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Abstract—This article regards a power system
containing multiple High Voltage Direct Current
(HVDC) links. The topic is to exploit the HVDC
lines’ ability to control the power supplied by them
to increase the stability of the system. The nonlin-
ear controller-design method backstepping is applied
to design a controller for the direct current (DC)
through each HVDC link.
The simulation results show that the controller

increases both transient stability and damping when
some non-permanent errors are imposed on the sys-
tem.

I. Introduction

The electric power systems in Europe today are com-
plex dynamical systems of high dimension consisting
of interconnected generators, transmission lines, loads
etc. In order to keep the power supply safe and sta-
ble, it is important that all the generating units of an
alternating current (AC) power system operate at the
same frequency. The recent and ongoing liberalization
of the energy market as well as increasing demand has
in some cases reduced the stability margin of the power
systems [1], and it has become important to augment
their frequency stability.

Some of the possibilities for improving the power
system stability are:

i building new transmission lines,
ii installing new generation capacity,
iii better utilize the existing equipment in the power

system.
High Voltage Direct Current (HVDC) links are in

general used to transmit large amounts of energy over
long distances. Norway is for example connected to
the Netherlands and Denmark with underwater HVDC
cables. But HVDC lines also have the ability of direct
control of its power flow [2], and the current through
already existing HVDC lines can therefore serve as a
control input to help stabilize the AC network.

Improving system stability using a single HVDC link
has been discussed in several papers, examples being [3]
and [4]. Applying more than one HVDC link for stability
improvement allows for coordinated control of the HVDC
links, and perhaps improving the stability even more [5].
Coordinated control of several HVDC links is discussed
in e.g. [5], [6] and [7].

Even though the current through the HVDC lines
can be directly controlled, there are of course some
restraints on both the amount of current that can pass,
as well as the rate of change. The limitation on the
power transmission capacity of HVDC lines is dominated
by the maximum allowed conductor temperature [8].
The NorNed transmission line between Norway and the
Netherlands, for example, has a capacity of 700 MW
which is transferred at 450 kV. This gives a maximum
current of approximately 780 A.

The problem investigated in this paper is inspired
by the work of Eriksson et al. [5], on utilization of
HVDC links to enhance system stability and dampen
system oscillations. A major difference is that here the
backstepping method will be applied in designing the
nonlinear controller, instead of input-output exact lin-
earization. Backstepping allows reduced control effort by
not canceling damping terms.

The outline of the report is as follows. In Section II
an overall system description is given, and the control
problem is defined. Section III is devoted to designing
the state feedback law using the backstepping method.
The specific network used for simulation is presented in
Section IV, along with the simulation results. These are
then discussed in Section V and the conclusion is drawn
in Section VI.

II. System description
Consider two separated power networks connected by

p HVDC links. Each of the two power networks con-
tains m and n nodes, respectively. Each of these nodes
is connected to a synchronous generator and a load,
which represents the equivalent of a larger, more complex
network. Each of these separated networks can therefore
represent networks of various size and complexity.

The swing equation for generator k is given as

δ̇k = ωk (1a)

ω̇k = 1
Mk

(
Pmk −Re

(
EgkI

∗
gk

)
−Dkωk

)
(1b)

where δk is the rotor angle and ωk the rotor angular
velocity, both given in reference to the 50 Hz reference
frame, Pmk the mechanical power produced by the tur-
bine, Pek = Re

(
EgkI

∗
gk

)
the electrical power acting on

the rotor, Egk the voltage of the internal bus, Igk the



current from generator k,Mk the moment of inertia, and
Dk the damping coefficient.

From (1), it can be shown that the set of nonlinear
differential equations for several generators connected by
a power grid and HVDC lines can be written

δ̇ = ω (2a)
ω̇ = ψ (δ,ω) + φ (δ) IDC (2b)

where δ =
[
δ1 · · · δm+n

]T , ω =
[
ω1 · · · ωm+n

]T ,
and IDC is a p×1-vector containing the current through
the HVDC lines. The connection between IDC =[
IDC,1 · · · IDC,p

]T and the currents from the gen-
erators IG =

[
Ig1 · · · Ig(m+n)

]T , is given by the
algebraic equations for the network, and the procedure
is explained in more detail in Section IV.

Since the networks are connected through DC lines,
the frequencies can be different at each network. How-
ever, for stability reasons, they should be equal for the
generators working together in the same AC grid. The
purpose of the controller designed here is to make sure
that this is fulfilled, by asymptotically stabilizing these
generator frequency differences.

