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Abstract

In order to make non-linear finite element analyses applicable during assessment of the global resistance of large concrete structures,

there is need for a solution strategy with a low modelling uncertainty. A solution strategy comprises choices regarding force

equilibrium, kinematic compatibility and constitutive relations. Relatively large solid finite elements and a fully triaxial material

model for concrete were used in the present work. Bayesian inference was applied to results from 38 benchmark analyses. The

results indicated that the modelling uncertainty could be represented as a log-normally distributed random variable with mean 1.10

and standard deviation of 0.12. A new method for characterizing the failure mode was developed. The results indicated that the

physical uncertainties influenced the estimated parameters of the modelling uncertainty, and that this should be considered when

other uncertainties are included in a reliability assessment.

Keywords: Non-linear finite element analyses, Bayesian inference, large concrete shell structures, modelling uncertainty, global

resistance, characterization of failure mode

1. Introduction

The design of large concrete shell structures like dams and

offshore oil and gas platforms is normally based on global lin-

ear finite element analyses. This allows for using the principle

of superpositioning in order to handle the vast number of de-

sign load combinations [1, 2]. For such large shell structures it

is important to perform global analyses due to the interaction

between global and local load effects. Solid elements are nor-

mally used due to the required accuracy in structural joints, and

the elements are large compared to the sectional dimensions.

In order to better take into account the real physical be-

haviour of reinforced concrete, non-linear finite element analy-

ses (NLFEA) could be carried out. The results of such analyses

are global in nature due to all sections contributing to the load

carrying capacity [3, 4]. Due to the global nature of NLFEA,
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the capacity should be assessed in a global manner, in contrast

to the local sectional design based on linear finite element anal-

yses. fib Model Code 2010 for concrete structures [5] intro-

duces probabilistic methods and the semi-probabilistic concept

of global resistance methods for assessing the structural reli-

ability. Demonstrations of the global resistance methods are

reported in the literature for relatively simple structural forms

[3, 4, 6–12] and also for larger structural systems [13, 14]. For

such assessments to be accurate, all relevant sources of uncer-

tainties should be considered. As described by Zhang and Ma-

hadevan [15], there are basically three sources of uncertainties

in engineering analyses: physical uncertainties, modelling un-

certainties and statistical uncertainties.

In this paper, the different sources of uncertainties are dis-

cussed. The modelling uncertainty is further quantified by use

of Bayesian inference, and a new method for characterization

of the failure mode is presented in order to study the influ-
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ence from the physical uncertainties on the modelling uncer-

tainty. The results indicate that the modelling uncertainty in-

cludes contributions from the physical uncertainties, and that

this should be considered when other uncertainties are included

in a reliability assessment.

2. Uncertainties in engineering analyses
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(a) Experimentally obtained moment capacity Mexp

for ductile beams and walls [20–24] normalized by

the width b, height h and cylinder strength fc plotted

against the cylinder strength.
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(b) Experimentally obtained shear capacity Vexp for

brittle beams [25] normalized by the width b, depth

d and cylinder strength fc plotted against the cylin-

der strength.

Figure 1: Visualization of the physical uncertainty on structural level for a)

ductile and b) brittle experiments.

The physical uncertainties are related to the measured

strength and deformation properties of concrete and reinforce-

ment. The physical uncertainties of concrete and reinforcement

on material level is studied by several authors, e.g. Rackwitz

[16], and a summary of the results is found in the Probabilis-

tic Model Code [17]. The variation of material properties can

be studied on several hierarchical levels and can be quantified

in terms of the uncertain mean of the gross supply, the vari-

ability of the production line of one producer, the variability

within one batch and the mean and standard deviation of the

material property in a reference volume. By investigation of

such results, it can be seen that the variation of the compres-

sive cylinder strength of concrete, denoted by the coefficient

of variation, is in the range of 5-15% depending on the cylin-

der strength, compared to a value of typically 5% for the yield

strength of the reinforcement steel. The correlation between

the cylinder strength and other properties of concrete is studied

by e.g. Rashid et al. [18], where the splitting tensile strength

of 499 tested specimens was found to vary within a bandwidth

of approximately 30-40% when presented as a function of the

compressive cylinder strength.

