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Abstract— In this paper, we present a state-feedback and
a state-observer for disturbance attenuation problems for a
class of n + 1 coupled linear hyperbolic partial differential
equations. The disturbance and the sensing are located at the
left boundary of the system while the actuation is located
at the right boundary of the system (anti-collocated setup).
The designs are based on the backstepping method and rely
on boundary measurement only. The feedback control law is
found by utilizing the fact that the closed-form solution of
the equivalent target system can be obtained. Furthermore,
by defining a modified L2-norm, we show the observer is
exponentially stable. A numerical example inspired from an
oil well drilling problem is presented to validate the results.

I. INTRODUCTION

Control design methods for linear and nonlinear dis-
tributed parameter systems which are based directly on
the PDEs formulation has been established, e.g., [1], [2].
Those approaches can be used as alternative to an early
lumping approach where the infinite dimensional systems
in PDEs is replaced by a finite dimensional approximation
in ODEs by employing finite difference, proper orthogonal
decomposition, or using steady state model. Based on where
the actuators and sensors are located, the control methods for
PDEs can be divided into in-domain control and boundary
control. Boundary control is considered to be physically
more realistic because actuation and sensing are usually
located at the boundary of the systems.

A systematic method for boundary control of PDEs was
developed in [3]. The method is called backstepping and
is primarily used for nonlinear ODE systems in strict-
feedback form. Thus, the method represents a major shift
from finite-dimensional to infinite-dimensional systems. The
backstepping method has been successfully used as a tool for
control design and state estimation of many type of linear
and nonlinear PDEs with Volterra nonlinearities [4]. The
method uses change of variable by shifting the system state
using a Volterra operator. A property of Volterra operator
is that the state transformation is triangular which ensures
the invertibility of the change of the variable. Furthermore,
using method of successive approximation [5] or Marcum
Q-functions [6] one may found an explicit expression for
the transformation kernel. Thus, the feedback law can be
constructed explicitly and the closed-loop solutions can be
found in closed-form.

The dual methods for observer design using boundary
sensing has been also developed in a similar way to the
boundary control [7]. The observer gain can be easily
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computed numerically and/or, for some cases, analytically.
They can be designed in such a way that the observer
error system is exponentially stabilized. Furthermore, using
separation principle, the exponentially convergent observer
can be combined with the backstepping controller to solve
the output-feedback problem.

A. Problem Description

In this paper, we consider the following disturbance at-
tenuation problem for a class of first-order linear hyperbolic
systems with n+ 1 states1

uit + λi(x)uix =

n∑
j=1

σi,j(x)uj + ωi(x)v (1)

vt − µ(x)vx =

n∑
j=1

θj(x)uj (2)

ui(0, t) = qiv(0, t) + CiX(t) (3)

v(1, t) =

n∑
j=1

ρju
j(1, t) + U(t) (4)

Ẋ(t) = AX(t) (5)

where x ∈ [0, 1], t ≥ 0, and qi 6= 0, ∀i = 1, · · · , n. X and
Cᵀ
i are m-dimensional vectors, and A is an m×m matrix.
Assumption 1: The transport velocities satisfy the follow-

ing inequalities

−µ(x) < 0 < λ1(x) < · · · < λn(x) (6)

which indicates that the ui states evolve from the left to the
right, whereas the v state evolves from the right to the left.

Assumption 2: A is an arbitrary matrix. Furthermore,
(A,Ci), ∀i = 1, · · · , n, are observable.

Assumption 3: µ, λi ∈ C1([0, 1]), and σi,j , ωi, θi ∈
C([0, 1]), ∀i, j ∈ {1, · · · , n}.

The objective of this paper is to design a state-feedback
control law U(t) at x = 1 and a state-observer using only one
measurement at x = 0 based on the backstepping method.

B. Motivation

Boundary control of hyperbolic systems has attracted a
lot of attention lately (e.g., [8], [9]) because they can be
used to model many physical processes especially fluid flow
either in an open channel [10] or inside the pipeline [11].
In recent papers, (1)-(4) is used to model one-phase [12]
and two-phase [13] fluid flow inside the drill pipe in an
oil well drilling. Indeed, the present paper is motivated
from a practical problem in oil well drilling. A particularly

1For the sake of brevity, u = u(x, t) and v = v(x, t).



interesting problem is when drilling from a floating rig.
The drill string will move with the heaving motion of the
floating rig causing a major pressure variations over the
drill bit [14]. If the pressure variation is greater than the
acceptable range, it can damage the formation thus reducing
productivity. Therefore, there is an incentive to compensate
the heave motion (disturbance attenuation) using a control
system.