The system states to be stabilized for each AC network
are therefore chosen as

ηi1 = δi1 − δi2
...

ηis−1 = δi1 − δis
ξi1 = ωi1 − ωi2

...
ξis−1 = ωi1 − ωis

where i = {1, 2} specifies the AC network, s = {m,n}
is the number of nodes in the AC network, and δij and
ωij are associated with the generator at node ij. The
system dynamics for the two AC networks combined then
become

η̇ij = ξij

ξ̇ij = Ψij (ηij , ξij , t) + Φij (ηij , t) IDC

With η =
[
η11 · · · η1m η21 · · · η2n

]T and ξ =[
ξ11 · · · ξ1m ξ21 · · · ξ2n

]T , we can collect
η̇ = ξ (3a)
ξ̇ = Ψ (η, ξ, t) + Φ (η, t) IDC (3b)

where

Ψ (η, ξ, t) =



Ψ11 (η, ξ, t)
...

Ψ1m (η, ξ, t)
Ψ21 (η, ξ, t)

...
Ψ2n (η, ξ, t)


, Φ (η, t) =



Φ11 (η, t)
...

Φ1m (η, t)
Φ21 (η, t)

...
Φ2n (η, t)



It is not possible to write ξ̇ merely as a function of
η, ξ and IDC , there will also be dependencies on the
original system variables ω and δ. This is solved by
regarding δ and ω as time varying signals, hence the
time-dependence in the system.

Since η does not necessarily have an equilibrium at the
origin, a change of variables is made so that η̄ = η−η0:

˙̄η = ξ (4a)
ξ̇ = Ψ (η̄ + η0, ξ, t) + Φ (η̄ + η0, t) IDC (4b)

where η0 is the equilibrium of (3a) and

Ψ (η̄ + η0, ξ, t) = ΨR (η̄ + η0, ξ, t)−Dξ (5)

where Dξ contains the “good” damping terms of
Ψ (η̄ + η0, ξ, t), and ΨR (η̄ + η0, ξ, t) contains the re-
maining elements. The good damping terms consists of
terms that provides desirable damping to the system
states. The matrixD is a r×r diagonal matrix containing
combinations of Dk

Mk
, where r = m+ n.

The equilibrium of ξ is ξ = 0, and the system (4)
therefore has its equilibrium at the origin.

Assumption 1. It is in the following assumed that
Φ (η̄ + η0, t) is quadratic, that is, ξ and IDC have the
same dimension, and invertible.

This assumption is restrictive with regards to the con-
figuration of the power system, and future work should
include relaxing this assumption and considering a more
general network configuration.

III. Controller Design
Backstepping is a recursive procedure for designing

nonlinear controllers. It requires full state feedback, and
it is therefore assumed that all system states are either
measured by phasor measurement units (PMU) or that
they are estimated by a state estimator.

Consider systems on the form

η̇ = f (η) + g (η) ξ (6a)
ξ̇ = u (6b)

The idea behind backstepping is to break the design
problem for the full system into a sequence of design
problems for lower order subsystems [9]. First ξ is viewed
as a virtual input to stabilize η, then the stabilizing
virtual input is “backstepped” through the integrator to
find the actual input u which stabilizes both η and ξ.
Applying backstepping to systems on the form (6) is

referred to as integrator backstepping [10]. Backstepping
may also be applied to systems on the more general form

η̇ = f (η) + g (η) ξ (7a)
ξ̇ = fa (η, ξ) + ga (η, ξ)u (7b)

where η is known as the internal dynamics and ξ as the
external dynamics. The external dynamics must have the
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same dimension as the input u, and it is convenient that
the equilibrium point of the system is at the origin.

Since (4) is on this form, with IDC as input u, we
can design a controller for it using backstepping. This is
summarized in the following Theorem, where we avoid
canceling the “good” damping terms.

Theorem 1. Under Assumption 1, the origin of (4) can
be asymptotically stabilized by letting

IDC = Φ−1 (η̄ + η0, t) ·[
−KT

2 z − η̄ −ΨR (η̄ + η0, ξ, t)−K1ξ
]

(8)

where z = ξ+K1η̄ andK1 andK2 are positive definite,
constant matrices chosen such that

Q =
[

K1 −0.5DK1
−0.5DK1 DT +K2

]
(9)

is positive definite.