Ideally, the physical uncertainty on structural level should be

assessed by performing a large number of experiments on nom-

inally equivalent components. However, in reality, only a lim-

ited amount of results from repeated experiments are reported,

and the results are typically normalized in order to assess the

physical uncertainty from a range of experiments. The uncer-

tainty found from such a study would also include a contribu-

tion from modelling uncertainty due to the selected normalizing

factor. Based on the different uncertainties on material level it

is expected that the physical uncertainties on structural level de-

pend on whether the failure mode is governed by the concrete

or the reinforcement, and expected to be particularly high if

the failure mode is governed by the tensile strength of the con-

crete. This statement is supported in the work of Ellingwood

and Galambos [19] where the resistance of reinforced concrete

beams failing in bending is found to have a lower coefficient of

variation than beams failing in shear. Figure 1a and 1b show

normalized results from experiments with ductile [20–24] and

brittle [25] failure modes respectively. By investigation of the
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variation, the uncertainty of the ductile failure modes is smaller

than the uncertainty of the brittle failure modes. A significant

statistical uncertainty is present in the case of the ductile fail-

ure modes due to the limited amount of observations collected

in the present study.

Modelling uncertainties, or model uncertainties, in engineer-

ing analyses are related to model selection and the accuracy of

the selected model, and apply to both statistical and mechan-

ical models. Only the contribution from the accuracy of the

mechanical model to the modelling uncertainty was considered

in the present work. Models in engineering analyses are never

right or wrong, but they can be more or less useful for a certain

problem if the modelling uncertainty is appropriately accounted

for. The accuracy of the mechanical model depends on the ap-

proximations in the numerical solution procedure and the math-

ematical idealization of the problem. According to Ditlevsen

[26] the uncertainties related to the mathematical idealization

are due to a limitation of the possible infinite number of basic

variables to a finite number and idealizations of the mathemat-

ical equations, both for pragmatic reasons and due to a lack of

detailed knowledge about the variation or the behaviour of the

problem at hand. There are aspects that we know that we do not

consider in the model, but also features that we do not know, i.e.

the unknown unknowns. The modelling uncertainty thus cov-

ers implicitly everything that is not explicitly considered in the

model.

The modelling uncertainty can be quantified by verification

and validation [27]. Verification is related to how the equa-

tions of the mechanical model are solved, i.e. a quantifica-

tion of the accuracy without questioning the relation between

the equations and the physical problem at hand. With regard

to NLFEA, verification thus relates to the iterative solution of

the equilibrium equations and the discretization into finite ele-

ments. Validation, on the other hand, relates to how well the

equations capture the true physical behaviour. In the NLFEA

context, validation thus relates to idealization of the geometry

and the material behaviour. In other words, verification answers

the question Are we solving the equations right?, and validation

answers the question Are we solving the right equations? [27].

This distinction is useful. One cannot expect improved re-

sults by refining the element discretization or the iterative so-

lution scheme if the material model is inadequate. The same

holds for refinement of the material model with an improper el-

ement discretization. Following the multiplicative formulation

in the Probabilistic Model Code [17], the modelling uncertainty

was defined as the ratio of the experimental to the predicted ca-

pacity, Θ = Rexp/RNLFEA.

3. Solution strategy for NLFEA

All of the choices regarding force equilibrium, kinematic

compatibility and constitutive relations influence the modelling

uncertainty of NLFEA. Collectively, these choices constitute a

strategy for obtaining a solution from NLFEA, or short, a so-

lution strategy for NLFEA [2]. For reinforced concrete, the

material model for concrete is considered the largest source of

modelling uncertainties.