C. Previous Works

The aim of disturbance attenuation is to design a boundary
control input U(t) at x = 1 such that

n∑
i=1

ui(0, t) = rv(0, t) (7)

with r 6=
∑n
i=1 qi, is achieved at least asymptotically as

time approaches infinity. For n = 1, this problem has been
solved in [15]. It was shown that the disturbance attenuation
is achieved if the estimates that converge to the actual values
can be obtained. To this end, an exponentially convergent
collocated state-observer based on the backstepping method
was successfully designed. For n ≥ 2, however, it was shown
in [16] that the collocated state-observer is difficult to be
obtained even when considering measurements of all states at
the boundary due to the impossibility to add lower triangular
integral coupling terms in the target system. Therefore, in
this paper we develop an anti-collocated state-observer where
only one measurement is taken at one boundary while the
actuator is located at the other end.

D. Contribution of the Paper

The contributions of this paper are divided into two parts.
The first contribution is to design a controller for (1)-(5) by
following the step in [15] (minor contribution). The major
contribution is to design an observer for (1)-(5) using an
augmented Lyapunov function. To this end, we define the
following modified L2-norm

‖f(t)‖2δ =

∫ 1

0

eδxf(x, t)ᵀf(x, t) dx (8)

for δ ∈ R and f : [0, 1] × R 7→ Rm, ∀m ∈ {1, · · · , n}. We
write the usual L2-norm as ‖f(t)‖L2

= ‖f(t)‖0.

E. Organization of the Paper

The paper is organized as follows. In section II, we
derived a full-state feedback control law for (1)-(5). In
section III, we design an anti-collocated state-observer. A
numerical example is presented in section IV. Finally, section
V contains conclusions and recommendations.

II. FULL-STATE FEEDBACK CONTROL DESIGN

In this section, we develop a full-state feedback control
law that can be used to attenuate the disturbance by utilizing

the results of [15] and [16]. In [16], for n ≥ 2 the following
Volterra integral transformation of the second kind is used

β = v −
∫ x

0

n∑
i=1

Ki(x, ξ)ui(ξ, t) dξ

−
∫ x

0

Kn+1(x, ξ)v(ξ, t) dξ (9)

αi = ui (10)

to transform (1)-(4) into an exponentially stable target sys-
tem. The kernel functions Ki = Ki(x, ξ), ∀i ∈ {1, · · · , n+
1} have to satisfy the following system of first-order hyper-
bolic PDEs

µ(x)Kj
x − λj(ξ)K

j
ξ = λ′j(ξ)K

j +

n∑
i=1

σi,j(ξ)K
i

+θj(ξ)K
n+1 (11)

µ(x)Kn+1
x + µ(ξ)Kn+1

ξ = −µ′(ξ)Kn+1

+

n∑
i=1

ωi(ξ)K
i (12)

∀j ∈ {1, · · · , n}, with boundary conditions

Kj(x, x) = − θj(x)

λj(x) + µ(x)
(13)

µ(0)Kn+1(x, 0) =

n∑
i=1

qλi(0)Ki(x, 0) (14)

∀j ∈ {1, · · · , n}, evolving on triangular domain Υ =
{(x, ξ) ∈ R2|0 ≤ ξ ≤ x ≤ 1}. The existence of the
transformation kernels can be shown by transforming the
differential equations into integral forms using the method
of characteristic and using successive approximation method
to solve the well-posedness problem.

Remark 1: The transformation (9)

T : (L2([0, 1],R))n+1 → L2([0, 1],R) (15)
(ui, v) 7→ β (16)

is invertible, i.e., there exists a unique continuous inverse
kernel Li(x, ξ), ∀i ∈ {1, · · · , n+ 1} such that

v(x, t) = β(x, t) +

∫ x

0

n∑
i=1

Li(x, ξ)αi(ξ, t) dξ

+

∫ x

0

Ln+1(x, ξ)β(ξ, t) dξ (17)

and for each i ∈ {1, · · · , n}, the kernels satisfy

Li(x, ξ) = Ki(x, ξ) +

∫ x

ξ

Ki(x, ξ)Ln+1(ξ, s) ds (18)

Remark 2: If n = 1, the explicit kernel functions can
be obtained using Marcum Q-functions [6]. Hence, the
feedback laws can be constructed explicitly and the closed-
loop solutions can be found in closed-form.

