
Software entropy in agile product evolution

Geir Kjetil Hanssen
NTNU IDI / SINTEF ICT

ghanssen@sintef.no

 Aiko Fallas Yamashita
Simula Research Laboratory

aiko@simula.no

Reidar Conradi

NTNU IDI
Reidar.Conradi@idi.ntnu.no

 Leon Moonen
Simula Research Laboratory

leonm@simula.no

Abstract

As agile software development principles and
methods are being adopted by large software product
organizations it is important to understand the role of
software entropy. That is, how the maintainability of a
system may degrade over time due to continuous
change. This may on one side affect the ability to act
agile in planning and development. On the other side,
an agile process may affect growth of entropy. We
report from a case study of a successful software
product line organization that has adopted the agile
development method Evo, showing how agility and
entropy are negatively related. We conclude this study
by suggesting a two-step approach to manage entropy
while maintaining process agility. First, the system
needs to be restructured to establish a level of
manageable entropy, and then, that the agile process
must be complemented with continuous semi-
automated quality monitoring and refactoring support.

1. Introduction
Agile software development methods have over the

past decade become a preferred approach to many
project organizations and are now also finding their
way into the more complex arena of packaged software
product development and evolution [1]. This comes
along with several challenges as the complexity of the
development context increases dramatically as
compared to the development of a single stand-alone
solution for a single customer �– which in many
respects was the target of agile methods initially. One
of the challenges when adopting agile software
development practices to large-scale product
development is the problem of software entropy, which
refers to the gradual decrease in maintainability of a
system as it evolves over time. With the core principles
of agile software development in mind we suspect that

development process agility and system entropy may
negatively and naturally affect each other. That is, the
rapid, incremental and iterative approach of agile
development methods may actually aggravate entropy,
and the other way around; that an increasing system
entropy may hamper the ability to act agile.

To investigate this potential relationship and
improvement actions we have done a case study of a
successful software product organization that have
developed their product line for over a period of 14
years and are now established in the top segment of
their domain, still with a strong need and urge for
further development and improvement. Five years ago
the R&D department experienced severe problems
related to a heavily plan-based development process
and adopted the agile method Evo [2] which over the
past years have proved to fit well into a hectic software
product development scheme with constant releases of
new versions into a competitive market [3]. However,
for each release of their product, the internal structure
of the product have grown more and more complex and
are now a major concern as it dramatically threatens
their ability to be agile in terms of reduced
analyzability, modifiability and testability of the
system as well as problems in separating areas of
concern for the development teams. In sum this leads
to a reduction in productivity and product quality.

This motivates our research questions:
1) How may system entropy and agile processes

mutually negatively affect each other?
2) Can code smell analysis and refactoring be a

viable solution?
We have collected data from three sources. (1) We

have done an extensive interview with members of a
dedicated product architecture team �– a group of four
expert developers serving the development teams and
being responsible of improving the architecture of the
product line as well as optimizing the development
infrastructure. (2) We have held a workshop with an
external consultant analyzing the system using a

1

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

978-0-7695-3869-3/10 $26.00 © 2010 IEEE
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

comprehensive tool called NDepend . (3) We have
interviewed members from one of the development
teams in the R&D department. The interview data are
analyzed according to the principles of constant
comparison [4] revealing a set of problems related to
the state of entropy of the system as well as the agile
process as it is implemented in this case.

Based on the findings from this qualitative study
and on an overview of relevant literature on code smell
analysis and refactoring decision-making we discuss
how these problems potentially can be resolved in a
two-step process. First, the state of entropy must be
reduced to benefit from the agile process. Then, having
established a level of manageable entropy, proper
actions (changes in process) must be taken to avoid
entropy from growing again.

This paper extends an initial short-paper reporting
from the study of CSoft [5]. In the remainder of the
paper we first describe our research approach in
chapter two. Chapter three gives an overview of
relevant literature covering software entropy, code-
smell analysis and refactoring decision-making.
Chapter four present our findings from the case study,
which is then being discussed in chapter five. Finally,
we answer the research questions and give some
concluding remarks in chapter six.

2. Study context and methodology

2.1. Case study context and background
CSoft (anonymized name) is a medium-sized

Norwegian software company that develops, maintains
and markets a product line having the same name.
They serve the high-end segment of their market and
have a wide international customer base. Despite
having considerable challenges CSoft is now one of the
market leaders. The company was established in 1996
and has grown steadily since, currently employing
about 260 people, including 60+ developers. They
have several development locations across Europe and
Eurasia and there has been a gradual shift from
building custom-made applications to a software
product line. CSoft can be seen as a highly modular
product line that allows many configurations and ways
to use it. It contains five main modules (with numerous
sub-modules). The use of these modules varies per
customer and per case. Some central modules are used
in any configuration, while the use of others depends
on the usage situation. CSoft comes with a set of
predefined configurations for the most common usage
scenarios, but there is also built-in support for detailed
customization to support more variants. From the start
of the company, fourteen years ago, the development
process matured from a more or less ad-hoc type of

process (creative chaos) to a well-defined waterfall-
inspired process (plan-based and non-iterative).

