rotating reference frame is then

E′ = E −Ω ·L, (2.76)

were L is the angular momentum of the system and Ω is the rotation frequency of the trap
relative to the lab frame. Due to the quantisation of energy for an excited state, only when
a certain critical angular velocity, Ωc, is exceeded will the excited state be energetically
favourable. This critial angular velocity is given by

Ωc =
EL − E0

L
, (2.77)

whereEL is the energy of the condensate with angular momentum L, andE0 is the ground
state energy of the condensate (L = 0). For the specific case where the excitation is a
vortex along the rotation axis, the critical angular velocity of a particle at the edge of the
cloud with angular momentum ~ is (Fetter (2009))

Ωc =
5

2

~
mR2

ln
(0.671R

ξ0

)
, (2.78)

or more qualitatively,

Ωc ∼ ω0

(aosc

R

)2/3

. (2.79)

For a singly charged off-axis vortex in a 3D trapping potential at a distance b from the
rotation axis (z−axis), the corresponding energy is

E =
4π~2n(0, 0)Z

3m
ln
(R
ξ0

)(
1− b2

R2

)3/2

, (2.80)
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and the corresponding angular momentum is

L = N~
(

1− b2

R2

)5/2

, (2.81)

which decreases with distance from the rotation axis. More details on the derivation of the
above expressions can be found in Section 9.3.2 of Pethick and Smith (2008).

Vortex arrays

After the angular velocity of the rotating condensate exceeds the critical angular velocity,
exictations in the form of vortices start to nucleate. Increasing the angular velocity further,
more than one vortex will start to nucleate. The location of vortices formed has been
calculated in Butts and Rokhsar (1999). The Hamiltonian of the system in the rotating
frame is given by

H ′ = H −Ω ·L

=

N∑
i=1

( p2
i

2m
+ V (ri)−Ω · (ri × pi)

)
+ g

∑
i<j

δ(ri − rj)

=

N∑
i=1

( (pi −mΩ× ri)2

2m
+ V (ri)−

m

2
(Ω× ri)2

)
+ g

∑
i<j

δ(ri − rj).

(2.82)

It’s straight forward to see that the minimum value of the first term is reached when
pi = Ω×ri, which is rigid body rotation. The corresponding velocity field is vi = Ω×ri

2m
and ∇×vi = 2Ω. However, in a superfluid, this is only physically possible in the presence
of singularities, i.e. vortices. A uniform array of vortices in the condensate residing in the
plane perpendicular to the rotation axis (e.g. in the z-direction) approximates the velocity
field of rigid body rotation. The number density of vortices in the condensate is

nV =
2mΩz
h

=
1

πaΩ
2
z

, (2.83)

where aΩ is the intervortex spacing, given by

aΩ =

√
~

mΩz
. (2.84)

2.4 Superfluidity
In contrast to the definition of BEC, superfluidity is a rather conventional concept that’s
been used to describe fluids that present certain features. The most common known prop-
erty of superfluids is the frictionless flow and secondly it’s unresponsiveness to low an-
gular velocities. Even though the connection between BEC and superfluidity has been
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2.4 Superfluidity

made since back in 1938 by London based on Allen (1938) and Kapitza (1938), the corre-
spondence between them is not yet complete. In Leggett (1999), a more clear distinction
between these two phenomena has been given.

A commonly used picture for describing a superfluid is a two-fluid model where one
of them is the normal fluid and the other is the ideal fluid. In particular the two-fluid model
was initially developed in association with the superfluid Helium−4. The normal fluid is
usually referred to as excitations induced either kinetically or thermally. For an excitation
to be created kinetically, a critical velocity has to be overcome. Let’s consider a system
with an excitation of momentum p and energy εp, the total energy in a reference frame
that moves with a velocity v relative to the rest frame of the system can be expressed as

E(v) = E + εp − p · v +
1

2
Mv2, (2.85)

whereM is the total mass of the system and E is the ground state energy of the rest frame.
Comparing to the ground state of the system in the same moving frame,

E(v) = E +
1

2
Mv2, (2.86)

the energy required to create the excitation is εp − p · v. The minimum velocity that the
system has to move with is hence

vc = min
(εp
p

)
, (2.87)

which is also known as the Landau critical velocity. εp/p is the phase velocity of the
excitation. Above vc, the total energy of the system has a non-negative loss. Below vc,
particles can be transported inside the fluid without dissipation, which is a critical feature
of a superfluid. For a non-interacting Bose gas, the critical velocity is zero due to the
absence of interparticle interactions. This makes an ideal Bose gas a poor description
of superfluid He−4. On the other hand, exceeding vc doesn’t necessarily mean that a
superfluid will turn into only normal fluid as the mutual interactions between excitations
increase vc. The lowest energy form of excitations are phonons and rotons.
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Chapter 3
The numerical simulations

The non-linearity of the GPE makes solving it analytically very challenging. It is therefore
justified to take a numerical approach, where the accuracy of the calculation depends on
the spatial and temporal resolution. In the following we will introduce the linear approx-
imation of the simulation for the time evolution of the wave function based on the time
dependent GPE, the concept of phase imprinting and the exact computational implemen-
tation of the numerical methods that we have used.

3.1 The Fourier split operator method
There exist several numerical approaches for solving the time dependent GPE which are
second-order nonlinear. We have chosen to use a pseudo-spectral Fourier split operator
method to solve the GPE. Bauke and Keitel (2011) demonstrated that graphics processing
units (GPUs) are capable of accelerating the fast Fourier transforms to an order higher than
a central processing unit (CPU) implementation, because of this, we have chosen to use
GPU to perform the computing.

For the split operator method, we start with the time dependent GPE for a 2D rotating
condensate represented in the following form

− i

~
∂

∂t
Ψ(r, t) = ĤΨ(r̂, t), (3.1)

where Ĥ = K̂ + V̂ + Ωz · L̂z ,

K̂ =
∑
i=x,y

p̂2
i

2m
, p̂i = i~∂i, (3.2)

V̂ =
∑
i=x,y

mω2
i r

2
i

2
+ g2Dn̂, (3.3)

L̂z = yp̂x − xp̂y = yi~∂x − xi~∂y. (3.4)
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Chapter 3. The numerical simulations

Here K̂ is an operator purely in momentum space and V̂ is an operator purely in real
space, while L̂ is a product of operators from momentum space and operators from real
space which commute ([x, py] = [y, px] = 0). The numerical solution of equation (3.1)
has the form

Ψ(r, t+ dt) = exp
(
− iĤdt

~

)
Ψ(r, t). (3.5)

According to the Baker-Campbell-Hausdorff (BCH) formula (Shankar (1994)), non-
commuting operators can be split in the following way

exp
(−iĤdt

~

)
= exp

(−idt
~

(K̂ + V̂ + Ω · L̂)
)

= exp
(−idt

~
(K̂ + V̂ )

)
exp

(−idt
~

ΩzL̂z

)
exp

(−dt2
2~2

[K̂ + V̂ ,ΩzL̂z]
)

= exp
(−idt

~
K̂
)

exp
(−idt

~
V̂
)

exp
(
− idt

~
Ωz · L̂z

)
exp

(−dt2
2~2

[K̂, V̂ ]/2
)

exp
(−dt2

2~2
[K̂ + V̂ ,ΩzL̂z]

)
exp

(
O(dt3)

)
.

(3.6)

When dt� 1, the second order and higher terms in equation (3.6) can be treated as unitary.
By utilising the Strang splitting (symmetric splitting) from Gradinaru (2007), which makes
this split operator method second-order globally accurate, we obtain

ψ(x, t+dt) ' exp
(
− idt

~
Ωz · L̂z

)
exp

(−idt
2~

V̂
)

exp
(−idt

~
K̂
)

exp
(−idt

2~
V̂
)
ψ(x, t).

(3.7)
In the discrete Fourier transform, the momentum, p, is defined as

pi(n) =
2πn

N∆ri
, i = x, y, (3.8)

where N is the size of the spatial resolution and ∆ri is the grid size in each spatial direc-
tion. Recall the Strang splitting in equation (3.7), the exact implementation we use is the
following

Ψ1(x, y, t+ dt) = exp(−iV̂ dt/2~)Ψ(x, y, t), (3.9)

Ψ2(x, y, t+ dt) = exp(−iK̂ dt

~
)Ψ1(x, y, t+ dt)

= F−1
x,y

{
exp(−i p̂

2
x

2m

dt

~
)Fpx,y{Ψ̃(x, y, t+ dt)}

}
+ F−1

x,y

{
exp(−i

p̂2
y

2m

dt

~
)Fx,py{Ψ1(x, y, t+ dt)}

}
,

(3.10)

Ψ3(x, y, t+ dt) = exp(−iV̂ dt/2)Ψ2(x, y, t+ dt), (3.11)

Ψ(x, y, t+ dt) = exp(
it

~
Ωz · L̂z)Ψ3(x, y, t+ dt)

= F−1
x,y

{
exp(

idt

~
Ωz · y · p̂x) ·Fpx,y{Ψ(x, y)}

}
−F−1

x,y

{
exp(

idt

~
Ωz · x · p̂y) ·Fx,py{Ψ(x, y)}

}
,

(3.12)
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3.2 Generating the ground state of BECs containing vortices

where F stands for the fast Fourier transform (FFT) in 2D, while Fx,py means FFT in
y−dimension (y → py) and Fpx,y means FFT in x−dimension (x → px). F−1 denotes
the inverse fast Fourier transform (iFFT), therefore F−1

x,y means iFFT back to xy coordi-
nates.