Proof: Consider the Lyapunov function

V = 0.5η̄T η̄ + 0.5zTz (10)

where

z = ξ − γ (η̄) (11)
γ (η̄) = −K1η̄ (12)

Applying the controlled input IDC in (8) on the system
(4) results in the following time derivative of the Lya-
punov function

V̇ = −
[
η̄T zT

] [ K1 −0.5DK1
−0.5DK1 DT +K2

] [
η̄
z

]
(13)

= −qTQq < 0 (14)

Thus with (8) as input and (10) as Lyapunov function,
it is clear that

i V (η̄, z) is positive definite and decrescent with
respect to (η, ξ),

ii V̇ (η̄, z) is negative definite with respect to (η, ξ),
and according to Theorem 4.9 in [10], the origin of (4) is
uniformly asymptotically stable.

IV. Network example

Both the network model and the HVDC model de-
scribed in the following are mainly based on those
presented in [5], but differ somewhat in presentation.
This section also serves to detail the modeling procedure
outlined in Section II.

The network used for testing the controller is shown in
Figure 1. It consists of four synchronous generators, four
loads, four transmission lines and two HVDC links. This
network model is a special case of the model presented
in Section II, with p = m = n = 2. The detailed model
of the HVDC lines and the AC network are presented in
the following.

Node 2

Node 1

H
V
D
C
1

G2

G1

Node 3

Node 4

H
V
D
C
2

G3

G4

Line 4

Line 3

Line 2

Line 1

Load 2 Load 3

Load 4Load 1

Fig. 1: Power system consisting of four synchronous
machines and two HVDC links [5].

A. HVDC model
As in [5], the HVDC lines are of conventional type,

meaning that reactive power is consumed by them and
that the active power through them can be controlled
via the DC current. It is assumed that the HVDC lines
are lossless and have ideal control capabilities. It is also
assumed that the power factors on both the inverter and
rectifier side are equal. Positive direction for the current
through HVDC link 1 and 2 are from node 1 to node 2
and from node 4 to node 3, respectively. This means that
the current injected from the HVDC links have positive
sign at node 2 and 3 and negative sign at node 1 and 4
of Figure 1.

Assuming that the absolute value of the node voltages
at each side of the HVDC links are approximately equal,
the injected current at node k by HVDC link l is given
as

IHVDC,kl = IDC,kl · ejθk (15)

where θk is the voltage angle at node k, and IDC,l is the
controlled DC current through HVDC link l. Assuming
that node k is directly connected to HVDC link l, then
IDC,kl = −IDC,l if node k is at the rectifier side, and
IDC,kl = IDC,l if node k is at the inverter side. If node k
and HVDC link l are not directly connected, IDC,kl = 0.
Defining IHVDC,k as the total current injected at node

k by both HVDC-links, leads to the following

IHVDC =


IHVDC,1
IHVDC,2
IHVDC,3
IHVDC,4

 =


−eiθ1 0
eiθ2 0
0 eiθ3

0 −eiθ4

 IDC (16)

where IDC =
[
IDC,1 IDC,2

]T .
B. Network model

The algebraic equation for the current flow in the
network is found using the internal node representation,
where it is assumed that the loads in the network are
constant resistances. Defining all currents as positive into
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node k, Kirchoff’s current law gives

Igk + ILk + IHVDC,k +
n+m∑
l=1

YklUl = 0 (17)

where Igk is the current injected by generator k, ILk the
current from load k, IHVDC,k the current injected by
the HVDC-links, Ykl the systems admittance matrix at
position (k, l), Ul the voltage at node l, and n + m the
number of nodes in the network.

The current injected from generator k into node k is
given by

Igk = Egk − Uk
jxdk

, ∀ k = 1, · · · , 4 (18)

where Egk is the voltage at the internal bus of generator
k, and xdk is the generators transient reactance. The
current from load k into node k is given by

ILk = −Uk
Rk

(19)

where Rk is the load resistance.
Combining (17)-(19) gives the following compact equa-

tion [
IG

IHVDC

]
=
[
Y A Y B

Y C Y D

] [
E
U

]
(20)

where IG =
[
Ig1 · · · Ig4

]T . Eliminating U from the
equation yields

IG =
(
YA − YBY

−1
D YC

)
E + YBYD

−1IHVDC

= Y RNME + Y HVDCIHVDC (21)

Replacing Igk in (1) with (21), and assuming that the
absolute value of the generator’s internal voltage |Egk| is
constant, the system can be written as a set of nonlinear
differential equations ẋ = h (x, IDC):