About five years ago the development process had
become too slow and inefficient. Out of necessity
CSoft changed to a radically different process: Evo [6].
This change was guided by Tom Gilb, who originally
defined the process [2]. Evo is an agile method
comparable to the better-known Scrum-method [7],
although the terminology differs. At CSoft, work is
done in two-week iterations (equivalent to sprints in
Scrum), working software is deployed on test servers
by the end of every iteration and invited customers
evaluate the latest results and give corrective feedback
to the development teams [3, 8]. Although similar to
other agile methods, the perhaps most distinct
characteristic of Evo is the strong focus on product
qualities and the definition and use of metrics for
expressing evaluating quality level goals. As adopted
at CSoft, Evo conforms to the four basic values in the
Agile Manifesto (see www.agilemanifesto.org):
interaction is highly valued, there is a strong emphasis
on delivering working software after every iteration,
invited lead users participate in development, which is
open to changes in requirements and design.

2.2. Study method
We have collected empirical data in three ways:

First, the company had a workshop with Patrick
Smacchia, an external consultant who analyzed the
CSoft source code using his own commercial tool
called NDepend 1 which was used to do a live
analysis of the code �– numerous metrics were
generated on the fly, presented graphically and the
code was browsed alongside a discussion in the
workshop group. Based on this �“live�” analysis of the
system the participants (system architects, developers
and researchers) developed through discussions a
common understanding of the state of entropy of the
system. A brief summary of this discussion is given in
[9]. Secondly, we conducted an in-depth interview with
two members from the four-person product
architecture team. This group has two main
responsibilities: (a) to ensure and improve the
architecture of the system, that is, to make it easy and
safe to add and improve features and to ease
deployment of the product, and (b) to improve the
system�’s development infrastructure (testing
framework, code management, automated builds etc.).
The interview lasted for 3,5 hours and was recorded
and transcribed. This transcription (30 pages of text)
was analyzed using NVivo , a tool for tagging
fragments of text with information about context,
meaning etc. Finally, we also did interviews with the

1 See http://www.ndepend.com/

2

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

leader and one developer from one of the module
teams.

2.3. Threats to validity
Our case study covers only a single software

development organization and the interviews were
done with a few representatives from the central
architecture team of four and just a few of the members
of R&D. Also, the situation described and discussed
here only reflects the present state and not details on
how the situation have developed over time. However,
findings from interviews are supported by data
obtained in the workshop with the external consultant
and the dynamic analysis of the code, together this
gives us valuable insight into the complex problem of
entropy and its reciprocal influence with the agile
development process. We believe that the results and
the discussions in this paper may be of practical value
as well as a pointer to further research.

3. Background

3.1. Agile development and code entropy
As early as 1976 Belady and Lehman [10] defined

what they call a set of laws of program evolution
dynamics. Their second law �– �‘The law of increasing
entropy�’ say: The entropy of a system (its
unstructuredness) increases with time, unless specific
work is executed to maintain or reduce it. This notion
of the entropy problem has been followed up by later
research on software evolution and maintenance. One
notable example is a much-sited study by Eick et al.,
which investigated a long backlog of change history of
a very large software system for telephony. On one
hand, it demonstrated decay/entropy as a natural
process. On the other hand it identified a set of useful
symptoms or predictors of decay [11]. The entropy-
problem have recently also been related to agile
software development �– one of the most notable ideas
to software engineering over the past decade [12]. For
example, Martin Fowler discusses evolutionary design
as a possible cause for software entropy �– if not
managed [13]. As a countermeasure he promotes
simple design and refactoring. As we will show by our
case study �– this is truly necessary but not easy in
complex situations such as the constant evolution of a
software product line. This view is supported by other
studies, for example by Oizka that summarizes that
�“..refactoring proved to be much more difficult and
time-consuming than expected.�” [14]. Rajlich defines
the industry�’s interest in, and shift towards, agile
methods, as a paradigm shift in software engineering
and that attention to actively managing software
entropy is a vital success factor [1]. Missing this focus

may actually shorten the lifetime of a software product
as a decaying system is eventually impossible to
evolve, consequently moving into a phase-out stage.
Neill and Laplante develop the refactoring concept
further and define what they call strategic refactoring
[15]. This is an approach, starting out with looking for
code smells, where also macro- and domain-level
architecture is being evaluated (and refactored).

3.2. Code smell analysis and refactoring
In a thorough search for relevant and rigorous

empirical research we have identified 11 papers
addressing code smell analysis and refactoring
covering, broadly, four sub categories:

(a) Subjective evaluation of code smells. In [16]
Mäntylä et al. report from an empirical study of
subjective evaluation and detection of code smells and
compare it with automated metrics-based detection.
The study was done in an industrial setting and showed
that subjective evaluations by developers were not
uniform. However, in cases with a low level of
problems, the conformance was higher than cases with
a high level of problems. When investigating the
demographics of the evaluators they saw that
experienced developers were better at spotting
structural problems in the code than regular developers
who could spot problems mainly at the code level.
Also, developers that had worked with the code for a
long period of time tended to see fewer smells than
developers with shorter experience. Finally, when
comparing subjective evaluation of code with
automated metric-based detection of code smells, they
discovered that developers�’ evaluations of complex
code smells did not match the results of the metrics
based detection. Based on these findings they conclude
that subjective evaluations and metrics based detection
should be used in combination.