A common way of selecting material models for concrete is

to use a uniaxial material model as basis and extend this with

additional models that take into account other material effects

such as the effects of confinement and lateral cracking. Such

an approach can be convenient when the structural effects of

different material effects are to be studied, but additional mod-

els are normally developed in combination with other comple-

mentary models and should not be separated [28]. Alterna-

tively, fully triaxial material models where all material effects

are treated, could be used directly. One such fully triaxial ma-

terial model has been developed by Kotsovos and co-workers

since the 1970s and is still subject to improvements [29–38]. In

order to make the material model available for practising engi-

neers, it was adapted to a commercial finite element software

in the present work. The details are presented in a separate

paper [39]. The material model required only one input param-

eter, the compressive cylinder strength of concrete. A bilinear,

elastoplastic model was used for the reinforcement.

Relatively large solid 8-noded finite elements were used for

the concrete and the reinforcement was represented by fully
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bonded embedded reinforcement elements. Due to the size of

the concrete elements, the length of the reinforcement elements

corresponding to one integration point was typically in the order

of magnitude of the expected crack spacing, and the assump-

tion of perfect bond was thus justified. It should be noted that

this is a valid approach specially for NLFEA with large finite

elements, where the ultimate limit capacity is sought assum-

ing properly anchored reinforcement. If, on the other hand, the

crack pattern at the serviceability limit state is to be studied, a

more detailed description of the interface between concrete and

reinforcement steel and thus a finer finite element mesh might

be needed. Modified Newton-Raphson in combination with line

search was used for the iterative solution of the equilibrium

equations. A convergence criterion given by ||Rres||/||Rext|| <

0.01 was used for the equilibrium iterations. Rres is the vec-

tor of nodal residual forces, Rext is the vector of nodal external

loads and || · || indicates that the L2-norm was used. The loads

were applied with constant increment, so that the experimental

capacity was reached in 30 load steps.

The solution strategy is discussed in detail in a separate pa-

per, where verification is performed by comparing solutions

with different element discretizations, load step sizes and iter-

ative solution procedures [39]. The results show insignificant

sensitivity to finite element size and load step size. Validation

was performed by comparison of experimental results and re-

sults from NLFEA, and the results are presented in the present

paper.

4. Characterization of the failure mode

The classical way of characterizing the failure mode of a con-

crete structure both experimentally and numerically is a matter

of subjective judgement. By assessing crack patterns and stress

and strain fields at the ultimate limit load, the failure mode can

be described as e.g. diagonal tension, shear compression or

flexure-compression [40]. Such distinctions are convenient in

classical sectional design methods, but have limited applicabil-

ity to global resistance assessments of large concrete structures

where the failure mode could be due to interaction between dif-

ferent sectional forces. For this reason, a more objective char-

acterization to be used in numerical assessments of the failure

mode was proposed in the present work.

When a reinforced concrete structure is loaded, cracking of

concrete will be initiated at some load level. Upon cracking, the

internal forces need to be redistributed. Such redistribution can

be associated with the plastic dissipation, i.e. the absorbed non-

recoverable strain energy, in the system. If the load is further

increased, cracking can either propagate and stabilize if suffi-

cient reinforcement is provided, or propagate progressively to

failure. Eventually, also cracking of the sufficiently reinforced

structure will propagate to failure when the global redistribu-

tion capacity of the reinforcement is exhausted. Hence, rein-

forcement provides ductility to the brittle concrete by control-

ling crack propagation and providing sufficient capacity for re-

distribution of internal forces. This statement was formulated

mathematically according to the following expression, where

Wpl,tot and Wpl,steel are the plastic dissipation of the system and

the reinforcement at failure respectively:

Xductility =
Wpl,steel

Wpl,tot
(1)

The ductility index, Xductility, takes values between 0 and 1,

and indicates to which degree the failure mode is governed by

the reinforcement, and thus the degree of ductility of the failure

mode.

