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Abstract

In this paper we present an approach for scaling up Bayesian learning using
variational methods by exploiting distributed computing clusters managed by
modern big data processing tools like Apache Spark or Apache Flink, which
efficiently support iterative map-reduce operations. Our approach is defined as
a distributed projected natural gradient ascent algorithm, has excellent con-
vergence properties, and covers a wide range of conjugate exponential family
models. We evaluate the proposed algorithm on three real-world datasets from
different domains (the Pubmed abstracts dataset, a GPS trajectory dataset, and
a financial dataset) and using several models (LDA, factor analysis, mixture of
Gaussians and linear regression models). Our approach compares favourably to
stochastic variational inference and streaming variational Bayes, two of the main
current proposals for scaling up variational methods. For the scalability analysis,
we evaluate our approach over a network with more than one billion nodes and
approx. 75% latent variables using a computer cluster with 128 processing units
(AWS). The proposed methods are released as part of an open-source toolbox
for scalable probabilistic machine learning (http://www.amidsttoolbox.com)
Masegosa et al. (2017).

Keywords: Probabilistic Graphical Models, Conjugate Exponential Family,
Scalable Bayesian learning, Variational inference, Apache Flink

1. Introduction

The development of computing hardware was one of the key factors driving
the spread of the Bayesian statistics (Bernardo & Smith, 2006). The advent of
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Monte Carlo methods and powerful computing units made the application of
Bayesian inference feasible in a wide range of fields (Doucet et al., 2001; Chen5

et al., 2012). Recently, the emergence of large datasets raised a new challenge
for Bayesian statistics because the previously proposed (approximate) methods
were hardly able to deal with datasets involving hundred of thousands or mil-
lions of data samples (Hoffman et al., 2013). One of the main lines of research
for scaling up Bayesian inference has been based on the combination of vari-10

ational approaches and stochastic approximation theory (Sato, 2001; Hoffman
et al., 2013; Foulds et al., 2013; Khan et al., 2015), while other approaches have
also proposed the use of parallel computing architectures as a way to scale up
Bayesian inference (Broderick et al., 2013).

Big data processing technologies have quickly evolved over the last years15

(Hashem et al., 2015). Most of these technologies provide a simple API which al-
lows, using few lines of code, to easily manage, process, and query large datasets
by seamlessly controlling a large number of distributed computing units based
on commodity hardware (Carbone et al., 2015; Meng et al., 2016). They are
built using sophisticated memory management schemes to cache the data in the20

main memory of the computing units, which greatly speeds up the iterative pro-
cessing of the data. Apache Spark2 and Apache Flink3 are probably the most
well-known of these big data processing tools.

In this paper we exploit these recent advances in big data processing on dis-
tributed computing clusters to define a novel distributed and scalable variational25

inference scheme. More precisely, our approach is built on a novel interpretation
of an existing variational inference approach for conjugate exponential models,
the so-called variational message passing (VMP) algorithm (Winn & Bishop,
2005), which is shown to behave as a projected natural gradient ascent algo-
rithm (Hoffman et al., 2013; Luo & Tseng, 1993). Using this interpretation of30

VMP, we propose two alternative distributed schemes with different convergence
properties. We empirically evaluate our approach on different latent variable
models (LDA, Factor Analysis, Mixture of Gaussians and Linear Regression)
over different real-world datasets (Pubmed abstracts, GPS trajectory, and real-
world financial dataset). We compare our results with stochastic variational35

inference (SVI) (Hoffman et al., 2013), and streaming variational Bayes (SVB)
(Broderick et al., 2013) and we show that our methods converge quicker and
to better solutions than these alternatives. We analyze the scalability of our
approach using a model with more than one billion nodes (and approximately
75% latent variables) running on a computer cluster with 128 processing units.40

Contributions: We present a novel approach for scaling up variational
methods, enabling the methods to exploit modern distributed computing tech-
nologies. For this purpose, we cast VMP as a projected natural gradient ascent
algorithm, which gives a theoretical and practical foundation for the paralleliza-
tion of variational methods over general conjugate exponential family models.45

2http://spark.apache.org
3https://flink.apache.org
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When compared to SVI and SVB, we find that our approach scales better and
provides superior solutions, is defined for a broader class of models, and has
the ability to produce important quantities like the posterior over all latent
variables and the full evidence lower bound. The proposed methods are re-
leased as part of an open-source toolbox for scalable probabilistic machine learn-50

ing (http://www.amidsttoolbox.com) (Masegosa et al., 2017, 2016a; Cabañas
et al., 2016).

2. Preliminaries

2.1. Models

In this paper, we focus on conjugate exponential Bayesian network models55

for performing Bayesian learning on iid. data. To simplify the presentation
and discussion in the paper, we shall focus on model structures of the form
shown in Figure 1, although the proposed algorithm also applies to more general
types of models; we shall return to this issue at the end of this section. The
model in Figure 1 includes observable variables X = X1:N , a vector θ = θ1:M60

of global hidden variables (or parameters), a vector of local hidden variables
H = H1:N , and a vector of fixed parameters denoted by α. Note that Xi and
Hi are themselves collections of variables. We shall use D = d1:N to denote the
available data, i.e., the observed values of X.

With the conditional distributions in the model belonging to the exponential65

family, we have that all distributions are of the following form

ln p(X|pa(X)) = lnhX + ηpX(pa(X))TsX(X)−AX(ηpX(pa(X))), (1)

where pa(X) denotes the parents of X in the directed acyclic graph of the in-
duced Bayesian network model. The scalar functions hX and AX(·) are the
base measure and the log-normalizer, respectively; the vector functions ηpX(·)
and sX(·) are the natural parameters and the sufficient statistics vectors, re-70

spectively. The subscript X means that the associated functional forms may be
different for the different factors of the model, but we may remove the subscript
when clear from the context. Similarly, we will sometimes omit the superscript
p when it is clear which distribution the natural parameters ηX belong to.

By also requiring that the distributions are conjugate, we have that the75

posterior distribution for each variable in the model has the same functional
form as its prior distribution. Consequently, learning (i.e. conditioning the
model on observations) only changes the values of the parameters of the model
rather than the functional form of the distributions. This can be achieved by
expressing the functional form of p(X|pa(X)) in terms of the sufficient statistics80

sZ(Z) of any of the parents Z ∈ pa(X) of X:

ln p(X|pa(X)) = lnhZ + ηXZ(X, coZ(X))TsZ(Z)

− AZ(ηXZ(X, coZ(X))), (2)

where coZ(X) denotes the coparents of Z with respect to X, i.e., coZ(X) =
pa(X) \ {Z}.
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Xi Hi

θα

i = 1, . . . , N

Figure 1: A plate model representation of the probabilistic models covered by d-VMP.

