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Non-angular MPC-based Thrust Allocation
Algorithm for Marine Vessels

- A Study of Optimal Thruster Commands
Stian Skjong, Eilif Pedersen

Abstract—In this work a thrust allocation algorithm for marine
vessels based on model predictive control theory (MPC) and a
non-angular vector formulation is presented and studied. The
main objective in this work is to highlight the potentials of
using an optimal thrust allocation algorithm including a time
horizon to reduce the power consumption as well as reducing
the environmental disturbances in the thruster commands. The
proposed thrust allocation algorithm is compared to a one-step
optimization algorithm in a benchmarking test. A one-step thrust
allocation algorithm is an optimization algorithm with a time
horizon that includes only one sample. When using a longer
time horizon in the proposed algorithm the thrust allocation has
the potential of optimizing rate limited states in the long run,
e.g. whether it would be beneficial to rotate a thruster or to
increase or decrease the commanded thrust when thruster biasing
is considered as an option. Preliminary case studies are presented
where different cost function weights and horizon lengths are
compared. The finite time horizon in the MPC thrust allocation
algorithm also makes it possible to affect the dynamics of the
optimized thruster signals since it can use the entire time horizon
to reach its objective. This is very important when considering
reducing the thrust rates when controlling a marine vessel in
Dynamic Positioning- (DP) operations since wave-filters never
succeed in filtering out all oscillatory environmental effects. Thus,
an optimal thrust allocation algorithm with well chosen cost
function weights, along with thruster biasing, would reduce the
magnified oscillations in the produced thrust, while keeping the
power consumption at a minimum, which has been devoted the
main focus in this work.

Index Terms—Thrust Allocation, Model Predictive Control,
Optimization, Optimization Horizon, Sampled Systems, Reduced
thrust oscillations

I. INTRODUCTION

IN marine offshore operations, proper control of marine
vessels and equipment are important both in order to

complete the task at hand at the same time as keeping the
costs at a minimum and maintaining a financial surplus. This
must be done within the requirements set by the customers in
order to maintain a good reputation such that new contracts can
be made easier. On the other hand, marine operations tend to
become more demanding, requiring higher precisions and spe-
cial qualifications at the same time as environmental footprints
have become more highlighted than before. Since every third
party vendor put a lot of effort into research and development
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of their products, the largest potential of improvements of
a vessel in specific operations is within system integration,
namely how the vessel’s equipment should be interfaced and
controlled in order to obtain the best performance possible.
One such important system integrator is the thrust allocation
algorithm, which connects and transforms the global com-
manded thrust signals from the Dynamic Positioning (DP)-
controller to the propulsion system.

A lot of work has been done regarding thrust allocation
for marine vessels, as well as in the aerospace industry. It
has been growing interests in formulating the thrust alloca-
tion problems as Model Predictive Control (MPC) problems
[1], thus, most often including thruster angles and absolute
thrust in the problem formulation. In general, an MPC is
an optimization based method for the feedback control of a
system. Model predictive control is also known as a moving
horizon control (MHC) and receding horizon control (RHC)
because it optimizes over a given time horizon, as will be
elaborated in section II, and is often used for controlling slow
dynamical systems [2]. A thorough survey of model predictive
control theory and practice is given in [3], and in [4] the
recent developments and future promises of MPC is discussed.
Hence, these topics will not be given much attention in this
work. For a thorough introduction to both linear and non-linear
MPC theory the reader is referred to [5] and [6], respectively.

A thrust allocation method with dynamic power consump-
tion modulation for diesel-electric ships is presented in [7].
This algorithm leads to a more stable loading of the power
plant for reduction in fuel consumption, in addition to reducing
wear of the power plant, in comparison to standard thrust
allocation algorithms. In [8] a robust control allocation for
over-actuated ships is considered and verified by experiments
with a model ship. Much attention is devoted to reducing
the load variations on the power plant through proper thrust
allocation designs using MPC in [9], where a thrust allocation
algorithm including fuel consumption characteristics is pre-
sented, and [10], where the thrust allocation algorithm includes
power management functionalities for reduction in frequency
and load variations on the electric network. Also, in the field
of aerospace, control allocation problems have been addressed
in [11], [12], and are similar to the thrust allocation problem
in the marine environment.

In general, the thrust allocation problem for a marine vessel
can be solved explicitly [13] for non-rotatable actuators, as
done in [14] and [15]. However, when considering rotatable
thrusters, the thrust allocation problem becomes implicit, and
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is often not convex when only allowing thruster angles to
have numerical values within certain regions [16]. However,
in [15] and [17] an explicit method for solving the thrust
allocation problem using rotatable thrusters and piecewise
linear functions is proposed and can be used in order to include
rotatable thrusters in one-step optimization problems as well.
In industrial thrust allocation algorithms, the use of one-step
optimization is prevalent. This, because of its simplicity as
well as being generally fast to solve, which is an important
requirement in real-time implementations.

In some applications the DP-controller is integrated into
the thrust allocation optimization problem, as done in [18], in
contrast to a stand-alone algorithm feeding the thrust allocation
algorithm with global thrust commands. Also, the fidelity of
DP-controllers span from model based control designs [19]
and DP-controllers including advanced filters [20], [21] to
simple PID-control based designs including rotational matrices
[22]. A thorough survey of DP-control systems is given in [23].

In the closed control loop, consisting of the available mea-
surements, the DP-controller, the thrust allocation algorithm
and the propulsion system, there is often a filter as well. This
filter takes the available position and orientation measurements
and tries to filter out the fastest oscillatory environmental
effects. Such filters could be based on system dynamics such as
Kalman filters [24] and non-linear passive observers [25], that
also include observer properties, or simple filters such as band-
pass, band-stop or low-pass filters. Although suited filters are
used, it is hard to filter out all the unwanted wave- and envi-
ronmental effects without introducing a significant phase-lag,
and these effects tend to be amplified through the DP-control
system if real care is not taken. Hence, filtering properties in
the thrust allocation algorithm are much appreciated.

In this work a non-angular MPC-based thrust allocation
algorithm framework for maritime surface vessels in DP-
operations, including an optimization horizon larger than the
one-step method, is proposed, tested and benchmarked against
a standard non-linear one-step thrust allocation algorithm. By
including an optimization horizon of proper length it will
be shown that the proposed thrust allocation algorithm can
obtain filtering properties that not only reduce oscillatory
environmental disturbances, but also maintain a low power
consumption while keeping the vessel in position. Because
of the new optimization problem formalism presented in this
work, that excludes thruster angles in the problem formulation,
the algorithm would also have good real-time properties even
though having a significant optimization horizon length that
increases the problem quadratically, as will be shown in
various simulation results presented in this article. In contrast
to the algorithms presented in the literature, the proposed
algorithm is simple to formulate while not being subject to
piecewise linearisation, multiple shooting strategies or addi-
tional functionalities for ensuring faster convergence, which
saves development time.

The proposed thrust allocation algorithm does not contain
any information about fuel consumption in the power plant, in
contrast to the already mentioned literatures. However, it takes
aim at reducing the thrust commands and the thrust command
oscillations in order to both smooth the power consumption

as well as keeping the loading of the power plant as low as
possible. This, because the consumed power is approximately
proportional to the generated thrust to the power of 3

2 , see
[18].

