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SYMMETRY AND DECAY OF TRAVELING WAVE

SOLUTIONS TO THE WHITHAM EQUATION

GABRIELE BRUELL, MATS EHRNSTRÖM, AND LONG PEI

Abstract. This paper is concerned with decay and symmetry proper-

ties of solitary-wave solutions to a nonlocal shallow-water wave model.

An exponential decay result for supercritical solitary-wave solutions is

given. Moreover, it is shown that all such solitary-wave solutions are

symmetric and monotone on either side of the crest. The proof is based

on the method of moving planes. Furthermore, a close relation between

symmetric and traveling-wave solutions is established.

1. Introduction

The dynamics of water waves for an inviscid perfect fluid are described by

the Euler equations, complemented with suitable boundary conditions. Due

to the intricate character of this system, a rigorous mathematical study of

its solutions is challenging and it is one aim in the analysis of water waves to

derive model equations which capture as many as possible of the phenomena

displayed by water waves. In the context of irrotational, small-amplitude,

shallow-water waves, it is well-known that the Korteweg–de Vries equation

(KdV),

ηt +
3

2

c0

h0
ηηx + c0ηx +

1

6
c0h

2
0ηxxx = 0, (1.1)

can be rigorously deduced as a consistent approximation to the Euler equa-

tions [29]. Here, η(t, x) describes the surface displacement from an undis-

turbed flow over a flat bottom at time t ∈ [0,∞) and spatial position x ∈ R.

The constant c0 :=
√
gh0 is the limiting long-wave speed, h0 is the undis-

turbed fluid depth and g denotes the gravitational constant of acceleration.

Equation (1.1) may be equivalently expressed in nonlocal form as

ηt +
3

2

c0

h0
ηηx + F−1 (c(ξ)) ∗ ηx = 0,
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where F−1 denotes the inverse (spatial) Fourier transform, and

c(ξ) := c0 −
1

6
c0h

2
0ξ

2

is the dispersion relation of the KdV equation. Noticing that c is a second-

order approximation of the exact dispersion relation of the linearized Euler

equations,

mh0(ξ) :=

(

g tanh(ξh0)

ξ

)
1
2

= c0 −
1

6
c0h

2
0ξ

2 +O(ξ4),

G. B. Whitham [36] suggested what is today termed the Whitham equation,

ηt +
3

2

c0

h0
ηηx +F−1 (mh0) ∗ ηx = 0, (1.2)

as an alternative to the KdV equation. Here, Kh0 := F−1 (mh0) is the

integral kernel corresponding to a (genuinely) nonlocal Fourier multiplier

operator with symbol mh0 . This approach of dispersion improving is often

applied to improve the modeling aspects of fluid dynamics equations [29],

as it weakens the role of dispersion towards that of the full Euler equations.

Equation (1.2) can also be obtained directly from the Euler equations via

an exponential scaling [31]. From a consistency point of view, the equation

(1.2) is neither a better nor a worse model than the KdV equation: their

solutions both approximate shallow-water, small-amplitude gravity water-

wave solutions of the Euler equations to the same order on appropriate time

scales [29]. As described below, the Whitham equation (1.2) however has

the property of capturing several of the mathematical features of the Euler

equations, that the KdV equation does not (including nonlocality, break-

down of solutions, modulational instability and highest waves).

The purpose of the present paper is to analyze geometric properties of

solitary-wave solutions to the Whitham equation. We will show that the

Whitham equation captures various characteristics of solitary solutions to

the Euler equations. In the same physical setting as ours, it was shown

in [16] that any irrotational solitary gravity wave with supercritical1 wave

speed is positive (a wave of elevation) and symmetric with one wave crest

from which the surface decreases monotonically. We confirm these properties

for the Whitham equation2. Furthermore, we address the relation between

1A wave speed exceeding
√
gh0.

2The positivity of supercritical solutions was established in [22].
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a priori symmetry and steadiness of solutions of (1.2). As first established

in [20], for the Euler equations as well as for a range of dispersive model

equations, a priori symmetry of (time-dependent) solutions implies their be-

ing steady solutions. It turns out that this property is preserved by the

Whitham equation, despite the principle in [20] being a local one (and the

Whitham equation being inherently nonlocal).

A few words on the Whitham equation. It is straightforward [18] to prove

that (1.2) is locally well-posed in classical energy spaces H
3
2
+, for both lo-

calized and periodic initial data, although the data-to-solution map is not

uniformly continuous [3]. Small KdV-like solitary waves exist as constrained

minimizers of a natural Hamiltonian [19]. Small and large periodic traveling

waves connect to a global analytic curve [21], which contains at its end a high-

est, cusped, wave [22] (such shapes appear also in the water wave problem,

see [13, 24]). The periodic waves exhibit modulation instability, as confirmed

both numerically [33] and analytically [27]. The Whitham equation also al-

lows for finite-time wave breaking in the sense of bounded surface profiles

with unbounded slopes [32, 15, 26]. Finally, both numerical data and wave-

channel experiments indicate modeling advantages of the Whitham equation

when compared to the KdV [5, 35], the Saint-Venant and the Serre equations

[9], when either short or large waves are considered.

Our paper is outlined as follows. While Section 2 only contains some short

preliminaries, Section 3 is devoted to the decay of supercritical solitary-wave

solutions of the Whitham equation. Inspired by the classical paper [4] on

decay of solitary waves by Bona and Li, we prove that any such solution

decays exponentially fast. In contrast, Sections 4 and 5 are concerned with

the relation between traveling and symmetric wave solutions to the Whitham

equation. The main result in Section 4 states that any supercritical solitary

wave tending to zero at infinity is symmetric with exactly one crest from

which the surface is decreasing. This result is proved by applying (a very

weak form of) the method of moving planes, which goes back to Aleksandrov

[1] and Serrin [34] in 1962 and 1971, respectively. While our method is

most closely related to the work by Chen, Li and Ou [12], and our setting

to that of Craig [16] on irrotational solitary gravity water waves, we draw

some inspiration also from [25] and [14]. Since the method of moving planes

relies upon the maximum principle, we formulate a touching lemma for the
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nonlocal form of our equation, comparable to the strong maximum principle

for elliptic equations. In Section 5 we turn to the time-dependent Whitham

equation and establish that any classical, symmetric solution, which is unique

with respect to initial data is a traveling-wave solution. Although the proof

has been modified to fit the nonlocal character of the Whitham equation,

the result is inspired by a principle first developed in [20], and later used for

example in [28, 23] (a more general approach towards such principles is in

preparation [6]).