2.2. Variational message passing

Variational Message Passing (VMP) is an algorithm for performing vari-
ational inference over general models belonging to the conjugate exponential
family (Winn & Bishop, 2005). Variational inference is a deterministic technique
for finding a tractable posterior distribution, denoted by q, which approximates
the Bayesian posterior, p(θ,H|D), that is often intractable to compute. More
specifically, by letting Q be a set of possible approximations of this posterior,
variational inference solves the following optimization problem for any model in
the conjugate exponential family:

min
q(θ,H)∈Q

KL(q(θ,H)|p(θ,H|D)), (3)

where KL denotes the Kullback-Leibler divergence between two probability dis-85

tributions.
In the mean field variational approach the approximation family Q is as-

sumed to fully factorize:

q(θ,H) =

M∏
k=1

q(θk)

N∏
i=1

J∏
j=1

q(Hi,j), (4)

where J is the number of local hidden variables, which is assumed fixed for all
i = 1, . . . , N . For a conjugate exponential model, each of the components q(θk)
will belong to the same exponential family as the prior p(θk|pa(θk)); the same
holds true for the local variables Hi,j . We can therefore represent the variational90

posteriors by their natural parameter vectors, which are denoted by ηθk . Again,
subscripts will be removed when clear from the context.

Under the same framework, we also consider generalized mean-field approx-
imations (Winn & Bishop, 2005), where some parameters may be grouped to-
gether in a new multidimensional parameter vector with the aim of capturing95

richer variational posteriors at the expense of having a more complex variational
family. For the sake of simplicity, we will treat this multidimensional param-
eters as a single parameter. The assumption is that expectations under this
multidimensional distributions can also be computed in closed form.

4



To solve the minimization problem in Equation (3), the variational approach
exploits the transformation

lnP (D) = L(q(θ,H)) + KL(q(θ,H)|p(θ,H|D)).

Note that L(·) is a lower bound of lnP (D), since KL(·, ·) is always non-negative.100

As the factor lnP (D) is constant w.r.t. to q, minimizing the KL term is equiv-
alent to maximizing this lower bound. Variational methods maximize the lower
bound by applying a coordinate ascent approach that iteratively updates the in-
dividual variational distributions while holding the others fixed (Winn & Bishop,
2005).105

Updating a variational distribution essentially involves calculating the vari-
ational expectation of the logarithm of the original conditional distributions of
the model. VMP exploits the fact that this operation can be done efficiently and
in closed form when the distributions involved are conjugate-exponential (Beal,
2003). Moreover, the operations can be done locally, which means that updat-
ing the variational distributions of a variable X only involves variables in the
Markov blanket of X:

ηqX = Eq(η
p
X(pa(X))) +

∑
Y ∈ch(X)

Eq(η
p
XY (Y, coX(Y ))), (5)

where Eq denotes the expectation wrt. q.
The natural parameter vectors ηpX and ηpXY are multi-linear functions wrt.

the natural statistics vectors of the variables on which they depend (Winn
& Bishop, 2005). This means that Eq(η

q
X(pa(X))) = ηqX(Eq(pa(X))) and

Eq(η
p
XY (Y, coX(Y ))) = ηXY [Eq(Y ), Eq(coX(Y ))], and due to the mean-field110

approximation we can calculate the required expectations independently for
each of the sufficient statistics vectors involved. With a slight abuse of notation
we can therefore rewrite Equation (5) as

ηqX = ηpX({Eq(s(Z))|Z ∈ pa(X)})

+
∑

Y ∈ch(X)

ηpXY ({Eq(s(Y ))} ∪ {Eq(s(Z))|Z ∈ coX(Y )}). (6)

From this expression, the coordinate ascent algorithm can be formulated as a
message passing scheme. The message sent from a parent node X to a child115

node Y is the expectation of the natural statistics vector of X wrt. q, and the
message from a child Y to a parent X is based on the messages Y has received
from the co-parents of X:

mX→Y = Eq(s(X)) (7)

mY→X = ηpXY ({Eq(s(Y ))} ∪ {Eq(s(Z))|Z ∈ coX(Y )}). (8)

Based on the messages specified above, we see that once X has received
messages from all its neighbors, its updated variational distribution is given by

ηqX = ηpX({mZ→X |Z ∈ pa(X)}) +
∑

Y ∈ch(X)

mY→X ; (9)
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the implied expectations can be calculated based on the equality EqX (s(X)) =
∇ηX

AX(ηX) (Casella & Berger, 2001).120

2.3. Big data frameworks and iterative algorithms

In this paper, we assume the data to be analyzed is placed on a distributed
computing cluster managed by a big data framework. A big data framework con-
sists of a set of tools to implement and execute complex algorithms in parallel on
a cluster of networked machines. The data is stored in a distributed fashion, for125

which big data frameworks provide an abstraction layer which relieves program-
mers from having to manage the parallel execution of their algorithms on the
clusters, including fault-handling of the individual machines. The MapReduce
framework (Dean & Ghemawat, 2008) (as, e.g., implemented in the open-source
software Hadoop) was the first and most well-known of these frameworks.130

In recent years a new generation of big data frameworks has emerged aiming
at addressing some of the deficiencies of these initial frameworks. One the them
is the inefficient coverage given by MapReduce/Hadoop to iterative algorithms.
These kinds of algorithms, quite common in the field of machine learning and
data mining, have to repeatedly process (iterate) over the whole dataset, ap-135

plying one or more functions until a convergence criterion is met (Chu et al.,
2007). With MapReduce/Hadoop, the data has to be loaded from the hard disk
to main memory at each iteration, a process which is one of the main bottlenecks
of a computing cluster.

New big data frameworks, such as Spark (Zaharia et al., 2010) or Flink140

(Alexandrov et al., 2014), address this problem by implementing different caching
strategies, which allow the data to be kept on the slaves’ main memory during
different iterations. This has shown to provide an increase in performance of
several orders of magnitude (Meng et al., 2015).

3. Related work145

Stochastic approximation theory (Robbins & Monro, 1951; Kushner & Yin,
1997) has been one of the main tools employed for scaling variational inference
algorithms (Welling & Teh, 2011; Foulds et al., 2013; Khan et al., 2015) over
the last few years, with the Stochastic Variational Inference (SVI) algorithm
(Hoffman et al., 2013) being the most prominent approach. Roughly speaking,150

the following steps are made in a sequential manner after initializing the pa-
rameters: First, a small batch of data is subsampled from the original dataset,
and the variational problem is then solved given the data-batch and using the
latest version of the parameters. Thereafter, the parameters are updated using
a closed form equation; exactly how to do the update has attracted considerable155

research effort (Duchi et al., 2011; Mandt & Blei, 2014; Khan et al., 2015). The
updated parameters are used for solving the variational optimization problem
as the next iteration is run with a new batch of data.

A key assumption for the SVI algorithm’s efficiency is that each batch of
data gives an unbiased albeit noisy estimate of the true gradient of the objec-160

tive function. While this is necessarily true when the data for a batch is selected
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randomly, the algorithm is a poor fit when the dataset contains rare (but rele-
vant) subpopulations which may be completely underrepresented in the sampled
mini-batches, as shown by Masegosa et al. (2016b).