Mäntylä et al. also reports on a student experiment
for evaluating subjective evaluation for code smells
detection and refactoring decisions [17]. He observed
the highest interrater agreements between evaluators
for simple code smells. When the subjects were asked
to make refactoring decisions he observed low
agreement, thus questioning the reliability of such.

(b) Refactoring and refactoring decisions. Counsell
et al. investigated refactorings done in seven open-
source Java systems to see which types of refactorings
were most common and which effects they had in
solving code-smells [18]. The study used fifteen
refactorings from the classification by Martin Fowler
and Kent Beck [19]. The analysis showed that a group
of six refactorings were more commonly used: Pull Up
Method, Move Method, Add Parameter, Move Field,
Rename Method and Rename Field. Surprisingly, these

3

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

most common refactorings were not addressing
inheritance or encapsulation. Two of the refactorings,
Move Method and Move Field, seemed to solve
several code smells. In another study by Counsell et al.
[20] the same code smells were used on the same data-
set to investigate indirect and composite refactorings.
Three refactorings were found to have large chains of
following refactorings (Encapsulate Downcast, Extract
Subclass and Extract Superclass). Refactorings
inducing long chains tended to be used relatively
infrequently by developers as opposed to refactorings
inducing short chains. In a third study, Counsell at al.
[21] used the same refactorings and the same empirical
data set to investigate how refactorings affected the
testability of a system. That is, to what extent the
fifteen refactorings affect the re-usability of a test suite,
i.e. having to update the tests is a spin-off cost of
refactoring. The main conclusion from this study is
that while semantically preserving refactorings may be
ideal for preserving tests sets, they are not necessarily
always the right refactorings to choose.
(c) General applicability of code metrics. We
identified one study investigating the applicability of
code metrics across different software systems. Bakota
et al. [22] collected code metrics for four software
systems: an OSS system vs. a closed source system and
an office application vs. a telecommunication system.
They found that the systems could be differentiated
from each other pretty well based on the metric values,
but remark that two metrics �“Response For A Class�”
and �“Weighted Methods Per Class�” behaved very
different on the systems analyzed. Somewhat related,
Li and Shatnawi investigated how well code smells can
predict post-release class defects [23], results showing
that the Shotgun Surgery, God Class and God Methods
bad smells were positively associated with the class
error probability.
(d) Code cloning. Two studies address problems
related to code cloning. Aversano et al. [24] studied
code clone evolution by combining clone detection and
co-change analysis, concluding that either for bug
fixing or for evolution, most of the cloned code is
consistently maintained during the same co-change or
during temporally close co-changes. This finding
seems to somewhat demystify the image of code clones
being bad design. In the same line of research, Lozano
and Wermelinger [25] report the results from an
experiment to investigate the effects of code clones on
maintenance. Their analysis suggests that existence of
code clones does increase maintenance efforts, at times
significantly, depending on code characteristics.
However, they were unable to identify characteristics
that systematically revealed a significant relation
between cloning and maintenance effort increase.

4. Findings from the Case Study
This section presents an overview of data collected

during the case study. It describes (i) the structure and
the complexity of the product being developed by
CSoft (ii) the problems that this structure imposes and
(iii) ideas that the architecture team themselves has for
improving the situation.

4.1. Complexity of the system
The system has been under constant development

for the last fourteen years and is based on several
technologies that have emerged over those years.
Aging solutions from years ago are still part of the
system, such as older ASP solutions, COM+
components, VB6 code and other legacy technologies.
Today, most new code is developed in C#, and is
spread over approximately 160 .Net assemblies. The
complete product is best described as a traditional
three-tier system with an MS SQL Server driving the
data layer, a business layer and a presentation layer
based on a dozen ASP.Net applications. There is a
clean separation between the presentation- and the
business layer. However the most obvious problem in
the software is what the architects refer to as �“the
Blob�”: a very large assembly (aptly named Core)
consisting of approximately 150K lines of code in 144
namespaces. The NDepend tool was used to visualize
and generate code metrics for the internals of this
assembly. One of the results was a so-called
dependency structure matrix, which showed an
extremely entangled structure, where most namespaces
refers to most namespaces, thus creating a lot of cyclic
dependencies. NDepend also provides means for
additional analysis through CQL (Code Query
Language) [26] which in name and function is inspired
by SQL. The code is the database and structured
queries can be defined to investigate the code and its
internal relationships. CQL retrieves instances of
classes, which display certain characteristics from a
code metrics perspective.

Figure 1. Overall CSoft architecture

4

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

The query language can be used for detecting code
smells, and we will give a small example with the God
class [19] code smell. Table 1 explains the
abbreviations being used.

Table 1. Metric abbreviations
AOFD Access Of Foreign Data
WMPC1 Weighted Methods Per Class 1
Cyclomatic
Complexity

Class-level cyclomatic complexity

LCOM Lack of Cohesion Of Methods
TCC Tight Class Cohesion
TypeCe Efferent coupling

A God class is a class with too many

responsibilities, delegating only minor details to a set
of trivial classes and using data from other classes. To
detect God classes in NDepend, we adopt the detection
strategy proposed by Marinescu [27] to the set of
available metrics in the NDepend CQL. The original
query of Marinescu is the following:

AOFD top 20% and AOFD higher 4 and WMPC1
higher 20 and TCC lower 33

We use the following query for detecting instances
of god class with the NDepend CQL:

SELECT TOP 20 TYPES WHERE TypeCe > 25 AND
CyclomaticComplexity > 20 AND LCOM > 0.77

Where TypeCe was used instead of AOFD,
CyclomaticComplexity was used instead of WMPC1
and LCOM was used as the counterpart of TCC. As a
result from this query, NDepend returned a set of
business management classes, all from a module called
Reporting, which is also the section of CSoft�’s Core
with the highest defect rate and performance problems.