The idea is to transform (1)-(2) into an equivalent system
(Lemma 1) for which a closed-loop solution can be obtained
(Lemma 2). The closed-form solution allows us to derive



a stabilizing state feedback control law that attenuates the
disturbance (Theorem 1). Lemmas and theorem presented
in this section are obtained by generalized the results of
disturbance attenuation in [15].

Lemma 1: Let Ki, i = 1, · · · , n + 1 be the solution to
(11)-(14). If the control law is given by

U(t) = V (t)−
n∑
j=1

ρju
j(1, t)

+

∫ 1

0

n∑
i=1

Ki(1, ξ)ui(ξ, t) dξ

+

∫ 1

0

Kn+1(1, ξ)v(ξ, t) dξ (19)

then the transformations (9)-(10) and their inverses maps (1)-
(5) into the following equivalent system

αit = −λi(x)αix +

n∑
j=1

σi,j(x)αj + ωi(x)β

+

n∑
j=1

∫ x

0

ci,j(x, ξ)α
j(ξ, t) dξ

+

∫ x

0

κi(x, ξ)β(ξ, t) dξ (20)

βt = µ(x)βx −
n∑
i=1

λi(0)Ki(x, 0)CiX(t) (21)

αi(0, t) = qiβ(0, t) + CiX(t) (22)
β(1, t) = V (t) (23)

Ẋ = AX (24)

where

ci,j = ωi(x)Kj +

∫ x

ξ

κi(x, s)K
j(s, ξ) ds (25)

κi = ωi(x)Kn+1 +

∫ x

ξ

κi(x, s)K
n+1(s, ξ) ds (26)

∀i, j = 1, · · · , n.
Remark 3: The term V (t) in the control law (19) is

used to compensate the disturbance. Intuitively, V (t) should
depend on X(t).

Remark 4: In the absence of disturbance, the transformed
system (20)-(23) is exactly the same with the target system
used in [16].

Remark 5: Equation (21) is a nonhomogeneous hyper-
bolic equation whose explicit solution can be obtained using
the method of characteristic. By utilizing a semigroup prop-
erty of (24), the explicit solution can be used to derive the
following Lemma.

Lemma 2: For t ≥ d solution of (20)-(24) satisfy

β(0, t)− β(1, t− d) = −
∫ d

0

n∑
i=1

λi(0)Ki(1− h−1(τ), 0)

×Cie−Aτ dτX(t) (27)

Theorem 1: Suppose
∑n
i=1 qi 6= 0, r 6=

∑n
i=1 qi, and

U(t) = KX(t)−
n∑
j=1

ρju
j(1, t)

+

∫ 1

0

n∑
i=1

Ki(1, ξ)ui(ξ, t) dξ

+

∫ 1

0

Kn+1(1, ξ)v(ξ, t) dξ (28)

where

K =
1

r −
∑n
i=1 qi

n∑
i=1

Cie
Ad

+

∫ d

0

n∑
i=1

λi(0)Ki(1− h−1(τ), 0)

×CieA(d−τ) dτ (29)

Then
∑n
i=1 u

i(0, t) = rv(0, t) for all t ≥ d.
To evaluate the control law (28), all states need to be mea-

sured throughout the domain. Furthermore, the disturbance
should also be measured. In the following section, we show
how to obtain an observer using measurement only at the
boundary. For time being, let us assume that estimates are
available for ui, v, and X and denote them ûi, v̂, and X̂ . Let
ũi = u−ûi, ṽ = v−v̂, and X̃ = X−X̂ . If we replace, ui, v,
and X in (28) with their estimates, we obtain the following
result.