Another of SVI’s limitations is its restrictive assumption regarding the model
family. SVI assumes that models are in the conjugate exponential family and
have complete conjugate conditionals (Hoffman et al., 2013). This model family
is less general than the one covered by our approach (see Section 2.1). We can
accommodate models with arbitrarily complex dependency structures among
the local hidden variables, the observed nodes, and the global parameters. Ob-
servable nodes can also have missing values. As an example, the model presented
in (Borchani et al., 2015b) (a dynamic classification model with a global hidden
variable on top of the predictive variables) fits within our model family, but not
within the family supported by SVI, as the global parameters of the dynamic
model do not fully factorize into univariate normal-(inverse-)gamma distribu-
tions. Another relevant limitation is that SVI cannot work with full mean field
variational posteriors, as SVI assumes that the variational approximation family
only factorizes at the local level,

q(θ,H) = q(θ)
∏
i

q(Hi), (10)

which prevents the use of SVI with models with a large number of global param-165

eters (e.g. a linear regression model with many regressor variables implies that
p(θ) follows a multivariate normal-Wishart distribution, which is quadratic in
the number of covariates). In addition to this, SVI does not estimate all the local
hidden variables of the model (e.g. for customer data, they would contain cus-
tomer specific insights), nor does it generate the full evidence lower bound that170

can be useful, e.g., for model comparison tasks or for monitoring convergence.
Broderick et al. (2013) envisions an alternative approach, which tries to

exploit multiple computing units for parallel processing, the so-called Streaming
Variational Bayes (SVB) method. It is based on a straightforward adaptation
of Bayes theorem,

p(θ,H|D[1], . . . ,D[m]) ∝
p(θ,H [1]|D[1])

p(θ,H [1])
· · ·

p(θ,H [m]|D[m])

p(θ,H [m])
p(θ,H), (11)

where D[k] and H [k] refers to the distributed data stored at the k-th slave of
the cluster and their corresponding local hidden variables, respectively.

The above expression shows that the global Bayesian posterior, p(θ,H|D[1],
. . . ,D[m]), can be built by independently combining the local posteriors, p(θ,
H [h]|D[k]). The SVB approach is based on building local variational approxima-
tions qLocal,[k](θ,H [k]) to the exact (intractable) local posteriors p(θ,H [k]|D[k])
and, then, combining them following Equation (11) to obtain a global approx-
imate posterior, qGlobal(θ,H). When the model is conjugate exponential, the
quotient operations of Equation (11) can be computed in closed form as the
difference between the respective natural parameters. Hence, this combination

7



rule can be easily implemented as follows,

ηqGlobal = ηpprior +

m∑
k=1

(ηqLocal,[k] − η
p
prior). (12)

But, unless the local variational approximations provide an exact approxima-
tion, i.e., KL(qLocal,[k], p) = 0, the SVB approach does not yield an optimal
variational solution,

qGlobal 6= min
q(θ,H)∈Q

KL(q(θ,H)|p(θ,H|D)). (13)

Furthermore, SVB does not even guarantee convergence to a stationary point
of the lower bound function, unlike SVI. In addition to this, Campbell & How175

(2014) point out that the SVB approach could eventually give rise to new subtle
problems when combining the local posteriors due to parameter unidentifiability
issues.

4. Distributed optimization of the lower bound

In this section, we show how we can perform distributed optimization of the180

lower bound function L using the same kind of messages as in regular VMP, but
with a changed scheduling of these messages.

VMP optimizes the function L using the coordinate ascent method. For the
kind of models we are considering (see Section 2.1), the lower bound function
L decomposes as follows:

L(q(θ), q(H)) = Lθ(q(θ)) +
∑
n

Ln(q(Hn), q(θ)),

where Lθ(q(θ)) = Eq(ln p(θ))−
∑
k Eq(ln q(θk)) and Ln = Eq(ln p(dn,Hn|θ))−

Eq(ln q(Hn)).
The optimization of the L function can be partly distributed by exploiting

the fact that messages to the local variables in Hn do not depend on messages
from other local variables Hn′ for n 6= n′ and, consequently, if we keep q(θ)
fixed we can maximize in parallel each of the Ln functions. In other words, the
solution of the maximization problem

q(t+1)(H) = arg max
q(H)

L(q(H), q(t)(θ)) (14)

decomposes into the following independent maximization problems, which can
be solved in parallel,

q(t+1)(Hn) = arg max
q(Hn)

Ln(q(Hn), q(t)(θ)). (15)

If we consider Figure 2, which shows an unfolded model of the probabilistic185

models covered by d-VMP in a cluster with 3 slaves, the above procedure would
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Master

θα

X

H

θ1

i = 1, . . . , N

Slave 1

X

H

θ2

i = 1, . . . , N

Slave 2

X

H

θ3

i = 1, . . . , N

Slave 3

Figure 2: An unfolded model of the probabilistic models covered by d-VMP in a cluster with
3 slaves.

entail that the master node broadcasts to the slave nodes the current posterior
over the global parameters q(t)(θ). Each slave then solves in parallel the local
optimization problem of Equation (15) using VMP by keeping fixed its local
copy of the posterior over the global parameters q(t)(θ) and sending messages190

between the local hidden variables until convergence of the local lower bound,
Ln, for data samples dn locally stored at the slave.

The next step in the coordinate ascent method is

q(t+1)(θ) = arg max
q(θ)
L(q(t)(H), q(θ)). (16)

This step could, at first glance, be solved as follows: after solving Equation (15)
each slave computes the local messages from Hn and dn to θ and sends them
back to the master node. The master node then collects all the messages from195

the slaves and proceeds with the updating of the global parameters θ.
For the SVI’s model family (see Equation (10)), it is assumed that Equation

(16) can be solved in closed form because it employs a generalized mean-field
approximation that does not factorize over the global parameters. This gives
rise to a straightforward distributed algorithm4. Unfortunately, this last step is200

not immediately applicable for the general kinds of models we are considering.
The difficulty is that the global parameters may be directly coupled through the
VMP updating rules (see Equation (9)) and they can therefore not be updated
independently of each other; recall that two variables are coupled if they appear
in each others’ Markov blankets.205

4This approach was briefly discussed in Hoffman et al. (2013), page 1314.
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Example 1. Consider the following data generating model, y(i) ∼ N (β0 +∑n
j=1 βjx

(i)
j , γ), where βj ∼ N (0, 1) and γ ∼ Γ(1, 1), and a full mean-field

variational approximation. The variational posterior over βj is computed using
the messages coming from its children, i.e

ηqβj
= ηpprior +

∑
i

my(i)→βj
.

The message my(i)→βj
depends on the co-parents of y with respect to βj, i.e,

it depends on the moment parameters of the variational posteriors of q(γ) and
q(βk), k 6= j (see Equation (9)). This means that all the variational poste-
riors for βi cannot be updated independently and in parallel, because each of
these posteriors would try to accommodate the observations and, in effect, could210

potentially over-compensate and fail to converge.

