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Abstract
Current materials appearance is mainly tool dependent and

requires time, labour and computational cost to deliver consistent
visual result. Within the industry, the development of a project
is often based on a virtual model, which is usually developed by
means of a collaboration among several departments, which ex-
change data. Unfortunately, a virtual material in most cases does
not appear the same as the original once imported in a differ-
ent renderer due to different algorithms and settings. The aim of
this research is to provide artists with a general solution, appli-
cable regardless the file format and the software used, thus al-
lowing them to uniform the output of the renderer they use with
a reference application, arbitrarily selected within an industry,
to which all the renderings obtained with other software will be
made visually uniform. We propose to characterize the appear-
ance of several classes of materials rendered using the arbitrary
reference software by extracting relevant visual characteristics.
By repeating the same process for any other renderer we are able
to derive ad-hoc mapping functions between the two renderers.
Our approach allows us to hallucinate the appearance of a scene,
depicting mainly the selected classes of materials, under the ref-
erence software.

Introduction
Current materials appearance is mainly tool dependent and

requires time, labour and computational cost to deliver consis-
tent visual result. Visual appearance of a material is important
in a range of different areas, including Visual Special effects, In-
terior/Exterior Modelling, Architectural Modelling, Cultural Her-
itage, Computer Games and Automotive Design. In many indus-
tries, final decisions about products are often based on a virtual
prototype, which drives the demand for more realistic and tool
independent virtual material.

Current material representations are dependent on the soft-
ware where virtual material is designed, optimised and rendered.
A virtual material in most cases does not appear the same as the
original once imported in a different renderer due to different al-
gorithms and settings. In fact, each renderer has a specific set of
settings and limitations to interpret the properties of a given ma-
terial data. Hence, a standard material model should be consistent
and tool independent, to allow coherent material representation.

Although a broad range of solutions for material represen-
tation exists, there is still no straightforward and clear path to
follow [1]. The lack of a standardized material representation

(a) Rendered Image (3ds Max)

(b) Hallucinated Image (Maya)

Figure 1. An input-output pair from our tool. From the input image (on

the top, rendered using 3D Max) we estimated the appearance of the same

scene rendered using Autodesk Maya (on the bottom). The output image

does not display any visual artifact and looks plausible.

method has prevented the use of measured data, often stored in
some format not directly usable in 3D packages (e.g. raw un-
compressed data organized in 4-D tables [2, 3]) and needs to be
encoded and compressed in such way that it is readable from a
specific renderer, leaving the choice of the file format to the end
user of the data.

A recent development in this area provides a new file for-
mats for BRDF representation, proposed by NVIDIA, is the Ma-
terial Definition Language (MDL) [4]. MDL is a procedural pro-
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gramming language that allows to define properties of physically
plausible material models and integrate them into any supported
application. However, it requires some programming skills which
may not be part of a typical 3D artist curriculum and it is not
yet widespread among them. Furthermore, previously rendered
scenes cannot benefit from it in order to achieve consistency.

Based on these observations, the aim of this research is to
provide artists with a general solution, applicable regardless the
file format and the software used, thus allowing them to uni-
form the output of the renderer they use with a “golden standard”
application, arbitrarily selected. In this way, within an indus-
try it would be possible to select a reference “golden standard”,
to which all the renderings obtained with other software will be
made visually consistent though our method (see Figure 1 for an
example).

Our contributions include the following:

• A dataset of reference scenes rendered with different soft-
ware, carefully selecting the most closely matching settings.
Each scene depicts spheres with known materials applied on
them, used to characterize the output of each selected ren-
derer with meaningful statistics, per color channel.

• An algorithm aimed to standardize the material appearance
which makes use the aforementioned statistics to halluci-
nate the look of the relevant materials in the scene, provid-
ing the user with a post-processed rendering which matches
the characteristics of the golden standard renderer, on a per
material basis, in a transparent way. Our approach takes in
input a rendered image, a label indicating the renderer used
to generate the input image and a label specifying the ren-
derer to match in output, and a normal map of the scene.

