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Abstract

The paper presents an observer design for a class of hyperbolic PDE-ODE cascade systems with a boundary measurement.
The cascade systems consist of coupled PDEs, featuring one rightward and one leftward convecting first-order transport PDEs,
and a set of ODEs, which enter the PDEs through the left boundary of the systems. The design, which is based on the Volterra
integral transformation, relies only on a single sensor at the right boundary of the system. The observer consists of a copy
of the plant plus output injection terms both in the PDEs and the ODEs. The observer is constructed in a collocated setup,
which means both sensing and actuation are located at the same boundary. The observer gains are computed analytically by
solving Goursat-type PDEs in terms of Bessel function of the first kind. The observer design is tested against a field scale
flow-loop test experiment in Stavanger by Statoil Oil Company. The results show that the observer converges to the actual
values and that the design can be used as a process monitoring tool in oil well drilling.
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1 Introduction

1.1 Problem Statement

We consider a boundary observer design for a class of
semilinear hyperbolic PDE-ODE cascade systems which
can be transformed into the following form:

wt(x, t) = Σ(x)wx(x, t) + Ω(x)w(x, t) + f(w(x, t), x)(1)

w1(0, t) = qw2(0, t) + CX(t) (2)

w2(1, t) =U(t) (3)

Ẋ(t) = AX(t) (4)

where w = [w1 w2]ᵀ and w : [0, 1]× [0,∞)→ R2.
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The matrices Σ(x) and Ω(x) are given by:

Σ(x) =

(
−ε1(x) 0

0 ε2(x)

)
, Ω(x) =

(
0 ω1(x)

ω2(x) 0

)
(5)

where ε1(x), ε2(x) > 0. The subscripts x and t denote
partial derivatives with respect to x and t, respectively.
The constant q 6= 0 and U(t) is the control input. X(t)
is an n−dimensional vector, A is an n × n matrix and
C is an 1× n matrix. The function f : R2 × [0, 1]→ R2

constitutes nonlinear terms. The objective of this paper
is to design an observer for the cascade system (1)-(4)
with only one boundary measurement at x = 1, i.e.,

y(t) = w1(1, t). (6)

This state observer problem was solved for the linear
case without disturbance (f = 0, A = 0, and C = 0)
in [1] and for the linear case with disturbance in [2]. In
[3], the state feedback stabilization problem was solved
for the quasilinear systems (without disturbance). The
controllability of the quasilinear systems with nonlinear
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source have been studied in, e.g., [4].

The following assumptions are used in this paper:
Assumption 1 The first derivatives of the entries in Σ
are continuously differentiable, i.e., ε1, ε2 ∈ C1([0, 1]),
while the entries in Ω are continuous, i.e., ω1, ω2 ∈
C([0, 1]).
Assumption 2 The function f is twice continuously dif-
ferentiable with respect to w. Furthermore, f(0, x) = 0
and df

dx (0, x) = 0.
Assumption 3 The pair (A,C) is observable.
Assumption 4 The control law U is continuous, i.e.,
U ∈ C([0,∞)).

1.2 Motivation and Previous Works

Physical systems which can be modeled and transformed
into the first-order hyperbolic PDE-ODE cascade sys-
tems (1)-(4) have attracted considerable attention in re-
search communities because these systems can be used
to model various processes such as road traffic [5], gas
flow pipeline [6], and flow of fluids in transmission lines
[7,8] and in open channels [9]. A typical problem is to
estimate the states and the parameters of the systems
using a limited number of measurements. In many cases,
the only reliable measurement is located at the bound-
ary. These estimated states and parameters are in turn
used in a feedback control algorithm that automates the
control input to maintain a desired state trajectory. Ob-
server design for PDE-ODE cascade systems has been
studied for many types of coupling such as an ODE and
a diffusion PDE [10–12], an ODE and a hyperbolic PDE
[13–15], and an ODE and a wave PDE [16,17].

The results in this paper employ the backstepping
method, and in particular build on the results of
[1,3,2]. The backstepping method has been successfully
used as control and state estimation designs for many
PDEs such as the parabolic-type equation [18,19], the
Ginzburg-Landau equation [20], and the Schrodinger
equation [21]. The idea is to use a Volterra integral
transformation to transform the original system into a
target system [22]. The stability of the target system is
usually known beforehand. For some cases, the gains for
both the controller and the observer, can be computed
analytically in terms of the Bessel function [23] or the
Marcum Q-function [24].

The applicability of the results obtained in the present
paper are demonstrated on a problem from the oil and
gas industry in Section 4. Backstepping has found sev-
eral applications in oil and gas, including the gas coning
problem [25,26], flow in porous media [27], slugging con-
trol [28], the lost circulation and kick problem [29–31],
and the heave problem [32,33].

1.3 Contribution of this Paper

The contribution of this paper is an observer design for
a class of hyperbolic PDE-ODE cascade systems with
a boundary measurement. We employ a composition of
two transformations, one Volterra-based backstepping
transformation of the PDE observer state, and one trans-
formation of the transformed PDE observer state with a
spatially scaled shift based on the ODE observer state.
The observer consists of the plant plus output injection
terms, where the gains are found explicitly in terms of
Bessel functions of the first kind. The stability of the
target system is studied using a Lyapunov functional.
Two cases are considered, linear (f = 0) and semilinear
(f 6= 0). In the linear case we show that the observer
error system is globally exponentially stable in the L2-
norm, while in the semilinear case we show the observer
error system is locally exponentially stable in the H2-
norm. The observer design is tested against a field scale
flow-loop test experiment in Stavanger by Statoil Oil
Company.

1.4 Organization of the Paper

The paper is organized as follows. Section 2 contains pre-
liminary definitions and notations used throughout the
paper. The observer designs for both linear and semilin-
ear cases are presented in Section 3. In Section 4, a real
case application of oil well drilling where we estimate
the flow, the pressure, and the downhole rate under lost
circulation is presented. Finally, Section 5 contains con-
clusions and recommendations.