4.2. Development problems
We can summarize the acknowledged problems

during development by distinguishing four aspects:
(a) Analyzability and comprehensibility. Due to the

high complexity of the system, it is very hard for
developers to get an overview of the code and its
structure. Especially the central component has grown
extremely large and has many internal references (each
namespace depends directly or indirectly on another
namespace), making it difficult to understand how it
really works. This was clearly not by design, but the
result of years of intense development. The system is
intended to be structured as vertical modules, but as it
is now there are too many relationships between the
verticals �– changing one will inevitable affect many
others. New developers joining R&D have a steep
learning curve and require close follow-up over a long
period of time by more experienced developers. There
exists no documentation or models that explain the

structure of the system, even though this clearly would
be highly useful both to existing and new developers.
Even worse, having problems understanding how the
code is structured leads to a fear of changing the code,
both for adding new features and for improving
existing code. The unclear internal structure creates a
cognitive overload and a common (unfortunate) way to
deal with this is code duplication: instead of modifying
existing code, developers create their own copy over
which they have full control. This leads to a larger
cognitive overload for other developers, only making
the problem worse �– a self-reinforcing effect.

(b) Modifiability and deployability. As a result of
the duplication and entanglement of code, developers
frequently need to perform so-called shotgun surgery,
meaning that even the modification of a small detail
forces them to identify and change code in many
places. These problems slow down the development
process and the potential for errors increases due to the
high chance of overlooking one or more locations.
Having to deal with bad code is frustrating to the
developers as they in some ways in practical terms are
enforced to build bad code on bad code as there is no
room to actually resolve the problem. Besides
development and maintenance, also deployment of the
product suffers from its structure: The current core
component aggregates features and functionality for
every possible configuration of the product and it has
to be released as a whole, even though only a fraction
of the functionality may actually be needed for a
particular configuration.

(c) Testability and stability. Due to the size of the
code and the many cross-references, there are too many
paths through the code to test them all systematically.
The test coverage is not high enough and existing tests
have shown to be unstable and inconsistent. For
example, the same tests run on similar systems may
produce different outcomes that are hard to explain.
Also, a lot of the existing tests are extremely large,
meaning that they too are hard to maintain and use.
When a test fails, it often takes a lot of time to locate
and fix the actual problem that triggered the failure.
Although such tests are supposed to act as a safety net
and give developers the courage to make changes they
are not trusted. This increases the fear or at least
reluctance to change existing code �– since the effects
of a change are hard to foresee and errors can have
considerable negative effects. Nevertheless, regression
testing is done, albeit with a lower than desired quality.

(d) Organization and process. As both the business
domain and the system are highly complex, each of the
development teams (4-6 developers in each) has an
expert (the so-called guru). This guru has high
technical skills and extensive experience with the code,
which is vital for the team to solve its tasks.

5

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

Consequently, this organization represents a
considerable vulnerability; losing just a few of these
gurus would have devastating effects on the
development. The development process is based on
two-week iterations and it is a strong focus on
delivering working software by the end of each
iteration. A negative effect of this focus is that
delivering quality software is at times traded in for
creating a working version. Each iteration ends with a
review, but the high velocity typically does not give
enough time to catch all issues. This causes extra work
close to a release when the system is thoroughly tested
as a whole, yet entropy is allowed to grow from release
to release. The development teams are set up to have
separate areas of concern, each team being responsible
for a part of the total product, e.g., the reporting
solution or the data storage. The idea is to build
competence around a well-defined part. Unfortunately,
the structure of the system does not reflect this
organization in practice, because functionality is spread
throughout the code. This forces the teams to operate
outside their area of concern, which has shown to
negatively affect their ability to produce enough new
and improved features of the product in their releases.
The total request for improvements from the market is
constantly higher than what actually is delivered, thus
indicating a need to improve development efficiency.

4.3. Ideas for improving
As part of the discussions with the architects, we

also collected several of their high-level ideas to
further improve the product and development process:

(a) Process automation. Currently too much testing
is done manually and more automation is desired. In
addition, to establish an efficient and trustworthy
safety net for the developers, tests need to become
more stable and trustworthy. With this in place, the
architects can introduce what they call �“pain-driven
development�”. That is, when a developer introduces or
changes code that breaks the tests, he or she will get
notified immediately to correct it.

(b) Restructuring and refactoring goals. The
architects feel that components of the software need to
be de-coupled from the core and the overlapping and
duplicated code has to be removed. They also agreed
that the system should have a clearer separation of
concerns were vertical modularization should reflect
business segments and horizontally, the system should
better separate business and platform related code.

