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Abstract

This thesis will consider two different theories, and apply variational techniques to each, in
order to investigate their true ground states and the possibility of symmetry breaking.

A scalar field theory is modified by introducing a variational mass-parameter, which also
serves as a regularization. The effective potential is calculated to two loops, and a variational
calculation is done to find the extrema of the potential.

Secondly, the model of Wess and Zumino is modified by removing the restrictions on
the particle masses. The vacuum energy is then calculated to two loops, and a variational
calculation is performed with the renormalized masses as parameters, in order to determine
the true ground state of the theory.

It is discovered that the scalar field theory does not develop any symmetry breaking
ground states, as was predicted by Coleman and Weinberg. The non-renormalization and
vanishing vacuum energy of the Wess-Zumino model is verified to two-loop order. Further-
more, it is discovered that the modified Wess-Zumino model has several ground states which
are more energetically favoured than the supersymmetric state, in which supersymmetry is
strongly broken. This may begin explain, if they exist, why we do not see any supersymmetric
partners in our accelerators.



Sammendrag

Denne oppgaven vil ta for seg to forskjellige teorier, og anvende teknikker for variasjonsreg-
ning p̊a begge, for å kunne undersøke teorienes virkelige grunntilstand og muligheten for
symmetribrudd.

En skalar feltteori blir modifisert ved å legge til et masseledd i Lagrangetettheten, som
brukes som b̊ade variasjonsparameter og en regulariseringsteknikk. Det effektive potensialet
blir s̊a funnet til første orden som funksjon av variasjonsparameteren, for å undersøke mulige
symmetribrytende ekstremalpunkt.

Deretter blir den supersymmetriske Wess-Zumino modellen modifisert ved å fjerne re-
striksjonene p̊a partikkelmassene. Vakuumenergien blir s̊a regnet ut til andre orden, og
en variasjonsregning blir utført med de renormaliserte massene som parametre for å kunne
bestemme den virkelige grunntilstanden til teorien.

Det blir konkludert med at den skalare feltteorien ikke utvikler noen symmetribrytende
grunntilstander, noe som har vært forutsett av Coleman og Weinberg. Det blir eksplisitt vist
at Wess-Zumino modellen kun f̊ar et logaritmisk divergent bidrag til mottermene gjennom
renormalisering, og at vakuum-energien er identisk lik null, til andre orden i koblingen. Til
slutt blir det konkludert med at vakuumenergien til den supersymmetriske teorien har flere
tilstander som er mer energetisk gunstig enn den superymmetriske, hvor supersymmetri er
sterkt brutt. Dette kan være en forklaring p̊a hvorfor vi ikke ser supersymmetriske partnere
til partiklene i standardmodellen, hvis de eksisterer.
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Conventions

• We will, unless otherwise specified, always use natural units, where:

~ = c = kb = 1

This means that masses, temperatures, and energies has units of eV, while length and
time has units of (eV)−1

• The metric has the signature

ηµν = diag(1,−1,−1,−1)

• The Pauli-matrices will be denoted by σi, and are defined as follows:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i i

)
, σ3 =

(
1 0
0 −1

)
• Tr denotes general traces, while tr denotes traces over gamma matrices only

• We use the Weyl, or chiral, basis for the gamma matrices:

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−I 0
0 I

)
where we have defined σµ = (I, σi), σ̄

µ = (I,−σi).

• The fifth gamma matrix is defined by γ5 = iγ0γ1γ2γ3, which implies that {γ5, γµ} = 0,
(γ5)† = γ5 and (γ5)2 = I
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Chapter 1

Introduction

Symmetry breaking is used in the standard model to generate masses in a way that preserves
gauge symmetries[1, 2, 3]. Here massless gauge fields obtain masses from a scalar field with
a spontaneously broken SU(2) symmetry through the Higgs mechanism[4]. This neatly
describes all the known particles, but one piece is missing, the Higgs boson. In this thesis we
will explore mechanisms for mass generation through symmetry breaking. Julian Schwinger
[5, 6] showed how this might occur in a general way, and Sidney Coleman and Erick Weinberg
[7] explored several models using the formalism of the effective action. They showed in their
paper that a gauged scalar field may generate a mass due to interactions with the gauge field.
In addition to the missing Higgs boson, there are other theoretical problems in the standard
model. The Higgs has been almost completely ruled out outside of the mass range of 115−130
GeV[8, 9, 10, 11]. To obtain such a light Higgs, remarkable fine-tuning cancellations of the
quadratic corrections to the bare mass is required. This is known as the hierarchy problem.
Supersymmetry is, if it exists in nature, expected to stabilize this[12]. If nature exhibits
supersymmetry, however, it would have to be softly broken, as we have not yet discovered
superpartners to any of the standard model particles[13]. We will therefore also explore the
possibility of a model with a number of degrees of freedom consistent with supersymmetry,
but with broken supersymmetry.

This thesis will be twofold: First we want to explore Coleman and Weinberg’s formalism
further, by introducing a test-function with a variational parameter into the Lagrangian of
a simple scalar field theory. This is done to attempt to probe for a more favorable ground
state of the theory, which may break symmetries, and thus introduce massive particles, if
the theory is massless to begin with. The scalar field theory was shown by Coleman and
Weinberg to obtain a new minima for the effective potential, but it lies in a region in which
their approximation breaks down, so it will be interesting to see if the test-function can shed
some more light on this.

Secondly, we want to examine the vacuum energy of the simplest supersymmetric model,
first introduced by Julius Wess and Bruno Zumino in 1974[14], called the Wess-Zumino
model. First we will examine the theory as it is, mainly to verify two aspects of it which
makes it rather interesting, namely what is known as the non-renormalization theorem, and
the fact that its vacuum energy is equal to zero. This makes them much less divergent than
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regular theories, and simplifies some of the calculations.
After this we will modify the theory, but not by adding a test function, as it is already

much more complicated than the scalar field theory in its basic form. It will simply be
generalized by not putting any restrictions on the particle masses. This can still be viewed
as a way to probe a larger class of possible ground states, perhaps less sophisticated. We
will then perform a variational calculation, with the renormalized particle masses as our
variational parameters. This is done to see if there is possible to locate a ground state more
favourable than the supersymmetric point, where all the particles of the theory have the
same mass.

The model of Wess and Zumino is chosen because, as mentioned earlier, supersymmetry
is an interesting property that nature may exhibit; but if it does exist it has to be broken
in some way, as we do not see any supersymmetric partners in our particle accelerators
yet. Therefore we find it interesting to explore if a variational calculation may begin to
explain why nature does not choose this particularly beautiful symmetry. The hope here is
to show that something close to supersymmetry, as we already know that supersymmetry
must be softly broken, is favoured by nature. The philosophy behind this approach is that
supersymmetry, if it is a natural state, should emerge naturally from a more general class
of theories. One could imagine having a large parameter space of bare masses, couplings
and other relevant quantities, from which supersymmetry emerges through renormalization.
This has both an energetic and a probabilistic component, as one could imagine starting out
with a set of bare parameters picked from some distribution, which then evolve to the most
energetically favoured set of renormalized parameters. If large areas of the bare parameter
space maps onto smaller areas, or maybe just one point, one could argue that the emergent
theory is natural in the sense that nature favours it independently of where we start out in
the bare parameter space.

The hypothesis here is that the generalized form of the Wess-Zumino model should have
stable ground states in which supersymmetry is broken. This may show whether or not
supersymmetry is the most natural state, depending on the energetic qualities of the states.
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1.1 Path integral formalism

The calculations used in thesis will be based on the path integral formalism of quantum
field theory, so the first thing we must do is define the path integral. This derivation follows
Zee[15], chapter I.2, and a thorough treatment of the path integral and functional integration
in general can be found in Mandl and Shaw[16], chapters 12 and 13.

We start out with quantum mechanics, which can be considered a 0 + 1 dimensional field
theory. We want to calculate the amplitude for a particle to evolve from some initial state
to some other final state, i.e.

〈qF |e−iHT |qI〉, (1.1.1)

where qi are the states in the position representation, H is the Hamiltonian describing the
system and T is the time the evolution takes place over. To evaluate this we split the time
T into N equal parts δT = T

N

〈qF |e−iHδT · · · e−iHδT |qI〉, (1.1.2)

and insert N − 1 complete sets of states
∫
dq|q〉〈q| = 1 between each exponential(

N−1∏
n=1

∫
dqn

)
〈qF |e−iHδT |qN−1〉〈qN−1| · · · |q1〉〈q1|e−iHδT |qI〉. (1.1.3)

Looking at one of these amplitudes, we have

〈qj+1|e−iHδT |qj〉 = 〈qj+1|e−iHδT
(∫

dp

2π
|p〉〈p|

)
|qj〉. (1.1.4)

This can be manipulated further by inserting the general one-particle Hamiltonian H =
p̂2

2m
+ V (q̂), using 〈q|p〉 = eipq and doing the resulting Gaussian integration over p

〈qj+1|e−iHδT |qj〉 =

∫
dp

2π
e−i

p2

2m
δT+ip(qj+1−qj)−iV (q)δT

=

(
−im
2πδT

) 1
2

e
im
2
δT

(
qj+1−qj

δT

)2
−iV (q)δT . (1.1.5)

Inserting this into Eq. (1.1.3) with qF = qN and qI = q0 we obtain

〈qF |e−iHT |qI〉 =

[(
−im
2πδT

)N
2
N−1∏
n=0

∫
dqn

]

× exp

{
i
N−1∑
n=0

δT

[
1

2
m

(
qn+1 − qn

δT

)2

− V (q)

]}
(1.1.6)
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We now take the limit N → ∞ and identify
∑N−1

n=0 δT as
∫ T

0
dt, and qn+1−qn

δT
as q̇. We also

define the path-integral measure as∫
Dq(t) = lim

N→∞

(
−im
2πδT

)N
2
N−1∏
n=0

∫
dqn. (1.1.7)

It is important to note that this limit is not trivial when working in the real time formalism.
Here one multiplies an infinite number of oscillatory factors, and it is not necessarily true
that we have convergence. The Euclidean version of the path integral have been defined
rigorously though, but it is not that simple for the real time version. In the end it does
not matter however, as any factors in the measure will cancel when we calculate normalized
Green’s functions, whether they are infinite or not. Assuming that the limit can be taken,
we are left with

〈qF |e−iHT |qI〉 =

∫
Dq(t)ei

∫ T
0 dt( 1

2
mq̇−V (q)) =

∫
Dq(t)ei

∫ T
0 dtL(q,q̇). (1.1.8)

This expression is straightforward to generalize to multiple particles with position qa(t). This
can be seen as a collection of oscillators spread out on a lattice, where each site is denoted
by the index a. This system is described by(∏

a

∫
Dqa(t)

)
ei
∫ T
0 dtL(q,q̇). (1.1.9)

Where L(q, q̇) is any Lagrangian with arbitrary interactions between the lattice points qa
collected in the vector q.

Now we want to make the transition to quantum field theory. To do that we make the
spacing between the lattice sites infinitely small, taking the continuum limit. This roughly
means that the index a becomes a continuous spatial variable ~x, the time integral over L
becomes a D-dimensional integral

∫
d4x over the Lagrangian density L, our particle positions

qa(t) becomes a field φ(x) and the product of integrals over all paths becomes an integral
over all configurations of the field φ. That is, the defining quantity of a quantum field theory
is

Z =

∫
Dφei

∫
d4xL (1.1.10)

which is the path integral.

1.2 Lagrangian field theory

This thesis relies heavily on the Lagrangian formalism, so we will review some of the points
needed here. The Lagrangian L, or Lagrangian density to be more precise, in field theory
is a function of the fields and their derivatives. φ and ∂µφ in the language of scalar field
theory. The action, defined as

S =

∫
d4xL(φ, ∂µφ), (1.2.1)
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describes the dynamics of the fields in the theory through the principle of stationary action,
or Hamilton’s principle. This basically means that if we evolve the system through time,
it will follow the path in parameter space where S is stationary. This leads to the Euler-
Lagrange equations, which are the equations of motion for the fields. To find the extremum
of S we demand that its variation is zero when we vary φ→ φ+ δφ.

δS =

∫
d4x

{
∂L
∂φ

δφ+
δL

∂(∂µφ)
δ(∂µφ)

}
= 0. (1.2.2)

We assume that the variation of a derivative is the same as the derivative of a variation,
then we can rewrite the second part.

δS =

∫
d4x

{
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)}
= 0. (1.2.3)

The last term is a total derivate, so it can be removed through a partial integration. This
will potentially leave a boundary term, but that will not affect the variational properties.
This leaves us with

δS =

∫
d4x

{
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)}
δφ = 0. (1.2.4)

As this should hold for arbitrary variations of the fields, we must conclude that

∂L
∂φ

= ∂µ

(
∂L

∂(∂µφ)

)
, (1.2.5)

which is the Euler-Lagrange equation. It is worth noting that this equation, and the principle
used to derive it, can be viewed as a stationary phase approximation to the path integral.

To write down the Lagrangian that describes the theory one is interested in correctly,
one has to, in principle, write down every term of the right dimension which contains the
fields and derivatives of fields in question. In four space-time dimensions this means that
every term has to have mass dimension 4. The free part for each particle has to give the
correct equations of motion through the Euler-Lagrange equation, for instance, a scalar field
Lagrangian has to give the Klein-Gordon equation. Then one can simply add interaction
terms of the correct dimension, that respects the wanted symmetries. One also has to take
into account that conventional renormalizabilty demands that the parameters for each term
must have a non-negative mass dimension.

As a simple example we will look at a free scalar field, described by the Lagrangian

L =
1

2
(∂µφ)2 − 1

2
m2φ2. (1.2.6)

Applying Eq. (1.2.5) to this yields

−m2φ = ∂µ(∂µφ),

or
(� +m2)φ = 0, (1.2.7)

which is the Klein-Gordon equation.
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1.3 Symmetries and Noethers theorem

A symmetry of the action is some transformation

φ→ φ+ α∆φ, (1.3.1)

which leaves the Lagrangian invariant up to a total divergence, which can always be removed
by a partial integration. More precisely, the symmetry must be a one-parameter group
of continuous symmetries, connected to the identity transformation. This means that we
can consider an infinitesimal change from the identity transformation. That is, under the
transformation, the Lagrangian changes as such

L → L+ α∂µJ µ. (1.3.2)

Noether’s theorem [17, 18] simply and beautifully states that if the Lagrangian is invariant
under such a transformation, there exists a conserved current

jµ =
∂L

∂(∂µφ)
∆φ− J µ, (1.3.3)

i.e. ∂µj
µ = 0. To prove this we look at the change of L under the symmetry L → L+ α∆L

α∆L =
∂L
∂φ

α∆φ+

(
∂L

∂(∂µφ)

)
∂µ(α∆φ)

=α∂µ

(
∂L

∂(∂µφ)
α∆φ

)
+ α

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
∆φ

=α∂µJ µ. (1.3.4)

The term in the bracket is equal to zero from the Euler-Lagrange equation, Eq. (1.2.5),
which means that we have

∂µ

(
∂L

∂(∂µφ)
∆φ− J µ

)
≡ ∂µj

µ = 0, (1.3.5)

q.e.d. Another way of looking at this is to consider the charge, which actually is the generator
of the symmetry in the first place when one uses the Hamiltonian formalism,

Q =

∫
d3xj0, (1.3.6)

which is constant in time.
As an example, consider a Lagrangian invariant under translations in space-time

xµ → xµ + aµ. (1.3.7)

Derivatives generate space-time translations, so the action on the fields are

φ→ φ+ aν∂νφ. (1.3.8)
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The Lagrangian is also a scalar, so it must transform in the same way

L → L+ aµ∂µL = L+ aν∂µ(δµνL). (1.3.9)

As we have four translations, we will get four conserved currents, T µν . Inserting δφ =̂ ∂νφ
and J µ =̂ δµνL into Eq. (1.3.3) we obtain

T µν =
∂L

∂(∂µφ)
∂νφ− δµνL, (1.3.10)

which is the energy-momentum tensor. This means that a theory invariant under space-
time translations respects local energy-momentum conservation, and that the momentum
operator generates translations in time and space.

1.3.1 Chiral symmetries

A quantum field theory with chiral symmetry is basically a theory which treats left-handed
and right-handed particles independently. Chiral is the Greek word for hand, and chirality
then means ”handedness”. The fifth gamma matrix can be used to project out the chiral
components of a Dirac field ψ

ψL =
1

2
(1− γ5)ψ

ψR =
1

2
(1 + γ5)ψ. (1.3.11)

Consider a theory of free massless fermions, described by the Lagrangian

L = ψ̄
(
i/∂ −m

)
ψ. (1.3.12)

If we write out this in terms of left- and right-handed fields, ψ = ψL + ψR, using the
projections from Eq. (1.3.11), we obtain

L = ψ̄Li/∂ψL + ψ̄Ri/∂ψR −mψ̄LψR −mψ̄RψL. (1.3.13)

As we see, the mass term mixes left- and right-handed fields.
If we set m = 0, the action is invariant under the transformation ψ → eiαγ

5
ψ, leading to

the conserved Noether current jµ = ψ̄γµγ5ψ. This is what is known as a chiral symmetry.

1.3.2 Scale invariance

A theory with no relevant mass scale is also known as a scale invariant theory. This is not as
simple as stating that the theory is describing massless particles with dimensionless couplings
however. For a theory to be scale invariant, the couplings have to be independent of any
energy scale. This means that the beta-functions, which describe the flow of the couplings
over energy scales, of the renormalization group equations describing the theory vanish. This
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is what is known as a fixed point in the renormalization group flow, and is important in e.g.
the theory of phase transitions.

Free massless quantum electrodynamics, while rather trivial, is an example of a theory
with scale invariance. No masses nor couplings means that the theory is automatically
scale invariant. Massless φ4 theory is scale invariant on the classical level, but quantizing it
introduces a scale in the aforementioned manner.

1.4 Symmetry breaking

There are essentially three kinds symmetry breaking in physics, and the differentiation be-
tween them is rather unclear at times. One talks about spontaneous, dynamical and anoma-
lous symmetry breakdown. Spontaneous symmetry breaking was the first one to appear
historically, and is the most familiar one. The usual description is that the classical minima
of the potential is not a symmetric state, which may lead to massless Goldstone bosons.
This is what is used in the standard model, where the SU(2) symmetry of the Higgs field is
broken. The mechanism behind this is thoroughly explained in the following section.