3.2 Generating the ground state of BECs containing vor-
tices

The split operator method can be applied with imaginary time propagation to find the
ground state of a condensate in the rotating frame. We start with a trial wave function, ψt,
which we take to be the ground state wave function of the system in the Thomas–Fermi
regime,

ψt(r) = θ
(
µ− V (r)

)√µ− V (r)

Ng2D
, (3.13)

where V (r) =
∑
i=x,y,z

1
2mω

2
i r

2
i is the trapping potential and θ is the Heaviside step

function with θ(≥ 0) = 1 and zero otherwise. In general, an arbitrary wave function can
be expressed in terms of the eigenstates of that system

ψt =
∑
i

Ciψi, (3.14)

whereCi is the amplitude ofψi. Applying this expression in the time-dependent Schrödinger
equation, one gets

i∂tψt = Ĥ
∑
i

Ciψi =
∑
i

CiEiψi, (3.15)

where Ei is the eigenenergy of ψi. The time evolution of the wavefunction is then

ψt(t) =
∑
i

Cie
−iEitψi(t = 0). (3.16)

Applying imaginary time, t → −it, leads to an increasing exponential suppression of the
states in higher orders. The amplitudes of all states are suppressed, including the true
ground state, hence a renormalisation is needed after every evolution time-step in imagi-
nary time. After a sufficient amount of imaginary time propagation, the true ground state
of the system will be recovered. See figure 3.1 for the ground states of a BEC with a few
vortices, where all the vortices are singly charged, namely a phase winding of 2π (in the
counterclockwise direction).

3.3 Phase imprinting
Phase imprinting is a crucial technique for the purpose of our simulations. It allows one
to manipulate the phase of a condensate to the desired form. This technique has been de-
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(a)

(b)

(c)

(d)

Figure 3.1: The ground state of BEC with respectively (a) one vortex, (b) two vortices, (c) three
vortices and (d) four vortices. The plots in the left column are density plots. The plots in the right
column depict the corresponding phasing winding of the BEC with different number of vortices.
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scribed in great detail in Dobrek et al. (1999), where the authors demonstrated how to gen-
erate vortices in a BEC using this method numerically and potentially experimentally by
using a far-off-resonant laser pulse. When one manually alters the phase of the condensate,
the condensate density will adjust itself accordingly. Experimentally phase imprinting has
been successfully applied to create quantum vortices (Möttönen et al. (2003), Brachmann
et al. (2011)).

As discussed earlier, the nucleation of vortices in a rotating BEC is very sensitive to
the rotation velocity. To generate the desired amount of vortices in the system, therefore
requires knowledge of the corresponding rotation velocity that’s needed. However, by
phase imprinting the precise number of circulations in the BEC, the system will converge
to the ground state with the right number of vortices at a rotation velocity which can be
more roughly estimated.

Figure 3.2: The configuration of 4 vortices in a 2D trapped atomic BEC, with 3 singly charged
vortices with positive phase winding (+), and 1 singly charged vortex with negative phase winding
(−).

Starting with the ground state of a BEC with a few singly charged vortices with positive
phase winding (counterclockwise circulation), we can flip one of the vortices by phase
imprinting a−4π circulation (clockwise circulation) within the healing length of the finite
sized vortex. The resulting vortex configuration is shown in figure 3.2, which contains 3
vortices with positive phase winding and 1 antivortex with negative phase winding in the
upper-left corner. This is an example of the initial states of our simulations, which we will
explain in more detail later on.
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3.4 GPU computing
With increasing spatial and temporal resolution of the simulation, the run time required
for each simulation increases dramatically. A way of solving this is to introduce parallel
computing, where the basic idea is to distribute the job among multiple processors, nor-
mally using CPUs (Central Processing Units). Common examples for this are OpenMP
(Open Multi-Processing) and MPI (Message Passing Interface). The main difference is
that OpenMP allows parallelism over local CPUs, while MPI enables a distribution over
a cluster with in principle, an unlimited amount of CPUs available. The most simple and
straight forward parallel computing problems are embarrassingly parallel. It means no ex-
change of message between different nodes, hence complete independence among nodes.
Recently the use of GPUs (Graphic Processing Units) has become an important tool for
massively parallel programming. GPUs are designed to handle large amount of pixels and
3D mathematical operations for image rendering. Mapping the computing operations ef-
fectively onto the hardware of GPUs significantly reduces the computing time. For the
means of our simulations, the programming model CUDA has been used, which operates
on a single instruction multiple thread (SIMT) architecture.

We apply a GPE solver named GPUE (O’Riordan et al. (2017)) using GPUs to evolve
the 2D BEC wave function in the xy−plane. For our simulations we model 106 Rubidium−87
atoms confined within a 3D harmonic trapping potential with trapping frequencies ω =
(2π, 2π, 32π)Hz. The rotation rate of the trap is Ωz = 0.3 · 32πHz. The interatomic
interaction strength in the 2D BEC, g2D, is equal to 6.67411 × 10−40m4 · kg/s2. We use
a spatial grid of extent (5.24 × 10−4m)2 in the xy−plane with 1024 × 1024 spatial grid
points. A temporal resolution of 1× 10−5s is used for the real time evolution of the GPE.
For vortex tracking, the wave function is sampled once per 1000 time steps, namely every
0.01s.

3.5 Vortex tracking
The location of vortices in the BEC is detected by looking at the phase winding in each
cell. If the phase winding is an integer number of 2π, a vortex can potentially reside inside
this cell. However, due to the low density around the edge of the trapped atomic cloud, the
phase winding method gives too much noise and detects some vortices at and beyond the
condensate edge which are not real vortices. Therefore we apply a mask that is slightly
smaller than the radius of the atomic cloud, so that phases outside the mask are not con-
sidered. When we kill (annihilate) one vortex by phase imprinting an opposite charge on
the vortex core, the energy of the vortices is transformed into phonons which propagate
outwards from where the vortex used to be. In our system, no dissipation is considered,
hence the phonons get reflected back from the edge of the condensate and create interfer-
ence patterns. This contributes to small fluctuations over the entire cloud and also close to
the centre of the vortex. Further verification of the existence of the vortices is thus needed.

This further verification is performed by looking at the atomic density in the cells that
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3.5 Vortex tracking

were previously selected as they showed the phase-winding typical of a vortex. If the
atomic density is equal to zero (numerically, this means that the density inside that cell
is smaller than some predefined values), then we conclude that there’s indeed a vortex
residing inside this cell. Furthermore, in order to increase the precision of vortex positions
identified to a finer resolution than the grid size, we apply a least-squares fit (as applied in
Foster (2002)). In order to keep track of the vortices from one time frame to the next, an
identifier is assigned to each vortex, as shown in figure 3.3.

Figure 3.3: Vortex positions 0.2s after flipping the the upper left vortex (index 0). The numbers
assigned to each vortex are their corresponding vortex identifier.

In this chapter we have discussed the numerical implementation of our simulations.
This numerical implementation is developed by L. J. O’Riordan (O’Riordan and Busch
(2016)) and the code source can be found online (O’Riordan et al. (2017)). The results
and analyses of our numerical data, obtained using these GPU computing methods, will
be presented in the following chapters.
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Chapter 4
Chaos indicators

Classical chaos refers to chaotic dynamics in classical mechanics. Chaos theory from a
mathematical point of view is the sensitivity of the behaviour of the dynamical system to
the initial conditions. A well known example of this is the butterfly effect. A small change
in the initial conditions results in a dramatic divergence of the long term behaviour of the
system. Even though the system is deterministic, namely the dynamics of the system is
fully determined by its initial conditions (there is no missing pieces in the puzzle), the
outcome of a dynamical system subjected to a subtle difference in the initial conditions is
unpredictable (Kellert (1993)). Besides the sensitivity of the initial conditions, a mixing
in phase space should be present in the case of chaotic dynamics. Mixing means that two
initially neighbouring orbits should wind around each other in a complicated way. In this
chapter, two indicators of chaos are introduced. One of them is the classical Lyapunov
exponent and the other is the small Alignment index which was first introduced in Skokos
(2001). In ideal scenarios (that is infinite long time and infinite system size), chaotic
dynamics are indicated by a positive Lyapunov exponent.

4.1 The Lyapunov exponent
The Lyapunov exponent is one of the most well-known and commonly used tools for deter-
mining chaos, however it is not necessarily the most efficient tool. Firstly, it relies highly
on the exponential increase of the difference between near-by orbits which will ultimately
be limited by the system size. Secondly, in the ideal definition of the Lyapunov exponent,
time goes to infinity, which is not practically possible. For this reason, the value of the
Lyapunov exponent can only be extrapolated. We are presenting a short definition of the
Lyapunov exponent here (Wolf et al. (1985)).