We can overcome the above difficulty by only making joint updates of subsets
of decoupled global parameters. More specifically, we propose to partition the
global parameters θ into R (non-disjoint) sets, denoted by P = {I1, . . . , IR}, so
that if θi, θj ∈ Is then θj 6∈ mb(θi), where mb(·) denotes the Markov blanket of215

a node. Clearly, this condition does not define a unique partitioning as one may
start by assigning each parameter to its own partition, i.e., P = {{θ}|θ ∈ θ},
and then generate other partitionings by merging subsets whose union is also
admissible. As we shall see later, for the sake of computational efficiency we
generally seek to keep R as small as possible.220

Example 2. For the model given in Example 1, we have n+2 global parameters,
one for each βj coefficient (including β0) and another one for γ. For this model
there are n + 2 partitions, because all global parameters belong to each other’s
Markov blanket, i.e. R = n+ 2 and |Ij | = 1, ∀j ∈ {1, . . . , R}.

Equivalently, the messages to a parameter θi ∈ Is are only independent of225

the posterior q over the other parameters θj ∈ Is, for j 6= i. Hence, when
Is = θ \ Is,

q
(t+1)
Is = arg max

qIs

L(q
(t)
H , qIs , q

(t)

Is
), (17)

i.e. we do not jointly update global parameters belonging to the same Markov
blanket.

This approach leads to the distributed optimization method in Algorithm 1,230

which we call naive d-VMP. The shortcoming of this algorithm is that we need
to iterate over all parameter partitions in P and, before updating the posterior
over the global parameters in each partition, we need to recompute the posterior
over the local hidden variables. In the next section, we show how we can skip the
outer-most loop over the different partitions of the global variables in Algorithm235

1.
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Naive d-VMP
Initialize q(θ) and q(H);
do

for s = 1, . . . , R do
for Hn ∈H do in parallel

do
for each: Hn,j ∈ Hn do

Update q(Hn,j) using Equation (9);
end

until LHn converges;
Send messages to the Master node.

end
Collect messages at the Master node.
for each: θ ∈ Is do

Update q(θ) using Equation (9);
end

end

until L converges;

Algorithm 1: Naive d-VMP algorithm.

5. Distributed VMP (d-VMP)

5.1. VMP as a projected natural gradient ascent algorithm

In this section we extend the analysis carried out by Sato (2001); Hoffman
et al. (2013) to general conjugate exponential models and show how the message240

passing scheme of VMP can be interpreted as a projected natural gradient ascent
algorithm (Luo & Tseng, 1993). For any variable X in the model, the lower
bound L with respect to q(X) can be expressed as

L(q(X)) = Eq(ln p(X|pa(X)))− Eq(ln q(X))

+
∑

Y ∈ch(X)

Eq(ln p(Y |X, coX(Y )) + const.

Using the conjugacy properties of the exponential models and the equality
Eq(s(X)) = ∇ηX

AX(ηX), we can rewrite the above equation in terms of ηX ,245

the natural parameters of q(X):

L(ηX) = Eq(η
p
X(pa(X)))∇ηX

AX − ηTX∇ηX
AX +AX

+
∑

Y ∈ch(X)

Eq(η
p
XY (Y, coX(Y )))T∇ηX

AX + const. (18)

where AX implicitly takes ηX as argument. We can now derive the gradient of
L with respect to ηX based on Equation (9):

∇ηX
L = ∇2

ηX
A

T

X(ηX)
(
ηpX({mZ→X |Z ∈ pa(X)}) +

∑
Y ∈ch(X)

mY→X − ηX
)
. (19)

As pointed out by Sato (2001), Equation (19) can be used to compute the
natural gradient of L, denoted ∇̂L, by premultiplying the gradient of L by the

11



inverse of the Fisher information matrix of q(X), denoted by G(ηX) (which acts
as a Riemannian metric over the parameter space of the statistical model),

∇̂ηX
L(ηX)

.
= G(ηX)−1∇ηX

L(ηX).

For the exponential family, this Fisher information matrix corresponds to the
Hessian of the log-normalizer, G(ηX) = ∇2

ηX
AX(ηX). Consequently, the natu-250

ral gradient of L can simply be computed as

∇̂ηX
L = ηpX({mZ→X |Z ∈ pa(X)}) +

∑
Y ∈ch(X)

mY→X − ηX . (20)

In light of the above equation, VMP can be seen as a gradient ascent method
moving in orthogonal directions across the natural gradient with steps of length
one,

η
(t+1)
X = η

(t)
X + ∇̂ηX

L(η(t)) = ηpX({m(t)
Z→X |Z ∈ pa(X)}) +

∑
Y ∈ch(X)

m
(t)
Y→X .

The above updating scheme corresponds to a projected natural gradient ascent
algorithm (Luo & Tseng, 1993) by restating the above equation as follows,

η
(t+1)
X = η

(t)
X + ρX,t[∇̂ηL(η(t))]+X (21)

where, abusing notation, [·]+X denotes the orthogonal projection onto the coor-
dinates of the natural parameters ηX , and ρX,t denotes the sequence of learning255

rates for the coordinate X.
In the case of VMP, ρX,t is always equal to 1. This can be seen by combining

Equations (20) and (21) while fixing ρX,t = 1. With this operation we get the
VMP updating equation detailed in Equation (5). In this sense, ρX,t = 1 is an
optimal value because in every step we reach the maximum of L over the X260

coordinate. Iterating over all the coordinates guarantees the convergence of the
projected gradient ascent algorithm of Equation (21) to a stationary point of
the function L (Luo & Tseng, 1993).

5.2. d-VMP as a distributed projected natural gradient ascent algorithm

In light of the above derivation, we present a new distributed optimization265

algorithm (d-VMP), detailed in Algorithm 2, that is expressed as a projected
natural gradient ascent algorithm performing parallel block coordinate updates
(Luo & Tseng, 1993). These parallel block coordinate updates address the
aforementioned global parameters coupling problem (cf. Section 4), which we
previously solved by independently updating the non-coupled global parame-270

ters. Intuitively, this new method groups in a single block all coupled global
parameters to perform safe distributed updates. As a result we have a gradient
ascent algorithm where the learning rates are no longer known to have optimal
values at 1, but rather need to be adjusted. We have employed a simple back-
tracking line search method (Boyd & Vandenberghe, 2004) for automatically275

fixing the learning rates.
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Distributed VMP
Initialize q(θ) and q(H);
do

for Hn ∈ H do in parallel
do

for each: Hn,j ∈ Hn do
Update q(Hn,j) using Equation (9);

end

until LHn converges;

end
Collect and combine messages at the master node.
for k = 1 . . . S do in parallel

Compute η
(t+1)
Jk

following Equation (22).

end

until L converges;

Algorithm 2: The d-VMP algorithm.

The d-VMP algorithm starts by defining a disjoint partitioning of the global
parameters, denoted by T = {J1, . . . ,JS}, by using the following condition:

Definition 1. If the variational distribution over θi and θj factorizes and θi
belongs to the Markov blanket of θj in the probabilistic model (i.e. θi ∈ mb(θj))280

then θi and θj belong to the same set Jk 5.

Note that this partitioning is unique (except for the trivial re-labelling of the
sets Jk). Note also that for the SVI’s models (see Equation (10)) there is a single
q(θ) distribution covering all the global parameters, hence for those models our
approach simplifies to a partitioning with a single set covering all the global285

parameters. The cardinality of this set is equal to one because, as we pointed
out in Section 2.2, we assume there is a single multidimensional parameter (i.e.
defined as the Cartesian product of all the individual global parameters).