Dynamical symmetry breakdown on the other hand, is often defined as a symmetry
breaking which arises due to the dynamics of the fields themselves, and the dynamics with
other fields on a quantum level. This may still lead to Goldstone bosons however. Massless
quantum chromodynamics (QCD) is an example of a theory where this happens. Here a
quark anti-quark condensate is formed, with a non-zero expectation value, which breaks the
chiral symmetry. This in turn gives rise to pions as Goldstone bosons.

As you may already see, there is not really any difference between the two situations on
the quantum level. The symmetry breakdown in the standard model can also be considered
as a dynamical effect. The nomenclature can be rather confusing, when there really is not
much of a difference between the two phenomena.

Finally, one also talks about anomalous symmetry breaking. This is when one has a sym-
metry on the classical level, but it is broken when quantizing the theory, where the source of
the breaking is the integration measure. This can be considered more of an explicit break-
ing, as we did not really have a symmetry to begin with. Goldstone bosons will therefore
not appear in a theory with a anomalously broken continuous symmetry, as it would with
a dynamically broken symmetry. An example of this is the anomalous breakdown of chiral
symmetry, known as the chiral, or Adler-Bell-Jackiw, anomaly[19, 20]. Another example
of an anomalous symmetry breaking is the scale, or conformal anomaly. Again in massless
QCD, one has a scale invariance which is broken by an anomaly. This leads to a scale being
introduced, namely the scale at which colour confinement occurs, which again determines
the masses of the quarks and the hadrons. This is what is known as dimensional transmu-
tation. The theory is originally described by a dimensionless parameter, the coupling, but
the anomaly introduces a typical energy scale at which the coupling is defined. Hence, one
can ”trade” the dimensionless coupling for the dimensionful scale.

As we see, these three are all similar effects, and it can be difficult to keep track of the
nomenclature. Nevertheless, in this thesis we will explore different models with different
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kinds of symmetries and the possible breaking of said symmetries. We will therefore first
review the formalism of (spontaneous) symmetry breaking, Goldstone’s theorem and the
effective action, which will be needed later on, in the language of scalar field theory.

1.4.1 Example of SSB

It is convenient to first look at a simple example to illustrate the concept of SSB. Consider
a set of N fields described by the Lagrangian

L =
1

2
(∂µφ

i)2 +
1

2
µ2(φi)2 − λ

4

[
(φi)2

]2
, (1.4.1)

where φi is a set of N scalar fields. The opposite sign of the mass term, which is what leads
to the symmetry breaking, is put in by hand. As the Lagrangian only involves the length of
φi, it is invariant under the transformation

φi → Rijφj, (1.4.2)

where Rij is any N × N orthogonal matrix. This group of transformations is simply the
rotation group, or O(N), which preserves the length of vectors.

The lowest energy configuration is a constant field φi0, whose value minimizes the potential

V (φi) = −1

2
µ2(φi)2 +

λ

4

[
(φi)2

]2
. (1.4.3)

This potential is minimized for any set of fields φi0 that satisfies

(φi0)2 =
µ2

λ
. (1.4.4)

This equation only determines the length of the vector, so it is convenient to choose a
vacuum that points along one of the directions of the field vector. It is conventional to
choose coordinates so that φi0 is pointing in the Nth direction

φi0 =

(
0, ...,

√
µ2

λ

)
(1.4.5)

Now we define a new set of fields, with the Nth field expanded around the vacuum

φi(x) = (φk(x), v + ξ(x)), (1.4.6)

where k now runs from 1 to N − 1. Then we insert this, and the value v =
√

µ2

λ
for the

vacuum expectation value into the Lagrangian, and obtain

L =
1

2
(∂µφ

k)2 +
1

2
(∂µξ)

2 − 1

2
(2µ2)ξ2 +

1

4

µ

λ

−
√
λµξ2 −

√
λµξ(φk)2 − λ

2
ξ2(φk)2 − λ

4

[
(φk)2

]2 − λ

4
ξ4 (1.4.7)
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Figure 1.1: A plot of the classical potential for N = 2, illustrating the massless excitation
”rolling along the gutter” and the massive excitation in the orthogonal direction.

This Lagrangian describes N − 1 massless fields and a single massive field, with cubic and
quartic interactions. The vacuum energy term is again introduced, and it is worth noting
that this term is classical, introduced due to the symmetry breaking, and not from quantum
effects.

The O(N) symmetry is no longer apparent, leaving the subgroup O(N − 1), which ro-
tates the φk fields among themselves. This rotation describes movements along directions
where the potential has a vanishing second derivative, while the massive field corresponds
to oscillations in the radial direction of V . This can be visualized for N = 2, where we get
what is often called the ”Mexican hat” potential, shown in Fig. 1.1

1.4.2 Goldstone’s theorem

The phenomenon where massless particles appear in theories with spontaneously broken
continuous symmetries is a completely general result, known as Goldstone’s theorem[21].

The theorem is proven easily on the classical level: Consider a Lagrangian with a sym-
metry G and a vacuum state invariant under a subgroup of G, H. If we expand the potential
around the vacuum state φ0 which minimizes it

V (φ) = V (φ0) +
1

2
(φ− φ0)i(φ− φ0)j

∂2V

∂φi∂φj
+ ... (1.4.8)

The second derivative term is a symmetric matrix whose eigenvalues are the masses squared
of the fields.

If we now assume that the potential is invariant under the general transformation

φi → φi + α∆i(φ), (1.4.9)

where ∆a(φ) is an arbitrary function involving all the fields, we have the following relation

V (φi + α∆iφ) = V (φi), (1.4.10)
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or if we expand

∆i(φ)
∂V

∂φi
= 0. (1.4.11)

If we differentiate this equation with respect to φj and evaluate it at the minima φ0 we obtain

∂∆i(φ)

∂φj
∂V

∂φi
+ ∆i(φ)

∂2V

∂φj∂φi

∣∣∣∣
φ=φ0

= 0 (1.4.12)

and we see that, as the first term vanishes since φ0 is the minimum of the potential, the
second term must also vanish. If the ground state is a symmetry, ∆i(φ) is zero and the
relation is trivial. If, on the other hand, the ground state is not left unchanged by the
transformation, the second derivative must be zero. This derivative is just the mass matrix,
this means that if a symmetry is not a symmetry of the ground state, we must have a zero
eigenvalue of the mass matrix in the direction of the symmetry transformation; and hence,
particles with zero mass.

In this class of models, that is relativistic models with broken internal symmetries, we
have the following: If the vacuum is invariant under the subgroup H of G, the number of
massless particles, or Goldstone bosons, is equal to the dimension of the left coset G/H, or
the number of symmetries broken.

1.4.3 The effective action

When discussing symmetry breakdown in quantum field theories, it is useful to introduce
the effective action, Γ. It will allow us to use geometrical arguments, as we did on the
classical level, when looking at symmetry breakdown on the quantum level. This will, as was
previously implied, blur the line between spontaneous and dynamical symmetry breaking.
This is because the effective action will take both quantum and classical effects into account.

We start with our familiar generating functional

Z[J ] =

∫
Dφ exp{i

∫
d4x(L+ J(x)φ(x)}, (1.4.13)

then we define an energy functional E[J ] by Z[J ] = exp{−iE[J ]}. If we differentiate this
with respect to the source J we obtain

−δE[J(y)]

δJ(x)
=

1

iZ

δZ[J(y)]

δJ(x)

=
1

Z

∫
Dφφ(x) exp i

∫
d4y(L+ Jφ)

=
〈0|φ(x)|0〉J
〈0|0〉J

= 〈φ(x)〉J = φc(x). (1.4.14)

The classical field is defined as the vacuum expectation value of the field φ, in the presence
of the source J
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Now we define the effective action as the Legendre transform of E[J ].

Γ[φc] = −E[J ]−
∫
d4yJ(y)φc(y). (1.4.15)

Computing the functional derivative of this new quantity

δΓ[φc(x)]

δφc(y)
= −

∫
d4x

δJ(x)

δφc(y)

δE

δJ(x)
−
∫
d4x

δJ(x)

δφc(y)
φc(x)− J(x). (1.4.16)

δE
δJ(x)

= −φc(x) by definition, so the first and second term cancels, and we end up with

δΓ[φc(x)]

δφc(y)
= −J(x). (1.4.17)

This procedure is completely analogous to e.g. the construction of the Hamilton function
from the Lagrange function in classical mechanics.

This can be simplified slightly if we only consider translation- and Lorentz-invariant vac-
uum states φc(x) = φc. We know that Γ is an extensive quantity, so it must be proportional
to V T , so we write

Γ[φcl] = −(V T )Veff(φc). (1.4.18)

Where Veff is defined as the effective potential. The Legendre transform Eq. (1.4.15) now
looks like

Veff(φc) =
E[J ]

V T
+ Jφc. (1.4.19)

Which can be interpreted as, if we remember that Z = exp{−iE[J ]} is basically 〈Ω|e−iHT |Ω〉

Veff(φc) = %vac + Jφc, (1.4.20)

where %vac is the vacuum energy density.
The effective potential is basically the quantum version of the classical potential. Or

rather, the classical potential is the classical limit of the quantum object that is the effective
potential. This implies that we can use the same geometrical arguments as in Subsection
1.4.1 on the effective potential, with the added benefit that quantum fluctuations are taken
into consideration. Finding the true stable vacuum state then reduces to solving the equation

∂Veff

∂φc
= 0. (1.4.21)

To gain some more information of the meaning of Γ, we can expand it in φc; just as we
do for Z, which gives us the n-point Green’s functions.

Γ[φc] =
∑
n

1

n!

∫
d4x1 · · · d4xnΓ(n)(x1, ..., xn)φc(x1) · · ·φc(xn). (1.4.22)

The functions Γ(n) are the one-particle-irreducible(1PI) Green’s functions. Hence, the effec-
tive action is the generating functional for 1PI Green’s functions.

So far we have done this for a simple coupling Jφ, but it is straightforward to general-
ize this to couplings to arbitrary composite operators of all the fields involved. The only
difference here would be that Γ no longer generates 1PI Green’s functions.
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1.4.4 Further motivation for the use of Legendre transforms

Let us assume we want to calculate some integral given by∫
Dφe−S(φ)+~x·~f(φ) ≡ e−F (~x). (1.4.23)

Here ~f(φ) is some arbitrary function of the variables φ, which we want to calculate the
expectation value of, while ~x is a set of variables used to probe said expectation values. Now
we insert unity on the form

1 =

∫
D ~fδ(~f − ~f(φ)), (1.4.24)

and rewrite the integral

e−F (~x) =

∫
D ~fe~x·~f

∫
Dφe−S(φ)δ(~f − ~f(φ)). (1.4.25)

Now we define the quantity G(~f)

e−G(~f) ≡
∫
De−S(φ)δ(~f − ~f(φ)). (1.4.26)

This may be used to probe the relevant contributions to the integral (1.4.23). Evaluating Eq.
(1.4.26) directly will most likely be difficult, but it is often the case that we may evaluate
Eq. (1.4.23) (at least perturbatively), and assume that Eq. (1.4.25 is determined by its
maximum value. That is

e−F (~x) ≈ max
~f

(
e~x·

~f−G(~f)
)

F (~x) ≈ min
~f

(
G(~f)− ~x · ~f

)
(1.4.27)

This means that ~x = ∇fG, and

F (~x) = G(~f)− ~f · ∇fG(~f) (1.4.28)

By examining how the minimum changes under a change of ~x and the resulting change
in G one can deduce the opposite transformation

G(~f) = F (~x) + ~x · ∇xF, (1.4.29)

where ~f = −∇xF .
As we see, this leads to equations identically to the Legendre transformations introduced

in the previous subsection. This means that the Legendre transform is an excellent way
to approximate the effective potential. A proper and intuitive overview of the Legendre
transform can be found in [22].
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Chapter 2

Scalar field theory

2.1 Free scalar field theory

We will first discuss the simplest quantum field theory, free scalar field theory. The path
integral, or partition function, in Euclidean space is

Z =

∫
Dφ exp

{
−
∫
d4xL0

}
≡ exp[−ET ], (2.1.1)

where the free Lagrangian is

L0 =
1

2
(∂µφ)2 +

1

2
m2φ2. (2.1.2)

This integral can be solved directly using Eq. (A.1.8)

Z =

∫
Dφ exp

{
−1

2

∫
d4xφ[−(�−m2)]φ

}
= C det

[
−(�−m2)

]− 1
2 , (2.1.3)

which gives us the energy density of the theory

ET = − logZ =
1

2
log det

[
� +m2

]
+ C =

1

2
Tr log

[
� +m2

]
+ C. (2.1.4)

Such traces over general operators can be calculated by integrating it over all space and
inserting two completeness relations of properly normalized momentum eigenstates.

TrO =

∫
d4x〈x|O|x〉

=

∫
d4x

∫
d4k

(2π)4

∫
d4q

(2π)4
〈x|k〉〈k|O|q〉〈q|x〉

= V T

∫
d4k

(2π)4
λ, (2.1.5)
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where λ are the eigenvalues of O. Applying Eq. (2.1.5) to Eq. (2.1.4) we obtain

% =
1

2

∫
d4k

(2π)4
log
(
k2 +m2

)
+ C. (2.1.6)

The factor C depends on the normalization of the measure in the path-integral, which is
dependent on the regularization used. It should be independent of any physical parameters,
e.g. masses or couplings, and we can therefore overlook it. This result should be equivalent
to the result obtained through the canonical formalism, i.e.

% =
1

2

∫
d3k

(2π)3

√
~k2 +m2 =

1

2

∫
d3k

(2π)3
~ωk. (2.1.7)

To show this we have to do the k4 ≡ ω integral. First we partially integrate to get rid of the
logarithm

% =
1

2

∫
d3k

(2π)3

∫
dω

2π
log(ω2 + ~k2 +m2) = −1

2

∫
d3k

(2π)3

∫
dω

2π

2ω2

ω2 + ω2
k

(2.1.8)

The ω integral can now be done using contour integration, after we rotate it away from the
imaginary axis ω → −iω

Iω ≡ −
∫
dω

2π

2ω2

ω2 + ω2
k

=

∫
dω

2π

2ω

ω2 − ω2
k + iε

. (2.1.9)

The contour can now be closed in the upper half plane, picking up the pole at ω = −ωk + iε,
and we obtain

Iω = i
2πi

2π
Res

{
2ω2

ω2 − ω2
k

;ω = −ωk
}
. (2.1.10)

The residue is −ωk and the result is

% =
1

2

∫
d3k

(2π)3
ωk, (2.1.11)

identical to the canonical result.

2.2 Interacting scalar field theory

This is about as much as we can do with the free theory, so to make it more interesting we
add a self-interaction term, the Lagrangian is then

L =
1

2
(∂µφ)2 +

1

2
m2φ2 +

λ

4!
φ4. (2.2.1)

The an-harmonic term λφ4 means that we can not solve the integral directly, as before. To
solve this problem, we add a source term J(x)φ(x) to the action, and get what we call the
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generating functional Z[J ]. The an-harmonic term can then be dealt with by expanding it
and replacing it with functional derivatives with respect to J

Z[J ] =

∫
Dφe−

∫
d4x[L−J(x)φ(x)]

=

∫
Dφe−

∫
d4x[L0−J(x)φ(x)]

(
1−

∫
d4x

λ

4!
φ4 + . . .

)
=

∫
Dφ

(
1− λ

4!

∫
d4w

(
δ

δJ(w)

)4

+ . . .

)
e−

∫
d4x[L0−J(x)φ(x)]

= e−
λ
4!

∫
d4w( δ

δJ(w))
4
∫
Dφe−

∫
d4x[L0−J(x)φ(x)]. (2.2.2)

Since the integral remaining is Gaussian, it can now be solved using Eq. (A.1.9), yielding

Z[J ] = Z0e
− λ

4!

∫
d4w( δ

δJ(w))
4

e
1
2

∫
d4x

∫
d4yJ(x)D(x,y)J(y), (2.2.3)

where D(x, y) is the inverse of the operator −�+m2, or the position space propagator, and
Z0 is the generating functional with both the sources and the couplings set to zero. D(x, y)
is the Green’s function of the operator, so we can use the following relation

(−� +m2)D(x, y) = δ(4)(x− y), (2.2.4)

to represent it as a momentum integral, inserting the definition of the delta-function and
Fourier transforming, we obtain

D(x− y) =

∫
d4k

(2π)4

e−ik·(x−y)

k2 +m2
, (2.2.5)

where

D(k) =
1

k2 +m2
(2.2.6)

is the momentum space propagator.

2.3 Feynman rules

2.3.1 Feynman rules for correlation functions

Now we have all we need to find n-point correlation functions, or Green’s functions. These
are defined as

G(n)(x1, . . . , xn) = 〈φ(x1) . . . φ(xn)〉 ≡ 1

Z0

∫
Dφe−S[φ]φ(x1) . . . φ(xn). (2.3.1)
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As before we can functionally differentiate Z[J ] with respect to J(xi) to bring down a factor
of φ(xi), giving us

G(n)(x1, . . . , xn) =
δ

δJ(x1)
. . .

δ

δJ(xn)

Z[J ]

Z0

. (2.3.2)

This means that we can, by using Eq. (2.3.2) and expanding Eq. (2.2.3) in λ, systemat-
ically calculate any Green’s function to any order in λ. We simply perform the functional
differentiations to the desired order, then set the remaining J ’s to zero. As an example we
will calculate G(2) explicitly to first order, and derive the Feynman rules by example. First
we must define some shorthand notation: We write sources at x, J(x), as Jx; propagators
between x and y , D(x− y), as Dxy; functional derivatives with respect to the source at x,
δ

δJ(x)
, as δx and integrals over x,

∫
d4x, as

∫
x
. We then have to calculate

G(2)(x1, x2) =

(
1− λ

4!

∫
w

δ4
w

)
δ1δ2e

1
2

∫
x

∫
y JxDxyJy . (2.3.3)

The x1 and x2 derivatives are easily calculated

G(2)(x1, x2) =

(
1− λ

4!

∫
w

δ4
w

)[
D12 +

∫
x

JxDx1

∫
x

JxDx2

]
e

1
2

∫
x

∫
y JxDxyJy .

The O(λ0) can now be read off, giving just a free propagator D(x1 − x2). Continuing, we
have the first order contribution

G(2)(x1, x2)1 = − λ
4!

∫
w

δ4
w

[
D12 +

∫
x

JxDx1

∫
x

JxDx2

]
e

1
2

∫
x

∫
y JxDxyJy

= − λ
4!

