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Abstract— The present paper develops an adaptive boundary
observer for systems modeled by nonlinear hyperbolic PDEs
with limited number of measurements. The design is based
on the backstepping method and relies only on one boundary
measurement. The observer gains are obtained through solving
a first-order hyperbolic system of Goursat-type PDEs. The
design is implemented in an estimation problem in managed
pressure drilling (MPD), where a state observer and an update-
law are used to estimate the annular downhole pressure and
the rate of lost circulation, respectively. The design is tested
against a field scale flow-loop test in Stavanger, Norway by
Statoil. The results show that the state observer converges to
the actual flow and pressure values and that the update-law
accurately estimates the rate of lost circulation.

I. INTRODUCTION

We consider an adaptive observer problem for systems
which can be transformed into the following nonlinear hy-
perbolic partial differential equations:

wt(x, t) = Σ(x)wx(x, t) + f(w, x), (1)

with boundary conditions:

u(0, t) = qv(0, t) + vp + θ, (2)
v(1, t) = U(t), (3)

where w = [u v]ᵀ and w : [0, 1]× [0,∞)→ R2. The matrix
Σ : [0, 1] → M2,2(R), where M2,2(R) denotes the set of
2× 2 real matrices, is given by:

Σ(x) =

(
−ε1(x) 0

0 ε2(x)

)
. (4)

Here, ε1(x), ε2(x) > 0. Furthermore, f : R2 × [0, 1] → R2

and vp ∈ R. The constant q 6= 0 and U(t) is the actuation.
The task is to estimate the state vector w and the unknown
boundary parameter θ using only a boundary measurement
at x = 1, i.e.,

y(t) = u(1, t). (5)

The following assumptions are used in this paper.
Assumption 1: The nonlinear term f(w, x) has an equilib-

rium at the origin, i.e., f(0, x) = ∂f
∂w (0, x) = 0. Furthermore,

f is twice continuously differentiable with respect to w.
Assumption 2: The transport velocities ε1(x), ε2(x) ∈

C1([0, 1]).
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The state observer problem for (1) was solved for the linear
case (linear f ) in [1], while the state feedback stabilization
problem was solved for the quasilinear case in [2].

A. Motivation and Previous Works
Many physical processes can be modeled and transformed

into the hyperbolic systems (1). Some examples include
road traffic [3], gas flow pipeline [4], and flow of fluids
in transmission lines ([5], [6]) and in open channels [7].
Recently, for control and estimation purposes, the distributed
parameter model (1)-(3) has been used to model mud flow
during oil well drilling ([8], [9], [10]).

A systematic method for control and estimation problems
of distributed parameter systems was previously developed
in [11]. The method is called backstepping and is pri-
marily used for nonlinear ODEs in strict-feedback form.
The backstepping method has been successfully used as a
tool for control design and state estimation of many types
of PDEs, including with Volterra nonlinearities [12]. The
method uses a change of variables by shifting the system
state with a Volterra operator. Using the method of successive
approximation [13] or Marcum Q-functions [14], one may
find explicit expressions for the control and observer gains.
The exponentially convergent observer can be combined
with the backstepping controller to solve the output-feedback
problem. One of the most challenging problems in the theory
of distributed parameter systems is the adaptive control and
observer problems. Some approaches using Lyapunov-based
design and certainty equivalence-based design have been
proposed to answer this problem [15].

Backstepping has found several applications in oil and gas
problems, including the gas coning control ([16], [17]), the
flow control in porous media [18], the slugging control [19],
the lost circulation and kick problems ([20], [21]), and the
heave problem ([22], [23]).

B. Contributions of this Paper
The contributions of this paper are threefold: (i) a state ob-

server and an update-law for state and parameter estimation
of nonlinear hyperbolic systems with a boundary measure-
ment, (ii) a simplified hydraulic well model of one-phase
fluid flow inside the drill pipe, and (iii) explicit observer
gains for the simplified hydraulic well model. Furthermore,
we conduct a field scale experiment to show the design is
applicable for industrial uses.

C. Organization of this Paper
This paper is organized as follow. The theoretical contri-

bution of the adaptive observer for the nonlinear hyperbolic



systems (1) is presented in section II. Section III contains
a brief introduction to MPD. Here, we derived a hydraulic
well model with a nonlinear frictional term to model the flow
and pressure of the fluid inside the well annulus. A field
scale experiment setup in Statoil flow-loop test facilities is
described in section IV. Results and discussions in presented
in section V. Finally, section VI is the conclusions.