Theorem 2: Suppose
∑n
i=1 qi 6= 0, r 6=

∑n
i=1 qi and

U(t) = KX̂(t)−
n∑
j=1

ρj û
j(1, t)

+

∫ 1

0

n∑
i=1

Ki(1, ξ)ûi(ξ, t) dξ

+

∫ 1

0

Kn+1(1, ξ)v̂(ξ, t) dξ (30)

Then, there exists a constant c such that |
∑n
i=1 u

i(0, t) −
rv(0, t)| ≤ c‖(X̃, ũ, ṽ)‖ for all t ≥ d, where

‖(X̃, ũ, ṽ)‖2 =

|X̃(t)|2 +

n∑
j=1

ũi(1, t)2 (31)

+

∫ 1

0

 n∑
j=1

ũi(x, t)2 + ṽ(x, t)2

 dx


Remark 6: The theorem stated that the disturbance atten-

uation
∑n
i=1 u

i(0, t) = rv(0, t) with r 6=
∑n
i=1 qi > 0, is

only achieved if the estimates that converge to the actual
value can be obtained.

III. ANTI-COLLOCATED OBSERVER DESIGN

To obtain measurements across the domain in distributed
parameter systems are often difficult. The common setting
is to place the sensors at the boundaries. For example, in
oil well drilling, the measurement can be obtained either
from the well head sensor (located at the top of the well)



or from the drill bit sensor (located at the bottom of the
well). Suppose the only available measurement is v(0, t).
The observer is designed as follow

ûit + λi(x)ûix =

n∑
j=1

σi,j(x)ûj + ωi(x)v̂(0, t)

+pi(x)ṽ(0, t) (32)

v̂t − µ(x)v̂x =

n∑
j=1

θj(x)ûj + pn+1(x)ṽ(0, t) (33)

ûi(0, t) = qiv(0, t) + CX̂(t) (34)

v̂(1, t) =

n∑
j=1

ρj û
j(1, t) + U(t) (35)

˙̂
X(t) = AX̂(t)− Lṽ(0, t) (36)

where the functions pi(x) and the vector L ∈ Rm are output
injection gains to be determined. Subtracting (32)-(36) by
(1)-(5), we get

ũit + λi(x)ũix =

n∑
j=1

σi,j(x)ũj + ωi(x)ṽ

+pi(x)ṽ(0, t) (37)

ṽt − µ(x)ṽx =

n∑
j=1

θj(x)ũj + pn+1(x)ṽ(0, t) (38)

ũi(0, t) = CX̃(t) (39)

ṽ(1, t) =

n∑
j=1

ρj ũ
j(1, t) (40)

˙̃X(t) = AX̃(t)− Lṽ(0, t) (41)

In [16], the following transformations were used

ũi = α̃i +

∫ x

0

mi(x, ξ)β̃(ξ, t) dξ (42)

ṽ = β̃ +

∫ x

0

mn+1(x, ξ)β̃(ξ, t) dξ (43)

where the kernels satisfy a first-order hyperbolic system

λi(x)mi
x − µ(ξ)mi

ξ = µ′(ξ)mi +
n∑
j=1

σi,j(x)mj

+ωi(x)mn+1 (44)
µ(x)mn+1

x + µ(ξ)mn+1
ξ = −µ′(ξ)mn+1

−
n∑
j=1

θj(x)mj (45)

∀i ∈ {1, · · · , n}, with boundary conditions

mi(x, x) =
ωi(x)

λi(x) + µ(x)
(46)

mn+1(1, ξ) =

n∑
j=1

ρjm
j(1, ξ) (47)

∀i ∈ {1, · · · , n}.
The idea is to transform (37)-(41) into an equivalent

system (Lemma 3) for which the (exponential) stability of the

system is proved by using an augmented Lyapunov function
(Lemma 4). Since the transformations (42)-(43) are also
invertible, the error system (37)-(41) is exponentially stable.
Hence, the estimates converge to the actual values.