2 Preliminary Definitions

For a vector γ(x) ∈ R2 with components γ1(x) and
γ2(x), we denote |γ(x)| = |γ1(x)|+|γ2(x)|, and we define

‖γ‖∞ = supx∈[0,1] |γ(x)|, ‖γ‖L1 =
∫ 1

0
|γ(ξ)|dξ, and

‖γ‖L2 =
(∫ 1

0
γ(ξ)ᵀγ(ξ) dξ

)1/2
. Furthermore, we define

the following norms:

‖γ‖H1 =

(
‖γ‖2L2 +

∫ 1

0

γx(ξ)ᵀγx(ξ) dξ

)1/2

(7)

‖γ‖H2 =

(
‖γ‖2H1 +

∫ 1

0

γxx(ξ)ᵀγxx(ξ) dξ

)1/2

. (8)

For a 2× 2 matrix D, we denote:

|D| = max
{
|Dv|; v ∈ R2, |v| = 1

}
. (9)

For the kernel matrices K, we denote:

‖K‖∞ = sup
(x,ξ)∈T

|K(x, ξ)|. (10)
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where T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}. For γ ∈ H2([0, 1])
and positive constants c1, c2, c3, c4, c5, and c6, recall the
following well-known inequalities [3]:

‖γ‖L1 ≤ c1‖γ‖L2 ≤ c2‖γ‖∞ (11)

‖γ‖∞ ≤ c3 (‖γ‖L2 + ‖γx‖L2) ≤ c4‖γ‖H1 (12)

‖γx‖∞ ≤ c5 (‖γx‖L2 + ‖γxx‖L2) ≤ c6‖γ‖H2 . (13)

3 Observer Design

We consider first the linear case, f = 0. The semilinear
design is found by utilizing the result from the linear
design. We assume that we can measure w1(x, t) at x =
1, and design an observer to estimate both w and X.

3.1 Linear System

We design the collocated observer as a copy of the plant
plus output injection, that is

ŵt = Σ(x)ŵx + Ω(x)ŵ + p(x) (w1(1, t)− ŵ1(1, t))

(14)

ŵ1(0, t) = qŵ2(0, t) + CX̂(t) (15)

ŵ2(1, t) =U(t) (16)
˙̂
X(t) = AX̂(t) + eAdL (w1(1, t)− ŵ1(1, t)) . (17)

where d =
∫ 1

0
dχ
ε1(χ)

. Defining error functions as w̃ =

w − ŵ and X̃ = X− X̂, the error dynamics is given by

w̃t = Σ(x)w̃x + Ω(x)w̃ − p(x)w̃1(1, t) (18)

w̃1(0, t) = qw̃2(0, t) + CX̃(t) (19)

w̃2(1, t) = 0 (20)
˙̃X(t) = AX̃(t)− eAdLw̃1(1, t) (21)

where the observer gains p(x) = [p1(x) p2(x)]ᵀ and
L will be determined later. Define a new variable γ̃ =
[γ̃1 γ̃2]ᵀ using the following transformation:

w̃(x, t) = γ̃(x, t)−
∫ 1

x

P(x, ξ)γ̃(ξ, t) dξ (22)

where

P(x, ξ) =

(
Puu(x, ξ) Puv(x, ξ)

P vu(x, ξ) P vv(x, ξ)

)
(23)

is the solution to the first-order hyperbolic PDE

ε1(x)Puux + ε1(ξ)Puuξ =−ε′1(ξ)Puu + ω1(x)P vu (24)

ε1(x)Puvx − ε2(ξ)Puvξ = ε′2(ξ)Puv + ω1(x)P vv (25)

ε2(x)P vux − ε1(ξ)P vuξ = ε′1(ξ)P vu − ω2(x)Puu (26)

ε2(x)P vvx + ε2(ξ)P vvξ =−ε′2(ξ)P vv − ω2(x)Puv (27)

with boundary conditions

Puu(0, ξ) = qP vu(0, ξ) (28)

Puv(x, x) =
ω1(x)

ε1(x) + ε2(x)
(29)

P vu(x, x) =− ω2(x)

ε1(x) + ε2(x)
(30)

P vv(0, ξ) =
1

q
Puv(0, ξ) (31)

on the triangular domain T . It was shown in [1] that
there is a unique solution of the kernel system (24)-(31)
which is in C(T ) and that (22) has an inverse. Remark
that, due to (31), the method presented in this paper is
not valid for q = 0. The method can be adapted to ac-
commodate zero values of q by setting a slightly different
target system (see section 3.5 in [3]).

The transformation (22) is used to transform (18)-(21)
into a new cascade system (Lemma 1) where the finite
time stability of the new cascade system is investigated
using Lyapunov functionals (Lemma 2).
Lemma 1 Let the elements of the observer gain p(x) in
(18) be given by

p1(x) = CeAh(x)L− ε1(1)Puu(x, 1)

−
∫ 1

x

Puu(x, ξ)CeAh(ξ)L dξ (32)

p2(x) =−ε1(1)P vu(x, 1)

−
∫ 1

x

P vu(x, ξ)CeAh(ξ)L dξ (33)

where Puu and P vu are the solutions to (24), (26), (28),
and (30), and

h(x) =

∫ 1

x

dχ

ε1(χ)
. (34)

Then, the transformation (22) maps the system

γ̃t = Σ(x)γ̃x + p̄(x)γ̃1(1, t) (35)

γ̃1(0, t) = qγ̃2(0, t) + CX̃(t) (36)

γ̃2(1, t) = 0 (37)
˙̃X(t) = AX̃(t)− eAdLγ̃1(1, t) (38)

into (18)-(21) with p̄(x) = [−CeAh(x)L 0]ᵀ.
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Proof From (22) we have:

w̃1t(x, t) = γ̃1t(x, t)−
∫ 1

x

Puu(x, ξ)γ̃1t(ξ, t) dξ

−
∫ 1

x

Puv(x, ξ)γ̃2t(ξ, t) dξ (39)

w̃1x(x, t) = γ̃1x(x, t)−
∫ 1

x

Puux (x, ξ)γ̃1(ξ, t) dξ

+Puu(x, x)γ̃1(x, t)

−
∫ 1

x

Puvx (x, ξ)γ̃2(ξ, t) dξ

+Puv(x, x)γ̃2(x, t). (40)

Plugging (35) into (39), yields:

w̃1t(x, t) =−ε1(x)γ̃1x(x, t)−CeAh(x)Lγ̃1(1, t)

+

∫ 1

x

Puu(x, ξ)CeAh(ξ)Lγ̃1(1, t) dξ

+

∫ 1

x

ε1(ξ)Puu(x, ξ)γ̃1x(ξ, t) dξ

−
∫ 1

x

ε2(ξ)Puv(x, ξ)γ̃2x(ξ, t) dξ. (41)