II. ADAPTIVE OBSERVER DESIGN
The adaptive observer design for the nonlinear hyperbolic

systems (1) is constructed using the recently developed
adaptive observer design for the linear hyperbolic systems
in [20]. Therefore, first we briefly review the designs of the
state observer and the update-law for the linear hyperbolic
systems. Afterward, we show that the designs work locally
for the nonlinear systems.

A. Adaptive Observer for the Linear Hyperbolic Systems
We consider the following linear hyperbolic systems:

wt(x, t) = Σ(x)wx(x, t) + C(x)w(x, t), (6)
u(0, t) = qv(0, t) + vp + θ, (7)
v(1, t) = U(t), (8)

where the matrix C(x) =

(
0 c1(x)

c2(x) 0

)
.

Assumption 3: c1(x), c2(x) ∈ C1([0, 1])
For a collocated setup where u(1, t) is measured, we

design the observer as follow:

ŵt = Σ(x)ŵx + C(x)ŵ + p(x)ũ(1, t), (9)

û(0, t) = qv̂(0, t) + vp + θ̂(t), (10)
v̂(1, t) = U(t), (11)

where p(x) = [p1(x) p2(x)]ᵀ is the observer gain to be
determined. Define the error variables ũ = u− û, ṽ = v− v̂,
and θ̃ = θ − θ̂. Forming the error systems by subtracting
(9)-(11) from (6)-(8), we have:

w̃t = Σ(x)w̃x + C(x)w̃ − p(x)ũ(1, t), (12)
ũ(0, t) = qṽ(0, t) + θ̃(t), (13)
ṽ(1, t) = 0. (14)

If the unknown parameter θ = 0, the following backstepping
transformation:

w̃(x, t) = γ̃(x, t)−
∫ 1

x

P (x, ξ)γ̃(ξ, t) dξ, (15)

where γ̃ = [α̃ β̃]ᵀ, is used in [1] to transform the error
systems (12)-(14) into an exponentially stable target sys-
tems. This means that the estimates converge to the actual
values exponentially. The transformation kernel is denoted

by P (x, ξ) =

(
Puu Puv

P vu P vv

)
, and satisfy the following first-

order hyperbolic system of Goursat-type PDEs:

ε1(x)Puux + ε1(ξ)Puuξ = −ε′1(ξ)Puu − c1(x)P vu,(16)
ε1(x)Puvx − ε2(ξ)Puvξ = ε′2(ξ)Puv − c1(x)P vv, (17)
ε2(x)P vux − ε1(ξ)P vuξ = ε′1(ξ)P vu + c2(x)Puu, (18)
ε2(x)P vvx + ε2(ξ)P vvξ = −ε′2(ξ)P vv + c2(x)Puv,(19)

with boundary conditions:

Puu(0, ξ) = qP vu(0, ξ), (20)

Puv(x, x) =
c1(x)

ε1(x) + ε2(x)
, (21)

P vu(x, x) = − c2(x)

ε1(x) + ε2(x)
, (22)

P vv(0, ξ) =
1

q
Puv(0, ξ). (23)

The kernels evolve in the triangular domain T = {(x, ξ) :
0 ≤ ξ ≤ x ≤ 1}.

The idea of the adaptive observer design is to use the
transformation (15) to transform (12)-(14) into an equivalent
system together with a suitable update-law of θ. It can be
easily shown that the transformation (15) map the system:

γ̃t = Σ(x)γ̃x + p̄α̃(1, t), (24)
α̃(0, t) = qβ̃(0, t) + θ̃(t), (25)
β̃(1, t) = 0, (26)

where p̄ = [−κ 0]ᵀ, into (12)-(14) with:

p1(x) = κ− ε1(1)Puu(x, 1)−
∫ 1

x

κPuu(x, ξ) dξ,(27)

p2(x) = −ε1(1)P vu(x, 1)−
∫ 1

x

κP vu(x, ξ) dξ. (28)

Remark that the β system in (24)-(26) is already exponen-
tially stable. Therefore, we only consider the α system:

α̃t(x, t) = −ε1(x)α̃x(x, t)− κα̃(1, t), (29)
α̃(0, t) = θ̃(t). (30)