2. Preliminaries

To begin with, let us reformulate the Whitham equation in a normalized

form as

ut + 2uux +K ∗ ux = 0, (2.1)

where

K = F−1 (m) and m(ξ) =

(

tanh ξ

ξ

)
1
2

.

The function m is the symbol for the Fourier multiplier operator associated

with the kernel K. We normalize the Fourier transform F of a function

f ∈ L1(R) to be

F(f)(ξ) =

∫

R

f(x)e−ixξ dx

so that the inverse Fourier transform takes the form F−1(f)(ξ) = 1
2πF(f)(−ξ).

Note that the Fourier transform on the space of Schwartz functions can be

generalized by duality to a continuous isomorphism F : S ′(R) → S ′(R) on

the space of tempered distributions on R. The Fourier multiplier m, which

represents the phase speed of the linearized Euler equations, is smooth, even,

and strictly decreasing on (0,∞) with m(|ξ|) h |ξ|− 1
2 for |ξ| ≥ 1, attaining

its maximum at m(0) = 1. As an immediate consequence we deduce that

the kernel K belongs to L1(R), is even and singular at the origin. Moreover,

the analysis in [22] confirms that K is positive, smooth away from the origin

and completely monotone on (0,∞).

Addressing traveling-wave solutions to (2.1), the usual ansatz u(x, t) = φ(x−
ct), where c > 0 denotes the speed of a right-propagating wave, allows the

Whitham equation to take the form

−cφx + 2φφx +K ∗ φx = 0.
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Integrating the above equation yields

− cφ+ φ2 +K ∗ φ = B, (2.2)

where B ∈ R is an integration constant. By the Galilean change of variables

φ 7→ φ+ γ, c 7→ c+ 2γ, B 7→ B + γ(1− c− γ),

we may without loss of generality consider B = 0 in (2.2). This choice

corresponds to a solution with possibly different speed and elevation, but

the form of solutions remains intact. Thus, we are left with investigating

− cφ+ φ2 +K ∗ φ = 0. (2.3)

Throughout this paper we mean by a solution to the steady Whitham equation

a real-valued, continuous, and bounded function that satisfies (2.3) pointwise.

Also, . and & denote that the inequality holds true up to multiplication by

a positive constant. If in addition the constant depends on a parameter p,

we write .p and &p, respectively. Similarly, the shorthand notation h is

used if both . and & hold, and hp is defined accordingly. Sometimes the

notation C = C(·, ·, · · · ) is used to emphasize the dependence of a positive

constant C on particular parameters.

3. Decay of solitary solutions

In this section we examine the rate of decay of solitary solutions to (2.3).

It is assumed that the waves are supercritical, meaning that the normalized

wave speed satisfies c > 1. This is a natural assumption for gravity water

waves, and in line with the current existence theory for solitary waves for

the Whitham equation [19]. We prove that any solitary solution tending to

zero at infinity decays exponentially fast. This is achieved by rewriting the

steady Whitham equation in the form

φ (c− φ) = Hc ∗ φ2, (3.1)

where Hc = F−1( m
c−m

), and investigating the integral kernel Hc. Decay

properties of equations having the form

φ = H ∗G(φ)

are rigorously studied in the classical paper [4] by Bona and Li. In [4] the

authors prove that any bounded solution φ, tending to zero at infinity, decays

at a rate which depends on the decay properties of the integral kernel H,
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provided G satisfies a certain growth condition. More precisely, it is shown

that if there exists σ > 0 such that eσ|·|H ∈ L2(R), then φ decays exponen-

tially. Let us denote the symbol of the integral kernel by h := F(H). In view

of Paley–Wiener theory, the condition on H guaranteeing exponential decay

of φ requires h to be analytic in a horizontal complex strip enclosing the real

axis. It is then reasonable to expect that in general the lack of smoothness

of the symbol h yields a loss of the exponential decay property. As for the

Benjamin–Ono equation, having symbol h(ξ) = 1
1+|ξ| , it is known that the

only solutions on R which tend to zero at infinity have quadratic decay, see

[2]. A generalized Benjamin–Ono equation is studied in [30] and an algebraic

decay result for solitary solutions is presented employing the regularity and

(algebraic) decay of the associated kernel. In [17] a qualitatively similar re-

sult is shown for steady solutions of the generalized Kadometsev–Petviashvili

equation, whose symbol exhibits finite smoothness, too. Moreover, in [17]

the authors confirm the optimality of decay. Further contributions relating

finite smoothness of the symbol to algebraic decay can be found for instance

in [7, 8]. The steady Whitham equation (3.1) satisfies the growth condi-

tion claimed in [4]. However, it can be easily seen that the kernel Hc does

not belong to L2(R)
3. Hence, there is no chance that eσ|·|Hc ∈ L2(R) for

any σ > 0. Though (3.1) does not fall into the frame of [4], we prove that

the kernel Hc decays exponentially fast. Using then similar arguments, it

is shown that any supercritical solitary solution tending to zero at infinity

decays with at least the same rate as the kernel Hc.

3.1. The kernel Hc. It is clear that the kernel Hc is even and singular at

the origin. In the following we shall prove that Hc(x) h |x|− 1
2 for |x| ≤ 1

and that it decays exponentially fast, the rate of decay being (increasingly)

dependent on c. Consequently, | · |αHc(·) ∈ Lp(R) for p ∈ [1,∞] if α >
1
2 − 1

p
. Furthermore, the kernel Hc is shown to be positive and monotonically

decreasing on the positive half-line.

Lemma 3.1. Let δ ∈ (0, π2 ). Then m is analytic in the strip | Im z| ≤ δ.

There, one has |m(z)| ≤
√

tan δ
δ

and sup|y|≤δ ‖m′(·+ iy)‖L2(R) . 1.

Proof. The function m2 is holomorphic outside of iπ(12 +Z). In addition one

has that m2(z) = 0 only when z ∈ iπZ, so we may take the square root and

3its Fourier transform, given by m
c−m

, is not bounded in L2(R).
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obtain that m is holomorphic in the strip | Im z| < π
2 . Fix δ ∈ (0, π2 ). For

z = x+ iy, we have that

|m(z)|4 =
| tanh(z)|2

|z|2 =
|ez − e−z|2

|ez + e−z|2|z|2 =
e2x + e−2x − 2 cos(2y)

(e2x + e−2x + 2cos(2y)) (x2 + y2)
.