5. Statistical inference

According to the definition in the Probabilistic Model Code

[17] the modelling uncertainty of benchmark analysis i was de-

fined as the ratio of the experimental to the predicted capacity

θi = Rexp,i/RNLFEA,i. In order to incorporate the modelling un-

certainty in a probabilistic analysis, we need to decide the type

and parameters of the probability distribution by statistical in-

ference.
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5.1. Bayesian data analysis

In Bayesian data analysis both the variable to be modelled

and the parameters of the distribution are treated as unknown

random variables. The method allows for incorporation of both

prior knowledge and observed data, and the statistical uncer-

tainty of the parameters can be estimated from the respective

probability distributions. Demonstrations of use can be found in

the literature [15, 41, 42] and a thorough treatment of the tech-

nique can be found in the work by Gelman et al. [43]. Although

not all of the information provided in this section was used in

the rest of the paper, it was included for completeness. All the

resulting expressions in this section are valid for normally dis-

tributed random variables and were adapted from Gelman et al.

[43].

The probability distribution of a normally distributed random

variable y is fully described as soon as the mean µ and the vari-

ance σ2 is known. According to Bayes’ theorem, the condi-

tional distribution of the mean and variance given a set of n

observations yi collected in the array y can be expressed as:

P(µ, σ2|y) ∝ P(µ, σ2) P(y|µ, σ2) (2)

P(µ, σ2|y) is called the joint posterior distribution of µ and

σ2 given the observations y. The posterior distribution of µ and

σ2 is thus proportional to the product of the prior distribution

P(µ, σ2) and the likelihood P(y|µ, σ2). Any known information

about the random variable, both qualitative and quantitative can

be included in the prior distribution.

Having established the joint posterior distribution P(µ, σ2|y),

a natural extension is to establish the posterior predictive distri-

bution P(ỹ|y) where ỹ is a future prediction of the outcome of

the variable y. In section 5.2 and 5.3 estimates for µ and σ2,

and posterior predictions of ỹ are given for two different prior

distributions.

For non-normally distributed random variables, only a lim-

ited selection of analytical solutions, the so-called conjugate

priors, exist for some distributions, e.g. Poisson or gamma dis-

tributions. If these solutions do not exist, the joint posterior and

the posterior predictive distributions should be approximated

by e.g. numerical integration methods such as Markov Chain

Monte Carlo simulation methods or deterministic quadrature

rules [43].

5.2. Inference using a non-informative prior distribution

If no information is given about the variable, a non-

informative prior distribution can be assumed. An important

property of a non-informative prior distribution is that it should

be objective, and thus not influence the posterior distribution in

any direction. Based on the marginal posterior distributions the

expected values and the variances for the mean and the variance

are given by (3) to (6), where ȳ = 1
n
∑n

i=1 yi is the sample mean

and s2 = 1
n−1
∑n

i=1(yi − ȳ)2 is the sample variance. Note how the

statistical uncertainty, i.e. Var[µ|y] and Var[σ2|y], decrease as

the number of observations increase.

E[µ|y] = ȳ (3)

Var[µ|y] =
n − 1
n − 3

s2

n
(4)

E[σ2|y] =
n − 1
n − 3

s2 (5)

Var[σ2|y] =
2(n − 1)2

(n − 3)2(n − 5)
s4 (6)

It can be shown that the posterior prediction ỹ can be mod-

elled as a t-distributed random variable with location ȳ, scale

s2(1 + 1/n) and n − 1 degrees of freedom. A future observation

can thus be modelled by (7) where tn-1 is a centrally t-distributed

random variable with n − 1 degrees of freedom. For large n the

t-distribution approaches the normal distribution.

ỹ = ȳ + tn-1s

√
1 +

1
n

(7)

5.3. Inference using a conjugate prior distribution

If prior information exists, this can be included in the prior

distribution. One technique that ensures closed form solutions

is to select a joint prior distribution of the same form as the
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likelihood. This is called a conjugate prior distribution. The

parameters of the resulting posterior distribution are given in

(8) to (11), where n0 is the number of samples that forms the

basis of the prior knowledge and ν0 = n0−1 is the prior number

of degrees of freedom.

µn =
n0µ0 + nȳ

n0 + n
(8)

nn = n0 + n (9)

νn = ν0 + n = n0 + n − 1 (10)

νnσ
2
n = ν0σ

2
0 + (n − 1)s2 +

n0n
n0 + n

(ȳ − µ0)2 (11)

The expected values and variances are given in (12) to (15).

