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ABSTRACT

Considerable amounts of energy are contained in the ocean waves.
Available data indicate an average power transport of roughly
60 kW per meter of crest length for the North Atlantic. A general

idea for conversion of ocean wave energy into useful forms is pre-

sented. A particular system consisting of a semisubmerged heaving
tank is analysed in some detail. A numerical example shows that a
cylindrical tank with diameter 16 m and depth 10 m, placed in

waves comparable to those in the North Atlantic, may absorb an

energy of roughly 107 kWh per yvear from the waves. It is believed
that most of this energy can be extracted in terms of useful electric
energy. Ideas for realisation of wave power stations based upon
heaving tanks, oscillating water columns, and submerged systems are
presented. Some of the proposed systems may be useful for protection

of harbours against wave destruction (breakwater function).
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1. INTRODUCTION

The main aim of this report is to point to the potential energy
sources of ocean waves, and present ideas for converting this energy

into useful form.

Ocean waves contain a considerable amount of energy. In a regu-
lar (sinusoidal) progressive wave on deep water the power transmitted
per unit length of the wave crest is

o ————

i
K =47 p9°Mn® (1) (1)

(Cf. Appendix A, eg. (A.15)). Here p = 1.0-10° kg/m® is the den=+
sity of water, g = 9.8 m/s? is the acceleration of gravity, T is the

period of the wave and n? (t) is the mean squared value of the sur-

face elevation. For a sinusoidal wave n?(t) = % no?, where n,

is the wave amplitude. Consider as an example a regular wave with
ne = 1 mand T = 10 s. Then K =~ 40 kW/m. 1In large ocean areas the
energy transport in the waves averaged over all wave heights and all
seasons are of this order of magnitude. This is illustrated in

Fig. 1 which presents data from the North Atlantic. The left-hand
vertical scale gives ;ETEB and the horizontal scale gives the number
of hours of the year in which ;37;5 exceeds the indicated value.

When calculating n?(t) we have used the relation?

2
(0 = 12 : (2)

H

where HS is a frequently observed quantity called the significant
wave height. On the right-hand vertical scale of Fig. 1 is plotted
the value of K as given by eg.(l) when T = 10 s. Actually this
formula applies for regular waves only. However, when we put T
equal to the average wave period of the sea, which is approximately
10 s for the North Atlantic, the formula gives roughly correct
values for the transmitted wave power. It is seen that K exceeds

40 kW/m for more than half of the year in the North Atlantic. The

average value is approximately 60 kW/m.

When the waves encounter the coast, the wave energy is partly
transformed into thermal energy and partly reflected back to the sea.
In principle the energy input on the shores could be transformed into




electric energy. Assume that the average wave power input on the
Norwegian West Coast is the same as in the North Atlantic. Then, if

all this wave power were converted without loss into electric energy,

a coast length of less than 150 km would produce an energy amount
equal to the present electric power consumption in Norway (7-10!°kWh
in 1972). This illustrates that the ocean waves represent a con-
siderable energy resource. Although it is not sufficient for the
whole global energy demand it seems worthwhile to study means to
extract the energy content in ocean waves. This note presentsv

some ideas to that end.

Although the emphasis in this note is placed in energy production,
another interesting perspective should be mentioned. In harbour
engineering a main objective is often to destroy wave energy. This
is accomplished bv a breakwater. The breakwater partly reflects and
partly dissipates the wave power. Now, consider a system that
efficiently converts the wave power into other forms, for instance
electric power. This system would obviously calm the incoming waves
and thus have the effect as a breakwater. 1In addition it might pro-

duce useful energy.

Section 2 of this note presents the general idea for absorbtion
of wave power. In order to illustrate the idea a particular system
is analysed in some detail in subsection 2.1. The analysis estab-
lishes on theoretical grounds the general features that must be ful-
filled in order that the system shall absorb wave power efficiently.
Theoretical estimates of the maximum power that can be absorbed
in both swells and wind- generated waves are also given. Subsection
2.1.3 contains several proposals'for practical realisation of the idesa.
Somewhat different systems are presented in subsections 2.2 to 2.4.
These proposals are merely ideas. Obviously, a technological and
economic study of these or similar systems is necessary before

deciding on a real construction.




2. RESONANT ABSORBTION OF WAVE ENERGY

It is well-known that electromagnetic wave energy of harmonic
waves 1s most efficiently absorbed by a resonator, that is, a
circuit or a cavity that is tuned to the frequency of the wave.
This principle of resonance absorbtion also applies in acoustics
where an oscillating system may interact with a harmonic sound

wave'.

Although ocean waves are not harmonic, their frequency spectrum
falls within a relatively narrow frequency band. It is particu-
larly narrow for swells. Thus, it is possible to apply the prin-
ciple of resonance absorbtion also on ocean wave energy. In the
following several possible methods for realisation of this idea
are discussed. They all consist of a resonator or an oscillating

system that interacts with the ocean waves. This system is mechani-

cally or electrically damped in such a way that useful mechanical

energy or electric energy, respectively, is extracted from the system.

A resonator is characterised by a resonant freqguency

W i
T (3)

and a quality factor
Q = =% (4)

which is large in comparison with unity. Here W is the stored
energy in the resonator and P’ the average power delivered by the
resonator. If the resonator is oscillating at its resonant fre-
guency, the stored energy is completely transformed from poten-
tial energy to kinetic energy and back, twice every oscillation
period To. During the time T, a fraction 27/Q of this energy is
delivered from the energy store and converted to other forms of
energy. In the resonators considered here this energy is converted
partly into wave energy and partly into electric energy. Inevi-
tably, some of the energy is also dissipated. It is an aim of de-
sign to make this lost energy a relatively small fraction of the

converted energy.




The incoming wave produces an oscillating force on the resonator.
This force excites the resonator to oscillate with the freguency
of the wave. The oscillation amplitude has an optimum value if
the resonant frequency equals the frequency of the wave, that is,
if

Ty =T (5)

In general, the oscillating velocity has the same direction as
the exciting force part of the oscillation period and opposite
direction the rest of the period. Then the energy input from the
wave to the resonator is sometimes positive and sometimes negative.
As will be shown in the next subsection,‘however, the velocity is in
phase with the exciting force if T, = T. Then the energy absorbtion,
that is, the energy input from the incoming wave to the resonator,

is always non-negative.

Eg.(5), Ty = T, is but one of the requirements that must be
satisfied in order to achieve resonance absorbtion. Another re-
guirement concerns the partition of the absorbed energy into use-
ful energy and energy given to the out-going radial waves, which are
necessarily generated through the resonator motion. It turns out
that the useful energy output has an optimum value if it is made
equal to the energy delivered to the out-going wave. However, due
to the finite bandwidth of the frequency spectrum of wind-generated
waves the useful energy output has an optimum value if it is made
larger than the energy delivered to the out-going radial wave.

This is shown in subsection 2.1.2.

The term "useful energy" is used above because this is the energy
that can be potentially converted into electric energy. However,
from the harbour engineering viewpoint, the main aim of the re-
sonator is to destroy the energy of the waves. It seems that
conventional floating breakwaters are designed not to resonate with
the waves®. Contrary to this we state that wave absorbtion is best
realised by a resonant structure. It is a technical and economic
matter whether the absorbed energy is delivered to an electric power
transmission network or whether it is dissipated in the sea, for in-

stance through an electrical resistance.