Example 3. For the model examined in Examples 1 and 2, all the global param-
eters defining the conditional distribution between the predictive variable and the290

regressors belong to each other’s Markov blanket (they are all parents of the same
y(j) nodes). Thus, we have one partition including n + 2 parameters (the re-
gression coefficients, the intercept, and the variance). In addition, we also have
the parameters defining the univariate Gaussian distributions of the regressors,
which leads to n additional partitions, each including two parameters, one for295

the mean and one for the variance of the Gaussian distribution. In conclusion,
we have S = n+ 1 partitions, one of size n+ 2, while the others are of size 2.

Other models have different partitions. For example, a factor analysis model
(see Section 6.1) with k hidden factors and n observable variables would have
S = k + n partitions. The first k partitions contain the parameters defining the300

Gaussian probability density for each of the hidden factors, and therefore hold 2

5Note that if θi ∈ mb(θj) then θj ∈ mb(θi). Also note that if θi ∈ mb(θz) and θj ∈ mb(θz),
then θi and θj belong to the same partition Jk even though θi /∈ mb(θj).
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Model S |Ji| Model S |Ji|
Linear Regression n+ 1 {2, n+ 2} Factor analysis n+ k {2, k + 2}
LDA Z {1} Mix. of Gaussians k · n+ 1 {2, 1}

Table 1: Number and size of the partitions for some latent variable models with n number of
observable variables, k hidden variables for the Factor Analyzer, Z topics for the LDA and k
mixutures components for the Mixture of Gaussian model. See Example 3 for more details.

parameters (mean and variance). The other n partitions contain the parameters
defining the conditional probability of each observable variable given the hidden
factors. Hence, each of these partitions contains k + 2 parameters (the k + 1
β-coefficients and the variance). Table 1 gives the number and the size of the305

partitions for some latent variable models.

Definition 1 has a direct implication on the functional form of the gradient of
L. To formally define this implication we introduce the following notation: given
a partition T , we denote by ηJl

the natural parameters defining the variational
posteriors over the global parameters θk included in Jl.310

Lemma 1. Given a partition T satisfying Definition 1, we have that for any
two natural parameters ηi ∈ ηJk

and ηj ∈ ηJl
with k 6= l, the corresponding

Hessian entry of L is always zero, i.e. ∀η ∂2L
∂ηi∂ηj

(η) = 0.

Proof. The result derives from the observation that when θi and θj belong to
different partitions, then the variational posterior over θi and θj factorizes and315

θj does not belong to the Markov blanket of θi. In consequence, as shown in
Equation (18), the functional terms of L(ηθi) depending of ηθj are absorbed in
the constant term.

According to Lemma 1, the functional form of the gradient of L with respect
to the natural parameters in ηJk

does not depend on the natural parameters in320

any other partition ηJl
with l 6= k.

Given a parameter partition T , the d-VMP algorithm presented as Algo-
rithm 2 follows immediately from the equations in Section 5.1. At the Master
node we now iterate over all the partitions in T following the updating scheme of
the projected gradient ascent method (see Equation (21)) (Luo & Tseng, 1993)325

with block updates. More precisely, for each Jk ∈ T ,

η
(t+1)
Jk

= η
(t)
Jk

+ ρk,t[ÔηL(η(t))]+Jk
. (22)

However, while the block updates are performed sequentially in the original
projected gradient descent algorithm, they are now performed in parallel (see the
last for-loop in Algorithm 2). The following result ensures that block projected
gradients can be computed in parallel, simply because they do not depend on330

each other:
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Theorem 1. Let T be a partitioning satisfying Definition 1. Under the updating
scheme given by Equation (22) in Algorithm 2, it holds that

[∇ηL(η
(t)
J1
, . . . , η

(t)
Jk
, . . . , η

(t)
JS

)]+Jk
= [∇ηL(η

(t+1)
J1

, . . . , η
(t)
Jk
, . . . , η

(t+1)
JS

)]+Jk
.

Proof. The equality follows directly from the conditions given in Lemma 1,
which states that the functional form of the partial derivatives of the natural
parameters associated to one partition does not depend of the natural parame-
ters associated to any of the other partitions.335

There are also some special cases where the learning rates can be safely fixed
before-hand, and do not need any tuning:

Theorem 2. Let T be a partitioning satisfying the conditions of Definition 1,
and where the cardinality of each partitions is equal to 1, i.e. ∀k |Jk| = 1. Then,
fixing ρk,t = 1 guarantees that Algorithm 2 converges to a stationary point of L.340

Proof. To prove this result it suffices to prove that each iteration of the algo-
rithm results in an increase of L. This is achieved by iteratively solving the
maximization steps detailed in Equation (14) and Equation (16). The maxi-
mization step of Equation (14) is correctly solved in the parallel for-loop by
exploiting the decomposition given in Equation (15). The maximization step of
Equation (16) can be alternatively expressed as

arg max
ηJ1

,...,ηJS

L(ηJ1
, . . . , ηJS

, ηH), (23)

where ηH refers to the natural parameters of the variational posterior over the
local hidden variables H. Due to the Lemma 1, the maximization problem in
Equation (23) decomposes into independent maximization problems,

arg max
ηJk

L(ηJ1 , . . . , ηJS
, ηH). (24)

This follows because the functional form of the partial derivative with respect
to natural parameters in ηJk

does not depend of the other natural parameters.
Because the partitions Jk only contain a single global parameter, the maximiza-
tion problem of Equation (24) can be solved in closed form when performing
the updating step given in Equation (21) with a step size of length 1.345

Notice that the above case applies to all the models covered by the SVI algo-
rithm. Note also that in the above case d-VMP and naive-dVMP are identical,
as stated formally below:

Theorem 3. Let T be a partitioning satisfying the conditions given in Defi-
nition 1, and assume that the cardinality of each partitions is equal to 1, i.e.350

∀k |Jk| = 1. Then, the naive d-VMP algorithm (Algorithm 1) and the d-VMP
algorithm (Algorithm 2) are identical.
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Proof. It follows from the assumptions of Theorem 3 and from Definition 1 that
all the global parameters have empty Markov blankets (excluding the global
parameter itself). In consequence, there is a single partitioning P = {I1} for355

the naive d-VMP algorithm, where I1 covers all the global parameters, and
consequently R = 1. Additionally, due to Theorem 2 the updating equation of
the naive d-VMP algorithm in Equation (9) is equal to the updating equation
of the d-VMP algorithm in Equation (22) when ∀k |Jk| = 1.

6. Experiments360

In this section, we evaluate and compare d-VMP using three datasets coming
from different domains and using four different probabilistic models. The goals
of the experiments are to determine how well the models represent new data
as measured by the likelihood of an unseen test dataset, and to evaluate how
quickly the different methods optimize the L function. Details on the evaluation365

are given in Section 6.2. Our experiments are divided into several parts. First,
we compare d-VMP to naive d-VMP and SVB with models that cannot be
learnt using SVI, unless intractable variational posteriors are used (see Section
3). Next, we choose models that can be handled by SVI. As commented in the
previous section, for these models there are no differences between d-VMP and370

naive d-VMP, and so the comparison is made between d-VMP, SVI, and SVB.
Finally, we investigate the scalability of the approach in a distributed setting
by performing inference in a model with more than 109 nodes.