Notice how (12) and (14) approach (3) and (5) if no prior infor-

mation exists.

E[µ|y] = µn (12)

Var[µ|y] =
νn

νn − 2
σ2

n

nn
(13)

E[σ2|y] =
νn

νn − 2
σ2

n (14)

Var[σ2|y] =
2ν2

n

(νn − 2)2(νn − 4)
σ4

n (15)

It can be shown that the posterior prediction ỹ can be mod-

elled as a t-distributed random variable with location µn, scale

σ2
n(1 + 1/nn) and νn degrees of freedom. A future observa-

tion can thus be modelled by (16) where tνn is a centrally t-

distributed random variable with νn degrees of freedom.

ỹ = µn + tνnσn

√
1 +

1
nn

(16)

5.4. The probability distribution of the modelling uncertainty

The probability distribution of the modelling uncertainty is

generally not known in advance, however, it is suggested to

represent it as a log-normally distributed random variable [17].

The relation between the parameters of a log-normal distribu-

tion µln and σln and the mean and variance of the variable itself

are given in (17) and (18), where V = σ/µ is the coefficient of

variation.

µln = ln µ −
1
2

ln(V2 + 1) (17)

σln =
√

ln(V2 + 1) (18)

In order to perform Bayesian inference on a normally dis-

tributed random variable, each observation of the modelling

uncertainty θi is assigned to yi. If, on the other hand, the ran-

dom variable is log-normally distributed, the natural logarithm

of each observation ln θi is assigned to yi. In order to verify

the selected distribution type, the Shapiro-Wilk test for normal-

ity [44] with the improvements proposed by Royston [45] was

applied. A test statistic was calculated and used as input for a

hypothesis test where the null-hypothesis stated that the sam-

ple was normally distributed. The P-value was calculated and

compared to a 5% level of significance.

6. Quantification of the modelling uncertainty

The global results from 38 benchmark analyses are summa-

rized in Table 1 and Figure 2. The sample consisted of seven

short and five slender walls by Lefas et al. [24], one beam

by Kotsovos [20], 12 beams by Bresler and Scordelis [40],

two frames by Ernst et al. [46], two frames by Vecchio and

Balopoulou [47] and Vecchio and Emara [48], one deep beam

by Cervenka and Gerstle [49] and eight beams by Jelic et al.

[50]. All of the references reported the nominal geometries,

and the cylinder strength of the concrete and the yield strength

of the reinforcement steel based on a number of material sam-

ples. The cylinder strength was used directly as the only input

material parameter for the concrete material model, and was

6



not calibrated in order to improve the results in any of the anal-

yses. It was assumed that the concrete within one structural

component, i.e. one beam, frame or wall, originated from one

batch, and that the reported cylinder strength was measured on

samples from the same batch. No information about the spa-

tial variability of the strength was reported, and was thus not

considered in the analyses.
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Figure 2: Experimental capacity and predicted capacity for the 38 benchmark

analyses.

Most model predictions were slightly underestimating the

experimental capacity, denoted by θi > 1.0, and the variation

was small. The results from the Shapiro-Wilk test on either

yi = θi or yi = ln θi, i.e. testing for either normality or log-

normality, are summarized in Table 2, where the P-value was

compared to a 5% level of significance. The test did not reject

that Θ could be represented as a log-normally distributed ran-

dom variable. The results were confirmed by the probability

plots in Figure 3 where the scatter plot is slightly more concen-

trated along the straight line for the log-normal distribution than

for the normal distribution. Note that the straight lines are in-

dicative only, as they are based on the sample mean and sample

variance.

Based on these results, Bayesian inference with a non-

informative prior was performed on the sample y where yi =

ln θi. The expressions in section 5.2 resulted in µln Θ = 0.092

and σln Θ = 0.108, and by using the expressions in section 5.4 a

mean µΘ = 1.10, a standard deviation σΘ = 0.12 and a coeffi-

cient of variation VΘ = 10.9% was calculated.