To simplify the above system, let φ̃(x, t) = α̃(x, t) −
θ̃(t), then φ̃t(x, t) + ε1(x)φ̃x(x, t) = α̃t(x, t) − ˙̃

θ(t) +
ε1(x)α̃x(x, t). Let the update-law:

˙̂
θ(t) = κα̃(1, t), (31)

for κ > 0. The φ̃ system is given by:

φ̃t(x, t) = −ε1(x)φ̃x(x, t), (32)
φ̃(0, t) = 0, (33)

and the update-law error is given by:
˙̃
θ(t) = −κφ̃(1, t)− κθ̃(t). (34)

Define the following Lyapunov functional:

V (t) =
1

2
θ̃(t)2 + c

∫ 1

0

2− x
ε1(x)

φ̃(x, t)2 dx. (35)

where c > 0. Computing its first derivative with respect to t
along (32), (33), and (34), yields:

V̇ (t) = −κθ̃(t)2 − κφ̃(1, t)θ̃(t)

−cφ̃(1, t)2 − c
∫ 1

0

φ̃(x, t)2 dx. (36)

If we choose c large enough such that
κ

2
θ̃(t)2 + κφ̃(1, t)θ̃(t) + cφ̃(1, t)2 ≥ 0, (37)



then

V̇ (t) ≤ −κ
2
θ̃(t)2 − c

∫ 1

0

φ̃(x, t)2 dx. (38)

Therefore, the origin of (24)-(26) is exponentially stable in
the norm(

θ̃(t)2 +

∫ 1

0

α̃(x, t)2 dx+

∫ 1

0

β̃(x, t)2 dx

)
. (39)

Since the transformation (15) is invertible, then stability of
the system (24)-(26) is translated into the stability of the error
system (12)-(14). Thus, the estimated state ŵ and parameter
θ̂ converge to the actual values exponentially. Furthermore,
since (24) is an inhomogeneous transport equation whose
solution can be obtained using the method of characteristics,
the existence of a unique classical solution of the observer
equation (9)-(11) is guaranteed. Hence, the main result of
this subsection can be stated in the following theorem.

Theorem 1: Let P (x, ξ) be the solution of (16)-(23). Then
for any û0, v̂0 ∈ L2(0, 1), system (9)-(11) with p(x) and
θ̂(t) are given by (27)-(28) and (31), has a unique classical
solution û(x, t), v̂(x, t) ∈ C1,1((0, 1)×(0,∞)). Furthermore,
these estimates converge exponentially to the actual values
u, v, and θ.

B. Adaptive Observer for the Nonlinear Hyperbolic Systems
The nonlinear term f(w, x) in (1) can be linearized around

the equilibrium point w = 0 as follow:

f(w, x) = f(0, x) +
∂f(w, x)

∂w

∣∣∣∣
w=0

w + f̄NL(w, x)

=

(
0 f12
f21 0

)
w +

(
f11 0
0 f22

)
w + f̄NL(w, x)

=

(
0 f12
f21 0

)
w + fNL(w, x). (40)

Thus, we choose:

C(x) =

(
0 f12(x)

f21(x) 0

)
=

(
0 c1(x)

c2(x) 0

)
,(41)

so that the nonlinear term f(w, x) is replaced by
C(x)w + fNL(w, x). Consequently, due to assumption 1,
f12(x), f21(x) ∈ C1([0,1]), which is compatible with as-
sumption 3. Remark that, since fNL(w, x) is twice differen-
tiable with respect to w and once with respect to x, there
exists positive constants δf , and a1, a2, and a3, such that if
|w| ≤ δf , then for any v ∈ R2, we have:

|fNL(w, x)|+
∣∣∣∣∂fNL∂x

(w, x)

∣∣∣∣ ≤ a1|w|2, (42)∣∣∣∣∂fNL∂w
(w, x)

∣∣∣∣ ≤ a2|w|, (43)∣∣∣∣∂2fNL∂w2
(w, x)v

∣∣∣∣ ≤ |a3|v|. (44)

The nonlinear hyperbolic systems (1)-(3) become:

wt = Σ(x)wx + C(x)w + fNL(w, x), (45)
u(0, t) = qv(0, t) + vp + θ, (46)
v(1, t) = U(t). (47)

In this case, we design the state observer as follow:

ŵt = Σ(x)ŵx + C(x)ŵ + fNL(ŵ, x)

+p(x)ũ(1, t), (48)