This expression is uniformly bounded for |y| ≤ δ, where it takes its maximum

at z = iδ. Thus, |m(z)| ≤ |m(iδ)| =
√

tan δ
δ

for | Im z| ≤ δ. Note that the

derivative of m is odd, whence m′(0) = 0, and one has

m′(x) =
x sech2 x− tanhx

2x
3
2

√
tanhx

, x > 0.

Since tanh(x) → 1 as x → ∞ and sech(x) . e−|x|, it follows that m′ ∈ L2(R).

With z = x+ iy, one furthermore calculates

|m′(z)|2 =
|4z − (e2z − e−2z)|2

|z|3|e2z − e−2z||ez + e−z|2

=
cosh 4x− cos 4y + 8

(

x2 + y2 + x sinh 2x cos 2y + y sin 2y cosh 2x
)

2(x2 + y2)
3
2

(

cosh 2x+ cos 2y
)(

cosh 4x− cos 4y
)

1
2

.

For (x, y) ∈ [−M,M ] × [−δ, δ] we know that this expression is uniformly

bounded. Fix M ≫ 1 such that cosh(x) ≥ sinh(x) ≫ 1. Then for x > M

one has

|m′(x+ iy)|2 . x−3, (3.2)

uniformly for |y| ≤ δ. Thus {m′(·+ iy)}|y|≤δ is bounded in L2(R). �

Now, let

g(x) =

(

m(x)

c−m(x)

)′
, (3.3)

so that xHc(x) = −iF−1(g)(x). Instead of working directly with the kernel

Hc, we show that x 7→ eδc|x|xHc(x) belongs to L2(R) for some constant

δc > 0 depending on c. Here, we apply Paley–Wiener theory to the function

g. In the following lemma, the constant δc can be chosen to be increasing in

c. As c → 1 from above, one necessarily has δc → 0.

Lemma 3.2. For any given c > 1 there exists δc ∈ (0, π2 ) such that

x 7→ eδc|x|xHc(x) belongs to L2(R).

Proof. Fix c > 1, and let g be as in (3.3). We first find a constant δc such

that g is analytic in | Im z| ≤ δc with sup|y|≤δc ‖g(· + iy)‖L2(R) . 1. In view

of Lemma 3.1, and since limδ→0

√

tan δ
δ

= 1, there exists δc ∈ (0, π2 ) such
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that sup| Im z|≤δc |m(z)| < c. Hence, (c −m)−2 is holomorphic and bounded

in the same strip. We already know that m′ is analytic in | Im z| ≤ δc <
π
2

and uniformly L2(R)-bounded for all |y| ≤ δc. Consequently, g is analytic

there, too, with

sup
|y|≤δc

‖g(· + iy)‖L2(R) .c sup
|y|≤δc

‖m′(·+ iy)‖L2(R) .c 1.

The result is now a direct consequence of Paley–Wiener theory. One then

has

eδ|·|F(g) ∈ L2(R).

Recalling that F−1(g)(x) = ixHc(x), we deduce the asserted decay for Hc.

�

Lemma 3.3. For |x| ≤ 1, one has Hc(x) h |x|− 1
2 .

Proof. Note first that g is odd. Thus, for x > 0,

xHc(x) = −iF−1(g)(x)

= −
∫

R

g(ξ) sin xξ dξ

= −
∫

R

g
( s

x

) sin s

x
ds

= −
√
x

∫ ∞

0

sin(s)

s
3
2

1

(c−m
(

s
x

)

)2
f
( s

x

)

ds,

where

f(ξ) =
ξ sech2 ξ − tanh ξ√

tanh ξ
.

Since c > 1 ≥ m, the function 1
(c−m)2

f is bounded on R and tends to − 1
c2

at

infinity. By dominated convergence, we obtain that

lim
xց0

c
√
xHc(x) =

1

c2

∫ ∞

0

sin(s)

s
3
2

ds =

√
2π

c2
.

The statement now follows from Hc being even and continuous outside of

the origin. �

A more detailed analysis of the function g in (3.3) yields that Hc decays

not only exponentially in L2(R) but also pointwise, although the former

is enough to guarantee the exponential decay of solitary solutions to the

Whitham equation.
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Proposition 3.4. Let δc > 0 be as in Lemma 3.2 and 0 < δ < δc. Then

Hc(x) . e−δ|x| for |x| ≥ 1.

Proof. It is immediate from Lemma 3.2 that x 7→ eδ|x|x2Hc(x) belongs to

L2(R) for any δ ∈ [0, δc). In view of the product rule its weak derivative

is also bounded in L2(R) provided that eδ|·|(·)2H ′(·) ∈ L2(R). Similar as

before we achieve the latter regularity by applying Paley–Wiener theory to

k(x) := F−1
(

(·)2H ′
c(·)

)

(x) = i

(

x
m(x)

c−m(x)

)′′
= 2g(x) + xg′(x),

where g is defined in (3.3). As in the proof of Lemma 3.2 it is a consequence

of Lemma 3.1 and c > 1, that k is analytic in the strip | Im z| ≤ δ. In con-

sideration of g being uniformly L2(R)-bounded in the same strip, it remains

to show that

sup
|y|≤δ

‖(·+ iy)g′(·+ iy)‖L2(R) .c 1. (3.4)

Consider

m′′(x) =
3
4 tanh

2(x)− sech2(x) tanh2(x)x2 − 1
2x tanh(x) sech

2(x)− 1
4x

2 sech4(x)

x
5
2 tanh

3
2 (x)

.

Since | tanh(x+ iy)| . 1, | sech(x+ iy)| . e−|x| when |y| < π
2 , we have that

|(x+ iy)m′′(x+ iy)| .c |x|−
3
2

uniformly for |y| ≤ δ and |x| > M if M is chosen large enough. Hence,

{(· + iy)m′′(· + iy)}|y|≤δ is bounded in L2(R). In view of (3.2) not only g,

but also (·)g2(·) is uniformly L2(R)-bounded within the strip | Im z| ≤ δ.