Figure 4a shows the modelling uncertainty plotted against

the cylinder strength. No simple linear trend can be observed,

and the resulting linear correlation coefficient was 0.013 which

confirms that observation. It might be interesting also to check

the correlation to other input parameters, but as the sample con-

tained benchmark experiments with varying reinforcement lay-

outs and structural forms, no parameters except the cylinder

strength were directly comparable. Figure 4b shows the mod-

elling uncertainty plotted against the ductility index, as defined

in section 4, for all the benchmark analyses. Depending on the

ductility index, the observations might be grouped in two sepa-

rate domains: one brittle and one ductile.

7. Discussion

The level of detail which is needed for the material model de-

pends on the phenomena that are to be studied in the analysis. In

the present study, the ultimate limit capacity was sought, and for

this application the simple fully triaxial material model [29, 30]

was appropriate. The results were supporting the conclusions

from Engen et al. [2] advising a shift of the attention from a

detailed description of the post-cracking tensile behaviour to a

rational description of the pre-cracking compressive behaviour

of concrete in analyses where large finite elements are used.

Despite the simple form of the material model and the coarse

meshes of linear solid elements, the resulting modelling uncer-

tainty had a low standard deviation, and the mean value close

to one indicated a small model bias.

A new method for characterization of the failure mode was

presented. The method characterized the failure mode in terms

of the ductility index, Xductility, defined as the ratio between

the plastic dissipation of the reinforcement and the total plas-

tic dissipation of the system. It was regarded as an advantage

of the method that it was objective and unambiguous compared

to traditional characterizations based on subjective judgement.

This seemed to be particularly relevant for failure modes where

the interaction between several sectional forces was governing.

The objective characterization should be complemented by a
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Figure 3: Probability plot for the modelling uncertainty Θ assuming a) normal and b) log-normal distribution.
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Figure 4: Correlation between modelling uncertainty Θ and a) cylinder strength fc and b) ductility index Xductility = Wpl,steel/Wpl,tot.

description of the failure mode, e.g. in terms of the crack pat-

tern, stress and strain contours and displacements.

If all the redistribution, i.e. the plastic dissipation, is assigned

to the concrete, the structure is likely to fail in a brittle man-

ner due to the low redistribution capacity of the concrete. The

brittle failure modes governed by the concrete have a higher in-

herent physical uncertainty and are often more difficult to pre-

dict with a high accuracy compared to the ductile counterpart

of failure modes governed by the reinforcement. The sources

for the high inherent uncertainty of the brittle failure modes are

the spatial variability and the mean and standard deviation of

the material properties within the concrete batch, and the cor-

relation between the cylinder strength and other parameters of

the concrete as described in Section 2. Because these variations

were not controlled in the uncerlying experiments, they were

not considered explicitly in the analyses, thus they were implic-

itly included in the modelling uncertainty. The modelling un-

certainty of the ductile failure modes, on the other hand, would

have a lower contribution from physical uncertainties due to the

lower physical uncertainties inherent to the reinforcement steel.

This statement serves as a rational explanation to the results

from earlier studies of the modelling uncertainty in connection

to prediction of the capacity of reinforced concrete [3, 19]. As

an indication on the dependency of Θ on the failure mode, the

benchmark analyses could be separated in two domains, e.g.

a brittle domain for Xductility < 0.6 and a ductile domain for
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Xductility ≥ 0.6, as shown in Figure 4b. Bayesian inference

resulted in µΘ = 1.14 and σΘ = 0.14, and µΘ = 1.04 and

σΘ = 0.05, for the brittle and ductile domain respectively, and

the standard deviation of the modelling uncertainty thus got its

largest contribution from the brittle domain.