The main case study presented in this work, which includes
a high fidelity vessel model with all relevant auxiliary systems
as the one presented in [26], provides reasonable and realistic
results which is crucial when optimizing system integration
such as the interaction between the measurements, the filter,
the DP-controller, the thrust allocation algorithm and the local
thruster controllers, as done in this work, where the thrust
allocation algorithm is the main integrator between the dif-
ferent systems. Different key performance indicators (KPI’s)
such as total power consumption, position and orientation
errors, and power spectral density (PSD) analysis of the thrust
command outputs, are used to compare different sets of cost
function weights in the thrust allocation algorithm. This type
of thorough study is not very prevalent in the literature. Hence,
it has been devoted much attention in this work.

When working with non-linear MPC problems, often addi-
tional work must be put into assuring global convergence of
the optimization problem, such as adding soft constraints [27].
However, such soft constraints are not needed in the proposed
algorithm. A non-angular vector formulation contains the same
amount of information as an angle-amplitude formulation,
but the drawbacks are that the thrust angles and the thrust
amplitudes must be calculated from the vectors before being
fed to the propulsion system, and that the thrust rates and the
thrust constraints tend to become a bit conservative. However,
as will be shown in section II-D, calculating the thrust angles
and amplitudes are a simple and explicit procedure.

The reason for using an MPC-algorithm instead of a one-
step optimization algorithm is primarily to be able to work
with thrust rates since such algorithms often runs around 1Hz.
Then, it is possible to integrate the optimal rates outside
the thrust allocation algorithm in order to obtain smooth
thrust commands. When using a one-step algorithm, this is
much more difficult since the algorithm has only one sample
in the horizon before reaching the reference values, which
compromises reducing the rates. A longer optimization horizon
also enables planning of the thrust commands on a future time
horizon, in contrast to a one-step algorithm. This effect is
studied in a benchmarking test that compares the proposed
algorithm and a one-step algorithm in a simple DP-operation
case.

A. Structure of Article

This article is structured as follows: First, the proposed
thrust allocation algorithm is presented in section II before be-
ing benchmarked against a one-step thrust allocation algorithm
in a DP-operation simulation case in section III. Secondly,
simplified preliminary case studies including only the thrust
allocation algorithm are initiated in section IV in order to high-
light how the characteristics of the proposed thrust allocation
algorithm are affected by different cost function weights and
optimization horizon lengths. In the end, a main case study is
presented in section V and shows how different choices of cost
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Fig. 1. Sketch of solution from the thrust allocation algorithm where xd is
the desired thrust and x is the corresponding output from the thrust allocation
algorithm

function weights affect the overall performance of a vessel in
DP-operation excited by current and irregular sea states.

II. MPC-BASED THRUST ALLOCATION ALGORITHM

In general, solving optimization problems, such as MPC
problems, often tend to become computationally demanding
and the optimization problem is often implemented with
discrete dynamics and with a fixed number of samplings in
the horizon. Here, the number of steps in the horizon, K, is
given as

K = floor
(

T

∆tk

)
(1)

where T is the length of the time horizon treated in the
optimization and ∆tk is the length of each sample in the
horizon, as well as the time step between each optimization
solver call. Hence, the thrust optimization is performed with
a frequency fk = ∆t−1

k , outputting thrust rates that can be
integrated in between each optimization with a time step ∆t.
Fig. 1 gives an overview of how these time steps relate to each
other.

Before presenting the proposed thrust allocation algorithm,
a few definitions are needed. A thrust-vector representation is
to be used instead of the traditional amplitude-angle represen-
tation for rotatable thrusters in order to reduce non-linearities
in the optimization problem related to the thruster angles.

Fig. 2. Thrust from propulsor given
as both vector representation and
amplitude-angle representation

This means that each rotat-
able thruster can be repre-
sented by two thrust vec-
tors, Fx and Fy , as shown
in Fig. 2. These two thrust
vectors include the same
amount of information as
the traditional amplitude-
angle representation, given
as Fc and α, respectively,
in the figure. Relations be-
tween the amplitude-angle
based thrust representation
and the vector representa-
tion are given as

Fc =
√
F 2
x + F 2

y (2a)

α = arctan

(
Fy
Fx

)
(2b)

Fig. 3. Body-fixed reference frame of the vessel

Also, the sign convention for the thrust vectors are set accord-
ing to the body-fixed reference frame of the vessel, as shown
in Fig. 3. This means that a positive thrust in Fx moves the
ship forward and a positive thrust in Fy moves the ship to
starboard. For a thruster with fixed azimuth angle, such as a
bow thruster, the thrust amplitude is used along with the static
thrust angle, αs.

When having N number of thrusters, the global thrust
vectors in surge, sway and yaw, denoted as XN (tk), YN (tk)
and MzN (tk), respectively, for time step tk, can be calculated
as

XN (tk) =

N∑
i=1

Fix(tk) (3a)

YN (tk) =

N∑
i=1

Fiy(tk) (3b)

MzN (tk) = −
N∑
i=1

[Fix(tk)yi − Fiy(tk)xi] (3c)

where (xi, yi, zi) is the position of thruster i. For convenience,
these total thrust contributions are given in vector form for
time step tk as

x(tk) =
[
XN (tk), YN (tk), MzN (tk)

]>
(4)

and the corresponding desired thrust given by a potential DP-
controller is given as xd(tk). Note that the thrust command
is assumed constant during the whole horizon. This can be
argued for when having a DP-controller that provides the
desired thrust command, containing integration effects, in
combination with a small ∆tk. However, this assumption
should be verified through simulations.

A bounded variable f is said to be defined in the range
f ∈ [f, f ] such that

min(f) = f

max(f) = f
(5)

Also, the bound vector is defined as

f = [f, f ] (6)

An absolute value, Fc, of two thrust vectors Fx and Fy , as
in (2a), is said to be signed if it is negative when the thruster
is reversed and positive if not, and is denoted as F±c . Also
note that k ∈ [1, ..,K] is the sampling number of the MPC
horizon and is used as a place-holder for the time step k, tk,
such that [t0, t1, .., tk, .., tK ] and tK = T .



4

In the thrust allocation algorithm presented in this work,
physical limitations need to be addressed in the algorithm.
This is done through constraints in the optimization problem,
and is elaborated in the following.

A. Constraints
In an optimization problem, constraints are used in order

to assure that the optimal solution is realistic and possible
to implement in a realistic system. Often these physical
constraints are related to maximal values and rates, e.g. taking
into consideration the maximal capacity of the system and how
fast the system states are able to change.

Here, all constraints will be presented in continuous time
even though being implemented in discrete time in section
II-C. The thrust vectors are assumed to be represented as
states in the thrust allocation algorithm in order to include rate-
limitations and to be able to calculate new thrust commands in
between each optimization call, ∆tk. Hence, the thrust vectors
are expressed as

d

dt
Fx(t) = ux(t) (7a)

d

dt
Fy(t) = uy(t) (7b)

for a rotatable thruster, where ux and uy are control variables.
Note that these differential equations are not comparable to
the differential equations describing a thruster, it is only an
implementation for enabling rate limitations for the thrust
commands. If the thruster angle is fixed, only one control
variable is needed, u, and ux and uy can be calculated
from u and the static thruster angle αs. Then, the thrust rate
constraints for thruster i can be set as

uix ≤ uix(t) ≤ uix (8a)
uiy ≤ uiy(t) ≤ uiy (8b)

where [uix, uix] and [uiy, uiy] are the allowed regions for the
thrust vector rates. For rotatable thrusters the allowed regions
can be calculated in between each optimization, or simply
assumed given as

uix = uiy =
1√
2
uic (9)

and for fixed thrusters

uix = uic cos(αis) (10a)
uiy = uic sin(αis) (10b)

where [uic, uic] is the allowed thrust rate region for Fic.
Similarly, the maximal capacity constraint for thruster i can
be formulated as

Fix ≤ Fix(t) ≤ Fix (11a)

Fiy ≤ Fiy(t) ≤ Fiy (11b)

where [Fix, Fix] and [Fiy, Fiy] are the allowed thrust vector
regions in each direction. As for the thrust rates, the allowed
thrust regions for rotatable thrusters can be calculated in
between each optimization, or simply assumed given as

Fix = Fiy =
1√
2
Fic (12)

and for fixed thrusters

Fix = Fic cos(αis) (13a)

Fiy = Fic sin(αis) (13b)

where Fic = [Fic, Fic] is the allowed thrust region for
Fic. Note that the rate constraints and the maximal capacity
constraints in (9) and (12), respectively, are a bit conservative
for the rotatable thrusters. However, as will be seen in section
V, much focus will be given to reducing power consumption
and keeping the thruster rates as low as possible to avoid large
accelerations. Then, conservative rate constraints will have a
minor impact on the optimal solution.