∫
w

δ3
w

[
D12

∫
x

JxDxw +D1w

∫
x

JxDx2 +D2w

∫
x

JxDx1

+

∫
x

JxDx1

∫
x

JxDx2

∫
x

JxDxw

]
e

1
2

∫
x

∫
y JxDxyJy

= − λ
4!

∫
w

δ2
w

[
D12Dww +D12

(∫
x

JxDxw

)2

+ 2D1wD2w

+2

(
D1w

∫
x

JxDx2 +D2w

∫
x

JxDx1

)∫
x

JxDxw

+Dww

∫
x

JxDx1

∫
x

JxDx2 + . . .

]
e

1
2

∫
x

∫
y JxDxyJy

= − λ
4!

∫
w

δw

[
3D12Dww

∫
x

JxDxw + 6D1wD1w

∫
x

JxDxw

+3

(
D1w

∫
x

JxDx2 +D2w

∫
x

JxDx1

)
Dww + . . .

]
× e

1
2

∫
x

∫
y JxDxyJy (2.3.4)
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here the ellipsis denotes terms of higher order in J than there is derivatives, as they will
vanish in the end. The last derivative is carried out and gives, after setting J to zero,

G(2)(x1, x2)1 = −λ
8

∫
d4wD12Dww −

λ

2

∫
d4wD1wDwwDw2. (2.3.5)

The first term is disconnected, and therefore not interesting; but the second is a correction to
the propagator, which must be handled by renormalization. The connected Green’s function
is then, to first order

G
(2)
C (x1, x2) = D(x1 − x2)− λ

2

∫
d4wD(x1 − w)D(0)D(w − x2) + . . . (2.3.6)

These terms can be represented by Feynman diagrams:

G
(2)
C (x1, x2) =

�

+

�
. (2.3.7)

The factor 2 the second diagram is divided by is called the symmetry factor. It arises
due to the factor of 1

2
not being cancelled when the derivatives from the λ term hits

exp{1
2

∫
x

∫
y
JxDxyJy}. The different possibilities has already been accounted for with the

factor of 4!. With this definition, the symmetry factor can be read of the diagram, it is
simply the number of times one can alter the diagram without changing its topology. For
instance, in our example, the factor is 2 because we can twist the loop around, and we have
two topologically equivalent diagrams. We can now deduce the Feynman rules in position
space for correlation functions:

• Draw all topologically possible diagrams.

• Assign a label to each vertex, e.g. x1, x2, w, z . . ..

• For each link

�

associate a factor D(x− y).

• For each vertex� associate a factor −λ
∫
d4w.

• Divide each diagram by its symmetry factor.

It is also important to note that the connected Green’s functions can also be obtained by
differentiating logZ[J ] with respect to J(xi) the appropriate amount of times. It is therefore
customary to call logZ[J ] the generating functional of connected correlation functions.

23



2.3.2 Momentum space Feynman rules

We would now like to deduce the Feynman rules for momentum space Green’s functions, as
calculations are more easily done here. From the definition of the Fourier transform we have

G(2)(x1, x2) =

∫
d4k

(2π)4
e−ik(x1−x2)G(2)(k), (2.3.8)

so we should be able to read of the momentum space version of G(2)(x1, x2) from Eq. (2.3.6).
After inserting copies of Eq. (2.2.5) into Eq. (2.3.6) we have

G(2)(x1, x2) =

∫
d4k

(2π)4

e−ik(x1−x2)

k2 +m2

− λ

2

∫
d4w

∫
d4k

(2π)4

e−ik(x1−w)

k2 +m2

∫
d4p

(2π)4

1

p2 +m2

∫
d4q

(2π)4

e−iq(w−x2)

q2 +m2

=

∫
d4k

(2π)4

e−ik(x1−x2)

k2 +m2

− λ

2

∫
d4k

(2π)4

e−ik(x1−x2)

k2 +m2

∫
d4p

(2π)4

1

p2 +m2

1

k2 +m2
. (2.3.9)

Now it is straightforward to read of G(2)(k)

G(2)(k) =
1

k2 +m2
− λ

2

1

k2 +m2

(∫
d4p

(2π)4

1

p2 +m2

)
1

k2 +m2
. (2.3.10)

It is customary to remove the external propagators 1
k2+m2 , as we have in the second term.

These show up in all diagrams, and are implied. It is also convenient to only consider what is
called one particle irreducible, or 1PI, diagram. That is, diagrams that cannot be separated
into two pieces by cutting one internal line.

This implies the following Feynman rules for 1PI amputated Green’s functions in mo-
mentum space:

• Draw all relevant diagrams.

• Assign a momentum flowing through each link, e.g. p, k, q . . .

• Associate a factor 1
k2+m2 for each link.

• Associate a factor −λ for each vertex.

• Integrate over the momenta flowing in each loop.

• Remove all external propagators.

• Divide each diagram by its symmetry factor.
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2.3.3 Feynman rules for vacuum energy

To calculate the vacuum energy one has to, in principle, solve the integral Z[J ], as ET =
− logZ. This is, as we saw earlier, impossible for any other than the trivial free theory, so
let us try to see if logZ can be expressed through Feynman diagrams. Starting from Eq.
(2.2.3) we have to calculate

logZ = logZ0

+ log

[(
1− λ

4!

∫
d4w

(
δ

δJ(w)

)4

+ · · ·

)
e

1
2

∫
d4x

∫
d4yJ(x)D(x,y)J(y)

]
= logZ0 + logZI = −ET, (2.3.11)

with J set to zero in the end. logZ0 is just the energy associated with the free part of
the theory, which we have already calculated in Eq. (2.1.4). The zeroth order term in the
coupling will just give 1 after we set J to zero, so the first order term we have to calculate is

− λ
4!

∫
w

δ4
we

1
2

∫
x

∫
y jxDxyJy , (2.3.12)

again with obvious shorthand. Performing the derivatives as before we end up with, after
setting J to zero

−λ
8

∫
d4w [D(w − w)]2 . (2.3.13)

The next term in the expansion will be

1

2

(
− λ

4!

)2 ∫
z

δ4
z

∫
w

δ4
we

1
2

∫
x

∫
y jxDxyJy , (2.3.14)

which after a long calculation yields

1

2

(
−λ
8

∫
d4w [D(0)]2

)2

+
(−λ)2

16

∫
d4w

∫
d4zD(0)D(w − z)D(0)

+
(−λ)2

48

∫
d4w

∫
d4z [D(w − z)]4 . (2.3.15)

Each term has an overall integration over space-time, which gives a factor of V T , and the
first term in the second order part has in fact two. The rest of the result can be expressed
as Feynman diagrams with no external legs, i.e. vacuum diagrams. For example

−λ
8

∫
d4w [D(w − w)]2 = V T ·

(
�

)
. (2.3.16)
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This follows the conventions already established in the rules for correlation functions. Ap-
plying this to the full second order result we have

logZI = log

{
1 + V T

(
�

+

�

+

�

)

+
1

2
(V T )2

(
�

)2

+ . . .

}
. (2.3.17)

If we carry out the calculations to higher and higher order, we will see clearly what we are
beginning to see here. Each diagram will show up in higher powers, with the appropriate
factor in front, in such a way that we can exponentiate.

logZI = log exp

{
V T

(
�

+

�

+

�
+ . . .

)}
. (2.3.18)

or

EI
V

= − logZI
V T

= −

{
�

+

�

+

�
+ . . .

}
. (2.3.19)

This also shows that logZ only consists of connected diagrams. This implies the following
rules for calculating vacuum energy diagrams:

• Draw all possible diagrams to the appropriate order with no external legs.

• Assign a label to each vertex, e.g. x1, x2, w, z . . .

• Associate a factor D(x1 − x2) for each link.

• Associate a factor −λ
∫
d4w for each vertex.

• There will be an overall integration over space, resulting in a factor of V T , which must
be removed.

• Divide each diagram by its symmetry factor.

• Multiply each diagram by −1.

If we want to work in momentum space we can apply exactly the same logic as when we
considered momentum space correlation functions. Hence, we have the following Feynman
rules for vacuum energy diagrams in momentum space:

• Draw all possible diagrams to the appropriate order with no external legs.
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• Assign a momentum to each link, e.g. p, k, q . . .

• Associate a factor 1
k2+m2 for each link.

• Associate a factor −λ for each vertex.

• Divide each diagram by its symmetry factor.

• Multiply each diagram by −1.

2.3.4 A note on Euclidean space and Minkowski space

So far in this thesis we have worked in Euclidean space, rather than Minkowski space. This
is basically just a question of when to Wick-rotate, which we have to do anyway when
we want to perform our integrals, to avoid poles. Later on, when we introduce fermions,
we will work exclusively in Minkowski space when considering diagrams. This is because
defining the Euclidean path integral for fermions is troublesome, due to difficulties defining
the gamma-matrices in Euclidean space.

If we wanted to start out with a Minkowski space path integral for our scalar particles,
the only few differences would be in the propagators, vertex factors and the factor we have
to multiply each diagram with to obtain vacuum energies. Specifically, the propagator would
be

D(k) =
i

k2 −m2 + iε
, (2.3.20)

and the vertex factor would now be −iλ. The presence of iε in the denominator is now
necessary to avoid the pole at p2 = m2 on the real axis. This factor is implied in every
Minkowski space propagator, and will not always be written explicitly. To figure out the
overall sign of the vacuum energy diagrams, we look at the definition of the energy functional.
In Minkowski space we would have

Z[J ] = exp {−iET} (2.3.21)

ET =i logZ[J ] (2.3.22)

and hence have to multiply each diagram by i instead of −1.

2.4 Renormalization

To make sure that our theory will give meaningful predictions, it is important to show
that it is renormalizable. Proving this in general is quite involved, but we can show it
term by term to the order we are interested in. We use renormalized perturbation theory
with a mass counterterm only, as coupling constant renormalization is not necessary at this
level. We therefore split the bare mass m2 into a renormalized mass m2

R and a counterterm
δm2 = m2−m2

R. This does not change anything, we simply rearrange the terms and consider
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the renormalized mass as a part of the free theory and the counterterm as a perturbation.
The Lagrangian is then

L =
1

2
(∂µφR)2 +

1

2
m2
Rφ

2
R +

λ

4!
φ4
R +

1

2
δm2φ2

R, (2.4.1)

where we have suppressed the subscript R on the coupling, or rather; the bare and the
renormalized coupling are the same at this level of discussion. The counterterm gives the
following addition to the Feynman rules

�

= −δm2. (2.4.2)

The renormalization condition at this level is simply that the full propagator is equal to
the inverse zeroth order propagator, plus finite terms, diagrammatically

�

= (

�

)−1 + terms regular at p2 = m2. (2.4.3)

To first order in the coupling, we have three diagrams

(

�

)−1 +

�

+

�
=p2 +m2

R −
1

p2 +m2
R

δm2 1

p2 +m2
R

− 1

p2 +m2
R

(
λ

2

∫
d4k

(2π)4

1

k2 +m2
R

)
1

p2 +m2
R

. (2.4.4)

The renormalization condition leads us to demand that the one-loop diagram is cancelled
completely by the counterterm (it may have finite parts also, but it is very convenient to
define it this way here), which fixes it at this order to

δm2 = −λ
2

∫
d4k

(2π)4

1

k2 +m2
R

= −λ
2
Il. (2.4.5)

This basically amounts to renormalizing the 2-point 1PI green’s function, which is defined
as the inverse zeroth order propagator, minus the sum of all 1PI diagrams with two external
legs. As we simply demand that the counterterm cancels the 1PI diagram(s), we will in this
thesis not bother with the extra overall negative sign.

Next we turn to the vacuum energy, where we to zeroth order have the following diagram

�
= −1

2

∫
d3k

(2π)3

√
~k2 +m2

R = −1

2

∫
d4k

(2π)4
log
(
k2 +m2

R

)
. (2.4.6)
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To first order in the coupling there are two contributions, as the counterterm is proportional
to λ

�
+

�
= −1

2
δm2Il −

1

8
λIl (2.4.7)

= −1

4
λI2

l −
1

8
λI2

l .

Now, both of these expressions are divergent, but that is not an issue here, as we will only be
interested in the energy difference of these expressions compared to some reference energy,
or in our case, this energy will be the reference energy as we will see in the next section.

Before we move on it is interesting to note that the value for δm2 found here is also the
one corresponding to the value of the physical mass which minimizes the energy. This is
not a general result, it just happens to come out this way here. The vacuum energy density
associated with the three diagrams calculated is

%(m2
R) =

1

2

∫
d4k

(2π)4
log(k2 +m2

R) +
1

2
δm2Il +

λ

8
I2
l . (2.4.8)

The minima is given by

d%

dm2
R

=
1

2
Il −

1

2
Il +

1

2
δm2 dIl

dm2
R

+
λ

4
Il
dIl
dm2

R

= 0, (2.4.9)

which again gives us

δm2 = −λ
2
Il, (2.4.10)

or if we set the bare mass to zero

m2
R =

λ

2

∫
d4k

(2π)4

1

k2 +m2
R

. (2.4.11)

This is similar to the gap equation which appears in BCS-theory[23].

2.5 The modified theory

In order to attempt to probe the parameter space for a state closer to the real ground
state of the scalar field theory, we add a quadratic coupling to an external source, µ2. We
may not find the exact ground state, but the state we find will hopefully be similar to,
and most importantly respond to symmetries in the same way as the real one. To avoid
possible singularities from evaluating two fields in the same point we also include a function
connecting fields at separate points. That is, we add a term µ2O[φ] to the Lagrangian, where
O[φ] is some operator in position space. Specifically, the action is now

S =

∫
d4xL0 + µ2

∫
d4xd4y∆(x− y)φ(x)φ(y) (2.5.1)
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Figure 2.1: Vacuum energy density as a function of the variational parameter µ for mR = 0.

We now introduce the formalism of the effective action from Sec. 1.4.3, and it is straightfor-
ward to see that we now have

δE

δµ2
= −〈O〉 ≡ −ξ2, (2.5.2)

Compared to Eq. (1.4.15), µ2 is equivalent to the source J and ξ2 is equivalent to the classical
field φc.

This modification lead to a new set of momentum space Feynman rules

�

=
1

k2 +m2 + µ2∆̃m2
, (2.5.3)

� = −λ, (2.5.4)

where ∆̃m is the momentum space version of ∆m, and will be chosen such that the graphs
we are interested in yield finite results.

2.5.1 Renormalization

In renormalizing the modified theory, we still use the old renormalization condition, i.e. the
counterterm is still fixed as given in Eq. (2.4.5). The two point function to first order in the
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coupling is now

�

+

�

+

�
.

The 0. order part is nice and finite, so we only have to consider the two last contributions.
Using Eq. (2.4.5) we see that these two are equal to

− δm2 − 1

2
λ

∫
d4k

(2π)4

1

k2 +m2
R + µ2∆̃m2

≡ −δm2 − 1

2
λI ′l

=− 1

2
λ

∫
d4k

(2π)4

[
1

k2 +m2
R + µ2∆̃m2

− 1

k2 +m2
R

]
=

1

2
λ

∫
d4k

(2π)4

µ2∆̃m2

(k2 +m2
R + µ2∆̃m2)(k2 +m2

R)
, , (2.5.5)

which is finite for an appropriate choice of ∆̃m2.
We now turn to the difference in vacuum energy compared to the unmodified theory. To

zeroth order we have the following expression

∆%0 = %0[∆̃m2]− %0[∆̃m2 = 0]

=
1

2

∫
d3k

(2π)3

[√
~k2 +m2

R + µ2∆̃m2 −
√
~k2 +m2

R

]
=

1

2

∫
d3k

(2π)3

√
~k2 +m2

R

[√
1 +

µ2∆̃m2

~k2 +m2
R

− 1

]

=
1

2

∫
d4k

(2π)4
log

(
k2 +m2

R + µ2∆̃m2

k2 +m2
R

)
, (2.5.6)

Which again is finite for the appropriate choice of ∆̃m2. To first order we have four diagrams
contributing

�
+

�
−

�
−

�
= −1

2
δm2I ′l −

1

8
λI ′l +

1

2
δm2Il +

1

8
λIl. (2.5.7)

We know from Eq. (2.5.5) that the combination I ′l − Il is finite, so this expression will
hopefully only depend on that particular combination. Inserting again Eq. (2.4.5) into the
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Figure 2.2: Vacuum energy density as a function of the variational parameter µ for mR 6= 0.

associated vacuum energy, we have the following

∆%1 =%1(∆̃m2)− %1(∆̃m2 = 0)

=− λ

4
I ′lIl +

λ

8
I
′2
l −

λ

4
I2
l −

λ

8
I2
l

=− λ

4
Il(I

′
l − Il) +

λ

8
(I
′2
l − I2

l )

=− λ

8
Il(I

′
l − Il) +

λ

8
I ′l(I

′
l − Il) =

λ

8
(I ′l − Il)2 (2.5.8)

(2.5.9)

As we see, the renormalization is successful, and we have a finite result.

2.6 Calculations

In order to calculate the vacuum energy density % we must first choose ∆̃m2 in such a way that
the integrals converge. To make sure that what we calculate are actually energy densities,
we choose ∆m2(x− y) to be a function of ~x− ~y only, or conversely ∆̃m2(k) a function of ~k
only. Then one can still use contour integration to prove that the four dimensional version
of Eq. (2.5.6) is equal to the three dimensional one. The choice

∆̃m2(~k) =
M4

(~k2 +M2)2
. (2.6.1)
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Figure 2.3: The effective potential as a function of the variational parameter µ for mR = 0.

is sufficient to make all of our diagrams finite. Using contour integration we can convert Eq.
(2.5.9) into a 3 dimensional integral also, giving us the following two expressions to calculate

∆%0 =
1

2

∫
d3k

(2π)3

(√
~k2 +m2

R +
µ2M4

(~k2 +M2)2
−
√
~k2 +m2

R

)
≡ 1

2
I0, (2.6.2)

∆%1 =
λ

8

1

2

∫
d3k

(2π)3

 1√
~k2 +m2

R + µ2M4

(~k2+M2)2

− 1√
~k2 +m2

R

2

≡ λ

8
I2

1 . (2.6.3)

From Eq. (1.4.20) we know that
Veff = %+ µ2ξ2, (2.6.4)

where

ξ2 = − ∂%

∂µ2
. (2.6.5)

Performing the derivatives, we get

ξ0 = −1

2

∂I0

∂µ2

= −1

4

∫
d3k

(2π)3

M4

(~k2 +M2)2

(
~k2 +m2

R +
µ2M4

(~k2 +M2)2

)−1/2

, (2.6.6)
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Figure 2.4: The conjugated variable ξ2 as a function of the variational parameter µ for
mR = 0.

and

ξ1 = −λ
4
I1
∂I1

∂µ2

=
λ

8
I1

1

2

∫
d3k

(2π)3

M4

(~k2 +M2)2

(
~k2 +m2

R +
M4

(~k2 +M2)2

)−3/2
 . (2.6.7)

As these integrals are rather tricky, they are performed numerically with the aid of Mathe-
matica. The Mathematica notebook is included in Appendix B.