(c) Continuous monitoring of quality. The
architects proposed a principle that they refer to as
�“quality-from-now�”, meaning that any change to the
code should be analyzed at development time, to check
that it does not conflict with defined rules of good

design. This can, for example, be achieved using a tool
like NDepend, by defining CQL rules to detect code
smells and monitor potential problems nearly
constantly during development. The architects believe
that this approach would considerably reduce the fear
of changing the code.

5. Discussion
In this section, we discuss each of the problem

areas identified in the case study. We analyze their
implications in the agile process and propose potential
solutions. We conclude with some avenues for future
research that follow from our literature review.

5.1. Analyzability and comprehensibility
In [28], van Deursen analyses the effects of various

agile practices on program comprehension, concluding
that pair programming, unit testing and refactoring are
the practices that support comprehension. We observe
that most agile methods assume that development
starts from scratch and ends with a release �– post-
release maintenance is not covered. In our case, the
system was already very complex when Evo was
adopted, and although agile methods promote
communication over documentation, the lack of
adequate documentation holds back the comprehension
of such a system. Although XP states that �“the code is
the documentation�”, there is no guarantee that the code
can serve this purpose if the system was originally
developed using different methods, in this case, a
changing mix of approaches from ad-hoc via waterfall
to agile. The limited number of �‘experts�’ of the system,
the high number of new coming developers, and urgent
demands on new functionality, makes pair
programming a not very practical solution for
spreading knowledge. Visualization tools could help
new developers to understand the code while
refactoring, and additionally generate adequate models
and documentation for the system, but the challenge
here is to understand which visualizations are better for
which purposes.

In addition to visualisation tools, the application of
refactorings to untangle crosscutting concerns will
improve the comprehensibility [29]. Such migrations
will better distinguish the code for various business
segments and separate business and platform related
code, allowing newcomers to explore the code more
intuitively Semi-automated tools for this kind of
refactoring has recently become available [30, 31].

Finally, to overcome �“the fear of change�” and cope
with the time pressure, we suggest semi-automatic
code inspections (cf. [32]), potentially extended with
advanced visualization and analysis tools such as [33-
35]. Tools will help developers to get a better

6

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

understanding of non-trivial refactorings, and can even
automate the more trivial ones. Dedicated tools have
been developed to eliminate code clones [36], although
the negative effects of code clones are still being
investigated [25].

5.2. Modifiability and deployability
According to Martin [37], dependency problems,

like the ones observed in our case study, largely relate
to two design smells: rigidity and immobility. Rigidity
means that a change in the system implies a cascade of
changes in other modules. Immobility refers to the
inability of the system to encapsulate components that
can be reused, because it implies too much effort or
risk. If the smells are all over the system, high-level
restructuring is needed to get rid of unwanted
dependencies. One immediate consequence of these
dependency issues is the violation of the Interface
Segregation Principle [37], explaining most of the
difficulties in the deployment stage. The analysis of
module dependency [38, 39] could represent a feasible
strategy for �“leveling the code�”. In [40], Bourqun and
Keller proposed the analysis of code smells alongside
with architectural violations for achieving high-impact
refactorings, and presented a comprehensive case study
where they describe how they combined several tools
and techniques, the resulting architecture and the
refactoring process. Our findings lead us to believe that
an approach along the lines of this work will be very
beneficial to improve modifiability and deployability
in the context of our case study.

5.3. Testability and stability
Unit testing is one of the important components of

agile methods. In the context of our case, the
considerable code size combined with a large amount
of dependencies in the code makes it hard to define
unit tests and achieve high levels of coverage. Due to
the high pace of development, there is little room for
regression, integration and system testing during the
iterations and CSoft relies on the feedback from
external stakeholders as quality checks. Recent work
has focused on methods and techniques for improving
unit test suits [41-43], alongside with empirical studies
on defects prediction [23] that aid planning. However,
there are still various challenges to agile testing that go
beyond unit testing that are not completely understood
[44, 45]. Although we consider visualization and
analysis tools to be useful, we know that non-trivial
refactorings are risky and time consuming due to the
unstable characteristic of the system. The current lack
of understanding of the effects of given code smells
and refactorings makes this task very challenging [21].
The usage of multiple criteria and goal-centered

indicators could be a feasible solution for focusing on
the relevant aspects within a project (see [46, 47]).

5.4. Organization and process
The strong focus on rapid and continuous delivery

of features at CSoft has lead to the construction of
teams with defined areas of concern. In the same spirit
of �“inspect-and-adapt�” from Scrum, CSoft has deviated
slightly from certain agile practices in order to adapt
agile practices to their context. As mentioned before in
the Analyzability and comprehensibility section, when
the system and organization become too complex, the
use of practices such as pair programming and team
rotation seems not to provide the same advantages as in
small teams. We also conjecture that an important
reason for delays on the incorporation of new features
is due to the system not reflecting the same separation
of concerns as the development tasks. This
entanglement of crosscutting concerns is a common
problem with software maintenance. Refactoring
towards an aspect-oriented version could help to
restructure the existing code according to the areas of
concerns [29], but this area is relatively new and tools
have only recently been presented [30, 31]. The lack of
adequate information to perform the planning could be
another reason for delays. Planning of iterations could
be enhanced by considering additional information,
such as complexity analysis of the tasks to improve on
estimates obtained from planning poker. However,
such complexity analysis may still have limited effect
in practice, as there is not enough empirical evidence
on the impact of different refactorings [21]. These
uncertainties could be compensated by continuous
quality monitoring, for example by combining
evolution monitoring [48-51] and semi-automatic code
inspections [32] to analyze metric-based
characterizations and code smells of the system, e.g.
using a tool like NDepend. Such a combination could
be incorporated to the development flow to detect
problematic areas and decide upon refactoring
strategies. There still is the challenge on deciding on
the prioritization of refactorings. One prioritization
approach could be to use detectors of defect or
performance issues in the system [52, 53].