In this paper we sketch our system and we provide some pre-
liminary results, showing the potential of the proposed approach.

Related Work
The Bidirectional Reflectance Distribution Function [5]

(BRDF) is a radiometric function which describes how incident
energy is redirected in all directions across a hemisphere above
the surface. The BRDF is a simplified reflectance representa-
tion for opaque surfaces: it assumes that light entering a ma-
terial leaves the material at the same position, whereas more
complex reflectance functions can describe light transport be-
tween any two incident rays on a surface, e.g. the Bidirectional
Scattering-Surface Reflectance-Distribution Function (BSSRDF).
Given the incident direction vi = (θi,φi) and the outgoing direc-
tion vo = (θo,φo) in spherical coordinates, the BRDF fr, mea-
sured in inverse steradian [1/sr], is defined as the ratio of outgoing
radiance to incoming irradiance:

fr (vi,vr) =
dLr (vr)

Li (vi)cosθidωi
(1)

where Li is incident radiance and Lr is the reflected radiance. A
BRDF should ensure some basic physical properties, namely non-
negativity, reciprocity and energy conservation.

Zubiaga et al. [6] focused on how the properties of BRDFs
influence the rendered picture, by working locally in Fourier
space and analysing how BRDF moments up to order 2 induce
colouring, warping and blurring of reflected radiance. In their

work a subset of unimodal materials in the MERL database [2]
has been used, limiting the analysis to 2D slices of the selected
BRDFs, assumed to act as filters on the incident lighting, whose
parameters need to be estimated. Although a BRDF is a 4D func-
tion, the choice of 2D slices of the BRDF is justified by the con-
sideration that when the radiance reaching the eye from a surface
point is computed, the view direction is kept fixed.

The idea that a material acts as a filter in the image has been
successfully exploited by Zubiaga et al.[7] in the context of Mat-
Caps, images of spheres in orthographic projection in which light-
ing and material properties are baked in; MatCaps have proved to
be a tool to design plausible material appearance included in many
physically-based renderers, although they do not allow easy ma-
nipulation of the material. In [7] a MatCap is decomposed into
high and low frequency components, unwarped into a spherical
representation thanks to the filter parameters interactively esti-
mated. The described representation allows dynamic appearance
manipulation of lighting and material, thus overcoming the typi-
cal limitation of MatCaps, able to describe only static appearance.
Different MatCaps can be used on different object parts by giving
in input a map of the materials IDs.

Khan et. al. [8] leveraged some limitations of the human vi-
sion, which proves to be tolerant to some physical inaccuracies, in
order to develop an image-based material editing tool. It requires
in input a high-dynamic range photograph of an object, together
with an alpha matte to separate it from the background, to pro-
duce in output a new photograph of the same object, in which its
material is replaced with an entirely new one. A depth map is
estimated from the pixels belonging to the object itself though an
approximated shape-from-shading approach; the gradient of the
depth map are then used to compute a surface normal n for each
pixel. The object is removed from the image thanks to the alpha
matte, and the missing pixels are inpainted by preserving the sta-
tistical properties of the remainder of the environment. A HDR
environment map is then created by cutting a circle from the mid-
dle of the image, then placed in the image plane and extruded to
become a hemispherical environment map. The estimated infor-
mation are then used for a range of transformations ranging from
applying a texture to the object to the application of an arbitrary
BRDF, or even the simulation of transparency and translucency.