We assume two initially neighbouring trajectories in a four-dimensional phase space

Z1(t) = (x1(t), y1(t), vx,1(t), vy,1(t)),

Z(t) = (x(t), y(t), vx(t), vy(t)),
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where vx(t) = dx
dt and vx,1 = dx1

dt , with an initial separation

δZ0 = (δx0, δy0, δvx0, δvy0),

where δx0 = x1(0) − x(0) and δvx0 = vx(0) − vx1(0), ect. The separation between
these two trajectories diverges with a rate (provided that linear approximation is applicable
within δZ0),

‖δZ(t)‖ = eλt‖δZ0‖, (4.1)

where λ = λ(t) is the Lyapunov exponent and ‖ · ‖ is the Euclidean norm. Equivalently,
the Lyapunov exponent is defined as

λ(t) = lim
δZ0→0

1

t
ln
‖δZ(t)‖
‖δZ0‖

, (4.2)

and the Lyapunov characteristic exponent (LCE) is

λC = lim
t→∞

λ(t). (4.3)

A positive LCE in a Lyapunov exponent spectrum indicates a chaotic system, and the value
of the LCE indicates the strength of chaos. Larger LCEs correspond to strong chaos and
smaller LCEs correspond to weak chaos.

Alternatively, one can also define a one-dimensional Lyapunov exponent, λi. For orbits
in n-dimensional phase space,

λi = lim
t→∞

lim
δz→0

1

t
ln
Zi(t)

Zi(0)
, i = 1, · · ·, n. (4.4)

λi is arranged in a decreasing order. λ1 is called the maximal Lyapunov exponent, whose
value is also often used as an indicator of chaos. For the means of this project, we have
calculated λx, which is the Lyapunov exponent considering only Zx = (x, vx), and λy ,
which is the Lyapunov exponent over Zy = (y, vy) and λr, which is the Lyapunov expo-
nent over all degrees of freedom, namely Z = (x, y, vx, vy).

As argued in the beginning of this section, in practice, the numerical Lyapunov expo-
nents are all calculated during finite time intervals. These Lyapunov exponents are often
referred to as a finite Lyapunov exponent. Vallejo and Sanjuán (2013) have applied the
finite Lyapunov exponent on computing the hyperbolicity index of two coupled Rössler
oscillators. It’s been argued that the choice of the finite time interval is dependent on the
convergence rate of the Lyapunov exponent. In particular for our system, the choice of our
time invterval should be comparable with an experimentally realisable lifetime of BECs.

4.2 The smaller alignment index (SALI)
The Smaller Alignment index (SALI) is a simple chaos indicator. Its definition is expressed
as (Skokos (2001) and Skokos et al. (2004)),

SALI(t) = min
{
‖ν1(t) + ν2(t)‖, ‖ν1(t)− ν2(t)‖

}
= min

{
‖sum‖, ‖sub‖

}
, (4.5)
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where ν1(t) and ν2(t) are the normalised deviation vectors of two pairs of close-by orbits.
In other words,

ν1(t) =
δz1(t)

‖δz1(t)‖
,

ν2(t) =
δz2(t)

‖δz2(t)‖
.

See figure 4.1 for an illustration of how deviation vectors are defined based on three close-
by orbits. In principle, SALI(t) ∈ [0,

√
2], where SALI = 0 means that ν1 = ±ν2 and

Figure 4.1: An illustration of the deviation vectors, ~ν1(t) and ~ν2(t), of three close-by orbits,
~z1(t), ~z2(t) and ~z(t) as a reference orbit. Figure is reprinted from Benitez et al. (2015).

SALI =
√

2 means that ν1 ⊥ ν2. If two orbits are chaotic, ν1 and ν2 will align arbitrar-
ily relative to each other. This leads to an overall SALI value that tends towards zero for
chaotic behaviours (aka. the two deviation vectors tend to coincide or become opposite) in
a 2n-dimensional phase space with n ≥ 2 (Voglis et al. (1999)). “This due to the fact that
the directions of the two deviations vectors tends to coincide with the direction of the most
unstable nearby manifold” (Skokos et al. (2002)). In numerical studies, it is common to set
a threshold value for SALI under which the orbits are defined as chaotic (Antonopoulos
et al. (2010)).

A study on the dynamics of three point vortices (two positvely and one negatively
charged) has been performed with the help of SALI as a chaos detection tool (Kyriakopou-
los et al. (2014)). In contrast to our system which starts from the ground state of BECs, var-
ious vortex configurations in phase space with three vortices has been investigated. Within
the configuration space, there are divisions between regular and chaotic regions, that is,
some initial vortex configurations lead to regular dynamics and others lead to chaotic dy-
namics. The threshold value under which the dynamics is defined as chaotic, that has been
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Chapter 4. Chaos indicators

set in this article to (10−12) is not realistic for our numerical data due to the limitation of
the spatial resolution in our system.

These two chaos indicators, SALI and the Lyapunov exponent, that have been dis-
cussed in this chapter, will be applied to our numerical results later on in this thesis. We
will use these chaos indicators to verify or disprove the chaotic features of trajectories of
a few vortex systems in a rotating BEC.
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Chapter 5
Regular quantum vortex dynamics
in a 2D BEC

The existence of quantum vortices provides direct evidence for superfluidity. Vortices lo-
cated at the centre of a harmonically trapped BEC will contribute an angular momentum of
order ~ proportional to the charge of the vortex. The angular momentum contribution de-
creases with increasing distance between the vortex cores and increasing distance from the
centre of the condensate (Chevy et al. (2000)). Due to the robustness of quantum vortices,
they can be treated as classical particles and their interactions also resemble interactions
between classical particles. Our work has mainly been focusing on few vortex systems. In
this chapter we will discuss non-chaotic quantum dynamics of systems consisting of one,
two and four vortices respectively.

5.1 Dynamics of a single vortex in a BEC

The ground state of a BEC with a single vortex is very simple and straight forward from
the perspective of dynamics. In rotating BECs, this single vortex is created along the ro-
tation axis. Figure 5.1 shows a slice through the centre of the density profile of the BEC,
together with a contour plot of the density, which shows an isotropic density drop radially
outwards from the centre of the condensate.

With real time propagation, this central vortex remains stationary even after applying
perturbations to it. We have in particular flipped the direction of rotation of the single
central vortex in our simulation by phase imprinting a 4π phase with a direction oppo-
site to that of the vortex’s circulation (counterclockwise). Phonons are created due to
the annihilation of the original vortex, but the flipped vortex (antivortex) remains station-
ary. See figure 5.2 for the density and phase plot of a single flipped central vortex (an
antivortex) with a negative phase winding (clockwise circulation). The blue dip in the
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Chapter 5. Regular quantum vortex dynamics in a 2D BEC

Figure 5.1: A slice through the density profile, |ψ|2, of a BEC with one singly charged vortex at the
condensate center. A contour plot of the xy-plane of the BEC density profile is also plotted.
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5.2 Dynamics of two vortices in a BEC

centre indicates a density drop inside a vortex which is also an indication of the size of the
vortex,ξ ' 5.11× 10−6m, where ξ denotes the healing length.

Figure 5.2: To the left: The density plot of BEC 0.01s after flipping the central vortex right on the
vortex core. To the right: The phase plot of BEC 0.01s after flipping the central vortex right on the
vortex core.

In O’Riordan and Busch (2016), the author employed the same phase imprinting tech-
nique to flip a single central vortex in a similar BEC system, generated by the same com-
puting method (O’Riordan et al. (2017)). They found that phase imprinting within a dis-
tance equal to twice the healing length can successfully annihilate and flip the pre-existing
vortex.

5.2 Dynamics of two vortices in a BEC
The location of two singly charged vortices (counterclockwise phase winding in the con-
text of this work) in a BEC is shown in figure 3.1 (b). In the absence of any perturbation,
the two vortices rotate around each other in a circular orbit and the relative distance be-
tween them in the laboratory frame is preserved. Flipping one of the vortices exerts a
rotation that resembles the gravitational two-body problem Keeton (2014). The additional
phonon modes in the condensate created after annihilating the original vortex don’t effect
the vortex trajectories. See figure 5.3 for the trajectory of the two vortices over a time of
50s after vortex flipping. In figure 5.3, both the raw vortex trajectory (obtained directly
by our vortex tracking algorithm) and the smooth vortex trajectory (obtained by apply-
ing a running average over the raw data) are shown. The plots show that the smoothed
trajectories still follow the original trajectories very well, except are absent of the small
oscillations which are especially evident in the antivortex trajectory. Hereafter we base
most of our calculations on the smoothed vortex trajectories, with the exception of the
histograms of vortex position that we are presenting next. It is important to remark that all
quantities are measured in the co-rotating frame.

Alternatively, we can represent the vortex trajectories with histograms of their position.
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Figure 5.3: A comparison between the trajectories of two vortices (idx 0 is the antivortex and idx 1
is the vortex) in the co-rotating frame before (‘raw’) and after (‘smooth’) applying smooth function
in the co-rotating frame. These are trajectories following the flipping right on the vortex core of
vortex with idx 0.