5.5. Initial improvement actions
In the interview, discussing improvement actions

with the system architects, two types are relevant. First,
on a short term basis the situation must be improved to
actually release the potential in the agile process. This
includes both a restructuring of the system by breaking
it up, removing dependencies, to make areas of
concerns possible as well as automation of costly
manual activities, typically testing. This requires a

7

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

major effort by the whole development organization
and in the case studied here it has been decided that
approximately 80% of all effort in a whole release
period (approximately one calendar year) will be
dedicated to plan and execute a massive restructuring.
Tool support, like the use of NDepend in this case, will
anyhow be invaluable but it is clear that this will
require a massive amount of manual work. However,
this is a one-time effort and investment for future
development �– an expensive yet inevitable treatment.
Secondly, and on a long-term regular basis the
development process and the evolving software system
must be continuously monitored and controlled to
prevent entropy. Here a tool for evaluating continuous
system change according to a set of rules or guidelines
will be invaluable. However, there is still a challenge
in defining these rules and defining proper responses to
violations.

5.6. Avenues for future research
From the identified literature, we see that most of

the work reported on methodological aspects and tools
are on the development stage. More relevant case
studies and better evaluations of the available tools are
needed, especially studies following development over
time, evaluating actions taken and their potential
effects. This could permit practitioners to evaluate the
different solutions and adopt the most appropriate ones
to their context. In that sense, the use of evaluation
frameworks like the one suggested by Maletic et al.
[54] could be useful. Mealy et al. [55] have also
suggested a set of usability requirements for
refactoring tools. We have seen many examples of
tools supporting Java, but we have scarcely seen tools
supporting other widely used platforms or languages
such as C#, C++ and others. Consequently, more
research on integrated, cross-platform or cross-
compiler, frameworks is of interest. One of our major
findings is that there is relatively little empirical
evidence and methods available that supports
refactoring decision making. Code smells themselves
are suggestions for refactoring, but when we analyze
code smells, we also need additional information to
drive refactoring in a cost-effective way. Detection
focuses on answering: �“where are the code smells?�”
and analysis should focus on answering �“which code
smells should we refactor?�” or �“which refactorings
should we apply for this code smell?�” Moreover,
knowledge and methods for assessing the cost-benefits
of different refactoring are still largely an open area for
research [21].

6. Concluding remarks
In this paper, we have presented some of the

problems agile practitioners face when dealing with
software entropy in the long-term evolution of a
software product line in general. We have also
emphasized how the agile development process affects,
and are being affect by, the system entropy. We have
consulted relevant literature addressing the problem of
system entropy and code smell analysis and refactoring
as a viable solution.

 Through our case study we found that, to keep
agile responsiveness in the presence of entropy, the
agile workflow needs better support for understanding,
planning and evaluating the impact of changes. We
have proposed a combination of two strategies to
address this issue: (1) Short term: progressive high-
level restructuring by untangling crosscutting concerns,
which will help to improve comprehensibility,
modifiability, testability and deployability of the
system �– all important enablers for efficient agile
development. And (2) Long term: semi-automatic
quality monitoring and improvement during
development, which will ensure that the above
qualities are kept and make the development process
more predictable and thereby easier to plan. Based on
our findings and discussion we revisit our two research
questions:
1) How may system entropy and agile processes

mutually negatively affect each other?
We have exemplified and discussed several cases of
system entropy negatively affecting the ability to act
agile in the development process, e.g. how complexity
hampers productivity and quality. Also, we have seen
cases where the velocity of the agile process with short
iterations does not give time to resolve problems. One
possible solution would be to add time to solve issues;
however stretching iteration length is not desirable.
2) Can code smell analysis and refactoring be a

viable solution?
Based on our study of relevant literature and previous
studies as well as the ideas coming from the case
company itself along with the discussions of our
findings it seems that code smell analysis and
refactoring may help to resolve the problem of entropy
on a short term and also to establish a manageable
structure suitable for the speed and flexibility of the
agile process.

Finally, based on identified literature, we pointed
out two promising research directions were solutions
are currently lacking, and where practitioners need
advice: (1) refactoring decision support, and (2) task
complexity analysis.

8

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

As part of our own future work, we will continue
the study at CSoft by evaluating the effects of the
extensive ongoing refactoring project.

Acknowledgments
Our thanks to the architecture team at CSoft and to

the other staff members that have been involved in this
study. We would also like to thank Patrick Smacchia
for his valuable insight and ideas. This work was partly
funded by the Research Council of Norway under grant
179851/I40.

7. References
[1] Rajlich, V., Changing the paradigm of software

engineering, in Communications of the ACM. 2006. p.
67-70.

[2] Fægri, T.E. and G.K. Hanssen, Collaboration and
process fragility in evolutionarily product development.
IEEE Software, 2007. 24(3): p. 96-104.