6.1. Experimental settings

We use three different real-life datasets in our experiments coming from three375

different domains:
Financial dataset: Our original financial dataset contains millions of

records of financial operations from millions of clients collected over several
years at the BCC financial group6. Due to confidentiality reasons, we only have
direct access to a representative sub-sample of 55.000 clients. The dataset con-380

tains 33 features that describe the financial status of the clients, see (Borchani
et al., 2015b,a) for further details. Each of the clients is additionally labeled
as defaulter or non-defaulter depending of whether the client defaulted in one
of her/his debts during the last two years. As expected, the dataset is highly
imbalanced, that is, the percentage of defaulting clients is significantly smaller385

than that of non-defaulting ones. Additionally, the distributions of most of
the attributes are zero-inflated, multi-modal, and typically have from 30 to 90
percent missing values.

GPS-trajectories dataset: The GPS trajectory dataset (Zheng et al.,
2008, 2009, 2010) consists of a set of 17, 621 trajectories, each of which is repre-390

sented by a sequence of time-stamped points with information about latitude,

6https://www.bcc.es/
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longitude (we have omitted altitude), and day of the week for 182 users over a
period of about 5 years. In total, it involves more than 4.5 million GPS mea-
surements. We preprocessed this dataset with the aim of defining trajectories
covering a set of GPS measurements. More precisely, we sampled 1 out of ev-395

ery 10 GPS measurements and defined trajectories as tuples of 25 subsamples
measurements. In that way, every instance in the preprocessed dataset is a tra-
jectory covering a group of 25 consecutive GPS measurements coming from the
same user.

NSF Research Awards Abstracts: This dataset contains a text collec-400

tion, in a bag-of-words representation, of abstracts describing NSF awards for
basic research over the period from 1990 to 2003. There are more than 128
thousand documents/abstracts, 30799 words in the vocabulary and more than
10 million words in total (Lichman, 2013).

For evaluating the d-VMP algorithm on the three datasets above, we use405

four different probabilistic models. The models vary slightly from dataset to
dataset, to better accommodate their different characteristics; the most expres-
sive representative from each model class is shown in Figure 3. This graphical
description is given in terms of plate notation. In the four models all attributes
are continuous variables modeled with Gaussian distributions.410

Linear regression (LR): We tested this model on the financial and GPS
datasets. In this model, we set the “total credit amount” as the dependent
variable Y for the the financial dataset. For the GPS dataset, the dependent
variable is the longitude coordinate of the last GPS measurement of the trajec-
tory defined by the instance. In both cases, there is a clear correlation between415

the dependent variables and the rest of the attributes. In this case, the mean
field approximation consists of a set of univariate Gaussian distributions for the
regressor coefficients and a Gamma distribution for modeling the variance of
the dependent variable. In the financial dataset, the unrolled model contains
more than 1.2 million nodes, of which more than 0.7 million are latent7 due to420

the high percentage of missing data. The unrolled model for the GPS dataset
contains more than 1.9 million nodes, of which 150 of them are latent.

Factor Analyzer (FA): We tested this model on the financial and GPS
datasets. In this model, there is a set of five Gaussian distributed latent variables
serving as parents of all the attributes. For the financial dataset, these attributes425

also have the Bernoulli-distributed “Defaulter” variable as a shared parent (in
effect we learn separate FA models for the defaulting and non-defaulting clients),
as shown in Figure 3(b). Similarly, the mean field approximation consists of a
set of univariate Gaussian distributions for the regressor coefficients between
the observable and the hidden factors as well as Gamma distributions modeling430

the variance of each observable variable. In the financial dataset, the unrolled
model contains more than 1.3 million nodes, and more than 0.8 million of them
are latent. In the GPS dataset, the unrolled model contains more than 2.1

7Latent nodes include global parameters, local hidden variables, and variables with missing
observations.
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million nodes; more than 190 thousand are latent.
Mixture of Gaussian (MoG): We tested this model on the financial and435

GPS datasets. Here, all observed variables share a hidden multinomial parent
with five states used to model a Gaussian mixture at the “global level”. In the
financial dataset, the observed variables also have the “Defaulter” variable as a
shared parent. Additionally, each attribute has a separate hidden binary vari-
able as an extra parent, which is used to represent a local mixture distribution440

for that attribute (accounting for frequent zero-inflated distributions). For the
GPS-trajectory dataset, the MoG does not have the individual hidden variables
for the attributes and the “day of the week” is used as shared parent. In this
case, the mean field approximation consists of a set of Dirichlet distributions
for modeling the parameters of the multinomial hidden variables and a set of445

joint Normal-Gamma distributions to model different mixture components. In-
stead of these joint Normal-Gamma distributions we use independent Normal
and Gamma distributions as in the FA model. We did that in order to be able
to compare with SVI, which restricts the family of mean-field approximations
(see Section 3). In the financial dataset, the unrolled model contains more than450

2.4 million nodes, and more than 1.8 million of them are latent. The unrolled
model for GPS dataset contains more than 1.9 million nodes and more than 38
thousand of them are latent.

Latent Dirichlet Allocation (Blei et al., 2003) (LDA): We tested this
model on the NSF Research Awards Abstract dataset. Fig. 3 (d) shows the455

LDA-like graphical model used, where J is the number of words, M the number
of documents, W represents the set of words, Z the set of topics, θi the topic
Dirichlet distribution for each document, θw a Dirichlet distribution over the
set of words, and α the prior distribution over8 θz. A set of ten topics were used
in this experiments with standard hyperparameters (i.e. α = (0.1 . . . 0.1) and460

β = (0.01 . . . 0.01)). We use the standard mean field approximation based on
Dirichlet distributions modeling the words per topic distributions. The unrolled
model contains more than 20 million nodes, and more than 10 million of them
are latent.

6.2. Evaluation settings465

In a first step, we split the above datasets into a training and test dataset
containing two thirds and one third of the data, respectively. We then com-
pare how well the L function, i.e., the variational marginal log-likelihood of the
training-data, is optimized and how well each model explains the unseen test
data. For the latter, we measure the marginal log-likelihood of the data. For470

the former comparison, we measure at different times steps the value of the
optimized L function stopping when a fixed time budget is consumed by each
method. In the case of SVI, we explicitly compute the current value of the

8We implemented a slightly simplified (and more efficient) version, which assumes that all
the occurrences of a given word inside a single document belongs to the same topic.
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Figure 3: Graphical models used in the experiments.

L function and its time-stamp after every ten mini-batch update9. For both
versions of d-VMP, we measure the L function and its time-stamp every global475

iteration of the outer loop (see Algorithms 1 and 2). By plotting these values we
can compare how quickly the different methods optimize the L function. SVB
does not allow this evaluation because it only produces one parameter estimate.
We detail later how we use SVB in our evaluation.