Due to c−m being bounded from below and above and

xg′(x) = x
m′′(x)

(c−m(x))2
+ 2xg2(x)(c −m(x))

we conclude that (3.4) holds true. Eventually, Paley–Wiener theory implies

that

x 7→ eδ|x|x2H ′(x) ∈ L2(R)

and thus eδ|·|(·)2H(·) ∈ H1(R). The Sobolev embedding H1(R) ⊂ L∞(R)

ensures that Hc(x) . e−δ|x| for |x| ≥ 1. �

As a direct consequence of Lemmata 3.2, 3.3 and Proposition 3.4 we obtain

the following weighted Lp(R) integrability of Hc.
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Corollary 3.5. One has | · |αHc(·) ∈ Lp(R) for p ∈ [1,∞] if and only if

α > 1
2 − 1

p
. In particular, Hc ∈ Lp(R) exactly for p ∈ [1, 2).

It remains to show that Hc is monotonically decreasing on (0,∞). To that

aim, we shall need the concept of complete monotonicity: a smooth function

f : (0,∞) → R is said to be completely monotone if

(−1)nf (n)(x) ≥ 0,

for all x > 0 and all n ∈ N0. From [22], we have the following result:

Proposition 3.6 ([22], Proposition 2.18). Let f and h be two functions sat-

isfying f(ξ) = h(ξ2). Then f is the Fourier transform of an even, integrable

function such that F−1(f)(
√·) is completely monotone if and only if h is

completely monotone with limλց0 h(λ) < ∞ and limλ→∞ h(λ) = 0. In this

case, F−1(f) is smooth and monotone outside of the origin.

Corollary 3.7. The integral kernel Hc is positive, smooth, and monotoni-

cally decreasing on the positive half-line (0,∞).

Proof. Let h(x) := m(
√
x)

c−m(
√
x)

. Then limx→0 h(x) =
1

c−1 and limx→∞ h(x) = 0.

Thus, in view of Proposition 3.6, it is sufficient to prove that the function h

is completely monotone. Let n(x) = m(
√
x) and consider h = n

c−n
. In [22] it

is proved that n is completely monotone. By combining this with Leibniz’s

rule we obtain for x ∈ (0,∞) that

(−1)mh(m)(x)

=
m
∑

k=0

(

m

k

)

(−1)mn(m−k)

(

1

c− n

)(k)

(x)

= (−1)mn(m)

(

1

c− n

)

(x)

+

m
∑

k=1

(

m

k

)

(−1)m−kn(m−k)(x)
∑ k!

∏k
j=1(bj !)

k̃!

(c− n(x))k̃+1

k
∏

j=1

(

(−1)jn(j)(x)
j!

)bj
,

where the second sum is over all k-tuples of nonnegative integers (b1, ..., bk)

satisfying the constraint
∑

1≤j≤k jbj = k and k̃ = b1 + · · · + bk. It follows

immediately that h is completely monotone, whence Proposition 3.6 implies

that Hc is positive, integrable, smooth, and monotone outside of the origin.

�
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3.2. Algebraic decay of solitary solutions. We start with a prior result

on algebraic decay, displaying the importance of the quadratic nonlinearity4.

In particular, we make evident that for arbitrary l ≥ 0 a supercritical solution

φ tending to zero at infinity of the steady Whitham equation (3.1) satisfies

x 7→ |x|lφ(x) ∈ L∞(R).

Let us begin with a lemma guaranteeing that the term c−φ on the left-hand

side of the steady Whitham equation is bounded from below and above, if

c > 1 .

Lemma 3.8. Let c > 1. Any nonzero continuous bounded solution φ to the

steady Whitham equation (3.1) satisfies

0 < φ < c.

If additionally φ(x) → 0 as |x| → ∞, then supx∈R φ(x) < c.

Proof. In [22, Lemma 4.1] it is shown that infx∈R φ ∈ [0, c − 1]. Note

in particular that the solution φ is nonnegative. In view of the Whitham

kernel K being strictly positive, any nonzero solution to the steady Whitham

equation fulfills the inequality

cφ− φ2 = K ∗ φ > 0.

Hence, φ is bounded from below by zero and from above by c. Assuming

that φ tends to zero at infinity, continuity implies that supR φ(x) < c. �

The following theorem is the key result for algebraic decay and a modified

version of [30, Lemma 10], where the decay properties of solitary-wave solu-

tions to a generalized Benjamin–Ono equation is investigated.

Theorem 3.9. Let φ be a supercritical solution to the steady Whitham equa-

tion (3.1) and φ(x) → 0 as |x| → ∞. Then,

x 7→ |x|lφ(x) ∈ Lq(R)

for all q ∈ (2,∞) and any l ≥ 0.

4More precisely, it is necessary that the right-hand side of (3.1) has the form Hc∗G(φ),

where G(s) . |s|γ for some γ > 1 and small values of s, cf. also [4].
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Proof. In view of Lemma 3.8, there exists a constant M ∈ (0, c) such that

supφ = M . Choose p ∈ (1, 2) and let α = α(p) be a positive constant

satisfying

α > 1− 1

p
.

Corollary 3.5 guarantees that the function (1 + | · |)αHc(·) is bounded in

Lp(R). We set

Kα,p := (c−M)−1‖(1 + | · |)αHc(·)‖Lp(R).

Let q be the conjugate of p, i.e. 1
p
+ 1

q
= 1. As φ is a solution to (3.1), we

can write

φ(c− φ)(x) = (Hc ∗ φ2)(x)

=

∫

R

Hc(x− y)(1 + |x− y|)α · φ2(y)

(1 + |x− y|)αdy

and obtain by Hölder’s inequality that

|φ(x)| ≤ Kα,p

(
∫

R

|φ2(y)|q
(1 + |x− y|)αq dy

)

1
q

. (3.5)

Let l ∈ [0, α− 1
q
). Then α > l + 1

q
and we define

hε(x) :=
|x|l

(1 + ε|x|)αφ(x)

for 0 < ε < 1. For each ε ∈ (0, 1) fixed, the function hε is bounded in Lq(R),

by the choice of l and φ being bounded. The aim is to prove that {hε | ε ∈
(0, 1)} is uniformly bounded in Lq(R), which implies that limε→0 hε = | · |lφ
belongs to Lq(R), by dominated convergence. Since φ tends to zero as |x| →
∞, the quadratic nonlinearity provides that for every δ > 0 there exists a

constant Rδ > 1 such that

|φ2(x)| ≤ δ|φ(x)| for |x| ≥ Rδ.