2.6.1 Results and Discussion

We choose to plot the energy for mR = 0 and mR 6= 0 and the effective potential for mR = 0
(using arbitrary units of energy, as only the qualitative appearance is important here). The
plots for the energy density is shown in Figs. 2.1 and 2.2. With the plot of the effective
action we run in to some difficulties, as we see from Figs. 2.3 and 2.4 for mR = 0, the
conjugated variable ξ2 changes so very slowly in comparison to the effective potential. This
means that if we want to plot Veff as a function of ξ2 parametrically, we get a very steep line
for all ranges of µ.

As we see in both plots of the vacuum energy, Figs. 2.1 and 2.2, there is no ground state
more favourable than for the unmodified theory. ∆% is always larger than zero, which means
that the energy of the modified theory is always larger than the unmodified one. Hence, the
addition of the test function fails to probe a better ground state. Even though we are not
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able to create a proper plot of the effective potential as a function of ξ2, we can draw the
same conclusion from the two separate plots of the potential and ξ2 as a function of µ. In
Figs. 2.3 and 2.4 we see that both of these functions are monotonically increasing functions
of µ, and therefore no new minima outside of µ = 0 can be obtained.

It seems, from these results, that Coleman and Weinberg’s conclusion; that the minima
they observed[7] can not be trusted, was correct. The technique used here is apparently good
at probing out the true ground state of the theory, even if it leads to slightly more complicated
integrals to solve. The upside to this is that the theory is automatically regularized by a
proper choice of test function. It is also renormalizable, given that the unmodified theory
is renormalizable in the first place. It seems that a scalar φ4 theory is too simple to exhibit
any interesting symmetry breaking behaviour. This leads us to the question of whether
more complicated theories will. One could gauge the theory, but that would bring in other
difficulties with regularization and renormalization due to gauge invariance. We therefore
wish to apply the same ideas to a theory without gauge-fields, but with fermions and Yukawa
couplings, namely the supersymmetric Wess-Zumino model.
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Chapter 3

Fermions

3.1 Free fermions

Before looking at the full supersymmetric theory, we will have to consider free fermions
alone, as there are quite a few differences here from bosons. The free Dirac Lagrangian is as
follows

LD = ψ̄(i/∂ −m)ψ. (3.1.1)

In order to get the Fermi-Dirac statistics of fermions properly in the path integral, one con-
siders the fields ψ and ψ̄ as anti-commuting Grassmann fields. This is covered in Appendix
A.4. The path integral is then (we now move away from the imaginary time formalism, and
work in Minkowski space),

Z =

∫
DψDψ̄ei

∫
d4xLD = e−iET . (3.1.2)

This can be solved directly using the Gaussian Grassmann integral, Eq. (A.4.10), yielding

Z = C det(i/∂ −m) = CeTr log(i/∂−m). (3.1.3)

The trace can be massaged a bit to get a more familiar expression

Tr log(i/∂ −m) = Tr log γ5(i/∂ −m)γ5 = Tr log(−i/∂ −m)

=
1

2

[
Tr log(i/∂ −m) + Tr log(−i/∂ −m)

]
=

1

2
Tr log(∂2 +m2). (3.1.4)

Performing the trace, remembering that we now have to do the operator trace and the Dirac
trace, we get the vacuum energy

E

V
= −4

2

∫
d4k

(2π)4
log(k2 −m2 + iε). (3.1.5)
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As we see, the fermion vacuum energy has the opposite sign of bosons. The factor of 4
from the Dirac trace reflects that the fermions have 4 degrees of freedom, 2 for particles and
2 for antiparticles, both of spin 1

2
. The propagator can also be deduced directly from the

path integral, it is the inverse of the operator i/∂ −m. Doing the usual routine for Green’s
functions, we have

(i/∂ −m)SF (x− y) = iδ(4)(x− y)

SF (x− y) =

∫
d4p

(2π)4

ie−ip·(x−y)

/p−m+ iε
. (3.1.6)

Thus, the momentum space propagator is

SF (p) =
i

/p−m+ iε
=

i(/p+m)

p2 −m2 + iε
. (3.1.7)

3.2 Feynman rules for fermions

To determine the Feynman rules for fermions, let us consider Yukawa theory. Take the free
Lagrangians of a scalar field and a spinor field, and to that add the three-point coupling
(and the four-point interaction of the scalars, but that part is not relevant for the discussion
at hand)

LY = −gφψ̄ψ. (3.2.1)

To calculate correlation functions involving fermions, we have to add two new Grassmannian
source terms, η(x) and η̄(x). These have to be spinors, in order to get a scalar when multiplied
by the fermion field.

Z[J, η, η̄] =

∫
DφDψDψ̄ei

∫
d4x[Lφ+LD+LY +Jφ+η̄ψ+ψ̄η]. (3.2.2)

This can be solved exactly as the scalar theory was, by replacing the coupling terms by
functional derivatives with respect to the sources, and then solving the remaining Gaussian.
This gives us

Z[J, η, η̄] =Z0 exp

{
−ig

∫
d4w

(
1

i3
δ3

δJ(w)δη(w)δη̄(w)

)}
×e−

i
2

∫
d4xd4yJ(x)D(x−y)J(y)ei

∫
d4xd4yη̄(x)S(x−y)η(y), (3.2.3)

where Z0 is the solution to the combined free scalar and spinor path integral.
Now one can expand the coupling term in g and perform functional derivatives in almost

exactly the same way as for the scalar field to calculate correlation functions or vacuum
energies. One caveat is that one has to be mindful of the overall sign, as the functional
derivatives are now anti-commuting. For instance, the three point function

G(1,2)(x1, x2, x3) =
δ

iδJ(x1)

δ

iδη(x2)

δ

iδη̄(x3)

Z[J, η, η̄]

Z0

. (3.2.4)
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This can be calculated in the same way as for the scalar theory, just by going through the
algebra of performing the functional derivatives. In doing this to order g, one ends up with

G(1,2)(x1, x2, x3) = (−ig
∫
d4w)[D(x1 − w)S(x2 − w)S(x3 − w)

−D(x1 − w)S(0)S(x2 − x3]. (3.2.5)

As we see, there are a few differences from a purely scalar theory. First of all, the last term,
which involve a fermion loop, from S(0), carry an extra minus sign. This arises due to the
anti-commutation of the spinor sources, and will always arise whenever there is a closed
fermion loop. Secondly, something we do not see here explicitly, is that we have to perform a
trace over the fermion loop. If we were to write out the spinor indexes of the sources and the
propagator, which it will have as it involves the gamma matrices; we will see that whenever
there is a fermion loop, the indices of the involved propagators (and possible matrices from
the vertex, if we are doing QED for example) will be set equal to each other. Hence there
will be a trace over these matrices. Going to momentum space is completely analogous to
the scalar case.

This leads us to define the following additions to the momentum space Feynman rules
whenever there are fermions involved.

• For each spinor link, assign a momentum and associate a factor SF (p).

• For each fermion loop, multiply the diagram by −1.

• Spinor indexes in a loop must be summed over to account for all possible spin states,
which leads to a trace over Dirac matrices in the loop.
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Chapter 4

Supersymmetry

4.1 Motivation

So far we have only discussed the more mundane symmetries of nature, but there is another
one which is very interesting in its own right, but also leads to many simplifications if it
is realized, namely supersymmetry. Supersymmetry was originally considered by Hironari
Miyazawa in 1966[24] as a symmetry relating mesons and baryons, but was largely ignored.
It was later rediscovered simultaneously in the 1970’s by J. L. Gervais and B. Sakita[25],
Yu. A. Gol’fand and E.P. Likhtman[26], D. V. Volkov and V.P Akulov[27], and by Julius
Wess and Bruno Zumino[28] in 1974, which are perhaps most famous for the discovery. This
remarkable new symmetry relates the fundamentally different particles fermions and bosons
to each other, and also space-time with an internal set of grassmannian coordinates, which
together forms what is known as superspace. The symmetry is loosely stated as follows:
For every particle there should exist one or several superpartners, fermions should be paired
with bosons, and vice versa.

Supersymmetry implies two very important consequences: First of all, the renormaliza-
tion needed is only a logarithmically divergent integral, this is known as the non-renormalization
theorem[14, 29, 30]. Secondly, the vacuum energy is identically equal to zero [14] These two
effects means that a supersymmetric theory is much less divergent than any other realistic
QFT model. This is also true to some extent if we choose to break the symmetry, which
we want to do. The reason for this being that, if we regularize the theory with a cutoff,
any contribution to the vacuum energy dependent only on Λ will automatically vanish. And
these terms are the most divergent ones.

These implications, combined with the the fact that many researchers believes that su-
persymmetry might solve several theoretical problems in the standard model, motivates us
to attempt an application of the ideas used on the scalar field theory on a supersymmetric
theory. We will not attempt to use the full formalism of the effective action however, as the
supersymmetric model we will consider is much more complicated than a simple scalar field
theory. We will still perform a variational calculation, but only on the vacuum energy, with
the renormalized masses of the particles as parameters. This is done in order to probe for
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stable ground states away from the supersymmetric point.

4.2 The supersymmetry algebra

Before discussing the specific supersymmetric model we are interested in, the Wess-Zumino
model, we will discuss some of the general properties of the supersymmetry algebra. A
thorough treatment can be found in [31], Chapters I-V. The supersymmetry algebra is defined
as follows

{Q A
α , Q̄β̇B} = 2σ µ

αβ̇
Pµδ

A
B ,

{Q A
α , Q B

β } = {Q̄α̇A, Q̄β̇B} = 0,

[Pµ, Q
A
α ] = [Pµ, Q̄α̇A] = 0,

[Pµ, Pν ] = 0.

(4.2.1)

Some notation needs to be explained here: Q, Q̄ and P are generators for translations in
grassmannian space and real space, respectively. Together they generate translations in
superspace, which is defined by the coordinate yµ = xµ + iθσµθ̄, where x is an ordinary
coordinate and θ, θ̄ are the coordinates of the grassmannian space. α and β̇ are spinor
indices running from one to two. The indices A and B refer to the number of supersymmetry
generators we have, and run from 1 to N . We will only discuss N = 1 supersymmetry in
this text, so these indices will be suppressed. The dotted and undotted notation is explained
further in for instance Zee[15], Appendix E.

The notation and algebra can be simplified by introducing anti-commuting spinor pa-
rameters ξα and ξ̄α̇

{ξα, ξβ} = {ξα, Qβ} = · · · = [Pµ, ξ
α] = 0. (4.2.2)

The algebra can now be written entirely in terms of commutators

[ξQ, ξ̄Q̄] = 2ξσµξ̄Pµ,

[ξQ, ξQ] = [ξ̄Q̄, ξ̄Q̄] = 0,

[P µ, ξQ] = [P µ, ξ̄Q̄] = 0.

(4.2.3)

The supersymmetry algebra is a Lie-algebra with commuting and anti-commuting param-
eters, (x, θ, θ̄). An element of the group generates motion in this parameter space. This
motion may be generated by the differential operators Q and Q̄, note that this is not the
same as the generators introduced in Eq. (4.2.1), but they do indeed represent the algebra,
together with ∂µ;

ξQ+ ξ̄Q̄ = ξα
(

∂

∂θα
− iσ µ

αα̇ θ̄α̇∂µ

)
+ ξ̄α̇

(
∂

∂θ̄α̇
− iθασ µ

αβ̇
εβ̇α̇∂µ

)
. (4.2.4)

We can now define a chiral superfield, Φ(y), the most general function of superspace,
which also satisfies the equation(

− ∂

∂θ̄α̇
− iθασµαα̇∂µ

)
Φ(y) = 0. (4.2.5)
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From this the chiral superfield is as follows

Φ(y) = A(y) +
√

2θψ(y) + θθF (y), (4.2.6)

which can be Taylor expanded around x

=A(x) + iθσµθ̄∂µA(x)− 1

2
θσµθ̄θσν θ̄∂ν∂µA(x)

+
√

2θψ(x) + i
√

2θθσµθ̄∂µψ(x) + θθF (x). (4.2.7)

Here A is a complex scalar, ψ is a spinor and F is a complex field of dimension two. As
F is already of dimension two, we cannot construct a kinetic term for it, so it is clear that
it is a non-propagating field, called an auxiliary field. This field is introduced in order to
obtain a linear representation of supersymmetry, and eliminating it will give us a non-linear
realization. This is analogous to how introducing p0 in pµ = (p0, ~p) enable us to represent
Lorentz transformations linearly, while eliminating it in favor of

√
~p2 +m2 leads to a non-

linear realization. Applying Eq. (4.2.4) on Eq. (4.2.6) gives us the transformation rules of
the component fields by comparing terms:(

ξQ+ ξ̄Q
)
A =

√
2ξψ,(

ξQ+ ξ̄Q
)
ψ = i

√
2σµξ̄∂µA+

√
2ξF,(

ξQ+ ξ̄Q
)
F = i

√
2ξ̄σ̄µ∂µψ.

(4.2.8)

As Q, Q̄ are linear operators, products of Φ’s, are also chiral superfields, the same holds
for its conjugate Φ†. Φ†Φ on the other hand, is not a chiral superfield, it is a vector superfield,
defined by V † = V . To find supersymmetric combinations of the component fields (A,ψ, F )
we have to look at how Φ, Φ† and products of these transform under the supersymmetry
transformation. Only terms invariant, or that transforms into a total derivative can be used
to construct a Lagrangian invariant under supersymmetry.

From Eq. (4.2.8) we see that F transforms into a total derivative, this means that
every term proportional to θθ in a chiral superfield transforms into a total derivative, and
is therefore invariant under supersymmetry. This is what is called the F -term. Writing out
ΦiΦj and ΦiΦjΦk we can see explicitly what these terms looks like in terms of the component
fields

ΦiΦj =AiAj +
√

2θ [Aiψj + ψiAj]

+ θθ [AiFj + FiAj − ψiψj] , (4.2.9)

ΦiΦjΦk =AiAjAk +
√

2θ [AiAjψk + AiψjAk + ψiAjAk]

+ θθ [AiAjFk + AiFjAk + FiAjAk

−Aiψjψk − Ajψiψk − Akψiψj] . (4.2.10)
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If we specialize to one superfield,

1

2
m [ΦΦ]F +

1

3
g [ΦΦΦ]F = m

(
AF − 1

2
ψψ

)
+ g

(
A2F − Aψψ

)
(4.2.11)

and its hermitian conjugate are invariant under supersymmetry. A term linear in Φ could
also be added, but it can be eliminated by a shift of the fields.

As we see we now have something that looks like mass terms and three-point couplings,
but no kinetic term. The vector superfield Φ†Φ will provide that. The θθθ̄θ̄ transforms into
a total derivative by dimensional analysis, and hence it is invariant under supersymmetry.
This is called the D-term. Explicitly,[

Φ†Φ
]
D

= ∂µA†∂µA+ iψ̄σ̄µ∂µψ + F †F. (4.2.12)

To summarize: We have found the most general supersymmetric Lagrangian one can
construct given a chiral superfield Φ

L =
[
Φ†Φ

]
D

+

([
1

2
mΦ2 +

1

3
gΦ3 + · · ·

]
F

+ h.c.

)
. (4.2.13)

4.2.1 The superpotential

Before we move on it is interesting to discuss the potential of A, or the superpotential, on a
classical level. If we write out the terms in the Lagrangian containing only A and F

L = ∂µA†∂µA+ F †F +
[
mAF + gA2F + h.c.

]
, (4.2.14)

and eliminate F through its Euler-Lagrange equations

F =−m†A† − g†A†2, (4.2.15)

F † =−mA− gA2, (4.2.16)

we obtain the Lagrangian

L =∂µA†∂µA−
(
mA+ gA2

) (
m†A† + g†A†

2
)

=∂µA†∂µA− V (A). (4.2.17)

Where V (A) is the superpotential. If we now shift A to A−v, where v = m
2g

the superpotential
is on the form

V (A) = (|g|2)2
(
A2 − v2

) (
A†

2 − v†2
)

(4.2.18)

The action is now invariant under the reflections A → −A, A† → −A†. This must also
be combined with a similar reflection of the fermion fields, which together make a Z2
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transformation[30]. This symmetry is isomorphic to a symmetry called R-parity, or R-
symmetry[32] when the Z2 group is extended to a global continuous U(1) symmetry. If
we consider a theory with several supercharges, that is N ≥ 1, the R-symmetry will be a
non-Abelian symmetry group. This transformation rotates different supercharges into each
other, and is required if we want a theory which exhibits broken supersymmetry.

This potential will look exactly like the Mexican hat potential discussed in Section 1.4.3,
only shifted upwards by v4, but the qualitative discussion is the same. If we choose coordi-
nates so that A points in the purely real direction (and choose v to be real), we can write
the potential as

V (A) = (|g|2)2
(
A2 − v2

)2
. (4.2.19)

Which has extrema at A = 0 and A = ±v. The first extremum is a saddle point with
V = g4v4, and the second is a minimum with V = 0, or rather an infinite number of
minima. As the second minima has lower energy, our system will fall into one of these
states. This will break the Z2 symmetry described above, but as this is not a continuous
symmetry, Goldstone’s theorem does not apply. It does however indicate an interesting
property of supersymmetric models, which we will show explicitly later, which is that the
vacuum energy prefers to be at zero.