Integration by parts the last two terms of the right hand
side, yields:

∫ 1

x

ε1(ξ)Puu(x, ξ)γ̃1x(ξ, t) dξ =

ε1(1)Puu(x, 1)γ̃1(1, t)− ε1(x)Puu(x, x)γ̃1(x, t)

−
∫ 1

x

(
ε1(ξ)Puuξ (x, ξ) + ε′1(ξ)Puu(x, ξ)

)
γ̃1(ξ, t) dξ (42)

−
∫ 1

x

ε2(ξ)Puv(x, ξ)γ̃2x(ξ, t) dξ =

ε2(x)Puv(x, x)γ̃2(x, t)

+

∫ 1

x

(
ε2(ξ)Puvξ (x, ξ) + ε′2(ξ)Puv(x, ξ)

)
γ̃2(ξ, t) dξ. (43)

Substituting those equations into (41), yields:

w̃1t(x, t) =

−ε1(x)γ̃1x(x, t)− p1(x)γ̃1(1, t)

−ε1(x)Puu(x, x)γ̃1(x, t) + ε2(x)Puv(x, x)γ̃2(x, t)

−
∫ 1

x

(
ε1(ξ)Puuξ (x, ξ) + ε′1(ξ)Puu(x, ξ)

)
γ̃1(ξ, t) dξ

+

∫ 1

x

(
ε2(ξ)Puvξ (x, ξ) + ε′2(ξ)Puv(x, ξ)

)
γ̃2(ξ, t) dξ. (44)

Plugging (40) into the above equation, yields:

w̃1t(x, t) =

−ε1(x)w̃1x(x, t)− p1(x)γ̃1(1, t)

+ (ε1(x) + ε2(x))Puv(x, x)γ̃2(x, t)

−
∫ 1

x

(
ε1(x)Puux (x, ξ) + ε1(ξ)Puuξ (x, ξ)

+ε′1(ξ)Puu(x, ξ)) γ̃1(ξ, t) dξ

−
∫ 1

x

(
ε1(x)Puvx (x, ξ)− ε2(ξ)Puvξ (x, ξ)

−ε′2(ξ)Puv(x, ξ)) γ̃2(ξ, t) dξ. (45)

Substituting (22), (24), (25), and (29), we obtain the first
entry of (18). Applying the same procedure we can obtain
the second entry of (18). Next, evaluating (22) at x = 0,
yields:

w̃1(0, t) = γ̃1(0, t)−
∫ 1

0

Puu(0, ξ)γ̃1(ξ, t) dξ

−
∫ 1

0

Puv(0, ξ)γ̃2(ξ, t) dξ (46)

γ̃2(0, t) = w̃2(0, t) +

∫ 1

0

P vu(0, ξ)γ̃1(ξ, t) dξ

+

∫ 1

0

P vv(0, ξ)γ̃2(ξ, t) dξ (47)

Plugging (28), (31), and (36) into (46), yields:

w̃1(0, t) = qγ̃2(0, t) + CX̃(t)− q
∫ 1

0

P vu(0, ξ)γ̃1(ξ, t) dξ

−q
∫ 1

0

P vv(0, ξ)γ̃2(ξ, t) dξ. (48)

Plugging (47) into the above equation, we obtain (19).

We can simplify the cascade (35)-(38) by defining a new

variable ψ̃ = [ψ̃1 ψ̃2]ᵀ and using the transformation(
ψ̃1(x, t)

ψ̃2(x, t)

)
=

(
γ̃1(x, t)−CeA(h(x)−d)X̃(t)

γ̃2(x, t)

)
. (49)

Hence, (35)-(38) becomes

ψ̃t = Σ(x)ψ̃x (50)

ψ̃1(0, t) = qψ̃2(0, t) (51)

ψ̃2(1, t) = 0 (52)
˙̃X(t) = eAd (A− LC) e−AdX̃(t)− eAdLψ̃1(1, t). (53)

The system (50)-(53) can be viewed as a cascade con-
sisting of the part (50)-(52) and (53), where the former

affects the latter through ψ̃1(1, t).
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Lemma 2 Consider system (50)-(52) with initial condi-

tion ψ̃0 ∈ L2([0, 1]). Then, for every λ > 0, there exists
c such that:

‖ψ̃(·, t)‖L2 ≤ ce−λt‖ψ̃0‖L2 . (54)

Furthermore, the equilibrium ψ̃ ≡ 0 is reached in finite
time t = tf , where tf is given by:

tf =

∫ 1

0

(
1

ε1(ξ)
+

1

ε2(ξ)

)
dξ. (55)

Proof Define a Lyapunov candidate function

W1(t) =

∫ 1

0

ψ̃ᵀ(x, t)D(x)ψ̃(x, t) dx (56)

where

D(x) =

A e−µx

ε1(x)
0

0 B eµx

ε2(x)

 (57)

is a positive definite matrix for positive A and B. Com-
puting the first derivative of (56) with respect to time t
along (50) and using integration by parts, yields:

Ẇ1(t) =−
∫ 1

0

ψ̃ᵀ(x, t) (D(x)Σ(x))x ψ̃(x, t) dx

+
[
ψ̃ᵀ(x, t)D(x)Σ(x)ψ̃(x, t)

]1
0
. (58)

Using the boundary conditions (51) and (52), we have:[
ψ̃ᵀ(x, t)D(x)Σ(x)ψ̃(x, t)

]1
0

=

−Aψ̃1(1, t)2e−µ −
(
B − q2A

)
ψ̃2(0, t)2. (59)

Choosing B = q2A+ λ2, A = λ2e
µ, and µ = λ1ε̄, where

ε̄ = maxx∈[0,1]

{
1

ε1(x)
, 1
ε2(x)

}
and λ1, λ2 > 0, we have

(D(x)Σ(x))x ≥ λ1D(x). Thus, Ẇ1(t) ≤ −λ1W1(t),

which shows that the equilibrium solution ψ̃ is ex-
ponentially stable in the L2-norm. Furthermore, the
system (50)-(52) is a cascade of two transport equa-
tions whose explicit solutions can be obtained. Defining
φ1(x) =

∫ x
0

1
ε1(ξ)

dξ and φ2(x) =
∫ x
0

1
ε2(ξ)

dξ, for initial

condition ψ̃01, ψ̃02 ∈ L2([0, 1]), the solution is given by:

ψ̃1(x, t) =

{
ψ̃01

(
(φ−11 (φ1(x)− t)

)
, t ≤ φ1(x)

qψ̃2 (0, t− φ1(x)) , t ≥ φ1(x)
(60)

ψ̃2(x, t) =

{
ψ̃02

(
(φ−12 (φ2(x) + t)

)
, t ≤ φ2(1)− φ2(x)

0, t ≥ φ2(1)− φ2(x)
.(61)

Hence, if we let tf = φ1(1) + φ2(1), we get ψ̃ ≡ 0. This
concludes the proof.