Estimating

‖hε‖qLq(R)
=

∫

R

|hε(x)|q dx ≤ C +

∫

|x|≥Rδ

|hε(x)|q dx, (3.6)

where C = C(Rδ) > 0 is a constant independent of ε, we are left to study

the last integral on the right-hand side of (3.6). Let r ∈ (0, q). Thanks to
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(3.5) and Hölder’s inequality we have that

∫

|x|≥Rδ

|hε(x)|qdx ≤
∫

|x|≥Rδ

|hε(x)|q−r

( |x|l
(1 + ε|x|)α

)r

|φ(x)|rdx

≤
∫

|x|≥Rδ

|hε(x)|q−r

( |x|l
(1 + ε|x|)α

)r

Kr
α,p

(
∫

R

|φ2(y)|q
(1 + |x− y|)αq dy

)
r
q

dx

≤ Kr
α,p

[
∫

|x|≥Rδ

|hε(x)|qdx
]

q−r
q

·
[
∫

|x|≥Rδ

( |x|l
(1 + ε|x|)α

)q (∫

R

|φ2(y)|q
(1 + |x− y|)αq dy

)

dx

]
r
q

.

Dividing both sides of the inequality by

[

∫

|x|≥Rδ
|hε(x)|qdx

]
q−r
q

we find that5

∫

|x|≥Rδ

|hε(x)|qdx ≤ Kq
α,p

∫

|x|≥Rδ

( |x|l
(1 + ε|x|)α

)q (∫

R

|φ2(y)|q
(1 + |x− y|)αq dy

)

dx.

(3.7)

One can then invoke Fubini’s Theorem and Lemma A.1 to obtain that
∫

|x|≥Rδ

[( |x|l
(1 + ε|x|)α

)q ∫

R

|φ2(y)|q
(1 + |x− y|)αq dy

]

dx

=

∫

R

|φ2(y)|q
[
∫

|x|≥Rδ

|x|lq
(1 + ε|x|)αq(1 + |x− y|)αq dx

]

dy

≤
∫

|x|≥Rδ

|φ2(y)|q B|y|lq
(1 + ε|y|)αq dy

+

∫

|y|<Rδ

|φ2(y)|q
∫

|x|≥Rδ

|x|lq
(1 + ε|x|)αq(1 + |x− y|)αq dxdy,

(3.8)

where B = B(l, q, α) > 0 does not depend on ε. Since αq > 1 and lq <

αq− 1, by the choice of l, the last integral in (3.8) is bounded by a constant

C1 = C1(‖φ‖∞, Rδ) > 0 depending on the norm of φ and Rδ (but not on ε).

Combining (3.7), (3.8) and recalling that |φ2(y)| < δ|φ(y)| for all |y| ≥ Rδ,

we deduce that

∫

|x|≥Rδ

|hε(x)|qdx ≤ Kp
α,p

[

δqB

∫

|x|≥Rδ

|hε(x)|qdx+ C1

]

. (3.9)

5Note that the term we are dividing by vanishes if and only if φ = 0 everywhere in

{|x| ≥ Rδ}, in which case the lemma is obviously true.
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Choosing δ small enough so that K
p
α,pδ

qB < 1
2 , (3.9) implies that

∫

|x|≥Rδ

|hε(x)|qdx ≤ C2,

where C2 = C2(α, p, ‖φ‖∞, Rδ) > 0 is a constant which does not rely on ε.

Hence, we have shown that
∫

R

|hε(x)|qdx . 1.

Letting ε → 0, dominated convergence ensures that
∫

R

|x|lq|φ(x)|qdx . 1,

which implies in particular x 7→ |x|lf(x) ∈ Lq(R) for q = p
p−1 and l ∈ [0, α−

1
p
). Having at hand that α can be chosen arbitrarily large and p ∈ (1, 2), the

statement is proved. �

Remark 3.10. Note that the proof uses only the algebraic decay properties

of Hc, that is | · |αHc ∈ Lp(R) for p ∈ [1, 2) and α > 0. It is apparent from

the proof that the decay rate l depends increasingly on α.

The following algebraic decay result is an immediate consequence of the

previous theorem.

Corollary 3.11 (Algebraic decay). Let φ be a supercritical solution to the

steady Whitham equation (3.1) and φ → 0 as |x| → ∞. Then

x 7→ |x|lf(x) ∈ L∞(R),

for any l ≥ 0.

Proof. Let l ≥ 0 be arbitrary. Then, Lemma 3.8 implies that

|x|l|φ(x)| .
(

| · |lHc ∗ φ2
)

(x) +
(

Hc ∗ | · |lφ2
)

(x).

In consideration of Theorems 3.5 and 3.9 the assertion follows by Young’s

inequality. �

3.3. Exponential decay of solitary solutions. Relying on the arguments

in [4, Corollary 3.1.4], we apply the exponential decay of Hc to prove that for

the steady Whitham equation any supercritical solution φ actually decays

exponentially.
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Theorem 3.12 (Exponential decay). Let δc > 0 denote the decay rate of

Hc. If φ is a supercritical solution to the steady Whitham equation (3.1)

satisfying φ → 0 as |x| → ∞, then there exists 0 < ν < δc such that

x 7→ eν|x|φ(x) belongs to L1(R) ∩ L∞(R).

Proof. Corollary 3.2 warrants that for every c > 1 there exists δc ∈ (0, π2 )

such that

x 7→ eδc|x|xHc(x) belongs to L2(R).

Together with Corollary 3.5 we conclude that for all 0 < σ < δc

eσ|·|Hc(·) ∈ Lp(R) for p ∈ [1, 2). (3.10)

Choose p ∈ [1, 2), let q ∈ R be such that 1
p
+ 1

q
= 1, and set

D := max

{

1,
σ

2
‖φ‖L1(R), (c −M)−1σ

1
p

(

2

q

)
1
q

‖eσ|·|Hc(·)‖Lp(R)‖(·)φ(·)‖∞
}

,

where M := supφ < c. Note that D ≥ 1 is finite, owing to φ being a

bounded solution, Corollary 3.11 and (3.10). The main ingredient for proving

exponential decay of φ is the following estimate

‖(·)lφ(·)‖L1(R) ≤
(l + 2)!Dl+1

σl+1
for l ∈ N0 and 0 < σ < δc. (3.11)

Claim (3.11) is proved by induction. Clearly, the statement holds true for

l = 0. Assuming that the inequality (3.11) is satisfied for all natural numbers

less or equal some l ∈ N0 one observes that

‖(·)l+1φ(·)‖L1(R) ≤ (c−M)−1‖(·)l+1(Hc ∗ φ2)(·)‖L1(R)

≤ (c−M)−1
l+1
∑

j=0

(

l + 1

j

)