2.1 Heaving tank

One possible way of absorbing energy from ocean waves is by
placing a semisubmerged tank in the sea, as illustrated in Fig. 2.
The tank is performing heaving motions in the sea in response to
the waves. The kinetic and potential energy of the tank is obvi-
ously absorbed from the energy reservoir of the waves. Assume
now that a certain fraction of the absorbed mechanical energy of
the tank is converted into electrical energy for each oscillation
period. This can, for instance, be achieved by placing on the tank
a propeller which drives an electric generator. Later on we shall
discuss some alternative and, presumably, better methods. 1In any
case, the net effect is that wave energy is converted into elec-

tric energy.

In the following we shall analyse this particular system with
respect to maximising the electric power generation. The analysis
will demonstrate that only a system with parameters closely
matched to the wave parameters is an efficient power absorber. This

applies for any system that deals with wave energy.

In this subsection we shall analyse the case of regular (sinus-
oidal) waves. Ocean waves are actually never regular. However, low-
amplitude swells may come very close to sinusoidal waves, in which
case the results of this subsection are applicable. In the next
subsection we shall extend the analysis to include the more gene-

ral case of waves with a continuous wave spectrum.

If the heaving tank of Fig.2 has a depth and a width small in

comparison with the wavelength, Newton's law gives
m{ = (n-g)Apg - RE ’ (6)

where ¢ is the displacement of the tank, n is the elevation of the
sea around the tank, m is the mass of the tank and A its cross
sectional area at the water line. The last term in eg.(6) repre-
sents a damping force, assumed proportional to the heaving velocity

Z. The proportionality constant R is the mechanical resistance of the




system, and it is primarily established by the electric generator.

The movement of the tank generates waves. The elevation n(t)

of the sea surface is therefore the sum of two terms:
n(t) = ni(t) + nr(t) (7)

where ni is the elevation due to the incoming wave and N, is the
elevation due to the wave generated by the movement of the tank
itself. 1In the case that the wave is regular we have ‘

iwt
Ny = Noe (8)
where n, is the amplitude of the incident wave. For convenience,
we take ny to be real. We assume that the relationship between the
movement of the tank and the generated wave may be expressed by

means of a linear operator Zr' Then we write:

Apgn, = -2 0 = - (R +iX )¢ (9)

Here Zr = Rr + in is the so-called radiation impedance. The
analytical expressions for Rr and Xr as well as explanation of their
physical significance will be given later. Introducing egs. (7)~-
(9) into eq.(6) gives

Apgnoelwt (10)

mg + (R+Rr+1Xr)§ + Apgcg

It should be noted that the analysis is linear, which means that it
holds for small-amplitude oscillations only. All of the considered
systems are to some extent non-linear when the amplitude is as large
as in a real ocean wave. However, the analysis is valid as a first
order approximation. Also the analysis is based on the assumption

of deep water. This is a fairly good approximation when the depth is
at least a third of a wavelength. Practically this means a depth

of roughly 50 m. In addition, the differential equation (10) for the

tank movement 1s based upon the presupposition that the depth and




the width of the tank is much smaller than the wavelength. *)
Furthermore, it is assumed that the drag forces are negligible in
comparison to the other forces working on the system. These
assumptions put restrictions on the system that will be discussed
later.

The stationary solution of eg.(10) is

o1 (wt=3-0) | (11)

r

T = Ly

where the oscillation amplitude

o (R e r
oYL+ ( R+ R_ )

and the phase angle ¢ is given by

w(m+X _/w) = Apg/w
tg¢ = TR (13)
X

The velocity of the tank is

(14)

*)

For a heaving body which is slender (i.e. the width is small in comparison to

the wavelength) a generalisation of eq.(10) to an arbitrarily deep tank is®

- , . iwt
+ (R+R_+iX =
mg ( R +1 r)c + A(0) pgt Aeffognoe (10a)
where
0
_ da(z) kz
Pers _g & ° %

A(z) is the cross section of the tank at the depth z (z negative below the water-
line). A(0) is the cross section in the water line and H is the depth of the
tank. The diffraction of the incoming wave on the heaving slender body is of

insignificant importance.




where the velocity amplitude is

A
uo = wio= - e (15)
w(m+Xr/w) - Apg/m\z r
l+( R + R )
r .

From eqg. (10) it it seen that the incoming wave excites the tank

with a force

F = Apgn,e ?t (16)

The average power that F deliveres to the system is

P'= Re{F} + Ref{u} (17)

By means of eq. (10) we easily find

'::«]-—'- 2 -.1’- 2
b 2Ruo + 2Rruo (18)

The first term in eq. (18)

P = ZRu,> (19)
is the average power absorbed from the waves due to the mechanical
resistance R of the system. If R is established by the electric
generator alone and if the generator has negligible losses, then

P is the electric power produced by the tank.

The second term in eq. (18)

Pr = %Rruoz (20)

is the wave power radiated by the tank due to its oscillating move-
ment. Cf. Appendix A, egs.(A.31) and (A.33). This means that part
of the total power P' is radiated back to the sea. This explains
the significance of Rr (the radiation resistance) in eq.(9). The
physical meaning of the radiation reactance X in the same equation
is seen from eg. (12). Here we observe that the efficient mass

of the system is




eff © 5 ' (21)

i.e. Xr/w represents an additional mass supplied by the fluid in
which the tank is moving.

Analytical expressions for Rr and X are not easily obtained
in the general case. Results for a semisubmerged sphere are known /.
See Appendix A.3.3., eqg.(A.69). According to the statements (A.64)
and (A.65) these results also apply for a cylindrical tank with
a hemispherical bottom, provided the depth and radius of the tank
are small in comparison with the wavelength. Hence, for the tank

of Fig.2 we have

28]
3

pa’we (22)

H
"

pa’uwu (23)

!N
wi=

r

Here a is the radius of the tank (and the hemisphere). Further,
e and u are dimensionless functions of ka as shown graphically in
Fig. 3. The angular wave number of the wave is

2
(24)

oLy
ale

Cf. eqg.(A.11l).

Introducing eq. (15) into eq.(19) we obtain the following

expression for the potentially useful power production of the tank.

_ ¢ R(Bpgny)?
P=f 2(R + R )2 ¢ (25)
r
where
£ = 1 ,
/w(m"'xr/w) - Apg/w 2
1+ ( s ) (26)
r

The function f has a peak value £ = 1 for the angular frequency

wg which makes




X
wo(m+af) - Apg/we = 0 (27)

The frequency vo = w,/27 is the resonant frequency of the system.

When v is tuned to the frequency v of the waves (resonance),
P=3®+RrI7. (28)

It is seen from egs.(1l3) and (27) that the phase angle ¢ = 0 at
resonance. Furthermore egs. (14) and (16) show that the tank
velocity and the exciting force are in phase in this case. This
means that the force feeds energy into the system during the whole

oscillation cycle. This explains why P is a maximum at resonance.

It should be noted that in order to satisfy the resonance
condition (27) the mass of the shallow tank in Fig.2 is too small
when T, = Vg-l ~ 10 s. The mass can be increased by connecting an-
other, deeply submerged, body to the tank by a slender structure.
If this additional body is placed at least one 'third of a wave-
length below the surface its direct effect on the wave interaction
is so small that it is of little significance. It is moving in
essentially calm water. Therefore a propeller or turbine used
to transform the translation oscillation into rotation oscillation
may preferably be connected to this additional, deeply submerged,
body. Later we shall discuss other methods to obtain effectively

a large enough mass to satisfy the resonance condition (27).