Another important point when evaluating variational methods is the initial-480

ization of the variational parameters. Usually, a random initialization is pre-
scribed, but it is known that heuristics can be utilized (Hoffman et al., 2013).
In our case, we use the SVB output as an initial point for the d-VMP and
SVI algorithms10. The aim of this setting is to simplify the experimental eval-
uation by including a simple way to compare with SVB. By starting with the485

SVB solution, we can directly compare with it. Random initializations were
also evaluated but produced worse overall results. We fixed a mini-batch size of
1000 data instances for all the methods. In the case of LDA models, we took a
subset of documents containing no more than 1000 words.

With respect to the d-VMP learning rates, we use a single learning rate490

9The SVI algorithm does not provide this value. We have to use the d-VMP distributed
approach to compute it. The associated computation time is excluded from the analysis.

10The time for learning the SVB as initial point is also included in the times reported below.
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for all partitions and employ a simple backtracking line search method (Boyd
& Vandenberghe, 2004) starting with a learning rate of 1 (according to recent
theoretical analyses of natural gradient methods (Martens, 2014) this learning
rate is typically close to optimal) and a discounting factor of 0.5. This setting
guarantees convergence to a stationary point of the lower bound function. It495

also shows a stable convergence behavior in our experimental evaluation. This
contrasts with SVI, which requires hand-tuning of the learning rates.

The experiments were run on a Linux computer with 32 computing units
and 64GB of RAM in order to speed up the results. For the LDA experiments
we resorted to using a 16 node cluster through the Amazon Web Services (more500

information about the AWS setting is given in Section 6.5).

6.3. Naive d-VMP, d-VMP, and SVB

As commented above, in this section we evaluate the performance difference
between naive d-VMP, d-VMP, and SVB. We use the FA and LR models, which
cannot be easily handled by SVI. Therefore only the financial and the GPS-505

trajectory datasets are considered here.
Figures 4 and 5 show the results of these comparisons in terms of L (left

y-axis). We also plot the ratio between the results at different iterations and
the L value at the starting point (right y-axis), that corresponds to the SVB
solution. Theses ratios indicate the degree of improvement of naive d-VMP and510

d-VMP over SVB. In all cases except for Figure 5 (b), where the differences are
very small, d-VMP reports significantly higher L value than naive d-VMP. In
particular, in Figure 5 (a) we can appreciate the magnitude of the differences.
In this case, naive d-VMP becomes roughly 50 times better than SVB, whereas
d-VMP is in the order of 300 times better.515

In Table 2 we provide the marginal log-likelhood over the test datasets for
each of the models. As can be seen, we obtain results consistent with those
obtained when analyzing the log-likelihood over the training set.

6.4. d-VMP, SVI and SVB

For the performance comparison between d-VMP and SVI we only consid-520

ered the MoG and LDA models, because, as mentioned above, SVI cannot cover
the FA and LR models unless computationally costly multidimensional varia-
tional approximations are used.

Figures 6 (a)-(c) display the comparisons between d-VMP and SVI for the
MoG and LDA models. In the case of SVI, we evaluated the effect of different525

schedules for the learning rate by using ρt = (1 + t)−τ and letting τ take the
values 0.55, 0.75, and 0.99.

It is clear that d-VMP quickly converges to significantly higher L values than
SVI ever obtains. Furthermore, SVI is strongly affected by the learning rate in
some cases. Masegosa et al. (2016b) provides a deeper analysis of the financial530

dataset, in particular discussing the underperformance of SVI.
In the case of LDA, SVI has an unfortunate behavior. The first iteration

is associated with the solution provided by SVB; starting from this solution
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Figure 4: Comparison between naive d-VMP and d-VMP for the BCC data. Results are given
in terms of the training marginal log-likelihood (left y-axis) and the marginal log-likelihood
ratio wrt. SVB (right y-axis). SVB is considered the starting point for both algorithms.

21



1000 2000 3000 4000

Time (s)

−
1.

5e
+

08
−

1.
0e

+
08

−
5.

0e
+

07
0.

0e
+

00

lo
gL

ik
el

ih
oo

d

x

x x x x x x x

1
20

0
40

0

R
at

io

x

x
x

x

x

x

x

x

x

x

Naive d−VMP
d−VMP
Naive d−VMP/SVB ratio
d−VMP/SVB ratio

(a) Factor analyzer

500 1000 1500 2000

Time (s)

−
12

20
00

00
−

12
00

00
00

−
11

80
00

00
−

11
60

00
00

−
11

40
00

00
−

11
20

00
00

lo
gL

ik
el

ih
oo

d

x

x x x x x x x x x x x xx xx xx x x xx xx xx xx xx xx xxx xx xx xx xxx xxx xxx xxx xxx xx xx xx xx xx xx

1.
00

1.
05

1.
10

R
at

io

x

x x x x x x x x x x x xx xx xx x x xx xx xx xx xx xx xxx xx xx xx xxx xxx xxx xxx xxx xx xx xx xx xx xx

x

x

Naive d−VMP
d−VMP
Naive d−VMP/SVB ratio
d−VMP/SVB ratio

(b) Linear regression.

Figure 5: Comparison between naive d-VMP and d-VMP for GPS data. Results are given in
terms of the training marginal log-likelihood (left y-axis) and the marginal log-likelihood ratio
with SVB (right y-axis). SVB is considered the starting point for both algorithms. Although
the lower bound for d-VMP in (a) seems to be constant due to the effect of the scale in
the figure, when looking at the numbers the ELBO increases from −1.5E06 at 1500 sec to
−3.37E05 at the end of the series. This increase is not immediately perceived in the ELBO
series but it is clearly seen in the ratio series.
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Dataset Model Algorithm Test Marginal Log-likelihood
BCC LR naive d-VMP -738942.3279

d-VMP -714484.1839
FA naive d-VMP -753265.4537

d-VMP -729342.414
MoG d-VMP 111517.9001

SVI-0.55 -83147.5018
SVI-0.75 -214287.2947
SVI-0.99 -318236.6455

GPS LR naive d-VMP -5584272.097
d-VMP -36963837.4860

FA naive d-VMP -22437872.2542
d-VMP -14154391.0118

MoG d-VMP 244378.8553
SVI-0.55 53680.9002
SVI-0.75 -53686.4863
SVI-0.99 -220365.0224

Abstracts LDA d-VMP -2.58085216602e7
SVI-0.55 −2.74148135769e7
SVI-0.75 −2.72882443704e7
SVI-0.99 −2.76996762555e7

Table 2: Marginal log-likelihoods for the test sets. The maximum value within each group is
highlighted in bold face. The reader should not be surprised by the positive values in the log-
likelihood, as it is the result of values greater than 1 in the density functions of the Gaussian
distributions.