When adding the turning rate constraint on each rotatable
thruster, e.g. d

dtαi, the orientation and the rate of the thrusters
are not directly part of the general vector representation.
However, the turning rate for thruster i can be calculated by
differentiating (2b). Thus,

α̇i(t) =
d

dt
arctan

(
Fiy(t)

Fix(t)

)
=
uiy(t)Fix(t)− uix(t)Fiy(t)

Fix(t)2 + Fiy(t)2

(14)

By defining the allowed angle rate region as [α̇i, α̇i] for a
thruster i, the rate constraints can be expressed as

uiy(t)Fix(t)− uix(t)Fiy(t) (15a)

≤ α̇i(t)(Fix(t)2 + Fiy(t)2),

α̇i(t)(Fix(t)2 + Fiy(t)2) (15b)
≤ uiy(t)Fix(t)− uix(t)Fiy(t)

The last constraints to be added are the initial conditions to
the differential states, namely the thrust vectors. Hence, for a
thruster i the initial conditions are given as constraints as

Fix(0) := Fix,0 (16a)
Fiy(0) := Fiy,0 (16b)

where Fix,0 and Fiy,0 are either the previously obtained states
or measurements. Along with constraints, cost functions are
added to reflect the chosen optimal thrust. These cost functions
are elaborated in the following.

B. Cost Functions

For such optimization problems as MPC’s, it would be
beneficial for the solving procedure if the cost functions are
convex. This can be obtained by using quadratic cost functions,
e.g. z>Qz, where z ∈ RN is a vector and Q ∈ RN×N is
a weighting matrix, typically diagonal. Also, in some cases
linear costs are added in order to improve convergence when
the variables in the cost functions become small. However,
this has not been deemed necessary here.

Since a time horizon with a fixed number of samplings
is used in the thrust allocation algorithm, two sets of cost
functions should be used; one intermediate cost function and
one end cost function. Typically, the end cost function would
represent the costs from the infinite time horizon that are
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Fig. 4. Biasing of main thrusters placed at the stern

neglected when assuming a finite time horizon, while the
intermediate cost function, in addition to representing the
main objective, would include costs that affect how the main
objective is obtained.

Starting with the main objective, the quadratic intermediate
cost function for time step k can be expressed as

[x(k)− xd(k)]
>
Qk [x(k)− xd(k)] (17)

where k is the sampling number, Qk ∈ R3×3 is a diagonal
weight matrix and x(k),xd(k) ∈ R3 are the global thrust vec-
tor and global demanded thrust vector, respectively. Similarly,
the end cost function can be expressed as

[x(T )− xd(T )]
>
QT [x(T )− xd(T )] (18)

where QT ∈ R3×3. Rate costs are assumed negligible in
the end cost function since all large accelerations and rates
are largest in the first samples in the time horizon and the
thrust commands from the DP-controller are assumed constant
during the whole time horizon.

In addition to the main objective cost function, rate costs
and magnitude costs are added to the thrust control variables
and the thrust vectors, respectively. Hence, the rate costs for
N number of thrusters for time step k are given as

u(k)>Quu(k) (19)

where u(k) ∈ R2N ,

u(k) =
[
u1x(k), u1y(k), ..., uNx(k), uNy(k)

]>
(20)

and Qu ∈ R2N×2N is a diagonal weight matrix. The magni-
tude costs are given similarly,

F (k)>QFF (k) (21)

where F (k) ∈ R2N ,

F (k) =
[
F1x(k), F1y(k), ..., FNx(k), FNy(k)

]>
(22)

and QF ∈ R2N×2N . In addition, if the ship has two main
thrusters placed at the stern, it would in some cases be of
interest to cancel them against each other or to store available
thrust in order to obtain a faster response, as shown in Fig 4,
and is often referred to as thruster biasing. Note that thruster
biasing is also used in some applications for singularity
avoidance, but this is not the case here. Thruster biasing can
be included in the optimization problem by changing the cost
function given in (21) to

[F (k)− δ(Xd(k))]>QF [F (k)− δ(Xd(k))] (23)

where δ(Xd(k)) ∈ R2N ,

δ(Xd(k)) =
[

0, δ1y(Xd(k)), ..., 0, δNy(Xd(k))
]>
(24)

and
δiy(Xd(k)) = |Xd(k)|ri arctan(αib) (25)

for the two main thrusters placed at the stern, where αib is the
biasing angle for thruster i and ri is the fraction of the total
maximal thrust in surge thruster i can provide.

The last intermediate cost function to be added is perhaps
the most important one after the main objective, namely a
cost function that makes thruster biasing optimal. By adding
such a cost function to the optimization problem, the total
thrust allocation algorithm has the ability to obtain the main
objective without accelerating or de-accelerating the thrusters
too fast. This would also benefit the goal of obtaining a smooth
power demand by the thrusters. This cost function is given as

u(k)>b(F (k))>QuF b(F (k))u(k) (26)

where b(F (k)) ∈ R2N×2N ,

b(F (k)) =


F1x(k)
F1c(k)+ε 0 · · · 0

0
F1y(k)
F1c(k)+ε · · · 0

...
...

. . . 0

0 0 0
FNy(k)
FNc(k)+ε

 (27)

and ε is a small number added in order to avoid dividing by
zero and Fic(k) is given similarly as in (2a),

Fic(k) =
√
Fix(k)2 + Fiy(k)2 (28)

One could perhaps argue for the fact that the cost function in
(19) and and the cost function in (26) are similar and can be
combined into one cost function. However, since the diagonal
terms in (27) scale the cost function weights, and since the
cost for the thrust rate uip is zero when Fip = 0, where p ∈
(x, y), the diagonal terms in (27) must then be updated to
ci +

Fip

Fic+ε where ci > 0 is a scaling parameter reflecting the
difference between Qu(i, i) and QuF (i, i). Hence, since there
does not exist any computational advantages of combining (19)
and (26), they are kept separated.

It is also possible to add cost functions for minimizing
thruster-thruster interactions for thrusters placed side by side,
meaning that if one thruster is facing the other it will reduce
the efficiency of that thruster since its wake will affect the
other thruster. This could for example be included as a function
of
∣∣∣Fiy

Fix

∣∣∣, since when Fiy becomes large in comparison to Fix,
the thruster angle is approaching a sway oriented direction.
However, such cost functions are not included here.

The total MPC formulation of the thrust allocation algorithm
is summarized and put together in the following.