Both [7, 8] require either a map with material IDs or a fore-
ground/background map, which could be challenging to create
manually for a complex scene. Luckily, computer vision tech-
niques have recently become available to help in this task. In fact,
in the last few years, several dataset of texture images, including
man-made materials, have been released. The Material in Context
Database (MINC) is large dataset containg about 3 milions mate-
rial samples, used to train a convolutional neural network (CNN)
and a conditional random field (CRF), combined together to rec-
ognize and segment materials in the wild [9]. In particular, a CNN
is trained in order to produce a single prediction for a given input
patch. The trained CNN is used as a sliding window to predict ma-
terial across the image, at different scales. The prediction across
the scales are then averaged and given in input to the CRF, in
which all pairs of variables are directly connected by pairwise po-
tentials; the fully connected pairwise reasoning outputs material
predictions for each pixel.
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Problem Definition
Material modelling generally involves a great deal of man-

ual effort, ranging from a completely manual creation of a ma-
terial to a fully automated acquired material which often can-
not be used directly in rendering. The broad range of material
models and complexity of the parameters requires from an artist
an understanding of the underlying representation and material’s
micro/macrostructure; moreover current photo-realistic rendering
systems use BRDFs to varying levels of accuracy, leading to a
very different appearance in the final rendering.

In this paper we adopt a conceptually similar approach as
in [6, 7], however we make a different hypothesis: we consider a
rendering system to act as a set of filters, on a per material basis,
on the rendered image. Hence, if the same scene is rendered using
two different tools using the same settings, the visual differences
can be attributed to the aforementioned filters, which we aim to
estimate. Given any two renderers Ra and Rb, set of materials Mi,
i = 1, . . . ,k, the knowledge of such filters fa,Mi and fb,Mi allows
to remove the effect of Ra from an image Ia, by computing Îa =
fa,Mi

−1(Ia), i = 1, . . . ,k; the subsequent application of fb,Mi on Îa
provides an image which visually mimics the typical output of Rb.

In the following Sections we describe the main components
and steps of our approach, summarized in the following bullet
points:

• Characterization of the renderer R in terms of the parame-
ters of the associated filter fR. The lighting and the geome-
try used for the characterization are known. This process is
performed only once for each renderer.

• Lighting estimation on a given rendered image which needs
to be made visually consistent with a different renderer;

• Material segmentation on the input image, in order to apply
a per material correction;

• Rendering of a set of spheres, one per each material in the
scene, using the statistics of the selected input and output
renderers and the estimated lighting;

• Appearance transfer at a pixel level. The surface normal
np at pixel p and its material ID mp are used as entries for
lookup table approach on the rendered sphere with the same
ID.

Statistical Analysis of Renderers
In previous work [7] it has been noted that the image I of a

sphere of a material M, in orthographic projection, rendered un-
der some environment lighting L, can be written as a 2D spheri-
cal convolution under the radial symmetry hypothesis: I = M ∗L.
Thanks to the radial symmetry it is possible to restrict the analy-
sis to a 1D slice of M; in particular, if an angular parametrization
(θ ,φ) based on screen-space normals is used, the analysis can be
limited to the θ direction. In this paper we want to understand
how a specific rendering software influences the final image and
we make the hypothesis that the image IR, obtained with the ren-
dering tool R, can be written as:

IR = M ∗L∗ fR. (2)

where fR is the set of filters (one per material) introduced by R.
By keeping the material properties as coherent as possible

across renderers, and thanks to the known lighting, the statistic
proposed in [6] to characterize M can be readily adapted to define

the properties of R instead, on which we focus. In particular, we
derive the energy Γ, mean µ and variance ρ for each point of the
sphere, as described in [6, 7]:

Γ(IR) = Γ(Lφ )α(θ), (3)

µ(IR) = µ(Lφ )−λ (θ), (4)

σ(IR) = σ(Lφ )+ψ(θ), (5)

where Lφ is the lighting L integrated over the φ direction, Lφ and
IR are normalized by the energy Γ(IR); the parameters of the filter
fR are given by (α,λ ,ψ), which are related to important features
like coloring, warping and blurring of the reflected radiance. The
statistical analysis is performed on both the diffuse and specular
component separately, which on our dataset (described in Section
are both known.