Since ψ̃ converges to zero in finite time, (53) becomes

˙̃X(t) = eAd (A− LC) e−AdX̃(t). (62)

Lemma 3 Choose L such that (A− LC) is Hurwitz sta-

ble. Then X̃ converges to zero exponentially.

Utilizing Lemma 1, 2, and 3, we have the following result.
Theorem 1 Let the components of the observer gain
p(x) be given by (32) and (33) and choose L such that
(A− LC) is Hurwitz stable. Then, for any initial condi-
tion w̃0 ∈ L2([0, 1]), the error system (18)-(21) is expo-
nentially stable in the norm

∣∣∣X̃(t)
∣∣∣2 + ‖w̃(·, t)‖2L2 . (63)

Proof Define

W2(t) = X̃ᵀ(t)e−A
ᵀdSe−AdX̃(t) (64)

where S is a symmetric positive definite matrix, i.e., S =
Sᵀ > 0, that satisfies the Lyapunov equation

S (A− LC) + (A− LC)
ᵀ

S = −T (65)

where T is also a symmetric positive definite matrix, i.e.
T = Tᵀ > 0. Define W (t) = W1(t) +W2(t). Computing
the first derivative of W with respect to t, yields

Ẇ (t)≤−λ1W1(t)−W2(t) ≤ −ΛW (t) (66)

for some Λ > 0, which shows that the cascade (50)-(53)

is exponentially stable in the norm
∣∣∣X̃(t)

∣∣∣2 +
∥∥∥ψ̃(·, t)

∥∥∥2
L2

.

Thus, from (49), the cascade (35)-(38) is exponentially

stable in the norm
∣∣∣X̃(t)

∣∣∣2 + ‖γ̃(·, t)‖2L2 . The result now

follows in view of (22) and its inverse, which both exist
by the results in [1].

3.2 Semilinear System

The observer for the semilinear system (1)-(4) is given
by

ŵt = Σ(x)ŵx + Ω(x)ŵ + f(ŵ, x) + p(x)w̃1(1, t)(67)

ŵ1(0, t) = qŵ2(0, t) + CX̂(t) (68)

ŵ2(1, t) =U(t) (69)
˙̂
X(t) = AX̂(t) + eAdLw̃1(1, t). (70)
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The error system is now

w̃t = Σ(x)w̃x + Ω(x)w̃

+ (f(w̃ + ŵ)− f(ŵ))− p(x)w̃1(1, t) (71)

w̃1(0, t) = qw̃2(0, t) + CX̃(t) (72)

w̃2(1, t) = 0 (73)
˙̃X(t) = AX̃(t)− eAdLw̃1(1, t). (74)

To show the stability of the error system, we define the
transformations

ŵ(x, t) = γ̂(x, t) +

∫ x

0

R(x, ξ)γ̂(ξ, t) dξ (75)

γ̃(x, t) = w̃(x, t) +

∫ 1

x

Q(x, ξ)w̃(ξ, t) dξ (76)

where the kernel matrices R and Q can be shown to exist
[1]. In particular, the kernel matrix R is the solution of
a system of equations analog to the kernel system (24)-
(31). We proceed in this section as follows. The trans-
formations (22), (75), and (76) are used to transform
(71)-(74) into a new cascade system (Lemma 4) where
the stability of the new cascade system is investigated
using Lyapunov functionals (Lemma 5, 6, and 7).
Lemma 4 The transformations (22), (75), and (76)
map

γ̃t = Σ(x)γ̃x + F[γ̃, γ̂] + p̄(x)γ̃1(1, t) (77)

γ̃1(0, t) = qγ̃2(0, t) + CX̃(t) (78)

γ̃2(1, t) = 0 (79)
˙̃X(t) = AX̃(t)− eAdLγ̃1(1, t). (80)

into (71)-(74) with

F[γ̃, γ̂] = P [f (P[γ̃] +R[γ̂])− f (R[γ̂])] (81)

where

P[γ̃] = γ̃(x, t)−
∫ 1

x

P(x, ξ)γ̃(ξ, t) dξ (82)

R[γ̂] = γ̂(x, t) +

∫ x

0

R(x, ξ)γ̂(ξ, t) dξ (83)

Proof From Lemma 1, up to the linear part (F = f = 0),
we show that the transformation (22) maps (77)-(80) into
(71)-(74). Applying the transformations (75) and (76)
into F, the nonlinear function which depends on γ̃ and
γ̂ is mapped into f which depends on w̃ and ŵ.

The dependency of the nonlinear term F in (77) on γ̂ is
a nontrivial problem when showing the convergence of
the error function γ̃. To overcome this issue, we employ
the following assumption.
Assumption 5 There exists M > 0 such that |γ| ≤ M
uniformly in x ∈ [0, 1] and t ≥ 0.