û(0, t) = qv̂(0, t) + vp + θ̂(t), (49)
v̂(1, t) = U(t). (50)

Subtracting (45)-(47) by (48)-(50), we have:

w̃t = Σ(x)w̃x + C(x)w̃ + fNL(w̃ + ŵ, x)

−fNL(ŵ, x)− p(x)ũ(1, t), (51)
ũ(0, t) = qṽ(0, t) + θ̃(t), (52)
ṽ(1, t) = 0. (53)

Define the following transformation:

ŵ(x, t) = γ̂(x, t) +

∫ x

0

L(x, ξ)γ̂(ξ, t) dξ, (54)

γ̃(x, t) = w̃(x, t) +

∫ 1

x

R(x, ξ)w̃(ξ, t) dξ. (55)

Furthermore, define the following functionals:

L[γ̂](x, t) = γ̂(x, t) +

∫ x

0

L(x, y)γ̂(y, t) dy, (56)

P[γ̃](x, t) = γ̃(x, t)−
∫ 1

x

P (x, y)γ̃(y, t) dy, (57)

R[γ̃](x, t) = γ̃(x, t) +

∫ 1

x

R(x, y)γ̃(y, t) dy. (58)

Plugging (15), (54), and (55) into (51)-(53), we have:

γ̃t = Σ(x)γ̃x + F [γ̃, γ̂] + p̄α̃(1, t), (59)
α̃(0, t) = qβ̃(0, t) + θ̃(t), (60)
β̃(1, t) = 0. (61)

where

F [γ̃, γ̂] = R[fNL(L[γ̂],P[γ̃])] (62)

Assumption 4: There exists M > 0 such that |γ| ≤ M
uniformly in x ∈ [0, 1] and t ≥ 0.

Under this assumption, the nonlinear term becomes
F [γ̃, γ̂] = F [γ̃, γ−γ̃] = F [γ̃]. Notice that the dependency on
γ̃ in F comes from (15), which along with the smoothness
of fNL implies the bound

|F | ≤ C0

(
|γ̃|2 + ‖γ̃‖2L2

)
. (63)

for C0 > 0. Let φ̃(x, t) = α̃(x, t) − θ̃(t), and define ψ̃ =
[φ̃ β̃]ᵀ, then (59)-(61) becomes:

ψ̃t = Σ(x)ψ̃x + F [ψ̃, θ̃], (64)
φ̃(0, t) = qβ̃(0, t), (65)
β̃(1, t) = 0. (66)

For ψ̃ ∈ H2([0, 1]) and positive constants b1, b2, b3, b4,
b5, and b6, recall the following well-known inequalities:

‖ψ̃‖L1 ≤ b1‖ψ̃‖L2 ≤ b2‖ψ̃‖∞, (67)

‖ψ̃‖∞ ≤ b3

(
‖ψ̃‖L2 + ‖ψ̃x‖L2

)
≤ b4‖ψ̃‖H1 , (68)

‖ψ̃x‖∞ ≤ b5

(
‖ψ̃x‖L2 + ‖ψ̃xx‖L2

)
≤ b6‖ψ̃‖H2 . (69)



Let the Lyapunov functional as:

U(t) =
1

2
θ̃(t)2 +

∫ 1

0

ψ̃ᵀ(x, t)D(x, t)ψ̃(x, t) dx, (70)

where

D(x) =

(
A e−µx

ε1(x)
0

0 B eµx

ε2(x)

)
, (71)

and where B = q2A + λ2, A = λ2e
µ, and µ = λ1ε̄, where

ε̄ = maxx∈[0,1]

{
1

ε1(x)
, 1
ε2(x)

}
, with λ1, λ2 > 0. Computing

the first derivative of U with respect to t, and integrating by
parts, yield

U̇(t) = −κθ̃(t)2 − κθ̃(t)φ̃(1, t)

−
∫ 1

0

ψ̃(x, t)ᵀ (D(x)Σ(x))x ψ̃(x, t) dx

+
[
ψ̃(x, t)ᵀD(x)Σ(x)ψ̃(x, t)

]1
0
. (72)

Since (D(x)Σ(x))x ≥ λ1D(x) > 0, we have:

U̇(t) ≤ −λ1U(t)− 2

∫ 1

0

ψ̃(x, t)ᵀD(x)F [ψ̃, θ] dx.(73)

For ‖ψ̃‖∞ ≤ δ1, where δ1 > 0, the last term can be estimated
as follow

2

∫ 1

0

ψ̃(x, t)ᵀD(x)F [ψ̃, θ] dx (74)

≤ K1

∫ 1

0

|ψ|F [ψ̃, θ] dx ≤ K2‖ψ̃‖∞
(
|θ̃|2 + ‖ψ̃‖2L2

)
.