C. Total MPC Formulation

The constraints and cost functions have been presented in
section II-A and II-B, respectively. The constraints have been
derived in continuous time and the cost functions have been
given for given time steps k, except for the end cost function in
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(18). By combining all the constraints and the cost functions,
the total MPC formulation of the thrust allocation problem can
be formulated as

min
u∈R

J(x,xd,u,F , δ(Xd), T ) (29a)

subject to ∀i ∈ [1, ..., N ] and ∀k ∈ [1, ...,K]

Fix(0) := Fix,0 (29b)
Fiy(0) := Fiy,0 (29c)
Fix(k) := Fix(k − 1) + uix(k)∆tk (29d)
Fiy(k) := Fiy(k − 1) + uiy(k)∆tk (29e)

gi(k) ≤ 0 (29f)
−gi(k) ≤ 0 (29g)

where the total cost function J(·) is given as

J(·) =

T−1∑
k=1

[x(k)− xd(k)]
>
Qk [x(k)− xd(k)]

+

T−1∑
k=1

u(k)>Quu(k)

+

T−1∑
k=1

[F (k)− δ(Xd(k))]>QF [F (k)− δ(Xd(k))]

+

T−1∑
k=1

u(k)>b(F (k))>QuF b(F (k))u(k)

+ [x(T )− xd(T )]
>
QT [x(T )− xd(T )]

(30)

and the inequality constraint vector function gi(k) is given as

gi(k) =


uix(k)− uix
uiy(k)− uiy
Fix(k)− Fix
Fiy(k)− Fiy

uiy(k)Fix(k)− uix(k)Fiy(k)− α̇iFic(k)


(31)

and ∆tk = t(k)− t(k− 1) is the time between two sampling
intervals. Note that (29d) and (29e) are the discrete implemen-
tations of (7a) and (7b), respectively. Also note that (29g) is a
restriction making sure that the lower bound of gi(k) is larger
than zero.

The outputs from the thrust allocation algorithm are F±ic
and αi for rotatable thrusters and Fic for fixed ones such
as tunnel thrusters. Since the thruster angles for the rotatable
thrusters are not directly included in the optimization problem
formulation, the angles, αi, need to be calculated afterwards
from the optimal MPC output. The same goes for the signed
thrust amplitudes F±ic . These calculations are elaborated in the
following.

D. Implementation

Usually, thrusters are controlled based on thruster angles
and signed thrust amplitudes. When using a thrust vector
representation to describe the thrust forces generated by each

thruster instead of thruster angles and signed thrust amplitudes,
some logics must be implemented in order to obtain the
desired control signals for the thrusters after the optimization
algorithm. In general, logics must be implemented in order
to count the number of rotations a thruster goes through, in
order to produce a continuous thruster angle signal, and logics
that determine whether the MPC rotates or reverses a given
thruster.

By using arctan 2(·) instead of arctan(·) in (2b), one can
count the number of rotations by comparing the previously
calculated thruster angle with the current one. This, in order to
assure that the angle commands do not contain discontinuities.
This procedure is summarized in Algorithm 1.

Algorithm 1 Counting thruster rotations
1: procedure ROTATIONCOUNT(·)
2: αi(t) = 2πni + πmi + arctan 2(Fiy(t), Fix(t))
3: if |αi(t)− αi(t− 1)| ≥ 2π then
4: if αi(t)− αi(t− 1) < 0 then
5: ni = ni + 1
6: else
7: ni = ni − 1

8: αi(t) = 2πni + πmi + arctan 2(Fiy(t), Fix(t))
return αi(t)

In the algorithm, ni is the rotation counter and mi is another
counter used for calculating whether the thrust allocation
algorithm rotates a thruster or reverses the corresponding
thrust. This can be evaluated after running Algorithm 1 since
the thruster angle signal doesn’t contain any discontinuities
related to the trigonometric function. Hence, the logics needed
to determine whether a thruster is rotated or reversed by the
MPC may be implemented as in Algorithm 2.

Algorithm 2 Rotating v.s. reversing thruster
1: procedure ROTATEORREVERSE(·)
2: αi(t) = 2πni + πmi + arctan 2(Fiy(t), Fix(t))
3: F±ic (t) = si

√
Fix(t)2 + Fiy(t)2

4: if |αi(t) − αi(t − 1)| > α̇i,max∆t and |F±ic (t)| ≤ ε
then

5: if |αi(t)| − |αi(t− 1)| < 0 then
6: mi = mi + 1
7: else
8: mi = mi − 1

9: si = −si
10: αi(t) = 2πni + πmi + arctan 2(Fiy(t), Fix(t))
11: F±ic (t) = si

√
Fix(t)2 + Fiy(t)2

return αi(t), F
±
ic (t)

In the algorithm, si is a sign variable, si ∈ [−1, 1], and ε
is a small number, ε > 0. In general, this algorithm checks if
the rate constraint for the thruster angle is violated, and if the
thrust magnitude is small, then the thruster has been reversed
according to the optimization algorithm.

The total thrust allocation algorithm including Algorithm 1
and 2 has been implemented in the C++ library ACADO [28]
and solved by the qpoases library [29].
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Even if the constraints and the cost functions are imple-
mented as in (29), the characteristics of the optimization
are not necessarily fixed. By tuning the weighting matrices
different characteristics of the optimized thruster commands
may be obtained, which will be shown in section IV and V.
Before analysing how the tuning affects the performance of
the proposed thrust allocation algorithm, the thrust allocation
algorithm is to be compared to a more standard thrust alloca-
tion algorithm in a benchmarking test.

III. BENCHMARKING

In order to test the proposed thrust allocation algorithm a
one-step algorithm, similar to the one presented in [16], is
to be used for comparison. The reason why this algorithm
is called a one-step algorithm is because the optimization
horizon consists of only one point. Here, the horizon time is
T=1 s, having only one sample. It might seem a bit unfair
to compare a one-step optimization algorithm to an MPC
algorithm, however, such one-step optimization algorithms are
often used in industrial applications and, hence, suited to be
used for comparison. It is expected that the proposed thrust
allocation algorithm will outperform the one-step algorithm
regarding reducing thrust rates and thruster angle rates, while
reducing the total power consumption. However, it is also
expected that the one-step algorithm will be faster than the
proposed algorithm. Hence, the total energy consumption for
the two algorithms, as well as the mean computational time,
are to be compared as two of the key-parameters in this study.

The one-step optimization thrust allocation algorithm used
for comparison is given as

min
F c,αc∈R

J(x,xd,∆α,F c,∆F c) (32a)

subject to

F ≤ F c ≤ F (32b)
∆F ≤ ∆F c ≤ ∆F (32c)

∆α ≤ ∆αc ≤ ∆α (32d)

where
J(·) = (x− xd)>Qe(x− xd) + ∆α>Q∆α∆α

+ F>c QFF c + ∆F>c Q∆F∆F c
(33)

and x is as defined in (4), xd is the corresponding reference
given by the DP-controller, ∆α is a vector containing the
thruster angle rates for the two thrusters placed at the stern
of the vessel, and is calculated as the difference between the
previous output of the algorithm and the current output of the
algorithm. F c is a vector containing the three thrust amplitudes
for the thrusters, ∆F c is the thrust amplitude rates for the three
thrusters, calculated the same way as the thruster angle rates,
F c, ∆F c and ∆αc are the limit vectors for the vectors F c,
∆F c and ∆αc, respectively. Qe is the cost matrix for the
error in global thrust, Q∆α is the cost matrix for the thruster
angle rates, QF is the cost matrix for the thrust amplitudes
and Q∆F is the cost matrix for the thrust amplitude rates.