Under this assumption, the nonlinear term becomes
F[γ̃, γ̂] = F[γ̃,γ − γ̃] = G[γ̃]. Notice that the depen-
dency on γ̃ in G comes from (22), which along with the
smoothness of f implies the bound

|G(x, t)| ≤ C
(
|γ̃|2 + ‖γ̃‖2L2

)
. (84)

This bound is essential, gives rise to similar bounds for
G1, G2, and G3 below, and is used to prove the main
result of this section (see [3] for detail). Substituting (49)
into (77)-(80), yield:

ψ̃t = Σ(x)ψ̃x + G1[ψ̃, X̃] (85)

ψ̃1(0, t) = qψ̃2(0, t) (86)

ψ̃2(1, t) = 0 (87)
˙̃X(t) = eAd (A− LC) e−AdX̃(t)− eAdLψ̃1(1, t), (88)

where

G1[ψ̃, X̃] = P
[
f
(
O[ψ̃], X̃

)
− f

(
R[ψ̃], X̃

)]
, (89)

and

O[ψ̃] = 2ψ̃(x, t)−
∫ 1

x

P(x, ξ)ψ̃(ξ, t) dξ

+

∫ x

0

R(x, ξ)ψ̃(ξ, t) dξ. (90)

Denote η̃ = ψ̃t, θ̃ = η̃t, Ỹ = ˙̃X, and Z̃ = ˙̃Y. Taking a
partial derivative of (85)-(88) with respect to t, we have

η̃t = Σ(x)η̃x + G2[ψ̃, η̃, X̃, Ỹ] (91)

η̃1(0, t) = qη̃2(0, t) (92)

η̃2(1, t) = 0 (93)
˙̃Y(t) = eAd (A− LC) e−AdỸ(t)− eAdLη̃1(1, t). (94)

where

G2[ψ̃, η̃, X̃, Ỹ]

=P
[
∂f

∂ψ̃

(
O[ψ̃], X̃

)
O[η̃] +

∂f

∂X̃

(
O[ψ̃], X̃

)
Ỹ

− ∂f

∂ψ̃

(
R[ψ̃], X̃

)
R[η̃]− ∂f

∂X̃

(
R[ψ̃], X̃

)
Ỹ

]
. (95)

Furthermore, taking a partial derivative of (91)-(94)
with respect to t, we have

θ̃t = Σ(x)θ̃x + G3[ψ̃, η̃, θ̃, X̃, Ỹ, Z̃] (96)

θ̃1(0, t) = qθ̃2(0, t) (97)

θ̃2(1, t) = 0 (98)
˙̃Z(t) = eAd (A− LC) e−AdZ̃(t)− eAdLθ̃1(1, t). (99)
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where

G3[ψ̃, η̃, θ̃, X̃, Ỹ, Z̃]

=P
[(

∂2f

∂ψ̃2
⊗O[η̃]

)
O[η̃] +

∂f

∂ψ̃

(
O[ψ̃], X̃

)
O[θ̃]

+

(
∂2f

∂X̃2
⊗ Ỹ

)
Ỹ +

∂f

∂X̃

(
O[ψ̃], X̃

)
Z̃

−
(
∂2f

∂ψ̃2
⊗R[η̃]

)
R[η̃]− ∂f

∂ψ̃

(
R[ψ̃], X̃

)
R[θ̃]

−
(
∂2f

∂X̃2
⊗ Ỹ

)
Ỹ − ∂f

∂X̃

(
R[ψ̃], X̃

)
Z̃

]
. (100)

Here,
(
∂2f
∂ψ̃2
⊗O[η̃]

)
denotes a Kronecker-like product of

a third order tensor of Hessian matrices ∂2f
∂ψ̃2

=

(
H(f1)

H(f2)

)
with the vector O[η̃] and is defined as ∂2f

∂ψ̃2
⊗ O[η̃] =

(H(f1)O[η̃] H(f2)O[η̃])
ᵀ
. The extended ODE observer

states (88), (94), (99) are useful when proving the stabil-
ity of the error system (85)-(88) in the H2 norm through
the following sequence of lemmas.
Lemma 5 Let

V1(t) = X̃(t)ᵀe−A
ᵀdSe−AdX̃(t)

+

∫ 1

0

ψ̃ᵀ(x, t)D(x)ψ̃(x, t) dx. (101)

There exists δ1 such that if ‖ψ̃‖∞ < δ1, then

V̇1 ≤−λ̄1V1 − λ̄2
(
ψ̃1(1, t)2 + ψ̃2(0, t)2

)
+ C1V

3/2
1

+C2‖ψ̃x‖∞V1 (102)

where λ̄1, λ̄2, C1 and C2 are positive constants.
Proof Computing the first derivative of (101) along
(85)-(88) with respect to t, we have:

V̇1(t) = X̃ᵀe−A
ᵀd ((A− LC)

ᵀ
S + S (A− LC))

×e−AdX̃− 2X̃ᵀe−A
ᵀdSLψ̃1(1, t)

+
[
ψ̃ᵀ(x, t)D(x)Σ(x)ψ̃(x, t)

]1
0

−
∫ 1

0

ψ̃ᵀ(x, t) (D(x)Σ(x))x ψ̃(x, t) dx

+2

∫ 1

0

ψ̃ᵀ(x, t)D(x)G1[ψ̃, X̃] dx. (103)

The second term of the right hand side of (103) can be
estimated as

|2X̃ᵀe−A
ᵀdSLψ̃1(1, t)| ≤ K0

(
|X̃|2 + ψ̃1(1, t)2

)
(104)

while the last terms can be estimated as

2

∫ 1

0

ψ̃ᵀD(x)G1[ψ̃, X̃] dx ≤ K1

∫ 1

0

|ψ̃||G1[ψ̃, X̃]|dx.(105)

From (49) and (84), for ‖ψ̃‖∞ ≤ δ1, we have∫ 1

0

|ψ̃||G1[ψ̃, X̃]|dx ≤ K2‖ψ̃‖∞
(
|X̃|2 + ‖ψ̃‖2L2

)
. (106)

Since |X̃|2 + ‖ψ̃‖2L2 ≤ K3V1 and using (12) we have∫ 1

0

|ψ̃||G1[ψ̃, X̃]|dx≤K4‖ψ̃x‖∞V1 +K5V
3/2
1 . (107)

Substituting (104), and (107) into (103) conclude the
proof.
Lemma 6 Let

V2(t) = V1(t) + Ỹ(t)ᵀe−A
ᵀdSe−AdỸ(t)

+

∫ 1

0

η̃ᵀ(x, t)D(x)η̃(x, t) dx. (108)

There exists δ2 such that if ‖ψ̃‖∞ < δ2, then

V̇2 ≤−λ̄3V2 − λ̄2
(
ψ̃1(1, t)2 + ψ̃2(0, t)2

)
−λ̄4

(
η̃1(1, t)2 + η̃2(0, t)2

)
+ C1V

3/2
1

+C2‖ψ̃x‖∞V1 + C3V
3/2
2 + C4‖η̃x‖∞V2 (109)

where λ̄3, λ̄4, C3, and C4 are positive constants.
Proof Computing the first derivative of (108) along
(91)-(94) with respect to t, yields