We divide the 2D box of size (5.26 × 10−4m)2 into a 256 × 256 grid. The number that
is associated with each grid cell of the histogram counts how many times a vortex crosses
that grid cell during a chosen time period. Tracking the vortex trajectories during t = 50s
with a temporal step size of δt = 10ms gives the histogram shown in figure 5.4. The
trajectories of the two vortices in both real space and momentum space look ordered. Both
vortices have a tendency to move to the outer region of the condensate in order to minimise
the vortex energies. From histograms, it is easy to tell where each vortex has spent most
of its time. The histograms in figure 5.4 show that some time after vortex flipping, both
the vortex and the antivortex move in regular circular orbits.

Although the trajectories seem to be regular, it is important to check how this depends
on the location of the vortex which is flipped by phase imprinting. We are comparing
the trajectories of individual vortices when one of the two vortices is flipped at an offset
of 0.1ξ and 0.08ξ, where ξ is the healing length ( ξ = 5.11 × 10−6m). The difference
between these two sets of trajectories, (∆x(t),∆y(t)) = (x2(t) − x1(t), y2(t) − y1(t)),
where (x1(t), y1(t)) and (x2(t), y2(t)) are the positions of a vortex which is flipped at
respectively 0.08ξ and 0.1ξ away from its original position, is shown in figure 5.6. The
blue line in the figure is the antivortex and the red line is the vortex. It appears that the
separation between the initial close-by orbits of the vortex behaves in an ordered way,
while the antivortex has a more irregular motion. In order to check whether or not the
motion of antivortex is chaotic or not, we calculate the Lyapunov exponent spectrum of
the antivortex, as well as the vortex. This result is shown in figure 5.7. The Lyapunov
exponent of the antivortex (‘idx 0’) converges to zero at around 10s after the vortex flipping
occurs. The Lypunov exponent of the vortex on the other hand is positive during this time
period, however it decrease relatively fast towards zero.

The dynamics between the vortex and antivortex is investigated by calculating the rel-
ative distance between them with respect to time. This is shown in figure 5.5, where
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5.2 Dynamics of two vortices in a BEC

(a) (b)

Figure 5.4: Histograms of the trajectories over a time-period of 50s of one antivortex (‘idx 0’) and
one vortex (’idx 1’) in the co-rotating frame in a BEC. The antivortex is created by flipping one of the
two vortices in the generated BEC ground state, right on the vortex core. (a) depicts the histogram
that represents the vortex trajectories in real space. (b) is the corresponding histogram of the velocity
of each vortex during the 50s of evolution.
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Figure 5.5: The relative distance between the vortex and the antivortex, sum δr, over a time-period
of 50s shown for three sets of trajectories, where the vortex is flipped at respectively 0.08ξ (upper
plot), 0.1ξ (middle plot) and 0.12ξ (lower plot) from the original vortex core position.
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5.3 Regular dynamics of four vortices in a BEC

three sets of simulations are shown corresponding to vortex flipping located at 0.08ξ
and 0.1ξ and 0.12ξ away from the original vortex core position. The relative distance,
δr =

√
δx2 + δy2, where (δx, δy) is the relative separation between the vortex and the

antivortex for the same simulation, presents a very regular oscillation, regardless of the
flipping distance from the original vortex. This oscillation resembles the gravitational
two-body problem that has been used to describe the orbits between two celestial bodies
with similar mass (Keeton (2014)).

Figure 5.6: The separation between initially close-by orbits, when one of the two vortices is flipped
at 0.1ξ and 0.08ξ away from the original vortex core. idx 0 denotes the antivortex and idx 1 the
unflipped vortex.

5.3 Regular dynamics of four vortices in a BEC
When the system consists of a larger number of vortices, the vortex dynamics can be
more complex. In the previous section, even though we perturbed the system by flipping
a vortex, we did not cause the vortices to show chaotic dynamics. As we will show in
next chapter, increasing the number of vortices in the system successfully complicates the
dynamics sufficiently to detect chaotic trajectories. Our aim in this section is to create
ordered dynamics for identical numbers of vortices as this will be used as a reference in
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Figure 5.7: The Lyapunov exponent spectrum of an antivortex,‘idx 0’, and a vortex, ‘idx 1’, in the
BEC in a time period of 50s. Two Lyapunov expnonent series for each vortex calculated based on
three initially neighbouring orbit created after vortex flipping at 0.12ξ (blue) and 0.08ξ (red) and
0.1ξ (the reference orbit).
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the next chapter. We focus on using four vortices with a diferent perturbation to initiate
the dynamics. Compared to flipping the direction of rotation of a vortex, we need a more
subtle perturbation to ensure regular vortex dynamics.

Instead of a −4π phase imprinting (vortex flipping), we are applying phase imprinting
of −2π to annihilate a vortex and after a few steps in real time evolution, phase imprint
2π to create a new vortex near the original one with the same direction of rotation. Using
this procedure, we can finely tune the location of the new vortex using a similar method to
that we have applied to get an antivortex in the previous section. The induced motion of
the vortices when we create a new vortex exactly where the annihilated one was is shown
in figure 5.8.

Figure 5.8: The 2D histograms of the position of individual vortices in position space for a system
of four vortices , plotted over a total time evolution of 50s with step size of 0.01s. The vortex with
index 0 has been annihilated and re-imprinted exactly on the original vortex core.

The trajectories of the four vortices with one of them re-imprinted slightly off-set from
the original vortex postion is shown figure 5.9. This figure indicates that the four vortices
stay in a square lattice and rotate collectively in the co-rotating frame of the BEC. The
direction of rotation is dependent on where the new vortex is created, as we can observe
from figure 5.9. In this figure, the COM (centre of mass) trajectories are also shown. This
quantity depicts the vortices as one single parameter and is to be introduced in the next
chapter. The separation in time between two close-by orbits, when we have re-imprinted
a vortex at 0ξ and 0.1ξ away from the original vortex position, is shown in figure 5.10.
Figure 5.11 shows the relative distances between the re-imprinted vortex and the 3 other
vortices, given by δri−0 which denotes the relative distance between the re-imprinted vor-
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tex, ‘idx0’, and the unperturbed vortex, ‘idx i’, where i = 1, 2, 3. The behaviour of the
relative distances in time further confirms our statement that the four vortices rotate in the
co-rotating frame with a preserved lattice structure.

Figure 5.9: The trajectories of four vortices in the co-rotating frame over a time period of 50s,
where the position of one of the vortices is slightly dislocated by re-imprinting a new vortex at 0.1ξ
(upper plot), 0.2ξ (middle plot) and 0ξ (lower plot) relative to the position of the original vortex that
was annihilated. ‘idx 0’ refers to the re-imprinted vortex, while ‘idx 1’, ‘idx 2’ and ‘idx 3’ are the
unperturbed vortices. The COM trajectories of the four vortices are also shown.

In this chapter we have investigated vortex dynamics in BECs by studying the trajec-
tories of one vortex and one antivortex created from the ground state of a BEC containing
two co-rotating vortices. We have also looked at the trajectories of four vortices in a BEC,
when the location of one of the vortices is slightly off-set by annihilating one of the four
vortices orignially generated in the ground state and creating a new vortex at a slightly
different position. The dynamics between a vortex and an antivortex have been confirmed
to be regular by calculating the Lyapuov exponent spectrum, even though the separation
between the trajectories of the antivortex has shown some irregularity (see figure 5.6).
Slightly dislocating the position of one of the four vortices in the generated BEC ground
state causes all four vortices to rotate collectively in the co-rotating frame with a preserved
lattice structure. In next chapter, we will look into the dynamics of more than two vortices
after applying vortex flipping in search of more complex dynamics.
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5.3 Regular dynamics of four vortices in a BEC

Figure 5.10: The separation of individual vortex trajectories after phase imprinting a new vortex at
0ξ and 0.1ξ away from the original vortex location in the co-rotating frame of the BEC. The blue
line denotes the re-imprinted vortex and other coloured lines denote the 3 other vortices.

Figure 5.11: The relative distance between the re-imprinted vortex and the 3 unperturbed vortices,
denoted as δr1−0, δr2−0 and δr3−0, in the co-rotating frame of the BEC, shown for three sets of
simulations where the phase imprinting location is respectively 0ξ (upper plot), 0.1ξ (middle plot)
and 0.2ξ (lower plot) from the original vortex core position. The sum of these relative distances is
also presented as sum δr.
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Chapter 6
Chaotic quantum vortex dynamics
in a BEC

Many previous studies have looked into chaotic dynamics of few vortex systems, both ana-
lytically and numerically (e.g.Murty and Rao (1970), Aref (1983), Speetjens et al. (2014)).
Most of these studies have been based on the point vortex model, which ignores the inter-
nal structure of the vortices (Wisniacki et al. (2007), Fangohr et al. (2001), Haldane and
Wu (1985)). We are, on the other hand, simulating physical vortices with finite sizes. Al-
though they start from different configurations, chaotic dynamics have been observed in a
system of three and four point vortices. Inspired by this, in this chapter we will be focusing
on a BEC system containing three and four vortices respectively, with one of the vortices
flipped. We finely adjust the flipping distance from the original vortex core position and
keep track of the resulting vortex trajectories to create a sequence of initially near-by or-
bits. This allows us to apply the chaos indicators on the resulting trajectories and to verify
or disprove whether the vortex trajectories induced by vortex flipping are chaotic.