‖(·)l+1−jHc(·)‖L1(R)‖(·)jφ2(·)‖L1(R),

(3.12)

on account of Lemma A.3 and Young’s inequality. Applying Hölder’s in-

equality to ‖(·)l+1−jHc(·)‖L1(R) yields

‖(·)l+1−jHc‖L1(R) =

∫

R

|xl+1−jHc(x)|dx ≤
∫

R

|xl+1−je−σ|x|||eσ|x|Hc(x)|dx

≤ ‖eσ|·|Hc(·)‖Lp(R)

(
∫

R

|x|q(l+1−j)e−qσ|x|dx

)
1
q

= ‖eσ|·|Hc(·)‖Lp(R)2
1
q

(
∫ ∞

0
xq(l+1−j)e−qσxdx

)
1
q

.
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Due to Lemma A.2 one arrives at

‖(·)l+1−jHc‖L1(R) ≤ ‖eσ|·|Hc(·)‖Lp(R)2
1
q

(

[q(l + 1− j)]!

(qσ)q(l+1−j)+1

)
1
q

≤ ‖eσ|·|Hc(·)‖Lp(R)

(

2

q

)
1
q (l + 1− j)!

σ
l+1−j+ 1

q

.

The assumption that (3.11) holds for all natural numbers less of equal l ∈ N0

allows to control the second factor of the last inequality in (3.12) by

‖(·)jφ2(·)‖L1(R) ≤ ‖(·)φ(·)‖∞‖(·)j−1φ(·)‖L1(R) ≤ ‖(·)φ(·)‖∞
(j + 1)!Dj

σj

(3.13)

for 1 ≤ j ≤ l + 1. The combination of (3.12)–(3.13) together with the

definition of D yields

‖(·)l+1φ(·)‖L1(R) ≤
1

c−M

l+1
∑

j=0

(

l + 1

j

)

‖(·)l+1−jHc(·)‖L1(R)‖(·)jφ2(·)‖L1(R)

= (c−M)−1
l+1
∑

j=0

‖eσ|·|Hc(·)‖Lp(R)

(

2

q

)
1
q

‖(·)φ(·)‖∞
(l + 1)!(j + 1)Dj

σ
l+1+ 1

q

≤
l+1
∑

j=0

(l + 1)!(j + 1)Dj+1

σ
l+1+ 1

q
+ 1

p

≤ (l + 3)!Dl+2

σl+2
,

which completes the inductive step. Eventually, (3.11) implies that

‖eν|·|φ‖L1(R) =

∫

R

∣

∣

∣

∣

∣

∞
∑

l=0

νlxl

l!
φ(x)

∣

∣

∣

∣

∣

dx ≤
∞
∑

l=0

νl

l!
‖(·)lφ(·)‖L1(R)

≤ D

σ

∞
∑

l=0

(l + 1)(l + 2)

(

νD

σ

)l

,

which converges if and only if |ν| < σ
D

. The boundedness of ‖eν|·|φ‖L∞(R) can

be proved similarly by replacing ‖(·)lφ(·)‖L1(R) by ‖(·)lφ(·)‖L∞(R) in (3.11)

and modifying D accordingly. Summarizing, we have that

eν|·|φ ∈ L1(R) ∩ L∞(R) for any 0 < ν <
σ

D
.

By definition of σ and D, one observes that ν < δc �
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The result above can be improved. As a matter of fact, following the lines

in [4, Corrollary 3.1.4], one can show that any supercritical solution of the

steady Whitham equation, tending to zero at infinity, decays at least at the

same rate as the associated kernel Hc does. In interest of keeping the present

paper self contained, we include the proof.

Proposition 3.13. Let δc > 0 be the decay rate of Hc. If φ is a supercritical

solution to the steady Whitham equation (3.1) satisfying φ → 0 as |x| → ∞,

then

eη|·|φ ∈ L1(R) ∩ L∞(R) for some η ≥ δc.

Proof. Theorem 3.13 ensures that there exists 0 < ν < δc such that

eν|·|φ ∈ L1(R) ∩ L∞(R).

Moreover, recall from (3.10) that

eν|·|Hc ∈ L1(R) for any 0 < ν < δc. (3.14)

Thanks to the quadratic nonlinearity we can estimate

φ(x)eν|x| ≤ (c−M)−1

∫

R

Hc(x− y)eν|x−y||φ2(y)|eν|y|dy

= (c−M)−1

∫

R

Hc(x− y)eν|x−y|
(

φ(y)|e ν
2
|y|
)2

dy

= (c−M)−1

(

Hce
ν|·| ∗

(

φe
ν
2
|·|
)2

)

(x),

(3.15)

where M := supφ < c. Let η := sup{ν > 0 | eν|·|φ ∈ L1(R) ∩ L∞(R)}.
The aim is to show that η ≥ δc. Assuming on the contrary that η < δc, one

can choose ν > 0 such that η
2 < ν < min{η, δc2 }. Considering (3.15) for 2ν

instead of ν, Young’s inequality, (3.15) and φ being bounded imply that

‖φe2ν|·|‖L1(R) ≤ (c−M)−1‖Hce
2ν|·| ∗ φ2eν|·|‖L1(R) < ∞ (3.16)

and

‖φe2ν|·|‖L∞(R) ≤ (c−M)−1‖Hce
2ν|·| ∗ φ2eν|·|‖L∞(R) < ∞, (3.17)

by the choice of ν and (3.14). In view of 2ν > η, (3.16) and (3.17) lead to a

contradiction to the definition of η. Hence, η ≥ δc. �
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4. Symmetry of solitary waves

The method of moving planes is employed to prove that any supercritical

solution to the steady Whitham equation tending to zero at infinity is sym-

metric and has exactly one crest. Let us start by formulating a lemma, which

is comparable to the strong maximum principle for elliptic equations. It is

a modified version of the so called touching lemma in [22, Lemma 4.3] and

stated in a form appropriate to our purpose. A solution φ to the steady

Whitham equation (3.1) is called a supersolution if

φ(c− φ) ≥ Hc ∗ φ2

and a subsolution if the inequality above is replaced by ≤.

Lemma 4.1 (Touching lemma on a half-space). Let φ1 and φ2 be a super–

and a subsolution of the steady Whitham equation (3.1) on a subset [λ,∞) ⊂
R, respectively, satisfying φ1 ≥ φ2 on [λ,∞) and φ2

1 − φ2
2 being odd with

respect to λ, that is (φ2
1 − φ2

2)(x) = −(φ2
1 − φ2

2)(2λ − x). Then either

• φ1 = φ2 in [λ,∞), or

• φ1 > φ2 with φ1 + φ2 < c in (λ,∞) .