To simulate the performance of the two thrust allocation
algorithms, the vessel model derived in [26] is to be utilized.
This vessel model is briefly presented in section III-A in order
to demonstrate the model fidelity.

TABLE I
MAIN PARAMETERS IN VESSEL MODEL

Parameter Description Value
L Length of ship 107m
B Width of ship 22m
D Draught of ship 5m
Pm,max Power saturation main thrusters 3.5MW
Pb,max Power saturation bow thruster 3.5MW
vcN Northward current -0.1m/s

A. Vessel Model

The vessel model contains a DP-controller, a wave filter
[25], current and simple hydrodynamics based on wave po-
tential theory, including second order mean drift forces and
irregular sea states [30], as well as thruster models. The
thruster configuration is the same as shown in Fig. 4, e.g.
two main thrusters symmetrically placed at the stern and one
tunnel thruster in the bow, and the produced thrust is assumed
measurable. Note that the main thrusters are rotatable and the
bow thruster is fixed and produces thrust only in the sway
direction. The main vessel parameters and thruster parameters
are given in TABLE I and II, respectively. Note that TABLE
II sets the restrictions in (32b)-(32d).

TABLE II
MAIN PARAMETERS DESCRIBING THE THRUSTER CONFIGURATION AS

GIVEN IN FIG. 4

Thruster Parameter Description Value
Main thruster i Thruster ID PS :1, SB: 2
port side (PS) (x, y) Thruster position [m] (−45,∓7)
and Fic Min. thrust force [N ] −1000000.0
starboard (SB) Fic Max. thrust force [N ] 1000000.0

uic Min. thrust rate [N
s
] −1000.0

uic Max. thrust rate [N
s
] 1000.0

α̇i Min. angular rate [
◦

s
] −10.0

α̇i Max. angular rate [
◦

s
] 10.0

αib Bias angle [◦] 0.0
Bow thruster i Thruster ID 3

(x, y) Thruster position [m] (53, 0)
Fic Min. thrust force [N ] −1000000.0
Fic Max. thrust force [N ] 1000000.0

uic Min. thrust rate [N
s
] −1000.0

uic Max. thrust rate [N
s
] 1000.0

The reader is referred to [26] for details regarding the vessel
model. A total overview of the simulation model is given in
Fig. 5. In the figure, ym refers to the measurement vector
including measurements of the vessel’s position and heading,
yfm is the filtered measurement vector, ẏfm is the rate of the
filtered measurement vector, yd is the vector of the desired
position and heading, ẏd is the corresponding rate vector, and
τi is the thrust output from thruster i. Note that the thrust
contributions from each thruster is transformed into global
thrust contributions,

τ g = H(α1, α2)τ (34)

where τ g ∈ R6 is the global thrust vector, H(·) ∈ R6×3 is
the thrust allocation matrix and τ = [τ1, τ2, τ3]>.

In order to compare the two different thrust allocation
algorithms a manoeuvring test is designed and is elaborated in
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Fig. 5. Simulation setup

TABLE III
COST FUNCTION WEIGHTS IN THE PROPOSED THRUST ALLOCATION

ALGORITHM AND THE ONE-STEP TRUST ALLOCATION ALGORITHM. (i, i)
DENOTES THE ENTIRE DIAGONAL OF THE MATRIX

MPC One-Step
Qk(i, i) 10.0 Qc(i, i) 100.0
QT (i, i) 100.0 - -
QuF (i, i) 1500.0 Q∆α(i, i) 50000000.0
QF (i, i) 1.0 QF (i, i) 0.01
Qu(i, i) 500.0 Q∆F (i, i) 1.0

the following, along with the choice of cost function weights
in the two thrust optimization formulations.

B. Simulation Setup and Tuning

Both the MPC thrust allocation algorithm and the one-
step thrust allocation algorithm are tuned to perform as good
as possible and to minimize both energy consumption and
large oscillations in the commands due to environmental
disturbances such as waves, while maintaining stability and
robustness. TABLE III shows a summary of all the cost func-
tion weights. Note that the MPC thrust allocation algorithm
is tuned a bit harder, having in general higher costs for the
produced thrust and the thrust rates, because it is more robust
due to the optimization horizon. Hence, it is expected that the
proposed thrust allocation algorithm would have an additional
advantages in this benchmarking test.

The environmental forces acting on the vessel in this sim-
ulation are the northward current and irregular waves, and
the main parameters describing these environmental forces
are given in TABLE IV. In the simulation, the vessel is

TABLE IV
ENVIRONMENTAL FORCES FROM IRREGULAR SEA STATE

Parameter Description Value
Hs Significant wave height 1.0m
Tp Wave peak period 8 s
Nw Number of wave components 50 -
γ Jonswap-spectrum parameter 3 -
Td Lower wave spectra period 0.2 s
Tu Upper wave spectra period 50 s

heading north, initially, and is to move 20m to the north
before changing the heading so that it faces east. Then, the
vessel is to move 20m to the east, before changing heading
facing south and moving 20m to the south. Afterwards, the
heading is changed to west before the vessel moves 10m to the
west. Lastly, the heading is changed such that the vessel faces
northwards before finally moving 10m to the north. Note that
filters are used to smooth the reference signals before being
fed to the DP-controller.

For the proposed algorithm, the integrator time step is set
as ∆t = 0.005 s, the optimization horizon time step is set as
∆tk = 1.0 s, and the horizon is set to T = 30 s, resulting in
30 samples in the horizon. The reason for setting the horizon
to 30 s is because of the rate limitations for the thruster angles.
The thrusters should at least be able to rotate 180 ◦ during the
horizon in order to have the possibility to either reverse the
thrust or to rotate the thrusters 180 ◦. Hence, with a maximal
angular rate of ±10.0 ◦/s the horizon could have been set to
T=18.0 s, but because of robustness reasons the horizon is set
larger. However, this will be studied in more detail in section
IV.

The optimization parts in the thrust allocation algorithms
are run every ∆tk seconds and only the results from the first
sample in the MPC algorithm, k = 1, in the horizon are used.
The simulation time is set to 4500 s, and the DP-control system
is initiated at t =30 s. The simulation results are shown in the
following subsection.

C. Simulation Results

Fig. 6 shows the vessel position and orientation for the
two cases. Note that the abbreviation OS is used for the
one-step thrust allocation algorithm. As can be seen in the
figure, the simulation results show that the vessel position and
orientation from the two cases converge, and it is not possible
to distinguish the cases from each other. This indicates that
both algorithms are equally good at keeping the vessel in
position. This can be verified in Fig. 7 which shows the
error between the commanded and the measured positions and
orientations. Also in this figure the simulation results seem to
converge, except for some small differences. The simulation
results also indicate the performance of the DP-controller,
which seems to be stable and able to add an appropriate
amount of damping to the vessel motion.

Closely related to the outputted thruster commands from
the thrust allocation algorithms are the power consumptions
from the thruster systems which are shown in Fig. 8. In
the figure, the upper two plots show the power consumption
for the two main thrusters, while the third plot shows the
power consumption for the bow thruster. The last plot shows
a comparison of the total power consumption of the entire
propulsion system for the two thrust allocation algorithms.