6.1 Chaotic dynamics of three vortices in a BEC

We consider systems of three vortices in order to search for more complicated dynamics
between vortices. In A. T. Conlisk and Elliott (1989), the authors have studied the vortex
motion among three invscid equally charged point vortices above a flat wall. During this
study, they have fixed the location of two vortices while they alter the position of the third
one along the line perpendicularly intersecting the middle of the line segment between the
two fixed vortices. It has been shown that as the the third vortex moves closer to the other
two vortices, the vortex motions transit from regular to chaotic, which is verified with the
Lyapunov exponent spectrum (among other tools). It’s reasonable to assume that we can
expect some chaotic behaviour in our system of three vortices, which is more complex due
to the inhomogeneity of the atomic density of a harmonically trapped BEC and the finite
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size of quantum vortices, where the healing length gives the typical vortex radius ξ > 0.

In a similar manner to that applied in the previous chapter, we are flipping (reversing
the circulation) of one of the three vortices in the BEC as shown in 3.1. The first sign
of chaotic behaviour, after flipping a single vortex in a three-vortex system exactly on the
original vortex core position and considering the resulting trajectories in the co-rotating
frame, comes from the disordered nature of the vortex trajectories themselves as shown in
figure 6.1. See figure 6.2 for a histogram of the vortex trajectories in the co-rotating frame

Figure 6.1: The vortex trajectories of individual vortices in the co-rotating frame, after flipping one
vortex right on the original vortex core position, plotted over an evolution time of 50s. The blue line
shows the trajectory of the antivortex. The red and yellow line are respectively trajectories of the
two other unperturbed vortices.

over 50s of evolution time after the vortex flipping. This histogram shows how frequently
vortices cross each grid cell. All three vortices seem to travel around and across all the
regions inside the condensate. In particular, the antivortex (‘idx 0’) moves faster and more
irregularly. Furthermore, we also compare two sets of vortex trajectories with a slight
difference in the initial position of the flipped vortex, that is we consider an initial position
of the flipped vortex 0.2ξ away and 0ξ (same position) away from the original vortex site
before flipping. The difference between the two sets of trajectories is shown in figure 6.3.
Drastic divergences between two initially close-by vortex trajectories are observed. It is
around t = 10s that the divergence in trajectories starts to occur. This will be looked at in
more detail in the next section.

As well as looking at the individual trajectories, we are curious about how the entire
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6.1 Chaotic dynamics of three vortices in a BEC

Figure 6.2: The histogram of vortex trajectories in the co-rotating frame where idx 0 is the antivortex
and idx 1 and idx 2 are the two vortices, respectively. The histogram is plotted over a time period of
50s after vortex flipping right on the vortex core.

Figure 6.3: The time evolution of the difference between trajectories of the individual vortices,
where the vortex with index 0 (idx 0) has been flipped initially at 0ξ and 0.1ξ away from the original
vortex core. ‘idx’ denotes the vortex index of the 3 votices in the system.
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system evolves with time. We define the following parameters

RCOC =
1

n

∑
i∈[1,n]

ri − r0, (6.1)

VCOC =
1

n

∑
i∈[1,n]

vi − v0, (6.2)

RCOM =
1

n

∑
i∈[0,n]

ri, (6.3)

VCOM =
1

n

∑
i∈[0,n]

vi, (6.4)

where the subscripts denote the index corresponding to the n vortices in the system, where
the vortex with index 0 is the antivortex. COC and COM stand respectively for the cen-
tre of charge and centre of mass. The COC takes into account the sign of the charge of
the vortices, while the COM treats vortices and antivortices equally. The COM and COC
trajectories after flipping at the vortex core (0ξ) are shown in figure 6.4. Both trajectories
present some irregular rotations in the co-rotating frame inside the condensate. The differ-
ence between the two sets of COC and COM trajectories with vortex flipping at 0.2ξ and
0ξ are shown in figure 6.5. The difference between the near-by trajectories of the entire
system also diverges in time, however the abrupt divergence that is observed by looking at
the difference between near-by single vortex trajectories is not very pronounced here.

Figure 6.4: The COC (blue line) and COM (red line) trajectories of a system of 2 vortices and one
antivortex in the co-rotating frame with vortex flipping right on the vortex core (0 ξ away from the
original vortex position).

Besides the divergence of separation between initially near-by trajectories, an inter-
winding of two orbits occurs in phase space. Since we are treating vortices as classical
particles, the momentum of vortices, according to the classical definition, is the product
between the velocity of a vortex and its mass. The real mass of a quantum vortex is not a
very relevant quantity, since a quantum vortex is not a particle. Instead of a momentum,
we are using the vortex velocity obtained as the time derivative of the vortex position,
Vx = ∆x/∆t, Vy = ∆y/∆t, where ∆x and ∆y are the differences in vortex position
in the x−direction and the y−direction during a time ∆t. In figure 6.6, the COC and
COM trajectories of 2 vortices and one antivortex in the co-rotating frame during a time
period of 50s, when the antivortex is created at 0.08ξ and 0.1ξ from the original vortex
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6.1 Chaotic dynamics of three vortices in a BEC

Figure 6.5: The difference between COC (red) and COM (blue) trajectories of a system composed
of 2 vortices and one antivortex, after vortex flipping at 0.2ξ and 0ξ respectively, during a time
period of 50s.

site, are shown in phase space, (x, Vx) and (y, Vy). These trajectories from the two sets
of simulations mix with each other. This mixing of trajetories is another sign of chaotic
behaviour.

All the above observations have shown signs of a chaotic behaviour. By calculating
the spectrum of the Lyapunov exponent, some solid evidence of chaos may be gained.
The corresponding Lyapunov spectrum is shown in figure 6.7. The Lyapunov spectrum
of the antivortex (idx 0) seems to approach zero. The average of λ over a time range of
[45s, 50s] is ' 0.01. The Lyapunov spectrum of the other two vortices seems to converge
to a larger average value of λ which is λ ' 0.05, which is an indication of stronger
chaos. The stronger chaos of the two unperturbed vortices can also been observed from
the irregularity of the trajectories of these vortices. The Lyapunov spectrum calculated
from the COM trajectory of two vortices and one antivortex is shown in figure 6.8. This
spectrum has a stronger oscillation than the spectrums for the individual vortices. There
are also dips in the spectrum which go below zero. It’s worth mentioning that the average
λ for t ∈ [45s, 50s] is positive.

The relative distance between the antivortex and the other two vortices with vortex
flipping at 0ξ, 0.1ξ and 0.2ξ away from the original vortex core are illustrated in figure 6.9.
In a system with three vortices, initially (before flipping) the three vortices are located at
each corner of a regular triangle. The respective relative distances between the two vortices
and the antivortex are equal. The relative distances show strongly entangled oscillations
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Figure 6.6: The orbits of RCOC, VCOC of two vortices and one antivortex in phase space. The red
line indicates the orbit of the sytem where the vortex flipping takes place at 0.1ξ and the blue line
depicts the system’s orbit with flipping at 0.08ξ.

with time. These oscillations are identical despite the flipping distance.

6.2 Chaotic dynamics of four vortices in a BEC
BECs with three vortices with one of them flipped have already shown some signs of
chaotic dynamics and we have been able to confirm this quantitatively by calculating the
Lyapunov exponent spectrum in the previous section. The antivortex, however, shows a
very weak sign of chaos both according to the trajectories and the respective Lyapunov
exponent spectrum. In this section, we will be looking at at a system of four vortices in
our BEC. The corresponding ground state is shown in figure 3.1 and the configuration after
flipping one of the four vortices is shown in figure 3.3, where the numbering indicates the
vortex index and index ‘0’ denotes the antivortex.

The histogram plot of the occurrence of each vortex inside each grid cell during a time
period of 50s sampled every 10ms is shown in figure 6.10. Here the resolution of the
histograms is 256× 256 over the entire 2D box (of size 5.24 · 10−4m× 5.24 · 10−4m) as
before. We have also looked into the relative distance between the vortices and the antivor-
tex with respect to time. The resulting plots when the vortex is flipped at 0.08ξ, 0.1ξ and
0.12ξ from its ground-state position are presented in figure 6.11. An overall oscillation of
the sum of the relative distances is observed in all three cases. Compared to the case with
a total vortex number of 2 in figure 5.5 and a total vortex number of 3 in figure 6.9, the
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Figure 6.7: The Lyapunov exponent spectrum for individual vortices in a system of two vortices and
one antivortex calculated from two sets of data with vortex flipping at 0ξ and 0.2ξ with trajectories
induced by vortex flipping at 0.1ξ used as the reference trajectory. Vortex ‘idx 0’ denotes the flipped
vortex (antivortex) and ‘idx 1’ and ‘idx 2’ are the two unperturbed vortices.