[3] Hanssen, G.K. and T.E. Fægri, Process Fusion - Agile
Product Line Engineering: an Industrial Case Study.
Journal of Systems and Software, 2008. 81: p. 843-854.

[4] Seaman, C.B., Qualitative methods in empirical studies
in software engineering. IEEE Transactions on Software
Engineering, 1999. 25(4): p. 557-572.

[5] Hanssen, G.K., et al., Maintenance and agile
development: challenges, opportunities and future
directions, in proceedings of International Conference
on Software Maintenance. 2009, IEEE Press.: Edmonton,
Canada. p. 487-490.

[6] Gilb, T., Competitive Engineering: A handbook for
systems engineering, requirements engineering, and
software engineering using Planguage. 2005: Elsevier.

[7] Schwaber, K., Beedle, M., Agile Software Development
with Scrum. 2001: Prentice Hall.

[8] Hanssen, G.K. and T.E. Fægri. Agile Customer
Engagement: a Longitudinal Qualitative Case Study. in
International Symposium on Empirical Software
Engineering (ISESE). 2006. Rio de Janeiro, Brazil.

[9] Smaccia, P. Getting rid of spaghetti code in the real-
world: a Case Study. 2008 [cited; Available from:
http://codebetter.com/blogs/patricksmacchia/archive/200
8/09/23/getting-rid-of-spaghetti-code-in-the-real-
world.aspx.

[10]Belady, L.A. and M.M. Lehman, A model of large
program development. IBM Systems Journal, 1976(3): p.
225-252.

[11]Eick, S.G., et al., Does Code Decay? Assessing the
Evidence from Change Management Data. Transactions
on Software Engineering, 2001. 27(1): p. 1-12.

[12]Dybå, T. and T. Dingsøyr, Empirical Studies of Agile
Software Development: A Systematic Review.
Information and Software Technology 2008. 50(9-10): p.
833-859.

[13]Fowler, M., Is Design Dead?, in Extreme Programming
Explained, G. Succi and M. Marchesi, Editors. 2001,
Addison Wesley Longman: Reading, Mass.

[14]Pizka, M., Straightening spaghetti-code with
refactoring?, in Proceedings Of The International

Conference On Software Engineering Research And
Practice. 2004. p. 846-852.

[15]Neill, C.J. and P.A. Laplante, Paying Down Design Debt
with Strategic Refactoring, in IEEE Computer. 2006,
IEEE Computer Society. p. 113-116.

[16]Mäntylä, M. and C. Lassenius, Subjective evaluation of
software evolvability using code smells: An empirical
study. Empirical Software Engineering, 2006. 11(3): p.
36.

[17]Mäntylä, M., An experiment on subjective evolvability
evaluation of object-oriented software: explaining
factors and interrater agreement, in Intl Symp. on
Empirical Softw. Eng. (ISESE). 2005, IEEE.

[18]Counsell, S., et al., Common Refactorings, a Dependency
Graph and some Code Smells: An Empirical Study of
Java OSS, in proceedings of International Symposium on
Empirical Software Engineering. 2006, ACM: Rio de
Janeiro. p. 288-296.

[19]Fowler, M., et al., Refactoring: Improving the Design of
Existing Code. 2000: Addison-Wesley.

[20]Counsell, S., Is the need to follow chains a possible
deterrent to certain refactorings and an inducement to
others?, in proceedings of Second International
Conference on Research Challenges in Information
Science. 2008. p. 111-122.

[21]Counsell, S., et al., The Effectiveness of Refactoring,
Based on a Compatibility Testing Taxonomy and a
Dependency Graph, in proceedings of Testing: Academic
and Industrial Conference - Practice And Research
Techniques. 2006. p. 181-192.

[22]Bakota, T., et al., Towards Portable Metrics-based
Models for Software Maintenance Problems, in
proceedings of IEEE International Conference on
Software Maintenance. 2006. p. 483-486.

[23]Li, W. and R. Shatnawi, An empirical study of the bad
smells and class error probability in the post-release
object-oriented system evolution. JSS, 2006. 80(7): p.
1120-1128.

[24]Aversano, L., L. Cerulo, and M. Di Penta, How Clones
are Maintained: An Empirical Study, in proceedings of
European Conference on Software Maintenenace and
Reengineering. 2007. p. 81-90.

[25]Lozano, A. and M. Wermelinger, Assessing the effect of
clones of changebility, in proceedings of IEEE
International Conference of Software Maintenence.
2008, IEEE. p. 227-236.

[26]Smaccia, P. Code Query Language. 2009 [cited;
Available from:
http://www.ndepend.com/Features.aspx#CQL.

[27]Marinescu, R., Measurement and quality in object-
oriented design, in Intl Conf. on Softw. Maintenance
(ICSM). 2005, IEEE. p. 701-704.

[28]van Deursen, A., Program comprehension risks and
opportunities in extreme programming, in Working Conf.
on Reverse Eng. (WCRE). 2001, IEEE. p. 176-185.

[29]Moonen, L., Dealing with Crosscutting Concerns in
Existing Software, in Intl Conf. on Softw. Maintenance -
Frontiers of Softw. Maintenance (ICSM/FoSM 2008).
2008, IEEE. p. 68-77.