δ̇1 = ω1 (22)
δ̇2 = ω2 (23)
δ̇3 = ω3 (24)
δ̇4 = ω4 (25)

ω̇1 = 1
M1

[
Pm1 −D1ω1 −G11E

2
g1 (26)

− Eg1Eg4 (B14 sin (δ1 − δ4) +G14 cos (δ1 − δ4))
+ Eg1 (F11 cos (δ1 − θ1) +K11 sin (δ1 − θ1)) IDC,1
+ Eg1 (F14 cos (δ1 − θ4) +K14 sin (δ1 − θ4)) IDC,2

]
ω̇2 = 1

M2

[
Pm2 −D2ω2 −G22E

2
g2 (27)

− Eg2Eg3 (B23 sin (δ2 − δ3) +G23 cos (δ2 − δ3))
− Eg2 (F22 cos (δ2 − θ2) +K22 sin (δ2 − θ2)) IDC,1
− Eg2 (F23 cos (δ2 − θ3) +K23 sin (δ2 − θ3)) IDC,2

]
ω̇3 = 1

M3

[
Pm3 −D3ω3 −G33E

2
g3 (28)

− Eg3Eg2 (B32 sin (δ3 − δ2) +G32 cos (δ3 − δ2))
− Eg3 (F32 cos (δ3 − θ2) +K32 sin (δ3 − θ2)) IDC,1
− Eg3 (F33 cos (δ3 − θ3) +K33 sin (δ3 − θ3)) IDC,2

]

ω̇4 = 1
M4

[
Pm4 −D4ω4 −G44E

2
g4 (29)

− Eg4Eg1 (B41 sin (δ4 − δ1) +G41 cos (δ4 − δ1))
+ Eg4 (F41 cos (δ4 − θ1) +K41 sin (δ4 − θ1)) IDC,1
+ Eg4 (F44 cos (δ4 − θ4) +K44 sin (δ4 − θ4)) IDC,2

]
where YRNM (k, l) = Gkl + jBkl, and YHVDC (k, l) =
Fkl+jKkl, which easily can be written as (2). The system
is then written as (4) with η =

[
δ2 − δ3 δ1 − δ4

]T and
ξ =

[
ω2 − ω3 ω1 − ω4

]T .
For this system, the “good” damping terms in D of

(5) is equal to

D =
[
D2
M2

+ D3
M3

0
0 D1

M1
+ D4

M4

]
(30)

These contribute to stabilization, and the controller
should therefore not cancel them.

Because of IHVDC,kl’s dependency on θk, it is not
possible to entirely eliminate the nodal voltages from the
differential equations, but

IG = Y AE + Y BU (31)

from (20) may be applied to find U at each time step by
knowledge of the previous IG and E:

U(t) = Y −1
B (IG(t− 1)− Y aE(t− 1)) (32)

C. Simulation
In this section the controller is tested with different

types of faults imposed on the system. None of these
faults are known beforehand. During the simulations,
Pmk is kept constant for all generators, and the tuning
parameters were in all four cases set to K1 = 70I and
K2 = 160I, where I is the 2×2 identity matrix. The
maximum current through the HVDC lines were set to
be 1.5 pu.
Case A: First the controller is tested with no model-

plant mismatch, and initial conditions outside the equi-
librium. The simulation results with and without con-
troller can be seen in Figure 2, and it shows that the
controller clearly dampens the oscillations in a satisfying
manner, and makes the system states converge.
Case B: Second, the controller is tested with the

system fault identified as Case III in [5]: Load 4 is
doubled for 100 ms at t = 0.5 s, while the controller
is based on the nominal load. Figure 3 shows simula-
tions with initial condition at the equilibrium, with and
without controller. Clearly the controller handles the
fault satisfyingly, by both decreasing the amplitude and
eliminating oscillations.
Case C: Next, a fault similar to that identified as case

II in [5] is introduced to the system. Here, line 4 has a
three phase to ground error at t = 0.5 which lasts for 130
ms. The simulation results with and without controller,
and with initial conditions at the equilibrium can be seen
in Figure 4. The open-loop system diverges, but also here
the controller performs well and stabilizes the system.
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Fig. 2: Simulation results with error from Case A: Initial
conditions outside the equilibrium.
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Fig. 3: Simulation results with error from Case B: Load
4 is doubled for 100 ms.

Case D: Last the controller was tested with a perma-
nent fault of 5% increase in the load at node 4 occuring
at t = 0.5 s. Since the fault is permanent the system’s
equilibrium is altered. This means that after t = 0.5 s,
not only is the controller based on the wrong system
model but it is also trying to control the system to a
state that is no longer its equilibrium.