49



Chapter 6. Chaotic quantum vortex dynamics in a BEC

Figure 6.8: The Lyapunov exponent spectrum of the COM trajectories of the system of two vortices
and one antivortex in the co-rotating frame, calculated from two sets of data where a vortex is flipped
at 0ξ and 0.2ξ respectively, with trajectories induced by vortex flipping at 0.1ξ used as the reference
trajectory.
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Figure 6.9: The relative distance between the antivortex and the other two vortices, denoted as
δr1−0 and δr2−0 respectively, when flipping takes place right on the vortex core. The sum δr =
δr1−0 + δr2−0 is the sum of the two relative distances. The upper plot is calculated with vortex
trajectories induced by vortex flipping with 0ξ offset. The middle plot is calculated with vortex
trajectories induced by vortex flipping with 0.1ξ offset. The lower plot is calculated with vortex
trajectories induced by vortex flipping with 0.2ξ offset from the original vortex position.
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Figure 6.10: The histogram of trajectories of individual vortices in the co-rotating frame over a total
time evolution of 50s, with one antivortex (idx 0) and three vortices (idx 1, idx 2, idx 3) in the BEC.

oscillations are more irregular. This irregularity is a sign of more complicated dynamics
occurring in the system.
In addition to the slow oscillation, the relative distance between the antivortex and any of

the other three vortices (δri−0, i = 1, 2, 3) presents a fast oscillation. In particular, δr1−0

and δr2−0 present a more entangled oscillation in comparison to δr3−0. The equal initial
distance between the antivortex and these two vortices (idx 1 and idx 2) should play a
role here, since this resembles figure 6.9, which shows the system of a three vortices (two
vortices and one antivortex) that are initially equally distant from each other.

Figure 6.12 shows the difference between vortex trajectories from two sets of data
which deviate only by a slight change in the initial position of the flipped vortex. The
drastic divergence of the deviations in trajectories is another strong sign of chaotic dy-
namics. In addition to the observation of the divergence of the difference in trajectories, it
seems that the timing of this divergence depends on the difference in the initial conditions
as well. Figure 6.13 shows the difference between trajectories with a larger difference in
the initial conditions. In this case a small divergence occurs much earlier around 5s after
flipping. Let us now look again at the relative distance between the antivortex and the other
three vortices, as well as the sum of the relative distances, in figure 6.11. The sum of the
relative distances reaches its first minimum at around t = 10s, regardless of the flipping
distance. At this minimum, these four vortices (including the antivortex) are closest to
each other and the scattering between them is also stronger. This is most likely the trigger
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Figure 6.11: Plots show the relative distance between vortices and the antivortex, denoted as
δi−0, i = 1, 2, 3. The sum of all δi−0, sumδr is also shown. The three plots show the scenario
when the flipping is at 0.08ξ (upper plot), 0.1ξ (middle plot) and 0.12ξ (lower plot) away from the
vortex core, respectively.
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Figure 6.12: The time evolution of the difference between two trajectories of each vortex, where
vortex 0 has been flipped initially 0.08ξ and 0.1ξ away from the vortex core, respectively.

for the drastic divergence of the separation between the close-by trajectories, as shown in
figure 6.12.

The COC and COM trajectories of the system composed of three vortices and one
antivortex in the co-rotating frame with a vortex flipped at 0.08ξ and 0.1ξ are shown in
figure 6.14. The mixing of these orbits is also observed here.

All the results that we have presented so far, have shown similar, if not stronger signs
of chaos than in the previous section where three vortices in a BEC were considered. We
will now calculate the corresponding Lypunov exponent and SALI in the next section.

6.2.1 The Lyapunov exponent spectrum

The exact definition of the Lyapunov exponent can be found in chapter 4. We use the flip-
ping distance from the vortex core as a parameter to manipulate the initial conditions. We
choose three sets of simulations where one vortex has been initially flipped at 0.12ξ, 0.1ξ
and 0.08ξ away from the original vortex core position. The vortex trajectories correspond-
ing to a vortex flipped at 0.1ξ from the original vortex position is used as the reference
orbit. The corresponding Lyapunov exponent spectrum is shown in figure 6.15. Accord-
ing to the definition of the Lyapunov exponent (which is referred to as λr from now on),
provided a minimal difference in the initial conditions in phase space, if λr > 0 when
t → ∞, the orbit is chaotic. This has been confirmed by figure 6.15, which shows the
Lyapunov exponentum spectrum of the individual vortices for the three sets of trajecto-
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Figure 6.13: The time evolution of the difference between trajectories of each vortex, where vortex
0 has been flipped initially at 0ξ and 0.1ξ away from the vortex core, respectively.
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Figure 6.14: The COC and COM orbits of a system consisting of three vortices and one antivortex
in phase space, (x, Vx) and (y, Vy) respectively, during 50s in the co-rotating frame. The red line
indicates the trajectory of the system where the flipping of a vortex takes place at 0.1ξ from the
origional vortex position, and the blue line is depicting the system’s trajectory with flipping at 0.08ξ.

ries (with the flipping distances described earlier). The Lyapunov exponents, λr, start to
stabilize at around 10s. Recall that this is also when the drastic divergence of separation
between close-by trajectories occurs. λr remains strictly positive for all four vortices and
converges slowly towards a positive value ' 0.1. We evolve the vortex dynamics for 50s,
which is comparable to the current experimental life-time of BECs (Ramanathan et al.
(2011)).

Instead of looking at the chaotic behaviour of individual vortices, we now study the
behaviour of the entire system of vortices by exploiting the COM and COC trajectories
(defined in equation (6.1)). The corresponding Lyapunov exponent spectrums are shown
in figure 6.16 and 6.17. Compared to the spectrum of individual vortices, the λr in these
two spectrums oscillates more and stays positive during this time period.

We also want to investigate how the size of the condensate, and hence the initial vortex
spacing, effects the strength of the chaos. We alter the the size of the condensate in our
simulation by varying the trapping frequencies in xy−dimensions and the total number of
atoms. We have successfully constructed BECs with three different radii while ensuring
the same vortex core size. The average Lyapunov exponents of COC and COM trajectories
of three vortices and one antivortex (where the vortex flipping takes place right on the vor-
tex core) inside BECs with three slightly different radii are shown in table 6.1. Lyapunov
exponents are generally greater in the condensate with the smallest radius, which corre-
sponds to smaller initial intervortex spacing. This larger Lyapunov exponent indicates a

56



6.2 Chaotic dynamics of four vortices in a BEC

Figure 6.15: The Lyapunov exponent spectrum for each individual vortex in a BEC with three vor-
tices and one antivortex during 50s. idx 0 is the antivortex and other three are the nonflipped vortices
in the BEC. The blue lines indicate the calculated Lyapunov exponent between two trajectories in-
duced by vortex flipping at 0.12ξ and 0.1ξ. Similarly the red lines are the Lyapunov exponents based
on trajectories followed by vortex flipping at 0.08ξ and 0.1ξ.
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Figure 6.16: The Lyapunov exponent spectrum of COC trajectories for a system of three vortices
and one antivortex in the co-rotating frame. The trajectory from vortex flipping at 0.1ξ is used as
the reference orbit and trajectories from vortex flipping at 0.08ξ (blue) and 0.12ξ (red) away from
the original vortex position are the close-by orbits used in calculating the corresponding Lyapunov
exponent.
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Figure 6.17: The Lyapunov exponent spectrum of COM trajectories for a system of three vortices
and one antivortex in the co-rotating frame. The trajectory from vortex flipping at 0.1ξ is used as
the reference orbit and trajectories from vortex flipping at 0.08ξ (blue) and 0.12ξ (red) away from
the original vortex position are the close-by orbits used in calculating the corresponding Lyapunov
exponent.
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stronger chaos which is induced by stronger initial intervortex scatterings.

Table 6.1: A comparison between the averaged Lyapunov exponent calculated over the time period
between [45s, 50s] of the COM and COC trajectories of three vortices and one antivortex. The
trajectories originate from vortex flipping at respectively 0.12ξ and 0ξ away from the original vortex
core position, with 0.1ξ used as the reference orbits, inside BECs with three different condensate
radii R.

R
λ 0.12ξ vs 0.1ξ 0ξ vs 0.1ξ

COC COM COC COM
1.01 · 10−4m 0.08 0.08 0.07 0.11
1.07 · 10−4m 0.06 0.08 0.05 0.07
2.68 · 10−4m 0.03 0.05 0.05 0.07

6.2.2 The smaller alignment index (SALI)

In addition to calculating the Lyapunov exponent spectrum, we have also applied SALI to
our data. SALI is a good indicator for testing the random alignment between the deviation
vector of two close-by orbits. According to Skokos et al. (2004), for chaotic orbits, SALI
decreases exponentially to zero. However this decay of the SALI value hasn’t been ob-
served in our results. For the course of time that we looked into, the reason for the absence
of the decay maybe due to a sticky feature which has also been described in Antonopoulos
et al. (2010) with relevance with weak chaos. What we mean by this sticky feature, is a
delay of the decay when the chaos is weak. Due to the limitation of the computing time, it
is not practical to increase the evolution time of the condensate by much. Alternative ways
of comparing SALI are hence needed.