Based on the discussion above, the separation of uncertain-

ties such that a pure modelling uncertainty is obtained is not

straight forward and it is reasonable to keep the present def-

inition and note that the estimated modelling uncertainty also

includes contributions from the physical uncertainties. With

the present definition of the modelling uncertainty, and treating

the physical uncertainties on hierarchical levels, the only con-

tribution to the physical uncertainties that should be included

in a reliability assessment are those related to the variability of

the material supply between different producers. However, rea-

sonable assumptions for the quantification of this variability is

beyond the scope of this paper and calls for further research.

If the capacity of a ductile experiment was underestimated,

the calculated ductility index would also be underestimated, re-

sulting in a low xductility,i, a low predicted capacity and a high

θi. This represented a slight weakness of the characterization

of the failure mode presented in the present paper. It should be

noted that the underestimation could be both due to solving the

wrong equations, i.e. inadequate material modelling or geomet-

ric idealization, or due to wrong solution of the equations, i.e.

inadequate finite element discretization or iterative solution of

the non-linear equilibrium equations. On the other hand, if the

capacity of a brittle experiment was properly estimated, this re-

sulted in a low xductility,i and θi ≈ 1.0, and a high xductility,i would

in all cases indicate that the failure mode is indeed ductile.

In order to perform all the benchmark analyses in a consis-

tent manner, the external load was applied with constant load

increments such that the experimental capacity was reached in

30 load steps. This was the main reason for several of the points

in Figure 4a and 4b being horizontally aligned. Due to the dis-

cretized load application, a higher load could in principle be

reached if the load was continuously increased to failure. If

several benchmark analyses in reality could have yielded higher

capacities, this would influence the estimated parameters of the

modelling uncertainty. A resulting theoretical deviation was

found to be in the order of magnitude of the statistical uncer-

tainty of the estimated parameters, and was thus not studied

further in detail.

Ditlevsen and Madsen [51] note that whatever degree of re-

finement of the mechanical model, some modelling uncertainty

will remain, and at some degree of refinement, the physical and

statistical uncertainty will dominate the total uncertainty of the

problem. This indicates that a reasonable target for the mod-

elling uncertainty could be in the order of the dominating physi-

cal or statistical uncertainty. In the recommendations published

by fib [52] it is stated that the coefficient of variation of the mod-

elling uncertainty should be less than 30%. Assuming a target

reliability level including sensitivity factors, the global safety

factor for modelling uncertainty used in Model Code 2010 cor-

responds to a coefficient of variation of 5-15% depending on the

assumed bias [5]. The coefficient of variation obtained in the

present study was thus considered adequate. It should be noted

that the resulting modelling uncertainty reported in the present

paper is related to one specific solution strategy, i.e. one specific

set of choices regarding force equilibrium, kinematic compati-

bility and constitutive relations. A change of solution strategy

is expected to result in different parameters for the modelling

uncertainty that need to be quantified.

The modelling uncertainty as treated in the present project

can be incorporated in reliability assessments in several ways.

In semi-probabilistic methods, the coefficient of variation can

be included in the calculation of the total coefficient of varia-

tion following the approach suggested by Schlune et al. [3] or

as a separate reduction factor as discussed by e.g. Kadlec and

Cervenka [53]. Θ could be incorporated directly as a basic vari-

able in a procedure based on e.g. a response surface and a first

order reliability method as demonstrated by Belletti et al. [12].

In a full probabilistic method, Θ can be simulated by drawing

random samples from a normal, log-normal or a t-distribution

depending on which distribution is the most suitable.
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8. Conclusions

Results from a range of benchmark analyses where a fully

triaxial material model for concrete and relatively large solid el-

ements were used, showed that the modelling uncertainty could

be represented as a log-normally distributed random variable

with a mean 1.10 and a standard deviation of 0.12. These

results indicate that the global safety factor for modelling un-

certainty suggested in Model Code 2010 for numerical models

subjected to a high level of validation is valid. The new method

for characterizing the failure mode that was developed was suc-

cessfully applied, and the results indicated that the physical un-

certainties influence the estimated parameters of the modelling

uncertainty. Because the physical uncertainties related to vari-

ation of the concrete compressive strength within and between

batches from one producer were not explicitly considered in the

NLFEA in the present study, these uncertainties were implic-

itly included in the estimated modelling uncertainty. With the

present definition of the modelling uncertainty, only the physi-

cal uncertainties related to the variability of the material supply

between different producers should thus be included in a relia-

bility assessment. It is worth noting that all the cases that were

studied, relate to laboratory experiments with more or less well-

defined boundary and loading conditions. In a real concrete

structure, the physical uncertainties might increase e.g. due to

inadequate curing conditions or variable quality of workman-

ship, and the modelling uncertainty might increase due to e.g.