In the beginning and the end of the simulation, where the
vessel is to keep a stationary position and orientation, the
power consumptions seem to overlap, having a total power
consumption of about 16 kW . However, as the figure shows,
the power consumptions increase significantly when the vessel
is facing east or west. This has to do with the orientation of
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Fig. 7. Comparison of position and orientation errors for the two thrust al-
location algorithms. MPC denotes the MPC-based thrust allocation algorithm
while OS denotes the One-Step thrust allocation algorithm

the ship in comparison to the angle of attack for the waves
and the current forces. Hence, when the vessel is positioned
east-westwards, the environmental forces acting on the ship
grows significantly since the forces attack the heel of the
vessel. From the figure it is also possible to see that the power
consumption in this case for the two main thrusters are higher
for the one-step algorithm than for the proposed algorithm. For
main thruster 2, the maximal power consumption is 88 kW
for the one-step algorithm, while only 57 kW for the MPC
algorithm. In total, the maximal power consumption for the
one-step algorithm is about 414 kW , while 336 kW for the
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Fig. 8. Comparison of thruster power and total power consumption of thruster
system for the two thrust allocation algorithms

MPC algorithm. Hence, it is not surprising that the one-step
algorithm has a higher energy consumption than the MPC
algorithm, about 114.6 kWh in comparison to 104.3 kWh for
the MPC algorithm. This means that the one-step algorithm
consumes about 10 % more energy than the MPC algorithm in
this simulation case. Also, it seems like the oscillations in the
power consumption is slightly reduced in the MPC algorithm
in comparison to the one-step algorithm, which also can be
verified in Fig. 9.

Fig. 9 shows the comparison between the commanded thrust
references and the commanded thruster angles for the two
main thrusters. As can be seen in the figure, the two algorithms
output about the same thrust- and angle commands between
the start of the simulations and to about 800 s. After 800 s
the vessel starts moving eastwards and both algorithms rotate
both the main thrusters counter clockwise, while the produced
thrusts are increased significantly when the vessel is oriented
in an east-westward direction. This is repeated during the
entire manoeuvre. At 3000 s the one-step thrust allocation
algorithm decides to rotate main thruster 1 additionally 180 ◦

and to reverse the corresponding thrust in comparison to main
thruster 2 and the main thrusters in the MPC thrust allocation
algorithm. However, this is not done in one optimization step,
but over a time span of 300 s, which indicates that the resulting
commands from the one-step algorithm are not affected by
numerical errors due to a low number of allowed iterations,
or poor KKT-conditions. On the contrary, it is believed that
there exist multiple local optimal minima because of the
non-linearities in the one-step problem formulation, and thus,
a solving procedure including multiple shooting strategies
should be considered if such an algorithm is to be implemented
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in a realistic manner. However, these results do not affect the
total power consumption.

In the simulation time span t =3500 s to the end of
the simulation, the two thrust allocation algorithms output
about the same commands when taking into consideration
that the one-step algorithm has reversed main thruster 1 and
that the corresponding thrust command is mirrored. Another
interesting observation is that the thrusters in the MPC-case
rotates in total 360 ◦ during the simulation, and thus follows
the rotation of the vessel. This illustrates the smoothness
of operation of the MPC algorithm. It can also be seen in
the figure that both the thruster angle commands and the
thrust commands are oscillating less in the MPC algorithm
in comparison to the one-step algorithm.

In summary, this benchmarking test has shown that the
proposed algorithm has the potential to outperform the one-
step algorithm, both when it comes to reduced energy con-
sumption and reduced oscillations in the thrust- and thruster
angle commands. When it comes to computational speed, it
is of no surprise that the one-step algorithm is faster than the
MPC algorithm. The mean computational time for the one-
step algorithm in this benchmarking test is 0.385ms while the
mean computational time for the MPC algorithm is 10.56ms.
This means that the one-step algorithm is about 27.4 times
faster than the MPC algorithm in this case. However, when
having in mind that the horizon of the MPC algorithm is 30
times larger than in the one-step algorithm, the resulting mean
computational speed for the MPC algorithm is fast, and since
the optimization in the MPC algorithm is initiated only every
second, the total algorithm is about 94.7 times faster than real-
time. The main results are summarized in TABLE V.

TABLE V
SIMULATION RESULTS FROM BENCHMARKING TEST

KPI OS MPC
Maximal power consumption 414 kW 336 kW
Energy consumption 114.6 kWh 104.3 kWh
Mean computational time 0.385ms 10.56ms

In the last part of this article the MPC algorithm is to be
studied further with respect to built-in filtering properties. Be-
fore testing the algorithm with different cost function weights
in a realistic simulation case, some preliminary tests are
performed in order to map the different properties regarding
tuning of cost function weights and the length of optimization
horizon.

IV. PRELIMINARY CASE STUDIES

In the preliminary case studies, a response test is to be
applied to the thrust allocation algorithm. The reference signal,
xd, from a potential DP-controller, only contains a surge thrust
reference, meaning that Yd = Mzd = 0.0. The surge thrust
reference that is fed to the thrust allocation algorithm consists
of a ramp-up and a ramp-down, as well as a step-up and a step-
down. Also, the simulation settings and the thrust allocation
algorithm time steps are set as in the benchmarking test.
The same thruster configuration as used in the benchmarking
test, as shown in Fig. 4, is to be used. The main parameters
describing the thruster configuration are the same as listed in
TABLE II, except that now the thruster biasing angle is set to
±20 ◦.

It is expected that the tuning of the cost function weights
would have a significant impact on the performance of the
proposed algorithm. Hence, as a result of proper tuning, it is
expected that the proposed algorithm can be tuned such that
thrust rates and thruster angle rates are reduced in order to
decrease wearing of the propulsion system. When it comes to
optimization horizon lengths, the length should be at least long
enough for the algorithm to be able to consider whether it is
optimal to rotate a thruster or to reverse the corresponding
thrust. In this case it means that the optimization horizon
should be at least T = 18 s because of the angle rate lim-
itations. Hence, it is expected that the main advantage by
increasing the horizon even further is gained robustness.

The first preliminary case study treats the cost function
weights and is elaborated in the following.

A. Cost Function Weights

Three different sets of weighting matrices are to be tested
and compared for an optimization horizon of 30 s. Only
changes in four of the weighting matrices are considered,
namely Qk, QuF , QF and Qu. The weights for the three
tuning cases are set as in TABLE VI. Note that case 3 has
the same weights as used in the benchmarking test and that
all entries in the weighting matrices that are not given in
the table are set to zero. The results from the three different
cases are compared in Fig. 10 and 11, showing the thrust
allocation algorithm output commands and the first horizons
in the simulations, respectively.
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TABLE VI
WEIGHTING MATRICES IN DIFFERENT CASES. (i, i) DENOTES THE ENTIRE

DIAGONAL OF THE MATRIX

Weight Case 1 Case 2 Case 3
Qk(i, i) 100.0 100.0 10.0
QT (i, i) 100.0 100.0 100.0
QuF (2, 2) 10.0 500.0 1500.0
QuF (4, 4) 10.0 500.0 1500.0
QF (i, i) 0.1 0.1 1.0
Qu(i, i) 10.0 20.0 500.0
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for the three different cases. Note that α1’s are plotted in the upper part of
the plot (↑), and that α2’s are plotted below (↓)

The first plot in Fig. 10 shows that the three different cases
more or less overlap the reference, Xd, except for case 3 which
is slightly lower. This has to do with the reduction in the cost
function weights Qk in comparison to the two other cases.
However, since a DP-control law with integral effect is used,
this will not result in bad performance, which has already been
established in the benchmarking test. The second plot in Fig.
10 shows the characteristics of the optimized thrust commands,
F1c and F2c, for the three different cases. As expected, the first
case produces the fastest thrust commands, while the second
case produces the slowest. The third plot in the figure shows
that when the thrust rates decrease, the thruster angles must
compensate for that. It is clear from the plot that case two
allows more thruster biasing than the two other cases.