Also the mechanical resistance R may be optimised. P has its

maximum value

s - P
= 809N0)
P BR (29)
r
when R = R, (resonance absorbtion). By means of eq.(22) we obtain
_ 3mpg® . an,?
Pn = TT6 Wwe (30)

Fig.4 shows Pm as a function of the radius a of the tank when the
wave amplitude ny = 1 m and the wave period Ty = 10 s. In the
same figure is also shown the displacement amplitude at resonance

(w=wq)




_ .1 . Apgng
Co = Wo R + R (31)

as given by eq.(l2), when R = Rr’ It is noticed that 7¢ becomes
very large for small values of the radius a. This is in fact
prohibitive for two reasons. In the first place it was a pre-
supposition for the theory that the depth 2 of the tank (see Fig.2)
is small in comparison to the wavelength of the wave. Since
obviously zo < % this means that g, must be kept within limits,

say ¢y < 5 m for a wave period of Ty, = 10 s. Even more important
is that drag forces become significant when 7, is large. This is
realised as follows: The drag force on a cylinder with a hemi-

spherical bottom is

= ¢ .1 42
FD = CD > pu“-A ’ (32)

where CD is a dimensionless coefficient considerably less than 1,
u is the velocity of the cylinder and A its cross section. The

requirement is (see comments to eq. (10)) that

FD << (R + Rr)u0 (33)

This condition is fulfilled if

2 0u? " A < (R+ R)u, (34)
or, since u, = wyz, at resonance,

1

3 pwoLoh < R+ R (35)

If this inequality is fulfilled eq.(31l) is correct, which together

with eq. (35) gives the condition
(36)

Taking ny, = 1 m and the wave period T = 10 s, gives ¢, < 7 m. The
conclusion is that if we take the depth § of the tank of the

ordef of 5m, i.e. 7o £ 5 m, eg. (30) is correct for most common
wave heights. Eg. (30) has obviously the limitation that the
oscillation amplitude z, shall not exceed the depth ® of the tank.
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This means according to eq.(31) that

1 Apgnyg
o R+ r_=F (37)
or
Apgnyg .
R » ———~ -~ R
™ Wl r (38)

The conslusion is that we take R = Rr for such wave amplitudes n,
that

2R » 2PINo (39)

r ' wgl
Then eqg. (30) applies. If eg. (39) is not fulfilled we take

_ Apgngy _
R = OJO/Q/ ‘ Rr (40)

Then we must use eq. (28) to calculate P. 1In Fig.5 we have

plotted P as a function of n?(t) = %ﬁ% for the case % = 5 m,
a=8mand T = 10 s. This curve represents the maximum power

that the tank can absorb from the regular wave.

2.1.2 Wind-generated waves

Ocean waves are not harmonic. Frequency analysis of real waves
shows that they have a continuous frequency spectrum. Fortunately,
the frequency spectrum is highly peaked, so that most of the energy
in the wave is concentrated in a relatively narrow frequency band.

The so-called power spectrum E(w/wm) of a wave system with peak

frequency w = W is related to the mean squared valueé of the surface

elevation n?(t) as follows

n?(t) =

o8

E(w/wm)‘dw. (41)

E(w/wm) represents the contribution to n?(t) per unit frequency
interval. It can be shown that the absorbed power by the tank in

this general case 1is

— o R
P = Ru” = (Apg)? [ =

WT‘R”NYZ. £ E(w/wm)dw ' ’ (42)
0 r
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where f is given by eqg.(26). A representativesagalytic expression
for E(w/wm) is the so-called Jonswap spectrum '’

5

2 4] S

_ -5 @w =5 5w = .

E(w/wm) = og “ﬁl(a") exp[-z(a~) Y ' (43)

m m
where

- 2

. = exp [~ (w/wm 1) :

Pl =
o = 0.008
w, = peak angular frequency

Il

0,07 for w < W

Il

0,09 for w > wm

peakedness parameter

=
I

The y-value reflects the various wind conditions. The case y = 1
leads to the Pierson-Moskowitz spectrum. However, the average
value found for y in a comprehensive observation project in the
North Sea off the Island of Sylt was y = 3.3.%,9 Observations in
the Lopp Sea off the coast of Northern Norway fitted eq. (43) very
well with y between 1 and 3°.In this note we have therefore based
our numerical estimates on the average Jonswap spectrum (y=3.3).

However, final results for y = 1 will also be given.

Eg. (43) shows that E(w/mm) is peaked around the angular fre-
gquency wm. Fig.6 shows E as a function of w/wm when v = 3.3, It
is seen that the half width

The function f in eq.(42) has a peak value f = 1 for @ = Wo
(se egs.(26) and (27)). The width of the peak is roughly




bwg = 2Kwo (45)
where
R + R
K = ¥ (46)
2Apg 0

If the frequency dependence of the factor R/ (R + Rr)2 in eqg. (42)
is neglected it is realised that f operates as a filter function
for the power spectrum E(w/wm). Only those frequencies of E(w/wm)
that falls within the peak region of the filter function f give

a significant contribution to the absorbed power P. It is there-
fore obvious that P is closely maximised when the peaks of E(w/wm)
and f(w) coincide. This means that the resonant frequency

Ve = 2m/wy of the tank must be tuned to the peak frequency.

Vo = 2ﬂ/wm of the power spectrum of the waves, i.e. the tank must

operate at resonance.

The wider the peak of f is the more of the spectrum of E(w/wm)
can pass through the filter. However, a wider peak means a large
value of (R + Rr) according to egs. (45) and (46). Since P from
eq. (42) is inversely proportional to (R + Rr)2 this means that R

has an optimum value.

By means of eq.(41l) we may write eqg. (42):

R(Apg)?

P = [R -+ R (wo)}z ° T}Z(t), (47)
where
© R+ R (wody2
J <R~ r(~y }‘A(w)E(w/w ) dw
q = Sy L (48)
J E(w/uw)
0

is a dimensionless quantity less than 1. The form of P as given

by eq.(47) is particulary convenient since n?(t) is a quantity
that generally i1s easily obtained from published wave observations

(see Fig.l)
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If we compare eq.(47) with eq.(28) we see that %noz is replaced

by gn?(t). Since for a sinusoidal wave n?(t) = %noz, we see

that P is reduced by the factor g when the wave has a finite

spectral width. The factor g is a function of R, wy, W and a.

When wo = wor g has its maximum value. It can be shown that this
maximum value approximately can be expressed as a function of ¢
only
_ E<X;Z—1 ax
Tl (2xk )°
q = = (49)
[ E(x) * dx
0
where
X = w/wm (50)

The approximation consists in neglecting the frequency dependence
of Rr and Xr/w, i.e. we put Rr(w) R Rr(wo) and Xr(w)/w ~ Xr(wo)/md.
In Fig.7 g is plotted as a function of ¥. We see that if ¢ = 0.1
the actually absorbed power P is about fifty percent of the corre-
sponding power if the incident wave were purely sinusoidal. 1In
this case eqgs. (44) and (45) show that the wave spectrum and the
filter function £ have equal half widths. For larger values of «
Fig.7 shows that g approaches unity. This was to be expected since
then almost all of the wave power spectrum falls within the peak
region of the filter function f£.