Proof. The symmetry and monotonicity of Hc allow to deduce that Hc acts

as a positive convolution operator on odd functions with respect to λ on the

half line [λ,∞). Let f ≥ 0 on [λ,∞), f(x) = −f(2λ− x) and x ≥ λ. Then

Hc ∗ f(x) =
∫ ∞

λ

Hc(y)f(x− y)dy +

∫ λ

−∞
Hc(x− y)f(y)dy

=

∫ ∞

λ

Hc(x− y)f(y)dy +

∫ ∞

λ

Hc(x+ y − 2λ)f(2λ− y)dy

=

∫ ∞

λ

(Hc(x− y)−Hc(x+ y − 2λ))f(y)dy,

where the last equality holds thanks to f being odd with respect to λ. In

view of Hc being symmetric and monotonically decreasing on (0,∞), we

obtain that

Hc ∗ f(x) ≥ 0 for all x ≥ λ.

In particular, Hc ∗ f > 0 or f = 0 on (λ,∞). Assume that φ1 and φ2

are super– and subsolutions to the steady Whitham equation, respectively,

φ1 ≥ φ2 for all x ≥ λ and φ2
1 − φ2

2 is odd with respect to λ, that is φ2
1 − φ2

2
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plays the role of f above. Then,

(c− (φ1 + φ2))(φ1 − φ2) ≥ Hc ∗ (φ2
1 − φ2

2) > 0

for all x > λ unless φ1 = φ2 on [λ,∞). �

Corollary 4.2. Let φ be a solution to the steady Whitham equation (3.1)

and φλ(·) := φ(2λ−·) be its refection about some λ ∈ R. If φ ≥ φλ on [λ,∞)

and there exists a point x > λ where φ and φλ touch, that is φ(x) = φλ(x),

then φ = φλ.

Proof. Let φ be a solution of the steady Whitham equation, then so is φλ

due to the symmetry of Hc. Noticing that φ2 − φ2
λ is odd with respect to λ,

the assertion is an immediate consequence of Lemma 4.1. �

The method of moving planes is applied to confirm that any supercritical

solution tending to zero at infinity of the steady Whitham equation (3.1) has

exactly one crest about which it is symmetric. The proof is inspired by [12],

where the authors establish the symmetry of positive solutions belonging to

Ln+α
n−α

,loc(R
n) of

u = L ∗ u
n+α
n−α , (4.1)

where n is the space dimension, α ∈ (0, n) and L(x) := |x|α−n. If α = 1
3 and

the space dimension n = 1, equation (4.1) reads

u = L ∗ u2

with L(x) = |x|− 2
3 , which displays a structural similarity to (3.1). Assuming

that φ tends to zero at infinity, our proof is less intricate than in [12], where

the authors do not assume any asymptotic behavior of the solution but apply

the method of moving planes to a Kelvin-type transform instead. Since the

nonlocal operator Hc of the steady Whitham equation corresponds to an

inhomogeneous kernel function a Kelvin-type transform is not appropriate

in our case. It is worth mentioning that in [10, 11] the authors generalize

the result in [12] and establish maximum principles for a class of nonlocal

equations which originate from the fractional Laplace operators.

In accordance to [12], we define the open sets

Σλ := {x ∈ R | x > λ} and Σ−
λ := {x ∈ Σλ | φ(x) < φλ(x)},

where φλ(·) := φ(2λ− ·) is the reflection of φ about the axis x = λ.
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x
λ

Figure 1. Sketch of an arbitrary supercritical solution to

(3.1) tending to zero at infinity. The dashed curve is the

reflection of the wave around λ and the bold line on the x-

axis represents the set Σ−
λ .

The aim is to prove that there exists λ0 ∈ R such that φ is symmetric about

x = λ0, that is φ(x) = φλ(x) for all x ∈ R, and moreover that φ has only

one crest, which is then located at x = λ0. As a first step, it is shown that

there exists λ ∈ R far enough to the left, so that the open set Σ−
λ is empty.

An easy calculation analog to the one in the proof of Lemma 4.1 shows that

c(φ(x) − φλ(x)) =

∫

Σλ

(

Hc(x− y)−Hc(2λ− x− y)
)

(φ2(y)− φ2
λ(y))dy

+ φ2(x)− φ2
λ(y).

Let x ∈ Σ−
λ . Then

0 < c(φλ(x)− φ(x))

≤
∫

Σλ−

(

Hc(x− y)−Hc(2λ− x− y)
)

(φ2
λ(y)− φ2(y))dy + φ2

λ(x)− φ2(x)

≤ 2

∫

Σ
λ−

Hc(x− y)φλ(y)(φλ(y)− φ(y))dy + φ2
λ(x)− φ2(x)

= 2
(

Hc ∗ φλ(φλ − φ)
)

(x) + φ2
λ(x)− φ2(x).

By Young’s inequality we arrive at

‖φλ − φ‖L∞(Σ−

λ
) ≤

2

c
‖φ‖

L∞((Σ−

λ )
∗

)
(

‖Hc‖L1(R) + 1
)

‖φλ − φ‖L∞(Σ−

λ
) , (4.2)

where
(

Σ−
λ

)∗
is the reflection of Σ−

λ about the plane x = λ. Note that the

right-hand side of (4.2) is bounded in view of Corollary 3.5. Since φ tends to

zero at infinity, there exists N ∈ N such that ‖φ‖
L∞((Σ−

λ )
∗

) <
c

2(‖Hc‖L1(R)
+1)

for all λ ≤ −N . Then, (4.2) implies that ‖φ − φλ‖L∞(Σ−

λ
) = 0 for λ ≤ −N .
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As a consequence Σ−
λ must be of measure zero. Since Σ−

λ is open, we deduce

that Σ−
λ is empty for λ ≤ −N .

Remark 4.3. Relation (4.2) turns out to be crucial when applying the

method of moving planes. Note that it states in particular that if ‖φ‖
L∞((Σ−

λ )
∗

)
is sufficiently small (which depends either on the norm of φ on the fixed set
(

Σ−
λ

)∗
or on the size of

(

Σ−
λ

)∗
), then ‖φ− φλ‖L∞(Σ−

λ
) = 0.