Training Set
In order to derive the filters characteristics, we built a dataset

tailored for the automotive industry as a case study, which con-
sists of a Cornell box containing spheres. Each spheres has a
material assigned to it out of the following six material classes:
car paint, plastic, wood, glass, fabric and leather, the most com-
mon ones in a car interior. All walls of the Cornell box are set, in
turn, to the same primary RGB color; additionally, a setting with
uniformly white walls is included. Inside each of these boxes is
in turn placed a spheres with a different material sample. Hence,
in total we have 6 classes, 5 samples per each class and 4 colored
walls, with a total of 120 scenes, each of which rendered with all
the selected renderers, chosen among the most used ones: Au-
todex 3Ds Max, Autodex Maya and Blender (see Figure 2, Fig-
ure 3 and Figure 4 for same examples and visual comparisons).
Our dataset allows us to characterize, for each class of materi-
als, the influence of a renderer on the visual appearance, together
in addition to simple information such as global and local his-
tograms per color channel.

Textured materials with a rough surface, like the fabric sam-
ple in Figure 4, display mesoscopic effects like inter-reflections,
self-occlusions and self-masking, hence a Bidirectional Texture
Function (BTF) should be used to describe their properties, thus
preventing a direct application of the framework described in [6].
However, as observed by Dana et. al. [10] the BRDF is able to de-
scribe material variation of a textured material at a coarse scale,
hence averaging through the sample leads to its BRDF.

Image Segmentation and Materials Map
The material categories considered in this study are sufficient

to faithfully describe most of the appearance of a car model, and
at the same time they are included in the MINC dataset [8], thus
enabling a straightforward use of the GoogLeNet [11] network
for the image segmentation into material classes, useful to obtain
a map with material IDs from an unlabelled input rendering. We
augmented the MINC dataset with 100 images including car paint
and trained the segmentation network. Once the material labels
are know, we can remove the relevant material pixels from the
image to estimate the lighting and select the correct statistics to
use.
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(a)

(b)

(c)

(d)

Figure 2. Spherical samples for the category “car paint”, inside the colored

boxes, rendered with Autodesk Maya

Incident Lighting Estimation
In order to estimated the incident lighting, we follow the ap-

proach described in [8]. All the background pixels together pro-
vide direct information for a subset of incident direction. The
pixel belonging to the object and the area outside the image pre-
vent a complete estimation of the incident lighting, which hence

(a) Plastic

(b) Fabric

(c) Leather

Figure 3. From top to bottom: 5 samples in the category “plastic”(a), “fab-

ric”(b) and “leather”(c), placed inside the white box and rendered with Au-

todesk Maya

(a) Blender (b) Maya (c) 3ds Max

Figure 4. From left to right: fabric samples inside the white box rendered

respectively with Blender, Autodesk Maya, 3ds Max. All the renderings have

been linearly rescaled in order to have the same average value per each

color channel.

needs to be approximated. The object is removed from the im-
age and the hole left by the removal process is filled by a sim-
ple inpainting technique, which copies pixels both from the left
and from the right parts of the hole, using blending weights de-
termined by the distance from the original location in the back-
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ground to the new position in the hole [8]. From the inpainted
image, placed on the xy plane, the biggest possible circle is cut
from its central area (i.e. the center of the image and the cen-
ter of the circle coincide and the diameter of the circle is equal
to the smallest dimension of the image) and it is mapped onto a
hemisphere, extruded along the z-direction; the conventional 3D
sphere used for image based lighting is obtained by mirroring the
hemisphere along the z-axis.

Appearance transfer at pixel level
At this stage, the only missing information is the diffuse and

specular components of the materials in the input rendered im-
age. In our work we do not focus on diffuse/specular separation
but rather provide the user with a tool to select the diffuse color
for each material, corresponding to α(0) in 3, subtracted from
the corresponding pixels and hence providing an approximation
of the specular component. The knowledge, for each pixel p, of
the material IDs and surface normals np, allows us to perform a
mapping (np,x,np,x,np,x)→ (θ ,φ) on the sphere and generate a
corrected value by applying Equations 3, 4 and 5 for the refer-
ence render, accounting for the estimated incident lighting as in
Equation 2. The new pixel value is then applied to the input ren-
dering image, thus emulating the appearance of a typical output
of the reference renderer.