Since R is a function of «, a and wy according to eq.(46),
the absorbed power P, as given by eq.(47), can be expressed as a
function of a, w, (which is equal to wm) and Kk, In fig. 8
we have plotted K = P/nz(t) as a function of kv for various wvalues
of a when Ty = 27/wy, = 10 s. It is seen that K can be optimised
by a proper choice of k (or R since R = R(k)). Fig.9 shows the
maximum value of K as a function of the tank radius a for two
different periods Ty. It is seen that the absorbed power is not
very sensitive to the period Tm of the incident wave. This is
explained as follows: It is seen from eq.(22) that Rr is increased
when w is increased. This means that the factor R/(R + Rr)2 in
eq. (47) is reduced. Further, eq.(46) shows that also k increases.
According to eq. (49) this means a larger g value in eqg.(47).

The net result is that K changes very little.
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For the same reason as discussed previously in connection with
eqg. (30) and Fig.4, the curves in Fig.8 are valid only when the
oscillation amplitude of the tank is kept within limit. This means
that the relation

P =K - n’(t) (51)

is valid up to a certain value of n®(t) only. We want to estimate
the relatively small contribution to the annual production which

is due to the short times when eq.(51) is invalid. Let us as a

rough approximation put gn?(t) equal to %noz where n, is the ampli-

tude of a harmonic wave, i.e. we put n, = \/2gn?(t). Then if eq. (39)
is fulfilled we calculate P from eq.(51). If contrary, eq.(28)

together with eq. (40) is used. 1In the latter case g changes as
HTTE)'changes according to egs. (46) and (49), and a graphical

" method must be used. Fig.10 shows the result for the case a = 8 m,
To = 10 s and & = 5 m. The curve ‘gives the power absorbed by the
tank as a function of the variance H?TE) of the wave elevation
when the tank parameters are optimised, i.e. when the resonant
frequency v, of the tank is egual to the peak frequency Vi of the
power spectrum of the waves and when the mechanical resistance R

of the system is properly chosen (resonant absorbtion).

By means of Fig.l0 and Fig.l we can now estimate the energy
absorbed by the tank if it is placed in the North Atlantic. The
result is presented as a duration curve in Fig.ll. The area under
this curve is the total wave energy absorbed by the tank per year.
The energy amounts to 1.3 - 107 kWh. Fig.ll also shows the duration
curve for a tank placed outside Halten, Norway during a 6 months
winter season. The total energy absorbtion during this season is

6 « 10° kWh.

These numerical results are based upon the assumption that the
Jonswap power spectrum is representative for real waves®. However,
if the Pierson - Moskowitz spectrum is used (which corresponds to
vy = 1 in eq.(43)) the results for the North Atlantic is 0.8 * 107
kWh. This is considerably less than the result 1.3 * 107 kWh

obtained by the more sharply peaked Jonswap spectrum.




2.1.3 Tunable resonator

It should be clear from the previous analysis that power absorb-
tion from waves by a heaving tank is critically dependent upon a
matching of tank parameters to the slowly changing wave parameters.

It is particularly important to tune the resonant frequency vy of

the tank to the peak frequency Vi of the power spectrum of the waves.
Also the mechanical resistance R must be properly adjusted. This

can be accomplished by changing the magnetic field in the electric
generator and presents presumably no great problem. In the following,

therefore, we will concentrate on the parameter v,.

Consider a tank performing free oscillations in the sea as illu-
strated in Fig.2. According to eqg.(27) the angular frequency of the

system is

Wo = é—g—g-.- (52)

when X is neglected. The mass m of the tank is equal to the mass
of the displaced water when the tank is in its equilibrium position.

Hence
m =~ Apl : (53)

Thus

= 21 g
wy = 22w~ | (54)

is
Lo~ og(st)? (55)

The average wave period in large ocean areas is T~ 8 - 10 s. How-
ever, the peak period Tm of the power spectrum is slighly larger than
this. Assume that Tm = Ty = 10 s. Then according to eq. (55)

2 = 25 m. But this is a dissapointingly large depth for two reasons:
In the first place, the accelerating force from the waves decreases
exponentially with the depth of the tank (see footnote on page 7).
This means that the power absorbtion by a tank of 25 m depth is

considerably less than that of a shallow tank. Furthermore the
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previous analysis has shown that the amplitude of the tank oscilla-
tions should not exceed 5 m (see eg.(30) and comments). A tank
with 25 m depth would therefore have a considerable dead volume.

In addition there would be the problem of tuning the resonant

frequency of the tank.

A solution which presumably circumvents these problems is illu-
strated in Fig.l2. The tank A is kept in a semisubmerged position
by means of a wire S. The wire passes around the circumference of
the axis of two flywheels F placed at the bottom of the sea, and is
tightly stretched by means of the buoyancy of an empty tank B.

When the tank A is forced to perform heaving motions in the sea due
to incoming waves, the flyweeels F and the tank B become part of

the oscillating system because of the force transmission established
by the wire S,

Assume now that the axes of the flywheels have a radius r

17 and
that the masses of the flywheels are concentrated at a radius L.
Then it can be shown that the differential equation for the
oscillating system is
;'E_z_ 2 N s _
(mF(rl) tmy + my)t + RC (n-2)Apg, (55)
where mF is the total mass of the flywheels, mA is the mass of the
tank A and my the mass of the tank B. If we compare eq.(55) with

eqg. (6) we see that the system operates as if it had a mass
m = (£2)2 + m_ + m (56)
eff = Tr'Ty a " M

The period of the tank oscillation is then approximately

\/meff

Ty = 27 xog

(57)

It is seen that M g CaN be raised considerably above the actual
mass of the system by having r, > r;. This means that we can have
a shallow tank A and yet have a sufficiently large T,. In addition
this system probably permits a tuning of T,, for instance by

adding mass to the flywheels by means of a clutch system or by a
gear box. The tuning facility should be able to shift the resonant

period T, by a factor which is at most somewhat less than two.
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The mechanical resistance R in eqg. (55) is mainly established
by a rotating electric generator. The generator (not shown in Fig.

12) is mechanically connected to the flywheels.

The essential point with the system illustrated in Fig.12 is that
the kinetic energy in the resonator (see eq.(4) and comments) is
mainly stored in the fast moving masses of the flywheels and not in
the slowly moving mass of the tank A. In fact the tanks A and B
may have negligible masses, i.e. the efficient mass of the system is
practically all supplied by the flywheels. This means that the
tanks could simply be two air-filled. baloons contained in a strong

wire netting. This would probably be a cheep solution.

It should be noted that there are many alternatives to the idea

sketched in Fig.l2. Figs.1l3-15 show some of these.

Still another possibility is to have force transmission from
the tank to land, for instance by wires or hydraulic means. This
has the advantage that the necessary mass of the oscillating system
can be supplied on land (for instance by a flywheel or a water
column) and that the power station can be placed on land. The force
can in this case also be used to pump water into the water reservoir

of a conventional hydroelectric power station.

2.2 Water column

Fig.l6 shows an alternative resonator system, Here the ocean waves
excite the motion of a water column in a y-shaped tube. The water
column has a natural frequency given by the length of the tube.