Using (69), we have:

U̇(t) ≤ −λ1U(t)−K1‖ψ̃x‖∞U(t) +K2U(t)3/2.(75)

Denote η̃ = ψ̃t, ϑ̃ = η̃t. Taking a partial derivative of (64)-
(66) with respect to t, we have:

η̃t = Σ(x)η̃x +G[ψ̃, η̃, θ̃,
˙̃
θ], (76)

η̃1(0, t) = qη̃2(0, t), (77)
η̃2(1, t) = 0. (78)

Furthermore, taking a partial derivative of (76)-(78) with
respect to t, we have:

ϑ̃t = Σ(x)ϑ̃x +H[ψ̃, η̃, ϑ̃, θ̃,
˙̃
θ,

¨̃
θ], (79)

ϑ̃1(0, t) = qϑ̃2(0, t), (80)
ϑ̃2(1, t) = 0. (81)

We introduce the following Lyapunov functionals:

V = U +
1

2
˙̃
θ(t)2 +

∫ 1

0

η̃ᵀ(x, t)D(x, t)η̃(x, t) dx,(82)

W = V +
1

2
¨̃
θ(t)2 +

∫ 1

0

ϑ̃ᵀ(x, t)D(x, t)ϑ̃(x, t) dx.(83)

Applying the same steps like for U , for ‖ψ̃‖∞+‖η̃‖∞ ≤ δ2,
where δ2 > 0, we have:

V̇ (t) ≤ −λ2V (t) +K3U(t)3/2 +K4‖ψ̃x‖∞U(t)

+K5V (t)3/2 +K6‖η̃x‖∞V (t), (84)
Ẇ (t) ≤ −λ3W (t) +K7U(t)3/2 +K8‖ψ̃x‖∞U(t)

+K9V (t)3/2 +K10‖η̃x‖∞V (t)

+K11‖ψ̃‖∞W (t) +K12‖η̃‖∞W (t). (85)

The following inequalities are crucial in establishing the
main result in this section.

‖ϑ̃‖∞ ≤ c1

(
‖ψ̃xx‖∞ + ‖ψ̃x‖∞ + ‖ψ̃‖∞

)
, (86)

‖ϑ̃‖L2 ≤ c2

(
‖ψ̃xx‖L2 + ‖ψ̃x‖L2 + ‖ψ̃‖L2

)
, (87)

‖ψ̃xx‖∞ ≤ c3

(
‖ϑ̃‖∞ + ‖η̃‖∞ + ‖ψ̃‖∞

)
, (88)

‖ψ̃xx‖L2 ≤ c4

(
‖ϑ̃‖L2 + ‖η̃‖L2 + ‖ψ̃‖L2

)
. (89)

where c1, c2, c3, and c4 are positive constants. These
inequalities can be obtained directly by bounding the norms
for small ψ̃ in (64). Since U(t) ≤ V (t) ≤W (t), we have:

Ẇ (t) ≤ −λ4W (t) +K13W (t)3/2. (90)

Further, since ‖ψ̃‖∞+‖η̃‖∞ ≤ C1W (t), then for sufficiently
small W (0), we have W (t)→ 0 exponentially. Since W (t)
is equivalent to the H2 norm of ψ̃ when ‖ψ̃‖∞ + ‖η̃‖∞ is
sufficiently small according to (86)-(89), there exists δ > 0
and c, such that if ‖ψ̃0‖H2 ≤ δ, then

|θ̃(t)|+
∣∣∣ ˙̃θ(t)∣∣∣+

∣∣∣ ¨̃θ(t)∣∣∣+ ‖ψ̃‖2H2 ≤

ce−λ
(
|θ̃(0)|+

∣∣∣ ˙̃θ(0)
∣∣∣+
∣∣∣ ¨̃θ(0)

∣∣∣+ ‖ψ̃0‖2H2

)
. (91)

Thus, we have the following result.
Theorem 2: Let P (x, ξ) be the solution of (16)-(23).