V̇2(t) = V̇1(t)

+Ỹᵀe−A
ᵀd ((A− LC)

ᵀ
S + S (A− LC))

×e−AdỸ − 2Ỹᵀe−A
ᵀdSLη̃1(1, t)

+ [η̃ᵀ(x, t)D(x)Σ(x)η̃(x, t)]
1
0

−
∫ 1

0

η̃ᵀ(x, t) (D(x)Σ(x))x η̃(x, t) dx

+2

∫ 1

0

η̃ᵀ(x, t)D(x)G2[ψ̃, η̃, X̃, Ỹ] dx. (110)

With the help of Lemma B.6 in [3], the last term can be
estimated as

2

∫ 1

0

η̃ᵀD(x)G2[ψ̃, η̃, X̃, Ỹ] dx

≤ K6

∫ 1

0

|η̃||G2[ψ̃, η̃, X̃, Ỹ]|dx

≤ K7‖η̃‖∞
(
|X̃|2 + |Ỹ|2 + ‖ψ̃‖2L2 + ‖η̃‖2L2

)
(111)

Following the steps as in Lemma 4, concludes the proof.
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Lemma 7 Let

V3(t) = V2(t) + Z̃(t)ᵀe−A
ᵀdSe−AdZ̃(t)

+

∫ 1

0

θ̃ᵀ(x, t)D(x)θ̃(x, t) dx. (112)

There exists δ3 such that if ‖ψ̃‖∞ + ‖η̃‖∞ < δ3, then

V̇3 ≤−λ̄5V3 − λ̄2
(
ψ̃1(1, t)2 + ψ̃2(0, t)2

)
−λ̄4

(
η̃1(1, t)2 + η̃2(0, t)2

)
−λ̄6

(
θ̃1(1, t)2 + θ̃2(0, t)2

)
+ C1V

3/2
1

+C2‖ψ̃x‖∞V1 + C3V
3/2
2 + C4‖η̃x‖∞V2

+C5‖ψ̃‖∞V3 + C6‖η̃‖∞V3 (113)

where λ̄5, λ̄6, C5, and C6 are positive constants.
Proof Computing the first derivative of (112) along
(96)-(99) with respect to t, yields

V̇3(t) = V̇2(t)

+Z̃ᵀe−A
ᵀd ((A− LC)

ᵀ
S + S (A− LC))

×e−AdZ̃− 2Z̃ᵀe−A
ᵀdSLθ̃1(1, t)

+
[
θ̃ᵀ(x, t)D(x)Σ(x)θ̃(x, t)

]1
0

−
∫ 1

0

θ̃ᵀ(x, t) (D(x)Σ(x))x θ̃(x, t) dx

+2

∫ 1

0

θ̃ᵀD(x)G3[ψ̃, η̃, θ̃, X̃, Ỹ, Z̃] dx. (114)

With the help of Lemma B.8 in [3], the last term can be
estimated as

2

∫ 1

0

θ̃ᵀD(x)G3[ψ̃, η̃, θ̃, X̃, Ỹ, Z̃] dx (115)

≤ K8

∫ 1

0

|θ̃||G3[ψ̃, η̃, θ̃, X̃, Ỹ, Z̃]|dx

≤ K9

(
‖ψ̃‖∞ + ‖η̃‖∞

)
×
(
|X̃|2 + |Ỹ|2 + |Z̃|2 + ‖ψ̃‖2L2 + ‖η̃‖2L2 + ‖θ̃‖2L2

)
.

This concludes the proof.

Remark that, a necessary condition for (85)-(88) to be
well-posed in the space H2 is that the initial conditions
verify the corresponding second-order compatibility con-

ditions as follow [3]:

qᵀ0 ψ̃0(0) = 0 (116)

qᵀ1 ψ̃0(1) = 0 (117)

qᵀ0

(
Σ(0)ψ̃x0(0) + G1[ψ̃0(0), X̃(0)]

)
= 0 (118)

qᵀ1

(
Σ(1)ψ̃x0(1) + G1[ψ̃0(1), X̃(0)]

)
= 0 (119)

˙̃X(0)− eAd (A− LC) e−AdX̃(0)

+eAdLqᵀ2 ψ̃0(1) = 0, (120)

where

qᵀ0 = [1 − q] qᵀ1 = [0 1] qᵀ2 = [1 0] . (121)

Utilizing Lemma 4, 5, 6, and 7, the main result for ob-
server design of the semilinear PDE-ODE cascade sys-
tems can be stated as follow.
Theorem 2 Let the components of p(x) be given by
(32)-(33) and choose L such that (A− LC) is Hurwitz
stable. Then, under assumption 5, for sufficiently small
initial condition w̃0 ∈ H2([0, 1]), there exists δ such that,
if ‖w̃0‖H2 < δ and if, under the transformations (22),
(49), (75), and (76), the compatibility conditions (116)-
(120) are verified, the error systems (71)-(74) is expo-
nentially stable in the following norm:∣∣∣X̃(t)

∣∣∣2 +
∣∣∣ ˙̃X(t)

∣∣∣2 +
∣∣∣ ¨̃X(t)

∣∣∣2 + ‖w̃(·, t)‖2H2 . (122)

Proof From Lemma 6, since V1(t) ≤ V2(t) ≤ V3(t), we
have

V̇3 ≤−λ̄5V3 + C7V
3/2
3 . (123)

Further, since ‖ψ̃‖∞ + ‖η̃‖∞ ≤ C8V3(t), then for suf-
ficiently small V3(0), we have V3(t) → 0 exponentially.

Since V3(t) is equivalent to the H2 norm of ψ̃ when

‖ψ̃‖∞ + ‖η̃‖∞ is sufficiently small (see [3]), there exists

δ > 0 and c, such that if ‖ψ̃0‖H2 ≤ δ, then

|X̃(t)|+
∣∣∣ ˙̃X(t)

∣∣∣+
∣∣∣ ¨̃X(t)

∣∣∣+ ‖ψ̃‖2H2 ≤

ce−λ
(
|X̃(0)|+

∣∣∣ ˙̃X(0)
∣∣∣+
∣∣∣ ¨̃X(0)

∣∣∣+ ‖ψ̃0‖2H2

)
. (124)

This concludes the proof.