Lemma 3: The transformation (42)-(43) maps the system

α̃it + λi(x)α̃ix =

n∑
j=1

σi,j(x)α̃j

+

n∑
j=1

∫ x

0

gi,j(x, ξ)α̃
j(ξ, t) dξ (48)

β̃t − µ(x)β̃x =

n∑
j=1

θj(x)α̃j

+

n∑
j=1

∫ x

0

hj(x, ξ)α̃
j(ξ, t) dξ (49)

α̃i(0, t) = CX̃(t) (50)

β̃(1, t) =

n∑
j=1

ρjα̃
j(1, t) (51)

˙̃X = AX̃ − Lβ̃(0, t) (52)

into (37)-(41) with

pi(x) = −µ(0)mi(x, 0) (53)
pn+1(x) = −µ(0)mn+1(x, 0) (54)

where the integral coupling coefficients are defined by the
following equations

gi,j = −θj(ξ)mi −
∫ x

ξ

mi(x, s)hj(s, ξ) ds (55)

hi = −θi(ξ)mn+1 −
∫ x

ξ

mn+1(x, s)hi(s, ξ) ds(56)

Proof: Computing the first derivative of (42) with
respect to t, integration by parts, and using (55), yields

ũit(x, t) = −λi(x)α̃ix(x, t) +

n∑
j=1

σi,j(x)α̃j(x, t)

+µ(x)mi(x, x)β̃(x, t)− µ(0)mi(x, 0)β̃(0, t)

−
∫ x

0

µ(ξ)mi
ξ(x, ξ)β̃(ξ, t) dξ

−
∫ x

0

µ′(ξ)mi(x, ξ)β̃(ξ, t) dξ (57)

Computing the first derivation of (42) with respect to x and



substituting into (57), yields

ũit(x, t) = −λi(x)ũix(x, t) + λi(x)mi(x, x)β̃(x, t)

+µ(x)mi(x, x)β̃(x, t)

+

n∑
j=1

σi,j(x)α̃j(x, t)− µ(0)mi(x, 0)β̃(0, t)

+

∫ x

0

λi(x)mi
x(x, ξ)β̃(ξ, t) dξ

−
∫ x

0

µ(ξ)mi
ξ(x, ξ)β̃(ξ, t) dξ

−
∫ x

0

µ′(ξ)mi(x, ξ)β̃(ξ, t) dξ (58)

Remark that

ωi(x)β̃(x, t)− ωi(x)β̃(x, t) = ωi(x)ṽ(x, t)

−ωi(x)β̃(x, t)−
∫ x

0

ωi(x)mn+1(x, ξ)β̃(ξ, t) dξ(59)

while from (42), we have

n∑
j=1

σi,j(x)α̃j(x, t) =

n∑
j=1

σi,j(x)ũi(x, t) (60)

−
∫ x

0

n∑
j=1

σi,j(x)mi(x, ξ)β̃(ξ, t) dξ

Substituting (59) and (60) into (58), yield

ũit = −λi(x)ũix + ωi(x)ṽ +

n∑
j=1

σi,j(x)ũi

+
(
λi(x)mi(x, x) + µ(x)mi(x, x)− ωi(x)

)
β̃

−µ(0)mi(x, 0)β̃(0, t)

−
∫ x

0

n∑
j=1

σi,j(x)mi(x, ξ)β̃(ξ, t) dξ

−
∫ x

o

ωi(x)mn+1(x, ξ)β̃(ξ, t) dξ

+

∫ x

0

λi(x)mi
x(x, ξ)β̃(ξ, t) dξ

−
∫ x

0

µ(ξ)mi
ξ(x, ξ)β̃(ξ, t) dξ

−
∫ x

0

µ′(ξ)mi(x, ξ)β̃(ξ, t) dξ (61)

Substituting (44), (46), and (53) into (61), yield (37). (38) is
obtained using the similar steps.

Lemma 4: If there exists a positive definite matrix P and
an observer gain L such that(

ATP + PA+ p
∑n
i=1 λi(0)CTi Ci −PL

−LTP 0

)
� 0 (62)

where p is a sufficiently large number, then the origin of
(48)-(49) is exponentially stable.

Proof: We define a candidate Lyapunov function as
V (t) = V1(t) + V2(t), where

V1(t) = X̃TPX̃ (63)

V2(t) =

∫ 1

0

pe−δx
n∑
i=1

α̃i(x, t)2 + eδxβ̃(x, t)2 dx(64)

Computing its first derivative with respect to t, yield

V̇1(t) =

(
X̃

β̃(0, t)

)T (
ATP + PA −PL
−LTP 0

)(
X̃

β̃(0, t)

)
(65)