The following theorem is the main result, which proves the symmetry of

solitary waves solutions to the Whitham equation.

Theorem 4.4 (Symmetry of solitary-wave solutions). Let φ be a supercritical

solution to the steady Whitham equation tending to zero at infinity. Starting

at a point λ = −N , where N > 0, such that Σ−
λ is empty for all λ ≤ −N ,

and moving the plane x = λ to the right as long as

φ(x) ≥ φλ(x) for all x ∈ Σλ,

this process stops only and finally at some point x = λ0, where φ = φλ0 on

Σλ0. In particular, φ is symmetric about λ0 and (exponentially) decreasing

on the half line [λ0,∞).

Proof. Clearly, there can not be any crest at a point x ≤ −N , since Σ−
λ is

empty for all λ < −N . The process of moving the plane x = λ to the right

will stop at or before it reaches a crest. Assume that the moving plane stops

at a point x = λ0, where φ(x) ≥ φλ0(x), but φ(x) 6= φλ0(x) for all x ∈ Σλ0 ,

that is, φ is not symmetric about x = λ0. The touching lemma (Lemma 4.1)

ensures that φ(x) > φλ0(x) for all x ∈ Σλ0 so that Σ−
λ0

has measure zero.

By continuity of φ, we have that for any ε > 0 there exists δ > 0 such that

|Σ−
λ | < ε for all λ ∈ [λ0, λ0 + δ). It follows that there exists δ > 0 such that

1

c
‖φ‖

L∞((Σ−

λ )
∗

)(‖Hc‖L1(R) + 1) <
1

4

for all λ ∈ [λ0, λ0 + δ). From (4.2) we deduce that ‖φ − φλ‖L∞(Σ−

λ
) = 0.

Therefore, Σ−
λ must be empty for all λ ∈ [λ0, λ0 + δ) and the plane x = λ0

can be moved further to the right, which is a contradiction. The assertion

about exponential decay follows from Proposition 3.13. �

Remark 4.5. In order to complete the picture of supercritical solitary solu-

tions, we refer to a result in [22], where the authors prove that any noncon-

stant even solution φ ∈ BUC1(R) of the steady Whitham equation which is
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nonincreasing on a half-line (λ0,∞) satisfies

φ′(x) < 0 and φ(x) <
c

2
for all x ∈ (λ0,∞).

5. Steadiness of symmetric waves

We say a solution u is symmetric, if there exists a function λ ∈ C1(R+) such

that for every t ≥ 0 and x ∈ R

u(t, x) = u(t, 2λ(t) − x).

Then, λ is called the axis of symmetry. In [20] a local principle is established

relating the property of a priori symmetry to steadiness. In particular it

is proved that for a large class of local partial differential equations any

classical, symmetric, unique solution constitutes a traveling wave. We follow

the idea of the local principle and validate the analog result for classical,

symmetric solutions to the nonlocal Whitham equation

ut + 2uux +K ∗ ux = 0. (5.1)

Recall that the kernel K is given by

K(ξ) = F−1

((

tanh(ξ)

ξ

)
1
2
)

.

Theorem 5.1 (Symmetric solutions are traveling). Any classical, symmetric

solution on R of the Whitham equation (5.1), which is unique with respect

to initial data, is a traveling-wave solution.

Proof. Let u be a classical, symmetric solution to the Whitham equation,

that is u(t, x) = u(t, 2λ(t) − x) for all (t, x) ∈ [0,∞) × R. The symmetry

property implies that

ut(t, x) = ut(t, 2λ(t) − x) + 2λ̇(t)ux(t, 2λ(t) − x),

ux(t, x) = −ux(t, 2λ(t) − x).

Thanks to the symmetry of K, an easy computation shows that

K ∗ ux(t, x) = −K ∗ ux(t, 2λ(t) − x).

Hence, the solution u satisfies

ut(t, 2λ(t)−x)+2λ̇(t)ux(t, 2λ(t)−x)−2uux(t, 2λ(t)−x)−K∗u(t, 2λ(t)−x) = 0.
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Since the above equality is valid for all (t, x) ∈ [0,∞) × R, we deduce in

particular that

ut(t, x) + 2λ̇(t)ux(t, x)− 2uux(t, x)−K ∗ ux(t, x) = 0. (5.2)

Subtracting (5.2) from (5.1) yields

ux(t, x)(2u(t, x) − λ̇(t)) +K ∗ ux(t, x) = 0 for all (t, x) ∈ [0,∞)× R.

(5.3)

From here, we follow the lines in [20]. Fix a time t0 ≥ 0 and set c := λ̇(t0).

Defining the traveling wave

ũ(t, x) := u(t0, x− c(t− t0)),

one obtains that ũ satisfies

ũt(t, x) + 2ũũx(t, x) +K ∗ ũ(t, x)
= −cux(t0, x− c(t− t0)) + 2uux(t0, x− c(t− t0)) +K ∗ u(t0, x− c(t− t0))

= ux(2u− c)(t0, x− c(t− t0)) +K ∗ u(t0, x− c(t− t0)) = 0,

due to (5.3). Hence, ũ is a solution to the Whitham equation. By con-

struction it holds ũ(t0, x) = u(t0, x) so that ũ coincides with the symmetric

solution u at t = t0. By uniqueness of solutions with respect to initial data,

we conclude that u is indeed a traveling-wave solution. �
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Appendix A.

We collect some technical lemmata, which are used to prove the decay result

for supercritical solitary-wave solutions of the Whitham equation.

Lemma A.1. Let l and m be two constants satisfying 0 < l < m − 1.

Then, there exists B = B(l,m) > 0, such that for all ε ∈ (0, 1) the following
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inequality holds true:
∫

R

|y|l
(1 + ε|y|)m(1 + |x− y|)mdy ≤ B|x|l

(1 + ε|x|)m for all x ∈ R, |x| ≥ 1,

A proof of Lemma A.1 can be found in [4, Lemma 3.1.1]. The following two

lemmata are results, which can be proved easily by induction and are applied

in the proof of Theorem 3.12.

Lemma A.2. Let n ∈ N and q ≥ 1, then

(qn)! ≤ [qn(n!)]q.

Lemma A.3. Let f and g be functions belonging to L1(R), such that there

exists N ∈ N with (·)nf and (·)ng are bounded in L1(R) for all n ≤ N . Then

(x)n(f ∗ g)(x) =
n
∑

j=0

(

n

j

)

((·)n−jf ∗ (·)jg)(x).
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