When the resonant frequency of the tube is tuned to the peak fre-
guency in the power spectrum of the waves the water column will have
its maximum oscillation amplitude. The water column may be damped,
for instance, by placing a water turbin in the oscillating column or
a gas turbine at the entrance B of the tube. The net result is

then that wave energy is converted into electric energy. The

tuning of the system may be achieved by letting a fraction of the
kinetic energy of the system be stored in the rotating turbine
(flywheel). The tuning is then established by changing the moment

of inertia of the turbine.
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Another way of tuning the resonator is by varying the length
of the water column, which is proportional to the square of the
resonant period. The effective length is adjustable by means of
plane lid(s) as indicated for a construction shown on Fig.l7.
Energy is extracted from the resonator by means of a turbine which
is connected to an electric generator (Fig.l1l7). The water speed
at the turbine is of the order of 1 m/s. It should be noted that
the kinetic energy of the water leaving the turbine is not lost
from the system. The efficiency requifement on the turbine design
is that energy lost in friction and turbulence should be minimised.
This turbine changes its sense of rotation twice each oscillation

period.

A system where the turbine rotates continuously in the same
direction is indicated in Fig.18. For this purpose a buffer is
used. Water is let into a water reservoir by opening a water valve
when the water column is at its highest position. By proper con-
trolling of this valve, the correct value of the mechanical resi-
stance R is chosen. The water level in the buffer may be about 5 m

)

above the sea level.* The turbine is driven by dropping the water
back to the sea. An alternative is to apply the increased pressure,
when the water column is at the top, to drive a pump which pumps
water into a higher water reservoir or pressurised air into an air
tank. From the buffer a turbine is driven by water or air, respect-

ively.

If a long cliffy shore as indicated in Fig.l18 can be found,
a battery of column resonators may be constructed. They may use a

common buffer, which drives a large-scale power station.

The tuning may be realised by the lid-positioning method of
Fig.1l7. An alternative method is to vary the length of the water
column by adjusting the amount of air in the air cushion in the
closed chamber above the upper end of the water column as shown in
Fig.18. Of course, this method of tuning may also be combined with
the energy extracting method of Fig.l1l7.

*)
The height of the water level in the buffer will be considerably more than 5 m if

the water column tube is made considerably narrower in the upper part.




2.3 "Balloon" resonator

The resonator in Fig.1l9 drives air between two alr reservoirs.
Electric energy is extracted from the resonator by means of an air
turbine placed in the connecting tube between the two systems.
Since air has a low density the kinetic energy in the resonator
must primarily be stored in the turbine which must also function
as a flywheel.

2.3.1 Coupled "balloon" resonator

The resenator shown in Fig.20 is a variant of the system de-
scribed above. Here both reservoirs are placed below the water sur-
face, half a wave length apart. Then the exciting force will be

twice as large as with one submerged tank only.

This system consists of two reservoirs They are coupled
by means of the air column between the bhambers A and C. Perhaps
it is possible to design a system with a broader resonance curve
than a single resonator, such that most of the wind-generated wave
spectrum is contained within the resonator filter curve of the

coupled system.

2.4 Controlled movement of wave interacting systems

Consider the system sketched in Fig.l12. The movement of the tank
A produces an out-going wave. This wave is superimposed on the
incoming wave such that a resultant wave of reduced amplitude con-
tinues in the direction of the original incoming wave. 2As a
consequence, wave energy is absorbed by the oscillator. Obviously,
the power absorbtion from the waves would be optimum if the tank
moved in such a fashion as to generate waves of the same time
variation as the incoming waves. Unfortunately such a tank move-
ment can only be achieved when the incoming waves are harmonic.
This fact applies for any linear oscillating system and is the
reason why wind-generated waves are less efficiently absorbed than
harmonic ones (swells) by the oscillator. Quantitatively this is
expressed by the spectral factor g in eq. (47). However, if the
movement of the wave interacting system is controlled by an addi-
tional force to move it in this preferable fashion, then the effi-
ciency (g-value) of the energy absorber can be increased consider-

ably. Assume for instance that the flywheels in Fig.l2 are replaced
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by a combined motor and generator that controls the movement of
the tank A. This device is run in such a way that the incoming
wave 1is reduced maximally. Then, obviously, the motor consumes
less energy than the generator delivers with the net effect of

the tank being an efficient absorber of wave energy.

This system needs a separate theoretical analysis before

guantitative results can be given.

3. CONCLUSION

This analysis has shown that ocean waves contain considerable
energy amounts and that this energy, in principle, can be converted
into useful (electric) energy. It has been demonstrated that the
parameters of the system that interacts with the waves must be
continously tuned to the slowly varying parameters of the waves in
order to absorb wave power efficiently (resonant absorbtion).
Several interacting systems that meet these requirements are pro-
posed. One of the systems (heaving tank) is analysed in detail on
a theoretical basis. Estimates of the maximum energy amount that
the system can produce are given. These estimates apply rougly for
the other proposed systems also.

The proposed systems have not been given a technological and
economic analysis. No doubt, there are much work left before a
conclusion about the feasibility of the proposed systems or similar
systems can be made. However, in view of the large energy amounts
contained in the ocean waves and keeping in mind the shortage and
raising prices of energy it seems reasonable that such a techno-
logical and economic study should be given high priority. 1In parti-
cular, a project of this kind would be natural for Norway due to
its long and stormy coast. It is hoped that the present theore-
tical report can result in further research and develcpment on the
subject.




Appendix A. PLANE AND CIRCULAR SURFACE WAVES ON AN IDEAL INCOM-
PRESSIBLE FLUID

Here, we shall, for convenience, present a mathematical de-
scription of harmonic surface waves with plane or circular geometry
(straight and ring-shaped wave front, respectively). The energy
content and transport associated with surface waves is also con-
sidered. Further, the generation of radial (circular) waves from

a floating object in heaving oscillations is studied.

It is assumed that the wave amplitudes are so small that a
linearised theory applies. The variable quantities vary harmoni-
cally with time as eiwt. For convenience, this factor will be
suppressed in many of the following expressions. We let the plane
z = 0 coincide with the undisturbed free surface of the fluid,
with the z axis pointing upwards. Only the real part of the com-

plex variable quantities has physical significance.

The basic equations for the waves can be found in books.'®

For convenience, they are resumed here as follows. Only deep water
formulas are given. They give a very good approximation if the
depth is larger than the wavelength. They give a rough approxima-

tion also for depths as small as one third to one half of a wavelength.