The results for the port-side main thruster from the first
solved horizon in each case are compared in Fig. 11. As can
be seen in the figure, all the thrust magnitudes from the three
cases seem to converge during the time horizon. However,
some significant differences between the cases can be seen.
The first case seems to focus more on reaching a desired
thrust before starting to increase the angle in comparison to
the two other cases. It can also be seen that the thrust rate
in the first case is much higher than in the two other cases,
causing the thrust magnitude to reach its desired value faster
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Fig. 11. Comparison of the first solved time horizon for port-side main
thruster for the three cases

than in the two other cases. When it comes to computational
speeds, case 1 is fastest having a mean computational speed
of 5.68ms for each optimization step. Secondly, case 3 had
a mean computational speed of 9.08ms for each optimization
step, while case 2 was the slowest one with a speed of 10.4ms.

The results from this preliminary case study show that by
increasing the cost function weights QuF and Qu thruster
biasing is becoming optimal and reduces the maximal thrust
rates. This would be an important property when considering
reducing wear of the total propulsion system and the power
plant, as well as the amount of consumed energy, which is
studied in section V. In the next preliminary case study two
different optimization horizon lengths are compared.

B. Length of Horizon

In section III-B it was stated that the optimization horizon
should be at least 18 s in order to allow the algorithm to
determine whether to rotate a thruster or to reverse the
corresponding thrust if the thruster could rotate with a maximal
angular rate of 10 ◦/s. However, for robustness reasons, the
optimization horizon was set to 30 s. In this preliminary case
study, both these two lengths of optimization horizons are
tested and compared with the cost function weights for case 1
in TABLE VI. The results from the two different optimization
horizons are compared in Fig. 12 and 13, showing the thrust
allocation algorithm output commands and the first horizons
in the simulations, respectively.

As can be seen in Fig. 12, both global thrust commands
overlaps the thrust reference. Also, in the second plot it is hard
to distinguish the thruster commands from the two different
optimization horizon lengths. However, some difference can be
seen in the thruster angles. The thruster angles in the case with
a horizon of 30 s seem to be slightly larger in magnitude in
the peaks. Nevertheless, from these results it can be concluded
that the two different horizons perform equally in this case.
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The results for the port-side main thruster from the first
solved horizon in each case are compared in Fig. 13. As
can be seen in the figure, the results show that the two
different optimization horizons overlap in the beginning of the
simulation, but the case with the shortest horizon converges
faster due to the shorter horizon. Also, the thruster angles
seem to be slightly larger in the case with the longest horizon,
as was also the case in Fig. 12. When it comes to computa-
tional speed, the thrust allocation algorithm with the shortest
horizon had a mean computational speed of 1.65ms for each
optimization step, while the other case had a computational
speed of 5.68ms.

In summary, the results show that an optimization horizon of
18 s seems to perform equally good as an optimization horizon
of 30 s, mostly due to the maximal allowed angular rates, but
also being about 3.4 times faster. However, since the thrust
allocation algorithm with an optimization horizon of 30 s is
much faster than real-time, this horizon is considered in the
rest of the work due to robustness reasons, giving the algorithm
even more time to consider rotating or reversing a thruster.

Based on the results obtained in these preliminary case
studies, a case study showing the effect of using different
cost function weights with respect to reduced oscillations
in thruster commands and power consumption in a vessel
manoeuvring operation is to be performed.

V. MAIN CASE STUDY

The results from the benchmarking case in section III and
the preliminary case studies in section IV indicate that even
though the implementation of the proposed thrust allocation
algorithm is fixed, the characteristics of the algorithm can be
tailored by tuning the cost function weights. When keeping a
vessel in dynamic positioning operations, the wave filter plays
an important role in reducing the power consumption, as well
as wearing of the power systems, during the operation. This,
through filtering out the small wave contributions that keeps
the vessel oscillating around its set-position and to catch the
drift effects and the slowly varying forces.

Although a wave filter is included and tuned as best, it is
impossible to filter out all small oscillatory wave contributions.
These contributions are given as input to the DP-controller
which tries to compensate for them. This was also the case
in the benchmarking test, which showed that even though a
wave filter was used, there still was oscillations in the thruster
commands, and, hence, the power consumption. However, it is
believed that by tuning the thrust allocation algorithm properly,
one could obtain an optimal solution with respect to the goal
at hand, namely that the thruster angles compensate for these
contributions instead of varying the thrust amplitudes. This
will be the topic in this case study.

A. Simulation Setup

The generic offshore vessel model presented in [26] is to be
used for testing the three different tuning cases of the thrust
allocation algorithm also in this case. The main parameters
describing the vessel model and the environmental forces are
the same as in the benchmarking test and are given in TABLE
II and IV, respectively.

In these simulations, the vessel is to follow a zig-zag
trajectory, as shown in Fig. 14. Initially, the vessel is to keep its
position at (0, 0) in North-East coordinates with the bow facing
north, before slowly moving 20m to the north. Following,
the vessel changes heading to face east before moving 20m
eastwards. Afterwards, the vessel changes the heading back
to due north before moving additionally 20m northwards.
When the new position has been reached, the vessel changes
heading to face west, before moving 40m westwards. Again,
the vessel changes the heading back to due north before
moving additionally 20m to the north. Following, the heading
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Fig. 14. North-East plot including heading. The thick black vessel outline
denotes the initial position and orientation of the vessel

of the vessel is changed to again face east before moving 20m
eastwards. Finally, the vessel changes heading back to due
north before moving to the final position 20m northwards. It
is expected that this manoeuvring will stress test the algorithm
and the wave filter such that different effects can be reflected
in the simulation results as well as ensuring robustness for the
proposed algorithm. The simulation results are presented in
the following.

B. Simulation Results

Before presenting the diverging simulation results from the
three different tuning cases, the converging simulation results
are given. These results include the position and the orientation
of the vessel, the global thrust commands compared to the
global optimal thrust commands from the thrust allocation
algorithm, and the filtered measurements from the wave filter.
For the sake of order, the data in the following figures have
been obtained from the first tuning case.

Fig. 14 presents the position and the heading of the vessel
in a north-east plot including the heading of the ship for
given time steps. As can be seen in the figure, the vessel
seems to keep its position and heading quite well in addition
to follow the new position commands. These observations
are verified by Fig. 15 which compares the measurements
(m) to the commands (d) and the filtered measurements (f ).
The results in this figure also indicate that the wave filter
works well in filtering out most of the fastest oscillatory
effects from the waves, as can be seen in the magnified
plots to the right in the figure. The same can be concluded
when looking at the filtered position rates and the heading
rate compared to the corresponding measurements in Fig. 16,
although there still are some oscillations present in the filtered
states. These oscillations will be fed to the DP-controller and
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cause additionally oscillations in the power consumption if not
being suppressed by the thrust allocation algorithm.

In Fig. 17 the output from the DP-controller is compared
with the corresponding output from the thrust allocation algo-
rithm. As can be seen in the figure, the global thrust signals, x,
converge to the commanded global thrust signals, xd, except
for when the commanded rate magnitudes become too high as
can be seen in the comparison between Yd and Y3. However,
the thrust allocation algorithm seems to handle such limitations
as it is supposed to.