Instead of looking at the absolute value of SALI, we have decided to compare the
SALI spectrum of four vortices with one of them flipped, with the SALI spectrum of four
vortices when one of them re-imprinted, but not flipped. The re-imprinted case is described
in chapter 5 where a vortex is annihilated and re-imprinted to induce motions of vortices in
the co-rotating frame. We also regulate where to re-imprint the vortex in a same way as we
do when flipping from a vortex to an antivortex. For the calculation of SALI, we have used
three sets of trajectories, with vortex flipping or re-imprinting at 0.2ξ, 0.1ξ and 0ξ away
from the original vortex core in a system of four vortices. For more details, see section 5.3.
The SALI spectrum of the COC trajectories of three vortices and one antivortex is shown
in figure 6.18. In this spectrum the SALI value oscillates rapidly in the range 100 − 10−4.
This is a sign of the random alignment of deviation vectors between two nearby orbits. The
SALI spectrum of four equally charged vortices when one of them re-imprinted slightly
off-set from its original position is shown in figure 6.19. The SALI value stays constant
at around 10−1. The lower plot in figure 6.19 shows the value of the two quantities of
which SALI is based on (see section 4.2 for the definition of SALI). From this plot, we
can tell that the two deviation vectors are constantly aligned in the opposite direction. The
opposite alignment is possibly due to the fact that the two near-by orbits (re-imprinting at

60



6.2 Chaotic dynamics of four vortices in a BEC

0.2ξ and 0ξ) are symmetric about the reference orbit (re-imprinting at 0.1ξ) in the position
space. A comparison between figure 6.18 and figure 6.19 gives a good contrast between
the regular behaviour (see discussion in section 5.3) and the chaotic behaviour.

Figure 6.18: The upper plot: the SALI spectrum for the system with three vortices and one antivor-
tex with vortex flipping at 0ξ, 0.1ξ and 0.2ξ from its original position, applied as near-by orbits.
The lower plot: the comparison between the two components of SALI, ‖sum‖ and ‖sub‖, which
are respectively the sum and difference of the two deviation vectors (flipping at 0ξ w.r.t. 0.1ξ and
flipping 0.2ξ w.r.t. 0.1ξ). The smaller of the two components gives the value of SALI.

For systems consisting of more than two vortices, by perturbing the initial conditions
and tuning the perturbation slightly, the vortex trajectories can be changed drastically. We
have also investigated the vortex dynamics of a BEC with five and six vortices with one
of them flipped. In both scenarios, the vortex dynamics is classified to be chaotic with the
same procedures as described in this chapter. We assume we keep the atomic cloud at 0K
and it is dissipation free. The applied perturbation in our system is vortex flipping, namely
reversing the direction of circulation of one of the vortices in the system which is the gen-
erated ground state by employing imaginary time propagation as described in Chapter 3.

The free parameter of this perturbation is where the flipping takes place relative to the
original vortex core position. We have performed an analysis on vortex configurations
composed of up to 6 vortices. Systems containing 3 or more vortices have shown signs
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Figure 6.19: The upper plot: the SALI spectrum for a system with four vortices where one of the
vortices is shifted slightly off-set from its original position at respectively 0ξ, 0.1ξ and 0.2ξ. The
lower plot: the comparison between two components, ‖sum‖ and ‖sub‖, which are respectively the
sum and difference of the two deviation vectors (flipping at 0ξ w.r.t. 0.1ξ and flipping 0.2ξ w.r.t.
0.1ξ). The smaller one of the two components is defined as the value of SALI.
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of chaotic behaviour. We have further confirmed this chaotic behaviour by computing the
Lyapunov exponent spectrum, and also computing the smaller alignment index (SALI).
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Chapter 7
Alternative approaches

All the previous analyses that have been performed in this work are based on the order
parameter (wavefunction) in position space, Ψ(r). They have enabled us to identify, flip
and track the location of vortices excellently. At the same time, we also want to investi-
gate other representations of the BEC, such as the order parameter in phase space and the
the Wigner function, which gives the quasi-probability distribution. We discuss these two
representations and their application to vortex dynamics in this chapter.

7.1 Momentum distribution

Our description of BECs so far has concentrated on the wavefunction in position space,
Ψ(x, y). Since we are exclusively interested in the motion of quantum vortices in a BEC,
which are dictated by their velocity field, we also investigate the wavefunction of the con-
densate in momentum space, Ψ(px, py), obtained by Fourier transforming Ψ(x, y). The
momentum distribution of the BEC, Ψ(px, py) can be measured by taking the time-of-
flight image of a BEC, after turning off the harmonic trap (Abo-Shaeer et al. (2001)Seo
et al. (2014)).

We now compute the momentum distribution of a BEC with a few vortices. By taking
the Fourier transform of the ground state wavefunction of a BEC with 3 singly charged
vortices (with positive phase winding), we show in figure 7.1, the density distribution in
momentum space as well as the corresponding momentum space phase of the wavefunc-
tion, and the real and imaginary components of the wavefunction in momentum space. A
comparison between the momentum distribution and the wavefunction phase indicate that
the locations of the quantum vortices are at the dip in the momentum distribution (dark
blue regions close to the centre in figure 7.1 c) ) and at the singular points in the phase plot
(see figure 7.1 d)).
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Figure 7.1: The wavefunction of the BEC in momentum space,Ψ(px, py), with 3 singly charged
vortices with positive phase winding. Subplot a) shows the real component of Ψ(px, py), b) shows
the imaginary component of Ψ(px, py), c) is the momentum distribution |Ψ(px, py)|2 and d) shows
the corresponding phase θ(px, py) = arctan(=(Ψ(px, py))/<(Ψ(px, py))) overlayed by a contour
plot of |Ψ(px, py)|2.
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For the aim of this work, the wavefunction of a BEC with three vortices where one of
them is flipped (giving two vortices and one antivortex) in momentum space is of greater
interest. The corresponding density and phase in momentum space of the condensate
wavefunction 0.01s after flipping one of the three vortices is shown in figure 7.2.

A comparison between figure 7.1 of a BEC with three vortices and figure 7.2 of a BEC
with two vortices and one antivortex shows that vortices with opposite charges appear to
annihilate each other, while vortices with equal charges remain visible in the momentum
distribution. This annihilation is most likely due to the fact that for a vortex and an antivor-
tex (opposite circulation) that reside at the same position, their corresponding distributions
in momentum space are the opposite of each other. Another observation is that the phase
plot of a BEC with one flipped vortex becomes very noisy. This makes developing a good
algorithm for vortex tracking in momentum space more challenging.

Figure 7.2: The wavefunction of a BEC in momentum space,Ψ(px, py), with 3 singly charged
vortices, 2 with positive phase winding and 1 with negative phase winding, 0.01s after vortex flip-
ping. Supolot a) shows the real component of Ψ(px, py), plot b) shows the imaginary component of
Ψ(px, py), c) is the density distribution in momentum space |Ψ(px, py)|2 and d) is the correspond-
ing phase θ(px, py) = arctan(=(Ψ(px, py))/<(Ψ(px, py))) together with a contour plot of the
|Ψ(px, py)|2.

For the purpose of completeness, the momentum distribution of a BEC with 4 singly
charged vortices (with positive phase winding) is shown in figure 7.3 and the distribution in
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momentum space of a BEC with three vortices (positive phase winding) and one antivortex
(negative phase winding), 0.01s after vortex flipping, is shown in figure 7.4.

Figure 7.3: The wavefunction of a BEC in momentum space,Ψ(px, py), with 4 singly charged
vortices with positive phase winding. The left figure shows the density distribution in mo-
mentum space, |Ψ(px, py)|2. The right figure gives the corresponding phase θ(px, py) =
arctan(=(Ψ(px, py))/<(Ψ(px, py))) superimposed by a contour plot of |Ψ(px, py)|2.

Figure 7.4: The wavefunction of a BEC in momentum space,Ψ(px, py), with 3 singly charged
vortices, 2 with positive phase winding and 1 with negative phase winding 0.01s after vortex flipping.
The left figure is the density distribution in momentum space |Ψ(px, py)|2. The right figure is the
phase plot, aka. θ = arctan(=(Ψ)/<(Ψ)) together with a contour plot of |Ψ|2.

By looking at the momentum distribution, we were hoping to gain information about
the momentum of vortices, as all of the previously discussed quantities in phase space are
built only on the vortex position and corresponding velocity, (calculated by taking the time
derivative of the vortex position). However, we found that the phase of the complex wave-
function in momentum space after flipping one of vortices presented some irregularity
and noise during the time evolution. This makes tracking the vortex positions in momen-
tum space very challenging. In addition, due to the opposite circulation of the antivortex,
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its momentum distribution overlaps with the momentum distribution of a vortex located
symmetrically about the origin (x, y) = (0, 0) of the antivortex. One way of obtaining a
momentum space with better resolution is to expand the 2D computational box we use to
model the BEC, or decrease the spatial resolution of the BEC in position space. Both so-
lutions are worth investigating further. In the next section, we will be looking at a function
that describes quantum states in full phase space, the Wigner function or quasi-probability
distribution.

7.2 Wigner function
The Wigner function was first introduced by Eugene Wigner back in 1932 (Wigner (1932)).
It is generally recognised as the mapping of a density matrix in position space into a prob-
ability distribution in phase space. The Wigner function is often referred to as a quasi-
probability distribution, due to the fact that it can take negative values.