3.3 Numerical Example

In this section, we present a numerical example to show
the observer converges to the actual values. Let ε1(x) =
ε2(x) = ε = 1, ω1(x) = ω2(x) = ω = 0.001, q = 1, and

A =

(
0 − 2π

6

2π
6 0

)
and C =

(
0 1
)
. (125)
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The gain matrix is chosen as L = [0 4]ᵀ, so that the
matrix A − LC has two negative eigenvalues, −0.2961
and −3.7039. Thus, A − LC is Hurwitz stable. Since
ε = 1, we have d = 1. To compute the gains p1(x) and
p2(x), we need to solve the system

εPuux (x, ξ) + εPuuξ (x, ξ) = ωP vu(x, ξ) (126)

εP vux (x, ξ)− εP vuξ (x, ξ) =−ωPuu(x, ξ) (127)

with boundary conditions

Puu(0, ξ) = P vu(0, ξ) (128)

P vu(x, x) =− ω
2ε
. (129)

Utilizing the result in [24], the solutions for (126)-(129)
are given by:

P vu(x, ξ) =− 1

2ε

{
ωI0

[
|ω|
ε

√
ξ2 − x2

]
−|ω|

√
ξ − x
ξ + x

I1

[
|ω|
ε

√
ξ2 − x2

]}
(130)

Puu(x, ξ) =
1

2ε

{
ωI0

[
|ω|
ε

√
ξ2 − x2

]
−|ω|

√
ξ + x

ξ − x
I1

[
|ω|
ε

√
ξ2 − x2

]}
(131)

where In denotes the modified Bessel function of the first
kind. Substituting these solutions into (32) and (33), we
obtain explicit expressions for p1(x) and p2(x), respec-
tively. Simulating the error system (71)-(74), using the
above data, the error variables converge to zero as can
be seen in Fig 1.

4 Application in Oil Well Drilling

4.1 Drilling Process

The present paper is motivated by process monitoring-
problems in oil well drilling. A hydraulic well model used
for annular flow and pressure estimations can be trans-
formed into (1)-(4). To illustrate the problem, consider
a simple drilling system in Fig. 2.

During drilling, mud from the mud pit is pumped down
through the drill string, through the drill bit, up the an-
nulus, and back to the mud pit. The objectives are to as-
certain the downhole-pressure-environment limits, man-
age the annular hydraulic pressure profile accordingly,
and to clean the well from cuttings [34]. The drill bit
pressure operates between two pressure limits, namely
pore pressure and fracture pressure. If the drill bit pres-
sure goes below the pore pressure, the formation fluid
start to flow into the wellbore and up the annulus. This
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Fig. 1. Estimation errors w̃1(x, t) and w̃2(x, t).

Fig. 2. Schematics of an oil well drilling (Courtesy of Statoil).

situation is called kick. In the other hand, if the drill
bit pressure is close to the fracture pressure, a signifi-
cant amount of mud will go into the formation, causing
loss of the pressure barrier (which in turn may cause a
kick). The implication of such undesirable conditions are
not only economical, but also environmental and con-
cerns worker’s safety [35]. Therefore, process monitor-
ing in oil well drilling is very crucial. Furthermore, when
drilling in deep-water formation from a floating rig (a
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semi-submersible rig or a drill ship), the problem is even
more complicated. The wave-induced heaving motion
of the drilling rig can cause a major pressure variation
over the drill bit [36]. The pressure variation sometimes
causes undesirable interruptions in the operation with
large delay in the drilling schedule.

The dynamics inside the drill string and inside the an-
nulus can be modeled by a hydraulic well model which
can be transformed into (1)-(3), while kicks, losses, and
heaving motion can be modeled by (4). A challenge in
oil well drilling is that the only reliable measurement is
located at the top of the well. Thus, for monitoring pro-
cess, there is an incentive to estimate the system state
(flow and pressure) and the system parameter (the rate
of kick or the rate of lost circulation) using only a top-
side measurement (x = 1). We consider a real estimation
problem in oil well drilling. The task is to monitor pres-
sure and flow inside the annulus using only topside mea-
surement. The challenge is that the downhole boundary
parameter is uncertain due to lost circulation. Thus, we
are dealing with an adaptive observer problem.

4.2 Detecting Lost Circulation

As mentioned, if the downhole pressure becomes too
high, mud flows into the geological formation causing
lost circulation. Lost circulation is considered to be the
biggest contributor to non-productive time (NPT) in
drilling operations. Depending on how many barrels are
lost to the formation, the lost circulation can be cate-
gorized as seepage, typically less than 10 bbl/h; partial,
typically greater than 10 bbl/h but some fluid returns;
and total, no-fluid comes out of the annulus [37,38]. To-
tal lost circulation can result in a catastrophic loss of
well control. Even in the two less severe forms, lost cir-
culation represents a financial loss that must be dealt
with by the industry, the impact of which is directly tied
to the per-barrel cost of the drilling fluid and the loss
rate over time. Because the rate of lost circulation is
unknown, in earlier drilling-process monitoring systems,
e.g., [30], this quantity, which is defined as the boundary
parameter of the hydraulic model, is assumed equal to
the rate from the mud pump. Thus, the accuracy of the
estimates is poor. In the following section, we present an
analytical formula to estimate this boundary parameter.

4.3 Hydraulic Well Model

A reasonable hydraulic well model for fluid flow inside
the annulus during drilling is given in [39] as

pt(z, t) =− β
A
qz(z, t) (132)

qt(z, t) =−A
ρ
pz(z, t) + Fc(q(z, t))−Ag sin τ(z) (133)

q(0, t) = qθ (134)

p(l, t) = pc(t) (135)

where p and q denote the annular pressure and flow, re-
spectively. The Bulk modulus is denoted by β, ρ is the
drilling fluid density, and A is the area of the annulus.
The boundary parameter qθ is the unknown parameter
that constitutes loss. The frictional characteristic func-
tion Fc is given by

Fc(q(z, t)) =−ϕ1q(z, t)− ϕ2q(z, t)
2. (136)

If the flow velocity inside the annulus is low (Reynolds
number, Re < 2000), then the fluid exhibits laminar
flow. In contrast, if the flow velocity is high (Re > 4000),
then the fluid exhibits turbulent flow. In [40], a laminar
flow is modeled by setting ϕ2 = 0.