The fluid velocity v can be expressed by the velocity potential ¢
v o= o | (A.1)
which satisfies Laplace's eguation
VZ¢ = 0 (A.2)

and the following boundary conditions.:

(1) On the solid boundaries the normal component of the velocity
U of the surface of the solid must equal the normal component of

the velocity

36 _ (A.3)

on n




(2) On the free surface, where the pressure equals the atmos-

pheric pressure, we have

—w?¢ + g2 = g

iz (z = 0) (A.4)

-

where g is the acceleration of gravity,

The hydrodynamic pressure is given by
P = -iwpd (A.5)

where p is the mass density of the fluid and the surface elevation

is

.

n =-ém Mz=0 (A.6)

A.l Energy and power of plane waves

For a plane wave which propagates in the x direction (A.2) reads

52 52
5§$ + 35% =0 (A.7)

since there is no variation along the y axis. By the method of

separation of variables the following particular solution of (A.7)

is obtained

-ikx kz
e

¢ = idnge (A.8)

Here 1(g/w)noe is a constant. The angular wave number k is assumed
to be positive. The minus sign in e—ikx means that the solution
represent a wave which propagates in the positive x direciton.
Since ¢ and all its derivatives are negligible when -kz >> 1,

(A.8) satisfies fairly well the boundary condition (A.3) at the
bottom, if the depth of the fluid is at least one wavelength.
According to (A.6) the surface elevation is

N o= nge TR (A.9)

The solution (A.8) must satisfy the boundary condition (2.4) at

the free surface. This means that the angular wave number k




and the angular fregquency w are related by

w® = gk (A.10)

The wavelength is

2 2 T2
x:..%=_(;'gﬂ=%.ﬁ_ (A.11)

where T = 2n/w is the period of the harmonic wave. The phase
velocity of the wave is

p = F - % %7 (A.12)

g d 20 4t T 3% ' (A.13)

An energy amount of p(x,z,t)vx(x,z,t) passes through a unit

area of the yz plane per unit time. The time average of this amount

is

I= p(x,z,t)vx(x,z,t) = %Re{p(x,Z)vg;(x,Z)}

Using (A.l), (A.5) and (A.8) this becomes

1 x 2
T=5Rel-iups 3271 = Zukp|o|? = KBLp 27K (A.14)

Integration over the interval =-«<z<0 yields the average power per
unit length (in the y direciton)

0 2 2
_ _ P9 2 _ p9g°T
k= JTdz = §|n |2 = L2y, (A.15)

It can be shown +that

K = E .
vg (A.16)

where vg is given by (A.13) and

E = §ﬂ|n0l2 (B.17)
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is the average stored energy by the wave (per unit surface area).
In time average half of this energy is stored as potential energy

and the rest as kinetic energy.

A.2 Radial waves

If a floating object, rotationally symmetric about a vertical
axis, 1s oscillating harmonically up and down, out-going ring-shaped

or "radial" waves are generated.

When circular symmetry around a vertical axis at r = 0 is

assumed, (A.2) gives

3%¢ . 1 3¢ 32$ _
5c2 Tt 3r Tazr T O (A.18)

Using the method of separation of variables yields the particular
solution

o = e®%z, (kr)

Where Z, is a linear combination of the Bessel functions J; and
Ny of zero order. Still k is given by (A.10) if the free-surface
boundary condition (A.4) is to be satisfied. 1In order to satisfy
the requirement that the waves are out-going (the radiation

condition) the solution must be of the form!'!
o = Be®? B{2)ky) (A.19)

where B is an integration constant.

The Hankel function Héz%kr) is given by setting n = 0 in
5 2hx) = 0 (x) - iN_(x) (2.20)
n n n '

We shall need the asymptotic approximation®?®

22 x) w2 e-i(x =T/4) (A.21)

X

which 1s valid for x = kr >> 1. Further we need the following

expressions valid for x - 0,
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(2) . _ .2 2 _i X2 2 2

Ho(x) = i In =2+ 1 -iz— In = + 0(x?) (A.22)
. 2 X 2

H;z%x) = i% + i In oo+ 0{x} (A.23)

where v = 1.781...

According to (A.l) the velocity has a radial component

k2 g2y (A, 24)

v = -a-gl = Bekz %"‘" ng )(kr) = =kBe
r 0

r or
The surface elevation of the ring-shaped wave is obtained from
(A.6) and (A.19)

n o= —igB 182 ke . (A.25)

We consider a simple case where the constant B can easily be
determined. Let the wave source consist of a vertical, infinitely
long, circular tube, whose outer surface, of radius a, has a small-
amplitude, radially directed velocity
kzeiwt

u = Ugpe

- , (A.26)

where k is given by (A.10) and u, is a constant which represents
the velocity amplitude at z = 0. In this case the solution (A.19)
is valid for all r > a. We insert (A.24) and (A.26) (suppressing
iwt
)

the factor e into the boundary condition (A.3) and obtain

= - e B0
B = --(2% (A.27)
kﬂl ka)

It should be noted that (A.19) is only a particular solution of
(A.18). When radial waves are generated by a circularly symmetric
wave source, the potential can be written as

¢ = o, + B ? H{?{xr) (3.28)

where ¢£ is another (usually more complicated) particular solution

of (A.18). The term ¢Q represents the local potential near the




source since its amplitude decreases as 1/r as r - «,5711

The last term in (A,.28), which has an amplitude going as v1/r

when r - «, is the dominating term for distances r a few wavelengths
away from the source. However, the term ¢2 is important in the
interaction between the oscillation of the source and the wave in
the fluid. In general, the term ¢2 prlays a very dominant role when
the boundary condition (A.3) at the wave generator is to be taken

explicitly into consideration.

When r -~ » we can neglect ¢2 in comparison with the last term
in (A.28) and use the asymptotic expression (A.21) for Héz%kr).

Thus, (A.28) gives for r » «

6 + Bekz\/F%? e‘i(kr - n/4) (A.29)

This expression is a good approximation if |kr|>>1. For the surface

elevation (A.6) gives

n = B% Uwir emim/4 e kT (2.30)

Since V1/r varies relatively very little over one wavelength when
r is very large, the radial wave can be considered as a plane wave
when r - <, Hence, the energy transport formulas (A.14) and (A.1l5)

are applicable when

ne is replaced by B% V?%? e~im/4

Thus the average power radiated in the out-going radial waves is

2
= K- = P97 Wp2 2 - PWigy2
P. = K- 2Tr= " 19_B[ 2T = |B| (A.31)

A.3 Radial waves from an oscillating heaving source.

The excitation of waves from oscillating heaving bodies which
have a vertical axis of rotational symmetry has been analysed
before. Havelock has considered a cylinder of finite length!?
and a sphere.’ Newman has considered a more arbitrary rotationally
symmetric body whose maximum radius i1s small in comparison with
the wavelength.® Results of these analyses will be given after the

next subsection, which considers a simpler case where (A.19) and
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(A.25) with (A.27) can be used directly.

Let the vertical position of the vertically oscillating body of
revolution be denoted by

retut (A.32)

Suppressing the factor elwt

the corresponding velocity is iwzg.
The radiation resistance Rr of the wave generator can be defined

by

Y S 2

P_= 2Rr|1mci (A.33)

where Pr is the average power which is delivered from the generator

to the waves. Cf. eq.(20) of section 2.1. Since power dissipation

is neglected in the present analysis (ideal fluid), this power is

the same as the average power at an arbitrary radius r. Hence,

using (A.31) we find the following general expression for the radia-

tion resistance '
R = 2ow1 B |2 (A.34)
R |7

The relation between B and ¢ is studied for different forms of the

body of revolution in the following subsections.