4.3 The Wess-Zumino model

If we write the complex scalar A as 1√
2
(A′ − iB′), where A′ is a real scalar and B′ is a real

pseudoscalar; F as 1√
2
(F ′+ iG′), where F and G both are real scalars (and forget about the

primes, as we from now on only talk about the real fields); combine the two Weyl spinors
into a Majorana spinor and re-scale the coupling g by a factor of

√
2, we can rewrite the

Lagrangian (4.2.13) as

L =
1

2
(∂µA)2 +

1

2
(∂µB)2 +

1

2
F 2 +

1

2
G2 +

1

2
iψ̄γµ∂µψ

+mFA+mGB − 1

2
mψ̄ψ

+ gF (A2 −B2) + 2gGAB − gψ̄(A+ iγ5B)ψ. (4.3.1)

This model, called the Wess-Zumino model, was first introduced in [14].
The fields F,G can be eliminated through their Euler-Lagrange equations

F = −mA− g(A2 −B2), (4.3.2)

G = −mB − 2gAB (4.3.3)
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yielding the physical Lagrangian

L =
1

2
(∂µA)2 +

1

2
(∂µB)2 +

1

2
iψ̄γµ∂µψ

− 1

2
m2A2 − 1

2
m2B2 − 1

2
mψ̄ψ

− gmA(A2 +B2)− 1

2
g2(A2 +B2)2 − gψ̄(A+ iγ5B)ψ. (4.3.4)

Multiplying the interaction part of the Lagrangian by one in various ways allows us to use
our familiar rules for symmetry factors

−Lint =
6

3!
gmA3 +

2

2!
gmAB2

+
12

4!
g2(A4 +B4) +

4

2!2!
g2A2B2

+
2

2!
gψ̄(A+ iγ5B)ψ. (4.3.5)

Due to our previous work with scalar and spinor fields it is now straightforward to read of
propagators and vertex factors from the Lagrangian:

Scalar propagator:

�

=
i

p2 −m2
,

Pseudoscalar propagator:
�

=
i

p2 −m2
,

Fermion propagator:
�

=
i

/p−m
.

� = −6igm, � = −2igm,

� = −2ig, � = 2gγ5,

� = −12ig2, � = −12ig2,

� = −4ig2.
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There is one subtle difference though, as we are working with Majorana spinors, which is its
own antiparticle, there is no direction on the fermion lines. This means that the fermions
can be treated as real scalars when considering symmetry factors.

4.3.1 Renormalization

In several papers it is shown that remarkable cancellations occur during the renormalization
procedure of the Wess-Zumino model [14][29]; only a simple wave function renormalization
is required. Here we would like to show this explicitly to lowest order using the Lagrangian
where the auxiliary fields have been eliminated, Eq. (4.3.4), which with bare fields and
parameters reads

L =
1

2
(∂µA0)2 +

1

2
(∂µB0)2 +

1

2
iψ̄0γ

µ∂µψ0

− 1

2
m2

0A
2
0 −

1

2
m2

0B
2
0 −

1

2
m0ψ̄0ψ0

− g0m0A0(A2
0 +B2

0)− 1

2
g2

0(A2
0 +B2

0)2 − g0ψ̄0(A0 + iγ5B0)ψ0

=L(0)
kin + L(0)

int . (4.3.6)

The only thing we can do to this Lagrangian, which still preserves supersymmetry, is to
multiply each field, the mass parameter and the coupling by a three respective factors.
That is, each field must be multiplied by the same factor. This can be seen from the basic
form of the supersymmetric Lagrangian Eq. (4.3.1). Explicitly we make the substitutions
A0 = Z1/2A, B0 = Z1/2A, ψ0 = Z1/2ψ, m0 = Zmm and g0 = Zgg. This of course assumes
that we regularize the theory in way that preserves supersymmetry. Doing this and splitting
the Lagrangian into a free part with physical parameters and a part with counterterms we
get, focusing on the kinetic part first

LZ,kin =Lkin + (Z − 1)

[
1

2
(∂µA)2 +

1

2
(∂µB)2 +

1

2
iψ̄γµ∂µψ

]
− 1

2

(
ZZ2

m − 1
)
m2(A2 +B2)− 1

2
(ZZm − 1)mψ̄ψ, (4.3.7)

where LZ denotes a part of the Lagrangian with factors of Z inserted.
From Eq. (4.3.7) we can read of the counterterms for the three propagators

�

=

�

= i (Z − 1) p2 − i
(
ZZ2

m − 1
)
m2,

�

=i (Z − 1) /p− i (ZZm − 1)m. (4.3.8)
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This looks ugly at the moment, but it will soon be cleared up to a nice relation. We must
also define our renormalization conditions for this to make sense. The standard definition
when using counterterms is that the full propagator equals the zeroth order propagator plus
finite terms, i.e. it has poles at the same location, with the same residue as the zeroth order
propagator. Diagrammatically we have

�

= (

�

)−1 + terms regular at p2 = m2, (4.3.9)

and similarly for the B and ψ propagator. In other words, Z and Zm has to be determined
consistently in such a way that all divergent contributions to the full propagators are removed.

The simplest way to calculate Z and Zm is to first consider the spinor self-energy. There
are 5 contributions of order g2:

Σ(/p) =

�

+

�

+

�
+

�
+

�
. (4.3.10)

Looking at the tadpole diagrams first, these are clearly quadratically divergent by power
counting, and will contribute to a shift in the mass. So we better hope these divergences
cancels. These diagrams are proportional to the quadratically divergent integral

Il ≡
∫

d4k

(2π)4

i

k2 −m2
, (4.3.11)

times the common vertex factor −2ig
2

and with relative factors from the loop (to be taken
inside the integral)

(−6igm) + (−2igm) + (−2ig) (−tr[/k +m]) = 0. (4.3.12)

The remaining diagrams are equal to (we use the convention for the momentum flow
shown in Fig. 4.1 in all diagrams of this form)

Σ(/p) =4g2

∫
d4k

(2π)4

/p+ /k +m− γ5
(
/p+ /k +m

)
γ5

[k2 −m2][(p+ k)2 −m2]

=8g2

∫
d4k

(2π)4

/p+ /k

[k2 −m2][(p+ k)2 −m2]
. (4.3.13)
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�
p

p+ k

p

k

Figure 4.1: Momentum flow convention used in momentum transfer dependent self-energy
diagrams. Arrows on the lines shows the direction of the momentum.

In order to figure out the divergent structure of this integral, we have to combine the prop-
agators using the Feynman parameter integral Eq. (A.2.2)

Σ(/p) = 8g2

∫ 1

0

dx

∫
d4k

(2π)4

/p+ /k

[(k + px)2 −m2 − x(x− 1)p2]2
. (4.3.14)

We now shift the integration variable k → k− px and remove terms proportional to /k in the
nominator, as they give zero under symmetric integration.

Σ(/p) = 8g2
/p

∫ 1

0

dx(1− x)

∫
d4k

(2π)4

1

[k2 −m2 − x(x− 1)p2]2
. (4.3.15)

The divergent part of the logarithmically divergent integral is equal to its value at zero
momentum transfer, this can be easily seen by performing a partial integration. Doing this,
and the parameter integral, which now simply gives a factor of one half, we obtain

Σ(/p) = 4g2
/p

∫
d4k

(2π)4

1

[k2 −m2]2
+ finite terms. (4.3.16)

We can now make two conclusions: Firstly, there is no need for the counterterm proportional
to m for the fermions, i.e Zm = Z−1; Secondly, the wave function renormalization Z is only
logarithmically divergent

Z = 1 + 4ig2

∫
d4k

(2π)4

1

(k2 −m2)2
≡ 1− 4g2Ilog, (4.3.17)

which is exactly the result obtained by Wess and Zumino in [14].
As we see, the claim of Wess and Zumino holds up for the fermion self-energy. But, to

make sure that the theory is consistent with supersymmetry, we better get the same value for
Z when considering the boson self-energies. First of all, following the result for the fermions,
the boson counterterm is now equal to

�

=i (Z − 1) p2 − i
(
Z−1 − 1

)
m2

=i (Z − 1) (p2 +m2). (4.3.18)
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The second equality follows from Taylor expanding Z: Z = 1 − g2Z2 + O(g4) → Z−1 =
1 + g2Z2 +O(g4).

First we look at the scalar, A, which has the following diagrams to order g2:

ΠA(p2) =

�
+

�

+

�
+

�
+

�
+

�
+

�
+

�
. (4.3.19)

Again, the tadpoles clearly cancel each other, as they have the same relative factors as the
fermion diagrams.

Now we still have some quadratic divergences, from the diagrams

�
+

�
=

(
−12ig2

2
+
−4ig2

2

)∫
d4k

(2π)4

i

k2 −m2

=− i8g2

∫
d4k

(2π)4

1

k2 −m2
= −i8g2Il, (4.3.20)

which will be cancelled by parts of the remaining fermionic loop.
The remaining boson loops are equal to

�
+

�
=

(
(−6igm)2

2
+

(−2igm)2

2

)∫
d4k

(2π)4

i2

[k2 −m2][(p+ k)2 −m2]

=20g2m2

∫
d4k

(2π)4

1

[k2 −m2][(p+ k)2 −m2]
≡ 20g2m2Isun. (4.3.21)

Finally, the fermionic loop contributes

�
=

(−2ig)2

2

∫
d4k

(2π)4

−i2tr[(/k +m)(/p+ /k +m)]

[k2 −m2][(p+ k)2 −m2]

=− 8g2

∫
d4k

(2π)4

k2 + p · k +m2

[k2 −m2][(p+ k)2 −m2]
. (4.3.22)
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The nominator of the integral can be rewritten as follows:

k2 + p · k =
1

2
(k2 −m2) +

1

2
((k + p)2 −m2)− 1

2
p2 +m2, (4.3.23)

and we do this because the first two terms cancel a propagator in the denominator, which
gives two identical quadratically divergent integrals after a shift in the integration variable.
This gives

�
= i8g2Iq + 4g2p2Is − 16g2m2Isun.

As we see, the remaining quadratic divergences cancels, and the self-energy is after adding
all the diagrams

ΠA(p2) =4g2(p2 +m2)

∫
d4k

(2π)4

1

[k2 −m2][(p+ k)2 −m2]

=4g2(p2 +m2)

∫
d4k

(2π)4

1

[k2 −m2]2
+ finite terms, (4.3.24)

hence the counterterm is the same as for the fermion self-energy.
The pseudoscalar self-energy is quite similar to the scalar, we have the diagrams

ΠB(p2) =

�
+

�

+

�
+

�
+

�
+

�
+

�
. (4.3.25)

The tadpoles cancel by the same argument as before, and the remaining simple quadratic
diagrams has the same value as for the scalar,

�
+

�
. = −i8g2Il (4.3.26)

In this case there is only one remaining boson loop, which is equal to

�
= 4g2m2Isun (4.3.27)
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The fermionic loop is a bit different from the scalar case, due to the γ5 matrix

�
=

(2g)2

2

∫
d4k

(2π)4

−i2tr[γ5(/k +m)γ5(/p+ /k +m)]

[k2 −m2][(k + p)2 −m2]

=8g2

∫
d4k

(2π)4

m2 − (k2 + p · k)

[k2 −m2][(p+ k)2 −m2]
, (4.3.28)

which is equal to, after again rewriting the nominator

�
= i8g2Iq + 4g2p2Isun (4.3.29)

In total

ΠB(p2) =4g2(p2 +m2)Is = ΠA(p2)

=4g2(p2 +m2)

∫
d4k

(2π)4

1

[k2 −m2]2
+ finite terms, (4.3.30)

which clearly means that the counterterm for the pseudoscalar is equal to the scalar coun-
terterm.

In conclusion, renormalization leads to the same logarithmically divergent wave function
renormalization Z for each field A,B, ψ

Z = 1− 4g2Ilog, (4.3.31)

and the mass is scaled by the same factor Z, m = Zm0. It can also be shown that the
coupling also gets a simple scaling factor, g = Z3/2g0, but this will only be necessary at
higher orders.

4.3.2 Vacuum energy

An interesting property of a supersymmetric theory is that the vacuum energy is identically
equal to zero to all orders. In this section we would like to verify this explicitly to one-loop
in the Wess-Zumino model. First we consider the zeroth order contribution, which is easily
inferred from the results of Eqs. (2.1.6) and (3.1.5). The bosonic contribution is

−i
2

∫
d4k

(2π)4
log(k2 −m2 + iε), (4.3.32)

for each bosonic field. The fermionic contribution is

2i

2

∫
d4k

(2π)4
log(k2 −m2 + iε), (4.3.33)
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which is a factor of 2 smaller than Eq. (3.1.5) due to these fermions being Majorana fermions,
and thus having only two degrees of freedom. Since we have two boson fields and one fermion
field these contributions add up to zero.

There are four classes of diagrams contributing to the first order vacuum expectation
value. Tadpole diagrams, sunset diagrams, figure-eight diagrams and diagrams containing
the wave-function-renormalization counterterms. As we will see, the tadpole diagrams cancel
each other completely, similarly for the counterterms, while the sunset diagrams and figure-
eight diagrams cancels among each other after manipulating the integrands slightly.

Denote the sum of tadpole diagrams by A, and we have

A =

�
+

�

+

�

+

�
+

�
+

�
+

�
. (4.3.34)

These all have two simple loops with a scalar zero momentum propagator connecting them,
so they are all proportional to the integral

i

m2

(∫
d4k

(2π)4

i

k2 −m2

)2

≡ i

m2
I2
l . (4.3.35)

The pure boson diagrams give the following relative factors(
(6gm)2

23
+

(2gm)2

23
+

(6gm)(2gm)

22

)
= 8g2m2. (4.3.36)

Each fermion loop gives a factor of −tr[/k+m] = −4m, while the fermion loop from the fifth
diagram gives zero, due to the trace over γ5. Therefore the fermion contributions add up to(

(2g)2

23
(−4m)2 +

(2g)(6gm)

22
(−4m) +

(2g)(2gm)

22
(−4m)

)
= −8g2m2. (4.3.37)

In total we have A = 0.
The diagrams involving counterterms will also cancel independently, denote the sum of

these by B.

B =

�
+

�
+

�
. (4.3.38)
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This is equal to

B =i2(Z − 1)

∫
d4k

(2π)4

[
2(k2 +m2)− tr[/k +m]

k2 −m2

]
=i2(Z − 1)

∫
d4k

(2π)4

[
4m2 − 4m2

k2 −m2
+ 2

]
=2i2(Z − 1)

∫
d4k

(2π)4
= 0 (4.3.39)

There are several arguments to why this last equality is valid. First of all, as there are
no scale left in the integral, one simply reasons that it can have no other value. And
in dimensional regularization it is precisely zero, but if one utilizes a cutoff, this integral
would be proportional to Λ4, which is bad. The second argument is that this term never
should have appeared in the first place. It arises due to the rescaling of the fields, which
also means we have to re-scale the path integral measure by the same factor. Normally
this is no problem, because when one considers Green’s functions, all normalization factors
in the measure automatically cancels. But when calculating vacuum energies, there is no
normalization as in Green’s function calculations, and the re-normalization introduces a
factor of Z∞. This corresponds to the integral over 1 we see in B, and we have no other
choice than to discard it.

Next we turn to the figure-eight diagrams, denote them sum of all these diagrams by C

C =

�
+

�
+

�
. (4.3.40)

These are all proportional to −iI2
l , and their relative factors are

12g2

23
+

12g2

23
+

4g2

22
= 4g2. (4.3.41)

that is, C = −4ig2I2
l .

Now we look at the boson sunset diagrams, of which there are two. Denote the sum by
D

D =

�
+

�
. (4.3.42)

Using the momentum-flow conventions shown in Fig. 4.2, these are both proportional to
the integral ∫

d4k

(2π)4

∫
d4q

(2π)4

−i3

[k2 −m2][(k − q)2 −m2][q2 −m2]
≡ −iIs, (4.3.43)

and their relative factors are

(6gm)2

3! · 2
+

(2gm)2

2! · 2
= 4g2m2. (4.3.44)
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�
k

q

k − q

Figure 4.2: Momentum-flow conventions used in vacuum diagrams of the sunset variety.

In total we have D = −4ig2m2Is
Now all that remains are the fermion sunset diagrams, which as we see have to cancel

C + D. At first glance they seem to different in structure from the figure-eight for this to
be possible, but we will see that after some algebra it cancels perfectly. Denote the sum of
these diagrams by E

E =

�
+

�
. (4.3.45)

These are also proportional to −iIs, with relative factors

(2g)2

2! · 2
(
−tr[(/k +m)(/q +m)]

)
− (2g)2

2! · 2
(
−tr[γ5(/k +m)γ5(/q +m)]

)
, (4.3.46)

where it is implied that the traces have to be taken inside the integrals. Passing the γ5

through the /k we see that the m(/q +m) parts cancel.

E = iIsg
2
(
2tr[/k(/q +m)]

)
= i8g2Iskq.

We can rewrite 8kq as a sum of the three propagators in Is, plus a remainder.

8kq = 4(k2 −m2) + 4(q2 −m2)− 4
(
(k − q)2 −m2

)
+ 4m2.

Now we see that the first three terms conspire to turn Is into an integral on the form of I2
l ,

after we shift the integration variables. We then have

E = 4ig2m2Is + 4ig2I2
l , (4.3.47)

and indeed, C +D + E = 0.
We now see, as was claimed, that the vacuum energy to one loop order is identically

equal to zero.

4.4 Asymmetric Wess-Zumino model

Next we want to investigate the result of having a model with the same number of degrees
of freedom as the Wess-Zumino model, i.e. it has a scalar, a pseudoscalar and a Majorana
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fermion, but with no restrictions on the three masses. The idea is to examine the dynamics
through a variational calculation on the vacuum energy of the model, and determine whether
supersymmetry is favoured by nature or not. The model is very similar to the previous, we
only change the ΦΦ term to account for differing masses. The Lagrangian is

L =
1

2
(∂µA)2 +

1

2
(∂µB)2 +

1

2
F 2 +

1

2
G2 +

1

2
iψ̄γµ∂µψ

+mAFA+mBGB −
1

2
mψψ̄ψ

+ gF (A2 −B2) + 2gGAB − gψ̄(A+ iγ5B)ψ, (4.4.1)

and after eliminating the auxiliary fields

L =
1

2
(∂µA)2 +

1

2
(∂µB)2 +

1

2
iψ̄γµ∂µψ

− 1

2
m2
AA

2 − 1

2
m2
BB

2 − 1

2
mψψ̄ψ

− gmAA
3 − gAB2(2mB −mA)− 1

2
g2(A2 +B2)2 − gψ̄(A+ iγ5B)ψ. (4.4.2)

This gives us a new set of Feynman rules

Scalar propagator:

�

=
i

p2 −m2
A

Pseudoscalar propagator:

�

=
i

p2 −m2
B

Fermion propagator:

�

=
i

/p−mψ

� = −6igmA, � = −2ig(2mB −mA),

� = −2ig, � = 2gγ5,

� = −12ig2, � = −12ig2,

� = −4ig2.
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Figure 4.3: A plot of the dominating contribution to the vacuum energy of the modified
Wess-Zumino model.