idealization of geometry, load application and boundary con-

ditions. In the further work, different possibilities for includ-

ing the modelling uncertainty in a reliability assessment will be

studied. This is considered crucial for obtaining realistic esti-

mates of the design load carrying capacity or the reliability of

both new and existing concrete structures.
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Table 1: Summary of the results from the benchmark analyses. fc is the cylinder

strength in MPa, Rexp,i and RNLFEA,i are the experimental and predicted capaci-

ties in kN, θi is the modelling uncertainty and xductility,i = Wpl,steel/Wpl,tot is the

ductility index given by the ratio of the plastic dissipation of the reinforcement

and the total plastic dissipation.

Ref. Experiment fc Rexp,i RNLFEA,i θi xductility,i

[24] SW11 42.3 260.00 274.94 0.95 0.914

SW12 43.6 340.00 293.20 1.16 0.331

SW13 32.3 330.00 252.35 1.31 0.000

SW14 33.2 265.00 253.92 1.04 0.839

SW15 33.9 320.00 298.39 1.07 0.946

SW16 41.7 355.00 271.46 1.31 0.000

SW17 41.1 247.00 238.22 1.04 0.841

SW21 33.6 127.00 113.99 1.11 0.863

SW22 40.6 150.00 139.94 1.07 0.704

SW23 37.8 180.00 151.38 1.19 0.464

SW24 38.3 120.00 120.01 1.00 0.920

SW26 25.1 123.00 90.20 1.36 0.526

[20] B1 37.8 13.60 12.69 1.07 0.680

[40] OA-1 22.5 333.60 378.53 0.88 0.000

OA-2 23.7 355.84 320.40 1.11 0.000

OA-3 37.6 378.08 277.93 1.36 0.000

A-1 24.1 467.04 466.96 1.00 0.235

A-2 24.3 489.28 423.80 1.15 0.132

A-3 35.0 468.37 405.60 1.15 0.130

B-1 24.8 442.58 443.00 1.00 0.179

B-2 23.2 400.32 320.00 1.25 0.183

B-3 38.7 353.62 377.17 0.94 0.103

C-1 29.6 311.36 290.27 1.07 0.147

C-2 23.8 324.70 238.33 1.36 0.253

C-3 35.0 269.10 224.72 1.20 0.088

[46] 2D18 40.8 46.40 41.72 1.11 0.848

2D18H 28.8 14.10 13.24 1.07 0.824

[47] BF1 29.0 540.00 521.98 1.03 0.888

[48] BF2 30.0 332.00 301.31 1.10 0.000

[49] W2 26.8 240.00 240.00 1.00 0.967

[50] HDCB3 30.0 202.70 180.16 1.13 0.024

HDCB4 30.0 196.50 182.29 1.08 0.037

MDCB3 28.0 193.90 189.98 1.02 0.881

MDCB4 28.0 196.40 193.14 1.02 0.919

LDCB3 30.0 181.60 178.54 1.02 0.185

LDCB4 30.0 186.20 179.70 1.04 0.292

G21 34.3 204.80 185.53 1.10 0.069

G22 34.3 200.80 197.01 1.02 0.958
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Table 2: Summary of results from the Shapiro-Wilk test for normality of Θ. W

is the Shapiro-Wilk test statistic and the P-value is the probability of making

the current observation given that the observations are normally distributed.

yi W P-value

θi 0.9232 0.012 < 0.05 ⇒ Reject

ln θi 0.9461 0.066 > 0.05 ⇒ Do not reject
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