Even though the commanded global thrust from the DP-
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controller and the corresponding global thrust from the thrust
allocation algorithm overlap in the three cases, the optimal
thruster commands and the thruster angle commands are
different. Fig. 18, 19 and 20 show these results for case 1,
case 2 and case 3, as given in TABLE VI, respectively.

For case 1, Fig. 18 shows that the thruster angles have fast
oscillations with small maximal amplitudes of about 5 ◦, in
addition to slower oscillations with an amplitude of about 10 ◦,
when the waves and current encounter the vessel’s heel. Also,
the main thrusters oscillate with a thrust amplitude of about
3.5 kN as well when the vessel is oriented east-westwards.
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Fig. 19. Thrust commands and angle commands compared to measured thrusts
and angles for case 2. Note that the small plots to the right in the figure shows
a magnified region of the plots to the left

The thruster angles seem to follow their biasing angles quite
good except for when a vessel position change is initiated or
when the vessel is parallel with the wave beam. Since the bow
thruster is fixed, the thrust command signal seems to oscillate
quite a bit as well having an amplitude of about 5 kN . As will
be seen later on, the results from the bow thruster can also be
improved by tuning the thrust allocation algorithm properly,
even though there is no controllable thruster angle to work
with.

Fig. 19 shows the corresponding results from case 2. As can
be seen in the figure, the fastest oscillations in the thruster
references are decreased to about 2.5 kN in magnitude, a
reduction of about 30 % compared to the results from case
1. However, the amplitude of the oscillations in the thruster
angles are quite different in this case in comparison to case 1.
In the beginning of the simulation the amplitude is increased
from about 1 ◦ to about 7.5 ◦ when compared to the first
case. When the vessel is oriented east-westwards the picture
is different. The amplitude of the fastest oscillations in the
thruster angles are decreased to about 4 ◦ while the amplitude
of the slowest oscillations are increased to about 15 ◦. It is also
possible to see that thruster biasing is more accepted in this
cases when looking at the peak in the thruster angle command
α2 around t = 3500 s. The figure also shows that the fastest
oscillations in the thruster commands for the bow thruster are
reduced to about 3.5 kN .

The results from case 3 are given in Fig. 20. The results
show that the oscillations in the thrust are decreased even
more, to about 1 kN in amplitude, a reduction of about 70 %
in comparison to the results from case 1. Also the oscillations
in the thrust angles are decreased in the entire simulation, to
about 1 ◦ in the beginning of the simulation as well as for the
fastest oscillations when the vessel is oriented east-westwards,
while the maximal amplitude of the slowest oscillations is
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decreased to about 2 ◦. The reason for this is that the weights
in QuF and Qu are increased significantly in comparison
to the error weights in Qk and QT . This means that the
thrust allocation algorithm allows more error than in the two
previous cases. However, the errors that are allowed are only
due to the small oscillations, meaning that the chosen weight
combination in the thrust allocation algorithm works more or
less as a low pass filter without phase differences. This error is
completely fine since the integrator in the DP-controller makes
sure that the vessel doesn’t experience a drift-off due to this
error.

When it comes to the fastest oscillations in the bow thruster
commands, the maximal amplitude is reduced even more to
about 2 kN , which lead to a smoother power consumption, as
can be seen in Fig. 21. In case 1 the total power consumption
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was about 200.9 kWh, and the increase of consumed power
in case 2 and 3 were 1.3 % and 0.1 %, respectively. Also, it
can be seen that the noise in consumed power is significantly
reduced in the third case in comparison to the two others. This
means that the extra fuel cost for tuning the thrust allocation
algorithm to filter out environmental disturbances that have
not been suppressed by the wave filter is negligible.

The results regarding the filtering properties for the thrust
allocation algorithm are summarized in Fig. 22, showing a
comparison of the power spectral density of the commanded
thrust force and orientation of thruster 1. As the figure indi-
cates, the fastest thrust oscillations are largest in simulation
case 1 while the fastest thruster angle oscillations are largest
in simulation case 2. However, the slowest oscillations in
the thrust commands are largest in case 3 while the slowest
thruster angle oscillations are largest in case 2. This means
that case 1 and case 3 is better at compensating for the slowly
varying environmental disturbances while case 2 filter out as
much as possible by using the thruster angles. In summary
these results show that the set of cost function weights used
in case 3 would be the most preferred ones since it reduces
the fastest oscillations in the thruster commands as well as in
the power consumption, while being able to compensate for
slowly varying environmental disturbances. This, in addition
to keeping the total energy consumption at a minimum. The
simulation results from this case study, as well as from the
benchmarking test and the preliminary case studies, also argue
for the use of thruster biasing in order to reduce wearing
of the systems, even though it increases the total energy
consumption.

The mean computational speeds in these simulations are
given as 9.06ms, 16.37ms and 15.60ms for case 1, 2 and 3,
respectively. Even though case 2 is the slowest one, it is still
about 61 times faster than real-time.



16

VI. CONCLUSION

In this work a proposed non-angular MPC-based thrust
allocation algorithm has been presented and tested. The reason
for formulating the optimization problem in thrust vectors
instead of thrust amplitudes and angles, was to reduce non-
linearities in the thrust allocation problem in order to make the
thrust allocation algorithm fast solvable, at least in real-time,
which was accomplished.

The proposed thrust allocation algorithm was benchmarked
against a commonly used one-step thrust allocation algorithm,
and the results showed that the proposed thrust allocation
algorithm outperforms the one-step algorithm, both when it
comes to total energy consumption as well as reducing oscil-
lations in the thrust commands and thruster angle commands.
Even though the one-step algorithm was 24.7 times faster
than the MPC algorithm, the MPC algorithm had a real-
time index (RTI) of about 94.7 in the benchmarking case.
The benchmarking test also showed that the proposed thrust
allocation algorithm worked smoothly when the commanded
thruster angles increased, which indicates that the calculation
procedures in Algorithm 1 and 2 work properly.

Three sets of rather coarse cost function weights were cho-
sen in order to test the thrust allocation algorithm and to show
different optimization strategies in the first preliminary case
study. The sets of weights were then tested on a vessel model
in order to see if the differences in weights affected the overall
goal of keeping the vessel in position while reducing thrust
oscillations, due to fast wave effects that could not be filtered
out with the wave filter, by using thruster biasing and actively
compensate for these fast oscillations with the thruster angles.
The results showed that even though the weighting matrices
were different, the position and orientation of the vessel were
maintained. Also, the tuning of the proposed algorithm af-
fected the total energy consumption of the propulsion system.
It would be interesting in further work to include a power
plant in the simulation, as the one presented in [31] which
includes specific fuel consumption data, in order to include
the power plant efficiency and to see how the tuning of the
thrust allocation algorithm affects the total fuel consumption.
Also, it should be mentioned that in the case study there are
situations where the thruster angles approach orientations of
±90 ◦. In reality, such orientations would cause hydrodynamic
thruster-thruster interactions, decreasing the efficiency of the
main thruster affected by the wake of the other main thruster.
However, such effects are not included in the vessel model, nor
have restrictions for this been included in the thrust allocation
algorithm, although it has been mentioned. This is left out for
future works.

Even though the energy consumption increased negligibly
from case 1 to case 3, the results also showed that thrust
oscillations and thrust rates were decreased significantly from
case 1 to 3. This points to the fact that the thrust allocation
algorithm can be tuned such that wearing of the propulsion
system and power plant can be reduced due to unfiltered
environmental effects in the DP-controller commands.
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