Figure 5 shows the results from the simulations with
and without controller, and with initial conditions at
the equilibrium. It shows that the controller manages to
stabilize the system, however at an equilibrium different
than that of the non-faulty system.

D. Current through the HVDC lines
For all the examples given above, the value of IDC is

saturated due to the limitation on power transmission
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Fig. 4: Simulation results with error from Case C: Three
phase to ground error in line 4.
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Fig. 5: Simulation results with error from Case D: Per-
manent 5% increase in load 4.

capacity. If one were to simulate without these limita-
tions, one would see that the maximum value of IDC
is dominated by current peaks, often occurring during
steady state. These peaks can also be seen when studying
the input during simulations including saturation, but
naturally their amplitude is then equal to the saturation
limit. See for example Figure 6, which displays IDC for
Case B. It can be seen from Figure 3 that the system is
at steady state from t ≈ 0.8 s, and yet there are current
peaks in the control signals at t ≈ 1.12 s and t ≈ 1.28 s.

V. Discussion
When the faults imposed on the system only last

for a short while, and the amount of time where the
controller is based on the wrong system is relatively
short, the controller both increases transient stability and
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Fig. 6: IDC from simulations with the error from Case
B: Load 4 is doubled for 100 ms.

dampening of the system. This is because even though
the Lyapunov function may grow during the fault, it is
again guaranteed to sink from the time the fault has
passed, hence bringing the system back to steady state.

When relatively small permanent faults are present,
the controller brings the system to a new steady state.
The reason for this is that the controller does not include
integral control, resulting in a steady state error in η.
However, for our control objective it does not matter
where the equilibrium of η is.
There is no guarantee that the controller will increase

stability in the case of arbitrarily large permanent faults.
In order for the controller to handle larger permanent
faults, the model should be properly updated when loads
or network configuration change.

Due to the saturation in IDC , it sometimes tends to
rapidly shift between ±σ when stabilizing the system,
where σ is the saturation limit. Since there in real life
are limits on the current’s rate of change as well, these
instant shifts will rather be steep slopes limited by the
current’s maximum rate of change. How this will affect
the controller is not investigated in this paper.

The peaks occurring during steady state in IDC , seen
in Figure 6, arise due to singularities in Φ (η̄ + η0, t).
These singularities appears at arbitrary moments in time,
often during steady state, because of the changes in the
generator angles δk(t). This means that Assumption 1
does not hold for these short moments. The peaks do
not affect the system states when the system is at steady
state. However, when the systems’ equilibrium is altered
due to permanent faults, and it is at steady state outside
the origin, they lead to fluctuations from the equilibrium.

This is a significant problem with the presented con-
troller. Even with saturation, eliminating the high am-
plitude of these peaks, they still cause trouble especially
when there are permanent faults in the system. This is
therefore an issue that needs to be further addressed,
and is an important part of the further work that may
be done with regards to this controller.

A nice feature of the presented controller which is not
illustrated in the simulations, is that when IDC does
not reach saturation, only the part of the system that is
subjected to fault is affected by the controller. The reason
for this is simply that in the closed-loop dynamics, η̇1 and
ξ̇1 are functions of η1 and ξ1 and η̇2 and ξ̇2 are functions
of η2 and ξ2. This means that the rest of the systems stays
at steady state during a fault, while the “subsystem”
where the fault occurred deals with the stabilization.

VI. Conclusion
The controller presented in this article is proven to

asymptotically stabilize the system in theory, as long as
the controller is based on the correct system. Simulations
confirm that as long as the time the controller is based on
an incorrect system is limited, it increases the stability
of the system and brings it back to steady state.

It is also shown that during small permanent faults,
the controller increases stability, but brings the system to
a new equilibrium. However, it cannot necessarily handle
arbitrary large permanent changes in the system. To
address this issue the controller must work together with
a good model updater, so that the model is updated when
larger changes in loads or network configuration appears.

The main challenge of the presented controller is
however the restrictive nature of Assumption 1, and
the fact that the controller becomes singular for some
combinations of generator angles. These singularities in
the controller is an issue which must be resolved in
order for the controller to function in practice. Another
problem with Assumption 1 is of course that it confines
the configuration of the network it may be applied on,
demanding that the number of external variables ξ and
the number of HVDC lines are equal.
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[9] M. Krstić, I. Kanellakopoulos, and P. Kokotović, Nonlinear
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