A.3.1 Exponentially varying cross section

We consider a body of revolution whose radius R varies with z as

R = R(z) = a - b(l—ekz) (A.35)

(Fig.21). We shall assume that

b << a, (A.36)

Dropping the factor elwt, the velocity (positive in the z~-
direction) 1is iwg. The normal component at the surface of the body
is (Fig.22) u = -iwgsina and the fluid displacement velocity has a

radial component




- 30 -

ur = uncosu = =-iwgsinacosa

Because of (A.36) o is small. Hence,

kz

U~ —iwrg m —iwzgg = -iwrkbeXZ,

r

and this can be considered to be the radial component of the fluid

velocity v at r = a. This corresponds to setting
up = -iwkbg (A.37)

in (A.26). Thus (A.27) becomes

B = iﬁ%é%m (A.38)
kH;%(ka)

Expressions for ¢ are obtained by inserting (A.38) into (A.19).
Using (A.34) we find

2
R = --2§“§ (A.39)
k|H!?(ka)]|?

This result may also be obtained by considering the reaction force
from the waves on the oscillating body. According to (A.5), (A.19)

and (A.38) the dynamic pressure on the surface of the body is

w2 obzE 2 1ka) Kz

plr=a= (z%ka) © (A.40)

The vertically directed reaction force is

0 0 (

)
\‘-l k
fazamads p __ = fdz2wabke] C prHik(ia) "% =

|
]

w2 oz {2 ka)

= mab? (Z%ka) (A.41)
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The time average of the power delivered from the body to the fluid

is

1 . 1 . . 1 .
P, ==3Rel{F (iwg)*} = SRe{2 iwr(iwg)*} = FReZ [iuwz|? (A.42)

where we have introduced the radiation impedance
Z_=TR_+ iX_ = —= ‘ (A.43)

Since Rle = Rr’ and since there is no power loss, this definition is
in agreement with (A.33). The radiation reactance Xr may be written
as

X = wm (A.44)

where m is the so-called "added mass". Using (A.41) and (A.43)
we get ‘
(2)

A . - 4 2 H (ka)
Zr = R, + er = iwpmab ;%Z?:z? (A.45)
1

Using (A.20) and a Wronskian relationship!® (A.45) gives"

J; (ka)Ny (ka) - T, (ka)N; (ka)
R, = wpmab? =
{J1(ka)}? + {N,(ka)}?

_ 2wpb?
k{J; (ka)}? + k{N, (ka) }?

(A.46)

This agrees with (A.39). Further, (A.20) gives

Jy (ka)d; (ka) + Ny (ka)N; (ka)
X, = wpmab? (A.47)
{J1(ka)}?* + {N;(ka)}?

From these formulas the curves in Fig.23 have been computed. Using
the asymptotic expansion for H§2&ka) in (A.39) it is easily shown
that Rr +~ wpmab? as ka + ®», This corresponds to the dashed horison-

tal line in Fig.23. For ka<<l, (A.22), (A.23) and (A.45) give




oL 2
R~ 2wkp(ﬂab) (A.48)
X~ wkp (mab)2i1n—2— (A.49)
r T vka :

where terms of @{kzazln(ka)} compared to 1 are neglected. We see
from Fig.23 tha£ these approximations are fairly good for ka < 0.3,
Further we see that the radiation reactance Xr = wmr is smaller than
the radiation resistanceRr if ka > 0.3. It should be noted that if
the floating body of Fig.21l is not infinitely deep, but cut such

that it has a flat bottom at a depth z = -H, an additional added mass,
excluded above, must be included. If H>>1/k this bottom end does

not contribute much to the radiated wave power and, hence, to the
radiation resistance. Cf.(A.33), (A.34), (A.57) and (A.58). In-
cluding the effect of the bottom end would, in contrast to Fig.23,
probably make the total radiation reactance larger that the radiation
resistance. This is actually true for the floating hemisphere.
Cf.(A.69) and Fig.3.

A.3.2 Slender body with arbitrary cross section

Having analysed the wave excitation from the rotationally
symmetric oscillating body of Fig.21l where R(z) is given by (A.35),
we give now some results where R(z) is a more arbitrary function,
but under the assumption that |kR|<<1l., The depth of the floating
body is H. The the velocity potential is®

iwg 0 dA(z,) ‘

¢ = i —I{I az, g(r,z,z,)dz; (A.50)
where
A(z) = m{R(z)}? (A.51)
and ) -
-X
g(r,z,z;) = {r?+(z-z1) } *+ PJ %;%e(z+zl)Jo(mr) dm
- 2mikeF(ZF2) 5 (kyy, (A.52)
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P denoting principle value of the integral. By deforming the path
of integration one finds!!

k(Z'l'Zl)H

g(r,z,z,) = -i2nke éz%kr) + qg(r,z,zl) (A.53)

where

g,(r,;z,2z1) = {r2+(z—21)2§%+{r2+(z+zl)zf%

4k 7 o
- = { {k cos m(z+z:) -m sin m(z+z,)} %%éﬁﬁé dm  (A.54)

Here Ky is the modified Bessel function of zero order and second
kind. When mr is positive, K;,(mr) decreases monotonically with

mr, in fact, for mr>>1, Ko (mr) ~ e "/7/2mf. But K, (mr) has a
logaritmic singularity at mr = 0. It is easy to show that all of the
three terms in (A.54) goes as 1/r when r » «, Thus, on the right-
hand side of (A.53) the first term dominates over the second when r
is sufficiently large.

The potential is given by (A.28)
o = B %% {2hkr) + 8 (A.55)

where now

= lwg % dA(z1)

¢y 4“—H iz, qz(r,z,zl)dzl (A.56)
_ wke
B = —§_Aeff (A.57)
_ 9 da(z) kz.
Ajss = _J —, e Tdz (A.58)
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Thus, a given volum displacement (-zdA) gives the smaller contri-

bution to the amplitude of the distant wave the deeper the displace-
ment takes place.

By inserting B from (A.57) into (A.34) we find the radiation
resistance

k
;= PRl (A.59)

For the body shown in Fig.21 (A.35), (A.36), (A.51) and (A.58)
give

9 2k
A_gg = 2mabk [ e““faz = rap (A.60)

- 00

We see that (A.48) agrees with (A.59).

Finally, we consider the reaction force on the oscillating body.
When r +~ 0 the leading term in g(r,z,z;) is the first right-hand
term in (A.52). Inserting this term into (A.50) the following

expression for the velocity potential at the body, r = R(z) is ob-
tained®

0] g = iz REInz + O(R?) (A.61)

The reaction force Fr is

F If{dz ZTrR plr R (A.62)

Inserting from (A.5) and (A.6l) gives

-F 0
r __ . dR 2 l__
Tor = 1wp2w_£ (R37) “lng dz + «-»

Since the leading term is imaginary, it represents the radiation
reactance Xr or added mass m,. = Xr/w. Thus, for a slender body

(R - 0) the leading term of the radiation reactance is




- 35 =

~ 0 dr,?%. 1
X, v wp2ﬂ_i[i (R-a-z) lngzdz (A.63)

For the body of Fig.21 (A.35), (A.36) and (A.63) give

. ) 1 0
2 7 =
Xr vowp2Ta Lna [ (bke

- 00

kz)?‘dz = wkpwazbzlné

This agrees with (A.49) when a - 0.