Then, there exists δ, such that for any (û0, v̂0 < δ) ∈
H2(0, 1), system (48)-(50) with p(x) and θ̂(t) are given
by (27)-(28) and (31), has a unique classical solution
û(x, t), v̂(x, t) ∈ C1,1((0, 1) × (0,∞)). Furthermore, these
estimates converge exponentially to the actual values u, v,
and θ.

III. MANAGED PRESSURE DRILLING

A. Process Description

MPD is an advanced pressure control method that is
used to precisely control the annular pressure throughout the
wellbore in an oil well drilling. During drilling, a carefully
designed fluid is pumped down from the mud pit through
the drill string, through the drill bit, up the annulus around
the drill string, and back to the mud pit. The aim is not
only to transport cuttings in the annulus, but also to manage
the pressure in the well so that the unwanted inflow from
the surrounding formation or well fracturing can be avoided.
The control system for MPD usually consists of two main
components (Fig. 1):
• the hydraulics model that estimate the downhole pres-

sure, and,



• a feedback control algorithm that automates the choke
manifold to maintain the desired choke pressure.

Fig. 1: Schematic of an automated MPD system (Statoil).

B. The Hydraulic Well Model

The hydraulic well model is used to estimate the downhole
pressure and to provide the choke pressure set point for the
MPD feedback control system. The main assumption is to
consider the drilling fluid as a viscous fluid, so that the flow
obeys the fundamental relations such as the equation of state,
the mass conservation, the momentum conservation, and the
energy conservation. The hydraulic well model is based on
[8] and is outlined as follow. For a single-phase and one-
dimensional flow in the annulus, the mass conservation is
given by:

ρt(z, t) = − 1

A
mz(z, t), (92)

where ρ is the fluid density, A is the cross section area, m is
the mass flow, t is the time instant, and z ∈ [0, l] is the spatial
coordinate along the flow path beginning from the downhole
z = 0 to the topside z = l. The subscripts t and z denote
partial derivatives with respect to t and z, respectively. Using
the definition of the bulk modulus β = ρpρ, (92) yields:

pt(z, t) = − β
A
qz(z, t), (93)

where q is the volumetric flow rate. The second relation can
be obtained from momentum balance equation as follow:

mt(z, t) = −Apz(z, t)−A
∂

∂z

∫
∂A

ρv2 dA

−Fc(z, t)−Aρg sin τ(z), (94)

where v is the fluid velocity and α is the angle between
the positive flow direction and the horizon (for a vertical
well α = 90). Fc is the friction force acting on the volume.
Assuming the integral term is sufficiently small, the flow rate
equation is given by:

qt(z, t) = −A
ρ
pz(z, t)−

Fc(z, t)

ρ
−Ag sin τ(z). (95)

The boundary conditions are given by:

q(0, t) = qp(t) + qlc(t), (96)
p(l, t) = pc(t), (97)

where qp denotes the mud rate from the main pump, while
qlc denotes the volumetric rate of lost circulation which is an
unknown parameter. The topside (choke) pressure is denoted
by pc. In this paper, the frictional pressure drop is modeled
as follow:

Fc(z, t) = f1q(z, t) + f2q(z, t)
2. (98)

where f1 and f2 denote the frictional coefficients.

C. Feasibility of the Design
The hydrostatic head can be removed from the momentum

equation by defining:

p̄(z, t) = p(z, t)− ρg
(
l −
∫ z

0

sin τ(s) ds

)
. (99)

The resulting system can be diagonalized using the following
Riemann’s coordinate transformation

ū(z, t) =
1

2

(
q(z, t) +

A√
βρ
p̄(z, t)

)
, (100)

v̄(z, t) =
1

2

(
q(z, t)− A√

βρ
p̄(z, t)

)
. (101)

Finally, defining u(x, t) = ū(xl, t), v(x, t) = v̄(xl, t) and
w = [u v]ᵀ, (93) and (95), together with the boundary
conditions, can be written in a more compact form as follow:

wt(x, t) = Σwx(x, t) + Cw(x, t) + f(w, x), (102)
u(0, t) = −v(0, t) + qlc(t), (103)
v(1, t) = U(t), (104)

where the unknown parameter θ = qlc, Σ =

diag
[
− 1
l

√
β
ρ

1
l

√
β
ρ

]
, and C =

(
0 −f1/2ρ

−f1/2ρ 0

)
.