This modification obviously spoils supersymmetry, which means that the vacuum energy
is no longer zero. What we want to do is to calculate the leading contributions to this
energy, which will be a function of the renormalized masses, and examine possible extrema
as a function of these masses. To do this we have to deal with the infinities, and the simplest
solution is to utilize a cutoff on k2, Λ2. Λ is then some large energy, but not infinity, which
as we will see will set the scale of the whole theory.

4.4.1 Calculation of the vacuum energy

Now we are ready to begin calculating the vacuum energy of the asymmetric theory. As we
are using a cutoff to regularize the integrals, we will calculate the vacuum energy as a double
series in g and Λ. That is, we have

% =%0 + %1 +O(g4)

=%0,Λ4 + %0,Λ2 + %1,Λ4 + %1,Λ2 +O(log Λ) +O(g4) (4.4.3)

Most of the work was already done in Section 4.3.2, we just have to adjust for the different
vertex factors and propagators and perform the resulting integrals. First we handle the
zeroth order contribution, the three contributions are all on the form

− i

2
KX

∫
d4k

(2π)4
log(k2 −m2

X), (4.4.4)

where X = {A,B, ψ} and KA = KB = 1, Kψ = −2. If we Wick rotate it we get a more
familiar form

1

2
KX

∫
d4kE
(2π)4

(
log(k2 +m2) + log(−1)

)
. (4.4.5)

55



The last imaginary term is discarded as it must be unphysical, it must be swept under the
definition of the measure in the path integral. We are then left with an integral identical
to Eq. (2.1.6) We have already solved this integral, Eq. (A.3.7) The terms which are only
dependent on the cutoff will vanish when we combine the three contributions, as they should
since the vacuum energy must vanish in the limit mA = mB = mψ. Adding up the three
terms gives us the dominating contribution (i.e. terms dependent on the cutoff)

%0 =
1

32π2

[
Λ2(m2

A +m2
B − 2m2

ψ)− 1

2
m4
A log

(
Λ2 +m2

A

m2
A

)

− 1

2
m4
B log

(
Λ2 +m2

B

m2
B

)
+m4

ψ log

(
Λ2 +m2

ψ

m2
ψ

)]
+O(Λ0).

(4.4.6)

Or, to order Λ2

%0,Λ2 =
Λ2

32π2

(
m2
A +m2

B − 2m2
ψ

)
(4.4.7)

It is easy to see that these expressions are zero for mA = mB = mψ.
Turning to the diagrams of order g2, there are basically four classes of diagrams: Quartic

two loop diagrams, Eqs. (4.3.34) and (4.3.40); quadratic sunset diagrams, Eq. (4.3.42) and
the counterterm diagrams, Eq. (4.3.38). The fermionic sunset diagrams, Eq. (4.3.45) can
be rewritten as before into quartic and quadratic contributions. First some notation: The
quartic diagrams all have two loop integrals on the form∫

d4k

(2π)4

i

k2 −m2
X

≡ Il(m
2
X), (4.4.8)

while the sunset diagrams all have a double integral on the form∫
d4k

(2π)4

∫
d4q

(2π)4

i3

[k2 −m2
X ][(k − q)2 −m2

Y ][q2 −m2
X ]
≡ iIs(m

2
X ,m

2
Y ). (4.4.9)

The loop integral is easily solved by Wick rotating and substituting x = k2:

Il(m
2
X) =

1

16π2

∫ Λ

0

2dkk3

k2 +m2
x

=
1

16π2

∫ Λ2

0

dx
x+m2

X −m2
X

x+m2
X

=
1

16π2

[
Λ2 −m2

X log

(
Λ2 +m2

X

m2
X

)]
(4.4.10)

Solving the second integral is a bit more involved, and we will be content with just finding
the leading behaviour, rather than solving it exactly. First we Wick rotate it, and rewrite it
as two integrals, as such

Is(m
2
X ,m

2
Y ) =

∫
d4k

(2π)4

∫
d4q

(2π)4

−1

[k2 +m2
X ][(k − q)2 +m2

Y ][q2 +m2
X ]

=−
∫

d4k

(2π)4

I(k,m2
X ,m

2
Y )

k2 +m2
X

. (4.4.11)
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Figure 4.4: An overview of the value of the energy minima as a function of t, with Q = 100
and α = 1

16π2

The inner integral is now a simpler logarithmically divergent integral, hence we can deduce
the divergent structure by taking the limit k = 0. So, to leading order in Λ, we have

Is(m
2
X ,m

2
Y ) = −

∫
d4k

(2π)4

I(0,m2
X ,m

2
Y )

k2 +m2
X

. (4.4.12)

This means that we can solve the integrals separately, handling the logarithmic one first.

I(0,m2
X ,m

2
Y ) =

∫
d4q

(2π)4

1

[q2 +m2
X ][q2 +m2

Y ]

=

∫ 1

0

dz

∫
d4q

(2π)4

1

[q2 + (1− z)m2
X + zm2

Y ]2

=

∫ 1

0

dz

∫
d4q

(2π)4

1

[q2 +M2]2
. (4.4.13)

Here we have used Eq. (A.2.2) to combine the propagators, and definedM = m2
X(1−z)+m2

Y z
This is solved with the same substitution x = q2

I(0,m2
X ,m

2
Y ) =

1

16π2

∫ 1

0

dz

∫ Λ2

0

dx
x+M2 −M2

x+M2

=
1

16π2

∫ 1

0

dz

[
log

(
Λ2 +M2

M2

)
+

M2

Λ2 +M2
− 1

]
=

1

16π2

∫ 1

0

dz

[
log

Λ2

M2
+
M2

Λ2
+

M2

Λ2 +M2
− 1 +O(

1

Λ4
)

]
. (4.4.14)
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The second integral over k is identical to the loop integral in Eq. (4.4.8), which we have
already solved. The leading contribution to the sunset integral is therefore

Is(m
2
X ,m

2
Y ) =−

(
1

16π2

)2 ∫ 1

0

dzΛ2

[
log

(
Λ2

m2
X(1− z) +m2

Y z

)
− 1

]
+O(log Λ2). (4.4.15)

We can now solve the parameter integral, which gives us the final result for the sunset integral

Is(m
2
X ,m

2
Y ) =−

(
1

16π2

)2

Λ2

m2
X log Λ2

m2
X
−m2

Y log Λ2

m2
Y

m2
X −m2

Y


+O(log Λ2), (4.4.16)

and with m2
X = m2

Y we get, which is most easily seen from the form of Eq. (4.4.15),

Is(m
2
X ,m

2
X) = −

(
1

16π2

)2 [
Λ2 log

(
Λ2

m2
X

)
− Λ2

]
+O(log Λ2). (4.4.17)

Now we are ready to look at the diagrams, first we handle the quartic diagrams, from
Eqs. (4.3.34) and (4.3.40):

A+ C = −ig2

[
3

2
Il(m

2
A)2 +

3

2
Il(m

2
B)2 + Il(m

2
A)I(m2

B)

+ 12
mψ

mA

Il(m
2
ψ)Il(m

2
A) + 4

mψ

mA

(
2
mB

mA

− 1

)
Il(m

2
ψ)Il(m

2
B)

− 8
m2
ψ

m2
A

Il(m
2
ψ)2 − 3

(
2
mB

mA

− 1

)
Il(m

2
A)Il(m

2
B)

− 1

2

(
2
mB

mA

− 1

)2

Il(mB)2 − 9

2
Il(m

2
A)2

]
. (4.4.18)

The bosonic sunset diagrams, Eq. (4.3.42), look like the following

D = −ig2
[
3m2

AIs(m
2
A,m

2
A) + (2mB −mA)2Is(m

2
B,m

2
A)
]
. (4.4.19)

And the fermionic sunset diagrams, Eq. (4.3.45), after some rewriting

E = −ig2

[
4Il(m

2
ψ)2 − 4Il(m

2
ψ)Il(m

2
A)− 4Il(m

2
ψ)Il(m

2
B)

+ 2m2
BIs(m

2
ψ,m

2
B)− (8m2

ψ − 2m2
A)Is(m

2
ψ,m

2
A)

]
. (4.4.20)

This is not the whole story though, we also have to take into account contributions to
the vacuum energy from diagrams containing counterterms. This means that we have to
consider renormalization of the modified theory.
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Figure 4.5: An overview of the value of the energy minima as a function of t, with Q = 100
and α = 1

16π2 , zoomed in on the lower end of the scale

4.4.2 Renormalizing the asymmetric model

To renormalize the modified theory we will use exactly the same arguments as in Section
4.3.1. The difference now is of course that, as the particle masses are allowed to be different,
we will have to allow the renormalization factors Z and ZM to take on different values
for each field. This will of course complicate things immensely, as the non-renormalization
theorem no longer applies.

To simplify things, we will not bother with calculating each of the renormalization factors
explicitly, we will simply demand that each counterterm cancels each self-energy expression
completely. This is because we are only interested in the contribution from the counterterms
to the vacuum energy. This leads us to demand that

�

=i (ZA − 1) p2 − i
(
ZAZ

2
mA
− 1
)
m2
A = −ΠA(p2),

�

=i (ZB − 1) p2 − i
(
ZBZ

2
mB
− 1
)
m2
B = −ΠB(p2),

�

=i (Zψ − 1) /p− i
(
ZψZmψ − 1

)
m = −Σ(/p), (4.4.21)

where ΠA, ΠB and Σ are given by Eqs. (4.3.19), (4.3.25) and (4.3.10), respectively.
We could calculate each self-energy diagram explicitly, and then close the external prop-

agators into a loop to get the vacuum energy diagram, but it turns out that there is a much
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more elegant solution. If we consider the diagrammatic representation of the self-energies,
and simply join the external propagators and account for the difference in symmetry factors,
we will get a rather nice relation for the vacuum energy contribution from the counterterms.
To be precise, we have to calculate the three diagrams

B =

�
+

�
+

�
, (4.4.22)

where the crosses are determined by Eq. (4.4.21). For instance, the contribution from closing
the A-propagator from the following self-energy diagram,

�
(4.4.23)

will give −2 times the following vacuum diagram.

�

(4.4.24)

The factor of two arises because the self energy diagram has a symmetry factor of 2, as do
the vacuum energy diagram involving the counterterm, for a total of 4. The original vacuum
diagram, on the other hand, has a symmetry factor of 8, resulting in an overall factor of
2. The negative sign arises from the definition of the counterterms. Similarly, closing the
propagator of

�
(4.4.25)

will give −3 times the following diagram.

�
(4.4.26)

Now the factor is 3, as the counterterm diagram has an overall symmetry factor of 4, while
the original vacuum diagram has a factor of 3! · 2.

Going through similar arguments for all the diagrams, we end up with a nice diagram-
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matic relation

B =

�
+

�
+

�
=− 2 ·

(
�

+

�

+

�

+

�
+

�
+

�

)

− 2 ·

(
�

+

�
+

�
)

− 3 ·

(
�

+

�
+

�
+

�

)

=− 2(A+ C)− 3(D + E), (4.4.27)

where A, C, D and E now are given in Eqs. (4.4.18), (4.4.19) and (4.4.20).
There is one problem with this though, B 6= 0 in the limit mA = mB = mψ. As the

sunset diagrams and the figure-eight diagrams have different relative factors, the quartic part
of the fermionic sunset diagrams will no longer cancel the figure-eight diagrams. This has
to be the same problem as the one we ran into when considering the vacuum energy of the
unmodified theory. In Eq. (4.3.39) we did not get the cancellation we expected immediately,
there was a quartic part left over. There we argued that the part left over was an artifact of
the renormalization, and should not have appeared in the first place. The same argument
has to apply here, as we have considered the counterterms on a purely diagrammatic level,
no assumption of the particle masses have been made. This leads us to simply discard the
part left over from the fermionic sunset diagrams.

4.4.3 Results and discussion

Now we are ready to combine all the terms to get the full contribution to the vacuum
energy, to order Λ2. The zeroth order contribution is given by Eq. (4.4.7), repeated here for
convenience

%0,Λ2 =
Λ2

32π2

(
m2
A +m2

B − 2m2
ψ

)
(4.4.28)

The full two-loop result is, remembering to multiply by i to get a vacuum energy

%1 = −i (A+ C + 2D + 2E) (4.4.29)
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Figure 4.6: Plot of the vacuum energy as a function of x and y for t = 0.01, Q = 100 and
α = 1

16π2 .

Inserting the results from Eqs. (4.4.18), (4.4.19) and (4.4.20) for A + C, D and E gives us
the following expression

%1 = g2

[
9

2
Il(m

2
A)2 +

1

2

(
2
mB

mA

− 1

)2

Il(m
2
B)2 + 8

m2
ψ

m2
A

Il(m
2
ψ)2

+ 3

(
2
mb

mA

− 1

)
Il(m

2
A)Il(m

2
B)− 12

mψ

mA

Il(m
2
A)Il(m

2
ψ)

− 4
mψ

mA

(
2
mB

mA

− 1

)
Il(m

2
A)Il(m

2
ψ)

− 3

2
Il(m

2
A)2 − 3

2
Il(m

2
B)2 − Il(m2

A)Il(m
2
B)

− 4Il(m
2
ψ)2 + 4Il(m

2
A)Il(m

2
ψ) + 4Il(m

2
B)Il(m

2
ψ)

− 6m2
AIs(m

2
A,m

2
A)− 2m2

A

(
2
mB

mA

− 1

)2

Is(m
2
B,m

2
A)

+ (16m2
ψ − 4m2

A)Is(m
2
ψ,m

2
A)− 4m2

BIs(m
2
ψ,m

2
B)

]
(4.4.30)
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If we now insert the solutions to the integrals Il and Is from Eqs. (4.4.10) and (4.4.16 and
sort %1 according to order of Λ we get, with %1 ≡ %1,Λ4 + %1,Λ2 +O(log Λ2):

%1,Λ4 =

(
gΛ2

16π2

)2
[

2
m2
B

m2
A

+ 8
m2
ψ

m2
A

− 8
mBmψ

m2
A

+ 4
mB

mA

− 8
mψ

mA

+ 2

]
, (4.4.31)

%1,Λ2 =

(
gΛ

16π2

)2
[
m2
A log

Λ2

m2
A

(
12
mψ

mA

− 6
mB

mA

− 6

)
+mB log

Λ2

m2
B

(
8
mBmψ

m2
A

− 4
m2
B

m2
A

− 2
mB

mA

− 4
mψ

mA

+ 2

)
+mψ log

Λ2

m2
ψ

(
8
mBmψ

m2
A

− 16
m2
ψ

m2
A

+ 8
mψ

mA

)
+6m2

A

(
log

Λ2

m2
A

− 1

)

+2m2
A

(
2
mB

mA

− 1

)2
m2

A log Λ2

m2
A
−m2

B log Λ2

m2
B

m2
A −m2

B


−(16m2

ψ − 4m2
A)

m2
A log Λ2

m2
A
−m2

ψ log Λ2

m2
ψ

m2
A −m2

ψ


+4m2

B

m2
B log Λ2

m2
B
−m2

ψ log Λ2

m2
ψ

m2
B −m2

ψ

] (4.4.32)

At first glance it seems that the dominating contribution, i.e the piece proportional to Λ4

is a quadratic form, so let us examine that one first. If we take a closer look on Eq. (4.4.31)
it can be rewritten by introducing mB = xmA and mψ = ymA.

%1,Λ4 =

(
gΛ2

16π2

)2

f(x, y), (4.4.33)

where

f(x, y) = 2x2 + 8y2 − 8xy + 4x− 8y + 2

= 2 (1 + x− 2y)2 (4.4.34)

This equation has an infinite number of extrema, Taking partial derivatives gives us

∂f

∂x
=4x− 8y + 4 = 0,

∂f

∂y
=16y − 8x− 8 = 0

=4x− 8y + 4 = 0. (4.4.35)
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This means that we have an infinite number of solutions, which as we see from Figure 4.3,
are minima. This is more easily seen if we substitute x = 1√

5
(2r + s) and y = 1√

5
(r − 2s):

f(r, s) = 10(s+
1√
5

)2. (4.4.36)

Hence, we have a line in the (r, s) plane through s = − 1√
5

of degenerate global minima.
The interesting thing here is that the line of degenerate minima is rotated away from the
supersymmetric points with x = y, so already at this level we see indications that the
theory have stable ground states shifted away from the supersymmetric point. At this point,
however, it is not possible to predict which of these points that are favoured.

To determine this we add the full Λ2 contribution. By introducing additional parameters
m2
A = tΛ2, α = g2

8π2 and Q = Λ4

32π2 we can rewrite % as

% = Q(1 + x2 − 2y2) + αQ(1 + x− 2y)2

+αQt

[
− log t(12y − 6x− 6)− x2 log tx2(8xy − 4x2 − 2x− 4y + 2)

− y2 log ty2(12y + 8xy − 4y − 16y2)− 6(log t+ 1)

− 2(2x− 1)2

(
log t− x2 log tx2

1− x2

)
+ 2(8y2 − 2)

(
log t− y2 log ty2

1− y2

)
− 4x2

(
x2 log tx2 − y2 log ty2

x2 − y2

)]
+O(α2) +O(t2)

≡ F (x, y, t, α,Q) +O(α2) +O(t2), (4.4.37)

where t is now small, as the terms of O(log Λ) now will be proportional to t2. As this is
a function of 5 parameters, it is very difficult to visualize. In order to probe this function
for minima, we choose to use numerical methods from Mathematica, the notebook is added
in Appendix B. The procedure goes as follows. Use numerical methods to scan over the
coordinates (x, y), for several values for t and fixed Q and α, for minima. We start out at
the arbitrarily chosen values of Q = 100 and α = 1

16π2 . First, we gather all these minima in
a list, and plot the values of the vacuum energy as a function of t, shown in Figs. 4.4 and
4.5. This allows us to get a general idea about the energy landscape, and where we might
find minima. From these plots we see that for each value of t, there are a pattern of several
minima. For each t, there seem to be a minima of rather large energy, and two other minima
with a lower, generally negative, energy. There are also minima with an energy close to zero,
but the minima with negative energy will of course be favoured. The minima of large energy,
and the minima with zero energy seem to disappear as t grows, which may indicate that
they are simply artifacts of the numerics. The energy of these minima will generally decrease
with increasing t, so there does not seem to be any favoured value of t. The problem here
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Parameters Original values
t = 0.001 m2

A = 0.1778
Q = 100 Λ2 = 177.715
α = 1

16π2 g2 = 1
2

x = 1.1208 m2
B = 0.2232

y = 1.1198 m2
ψ = 0.2285

% = −0.0153
x = 17.7601 m2

B = 56.0549
y = 6.4614 m2

ψ = 7.4194
% = −0.1369

x = −19.0167 m2
B = 64.2683

y = −5.2846 m2
ψ = 4.9631

% = −12.6599
x = −12.3364 m2

B = 27.0457
y = −15.3461 m2

ψ = 41.8524
detH ≈ 0 % = 108.603

Parameters Original values
t = 0.005 m2

A = 0.8886
Q = 100 Λ2 = 177.715
α = 1

16π2 g2 = 1
2

x = −4.1346 m2
B = 15.1901

y = −8.5405 m2
ψ = 64.8125

% = −8.5614
x = 4.0423 m2

B = 14.5193
y = 9.0442 m2

ψ = 72.684
% = −53.421

x = −5.8923 m2
B = 30.8507

y = 7.9034 m2
ψ = 55.5031

detH ≈ 0 % = −53.421

Table 4.1: The minima of the vacuum energy for t = 0.001 and t = .005, with Q = 100 and
α = 1

16π2 .

is of course that as t grows, so does all three particle masses. At some point they will be of
the order of Λ2, and here we must expect new physics to enter.