V̇2(t) = p

n∑
i=1

λi(0)α̃i(0, t)2 − pe−δ
n∑
i=1

λi(1)α̃i(1, t)2

−pδ
∫ 1

0

e−δx
n∑
i=1

λi(x)α̃i(x, t)2 dx

+p

∫ 1

0

e−δx
n∑
i=1

λi(x)′α̃i(x, t)2 dx

+2p

∫ 1

0

e−δx
n∑
i=1

α̃i(x, t)Γiα̃(α̃) dx

+eδµ(1)β̃(1, t)2 − µ(0)β̃(0, t)2

−δ
∫ 1

0

eδxµ(x)β̃(x, t)2 dx

−
∫ 1

0

eδxµ(x)′β̃(x, t)2 dx

+2

∫ 1

0

eδxβ̃(x, t)Γβ̃(α̃) dx (66)

where

Γiα̃(α̃) =

n∑
j=1

[
σi,j(x)α̃j +

∫ x

0

gi,j(x, ξ)α̃
j(ξ, t) dξ

]
(67)

Γβ̃(α̃) =

n∑
j=1

[
θj(x)α̃j +

∫ x

0

hj(x, ξ)α̃
j(ξ, t) dξ

]
(68)

Using Cauchy-Schwartz’s and Young’s inequalities there
exists M such that

2p

∣∣∣∣∣
∫ 1

0

e−δx
n∑
i=1

α̃i(x, t)Γiα̃(α̃) dx

∣∣∣∣∣ ≤
pM

∫ 1

0

e−δx
n∑
i=1

α̃i(x, t)2 dx (69)

2

∣∣∣∣∫ 1

0

eδxβ̃(x, t)Γβ̃(α̃) dx

∣∣∣∣ ≤ (70)

M

∫ 1

0

eδxβ̃(x, t)2 dx+Me2δ
∫ 1

0

e−δx
n∑
i=1

α̃i(x, t)2 dx

eδµ(1)β̃(1, t)2 ≤

eδµ(1)nmax
j
|ρj |2

n∑
i=1

α̃i(1, t)2 (71)



Substituting these inequalities into (66), yields

V̇2(t) ≤ X̃T

(
p

n∑
i=1

λi(0)CTi Ci

)
X̃

−
(
pe−δnmin

i
λi(1)− eδµ(1)nmax

j
|ρj |2

)
×

n∑
i=1

α̃i(1, t)

−
(
pδmin

i
inf

x∈[0,1]
λi(x)− pnκ1 − pM −Me2δ

)
×
∫ 1

0

e−δx
n∑
i=1

α̃i(x, t)2 dx

−
(
δ inf
x∈[0,1]

µ(x) + κ2 −M
)

×
∫ 1

0

eδxβ̃(x, t)2 dx (72)

where κ1 = maxi supx∈[0,1] λi(x)′ and κ2 =
infx∈[0,1] µ(x)′. Therefore, we have

V̇ (t) = V̇1(t) + V̇2(t)

≤
(

X̃

β̃(0, t)

)T
×
(
ATP + PA+ p

∑n
i=1 λi(0)CTi Ci −PL

−LTP 0

)
(

X̃

β̃(0, t)

)
−
(
pe−δnmin

i
λi(1)− eδµ(1)nmax

j
|ρj |2

)
×

n∑
i=1

α̃i(1, t)

−
(
pδmin

i
inf

x∈[0,1]
λi(x)− pnκ1 − pM −Me2δ

)
×
∫ 1

0

e−δx
n∑
i=1

α̃i(x, t)2 dx

−
(
δ inf
x∈[0,1]

µ(x) + κ2 −M
)∫ 1

0

eδxβ̃(x, t)2 dx(73)

If we choose

p ≥ max

(
eδµ(1) maxj |ρj |2

e−δ mini λi(1)
,

Me2δ

δmini infx∈[0,1] λi(x)− nκ1 −M

)
(74)

δ ≥ M − κ2
infx∈[0,1] µ(x)

(75)

Then, there exists a positive constant ν such that V̇ ≤
−νV (t), which completes the proof.

Remark 7: Since (1)-(5) is a linear system, the separation
principle holds; i.e., the combination of a separately designed
stable state-feedback and stable observer results in a stabi-
lizing output-feedback controller.