4.4 Feasibility of Design

Using algebraic transformations, it can be shown that
the hydraulic well model (132)-(135) can be transformed
into (1)-(4). The hydrostatic head can be removed from
the momentum equation by defining

p̄(z, t) = p(z, t)− ρg
(
l −
∫ z

0

sin τ(s) ds

)
. (137)

Thus, we have

p̄t(z, t) =− β
A
qz(z, t) (138)

qt(z, t) =−A
ρ
p̄z(z, t)− ϕ1q(z, t)− ϕ2q(z, t)

2 (139)

q(0, t) = qθ (140)

p̄(l, t) = pc(t)− ρg

(
l −
∫ l

0

sin τ(s) ds

)
. (141)

The above system can be diagonalized using the follow-
ing Riemann’s coordinate transformation

w̄1(z, t) =
1

2

(
q(z, t) +

A√
βρ
p̄(z, t)

)
w̄2(z, t) =

1

2

(
q(z, t)− A√

βρ
p̄(z, t)

) (142)

which yields

w̄1t =−

√
β

ρ
w̄1z −

ϕ1

2
(w̄1 + w̄2)− ϕ2

2
(w̄1 + w̄2)

2
(143)

w̄2t =

√
β

ρ
w̄2z −

ϕ1

2
(w̄1 + w̄2)− ϕ2

2
(w̄1 + w̄2)

2
(144)

The boundary conditions are given by

w̄1(0, t) =−w̄2(0, t) + qθ (145)

w̄2(l, t) =U(t). (146)
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Defining w1(x, t) = w̄1(xl, t) and w2(x, t) = w̄2(xl, t),
the hydraulic well model (143)-(146) resemble the semi-
linear systems (1)-(4) with

ε1(x) = ε2(x) =
1

l

√
β

ρ
(147)

ω1(x) = ω2(x) = −ϕ1

2
(148)

f(w, x) =

(
−ϕ1

2 w1 − ϕ2

2 (w1 + w2)
2

−ϕ1

2 w2 − ϕ2

2 (w1 + w2)
2

)
(149)

U(t) =
1

2
q(l, t)

− A

2
√
βρ

(
pc(t)− ρg

(
l −
∫ l

0

sin τ(s) ds

))
(150)

C = 1 (151)

A = 0 (152)

X = qθ. (153)

4.5 The Flow-loop Test Experiment

The experiment is carried out in a field scale flow-loop
test in Stavanger, Norway by Statoil. The drilling sys-
tem is modeled as a U-tube (Fig. 3) which consists of a
main pump, 1400 meters of pipes, a downhole assembly,
and topside sensors (Fig. 4). The downhole assembly is
completed with an exit valve to simulate the lost circu-
lation problem and a Coriolis meter to measure the lost
circulation rate. The topside sensors consist of a Coriolis
meter to measure the return fluid and a pressure gauge
to measure the pressure.

Fig. 3. Schematics of the flow-loop.

Water is injected by the main pump through the drill
string and up the annulus. After some time, the down-

(a) Downhole assembly (b) Topside facilities

Fig. 4. The flow-loop experiment

hole choke is gradually opened to simulate the lost cir-
culation. The task is to estimate the flow and pressure
along the annulus and the rate of lost circulation using
only measurements at the top of the well. The topside
flow and pressure measurements can be seen in Fig. 5.
Here, the volumetric flow rate is already filtered using a
robust method of local regression with weighted linear
squares and 2nd-degree polynomial model. Fig. 6 shows
the relation of the volumetric flow rate of lost circulation
and the valve opening. It can be observed that the valve
opening is almost linear with respect to the flow rate.
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Fig. 5. Measured topside flow rate and pressure.

4.6 Simulation Results

Relying only on the topside measurement y(t) =
w1(1, t), we want to estimate the downhole pressure
p(0, t) and the downhole flow rate under lost circulation
qθ. From the section 4.4 and based on the observer de-
sign for the semilinear systems (67)-(70), the observer
for the hydraulic well model is given by

ŵt(x, t) = Σŵx + Ωŵ + f(ŵ, x) + p(x)w̃1(1, t) (154)

ŵ1(0, t) =−ŵ2(0, t) + q̂θ (155)

ŵ2(1, t) =U(t). (156)
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Fig. 6. Downhole exit valve opening and volumetric flow rate
response.

where the downhole flow rate under lost circulation q̂θ
is estimated using the update law

˙̂qθ(t) =
L

2

(
qc(t)− q̂c(t) +

A√
βρ

(pc(t)− p̂c(t))
)

(157)

where qc and pc are measurements taken at the topside
of the well. The scalar L > 0 is the tuning parameter for
the update law. Solving the observer equations (154)-
(156), where the parameter qθ is estimated using (157),
the downhole pressure and the downhole flow rate under
lost circulation can be accurately estimated, as shown
in Fig. 7 and Fig. 8, respectively.
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Fig. 7. Estimated and measured downhole pressure.

The estimated and measured topside pressure are in
good agreement, as shown in Fig. 9. The deviation be-
tween t = 800 s and t = 900 s is due to the flow-loop
contour, which may cause back pressure when the rate
is too low. This can be improved by adjusting the geo-
metric properties of the pipes.

5 Conclusions

We have solved the boundary observer design problem
for a class of hyperbolic PDE-ODE cascade systems
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Fig. 8. Estimated and measured downhole flow rate.
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Fig. 9. Estimated and measured topside pressure.

where the sensor and actuator are located at the same
boundary. The design, which is based on the backstep-
ping method, requires only measurement at one of the
boundaries. We show that the observer gain can be com-
puted analytically by solving a first-order Goursat-type
PDEs in terms of Bessel function of the first kind. The
semilinear observer design is obtained from the linear
design where we show the estimates converge to the ac-
tual values exponentially. A real-field process monitor-
ing problem in oil well drilling is presented to show the
usefulness of the design. Since the observer is computed
almost without computational cost, the design method
can be used as online process monitoring system.

It was assumed that the drilling parameters such as den-
sity and Bulk modulus of the drilling fluid is known. If
these parameters are unknown, a new adaptive design
should be developed. Adaptive observer for PDE-ODE
cascade systems is a wide open and fertile area for future
research. The presented design can also be used to pre-
dict gas kicks. In this case, a two-phase well hydraulic
model may be used. A boundary observer design involv-
ing more than two PDE states may be developed for this
purpose.
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