SVI updates the parameters but, ten iterations later, the solution provided by
SVI has a lower quality than the initial one. Our explanation is the following:535

SVI moves along stochastic gradients, which are noisy estimates of the real
gradients of L. When subsampling a small batch of documents, only a tiny
proportion of the words in the vocabulary are observed, and these words strongly
influence the direction of the (stochastic) gradient (i.e. the pseudo-counts). At
the first iterations, the weight of the local estimate of the parameter is much540

stronger than the weight of the previous estimate (recall that ρ0 = 1, so the
estimate given by SVB is forgotten in the SVI updating equation (Hoffman et al.,
2013) 11). When we evaluate this initial model over the whole training dataset,
the documents with non-observed words in the initial mini-batches degrade the
overall performance of the model.545

Similarly, in Table 2 we provide the marginal log-likelhood over the test
datasets for each of the models. As can be seen, the results obtained are con-
sistent with those obtained for the training set.

11We also started at t = 1 but the results were similar.
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(a) Mixture of Gaussians: BCC data.
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(b) Mixture of Gaussians: GPS data.
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(c) Latent Dirichlet Allocation: NSF Research Awards Abstracts.

Figure 6: Performance comparisons between d-VMP and SVI. The results are given in terms
of the training marginal log-likelihood and marginal log-likelihood ratio with SVB (starting
point).
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Figure 7: Time required to obtain approximations of the quality given by different global
lower bounds when using 2, 4, 8, and 16 computational nodes. Each point corresponds to a
single iteration of the algorithm. Note the log-scale on th y-axis.

6.5. Scalability

In the previous experiments we kept the dataset size and the computational550

resources fixed while making all the comparisons. However, as opposed to SVI,
our approach can be scaled (by using more hardware) in case we need to process
larger sample sizes or to speed up inference. In this section we evaluate the
scalability of our approach.

As commented before, the original financial dataset contains millions of client555

operations recorded throughout several years. This dataset is confidential, so
the financial institution has instead provided us with a script that generates
samples over 12 variables that are distributed similarly to the corresponding
variables in the real dataset. Using the script we produced a dataset with 42
million samples, which is used for the scalability test. Note that the resulting560

model contains more than one billion (109) nodes once it is “unrolled”. More
than 75% of the nodes are latent variables, leading to a posterior containing
hundreds of millions of terms.

We used AWS to get access to a distributed computing environment of suf-
ficient capacity to handle the model. The AWS clusters are equipped with565

Hadoop distributions, on which we can conveniently run the AMIDST tool-
box (Masegosa et al., 2017). The toolbox was run on top of Apache Flink
(https://flink.apache.org/). Cluster configurations of 2, 4, 8, and 16 nodes
were employed. Each node contains 8 processing units, so the level of paral-
lelization is between 16 and 128. Figure 7 displays the time required (wall-clock570

time; y-axis – note the log-scale) to get models of a given quality (measured by
the variational marginal log-likelihood values; x-axis), using the four different
computer clusters. The scalability of the d-VMP implementation is apparent.
For example, less than 3.5 hours are required with 16 nodes to get a model of
the same quality as produced by 2 nodes in 25 hours. In general, doubling the575

computational resources gives a speed-up factor of approximately 1.7.

7. Conclusions and future work

In this paper we have proposed d-VMP, a distributed variational message
passing scheme for learning conjugate exponential models. Since d-VMP is an
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iterative message passing scheme, it leverages from the memory management of580

modern big data frameworks like Apache Flink to obtain a time-efficient and
scalable implementation. Theoretical analysis of the algorithm supports the
favorable learning behavior we have observed in practice.

We plan to investigate the effects of replacing the underlying model structure
with a dynamic model. Furthermore, high-speed data streams pose practical585

problems like limitations wrt. both computation time and available memory to
store the streams. We are therefore interested in examining both theoretically
and in practice how (potentially) inaccurate messages sent from the workers to
the master node affect the robustness of the learned results.
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Bayesian modeling for risk prediction in credit operations. In Proceedings of
the 13th Scandinavian Conference on Artificial Intelligence (pp. 17–26). IOS
Press.615

26



Borchani, H., Mart́ınez, A. M., Masegosa, A., Langseth, H., Nielsen, T. D.,
Salmerón, A., Fernández, A., Madsen, A. L., & Sáez, R. (2015b). Modeling
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A., Nielsen, T. D., Langseth, H., & Madsen, A. L. (2016). Financial data
analysis with PGMs using AMIDST. In Data Mining Workshops (ICDMW),
2016 IEEE 16th International Conference on (pp. 1284–1287). IEEE.

Campbell, T., & How, J. P. (2014). Approximate decentralized Bayesian infer-630

ence. In Proc. of the Thirtieth Conf. on UAI (pp. 102–111).

Carbone, P., Ewen, S., Haridi, S., Katsifodimos, A., Markl, V., & Tzoumas, K.
(2015). Apache Flink: Stream and batch processing in a single engine. Data
Engineering , (p. 28).

Casella, G., & Berger, R. (2001). Statistical Inference. Duxbury Resource635

Center.

Chen, M.-H., Shao, Q.-M., & Ibrahim, J. G. (2012). Monte Carlo methods in
Bayesian computation. Springer Science & Business Media.

Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., & Olukotun,
K. (2007). Map-Reduce for Machine Learning on Multicore. Advances in640

Neural Information Processing Systems 19 , (pp. 281–288).

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM , 51 , 107.

Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential
Monte Carlo methods. In Sequential Monte Carlo methods in practice (pp.645

3–14). Springer.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning
Research, 12 , 2121–2159.

Foulds, J., Boyles, L., DuBois, C., Smyth, P., & Welling, M. (2013). Stochastic650

collapsed variational Bayesian inference for latent Dirichlet allocation. In
Proc. of the Int. Conf. on Knowledge Discovery and Data Mining (pp. 446–
454). ACM.

27



Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan,
S. U. (2015). The rise of “big data” on cloud computing: Review and open655

research issues. Information Systems, 47 , 98–115.

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic varia-
tional inference. Journal of Machine Learning Research, 14 , 1303–1347.

Khan, M. E., Babanezhad, R., Lin, W., Schmidt, M., & Sugiyama, M. (2015).
Convergence of proximal-gradient stochastic variational inference under non-660

decreasing step-size sequence. arXiv preprint arXiv:1511.00146 , .

Kushner, H. J., & Yin, G. G. (1997). Stochastic approximation algorithms and
applications. Springer New York.

Lichman, M. (2013). UCI machine learning repository. URL: http://archive.
ics.uci.edu/ml.665

Luo, Z.-Q., & Tseng, P. (1993). Error bounds and convergence analysis of
feasible descent methods: A general approach. Annals of Operations Research,
46 , 157–178.

Mandt, S., & Blei, D. (2014). Smoothed gradients for stochastic variational
inference. In Advances in Neural Information Processing Systems (pp. 2438–670

2446). MIT Press.

Martens, J. (2014). New insights and perspectives on the natural gradient
method. arXiv preprint arXiv:1412.1193 , .

Masegosa, A. R., Mart́ınez, A. M., & Borchani, H. (2016a). Probabilistic graphi-
cal models on multi-core CPUs using Java 8. IEEE Computational Intelligence675

Magazine, 11 , 41–54.

Masegosa, A. R., Mart́ınez, A. M., Langseth, H., Nielsen, T. D., Salmerón,
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