(a) Input Image (b) Histogram Matching

Figure 5. Input image (a) and the corresponding output (b) applying a naive

histogram matching to the reference image (3(c)).

Experiments and Results
Please note that our method does not require to render the

scene with the reference software, which is only used to derive
the dataset for characterization and to obtain the ground truth in
our experiments. Even with the additional key information given
by the actual rendering with the reference software, a naive so-
lution, such as a simple global (or even local) histogram match-
ing, clearly cannot deliver accurate material appearance and in-
troduces noticeable artifacts (see Figure 5).

Our method has been tested using typical scenes from the au-
tomotive industry (see Figure 1 for an example of an input-output
pair, in which the histogram of the background has been matched
to the reference data derived from the training set). preliminary re-
sults show the effectiveness of the proposed method. In Figure 6
a sketch car interior rendering 6(a) has been processed and the
hallucinated output 6(d) can be visually compared to the ground
truth obtained from the reference render 6(b); in the same Figure
it is possible to see the output obtained by inverting the roles of
the renderers 6(c). In Figure 7 a different car scene and model is
reported.

The proposed solution can be readily extended to other ren-

derers and the reference software can be seamlessly replaced by a
different one.

Although our approach provides promising preliminary re-
sults, the employed approximations necessarily lead to some lim-
itations, which we aim to address in future work. A first limitation
is clearly due to the set of materials considered in this study, tai-
lored for the automotive industry. A more general solution would
require a broader set of materials, which could potentially lead to
a vast amount of raw data to analyse and store.

The inclusion of other classes of materials could however
pose additional issues related to the material segmentation, in par-
ticular in case of materials not included in the MINC dataset: in
these cases, it is important to keep the dataset well balanced not
to affect the segmentation performance, thus requiring thousands
of samples to label; we partly faced this issue when including the
“car paint” class, which can be misclassified (e.g. the assigned
material label could be “metal”, more represented in the dataset).

Another source of inaccuracy is due to the simple estimation
of the environment lighting, which also poses the additional con-
straint of having a background area considerably bigger than the
object to inpaint: such a limitation is particularly relevant in case
of close up scenes.

Similarly to [7], our approach cannot mimic inter-reflections
or shadowing effects, thus leading to noticeable errors in large
shadow areas (see Figure 6). This could be mitigated by using an
artist-created occlusion map. Currently our implementation re-
quires a normal map in input, which can prevent the application
of our technique in case of already existing rendered image for
which it is only known the source renderer. In such situations a
shape from shading approach could allow to derive a depth map
and from this an approximated normal map [8], although it could
be particularly challenging in case of metals and glass, a particu-
larly common situation in the automotive industry.

Finally, each new release of a rendering tool might require a
new characterization, although each new candidate release gener-
ally involve the use of benchmarks to guarantee visual consistency
with previous versions. A different scenario would simply require
a renderer/release characterization, which would simply increase
the size of the dataset and of the database of parameters to store.

Conclusions
Up to now there are only few methods and tools that allows

to edit BRDFs, typically in an interactive way on 3D scenes; a re-
cent survey is reported in [1]. We do not editing BRDF materials
but rather hallucinate their appearance in a post-rendering step,
making them visually consistent with a reference software. De-
spite of the current limitation, we believe that the proposed work
can be a significant step towards a tool independent, consistent
material appearance across different renderers, in an intuitive and
transparent way for artists.
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(a) Blender Output (b) 3ds Max Output

(c) 3ds Max to Blender hallucina-
tion

(d) Blender to 3ds Max hallucina-
tion

Figure 6. Car interior scene from the design stage. In (a) the scene is

rendered with Blender, in (b) with 3ds Max; In (c) the image (b) has been

processed in order to match (a). In (d) the image (a) has been processed in

order to match (b).
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