[30]Binkley, D., et al., Tool-Supported Refactoring of
Existing Object-Oriented Code into Aspects. IEEE

9

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

Transactions on Software Engineering, 2006. 32(9): p.
698-717.

[31]Marin, M., et al., An integrated crosscutting concern
migration strategy and its semi-automated application to
JHotDraw. Automated Software Engineering, 2009.
16(2): p. 323-356.

[32]van Emden, E. and L. Moonen, Java quality assurance
by detecting code smells, in Working Conf. on Reverse
Eng. (WCRE). 2002. p. 97-106.

[33]Parnin, C., C. Görg, and O. Nnadi, A catalogue of
lightweight visualizations to support code smell
inspection, in ACM Symposium on Software
Visuallization. 2008: Ammersee, Germany. p. 77-86.

[34]Trifu, A. and U. Reupke, Towards Automated
Restructuring of Object Oriented Systems, in European
Conference on Software Maintenance and
Reengineering. 2007. p. 39-48.

[35]Van den Brand, M.G., et al., Using The Meta-
Environment for Maintenance and Renovation, in
proceedings of European Conference on Software
Maintenance and Reengineering. 2007. p. 331-332.

[36]Nasehi, S.M., G.R. Sotudeh, and M. Gomrokchi, Source
code enhancement using reduction of duplicated code, in
Conference on IASTED international Multi-Conference:
Software Engineering 2007, ACTA Press. p. 192-197.

[37]Martin, R.C., Agile Software Development, Principles,
Patterns and Practice. 2002: Prentice Hall.

[38]Arevalo, G., S. Ducasse, and O. Nierstrasz, Discovering
Unanticipated Dependency Schemas in Class
Hierarchies, in proceedings of Conference on Software
Maintenance and Reengineering. 2005. p. 62-71.

[39]Leitch, R. and E. Stroulia, Assessing the Maintainability
Benefits of Design Restructuring Using Dependency
Analysis, in proceedings of International Symposium on
Software Metrics. 2003. p. 309-322.

[40]Bourqun, F. and R.K. Keller, High-impact Refactoring
Based on Architecture Violations, in Conf. on Softw.
Maintenance and Reengineering (CSMR). 2007. p. 149-
158.

[41]Guerra, E.M. and C.T. Fernandes, Refactoring Test Code
Safely, in proceedings of International Conference on
Software Engineering Advances. 2007. p. 44-50.

[42]van Deursen, A., et al., Refactoring test code, in eXtreme
Programming Perspectives, M. Marchesi, et al., Editors.
2002, Addison-Wesley: Reading, Massachusetts.

[43]Van Rompaey, B., et al., On The Detection of Test
Smells: A Metrics-Based Approach for General Fixture
and Eager Test. IEEE Transactions on Software
Engineering, 2007. 33(12): p. 800-817.

[44]Pettichord, B., Agile Testing Challenges, in proceedings
of Pacific Northwest Software Quality Conference. 2004.
p. 481-517.

[45]Talby, D., Agile Software Testing in a Large-Scale
Project. IEEE Software, 2006. 23(4): p. 30-37.

[46]Mäntylä, M., Developing New Approaches for Software
Design Quality Improvement Based on Subjective
Evaluations, in proceedings of International Conference
on Software Engineering. 2004. p. 48-50.

[47]Walter, B. and B. Pietrzak, Multi-criteria Detection of
Bad Smells in Code with UTA Method, in proceedings of

extreme programming and agile processes in software
engineering (XP). 2005. p. 154-161.

[48]D'Ambros, M., Supporting software evolution analysis
with historical dependencies and defect information, in
International Conference on Software Maintenance.
2008. p. 412-415.

[49]Jermakovics, A., M. Scotto, and G. Succi, Visual
identification of software evolution patterns, in
International Workshop on Principles of Software
Evolution: in Conjunction with the 6th ESEC/FSE Joint
Meeting. 2007, ACM: Dubrovnik, Croatia. p. 27-30.

[50]Kiefer, C., A. Bernstein, and J. Tappolet, Mining
Software Repositories with iSPAROL and a Software
Evolution Ontology, in proceedings of International
Workshop on Mining Software Repositories. 2007. p. 10-
18.

[51]Xing, Z., Analyzing the Evolutionary History of the
Logical Design of Object-Oriented Software. IEEE
Transactions on Software Engineering, 2005. 31(10): p.
850-868.

[52]Chaabane, R., Poor Performing Patterns of Code:
Analysis and Detection, in proceedings of International
Conference on Software Maintenance. 2007. p. 501-502.

[53]Wasylkowski, A., A. Zeller, and C. Lindig, Detecting
object usage anomalies, in Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering. 2007, ACM: Dubrovnik, Croatia.
p. 35-44.

[54]Maletic, J.I., A. Marcus, and M.L. Collard, A Task
Oriented View of Software Visualization, in proceedings
of International Workshop on Visualizing Software For
Understanding and Analysis. 2002. p. 32-40.

[55]Mealy, E., Improving Usability of Software Refactoring
Tools, in Australian Softw. Eng. Conf. (ASEC). 2007. p.
307-318.

10

Proceedings of the 43rd Hawaii International Conference on System Sciences - 2010

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 20,2010 at 10:06:24 UTC from IEEE Xplore. Restrictions apply.