Next we pick out a few specific values for t, to determine the physical masses we might
expect, and plot the vacuum energy as a function of x and y. We choose the values t = 0.001,
t = 0.005, t = 0.01 and t = 0.05. The plot for t = 0.01 is shown in Fig. 4.6 to illustrate
the qualitative energy landscape, while the other three are omitted as not much information
can be drawn form them. Using the same numerical method to scan for the minima, we
find several minima for each t-value, shown in Tables 4.1 and 4.2. From the tables we see
more clearly what Fig. 4.5 indicated. Each point in t-space has two points with energy
lower than the supersymmetric point, which correspond to roughly the same set of masses.
The masses of the particles at these points are generally such that at least one particle is
significantly heavier than the others. We also see the higher energy minima, but as indicated
in the tables, the determinant of the Hessian matrix at these points is very close to zero.
This means that we cannot say for certain whether these points are actual minima. They are
probably relatively flat areas, or possibly saddle points, which look like minima due to the
numerics. We also observe from Fig. 4.5 that these points gradually vanish as t increases.
Lastly, we also find an approximately supersymmetric minima in the plot for t = 0.001. It
is interesting to note that the there are always two clear minima for each plot, and both of
them correspond to roughly the same masses for each particle. It is possible that these two
points are in fact the same point, they just show up separately because we probe for minima
as a function of (x, y), as opposed to (x2, y2).

65



Parameters Original values
t = 0.01 m2

A = 0.1778
Q = 100 Λ2 = 177.715
α = 1

16π2 g2 = 1
2

x = 0.3622 m2
B = 0.233

y = 0.6589 m2
ψ = 0.7716

detH ≈ 0 % = 0.3446
x = −2.5428 m2

B = 11.4903
y = −6.6732 m2

ψ = 79.1397
% = −36.7481

x = 2.5913 m2
B = 11.933

y = 7.03812 m2
ψ = 88.0314

% = −72.6839

Parameters Original values
t = 0.05 m2

A = 0.8886
Q = 100 Λ2 = 177.715
α = 1

16π2 g2 = 1
2

x = −0.8134 m2
B = 5.87522

y = −3.9851 m2
ψ = 141.116

% = −96.9848
x = 1.0458 m2

B = 9.71824
y = 4.2576 m2

ψ = 161.078
% = −123.971

Table 4.2: The minima of the vacuum energy for t = 0.01 and t = 0.05, with Q = 100 and
α = 1

16π2 .

Next we want to examine how the behaviour of the minima changes with the other
parameters, Q and α. Changing Q would only scale the whole problem, as every term is
multiplied overall by Q. This means that Q, or Λ sets the energy scale of the whole theory.
Which of course also means that the model has little predictive power by itself, there will have
to be some input from experiments to determine the overall scale. That is if the model can
be extended to be realistic of course. Changing α, on the other hand, may lead to interesting
effects, as this parameter determines how strongly the one loop contribution dominates over
the one from two loops. Decreasing α will only make matters worse, the particles will be less
bound, and the energy will decrease even more at large masses. We will therefore examine
the vacuum energy and its minima as we increase the coupling: Going through the same
procedure to locate the minima as before, we obtain the minima shown in Fig. 4.7 as a
function of t for α-values of 2

π2 , 1
π2 , 1

2π2 , 1
4π2 and 1

8π2 . Here we see clearly that, as α grows
larger, that both sets of minima will start to stabilize and obtain a minimum as a function
of t. It is clear however, that they do not correspond to similar states. They actually evolve
into two radically different states as α grows large. We also see that the set of minima which
vanished for higher t, now evolve into a set of unstable minima at all considered values of
t. It seems that the theory actually has local, stable minima for α-values 1

4π2 and larger.

This corresponds to a coupling g ≥
√

2, so whether our perturbation series can be trusted
in this area is questionable, but it is not completely far-fetched, as α is still relatively small.
We also see that a minima with approximately zero energy appear at low t-values, which
then must correspond to a supersymmetric state of light particles. This will not be the most
favoured state though, as there are other minima with lower energy.

Let us examine these apparent minima closer, to see what range of particle masses we
might expect here. We pick out slices at the favoured points in t-space, and use the same
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(a) α = 1
8π2 (b) α = 1

4π2

(c) α = 1
2π2 (d) α = 1

π2

(e) α = 2
π2

Figure 4.7: Plots of the energies of the minima, as a function of t, with Q = 100 and α-values
2
π2 , 1

π2 , 1
2π2 , 1

4π2 and 1
8π2 .

67



Parameters Original values
t = 0.363 m2

A = 64.5107
Q = 100 Λ2 = 177.715
α = 1

4π2 g2 = 2

x = −0.1645 m2
B = 1.7459

y = −1.5588 m2
ψ = 156.745

% = −75.7405
x = 0.4442 m2

B = 12.784
y = 1.7920 m2

ψ = 207.159
% = −111.35

Table 4.3: The minima of the vacuum energy for t = 0.363, with Q = 100 and α = 1
4π2 .

numerical routine to scan for minima in (x, y). The details of each point is shown in Tables
4.3 and 4.4. From this we see that the minima at α = 1

4π2 and t = 0.363, corresponding
to the stable state, we have one very light particle and two with a mass squared of at least
one order of magnitude more. We have also showed the unstable point here for comparison.
Turning to the α = 1

2π2 plot, we find as expected two minima. One at t = 0.003 and another
at t = 0.276. From the values of the masses at these points, we see that the minimum at
t = 0.276 is probably the same minimum as the one we found for α = 1

4π2 , as we have the
same qualitative behaviour. That is, one light pseudo-scalar, and a heavy scalar and fermion.
The minimum at t = 0.003 on the other hand, is radically different. Here we have a heavy
pseudo-scalar, and a light scalar and fermion.

Sadly, none of the discovered minima match up exactly with what we see in nature, that
is a light fermion with the rest of the particles heavy, but we did not necessarily expect
it to. This is of course because we have completely neglected the gauge sector, which will
couple to the particle multiplet we have been discussing so far. An important question now
arises, why should the theory pick out the stable minima, when there are more favourable,
but unstable states elsewhere. One argument is that it must do so for the theory to make
any sense, but this is not a very natural reason. It is feasible, however, that the model will
stay in one of the minima if it manages to settle itself in there. This is because tunneling
between vacua in QFT is generally very unlikely to happen. The hope here is of course that
inclusion of the gauge sector will stabilize the theory further, leading to a stable absolute
global minimum, and that this minimum will have qualities similar to what we observe in
nature.

These results leads us to a very interesting conclusion: If we allow the Wess-Zumino
model to drift away from the supersymmetric point, it may settle itself into minima where
supersymmetry is broken to a large degree. It is also apparent that the nature of this
symmetry breaking can be radically different at the different minima. If we imagine living
in a world described by this model, we would observe one particle, while its superpartners
would be out of reach of our accelerators. This is of course not conclusive proof that there
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Parameters Original values
t = 0.003 m2

A = 0.53315
Q = 100 Λ2 = 177.715
α = 1

2π2 g2 = 4

x = −11.768 m2
B = 73.8375

y = −2.9762 m2
ψ = 4.7225

% = −92.1792

Parameters Original values
t = 0.276 m2

A = 49.0494
Q = 100 Λ2 = 177.715
α = 1

2π2 g2 = 4

x = −0.1804 m2
B = 1.5962

y = −1.4322 m2
ψ = 100.608

% = −40.5425

Table 4.4: The minima of the vacuum energy for t = 0.003 and t = 0.276, with Q = 100 and
α = 1

2π2 .

exist superpartners of the fermions of the standard model, as this model is in no way realistic.
It is, however, an indication that the existence of heavy superpartners is possible, and that a
world with the correct number of degrees of freedom may dynamically choose a configuration
similar to this.
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Chapter 5

Conclusion and outlook

The goal of this thesis was to first examine whether a variational calculation on the ground
state and the effective potential of a scalar field theory could find possible symmetry breaking
ground states. We have shown that the method works, and no minima more suitable are
discovered in a simple φ4 theory. This was what we expected, as the minimum discovered in
Coleman and Weinberg’s paper [7] was suggested to be untrustworthy.

Secondly, we wanted to use similar methods to examine a supersymmetric theory, the
Wess-Zumino model. First we discussed the model as it was presented by Wess and Zumino,
and verified explicitly the non-renormalization theorem and the vanishing vacuum energy to
two loops. Then, by allowing the model to move away from the supersymmetric point where
all the masses are equal, we have shown that the model may obtain stable minima which is
shifted away from the supersymmetric point. The nature of this shift is such that at least
one of the particles is significantly heavier than the others. This means that supersymmetry
is strongly broken in these states, but not in the same way in each state; we have shown that
for sufficiently large coupling we have several minima with radically different characteristics.
We have also shown that there are additional, unstable, states. If the theory were to settle
itself into these, we would have a runaway growth of all three particle masses. The question
now arises, why should the theory pick the stable state, and what decides which stable state
we end up with? It seems that pure chance would be responsible for deciding what kind of
universe we have, and perhaps more worrisome, whether the universe makes any sense at all.

This warrants further research, to resolve this. The most obvious first step is to extend the
formalism of the effective action developed for the scalar field to the supersymmetric model.
One could introduce three variational parameters coupled quadratically to each field, with a
non-local regularization function. This could then be used to probe further for stable global
minima of the model. The problem here is of course that first of all, the parameter space is
three-dimensional, and secondly the theory itself is much more complicated than the scalar
theory. Either of these complications alone would make the calculations very difficult indeed.

A second, quite different approach is to integrate out one of the fields of the theory, most
likely the fermion field. This would allow one to compare the theory to the superpotential,
and may shed some light on the problem from a different angle.

The next, and most important step, is to generalize this method to a supersymmetric
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theory involving gauge fields. This would allow one to examine a theory which is very
much like what is thought to be realized in nature, namely the Minimal Supersymmetric
Standard Model[12]. This would of course bring a host of complications, beyond increasing
the dimension of the parameter space. As this would be a gauged model, one would no
longer be able to use a simple cutoff to regularize the theory. Dimensional regularization,
which is widely used to handle ordinary gauge-theories, has its own problems when it comes
to supersymmetry[33, 34]. Overlooking these technical difficulties, it is possible that adding
the gauge sector to the theory may solve at least some of the problems we have encountered
so far. It may provide a mechanism that prevents the theory from falling into the unstable
states, or simply remove these states altogether. The most interesting solution would of
course be a stable and unambiguous global minimum. This state would of course have to
make sense when compared with the standard model. In the standard model we have a
very particular pattern, where the fermions always are the lightest partners of the Wess-
Zumino sector, and likewise for the bosons of the gauge sector. If in the case of a gauged
theory, we get several minima with different characteristics as we did with the Wess-Zumino
model alone, it would be difficult to explain why nature always chooses the same puzzling
pattern for each generation. Nevertheless, if such a state was found, one could use input from
experiments to perhaps determine some of the free parameters of the theory, and examine if
this model is in any way realistic. If this is possible, one might be able to actually predict
the masses of the superpartners to the known standard model particles.

It is also worth noting that we have only considered the energetic part of our argument of
naturalness from the introduction. It could also be interesting to consider the probabilistic
side, that is examine the size of the areas in the bare parameter space which corresponds
to the minima found, to determine which minima is more likely. Both for the Wess-Zumino
sector, which we already have considered, and for a potential calculation of a full, gauged
theory. This could clear up the question of whether pure chance determines the state of our
universe, if one discovered that one minima is probabilistically favoured.

The ultimate goal of this thesis was to examine the ground state of a supersymmetric
model through a variational calculation with the renormalized masses as parameters. As
we hypothesized in the introduction, there are indications that a model with a number of
degrees of freedom consistent with supersymmetry may have minima more favourable than
the supersymmetric point. If we return to our argument of naturalness, we must conclude
that supersymmetry is not necessarily the most likely state to emerge from our theory. This
is ironic, as the argument for introducing supersymmetry in the standard model in the first
place was just that of naturalness. The model seem to show a kind of dynamical symmetry
breaking, as we in no way lay any restrictions on the particle masses, we simply allow them to
flow as the dynamics of the theory directs them to. This result fits very well with observations
from our particle accelerators[13], in which we do not yet see any superpartners of our known
standard model particles. Whether this is actually what happens in nature is difficult to say
without considering a full supersymmetric theory. It is however, a strong indication and a
proof of concept for the idea that supersymmetry, while beautiful, is not the most natural
state of affairs.
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Appendix A

Mathematical techniques

The identities in this appendix can be found in any proper QFT textbook, e.g. [15],[35] or
[16].

A.1 Gaussian integrals

As the free path integral, and approximating the path-integral with interactions basically is
one big Gaussian integral, we will review some of the mathematics behind these here. The
simplest Gaussian integral over one variable can be solved by squaring and transform it to
polar coordinates. (∫ ∞

−∞
dxe−

1
2
x2
)2

= 2π

∫ ∞
0

drre−
1
2
r2

= 2π

∫ ∞
0

dte−t = 2π,

=⇒
∫ ∞
−∞

dxe−
1
2
x2 =

√
2π. (A.1.1)

We can scale this integral by a constant a:∫ ∞
−∞

dxe−
1
2
ax2 =

√
2π

a
. (A.1.2)

We will also need the shifted integral∫ ∞
−∞

dxe−
1
2
ax2+bx, (A.1.3)

which can be solved by completing the square in the exponent

−1

2
ax2 + bx = −1

2

(
x− ba−1

)
a
(
x− ba−1

)
+

1

2
ba−1b, (A.1.4)
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and shifting the integration variable to x+ ba−1. This yields∫ ∞
−∞

dxe−
1
2
ax2+bx =

∫ ∞
−∞

dx′e−
1
2
ax′2e

1
2
ba−1b

=

√
2π

a
e

1
2
ba−1b. (A.1.5)

This can be generalized to N variables: Let x and b both be N -component vectors and A
an N ×N symmetric matrix. We then have∫

dNxe−
1
2
xTAx =

√
(2π)N

detA
, (A.1.6)

and ∫
dNxe−

1
2
xTAx+bT x =

√
(2π)N

detA
e

1
2
bTA−1b. (A.1.7)

Now we can generalize this further by letting N → ∞, which gives us the functional
integrals we will need in this thesis:∫

Dφ exp

[
−1

2

∫
d4x

∫
d4yφ(x)K(x, y)φ(y)

]
= C(detK)−

1
2 , (A.1.8)

and ∫
Dφ exp

[
−1

2

∫
d4x

∫
d4yφ(x)K(x, y)φ(y) +

∫
d4xJ(x)φ(x)

]
= C ′ exp

[
1

2

∫
d4x

∫
d4yJ(x)K−1(x, y)J(y)

]
. (A.1.9)

The integrals now run over all possible forms of the function φ(x), integration over x and
y is the functional analogue of matrix multiplication, and the operator K(x, y) now has to
be symmetric under exchange of x and y. C and C ′ are just constants which are generally
uninteresting to the discussion. For our purposes, K is the propagator of the theory in
question, which is always symmetric.

It is obvious that we have glossed over a lot of details when generalizing to functional
integrals, but we only need to use the results in this thesis. A more thorough account of
functional integration can be found in [16], Chapter 13.

A.2 Feynman parameter integrals

We often encounter loop integrals on the form∫
d4k

(2π)4

1

[k2 −m2 + iε][(k + p)2 −m2 + iε]
. (A.2.1)
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These can be simplified by using the identity (iε is from now on not written explicitly)

1

AB
=

∫ 1

0

dx
1

[Ax+ (1− x)B]2
, (A.2.2)

yielding ∫ 1

0

dx

∫
d4k

(2π)4

1

[(k2 + p2 + 2p · k −m2)x+ (k2 −m2)(1− x)]2

=

∫ 1

0

dx

∫
d4k

(2π)4

1

[(k + px)2 −m2 − x(x− 1)p2]2
(A.2.3)

We can now shift the integration variable by defining k̄ = k + px, and we end up with the
integral ∫ 1

0

dx

∫
d4k̄

(2π)4

1[
k̄2 −M2

]2 , (A.2.4)

where M2 = m2 + x(x − 1)p2 for notational convenience. This integral can now be readily
solved with use of the proper regularization technique.