Remark 8: From the backstepping transformations (42)-
(43) and their inverses [16], there exists positive constants
a1, a2, a3, b1, b2, and b3, such that

‖α̃(t)‖2−δ ≤ a1‖ũ(t)‖2L2
+ a2‖ṽ(t)‖2L2

(76)

‖β̃(t)‖2δ ≤ a3‖ṽ(t)‖2L2
(77)

‖ũ(t)‖2L2
≤ b1‖α̃(t)‖2−δ + b2‖β̃(t)‖2δ (78)

‖β̃(t)‖2L2
≤ b3‖ṽ(t)‖2δ (79)

Corollary 1: Under the assumption of Theorem 2, Lemma
3, and Lemma 4, the error system (37)-(41) is exponentially
stable in the norm (31).

Hence, we can state the following disturbance attenuation
result of the n+ 1 coupled linear hyperbolic PDEs.

Theorem 3: Consider the observer (32)-(36) and the con-
trol law (28) in closed loop with the system (1)-(5). There
exists positive constants c1, c2, and c3 such that∣∣∣∣ n∑

i=1

ui(0, t)− rv(0, t)

∣∣∣∣
≤ c1‖(X̃, ũ, ṽ)‖
≤ c2‖(X̃(0), ũ(x, 0), ṽ(x, 0))‖e−c3t (80)

IV. NUMERICAL SIMULATIONS
The example is inspired from the heave problem in oil

well drilling [14]. An oil well is drilled from a floating rig
causing the drill pipe to move with the heaving motion of
the floating rig and induce major pressure variations over
the drill bit at the bottom of the well. During drilling, an
active heave compensation system is used. However, during
connection (plugging a new segment of drill pipe), the active
compensation system is shut down. Instead, a back-pressure
pump is installed near the well head and the pressure along
the annulus can be controlled by the choke manifold.

During connection period, which can last for 20 to 40
minutes, the drilling fluid (usually mud) and formation fluids
(usually gas) are mixed at the bottom of the well creating
a multi-phase flow along the annulus. To model the flow, a
two-phase flow model known as the drift-flux model [17] is
employed. The model is a quasi-linear hyperbolic equations
but can be linearized in its equilibrium [13] and simplified
into the following form2

u1t (x, t) + 1.1u1x(x, t) = 2u2(x, t) + 4v(x, t) (81)
u2t (x, t) + 1.2u2x(x, t) = 0 (82)

vt(x, t)− vx(x, t) = u2(x, t) (83)

Furthermore, one should notice that u2 is a Riemann invari-
ant for the system, i.e., satisfy a pure transport equation,
which characterized mass fraction of gas in the two-phase
model. The boundary conditions are given by

u1(0, t) = v(0, t) + CX(t) (84)
u2(0, t) = v(0, t) + CX(t) (85)
v(1, t) = −0.8u2(1, t) + U(t) (86)
Ẋ(t) = AX(t) (87)

2For simplicity all coefficients are assumed constants.



In this example, the disturbance matrices are given as follow

C =
(
−2 1

)
A =

(
−10 −5
−6 −7

)
(88)

The vector gain L and the respective diagonal positive
definite matrix P associated with the Lyapunov function are
chosen as follow

L =

(
0
0

)
P =

(
1 −1
0 2

)
(89)

To stabilize the states u1, u2, and v under the disturbance,
the backstepping control law (30) is employed. The results
of the state and the estimation error can be shown in the
following figures
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Fig. 1: Profile of v(x, t) for output-feedback control.
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Fig. 2: Estimation error v(x, t).

Clearly, the control law (30) successfully stabilizes the
states and the observer (32)-(36) converges to the actual
value.

V. CONCLUSIONS AND RECOMMENDATIONS
We have solved disturbance attenuation problem for a class

of n+1 coupled first-order linear hyperbolic PDEs with a sin-
gle boundary input. The control law requires measurement of
the states and the disturbance. The control gain for the state
is obtained by solving a first-order hyperbolic system, while

the control gain for the disturbance is computed explicitly.
The state-observer is constructed in an anti-collocated setup.
Since the system is linear, from the separation principle,
the combined observer and feedback is stable. The potential
application of the proposed method is to solve the heave
problem during drilling connection in oil well drilling from
a floating rig. There is an interest to develop a collocated
state-observer since a reliable measurement usually available
at the well head (x = 1), thus this can be a subject for the
future research.
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