Now consider a rotationally symmetric body which is cylindrical
down to a depth £ and which has a given shape further down.
Thus R = R(z) varies from 0 to a when z varies from z=-H to z==4. In the
region 0>z>%, R(z) = é.= constant and dR/dz = 0. For this case

(A.63) shows that (to the present approximation) the added mass
m =Xr/w is independent of g (A.64)

However (A.58) and (A.59) show that the radiation resistance

R, is proportional with o™ 2K (A.65)

(to the present approximation). The result (A.64) is reasonable:

The added mass associated with the heaving motion is given only by

the shape and magnitude of the bottom part of the body and independent
of the upper cylindrical part. The result (A.65) was to be expected
for the following reason. The factor ekz in (A.58) means that if a
given oscillating volum displacement is lowered from the surface down
to a depth £ , the wave amplitude far away is reduced by a factor
e—kﬂ.‘ Thus the power and, hence, the radiation resisﬁance are

reduced by a factor e—2k£. Cf.(A.33).
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A,3.3 Heaving hemisphere

We consider a semi-submerged floating sphere of radius a. Then
R(z) = ya< - z , —a<z<0

If a is small compared to the wavelength the preceding results are
applicable. From (A.58) we find

_ d(a?-z2%) kz _
Bogs ‘_i gz e dz =
_ 27 ; -ka, _ >
= Ef{l - (l+ka)e } o= ma? (1+0{ka}) (A.66)

From (A.59) we then find the radiation resistance

R = KO0 2.4 (14 prka))

r 2
3
- 2ﬂ§ P (A.67)
where
e = %lka + 0{x2a?) (A.68)

This first order term for small a is shown as the dashed line in

Fig.3.

For larger values of the radius a an analysis has been carried

out by Havelock.” The radiation impedance can be written as

a3

Z_ = wng (e+iy) (A.69)

where € and u are given by the numerically computed, fully drawn,
curves of Fig.3. The parameter y is a dimensionless measure of the
added mass referred to the mass of the displaced fluid. It is seen
from Fig.3. that the first order theory for small a - cf. (A.66) -
gives large deviation from the correct values when ka > 0.1.
Comparison with Fig.23 indicates that the first order approximation
has a smaller region of validity for the floating hemisphere than
for the body of Fig.21.
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positioned weather ships in the North Atlantic!’*), The dashed

curve is based on measurements over 6 winter months 1972/73 out-

side Halten, Norway.? If the period of the waves is taken as T = 10 S,
the power transmitted per unit length of the wave crest is as givén

by the right-hand vertical scale.

*)

We have put nz(t) = HS?‘/lG, where HS is the significant wave height. HS is
related to the observed average wave height Hv in ref, 1 by the relation
g = 1.68 *H 0’75, where H and H_ are given in metres.
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L
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Fig.2

A tank performing heaving motions in the sea. The undisturbed sea
level is indicated by the dashed line, n is the surface elevation
of the sea and r is the displacement of the water line of the tank.
The diameter and the depth of the tank are small in comparison to

the wavelength of the waves.
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Fig.3.

The dimensionless functions ¢ and 1 (taken from Ref.7)

give the radiation resistance Rr and the radiation reactance
X, for a cylindrical. tank with a semispherical bottom in
accordance with egs. (22) and (23). The dashed line corre-

sponds to the first order term in eqg.(A.68).
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Fig.4 The maximum absorbed power Pm and the displacement amplitude
r, ©f a tank as a function of the tank radius a, when the wave

amplitude and period aren, = 1l m and T, = 10 s, respectively.
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The curve gives the maximum power that a heaving tank with radius
a = 8 m and height 22 = 10 m can absorb from a sinusoidal wave with
period T = 10 s. The dashed curve represents the function Pm as

given by eq. (30).
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0 0.1 0.20 0.30

Fig. 7 The spectral factor g as given by eq. (49) plotted as a

function of « when vy = 3.3 in the Jonswap spectrum.
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Fig.8

0.1 0.2 0.3

The ratio P/n?(t) as given by eq.(47) plotted as a function

of the parameter k for various values of the tank radius a.

The fully drawn curves are for the case T, = Tm = 10 s. The
dashed curves are obtained when T, = ’I‘m = 8 s.
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Fig.9 The maximum value of the ratio P/nz(t) as given by eq.(47)

as a function of the tank radius a for two different values

of the period Ty,.
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Fig. 10 The maximum power that a tank of radius a = 8 m and depth
%2 = 5 m can absorb, plotted as a function of n?(t).
Ty =T = 10 s.
m




Fig.11l

2 4 6 8-10%h

Duration curve for optimum power absorbtion by a tank with
diameter equal to 16 m and height 2% = 10 m placed in the
North Atlantic. The curve gives the number of hours of the
vear in which P exceeds the indicated value. The dashed
curve 1is the duration curve for a tank placed outside Halten,

Norway during a 6 months winter season (see Fig.l).
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Fig.12
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Heaving tank resonator. The tank A is semisubmerged by
means of a wire S streched by the buoyancy of the tank B.
The wire S drives the flywheels F placed in a housing D on
the ocean bottom. There is no water access to the flywheel
housing. An electric generator (not shown) is mechanically

connected to the movement of the flywheels.
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Fig. 13 Heaving tank resonator. The tank A is semisubmerged by
means of wires S streched by the buoyancy of the tank B.
The wires drive two flywheels F placed in the tank A.
An electric generator is mechanically connected to the
movement of the flywheels. This system can extract energy

also from the rolling motion of the tank A.
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Fig.14

Heaving tank resonator. The tank A is semisubmerged by its
own weight. Below A is placed a ring shaped, empty tank

B held in position by means of the wires S. The tank B
supports the tooth rails K that drive the flywheels F.
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Fig.l5 Heaving tank resonator. The tank A is semisubmerged by its
own weight. Below A is placed a framework B whose leg piles
are rigidly connected to the ocean bottom. The framework

supports the tooth rails K that drive the flywheels F.




Fig.16

Water column resonator. The entrance A of a U-shaped tube
is placed a fewmetres below the water surface. The other
end B of the tube is placed above the water level. The

incoming waves establishes a time-varying pressure at the

entrance A of the tube. As a result the water column in the

tube is put into oscillations.
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17

Water column resonator of rectangular cross section, partly
constructed as a tunnel and extended as a concrete bed.

The length of the oscillating water column and, hence, the

resonant frequency are adjusted by horisontally positioning
the 1lids L along the bed. A fraction of the energy in the

water oscillation is delivered to the electric generator G

by means of the rotationally oscillating turbine T.




air valve
l,

Buffer

Turbin & Generator

I:lo m

N

Fig.18

N\

\\\\\\\\\\\\\\\\\

Water column resonator with enclosed air cushion at the
upper end. The resonator is tuned by controlling the amount
of air in’the cushion. Power is taken from the resonator

by pumping water or pressurised air into a buffer. A tur-
bine is driven continuously by water or air, respectively,
from this buffer. At a cliffy shore which is precipitous

to a depth of roughly 40 to 50 m or more, the resonator

chamber may be constructed as a tunnel in the cliff.
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"Balloon" resonator. An air filled tank A placed below the
water surface is connected to a tube B. The other entrance
of the tube is connected to a large air reservoir C on land.
The tank A has a flexible membrane M. When the water is still
the membrane is kept plane by the air pressure in the system
A-B-C. Ocean waves causes the membrane M to oscillate.

Air is driven between A and C. The turbine D in the tube B

generates electric energy.

r/2

Fig.20

Two air filled tanks A and C with flexible membrams M are
placed below the water surface. The tanks are placed half
a wavelength apart and are connected by a tube B with an air

turbine D.
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Rotationally symmetric Fig.22 Velocity components at
floating body with radius the surface of the body

R(z) = a—b+be%Z
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Fig.23

Radiation impedance Z, = Ry + X, as a function of ka for body
with exponentially varying cross section. Cf. egs.(A.39)

and (A.47). The horisontal dashed line gives the asymptotic
value of Rr for larger values of ka. The two other dashed
curves correspond to the approximations (A.48) and (A.49)

for small ka.
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