A.3 Regularization

When performing loop calculations one usually encounters divergent integrals on the form∫
d4k

(2π)4

(k2)α

(k2 −m2 + iε)β
(A.3.1)

More complex denominators can always be simplified through the use of Feynman param-
eters, see Appendix A.2. These will diverge as long as α + 2 ≥ β. To handle these it is
necessary to regularize them in some way, so that their analytic form can be preserved and
dealt with by renormalization. First of all, the denominator

k2 −m2 + iε = (k0)2 − (~k2 +m2) + iε ≡ (k0)2 − ω2
k + iε (A.3.2)

has poles at k0 = ±(ωk − iε). Their location in the complex k0 plane, shown in Figure (A.1)
are such that they can be avoided by rotating the integration path 90 degrees counterclock-
wise to the imaginary axis. That is, we substitute k0 = ik0

E and ~k = ~kE. This is what is
called a Wick rotation into Euclidean space. In doing this we have that

k2 = (k0)2 − ~k2 = −(k0
E)2 − ~k2

E = −k2
E

d4k = dk0d3k = idk0
Ed

3kE = id4kE

=⇒
∫

d4k

(2π)4

(k2)α

(k2 −m2 + iε)β

= i(−1)α+β

∫
d4kE
(2π)4

(k2
E)α

(k2
E +m2)β

(A.3.3)
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ImHk0L

ReHk0L-Ωk+iΕ

Ωk-iΕ

Figure A.1: By rotating the integration path 90 degrees counterclockwise we avoid the poles
on the real axis.
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Now there is no pole, so ε can be set to 0.
The integral can now be solved, and there are several regularization techniques available

to do this. The simplest solution is to just cut off the momentum kE at some high value
Λ. This does break gauge symmetry however, but since we will not consider gauge theories
in this thesis, a simple cut-off will suit our purposes just fine. The integral will then take
the form, suppressing the subscript E from now on, as the sign of m2 implies that we are in
Euclidean space: ∫

d4k

(2π)4

(k2)α

(k2 +m2)β
=

1

8π2

∫ Λ

0

dkk3 (k2)α

(k2 +m2)β
(A.3.4)

Which can be easily solved, depending on the values of α and β.
This is all well and good for most of our integrals, but we have to be careful if we

want to compare a four-dimensional integral to a three-dimensional counterpart. There is a
particular example in this thesis: In section 2.1 we showed that

1

2

∫
d4k

(2π)4
log k2 +m2 =

1

2

∫
d3k

(2π)3

√
~k2 +m2. (A.3.5)

But we better make sure that this still makes sense when we cut off the integrals. So, we
want to solve the integral, substituting x = k2,

I4 =
1

2

∫
d4k

(2π)4
log(k2 +m2) =

1

2

1

16π2

∫ Λ2

0

dxx log(x+m2) (A.3.6)

A partial integration yields

32π2I4 =
1

2
Λ4 log(Λ2 +m2)− 1

2

∫ Λ2

0

dxx
x+m2 −m2

x+m2

=
1

2
Λ4 log(Λ2 +m2)− 1

4
Λ4 +

1

2
m2

∫ Λ4

o

dx
x+m2 −m2

x+m2 −m2

=
1

2
Λ4 log(Λ2 +m2)− 1

4
Λ4 +

1

2
m2Λ2 − 1

2
m4 log

(
Λ2 +m2

m2

)
. (A.3.7)

Next we want to compare this to solving the integral on the three-dimensional form. Now we
have to be careful about the cutoff though, cutting off a four dimensional integral at k2 = Λ2

is not necessarily the same as cutting of a three dimensional integral at |~k|2 = Λ2. So let us
write the three-dimensional cutoff as Λ̃, just to be safe. The integral we have to solve now
is (we now write the length of ~k as k)

I3 =
1

2

∫
d3k

(2π)3

√
~k2 +m2 =

1

4π2

∫ Λ̃

0

dkk2
√
k2 +m2. (A.3.8)

This integral is a bit trickier than I4, so we will let Mathematica do the job.

32π2I3 =8

∫ Λ̃

0

dkk2
√
k2 +m2

=Λ̃(m2 + 2Λ̃2)
√

Λ2 +m2 −m4 arsinh
Λ̃

m
. (A.3.9)
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If we now expand both results in powers of m2/Λ2, we can compare

32π2I4 =− 1

4
Λ4 +

1

2
Λ4 log Λ2 + Λ2m2 − 1

2
m4 log

Λ2

m2
− 1

4
m4 +O(Λ−2),

32π2I3 =2Λ̃4 + 2Λ̃2m2 − 1

2
m4 log

2Λ̃2

m2
+

1

4
m4 − 1

2
m4 log 2 +O(Λ̃−2). (A.3.10)

Sadly, this is not equal, but all is not lost. If we replace 2Λ̃2 = Λ2 we get the same result
for the terms which are dependent on both Λ and m. As we will see in Chapter 4, these
are the only terms we are interested in, or rather the terms which are physical. The only
problem is the terms which only depend on m, they are equal with the approximation that
log 2 = 1, which is a pretty bad approximation. We are not interested in these terms in
this thesis, but they will obviously have a physical implication. It is possible that this
difference can be accounted for by shifting Λ̃, but that shift would have to be dependent
on the particle masses, which of course leads to complications. This indicates that it is not
trivial to transform divergent integrals from four to three dimensions by contour integration
when employing a cutoff.

A.4 Grassmann algebra

To allow us to construct a path integral for fermions, it is necessary to introduce a math-
ematical construct called Grassmann numbers, named after Hermann Grassmann. These
numbers are also called anti-commuting numbers, due to their algebra. If we have a set of
Grassmann numbers θi and real number a, they obey the following algebra

{θi, θj} = 0, [θi, a] = 0. (A.4.1)

That is, Grassmann numbers anti-commute with themselves and commute with ordinary
numbers. In particular, if i = j we have that

θ2
i =− θ2

i (A.4.2)

=⇒ θ2
i =0, (A.4.3)

which makes calculations particularly simple, as we can have a maximum of only two powers
of any Grassmann number.

Next we want to define integrals over Grassmann numbers. Do do this we demand that
an integral over an arbitrary function of Grassmann numbers f(θ) can be shifted and still
yield the same result, as for integrals over ordinary integrals. That is∫

dθf(θ) =

∫
dθf(θ + η). (A.4.4)

If we expand both functions to the most general form possible, which is severely restricted
by the algebra, we obtain ∫

dθ (a+ bθ) =

∫
dθ (a+ b(θ + η)) . (A.4.5)
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This leads us to demand that
∫
dθbη = 0, or as η is arbitrary,∫

dθ = 0, (A.4.6)

As a product of two Grassmann numbers commutes with any other Grassmann number we
can say that a product of two Grassmann numbers is an ordinary number, which also means
that

∫
dθθ should be an ordinary number. We then simply define∫

dθθ = 1, (A.4.7)

which fixes the normalization of dθ
This is all we need to do the simplest Gaussian∫

dθdθ̄eθ̄aθ. (A.4.8)

This can now be rewritten as a Taylor series, which will be cut off after only two terms, due
to Eq. (A.4.1) ∫

dθdθ̄eθ̄aθ =

∫
dθdθ̄

(
1 + θ̄aθ

)
= a. (A.4.9)

This can easily be generalized to 2N Grassmann variables collected in a column vector θ
and a row vector θ̄ each of dimension N . With A some hermitian N ×N matrix we have∫

dθdθ̄eθ̄Aθ = detA. (A.4.10)

We also need the integral ∫
dθdθ̄eθ̄Aθ+η̄θ+θ̄η. (A.4.11)

This can again can be solved by completing the square and shifting the integration variables∫
dθdθ̄eθ̄Aθ+η̄θ−θ̄η =

∫
dθdθ̄eθ̄Aθeη̄A

−1η (A.4.12)

= detAeη̄A
−1ηA. (A.4.13)
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Appendix B

Mathematica calculations

The following pages contain the Mathematica notebooks phi calc.nb and wz calc.nb used in
the calculations in this thesis.
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H*Definitions for numerical precision*L

Acc = 8; Rec = 40;

H*Define vacuum energy density, E, and the conjugated variable Ξ^2, HΞ hereL*L

E0@Μ_, M_, mr_D :=

1 � H8 Π^2L * NIntegrate@Sqrt@xD HSqrt@x + mr^2 + Μ^2 * M^4 � Hx + M^2L^2D - Sqrt@x + mr^2DL,
8x, 0, Infinity<, AccuracyGoal ® Acc, MaxRecursion ® Rec, WorkingPrecision ® 50D

E1@Μ_, M_, mr_, Λ_D := Λ � 8 * H1 � H8 Π^2LL^2 *

HNIntegrate@Sqrt@xD H1 � Sqrt@x + mr^2 + Μ^2 * M^4 � Hx + M^2L^2D - 1 � Sqrt@x + mr^2DL,
8x, 0, Infinity<, AccuracyGoal ® Acc, MaxRecursion ® RecDL^2

Ξ0@Μ_, M_, mr_D := -1 � 4 * 1 � H8 Π^2L *

NIntegrate@Sqrt@xD * M^4 � Hx + M^2L^2 � Sqrt@x + mr^2 + Μ^2 * M^4 � Hx + M^2L^2D,
8x, 0, Infinity<, AccuracyGoal ® Acc, MaxRecursion ® RecD

Ξ1@Μ_, M_, mr_, Λ_D := Λ � 8 * H1 � H8 Π^2LL^2 *

NIntegrate@Sqrt@xD H1 � Sqrt@x + mr^2 + Μ^2 * M^4 � Hx + M^2L^2D - 1 � Sqrt@x + mr^2DL,
8x, 0, Infinity<, AccuracyGoal ® Acc, MaxRecursion ® RecD *

NIntegrate@Sqrt@xD * M^4 � Hx + M^2L^2 � Hx + mr^2 + Μ^2 * M^4 � Hx + M^2L^2L^H3 � 2L,
8x, 0, Infinity<, AccuracyGoal ® Acc, MaxRecursion ® RecD

En@Μ_, M_, mr_, Λ_D := E0@Μ, M, mrD + E1@Μ, M, mr, ΛD

Ξ@Μ_, M_, mr_, Λ_D := Ξ0@Μ, M, mrD + Ξ1@Μ, M, mr, ΛD

H*Define the effective potential*L

V@Μ_, M_, mr_, Λ_D := En@Μ, M, mr, ΛD + Μ^2 * Ξ@Μ, M, mr, ΛD

H*Choose some arbitrary values for M and Λ*L

a = 30; b = 1.5;

H*Plotting the effective potential as a function of Ξ^2, for zero and non-zero mass*L

Plot@Ξ@Μ, a, 0, bD, 8Μ, 0, 5<, AxesLabel ® 8Μ, Ξ²<D
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-2.82

-2.80
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-2.76

Ξ²



Plot@V@Μ, a, 0, bD, 8Μ, 0, 5<, AxesLabel ® 8Μ, Veff<D
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H*Here we run into trouble, as Ξ changes very slowly with Μ*L

ParametricPlot@8Ξ@Μ, a, 0, bD, V@Μ, a, 0, bD<, 8Μ, .1, 1.5<D

H*Plot not shown, as it uses a lot of space*L�

H*Plotting the vacuum energy for zero and non-zero mass*L

Plot@En@Μ, a, 0, bD, 8Μ, .1, 5<, AxesLabel ® 8Μ, DΡ<D

1 2 3 4 5
Μ0

20

40

60

80

100

120

140

DΡ

Plot@En@Μ, a, 10, bD, 8Μ, .1, 5<, AxesLabel ® 8Μ, DΡ<D
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H*This notebook contains the code to generate the plots and data

used in this thesis. The actual plots are removed from the notebook

for performance issues. Each plot and data set can be generated

by using this code with the parameters listed in the thesis.*L
H*Generating plot over dominating contribution to vacuum energy*L

H*Definitions: mA
2=t*L2,mB

2=x2mA
2,mΨ

2=y2mA
2,Α=g�8Π2*L

In[30]:= f@x_, y_D := 8 y^2 + 2 x^2 - 8 y - 8 x * y + 4 x + 2

Plot3D@f@x, yD, 8x, -5, 5<, 8y, -5, 5<, AxesLabel ® 8x, y, f<D
H*Rotate the axes for better visualization*L

In[31]:= h[s_,t_]:=Simplify[f[x,y]/.{x->1/Sqrt[5](2s+t),y->1/Sqrt[5](s-2t)}]

In[32]:= h@s, tD

Out[32]= 2 + 4 5 t + 10 t2

H*Full expressions for the vacuum energy*L
H*l~L,a~mA,b~mB,p~mΨ*L

In[1]:= E0@l_, a_, b_, p_D := 1 � H32 Π^2L Hl^2 Ha^2 + b^2 - 2 p^2LL
In[2]:= E14@l_, a_, b_, p_, g_D :=

g^2 l^4 � H16 Π^2L^2 H8 p^2 � a^2 + 2 b^2 � a^2 + 4 b � a - 8 p � a - 8 b * p � a^2 + 2L
In[3]:= E12@l_, a_, b_, p_, g_D :=

g^2 l^2 � H16 Π^2L^2 Ha^2 Log@l^2 � a^2D * H12 p � a - 6 b � a - 6L +

b^2 Log@l^2 � b^2D * H8 p * b � a^2 - 4 b^2 � a^2 - 2 b � a - 4 p � a + 2L +

p^2 Log@l^2 � p^2D * H12 p � a + 8 p * b � a^2 - 4 p � a - 16 p^2 � a^2L +

6 a^2 HLog@l^2 � a^2D - 1L +

2 H2 b - aL^2 HHb^2 Log@l^2 � b^2D - a^2 Log@l^2 � a^2DL � Hb^2 - a^2LL +

4 b^2 HHb^2 Log@l^2 � b^2D - p^2 Log@l^2 � p^2DL � Hb^2 - p^2LL -

2 H8 p^2 - 2 a^2L HHa^2 Log@l^2 � a^2D - p^2 Log@l^2 � p^2DL � Ha^2 - p^2LLL
In[4]:= En@l_, a_, b_, p_, g_D := E0@l, a, b, pD + E14@l, a, b, p, gD + E12@l, a, b, p, gD
In[5]:= H*Define new variables*L
In[6]:= F@x_, y_, t_, Q_, Α_D := En@l, a, b, p, gD �. 8b ® x * a, p ® y * a< �. a ® Sqrt@tD l �.

8l ® H32 Π^2 QL^H1 � 4L, g ® Sqrt@8 Π^2 ΑD<



In[7]:= Simplify@F@x, y, t, Q, ΑDD

Out[7]= Q t I1 + x2
- 2 y2M + 2 H1 + x - 2 yL2

Α +

2 t Α 3 -1 + LogB
1

t
F - 3 H1 + x - 2 yL LogB

1

t
F - x2 H-1 + 2 xL H1 + x - 2 yL LogB

1

t x2
F +

H1 - 2 xL2 I-LogA 1

t
E + x2 LogA 1

t x2 EM
-1 + x2

+ 4 H1 + x - 2 yL y3 LogB
1

t y2
F -

2 I-1 + 4 y2M J-LogA 1

t
E + y2 LogB 1

t y2 FN

-1 + y2
+

2 x4 LogA 1

t x2 E - 2 x2 y2 LogB 1

t y2 F

x2 - y2

H*Locating minima of the vacuum energy*L
H*Define the determinant of the Hessian matrix as H*L

In[8]:= H@x_, y_, t_, Q_, Α_D :=

D@F@x1, y1, t, Q, ΑD, 8x1, 2<D * D@F@x1, y1, t, Q, ΑD, 8y1, 2<D -

D@F@x1, y1, t, Q, ΑD, x1, y1D^2 �. 8x1 ® x, y1 ® y<
H*Define function to search for roots around Hx0,y0L with given t,

Q and Α, check the hessian and print out the squared particle masses,

the value of the cutoff and the value of the vacuum energy*L
In[9]:= Rootcheck@x0_, y0_, t_, Q_, Α_D :=

8roots = FindRoot@8D@F@x, y, t, Q, ΑD, xD, D@F@x, y, t, Q, ΑD, yD<,

8x, x0<, 8y, y0<D, 8H@x, y, t, Q, ΑD �. roots,

D@F@x1, y1, t, Q, ΑD, 8x1, 2<D �. 8x1 ® x, y1 ® y< �. roots<,

8Sqrt@32 Π^2 QD * t, x^2 * Sqrt@32 Π^2 QD * t, y^2 * Sqrt@32 Π^2 QD * t,

N@Sqrt@32 Π^2 * QDD< �. roots, F@x, y, t, Q, ΑD �. roots<
H*Loop over values of Hx,y,tL to scan for

minima and save ImA
2,mB

2,mΨ
2,L2,ΡM to the list "sols"*L

sols := 8<; For@t0 = 0, t0 < 1, t0 = t0 + 0.001,

Print@t0D; For@x0 = -10.11, x0 < 10, x0 = x0 + 1,

For@y0 = -10.1, y0 < 10, y0 = y0 + 1, H1 = Rootcheck@x0, y0, t0, 100, 1 � H16 Π^2LD;

If@H1@@2, 1DD > 0 && H1@@2, 2DD > 0, sols =

Append@sols, 8H1@@3, 1DD, H1@@3, 2DD, H1@@3, 3DD, H1@@3, 4DD, H1@@4DD<DDDDD
H*Delete duplicate points and export to .dat file for backup*L
sols = DeleteDuplicates@Round@sols, .0001DD;

Export@"Points2.dat", sols, "List"D;

H*Generate a listplot of the energy values for increasing t,

to get an overall feel for the data*L
Evalues = 8<; For@i = 1, i < Length@solsD, i++,

Evalues = Append@Evalues, 8sols@@i, 1DD � HSqrt@32 Π^2 * 100DL, sols@@i, 5DD<DD
ListPlot@8Evalues<, AxesLabel ® 8t, Ρ<, PlotRange ® AllD

2   wz_calc.nb



H*Generate a few plots for different

values of t to examine the minima closer*L
Plot3D@F@x, y, .01, 100, 1 � H16 Π^2LD,

8x, -10, 10<, 8y, -10, 10<, AxesLabel ® 8x, y, F<D
H*Locate specific minima for the plot*L

In[34]:= solst := 8<; For@x0 = -20.11, x0 < 20, x0 = x0 + 1,

For@y0 = -20.1, y0 < 20, y0 = y0 + 1, H1 = Rootcheck@x0, y0, .01, 100, 1 � H16 Π^2LD;

If@H1@@2, 1DD > 0 && H1@@2, 2DD > 0, solst = Append@solst, H1DDDD
In[35]:= solst

Out[35]=

A very large output was generated. Here is a sample of it:

888x ® -2.54275, y ® -6.67321<, 8159.532, 7.00863<,

81.77715, 11.4903, 79.1397, 177.715<, -36.7481<,

�641�, 88x ® 2.5913, y ® 7.03812<, 8181.951, 7.02705<,

81.77715, 11.9333, 88.0314, 177.715<, -72.6839<<

Show Less Show More Show Full Output Set Size Limit...

wz_calc.nb   3
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