D. Explicit Observer Gains
The observer gain can be computed analytically in terms

of Bessel function. Let c = −F1

2ρ and ε = 1
l

√
β
ρ , then the

observer gain is the solution for the following system:

εPuux (x, ξ) + εPuuξ (x, ξ) = ce−2
c
εxP vu(x, ξ), (105)

εP vux (x, ξ)− εP vuξ (x, ξ) = −ce2 cεxPuu(x, ξ),(106)
Puu(0, ξ) = −P vu(0, ξ), (107)

P vu(x, x) = − c

2ε
e2

c
εx. (108)

Utilizing the results in [14], the solution is given by:

P vu(x, ξ) = − 1

2ε

{
cI0

[
|c|
ε

√
ξ2 − x2

]
−|c|

√
ξ − x
ξ + x

I1

[
|c|
ε

√
ξ2 − x2

]}
,(109)

Puu(x, ξ) =
1

2ε

{
cI0

[
|c|
ε

√
ξ2 − x2

]
−|c|

√
ξ + x

ξ − x
I1

[
|c|
ε

√
ξ2 − x2

]}
,(110)



where In is the modified Bessel function of the first kind of
order n.

IV. EXPERIMENT DESIGN
The experiment is carried out in a field scale flow-loop

test in Stavanger, Norway by Statoil. The MPD system is
modeled as a U-tube (Fig. 2) which consists of the main
pump, 700 meters of pipes (each for drill string and annulus),
the downhole assembly, and the topside sensors. The lost
circulation happen when drilling fluid flows into geological
formations instead of returning up the annulus. The downhole
assembly is completed with an exit valve to simulate the lost
circulation problem and a Coriolis meter to measure the lost
circulation rate. The topside sensor consists of a Coriolis
meter to measure the return fluid and a pressure gauge to
measure the pressure.

Fig. 2: Schematics of the flow-loop.

In this experiment, water is injected by the main pump
through the drill string and up the annulus. After some
time, the exit valve is gradually opened to simulate the lost
circulation. The task is to estimate the downhole pressure
along the annulus and the lost circulation rate using only
measurements at the topside of the well.

The measured volumetric water flow and pressure from
the Coriolis meter and the pressure gauge at the topside
of the well are presented in Fig. 3. In practice, this is
the only reliable measurement during drilling. The Coriolis
meter gives more noise than does the pressure gauge. This
noise is inherent to the estimations. To reduce the noises,
the volumetric flow rate is filtered using a robust method of
local regression with weighted linear squares and 2nd-degree
polynomial model. Fig. 4 show the relation of the volumetric
flow rate of lost circulation and the valve opening. It can be
observed that the valve opening is almost linear with the flow
rate.

V. RESULTS AND DISCUSSIONS
Relying only on the topside measurements, we want to es-

timate the downhole pressure and the rate of lost circulation.
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Fig. 3: Measured topside flow rate (coriolis meter) and
pressure.
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Fig. 4: Downhole exit valve opening and volumetric flow
rate response.

Using our adaptive observer (48)-(50), where an unknown
parameter is estimated using the following update-law:

q̂lc =
κ

2

(
qc(t)− q̂c(t) +

A√
βρ

(pc(t)− p̂c(t))
)
, (111)

where qc and pc are measurements taken at the topside of
the well. The estimated and measured downhole pressure and
the rate of lost circulation can be seen from Fig. 5 and Fig.
6, respectively. No control is applied in this experiment. The
update-law gain κ is computed with a simple line search
algorithm. The estimated and measured topside pressure are
in good agreement, as shown in Fig. 7.

VI. CONCLUSIONS AND FUTURE WORKS

State and parameter estimations for the nonlinear hyper-
bolic PDEs have been presented in this paper. The proposed
designs, which are based on the backstepping method, have
been successfully implemented and the result has been vali-
dated with a full-scale flow-loop test conducted in Stavanger
by Statoil. The design for the nonlinear system works locally
and for sufficiently small initial values. Because only one
phase (fluid) is involved, the annular model is represented by
a one-phase incompressible flow model. There is an interest
to include the gas phase when drilling a well below its
formation pressure, leading to a two-phase flow model (refers
to the drift flux model). This will be the topic of future works.
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Fig. 5: Estimated and measured downhole pressure.
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Fig. 6: Estimated and measured fluid loss at the bottom of
the well.
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Fig. 7: Estimated and measured topside pressure.
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