The definition of the Wigner function is the following,

W (x, y, px, py) :=
1

π~

∫ ∞
−∞

Ψ∗(x+ν, y+µ)Ψ(x−ν, y−µ)e2i(pxν+pyµ)/~dνdµ. (7.1)

The Wigner function is real and normalised over all phase space as
∫ ∫

W (r,p)drdp = 1.
The difficulty in calculating the Wigner function numerically, comes from the fact that
for a 2-dimensional BEC, the Wigner function is a 4-dimensional array. Our simulation
resolves the spatial extent with a grid of 1024 × 1024 points. This leads to a numerically
calculated Wigner function of our system of the size 10244, which exceeds the memory
resources we have available.

To overcome this, instead of calculating the Wigner function for the entire system, we
have calculated the Wigner function around the vortices, or more specifically a grid of
11× 11 points symmerically around each vortex. The calculated Wigner function around
the antivortex of a BEC consisting of one antivortex (labelled ‘idx 0’) and three vortices
0.02s after vortex flipping, is shown in figure 7.5. The Wigner functions around the other
three vortices (labelled ‘idx 1’, ‘idx 2’, and ‘idx 3’) are given in the appendix (see appendix
1, figures 1, 2 and 3). In these figures, the Wigner functions are illustrated by fixing two
of the four parameters (x, y, px, py) each time, to their corresponding values at the vortex
core. In other words, x and y are fixed to the location of the antivortex in the condensate
and px and py are fixed to the corresponding momentum. A similar method was used in
Banerji et al. (2016), where the Wigner function of a 2D single on-centre optical vortex is
calculated. In this article, the Wigner function is also illustrated by fixing two parameters
per time instant (which gives in total six possible combinations). Among the six plots of
the Wigner functions, W (x, px) and W (y, py) present the same structure, while W (x, py)
andW (y, px) have the same structure. Hence in our figures, we are only showingW (x, y),
W (x, px), W (y, px) and W (px, py).
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Figure 7.5: The calculated Wigner function,W (x, y, px, py) around the antivortex labelled by index
0, ‘idx 0’, in our simulated BEC, consisting of three vortices and one antivortex. The four plots of
the absolute Wigner function |W | are obtained by fixing y and py (upper left plot), x and y (upper
right plot), px and py (lower left plot) and x and py (lower right plot) at vortex core.
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In order to understand what the Wigner function of a single vortex in a BEC looks
like, we have artificially constructed a central vortex in a 2D BEC with the same radius
and a resolution of 30 × 30 grid points over a 2D box of the same size as our numerical
simulations. The exact expression that we have used for the condensate wavefunction is

ψ(x, y) =

ñ
√

1− x2+y2

R2 ·
(

1− 1

1+ x2+y2

ξ2

)
· exp

(
i arctan( yx )

)
, if x2 + y2 < R2,

0, if x2 + y2 ≥ R2,

here R = 1.71579× 10−4m is the radius of the condensate, which is equal to the conden-
sate radius from our simulation, and ξ = 5.11× 10−6m is equal to the numerical healing
length of the simulated BEC. ñ is a renormalisation constant, ñ = (

∫
dxdyψ)−1. The

corresponding density and phase plot of this constructed condensate is shown in figure
7.6. Using this constructed condensate wavefunction, the Wigner function over the entire
condensate has been calculated, and is shown in figure 7.7. Here x, y, px, and py are
taken to be zero when being fixed. W (x, y) = W (x, y, px = 0, py = 0), shown in (a) in
figure 7.7, has a dip at the centre ((x, y) = (0, 0)); W (x, px) = W (x, y = 0, px, py = 0)
in (b) and W (x, py) = W (x, y = 0, px = 0, py) in (c) have the same structure; and
W (px, py) = W (x = 0, y = 0, px, py) in (d) is equal to zero over the entire condensate.
It seems that when x = 0, y = 0, the Wigner function is zero, which we can see from all
the four plots in figure 7.7. This is a good indication of the zero density at the centre of the
condensate, indicating the existence of the vortex. However this dip is not observed in the
corresponding W (x, y) around the antivortex from our numerical simulation in figure 7.5.
In the future, when we can sample over a greater region around vortices, this dip might
be observed. The plot of W (px, py) (with x, px fixed) in figure 7.5 is mostly zero except
a few peaks scattered around in the calculated region. We are not able to conclude at this
stage whether this is physical and indicates the vortex momentum, or a numerical error.
More investigations need to be done to understand this in future work.
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Figure 7.6: The density (left) and phase plot (right) of the constructed condensate, containing one
central vortex with counterclockwise circulation.
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Figure 7.7: The Wigner function of a constructed condensate containing a central vortex with coun-
terclockwise circulation. (a) plots the Wigner function, W (x, y, px = 0, py = 0); (b) plots Wigner
function, W (x, y = 0, px, py = 0); (c) plots Wigner function, W (x, y = 0, px = 0, py); (b) plots
Wigner function, W (x = 0, y = 0, px, py).
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Chapter 8
Conclusions

The aim of this work has been to study quantum chaos in a BEC which consists of a few
vortices. In this thesis, we have demonstrated that chaotic dynamics can be induced for
few vortex systems, by starting from a vortex lattice and reversing the direction of circula-
tion of a single vortex. The chaotic dynamics were confirmed by two chaos indicators.

All our analyses are based on a numerically simulated 2D rotating BEC, trapped in-
side a harmonic potential. The main simulation is implemented using GPU computing
(O’Riordan and Busch (2016)), which has proven to have excellent performance in embar-
rassingly parallel problems. The phase imprinting technique has been applied to create,
annihilate and flip vortices. This method is highly experimentally relevant (Dobrek et al.
(1999), Möttönen et al. (2003), Brachmann et al. (2011)).

During this work, by using the phase imprinting technique, we have applied two types
of perturbations to the generated ground state of a BEC with a few vortices. One per-
turbation applied is to annihilate one of the pre-existing vortices in the system and create
a new vortex (with the same circulation) a small distance away from the original vortex
site. This perturbation induces the vortices to rotate relative to the co-rotating frame, while
preserving the vortex lattice structure. The direction of rotation depends on the exact lo-
cation the vortex is re-imprinted. The other type of perturbation applied is vortex flipping,
namely annihilating the original vortex and creating an antivortex (with opposite circula-
tion) within the healing length of the original vortex site. We have applied vortex flipping
on rotating ground state configurations of condensates with up to six vortices. It has been
confirmed, with the help of two chaos indicators, that for systems with a vortex num-
ber greater than three, chaotic dynamics are successfully created by vortex flipping. The
two chaos indicators applied are the Lyapunov exponent and the smaller alignment index
(SALI). In particular, the Lyapunov exponent gives a clear sign of chaotic behaviour, as it
is found to be positive.

In addition to tracking individual vortex dynamics and computing the Lyapunov ex-
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ponent and SALI, alternative approaches have also been applied to gain more information
about the vortex dynamics. In an attempt to determine the momentum of quantum vortices,
we calculated the momentum distribution of the BEC. However, due to the low resolution
in momentum space, it is difficult to follow vortex trajectories in momentum space. A
comprise between the resolution of the wavefunction in position space and the resolution
in momentum space has to be made. How this should be performed needs to be resolved
in the future. Additionally, the Wigner function, which gives a description of the quantum
states in phase space has been calculated. However, due to the complexity of the numeri-
cal calculation, further investigation is needed in order to fully utilise the properties of the
Wigner function for this system.

One of the initial motivations behind this work is to gain a more solid understanding
of quantum chaos and eventually draw a connection between quantum chaos and quantum
turbulence. The next step with this project is to potentially study a greater number of
vortices and apply vortex flipping on more than one vortex. With this procedure, the
dynamics may transit into quantum turbulence.
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Appendix I: The Wigner function

In this appendix we provide three additional figures illustrating the Wigner function cal-
culated around three vortices in a rotating BEC which contains three vortices and one
anti-vortex after phase imprinting (see figures 1, 2 and 3). The anti-vortex is obtained by
flipping the direction of circulation of a vortex at its original location in the condensate.
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Figure 1: The calculated Wigner function, W (x, y, px, py), around the vortex labelled index 1, ‘idx
1’, in a BEC with 3 vortices and 1 antivortex. The four plots of the absolute Wigner function |W |
are obtained by fixing y and py (upper left plot), x and y (upper right plot), px and py (lower left
plot) and x and py (lower right plot) to their values at the vortex core.
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Figure 2: The calculated Wigner function, W (x, y, px, py), around the vortex labelled by index 2,
‘idx 2’, in our simulated BEC with 3 vortices and 1 antivortex. The four plots of the absolute Wigner
function |W | are obtained by fixing y and py (upper left plot), x and y (upper right plot), px and py
(lower left plot) and x and py (lower right plot) at the vortex core.
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Figure 3: The calculated Wigner function, W (x, y, px, py), around the vortex labelled as index 3,
‘idx 3’, in our simulated BEC consisting of 3 vortices and 1 antivortex. The four plots of the absolute
Wigner function |W | are obtained by fixing y and py (uppper left plot), x and y (upper right plot),
px and py (lower left plot) and x and py (lower right plot) at the vortex core.
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